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The  following report discusses the use of simllaril^ flows in 

certain hydrodynaaic iapact problems, as a basis for approxlaate asalytlcal 

solutions. After a qualitative discussion of various ways i which such 

solutions msy he obtained, a single derivation is obtained of.  a o^ss of me- 

lar^eter siailÄrity flows for probieBS in 1, 2 and 3 dlTOnslons, «lieh 

includes substantially all those used previously, and allows the superposition 

of constant uniform isotions. The perturbation equations «hlch relate the 

asymptotic form of the actual solution to such similarity flow (under 

some conditions) are explicitly fonsulated and the equations of the 

charaeteristlc surfaces wMeh determine their behavior are derived. 



I. INTRODUCTION 

Because of their non-linear form, the equations of hydrodynamics 

(and the problems they represent) are not amenaMe to general «naJytical 

solutions, to the other hand, they are often so complex that direct 

numerical solutions, if at an possible, becoae uneconomic and/or un- 

convincing without sone kind of ana3ytieal guidance. This is particularly 

true in the case of probleas involving shocks, where the singular nature 

of the flow may lead to serious msaerieal difficulties if its Implications 

for the solution are not properly understood. 

It therefore hecomes necessary to utili?.e those analytical methods 

that are available to provide at least a qualitative underotanding, if 

possible, of the solution of the problem posed, and even if not, a guide 

to the niffiierical app-oach, Ühere «re a variety of such  "techniques 

available in the various branches of hydrodynamics, and thou$i they are 

by no means always adequate, they often provide the first step of an 

approxiaate analytical approach which meets the need described above. 

These methods involve one or more of the following: 

1. the use of special solutions, e.g., eonforsal 

mapping in stationary incoap-essible flows, 

lagendre's transformation in aore general problems, 

and "similarity" (homological) solutions in problems 

involving explosions and/or boundary layers| 

2. perturbation techniques around such solutions {in 

particular singular perturbation methods for 

boundary layer probleffls);-and 

3. integral methods based on the conservative properties 

of the flow. (These seem particularly applicable to 

problems involving shocks.) 



In tiie case of hyperveloclty impasts, one is confronted with 

probleias which lack complete sysnmetiy and involve severe discontinuities 

(shocki), as veil as regions of smooth flow, and so we may expect a need 

for all the methods cited above in order to provide a satisfactory 

analytical foundation for understanding both the experimental and 

niMerical results. Despite their general difficul%-, impact problems 

have certain characteristics vMch suggest that the above cited methods 

are particularly applicable, fhe initial and boundary conditions art 

usually sufficiently localized in space and tin» as to effectively 

approximate an explosion, and a correspondingly simliar "similarity" 

solution. Ihe deviation of these conditions from those necessa^r for 

a similarity solution, as well as the strong deviation near the 

shock, is confined to a relatively small region of space and time, making 

possible effective perturbation methods (albeit of a singular nature In 

the second case). 

There  are thus several approaches available for providing an 

approximate analytical framework for understanding and further developing 

quantitative (i.e. generally mserical) solutions of hypervelocity impact 

problems. The first step In each of these is the establishment of some 

suitable "approximating" similÄrity solution. Täis may then be used in 
various vayst 

1.   as Äe first stage in an approximation or perturbation 

procedure in some parameter of the problem (e.g. the 

shock strength), (Sakural)|^■ ' 

2. as a general form (with variably parameters) In an integral 

method, in which the parameters we determined phenoaeno- 

log^cally from the conservation lawe (Chemyi)^2^ 

(see also Telehmann^ and Stuart^) 

3.        as an asymptotic solution, in which case it must be 

shown that the Initial and bouMary variations decay 

suitably as the process develops* 

t 



(l) and (2) abova have received a good deal of attention In the 

cases of point explosions and hypersonic flow,, in most eases with a 

certain amount of success. In the case of hyperveloclty Impact the 

prohlems are more difficult (largely because of equation-of-state 

Umltatlons). Nevertheless some progress has been made? method (l) 

has been applied by Rae) ^ using results of Sökural^ tod Oshlma in the 

explosive case, and a version of method (2) has been used by Raizer. ^ 

The  third method indicated above does not seem to have been used. It 

involves rather more mathematical profundity even in its formulation, but 

If successfully carried out provides a more satisfactoiy conceptral 

framework for both of  the other methods cited, as weH as for new ones 

which say be developed. It is not proposed to carry such a rather 

difficult program through here. What will be done below is to give a 

urifled derivation of the various one dimensicnal slailarity solutions 

used by Kaizer and otters, and briefly to formulate the mathemutical 

proWems of the asymptotic behavior of actual solutions. 

Tr.i effective utiliEation of a similarity flow (or. Indeed, ai$r 

other flow) as a first step in an approximation procedure depends strongly 

on Its simplicity and perspicuity. In all cases of Interest, both for 

explosions and impacts, attention has been restricted to one-dimensional 

(or more strictly speaking, one-parameter) solutions, though the physical 

problem itself may of course be multt-dlmensloiml. Hals restriction 

Implies a substantial degree of geometric synaetry, more specifically, 

limitation to plane, spherically eymaetrlc, and axial or transverse 

cyllndrically symmetric problems. Use question of any deviations from 

such syametry will not even be touched on here. 
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II. SIMPLE SIMILARITY FLOHS 

One thus considers the basic hydrodynamic equstioae (for a perfect 
gas) in the form 

do      -i 

at+^ * P
V
- o 

P jt + S (v . 7v) . . 7p 

ft (»■V) ♦ v • »(pp^) . o 

rr1^)6 ge0eral ,Beth04 * M1Chal<7) as ^^ * *oWe) and 
Btaoter,    „e search« for . one parater .„t of tz^foa-ti«. 

t - ht 

r -» b r 

v^b8 v 

p - b6p 

*1CU lea« the equatico5 lnvarlant_     (Note ^ re4ulrs(Mnt      __ 

=y toe presence of M exterior ^I™.)    Ooe eaally f IMe 

Intraiucitig 

0 = or . 1 

6   -  2(dr~l)   . 

s . r/t® 

P s pA2(^) 



t^e equations beccrae 

p^  * f +  (V . crs)  . 9p  ^ 0 

p[(«-l)V ♦ (Y-cH)  . fV]  = . fp 

2(«-l) [Pp^ ♦ (V-Qfl)  . 9(Pp^)3  . 0 

All the quantities are now functions of s alone, and 7 now applies to s. 

For sij^licity (tmctability«) caie now searches for a solution of 
the form 

v = ä + r s 

where A is a ccmstant vector and r a caistant dyadic (ii»trix).    Then 

V  • V s tmce T = a,  say 

Let 

S - F . crl 

and U = V - a s 

. A+Sl 

the equations then have the fom 

(A + Ss)  • fp + ap = 0 

(r+Ccr-i)!}! + r(r-i)1 + i ^ P = o 

(A +Ss)   • 7(Pp^) + 2(a.l)P p-Y s 0 

The first ar.d last equations ma.y be solved by the method of characteristics, 

Placing 

one has 

♦ - log p/po 

|=-i(A+Se) 
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df a ^ u 

with 

s = s   .       P = Pn ,       v s v  .       A - v  - rs„ . 

whence 

for the Initial conditions.    Hence 

Ü . Vo - r 1o + s s = e   a      (V0 - af10) . 

>Sifflilarly, putting x s log ^   the third equation gives 
o 

ü=e   SC5^T     (? 15 
o o 

.        2(ff-l). 
X - (v + "ir-^ * 

p      ^p / 

o       Ko 

a 0 

Inserting these quantities into the second equation one  finds (eventually*) 

_ 1H _ t- 
1 . E"1  (1 - e    a ") Vo + 1o + as-1 (1 - e' a ") 1o 

u . (r + (cr-i)!) (vo - r so) + u • (r - i) r s - (aY v 2(3-1)) 1. 0 
p 

(S + s 1) . (r + (c*-i)i) 2 + (3 + H I) (r -1) r 8 

Y+%Ü,i 
s io (aY + 2(ff.i)) a.) 

0 po 

« A • (r + (cr-i)i) A + A [i (r + (0.1)1) 1 + (r - 1) r] 1 

+ 1 [s (r - 1) r] 1 



Since S is a 3 dimensional matrix (dyadic) all functions of S may be 
2 

written as the sum  of 3 terms ,,. 1+,.,S+,.,S| the coefficients 
- f #/a)c 

above will Involve the proper values c. of S^ and the functions e Vf/ ' i, 

and possibly their derivatives up to second order. Since p = p e > the 

coefficients of terms Involving derivatives must vanish. Since only one tens 

appears on  the right of the equation^ the bilinear term s must vanish on 

the left. Hence one must have 

i.e. 

E (F - 1) r - 0 

(r - ai) (r - i) r = o 

To avcxd inessential conplicatIons for the present let T - T, i.e. T Is 

ssupposed syisnetrlCj inlying ? x. ^ = 0 a reasonable assumpti^i for many 

appli cati ais,    Thus 

(r - ai) (r ... i) r - o 

Hence at and/or 1 and/or 0 must be proper values of F.    The case T = 0 

correspca^.s to unifoiro motion, and is uninteresting.    The case 

r ^ o 

correspcaids to a plane situation, the case 

1 
r = 

to a cylindrical (line source) configuration^ and the case f s 1 to a 

spherienlly Symmetrie or a point cyllndrically symmetric situation. The 

presence of the vector A (lAieh is generally independent of T)  allows a 

superposition of uniform and expanding (contracting) motions. The 

parameter ot  must be deteimned by the exact shock conditions, by the 

properties of the perturbation solution, or by the integral relations. 

The  specific solutions for these cases are given by Ralzer, ' 

and their cooMnatim with conservation laws discussed there. 
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III. ASYMPTOTIC BEHAVIOR; PERTUBBATION EQUATIONS 

If cp is a vector representing the dependent variables, the hydro- 

dynamic equations have the form 

at = x W 

where X is a differential operator linear In the derivatives. A similarity 

transformation (of the type considered above) implies the existence of a 

transformation operator S such that 

I = S"1 cp 

is independent of t. If 

then 

|| = X (<p) - X (8$) 

= X (SI - f) - X (SI) 

^ X' (SI) ¥ 

plus higher order terms. These first order perturbation equations have 

the formal solution 

t 
f X' (SI) dt 

¥(t) = e40 f(o)  . 

Thus, if the set of equations admits such a similarity transformation S, 

it is conceivable that a similarity solution I can be found such that 

f(t) -* 0 as t - «B, even though f(0) / 0 may be large. 

Even if the equations do not admit an exact similarity solution 

(e.g., due to equation of state difficulties), it is possible that 

approximations to the equations do so, and that the remaining terms may 

be treated as an inhomogeneous perturbation, which under certain conditions 

-Oast-win analogy to the right hand siCt of f(t) above. 
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To conclude. It is of interest to write down the perturbation 

equpLions for the type of similarity transformation given above. Using 

the notation above, one writes 

p(t/r) - p(t,s) = R(s) + Q{tts) 

v(t,r) -* v(t,s) - ta'1 V(s) + w(t?s} 

P(t,r) - p(t,s) - t2^-^ P(s) 4 q(t,s) 

where R(s} has now been written in place of P(E). The perturbation 

equations have the form 

h-+t 
\it i-Dl^r + cl h = 0 

where E - (a,  w, q). 

rll, t^R, t'aR, t^R, 0 
5i    1 

0 , f Uj ,   0 ,   0 , t^/R 

D1» 1 
t  "1 o ,  o  , y U. ,  o , t"a/R 

0.0,   0  , I U. ,  t^/R 

o , Yt
s-^, Yt

a-^, „t^, i 
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with U ^ V - a s,  and 

/ 

t ^s ' ^    t- (75 B)1 t/a (Vg R)^    t-a 
^sR)3'    0 

^^l^x-,   l^v,    ,   i^    ,   0 

V^p)
2^^v i^v2 , i.s3v2 , 

^    1 

tO-2 

tVs3V3      '    0 

ta-2 

^t + I U ' 7S cp = 0 

't      t 

The solutions of the equations have 

considered here. 

=Pt + 7 U . 7s q; = ± / Yp (E ?pi) 

R t 

not yet been derUea  for the cases 
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