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AN IMPROVED ANALYTICAL MODEL OF THE INTERACTION OF DOMES

AND TRANSDUCERS DURING TRANSMISSION

I. INTRODUCTION

The purpose of this technical memorandum is to describe

an improvement in the specification of transducer velocity

distributions which are used in the analysis of dome-transducer

interactions. The mathematical model used in these studies

consists of a circular cylinder and concentric shell. Typically

the interaction problem has been studied by obtaining a solution

to the boundary value problem defined by the geometry of the

cylinder and concentric shell.

In previous studies a velocity equivalent to the radial

component of a plane sound pressure wave has been specified on

a portion of the cylinder face, the remainder of the cylinder

being rigid. The portion of the cylinder face having nonzero

velocity represents the active elements of the transducer. For

such a velocity specification, the velocity (amplitude and phase)

is continuous across the active face. This specification is

somewhat fictitious since it is equivalent to an infinite number

of point sources. In a real transducer there are, of course, a

finite number of active elements having finite dimensions and

discrete velocity amplitudes and phases.

Recently, a computational procedure has been developed

which permits the active portion of the cylinder face to be

separated into finite segments, each of which has a discrete

velocity amplitude and phase. The mathematical form of the

function describing the velocity boundary condition specified on

the cylinder has a finite number of finite discontinuities as

compared to the previous continuous description. This new boundary

specification is clearly a more realistic one.

1
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One important result of the improved boundary specification

is that dome-transducer interactions now can be analyzed for various

transducer element shading and phasing factors. This generality,

not available in previous boundary specifications, will permit

the investigation of an "optimum" element shading and phasing

including the effects of the dome.

In addition to the mathematical~.details of the new boundary

specification, some computed results for the near- and farfields

of the dome-transducer are included in this memorandum. These

results are compared with results previously obtained for a

continuous velocity distribution. Results are also presented

for several types of shading to indicate dome effects on the

nearfield sound pressure distribution and on beamwidth and side

lobe suppression as a function of transducer shading.

2
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II. FORMULATION

The interaction of the dome and transducer is analyzed

by obtaining a solution to the scalar wave equation for boundary

conditions prescribed on the transducer and dome surfaces. The

geometry of the dome-transducer model considered in this memo-

randum is identical to the geometry considered in previous studies

(see Ref. I) and is shown in Fig. 1.

The boundary conditions typically employed in the boundary

value problem are that the normal particle velocity of the fluid

have a prescribed value at the transducer face and that the normal

particle velocity be continuous at the shell-fluid interfaces.

In previous studies the normal particle velocity specified on

the active portion of the transducer face was equal to the radial

component of the particle velocity of a plane pressure wave, the

remainder of the cylinder being rigid. This boundary condition

has the mathematical representation *

vi r= a = cose eika cos 0 < 1i < CP
(1)

where

v is the particle velocity of the fluid normal to the

transducer.,

_2rr

k - and K is the wavelength of the transmitted wave,

and a is the radius of the transducer.

*The time component e-iwt . where w is the angular frequency, will
be suppressed.
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This boundary representation has the effect of shading each

point on the active portion of the boundary by a cos e factor
and phasing each point to a straight line. In this memorandum

a velocity condition is employed having the representation

vi rma =[v , (2)

where

[V.} is the set of head velocities of the active transducer

elements, and V. is the complex normal velocity of the jth element3
in the transducer.

It is assumed that the new velocity specification is an even

function of e although other cases can be handled with little
increase in difficulty. A comparison of the continuous and

discrete boundary conditions is shown graphically in Fig. 2

The velocity of any particular active element in the

transducer array can be written as

V= IVj le (3)

where IVj is the velocity amplitude and c0j is the phase of the

jth element.

The velocity specification for a single element of width

20 and angular position y=(2j-l)a as shown in Fig. 3 is

vi r= a = 0 0 < lel < Y - P

= IV jle Y-P<11 < Y + P (4)

= 0 Y+P<1e < T
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This distribution has a Fourier Series representation

Vr=a I 6 n os no 5

n=rO

where

6= -1- IvIeiP cos noden r Y

-~ IVIe"P . n=Q

2- IVIe"P [sin n(yq+3) - sin n(y-P)J,

n>O

and z I for n = 0, e £ 2 for n>Q.

Since the problem is linear, the velocity distribution

for several elements can be obtained by vector addition of the

velocities of individual elements. Thus if an array of 2N

equally-spaced, active elements is chosen as shown in Fig. 3,

with the jth element having a velocity given by Eq. 3,
the boundary condition takes the form

VI __ -V 1e lC c- <Ieac+p

V 2 e 2  3a-P<IeV<3a+P

=Ve J (2j -)-P< 10 <(2j -)a-FO (6)

C N (N1c~PIt(Nlc+=VN e(NlaPjC<2-~+

=0 elsewhere

where 2a is the element spacing and 2P is the element face width.

8
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In a manner analogous to Eq. 5, Eq. 6 can be given

a Fourier series representation

VIra= 1 6 cos ne (7)
n=O

where
N

n F IV le n=On Ir 11]

and N ic.

6 n I IV le 3 (sin n[ (2j-i)ah]

j=l

- sin n[(2j-l)a-J]} , n>O.

The boundary condition is now in a form suitable for use in

determining the sound pressure field inside and outside the dome.

The mathematical details of solving the boundary value

problem for a continuous boundary condition are given in Appendix
A. The solution of a boundary value problem having a boundary

condition given by Eq. 7 is obtained in exactly the same manner

by substituting Eq. 7 for Eq. 9, Appendix-A, and carrying out

the indicated operations in Appendix A.

9
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III. NUMERICAL RESULTS

Numerical results were computed for the sound pressure in

the near- and farfields of the transducer in order to determine

the effect of the dome on transmitted beams. Results were obtained

for several sets of amplitude shading factors IV iI as given in
Eq. 6. For all computed results, the phasing factors Wj, given in

Eq. 6, were chosen so that the elements were phased to a straight

line. The results were computed for parameters appropriate to the

AN/SQS-26. Results with and without the dome are presented. In

each case the results are normalized to the maximum sound pressure

in the distribution.

The near- and farfield pressure distributions for a trans-

ducer having unity shading factors are given in Figs. 4 and 5.

The near- and farfield pressure sound pressures presented in Figs. 6

and 7 are for amplitude shading factors having a cosine distribu-

tion. For this case the amplitude factor IVl is obtained as

IVl =i cos (2j-l)a . (8)

A comparison of the near- and farfields obtained with continuous

and discrete transducer velocity distributions is given in the

linear plots of Figs. 8, 9, 10, and 11. The former results,which

have continuous phasing and shading (cosine), were obtained from

Ref. 1.

For the results presented, the transducer radius is a,
the dome radius is b, the dome thickness is h (h-0 indicates no
dome is present),and r is the radial distance from the center of
the transducer at which the sound pressure field was computed.
All dimensions are in inches.

10
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Results for amplitude shading factors which have a cosine-

squared distribution, i.e.,

IViI = cos 2 (2j-l) (9)

are given in Figs. 12 and 13. Shading factors corresponding to

those for the AN/SQS-26, Model XN-2, were used to compute the re-

suits shown in Figs. 14 and 15. Finally, shading factors derived

by the method of Dolph-Tchebyscheff2 were used in obtaining the

results shown in Figs. 16 and 17.

A compilation of the shading factors is given in Table 1.

19
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!o ELEMENTS
8

TRANSDUCER

SHADING FACTORS lvi!

SHADING TYPE
ELEMENT NO, UNITY _COSINE Cos 2  XN-2 DOLPH

1 1.00 .999 .9909 1.00 1.00

2 1.00 .991 .982 1.00 .980
3 1.00 .976 .953 1.00 .925

4 1.00 .954 .910 1.00 .850

5 1.00 .924 .854 1.00 .760

6 1.00 .887 .787 1.00 .665

7 1.00 .843 .711 1.00 .570

8 1.00 .793 .629 .933 .475

9 1.00 .737 .543 .708 .390

10 1.00 .676 .457 .631 .315

i- 1.00 .602 .371 .562 .265

12 1.00 .537 .288 .501 .315

TABLE I-ELEMENT AMPLITUDE SHADING FACTORS

lvii
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IV. CONCLUSIONS

A computational procedure has been developed which permits

the specification of a discrete velocity amplitude and phase for

finite-width transducer elements in the dome--transducer model.

Previously it was necessary to assume a continuous velocity

distribution at the transducer in analyzing dome-transducer inter-

actions.

A cor:parison of computed near- and farfield sound pressures

indicates that the newer, more realistic transducer boundary

specification results in some changes when compared to previous

computations with a continuous velocity specification. For cases

with and without the dome, the newer specification results in a

rather high pressure amplitude on the inactive (rigid) portion of

the transducer. This result indicates that there is some inter-

action among the active transducer elements and the adjacent in-

active elements. This effect is shown in Figs. 8 and 9. In the

farfield the side lobes are somewhat lower for the discontinuous

boundary with and without the dome. (See Figs. 10 and 11.)

The purpose of shading a transducer array is, of course,

to improve the directivity of the array. Other factors, however,

should be considered in choosing an array shading. Among these

are smoothness of the nearfield pressure and source level -

decreasing the velocity amplitudes of some of the elements will

reduce the power transmitted to the water. The first factor has

implications in regard to cavitation and element loading, each of

which can affect system performance. The results in Figs. 4-17

illustrate the near- and farfield effects of the dome for several

types of element shading.

In regard to smoothness of the nearfield there does not

appear to be much difference in the results for the shading factors

27
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used in the computations; the nearfield sound pressure distribu-

tions for each type of shading are all nonsmooth with the dome in

place. (See Figs. 4, 6, 12, 14, and 16.)

The results presented in Figs. 5, 7, 13, 15, and 17 indicate

how shading can be employed to improve the directivity of the

transducer and increase side lobe suppression in the farfield.

An interesting result shown in these figures is that in cases of

extreme shading, for instance Dolph-Tchebyscheff shading shown in

Fie 17, the increase in side lobe level due to the dome is more

than for cases having lesser amounts of shading. With Dolph-

Tchebyscheff shading, the dome results in an increase in side

lobe level of approximately 10 dB, while for cosine shading

(Fig. 5) the side lobes are increased only about 5 dB. Hence, it

appears that dome effects are more pronounced as the degree of

shading is increased. It can be concluded that any program aimed

at "optimizing" beam patterns by shading the transducer elements

should include a consideration of the effects of the dome.

It is not possible at this time to derive in a closed

mathematical form an optimum set of element phase and amplitude

factors which include a consideration of the dome. However, the

techniques described in this memorandum can be used in developing
"optimum" element shading including dome effects through an inter-

active procedure.

28
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APPENDIX A. THE SOUND PRESSURE FIELD PRODUCED BY A TRANSDUCER

RADIATING IN A CONCENTRIC DOME

The mathematical model illustrated in Figure I consists

of an infinite-length cylinder and concentric shell. A velocity

distribution independent of the axial direction is specified on

the surface of the cylinder, and it is desired to find the

resulting sound pressure field in the fluid in Regions 1 and 2

of Figure 1. The boundary value problem as stated is a three

region problem (two fluid regions and the shell). In general

partial differential equations must be solved both in the two

fluid regions and in the region of the shell material, and

boundary conditions must be matched at shell-fluid interfaces

as well as at the cylinder-fluid interface. However, the

problem is considerably simplified by using the results of

elastic shell theory to describe the motion of the shell's middle

surface, thus eliminating the necessity of solving the full

partial differential equations of linear elasticity for the shell

material. Further, since the shell is thin relative to other

geometrical parameters, the boundary conditions at shell-fluid

interfaces can be matched at the middle surface of the shell.

A. Sound Pressure Field in the Fluid

It is assumed that in Regions 1 and 2 the acoustic

pressure p obeys the scalar wave equation
3

ir ' r P - ,2 _ 2 . 2()r. ow %_ 0 L

where r and 6 are the space coordinates, t is the time, and c is

the propagation velocity in the fluid.

For a harmonic time dependence the general solution

to Eq. I is
3

A-1
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LA H~1 )(kr) + B H(2)(kr)] cos nO eiWt (2)

n n n n
n-0

where H( I ) and H( 2 ) are the nth order Hankel functions of then n
first and second kind, respectively, w is the angular frequency,

k = w/c, and An and Bn are constants which will be determined

by boundary conditions. Equation 2 involves only cosine terms

as it is anticipated that problems to be analyzed will possess

symmetry about 0=0. In Region 1 the sound pressure field is*

P1 = [An H(1 )(kr) + Bn H(2)(kr)] cos ne . (3)
n=O

The sound pressure and the radial component vr of the fluid velocity,

with harmonic time dependence, are related by

-1 2 avr _ iWv(4
p r - at r

At the shell-fluid interfaces this component of the fluid velocity

must equal the velocity of the shell. (This restriction does

not apply to velocity components tangential to the interface

because the fluid is regarded as inviscid and hence will not

support shear forces.) Denoting the velocity on the cylinder

by V r and the radial component of the velocity of the shell by w,

the interface conditions at r=a and r=b are

1. Pl = V (5)iwp ar 1 r=a r

1 1 (6)
iwp r=b w

*The time component e-lwt will be suppressed in the following.

A-3
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In the case of interest, a section of the cylinder of

angular extent 2q) is pha:-ed to represent a plane velocity dis-

tribution of uniform amplitude, while the remainder of the

cylinder is rigid. This condition can be written as

Vr = 1Cos 8 eikacos 8
r PC

= 0 lo1w (7)

A Fourier series for the function cos 8 eikrcos may be obtained

by differentiating the identity,4

ikrcos 0 = i n Jn(kr) cos nO
n=0

where co=l, £n=2 for n > o, and Jn is the Bessel function. Then

Vr= Z Cn in Jn (ka) cos no

n=0

=0 , (8)

where the prime indicates a derivative with respect to the

argument. Equation 8 can be represented by the Fourier series

Vr i 1 6 cos nO (9)

n=O

where '7 m  n
n Cn Z, im Jm(ka)

m=0

and

A-4
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I2} sin+ nm-m n
in' L_ si %+c , n CP ,/r

The substitution of Equations 2 and 9 into Eq. 5 results in

k [An H )'(ka) + Bn n8 = ipcs 6n cos ne. (1)
n=O n-O

Noting that the cosine functions are linearly independent and

that k/w = 1/c, Eq. 10 implies

A (1 )' (ka) + B H(2)' (ka) = 6 (11)n n n n n

The radial component of the shell velocity can be represented in

the form 5

w = I Gn cos ne • (12)

n=0

The boundary condition given by Eq. 6 then becomes

k [A H (1 )(kb) + B H (kb)]cos nO = Gr cos nO (13)
n=O n=0

or

A H(1) (kb) + Bn H(2) (kb) = icp Gn (14)

since the cosine functions are linearly independent.

A-5
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In writing the general solution for the sound pressure

P2 outside the shell it is necessary to account for the fact that,

for large r, the pressure field should have the form of an out-

going wave. Since

Lim e- (1)(kr)} ei(kr-t) Y2/r kr
r-s Ln

6represents an outgoing wave, the proper form for P2 is

= I C, H( I ) (kr) cos no (15)P2 Cn n

n=0

The interface condition on the velocities of the fluid and shell

on the outside surface of the shell will be matched at the middle

surface of the shell, as in Eq. 6. Hence

1 BP2 iiWO rl r = W

or r=b

E C H (kb) cos ne G cos no,
n=O n n -' n ~co (16)
n=0 n=o

and, noting the linear independence of the cosine functions,

H(1 )'(kb) = icp Gn . (17

Equations 11, 1.4, and 17 give three sets conditions on

the four sets of unknowns, An, Bn, Cn, and Gn. A consideration

of the motion of the shell is necessary to obtain the requisite

fourth condition.

A-6
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B. Motion of the Shell

Let the radial and tangential displacements from

equilibrium of the middle surface of the shell be denoted by

ur and uo, respectively. FlUgge's shell equations are7

a 2 u Es S a2 u8 0 llr
at2 2 b2

5 2Ur  p p+ ES [u E [ r a ur

Ps - - Esh - u4 4 + 2 -+U (9

rt2  = bh b5 L 8 + r 12 b  
[- + 2 + (19)

where h is the thickness of the shell and b is the radius of its

middle surface, ps is the mass density of the shell material and

Es = E/(l-v 2), E being Young's modulus and v Poisson's ratio.

p_ and p+ are the pressures on the inside and outside shell

surfaces, respectively, so P- = [Plr=b and p+ = [P2]r=b .

Since w is the radial velocity of the shell,

w - r -iwu .  (20)

at r

The tangential velocity v of a shell element is represented as

v - - iWU (21)

For symmetry about 0=0, the Fourier series representation for v

is of the form

v = 7 Dn Sin nO • (22)

n=0

The shell Equations 18 and 19 can be differentiated with

respect to time to give conditions on u and v.
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2 2
-wep sv = .e2[ + ] (23)

2E s

S h lr=b - P21r:D b

E [w +2 + w] (24)

If E:quations 4, 16 and the Fourier series for w and v are

substituted into Equations 23 and 24 and the linear independence

of the trigonometric functions employed, the following conditions
are obtained.

[Hn(kb) An H(2)(k (1) hE s n-iw +(en(b)B]+iw H (I (kb) C

n  n  n n b n

E 2
+sh {2 b2 L h 4 2n2+1)]} Gn = 0 (25)

2 PS s n 2E!s nG(6

{W b } n b 2 n (26)

C. Determination of the Coefficients

Equations 13, 15, 18, 25, and 26 represent a set of

simultaneous algebrai - ,--a ions in the unknowns An , B , C, D
and Gn . This set of equations is readily solved to complete the

solutions for the sound pressure field in Regions 1 and 2 given

by Equations 3 avid 15 respectively.

As an example of the form of the coefficients, the solution

for the set of coefficients Cn which are associated with P2

(Eq. 15) is
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6
CnHIhn (27)

H'(ka) + h n Hl'(kb) [Jn(kb) N'(ka) - N(kb) '(

where

TTb 2 Es h 2  4 2 +
2cW PS - 77 + - ( n  2n

2cPb 12b

Es 2 n2 1
b2 (b2w2ps - Es n2 )

This form is typical of the remaining coefficients. It is of
interest to note that for h = 0, the C reduce to the coefficients
obtained for a transducer radiating without a dome. This limiting
case can be compared to the results of Appendix where the bare

transducer is studied independently.
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