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AN IMPROVED ANALYTICAL MODEL OF THE INTERACTION OF DOMES
AND TRANSDUCERS DURING TRANSMISSION

I. INTRODUCTION

The purpose of this technical memorandum is to describe
an improvement in the specification of transducer velocity
distributions which are used in the analysis of dome-transducer
interactions. The mathematical model used in these studies
consists of a circular cylinder and concentric shell. Typically
the interaction problem has been studied by obtaining a solution
to the boundary value problem defined by the geometry of the
cylinder and concentric shell.

In previous studies1 a velocity equivaient to the radial
component of a plane sound pressure wave has been specified on
a portion of the cylinder face, the remainder of the cylinder
being rigid. The portion of the cylinder face having nonzero
velocity represents the active elements of the transducer. For
such a velocity specification, the velocity (amplitude and phase)
is continuous across the active face. This specification is
somewhat fictitious since it is equivalent to an infinite number
of point sources. 1In a real transducer there are, of course, a
finite number of active elements having finite dimensions and
discrete velocity amplitudes and phases.

Recently, a computational procedure has been developed
which permits the active portion of the cylinder face to be
separated into finite segments, each of which has a discrete
velocity amplitude and phase. The mathematical form of the
function describing the velocity boundary condition specified on
the cylinder has a finite number of finite discontinuities as
compared to the previous continuous description. Tizis new boundary
specification is clearly a more realistic one.
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One important result of the improved boundary specification
is that dome-transducer interactions now can be analyzed for various
transducer element shading and phasing factors. This generality,
not available in previous boundary specifications, will permit
the investigation of an "optimum' element shading and phasing
including the effects of the dome.

In addition to the mathematical.detalls of the new boundary
specification, some computed results for the near- and farfields
of the dome-transducer are included in this memorandum. These
results are compared with results previously obtained for a
continucus velocity distribution. Results are also presented
for several types of shading to indicate dome effects on the
nearfield sound pressure distribution and on beamwidth and side
lobe suppression as a function of transducer shading.
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II. FORMULATION

The interaction of the dome and transducer is analyzed
by obtaining a soluticn to the scalar wave equation for boundary
conditions prescribed on the transducer and dome surfaces. The
geometry of the dome-transducer model considered in this memo-
randum is identical to the geometry considered in previous studies
(see Ref. 1) and is shown in Fig. 1.

The boundary conditions typically employed in the boundary
value problem are that the normal particle velocity of the fluid
have a prescribed value at the transducer face and that the normal
particle velocity be continuous at the shell-fluid interfaces.

In previous studies the normal particle velocity specified on

the active portion of the transducer face was equal to the radial
component of the particle velocity of a plane pressure wave, the
remainder of the cylinder being rigid. This boundary condition
has the mathematical representation *

V|r=a = cosb eika coSs Cc < iel < o)

(1)

=0 v < lo| <m .

where

v is the particle velocity of the fluid normal to the
transducer .

k = %ﬂ and X\ 1is the wavelength of the transmitted wave,

and a is the radius of the transducer.

-iwt

*The time component e , where w is the angular frequency, will

be suppressed.
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This boundary representation has the effect of shading each
point on the active portion of the boundary by a cos 6 factor
and phasing each point to a straight line. 1In this memorandum
a velocity condition is employed having the representation

VI = V33 (2)

where

{V.} is the set of head velocities of the active transducer
elements, and Vj is the complex normal veloecity of the jth element
in the transducer.

It is assumed that the new velocity specification is an even
function of 6 although other cases can be handled with little
increase in difficulty. A comparison of the continuous and
discrete boundary conditions is shown graphically in Fig. 2

The velocity of any particular active element in the
transducer array can be written as

o,
?

Vs = lele (3)

where IVjI is the velocity amplitude and wj is the phase of the
jth element.

The velocity specification for a single element of width
2B and angular position y=(2j-1)a as shown in Fig. 3 is

V] g =0 " o< |l <y -p
= ilee J vy-p<lol <y +p (%)
=0 y+p<|o| < =

i
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This distribution has a Fourier Series representation

@

Vir:a = zi 5  cos nd (5)
n=0
where
6 = ;9 [ :iz IVIeﬂp cos ngdg
= %E |V|eiw , n=0
= 2 |v|e®® (sin n(y#B) - sin n(v-8)1,

n>0 ,

and ¢_ =1 forn =0, ¢_ = 2 for n>0.
n n

Since the problem is linear, the velocity distribution
for several elements can be obtained by vector addition of the
velocities of individual elements. Thus if an array of 2N
equally-spaced, active elements is chosen as shown in Fig. 3,
with the jth element having a velocity given by Eq. 3,
the boundary condition takes the form

V|r=a = Vje a-p< |68 | <a+p
i~
= v 2 3a-<|0]<3a+p
. dw,
= Ve J (2j-1)a-p<|8<(2j-1)a+B (6)
i io
= Ve O (2N-1)a-8<|0 [<(2N-1)a+B
= 0 elsewhere

where 2a is the element spacing and 28 is the element face width.
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In a manner analogous to Eq. 5, Eq. 6 can be given
a Fourier series representation

v, = jz 5 cos nd (7)
n=0
where
N
i} ip.
= 2B j -
én = = :E; Ilee , n=0
J=
and

N .

— 2 ' 1mj . r 2. 1) ]

8, == 25 IVj e {sin n{(2j-1)a+B
j=1

- sin nl(2j-1)a-Bl} , n>O0.

The boundary condition is now in a form suitable for use in
determining the sound pressure field inside and outside the dome.

The mathematical details of solving the boundary value
problem for a continuous boundary condition are given in Appendix
A. The solution of a boundary value problem having a boundary
condition given by Eq. 7 is obtained in exactly the same manner
by substituting Eq. 7 for Eq. 9, Appendix ‘A, and carrying out
the indicated operations in Appendix A.
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III. NUMERICAL RESULTS

Numerical results were computed for the sound pressure in
the near- and farfields of the transducer in order to determine
the effect of the dome on transmitted beams. Results were obtained
for several sets of amplitude shading factors IV&I as given in
Eq. 6. For all computed results, the phasing factorswj, given in
Eq. 6, were chosen so that the elements were phased to a straight
line. The results were computed for parameters appropriate to the
AN/SQS-26. Results with and without the dome are presented. In
each case the results are normalized to the maximum sound pressure
in the distribution.

The near- and farfield pressure distributions for a trins-
ducer having unity shading factors are given in Figs. 4 and 5.
The near- and farfield pressure sound pressures presented in Figs.
and 7 are for amplitude shading factors having a cosine distribu-
tion. For this case the amplitude factor |V,| is obtained as

[Vi] = cos (2j-1)a . (8)

3l
A comparison of the near- and farfields obtained with continuous
and discrete transducer velocity distributions is given in the

linear plots of Figs. 8, 9, 10, and 11. The former results,which
have continuous phasing and shading (cosine), were obtained from

Ref. 1.

*For the results presented, the transducer radius is a,
the dome radius is b, the dome thickness is h (h=0 indicates no
dome is present),and r is the radial distance from the center of
the transducer at which the sound pressure field was computed.
All dimensions are in inches.

10
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Results for amplitude shading factors which have a cosine-
squared distribution, i.e.,

Ile = cosz(zj-l)a ) (9)
are given in Figs. 12 and 13. Shading factors corresponding to
those for the AN/SQS-26, Model XMN-2,were used to compute the re-
sults shown in Figs. 14 and 15. Finally, shading factors derived

by the method of Dolph-Tchebyscheff2 were used in obtaining the
results shown in Figs. 16 and 17.

A compilation of the shading factors is given in Table 1.

19
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TRANSDUCER

SHADING FACTORS | vijl

SHADING TYPE

ELEMENT NOJ  UNITY COSINE COS2 XN-2 DOLPH
1 1.00 .999 .999 1.00 1.00
2 1.00 991 .982 1.00 .980
3 1.00 .976 .953 1.00 .925
4 1.00 .954 .910 1.00 .850
5 1.00 924 .854 1.00 .760
6 1.00 .887 . 187 1.00 .665
7 1.00 .843 711 1.00 .9570
8 1.00 .793 .629 .933 475
9 1.00 .737 .543 .708 .390

10 1.00 .676 457 .631 .315
11 1.00 609 .371 . 262 262
12 1.00 .537 .288 .501 .315

TABLE | - ELEMENT AMPLITUDE SHADING FACTORS

lvil
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Iv. CONCLUSIONS

A computational procedure has been developed which permits
the specification of a discrete velocity amplitude and phase for
finite-width transducer elements in the dome-transducer model.

reviously it was necessary to assume a continuous velocity
distribution at the transducer in aralyzing dome-transducer inter-
actions.

A corparison of computed near- and farfield sound pressures
indicates that the newer, more realistic transducer boundary
specification results in some changes when compared to previous
computations with a continuous velocity specification. For cases
with and without the dome, the newer specification results in a
rather high pressure amplitude on the inactive (rigid) portion of
the transducer. This result indicates that there is some inter-
action among the active transducer elements and the adjacent in-
active elements. This effect i1s shown in Figs. 8 and 9. 1In the
farfield the side lobes are somewhat lower for the discontinuous
boundary with and without the dome. (See Figs. 10 and 11.)

The purpose of shading a transducer array is, of course,
to improve the directivity of the array. Other factors, however,
should be considered in choosing an array shading. Among these
are smoothness of the nearfield pressure and source level -
decreasing the velocity amplitudes of some of the elements will
reduce the power transmitted to the water. The first factor has
implications in regard to cavitation and element loading, each of
which can affect system performance. The results in Figs. 4-17
illustrate the near- and farfield effects of the dome for several
types of element shading.

In regard to smoothness of the nearfield there does not
appear to be much difference in the results for the shading factors

27
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used in the computations; the nearfield sound pressure distribu-
tions for each type of shading are all nonsmooth with the dome in
place. (SeeFigs. 4, 6, 12, 14, and 16.)

The results presented in Figs. 5, 7, 13, 15, and 17 indicate
how shading can be employed to improve the directivity of the
transducer and increase side lobe suppression in the farfield.
An interesting result shown in these flgures is that in cases of
extreme shading, for instance Dolph-Tchebyscheff shading shown in
Fig 17, the increase in side lobe level due to the dome is more
than for cases having lesser amounts of shading. With Dolph-
Tchebyscheff shading, the dome results in an increase in side
lobe level of approximately 10 dB, while for cosine shading
(Fig. 5) the side lobtes are increased only about 5 dB. Hence, it
appears that dome effects are more pronmounced as the degree of
shading is increased. It can be concluded that any program aimed
at "optimizing'' beam patterns by shading the transducer elements
should include a consideration of the effects of the dome.

It is not possible at this time to derive in a closed
mathematical form an optimum set of elewment phase and amplitude
factors which include a consideration of the dome. However, the
techniques described in this memorandum can be used in developing
"optimum'" element shading including dome effects through an inter-
active procedure.

28
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APPENDIX A. THE SOUND PRESSURE FIELD PRODUCED BY A TRANSDUCER
RADIATING IN A CONCENTRIC DOME

The mathematical model illustrated in Figure 1 consists
of an infinite-length cylinder and concentric shell. A velocity
distribution independent of the axial direction is specified on
the surface of the cylinder, and it is desired to find the
resulting sound pressure field in the f£fluid in Regions 1 and 2
of Figure 1. The boundary value problem as stated is a three
region problem (two fluid regions and the shell). In general
partial differential equations must be solved both in the two
fluid regions and in the region of the shell material, and
boundary conditions must be matched at shell-fluid interfaces
as well as at the cylinder-fluid interface. However, the
problem is considerably simplified by using the results of
elastic shell theory to describe the motion of the shell's middle
surface, tihus eliminating the necessity of solving the full
partial differential equations of linear elasticity for the shell
material. F¥Further, since the shell is thin relative to other
geometrical parameters, the boundary conditions at shell-fluid
interfaces can be matched at the middle surface of the shell.

A. Sound Pressure Field in the Fluid

It is assumed that in Regions 1 and 2 the acoustic
pressure p obeys the scalar wave equation

o/
n

2
3 (1)

-
(9

La (r %%) +

e P _
T 3r 2

[a]
v

(’N!H

[e1/

rt Pd
o

Q/

where r and 6 are the space coordinates; € is the time, and c¢ is
the propagation velocity in the fluid.

For a harmenic time dependence the general solution
to Eq. 1 is3

A-1
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p = zz (A, Hél)(kr) + B Hée)(kr)] cos no e TWEt 2)
n=(0

where Hél) and Héa) are the nth order Hankel functions of the
first and second kind, respectively, w is the angular frequency,
k = w/c, and A and B_ are constants which will be determined
by boundary conditions. Equation 2 involves only cosine terms
as it is anticipated that problems to be analyzed will possess
symmetry about 6=0. In Region 1 the sound pressure field is*

p, = ZO (A, 5 ey + B 1) (ke)] cos no . (3)
n=

The sound pressure and the radial component v, of the fluid velocity,
with harmonic time dependence, are related by

par at r (#)

At the shell-fluid interfaces this component of the fluid velocity
must equal the velocity of the shell. (This restriction does

not apply to velocity components tangential to the interface
because the fluid is regarded as inviscid and hence will not
support shear forces.) Denoting the velocity on the cylinder

by V. and the radial component of the velocity of the shell by w,
the interface conditions at r=a and r=b are

op
A 1 -
iwp ar r=a - vr (5)
op
1 1 _
iwp ©r r=b =v (6)

*The time component e~1wl will be suppressed in the following.
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In the case of interest, a section of the cylinder of
angular extent 2p is phared to represent a plane velocity dis-
tribution of uniform amplitude, while the remainder of the
cylinder is rigid. This condition can be written as
1 ikacos 6

=— cos 8 e , |8l<e |

Ve pc

=0 , 8> - (P

ikrcos 6

A Fourier series for the function cos 6 e may be obtained

by differentiating the identity,?

eikrcos ® E e i™ J_(kr) cos n#
n n
n=0

where eo=1, en=2 for n > o, and Jn is the Bessel function. Then
[ -3
. 1 z . T ' )
V., = Toc e, 1 J, (ka) cos né , |8]|<¢ ,
n=0

where the prime indicates a derivative with respect to the
argument . Equation 8 can be represented by the Fourier series

_ 1N
vV, = Toc o 6, cos nb 9)
n=0
where *
AN m ' n
5n = €n /., €m i Jn (ka) m
m=0
and
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{g} - %: [slnnl?mmlg + sinn-;m ], ném .

{2} = _57 [ﬁlng?l@. + o] , n}O ; {g} =gp/rn .

The substitution of Equations 2 and 9 into Eq. 5 results in

;%; ZZ (A, Hél)-(ka) + B néE)v(ka)]cos né = I%E\:E: &, cos né. (10)

=0 n=0

Noting that the cosine functions are linearly independent and
that k/w = 1/c, Eq. 10 implies

A Hél)'(ka) + B H§2)'(ka) =6 - (11)

The radial component of the shell velocity can be represented in

the form 5

w = z Gn cos no . (12)
n=0

The boundary condition given by Eq. 6 then becomes

iip :E% (A, Hél)'(kb) + B Hée)'(kb)]cos né = :E% G. cos n8 (13)
n= n=

or

A HD vy + B 1) b)) = 1ep G, (14)

since the cosine functions are linearly independent.
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In writing the general solution for the sound pressure
Py outside the shell it is necessary to account for the fact that,
for large r, the pressure field should have the form of an out-
going wave. Since

- . / ° - .
Lim 4& twt Hsl)(kr) = el(kr wt) 'V2/w kr
T
L

represents an outgoing wave? the proper form for Po is

Py = ZE: C, Hél’(kr) cos nf . (15)
n=0

The interface condition on the velocities of the fluid and shell
on the outside surface of the shell will be matched at the middle
surface of the shell, as in Eq. 6. Hence

1 %P I
jwp ar o
or r=b
«© -]
1 (1
ﬁ—p- Z ¢, B ) (kb) cos nb = z G, cos nd, (16)
n=0 n=0

and, noting the linear independence of the cosine functionms,

1) s
C, H /' (kb) = icp G_ . (17

Equations 11, 14, and 17 give three sets conditions on

B ral
n’ “n’ “n

of the motion of the shell is necessary to cbtain the requisite

the four sets of unknowns, A , and Gn’ A consideration

fourth condition.
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B. Motion of the Shell

Let the radial and tangential displacements from
equilibrium of the middle surface of the shell be denscted by

u. and ug, respectively. Fliigge's shell equations are’
2 2
3 u E. 93 u du
0 s 8 T

P 5 =5 [ + ] (18)
S at®  b° a0°  0F

aeur P. - Py ES [aue ] E h [a4ur 5 agur (19)
o] = - —x + u - T+ +U]
s at2 h b2 30 12b H ae+ 362 r

where h is the thickness of the shell and b is the radius of its
middle surface, Pg is the mass density of the shell material and

E = E/(1-v?), E being Young's modulus and v Poisson's ratio.

p_ and p, are the pressures on the inside and outside shell

surfaces, respectively, so p_ = [pl]r=b and p, = [p2]r=b’
Since w is the radial velocity of the shell,

e S
W o= 33 iwu_ (20)

The tangential velocity v of a shell element is represented as

o/

Ug
v = 5= = -lwug (21)

o/

For symmetry about 6=0, the Fourier series representation for v
is of the form

] e

Dp Sin né - (22)
0

=
i

The shell Equations 18 and 19 can be differentiated with
respect to time to give conditions on u and v.
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A E 2
e - -S f9_ VvV . oW
wp vV =—{ + 5] (23)
s b2 a62 36
"UJQQW"‘iw[p P ]-E§.[‘ﬂ+w]
s h 1 r= 2 r=b b2 “238
E 4 2
3 d W W
- [ + 2 +w] . (28)
1" 36" 36°

1f Equations 4, 16 and the Fourier series for w and v are
substituted into Equations 23 and 24 and the linear independence
of the trigonometric functions employed, the following conditions
are obtained.

h E n
-3 (L (2) . (1) - s
iw [H"/(kb) A + H_ (kb) B 1 +iw H "’ (kb) C_ 2 D,
E 2
2 s h y 2
+h <o p. ~5[1+—s5@-2n“+1)]p G, = 0 (25)
S b2 1352 n
E E

w? o, - g% n® 0 D_ - ;% nG =0 (26)

C. Determination of the Coefficients

Equations 13, 15, 18, 25, and 25 represent a set of

simultaneous algebraic eguations in che unknowns An, Bn, Cn, Dn,
and G, . This set ©f equations is readily solved to complete the
1

solutions for thes sound presgure field in Regions 1 and 2 given
by Equaticns 3 and 18§ respectively.

As an exampie of the form of the coefficients, the solution
for the set of coefficients Cn which are associated with Po
(Eq. 15} is
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6
Cn = 1, 1, vn ' [ ' (27)
Hn (ka) + h L Hn (kb) [Jn(kb) Nn(ka) - Nn(kb) Jn(ka)]

where
E 2
y = Ib W o - B+ @ - 2?4y -
2cp 12b

This form is typical of the remaining coefficients. It is of
interest to note that for h = 0, the Cn reduce to the coefficients

obtained for a transducer radiating without a dome. This limiting
case can be compared to the results of Appendix 31where the bare
transducer is studied independently.
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