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SUMMARY

We obtain for several geometric situations the expression for
the probability of insufficiently accurate data on the velocitv of a
surface target as a function of the parameters scan rate, nearest
approach distance of an observatory satellite, the detection radii of
the radar and the probability of detection per scan. The actual
number of observations taken per pass of the satellite is random and
in one instance we give explicitly the expect.tion of the probability

of accurate data. This expectation can be calculated in other cases.

This paper allows the determination of the capability of the
radar necessary to produce an acceptable probability of obtaining

accurate velocity information.



1. INTRODUCTION

Consider an observatory satellite moving in a straight line across
the plane which at any given time observes via radar a sector of an
annuius on the surface. This annulus, with satellite position at the
center, we call the surveillance ring. This ring, we consider, encounters
a target which is also moving linearly in the plane at a velocity much

less than that of the satellite.

It is easily seen that if we regard the satellite as being fixed, the
target still travels linearlv across the surveillance ring. We assume
for this argument that the satellite is fixed. Note that from this
assumption it would follow that the surface was moving which would have to
be taken into account, if we were interested in estimating the satellite's
position on the surface. This particular problem already has been the
subject of two previous documents, [2] and [3], and we are now interested in

a different one namely, tne prcbability of obtaining good data from the radar.
Before we proceed further, let us introduce the following notation:

R is the minimum detection radius of the radar,
R is the maximum detection radius,
D is the nearest approach distance of the target to the radar,

p is the probability of detection per scan of the target in

the surveillance ring,

h is the distance the target moves relative to the satellite

between scans.



T is the distance between observations resulting in
detection that must be obtained to procure the velocity

data needed,
U 1is the distance the target moves into the annulus before
being scanned.

At each sweep of the radar across the target, when the target is at
least R1 but less than a distance R2 away, the event's detection or
non-detection can occur with probabilities p and q =1 - p,
respectively. Moreover, successive sweeps of the radar are stochastically
independent and so we have a sequence of Bernoulli trials as the target
moves across the surveillance ring. We assume the probability of
detection is zero when the target is outside the surveillance ring.

2. ONE-STAGE ACCEPTANCE WHEN THE DISTANCE OF NEAREST APPROACH EXCEEDS THE
MIRIMUM DETECTION RADIUS

We now assume that unsatisfactory data will be obtained if less than
two detections are obtained or two or more detections are obtained but

the first and last are less than a distance T apart.

Whenever R1 <D< Rz, we have the following situation:
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MOTION OF TARGET RELATIVE TO SATELLITE

The length of the path of the target when it is within the

surveiilance annulus is 2d and

d = R2 -D . (2.0.8)

The number of scans of the radar is N where

N = [Zd—h'—‘i] +1 (2.0.9)



[x] denoting the largest integer less than x for x any
real number. Because we have a sequence of N Bernoulli triais each
with probability of success p, we introduce the notation for the

cumulative binomial probability

B(k:n,p) = <?) pj(l - p)n-j,
=0 \-

this being standard since the classic text of Feller [1]. The
probability of obtaining less than two detections, that is either zero

or one detection, is

N N
B(1:N,p) = q + Npq 5 (2.1)

Now the probability that we have at least two detections when the first
5 th th
detection occurs at the r scan and the last at the r + s scan

is seen to be

o S o
T $PePres T 1% PO ,
i=1 i=r+s+l

where P; is the probability of detection at the ith scan. Hence,
the probability of at least two detections with the first and the last

less than or equal k units apart, where

k = [T/h], (2.1.1)



i3 k_ N-g

2 N-s-1 2 N-s-1
piq. o = 2 (N - s)pq

Letting the derivative with respect to the variable q be

denoted by Dq.

, N-k N -
NS4 =g (2.1.5)
l - q . .
Now
N-k N N=-k N-k~1 N N-1
b (q - q )= qQ___+ (N-k)pq - (q_+Ng__)
1 - 2
q q 5
- ﬁil:h-k,p% - B(l:N,p) ‘ (2.1.6)
p
Hence
Ql = B(l:N-k,p) - B(1:N,p). (2.2)

Thus the probability ot bad or insufficiently accurate data for the

first case is obtained bv adding Equations (2.]1) and (2.2) and is

. N-k-1 N-k
Q, = B(1:N-k,p) = (N-k)pq +q (2.3)

where N is given in (2.0.9), k 1is given in (2.1.1).



the distance the target penetrates into the surveillance ring
before it is scanned by the radar is a random variable which we called
U. Thus, any function of U is also random e.g. N and expressions

Q1 and 02 above.

If we assume U is uniform on (O,h) and we let
[d/h] = n (d/h)-n = f

be the integral and fractional part of d/h, one can see

(2.3.5)

{ n+1 with probability f
N =

n " ” 1 I f.

Thus, we have by taking the expectation, the expected probability

of obtaining unsatisfactory data
EQ2 = fR(1:n-k+1l,p) + (1-f)B(1l:n-k,p). (2.3.6)

Now this form lends itself to easy use with tables of the cumulative

’

binomial distribution e.g. the Harvard tables [4].
One can obtain alternate forms by manipulation e.g3.

-k i T e
EQ, = fp(a-k)q" < + (1-£) (n-k)pq" Klea™,
and again

n-k-1

EQ, = ((n-k)p(fq £1 -8y % q)q (2.4)

as a final form for the probability sought for Case I.
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3. ONE-STACE ACCEPTANCE WHEN THE NEAREST APPROACH DISTANCE IS LESS THAN
THE MINTIMUM DETECTION RADIUS

We now consider the case when O - D - Rl' At this distance, the

relative motion of the target to the satellite carries it inside the blind

range of the radar. The situation is as follows:

r

N Observation

»nd
N Observation

MOTION OF TARGET RELATIVE TO SATELLITE

We now number the scans in the order of their occurrence inside the

surveillance ring from the top down. And we write

pj = probability of detection at the jth scan j=1,...,N

where



2d, - U
e (3.1)
| T
d, =.’Rf SipEn d) = R - p?

Also let N' be the number of observations obtained in passing through

the first segment of the ring.

N? = [(d2 - dl -U)/h] +1 (3.2)

and N" + 1 be the number of the first observation obtained in the

passage through the second segment of the ring,
N" = [(dl + d2 - U)/h] + 1. (3.3)

Since in this case we have
{ 0 J=N"+1,...,N"
P otherwise

The probability of zero detections is

_ _N'"+N-N"
=g

N

N'+N-N"-1 N'+N-N"-

= E Pq + Pq L
J= j=N"+1

‘i J-N""_
(N' + N o N")qu +h N 1 ! (3.6)



Hence, as before we see the probability of less than two detections is

B(1:N' + N - N",p). (3.6.5)

The probability of two or more detections with the first detection

th . th -
at the r scan and the last detection at the r + s scan is

I N"aN "
r-1 N pzqh s for r+s < N'
q. P_P I Qo= "
=1 1 R UES ferias) L or r > N'+1

0 otherwise.

Hence, the probability of at least two detections with the first and

last detections less than or equal k units apart, with k = [T/h],
r-1 N
| e
9 = [T 95)P:Prie ST
s=1 i=1 i=r+s+1
2 N-s—N"+N-1( )
| Ry " L]
Q.= P q fr_>_N+1}+§r+s:N}
s:

where §x

| A

t§ is the indicator function of the relation taking the
value one for all values of the variable for which it is true and the

value zero otherwise. Now we have

k " \ iy i 5 -+
pqu s=N"+N 1((N_S_N"). L) )

s=

where again we have introduced the notation

X if x>0
x)" = { :

is



10

1

) A Vs G N e N"_ _\" = N'—g-
gt = . (N-s5-N") qA\ s=N"-1 " quN N j;::(N,_S) qN s-1

s= s=1

it {lg, N=N"} L 2 N-N"
- p%q" Dq( : g _&') +p7q D
S=

where in this paper we make the convention that

{a,b} = min(a,b). 3.7)

Now using the result (2.1.6) we have

Q) = e (B(l:N-N"-{k,N—N"},p) . B(l:N—N",p))
+ "V (B(LaN-(1,N"},p) - BALN',P))

and by adding (3.6.5) and Q2 above we have the probability of bad

data for this case, namely,

Qy = B(L:N+N'-N",p) + qN'(B(I:N-N"—{k,N—N"},p) - B(1:N-N",p))

+ &V ANtk ,p) - BAN'-D)).

But we notice that

N-N"

L}
B(1:N+N'-N",p) - qN B(1:N-N",p) - q B(1:N',p)

- (3.7.1)
-q

hence, the answer is
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o N\ 'l_ a1
0y = q" B(L:N-N"-{k,N-N"},p) + q" N B(L:N"-{k,N'},p) - "N+ | (3.8)
To find the expected value of this expression, we are reduced
to a tedious evaluation of special cases. Take as the integral and
fractional parts of the following:
di/h =n + fi i=1,2,
with V = U/h being a random variable uniform on (0,1),
Zn2 if o > 2f2 -V -
= -V = i -
N [2n2+2f2 ]+ 2n2 +1 if 1> 2f2 Vs>o
2n2 + 2 if 2> 2f2 =V >1
n, -0 +1 if 1> f2 - fl -V>0
S 2 ARG = s s i 2 o
N' = [n2 n1+f2 fl V] +1 n, n, if 0> f2 fl Vs> -1
n, - n, - 1 if -1 > f2 - fl -V > -2
n, + n, 2 if 2> fl + f2 -Vs>1
"o_ 5 = 7 e
N: = [ 4n 46 #6, V] 4 1 {nl+n2+1 #f 1B tE N 0
n, + n, if 0 > fl + f2 S |

Now the evaluation of the expectation of (3.8) with respect to the

random variables N,N',N" would be so tedious to write out and would
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convev such little information additional to (3.8) that we refrain
from doing so.

4. THE TWO-STAGE ACCEPTANCE WITH NEAREST APPROACH EXCEEDING THE MINIMUM
DETECTION RADIUS

We adopt the same probabilistic model as before only now the criterion
for insufficient data we take as being less than two detections or two
detections separated by at most a distance T. or three or more detections

1

separated by at most T,.

As before, we have in the first case the probability of less than

two detections being

N N-1
B(1:N,p) = q + Npq 3 (4.1)

The probability of exactly two detections with the first and last

less than or equal k1 = [Tl/h] units apart is

k, Wos = k. (2N-k.-1)

2 N-2 2 N-2 1 1 2 N-2
2 e L e .
s=1 r= s=

The probability of three or more detections with the first and
last detections less than or equal k2 = [Tz/h] units apart is easily

seen to be by comparison with the argument of Section 2

k. N-s
2 -1, N-s-1 2 N-s-1 N-2
S: 2:" Gac)e = N=s)Ga = -9 )
s=2 r=1

M~

s=2
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k L
) 4 N-s (ky-1) (2X ky-2) 2 N-2
P Dq q - 3 Pq

s=2

2(k2-1)(2N-k2-2)
2

B(l:N-kZ,p) - B(1:N-1,p) - pzqh-

(4.3)

Thus, the probability of insufficient data is the sum of (4.1), (4.2)
and (4.3) which is
k, (2N-k

-1) :
L - e e B(1:N-k,,p) - B(L:N-1,p)

Q4 = B(l:N,p) +

2(k2-l)(2N-k2-2)

2 N-
P q 2

since B(l:N,p) - B(l:N-1,p) = ‘(N‘I)quk—z

- MWl o P - IN_L 9
2 N2 kl(-N kl 1) (kz 1) (2N k2 2) '
04 = p q 3 - 5 - N+1

-

+ B(l:N-k,,p).

By letting k., =k

1 ,s We see this redvces to the preceding result

of Equation (2.3). We do not bother with the expectation of 0,
-
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5. THE TWO-STAGE ACCEPTANCE WITH NEAREST APPROACH LESS THAN THE MINIMUM
DETECTION RADIUS

By direct analogy with Section 3, we have the probability of zero

detections or one detection is

B(1:N"+N-N",p). (5.1)

The probability of exactly two detections with the first at the rth

h
scan and the last at the r + st scan is

2 N'+N-N"-2 r+s < N'
Pq
r-1 r+s-1 N o
| | qi pr I l qi pr + s I l qi = r> N4l
i=1 i=r+l1 i=r+s+1
0 otherwise.

Hence, the probability of two detections with the first and last less

than or equal kl = [Tl/h] units apart is

k, N-s

Q;. = 2 2 PZqN'+N_NI'—2(fr + s < N'i + §t 2 N" + 1;).
s=] r=

Now for i=1,2, 1let

kj N-s ki
% ’225r+siN'§ +§r1N"+1§=2((N' %) E - s)*)
s=1 r=1 s=1
(e o) (ko N-N")

- 2 (N' - s) + 2 (N-N"-s)

s=1 s=1
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{ki,N'}(ZN'—{ki,N'}—l) + {ki,N-N"}(2N-2N"-{ki,N-N"}-1)

Lo 2

. 2 N'+N-N"-2
on = Clp q

The probability of three or more detections with the first at the

rth scan and the last at r + sth scan by analogy with previous work is

= [ ] ny ll_ .
pz(l-qs l)qN +N-N"-sg-] if T :_N'
or
> r> N +1
0 otherwise.

Therefore, the prnbability of three or more detections with the first

and last less than or equal k., units apart is

2
k2 N-s
‘ ) 1 o H- .y
zz p2(l-qs l)qN +N-N""-s I(fr e <_N'¥+ Er >N + 1;)
s=] r=1
k2
- Al - H- _" + _;_
<~ pZ:E: (l-qs l)qh +N-N"-s 1((N'—s) + (N-s=N") )
s=1
k2
3 '+ N 4 ' <N""- + vy N
- pZ:E: ((N'-s)TqN N-N"-s l-(N'-s) qN +N-N zf(N-N"-s) qh +N-N"'-s-1
s=]
4 v e L ll_
_(N-N"-s) g NN 2)
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(kysN') {kys N-N")
) NN R v ] —N"_ " $N-N"-
DN (2‘ oy )+ 2 ( 2 R s)_ Czpqu N-N"-2
q q
s=1 =1

YAN_N"_
B(l:N'—{kz,N'},p)-B(ltN',P))'CZPZQN =

N-N" (

+ qN' (B(l:N-N"-{kz,N-N"} ,p)-B(l:N—N".p))-

Hence, the probability that we have insufficiently accurate data for
this case is
Y LN_N"_
Q5 = B(1:N'+N-N",p) + pqu I 2(Cl-Cz)
N"N"
+ q (B(I:Nl{kz,N'},p)-B(l:N',p))

N' ” ” "

+ q (B(1:N-N -{kz,N-N },p)-B(1:N-N ,p))

which by the simplification of (3.7.1) is

2 N'+N-N"-2 N-N"+N'
Q; = P9 (€;-C)) - q

N—N" [ [} N' {1} "
+ q B(l:N-{kz,N }p) + ¢ B(L:N-N -1k, ,N-N"},p)

which of course agrees with (3.8) if k1 =k Again we refrain from

2°
writing out the expectation of QS'
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