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ABSTRACT 

Tho bound eocalatlon method la an algoritlra for solving integor linear 

prograoo that la cloaoljr rolnted to tho all-lntoger Inteceir prograrailng 

alßorithm dovoloped by Ralph Gomojry.    In tho bound eocalr.tlon method tho 

pivoting procoso la dooomposod into two separato atagea.    In the flx-ct etago 

the problem matrix ia eubjected to n eerioa of nonoingular intogor Linear 

trancfomatloiu (con\>8pondlng to Integral ro'.f nddltlona and oubtractlono In 

the problem tableau) to create a new problem exhibiting R opacial atructuro 

called tho bounding Tonn.   The recond atago then operatec on tho bounding for.R 

to obtain lower bounda for a aubaet of th3 current problem variable e, and thia 

information io utilized in conjrnction with tho auccoeainaly derived problem 

matrices to guarantee convergence to tho optimal solution for tho origirjrl 

prroblcaa in a finite number of stops. 

The extension of the bound eocalatlon method dovoloped in this peper 

la atill moi'o closely allied to Gcnory'o all-into,73r algorithm, and indoed 

may alternately be regarded ao an extonaion of that methc.d.    Tho oxtenoicn 

arinou out of a spocinl case in >/aich the bounding form coneists of a alrglc 

•;oluir.n vector.    V/ith the bounding forji thuo reotricted, tho Coeiory aU-Integer 

nl^oriblun may be regarded as an application of the bound cocalatiai method to 

conatraints that may be weaker than those in the tableau, the purpooe of the 

rostricted application being to obtain a aingle-colur.ui bounding form in one 

»top.    This interprotntion loada to the coneideratlon of "enc-otop" 

trancfonnationa that yield a bounding form without employing weakened couoir^int'J. 

Drawing en other conoiderationa d«rvolopod in the paper, tho trnna'orwitien 

we aelcct reaulta fron pivoting •;« a Geoiory inequality in violation of the 



rule that m&lntolns tho tableau dual feasible.   This choice it aocaapanied 

by a rooovory phaoo in which dual feasibility ie cnce again restored, 

allowing coaparioon with the primal method of R. D. Xoung.    The ru3oe 

governing the recovery guarantee a net advance toward tho optimal oolution, 

thus also invoking an analogy with the primal-dual algorithm of ordinary 

linear programming.   Other variationa also arising out of the results of the 

paper are briefly discussed in a concluding section. 



1.    IntroductlonT 

In this paper on extension of the bound escalation method la preoented 

that enables th-a custooaxy dual foaeiblllty roquiremont in the Integer 

prograaining tableau to bo eyoUumtlcnlly violated.    The purpone of thlo 

extension lo to enlarge the number of solution ctrategloe at our disposal for 

solving IntersF prograanlng problems.    At this stage ve do not know a groat 

doal about matching algorithms to specific problems; howovor, the offlclnncy 

of the exteivolon proposed hero In solving seme of tho probleno ejcunlncd 

oncouragoo the hopo that It may find useful application as wo gain Increased 

knovrledgo of its particular strengths and woaknosoos in rclatloa to various 

problem typos. 

The general course of the presentation in this paper will be ao follows. 

A description cf the integer programming problem and tho notation to be used 

are givon in Section 2.    Beginning vdth Section 3, and continuing through its 

oeveral subsections, en informal outline of the bound escalaticn method is 

presented» highlighting the concept of the bounding form and the relation of 

tho bound escalation method to Gcmory's all-Integer method.    The Implications 

of tho similaritioo and contrasts between the two methods» established 

within the context of the single-constraint bounding form,  provide the basis 

for the cxtcnoion developed in the following section. 

Section A, and particularly Section 5# which together contain tho 

basic results of thlo paper, follow & more formal pattern.    Those intereetod 

chiefly in tho results of these oectionn, and less concerned about tho 

background material, may skip directly frcm Section 2 to Section U without 

sacrificing the ability to follow the. accempanying thooroma and proofs. 

Example problema illustrating tho method are solvod in Section 6, whwo 

spoclal variations Implied by the results of the preceding soctiona are 

also outlined. 



2.    NotHtion gnd Doocrlption of tho Problem. 

Tho Integer linear progroomlng problem may be written 

(1)        Mlnlalio       wb   +   b o 

eubject   to       wA    >   e,     w   >   0   and   w Integer, 

whore bo la a ccrOLar, b lo an m x 1 coliran vector, A la an m x n matrix, 

o la a 1 x n row vector, and w io a 1 x m row vector of varlablea.   Wo aasume 

that A haa the form    (A ,  I), where I la the n x m identity matrix, and that 

e corroopondingly haa the fora (o , 0), where 0 denotoa the 1 x m zero vector. 

Thuo, wA   >   c la canpoood of the conatroining relationa wA0   ^   o0   and 

wl   >   0, so that tho nonnegatlvity condltiona on w are included In the general 

matrix inequality wA   >   c. 

We shall additionally assume that the components of b. A,, and c ar* 

integers (although rational numbers ore pemisoiblo), and that the au^nentod 

matrix (-b. A) Is loxicographlcnlly (lex) nsgative    by row, thus satisfyliig 
2 

tho comiitlcns of dual feasibility. 

Wo alternately represent problem (1) by tho following tableau 

1. A nonr.oro vector io said to be loxiccgraphically (lox) negative 
whim its fli-nt ronr.oro ccmpononl; is negative.    A lex positive vetfop io 
oijiJ.'arly defined. 
2. Dua], feaolbility is satioficd v/henever b   >   0, although for convonlcnc-i 
v.'a shall frequently refer to dual fcasiMlity as synonymous with the mor.x» 
restrictive condit^ns iinponod on (-b. A) r.bovo.    V/o choose to deal with 
(-b, A) rather than (b, -A) — vhlch muot then bo lox positive — to ootablirh 
notatioiial unifenaity between the prencnt paper and  C3J, where thlo convention 
was employed to pornlt certain relationohips involving the constraints auaiiiviri?,«d 
by wA   >   c to be glimpoed more readily. 



We doolgnat« the - b column of the tableau (including b ) as column 0« 

and the firot column of A (including c.) ae column 1 of the tableau, and eo 

forth. For convonionco in referring to the rowe of tho tableau, we dooignate 

the ith row hj a , 

• m   ^io» ^l* Ai2, '*' ' ain     ^ ** ^» ^» ••• » m» 

where A^  " " N ^^ aii ^o00*"00 the  ijbh element of the A matrix for 

^» J > !•• Similarly, \m deoignato tho bottom row of the tableau by a0, 

*0 " (*oo' &ol' ao2' -• ' "on5' 

where a^     ■■   b^   and   a .   •■   c. for J   >   1. oo o oj J 

3.    An Outline of the Bound Eacalatlon Mothod, 

3,1,    Optlmality and otrAto^lo objectiveo.»-Wo observe that If tho c 

vector happens to be nonpositivo, an optimal solution to problem (l) is 

Imodiately ^ivon by w «=> 0.    For then wA   >   c ie satisfied, and also 

wb   +   b     "   b , there being no mailer value poooiblo for wb   +   b     vihon o o o 

b is r.onnogative and w   >   0,    Thus our objectiw isi oolvl/ig problem (l) 

will be to obtain 'n its place a new problaa satisfying the following four 

conditions:    (i) an optimal integer solution to tho original problem is 

immedlatoly determined by specifying an optimal solution to tho new problem, 

(ii)    the  (-b, A) matrix for the now problem is lox nogativo by ro^,  (lii) tho 

c vector for the new problem is nonpositive, and (iv) the variabler, of the 

now problem are constrained to be nonnogative intogors under tho aüsuaption 

that the original variables are so conetrained. 

As wo have seen, the last threo conditions assure that an optimal 

solution for the new problem will be obtained by setting all variablen equal 

to zero.    Condition (i) then assures that the original problem is thereby 

solved. 



The foregoing of coureo corresponds to one of the ueual strategies for 

solving linear programoing probleos, and the conditions (U) and (ill)    are 

'•uotaaarlly referrod to as the conditions of dual and primal feaslbllltj, 

roepectlvely. 

To croato the now problem of the doolred form, the bcund escalation 

mothed operates on the tableau of the orlgln&l problem to obtain a euccosslon 

of new problana each satisfying conditions (1),  (il), and (lv), until 

eventually a problem Is created that also satlefles condition (ill).    Thus 

tho tablcauo for the euccesslve problems nay be represented In the oamo form 

as that of the original,      and the final tableau Is obtained when tho c vector 

la drlvon nonpoeltlvo.    The solution to the original problem lo then given by 

v   •»   - c, whore c" denotes the last m cemponents of the final c vector   (tho 

portion that bofon as the 0 rector). 

As we have outlined It to this point, tho bound escalation method follows 

the oamo gonoral pattern ao the simplex method of llnuar programming.    Hovovor, 

the bound escalation nothod penults only integer transfomatlcno to be appllod 

to the tableau. In order to assure that each of the new variables oo created 

may be oxpreooed as an integer linear combination of the original variables 
2 

plus an integer conotant. 

Each integer tranofomation corresponds to adding integer multiplen 

of a row a0 to the other rows.   Thooe row oporatiino, appropriately rostilcted 

so as to mnlntaln the current problem variables nonnegative and tho upper 

tableau lex negative, are first applied to the (-b. A) matrix to cviato the 

otvueture called the bounding form.    Thereupon, positive lower bounds are 

1. It lo not noceooary, however, that tho successive A matrices bo of the fo\-ra 
(A0,  I). 
2. Tho roeomblance here to Comory'e all-integer method Is    apparent, and will 
bo elaborated upon ehortly. 



duto Ttiinod for a eubuet of the problem variftbloe, end Lho bottcm row ä
0
 in 

modified in ouch a nuumer ae to advance the problem toward oolutlon.    Thuo, 

SF^clficolly» tho bound escalation method connlots of two alto mat l.^   ota^oa 

that may bo BU'arnarizod ao foil owe i 

1. Slar:o 1:    Uje row operations that prcocrvo 3ex negativity in 

the  (-b, A) matrix to ci-oato a now problem In nonnegative integer variables 

cxlvlbltluß a etrusturo called the bounding fona. 

2. Stage 2:    Operate on tho bounding fora to obtoin pooltlvo Intcnor 

lowor bounde for a oubact of tho problem varJAbleo (the lovor bounda for the 

remaining variables of coures being zero).    Replace the c vector by tho vcrtor 

c - 'T^A, and rcplaco b    by b   + >}b, where 0 deno*eo the vector of the Indicated 

lower bounjln. 

3. Repeat the foregoing procoos until the current c vector b'.'ccmca 

nonposltivo, wheroupon an optinal ooluticn to the original problwi is given 

by sotting w equal to the negative of the last ra components of the current 

c vector (or a0). 

3-2.   Tto boun^jjic^ fonu.—Wo now consider tho ntructuro that provides 

tho cornerstone for the method.    In applying tho first stage of the bound 

oocalatlon method we dcslra to create a tableau which upon suitable Indexing 

may be partitioned as follows. 

- b 

D 
*■ 

Q 

bo d « 

1.    Follovdnt; tho criterion ootablialud by Gctaory, to imwre th^t tJiu c  i'c-.i.ov 
vd.ll eventually be driven nonpositivo it suffices to une any rule for cro^Mni; 
a bounding fonn thüt will eventually jjicludo a column r in tho bounding foi n 
structure for which c    has not otherwise been d/lvon nonpotiitivo. 



Here D lo a p x p square matrix with positive ontrlos «long the main 

diagonal and nonpoeltlve entries evorywhora else. Q is a matrix composed 

entirely of nonpooitivo entries, and d is a p component rov vector at least 

one of whose entries is positive. Under thoes conditions wo refer to the 

Special otructuie of D, Q, and d ae conotituting the bounding fona. We are 

unconcernod with the portions of the tableau marked with an aotorisk. 

When d > 0 ( d / 0), the assumption that the problem has a feasible 

solution implies that the inverse of D# D , exists and consists entirely of 

nonncgative components. In addition it may be shown that the nonnegative 

vector D" d gives lower bounds for the first p components of the current w 

(not nocoeoarily the original w). Any fractional components of 0 d may 

of course be rounded upward to the next highest Integer to givo integer lower 

bounds for the oleaonts of w. 

It is also possible to obtain lowor bounds in a similar fashion when d 

contains negative as well as positive components, though such considerations 

will not bo pursued here. 

Boginning with the specified lower bounds, the bound escalation method 

continuoo by ar elementary process of incrementing these bounds as necessary 

to obtain a resulting vector of lower bounds d*, d* > 0, such that 

d - d*D < 0. The vector d* may then bo used to givo the first p components 

of v,  thus enabling the current o vector to bo modified as doaeribed in Soction 

3.1. 

For the purposes of the paper we shall consider only the case in which 

D, Q, and d constitute a single column of the tableau. In this instance, 

d and D each are composed of a single positive olanont, d and d. respectivoly, 

so that the com>traint aoaoolatod with this column may bo written 

1. D, Q, and d need not appear explicitly in the tableau, but may bo generated 
by any nonncgative linear combination of the tableau columns (excluding 
colurm 0). 

t 

".A«.,4lJJ»T!raS^r', , 



(2) d^   +       2.^   d^     *    4e, 

vhero d^   <   0 for 1   >   2.    The Integer lower bound w. for w. in thie cao« 

la olmply   < dAU >#       *o may be inforred inmedlatoly from the fact that 
m 

J ^*2   ^^i   £   0,    and hence w.    >   d /d.. 

The opoclal form of the conotralnt (2)« which gives the elmplest Instance 

of the bounding fom etructuro, aloo supplies a condition undor which row 

operations In tlto tableau preecnro nonnegatlvlty In the resulting variables. 

Thus, If multiples of row a   are added to the other rows, thereby replacing 

the original w. variable by a now v., we can be assured that the new w.   is 

nonnegative if the tableau exhibits a constraint such as (2).    Of course, this 

conclusion also holds when d     <   0   provided   < d /d. >   >   0   (d /d,    >   - 1)« 

Generally speaking, as long as the tableau is kept lex negative, 

negative multiples of a   ("row subtractions'1) are always permissible since 

the constraint v.    >   0 (implicitly if not explicitly associated with the 

tableau) is thereby changed into the desired form.    On the other hand, 

positive multiples ("row additionsn) of a   are loss frequently available 

since they cannot be Justified by reference to a transformed nonnegntivlty 

constraint.    In spite of this, row additions are generally desirable whenever 

they are possible, since the new variables so defined are usually uasller 

1 2 than those they replace.   This may bo soen from the fact that adding a    to a , 

for exsmplo, corresponds to replacing w. by the variable v.9   •■   w.    -   w.. 

Tho contrary conclusion of course holds concerning row subtra>4ion8. 

lu    Wo use tho notation < x > to denote the least integer greater than or 
equal to x. 
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3•3»    Croatlng A eln^lo-conotraAnt bounding fom.—Wo now conoider 

how to manufacture a conotralnt of the form of (2) from at leant one column 

of the tableau.    We aooumo that a   le not all nonpooitlro (dlorogarding a   ) 

and that thi problora hao a feaolblo eolutlon.    The firct stop lo then to 

eolect a column r (r > l) of tho tableau for which a     ( - c ) > 0,    If onljr or r 

one of the coraponente of that column le poaltlve (other than a    ) then the 

aoooclated conotralnt 
M 

idL     A.    w.       >    a 
1   -   1   ^   1 or 

lo already In the opeclfled form.    Othorvioo, we nay cronte a constraint 

eucli a a (2) hy the following general rule. 

(1)    Select any two poeltlvo coxnpononto a     and a     of colunn r pr qr 

(p> Q   >   !)•    By cliolce of Indexing, asGurae a^ la lox largo«* than 

.". 

(11)    Replace a^ by BL   -   n^, denigrating the rooaTtlng row as the 

q new a . 

(Ill)    Repeat tho process until only one positive a-    i^omalns for 1 > 1- 

At each application of tho foregoing process the tableau In malntnlncid 

lex nogatlvo and one of tho posltlvo coefficients In column r Is decreased 

by oubtr   -Ing one of tho other positive coefficients from it.    Thus, it is 

clear lhat eventually O.'.JL but one of the posltlvo a.    will becomo nonpooltive. 

3.4«    Rplnttipn to the Gcnory incqttalltleo.— While many varlaiions 

nro oubauraed undor the fcregoing general rulo, a variation of particular 

IT    at least ono a.    (1 > 1) muat be ponitivo if the problem hao a feasible 
soluMon. * 
2«    M, L. Balinoki [1] Imo pointed out that this rule establish ;B a cloco 
corr'?npondonce botvoon tho first etaco of tho bound escalation raothod and the 
ouclidcan algorithm.    Of course, in order to maintain the new   variables ncn- 
negativ:;, keep tho tableau lox nogntlvo, and create a bounding form, wo employ 
opectalizaticns not ordinarily required of the euclideon algorlthau 
3.    This lo assured by the assumption that tho components of A are integer 
(or rational). 



Intoroot loado to tho croatlon of a conutrAint ouch &a (2) In a olnglo »top. 

To aea how thia variation arloeo, supple, for «xomplo, that a   1B tho lox 

largest   row In tho upper tableau having a ponltlvo coraponont In colurm r. 

If a,    lo tho largoot of the pooitivo a.    for 1 > 1» than a   vcj bo oubtractcd 

once from all a   euch that a.   > 0   (1 > 2) to glv>2 a conctralnt In the form 

of (2) at once.    But if a.    Is cniallor than ocmo of tho OUKST a. %t x:* may 

work inntoad with a wtakor conotralnt In vhich A1    ID Incrcaood by any desired 

cjnou".L,    Cle rly. It mi^r not bo nocoooary to moko a.    the Üjirßeot poültlvo 

coofflclont In tho weakened conotralnt, njjice pooclbly mo*'« then a unit 

multiple of a   may bo oubtractod frcfa the other rowo. 

It turns out that, whon a,    is increaosd only ao much aa nocencaiy, 

and all poraloslble XXJW additlono aro cade after tho roqujred eubtractlono, 

tho ccmo tranofonaatlon of tho tableau rooulta ao by tho uoual pivoting 

procedure of Gcanovy'0 nll-lrito£;or algoidthn» 

Ilowovor, It ID not alvaj-D doolrablo to try to create a conotralnt ouch 

ao (2) In a olngle otep, particularly If a oubotantially veakor conotralnt 

than the original moot bo employed In ordor to do oo.    Theroforo, diffownt 

motheds have boen propoood for creating a olnglo-conotraint bounding forw 

than tho ono proocrlbcd by tho all-iJitoger algorithm,    Ono ouch method, 

ouggootod In [3]# provldoo the otarting point for the oxtcnolon dovoloprd In 

thlo papsr,, 

3-5.    BnckTTOund of tho proponed oxtonolon.—^Tho method to which vo 

have i*oforcnoe conoloto olmply of carrying out all 

row eporatlono vdth th«? ' >J» onat would o^xllnarlly bo ur.rd for pivoting with 

tho ciiaplex method.    Specifically, tho largoot pocolble multiple of tho 

1.    The canplcto corroopoixlonco follows upon altering tho a    row by dctormlnlng 
tho lower bound for tho rooultlng w..   Moro gonorally, ooloctlng tho olso of 
a,     corroopondo to dotormlnlng tho parxunotor   ^ in tho Gomory Inequality 

<air/A>wi   >     <aor/X >. 
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eelectod row lo aubtraetod from each of tho other rowo, oubject to the tvo 

qualif icatione that the upper tableau must be maintained lex negative and no 

multiple ia uood vhlch lo larger than that required to make the a. of the 

other rows nonpooitive. Until a bounding font io created, the lex amallost 

row ouch that a. > 0 muet of couroo be excluded in determining the row for 

carrying out row eubtractione. Thereafter» all row additlono that prcoervs 

the bounding form etruoture are carried out, and the a0 row ie adjusted in 

the faohion indicated earlier. 

While thia rule can be ehown to bo more effectiTe than the approach 

of the all-integer method in certain eaoea, it ia alao frequently looa 

effective, primarily duo to the fact that the lex negativity roquiroaont 

may eoverely root riot the row opera tiona available. 

In thia paper we preoent a method that uaeo the or jr.« row choice aa 

tho preceding rule, but vhich ovorccmoa ocme of tho limitation« of thia rule 

by allowing certain of the rowa of the (-b. A) matrix to boccno lex poeitivo. 

In fact, the method bogina prociaely ao the one outlined above except that 

the lex ordering of the tableau io ignored, thua making it posaible to obtain 

a bounding form on each atop without weakening any of tho problem conotrainte. 

Ao our previous diacuooion indicatea, the reoulting tranafonnation of tho 

tableau corrooponds to one obtained from pivoting on an appropriate Goaory 

inequality, although thia inequality will be preacribed by the all-integer 

method only If reoourao to a weakened oonatraint io unneceoaary to neoure 

lex negativity in the upper tableau. 

When one or more of the tableau rowa becosneo lex positive, the phaoe 

of restoring the (-b. A) matrix to lex negativity ia immediately iniated. 

At the concluaicn of thia phaae the a row ie lex larger than at any provioua 

point when (-b. A) waa lex negative. 
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Thus, In brlof, our oxtoitalon of the bound «ocalAtion method m/iy bj 

regarded ae a ,•p8el^do,, prlnal-dual method of the Canory variety, exldbltlnß 

certain foaturoe In ccuraon both with Ocnory'e all-Integer algorithm and vlth 

R* 0. Toung'o primal method.     We now turn to specifjlng the form of this 

extension prooleolj« 

'♦-   1\12. Foctcnelon« 

To facilitate the onauin/r exposition we Introduce the folloidng 

additional notation and definitions.    Relative to a speciflod colicn r, 

define 

a1*     -      (VV*    Valr'     ' ' '   ^n^lr5' 

for each 1,    1   <   1   <   n, ouch that o.      ^   0.    Further, lot   a8-» denote mm mm Jjp 

tho lex largoot a * ouch that a    Is lox segutlve end a.      >   0.    Flr*lly, 

lot a ♦ denote tho lox nnollcat a^* suth that a   Is lox positive or,d a.      <   0. 

Then, beginning with the tableau of Section 2, the intogor pi'oßrrjurlns 

method proponed In this section «ay bo dcscrlbsd es follows. 

1. IT a ,    <   0 for all j   > 1,    an optlaal oolutlon to the problca* 

Is given by v   **   - a , whore a   denotes the last m ccsaponents of a . 

Obherwioe, 
2 

2. Select    a column r ouch that a     >   0,    r   >   1.    Identify tho 

row a , whore a * lo defined as above, and let 

-o o a       ••     a , 

a       ■»     a      -   < AJ-/*-- > **   for i > 0,    1 5* s« 

3. Update tho tableau so thot a     -   ä     for all 1   >   0.    If 

1,    Another pi'lnwl Intogor pi'D^p-nnnlng algorithm that, craployo Gcraor/ 
Inoqualltlt« Is duo to Dou-Icraijl and Chamos [2], although tho Bon-Israol - 
Clvimoo nothod raqulvco tho solution of a sorles of Intersncdlato ou.rlllnry 
j>3rob].c.n3. 
2..    We eocuue that tho rule of choice oporateo vrlthln tho frotaetfork specified 
by Ganory in [4]. 
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tho rooultlng a aro all lox negative for 1 > 1, return to 1. 

Othervieo, 

▼ V A*    Identifj the row a , where a ^ Is defined as above, and let 

-v v a       -     - a , 

a1     -     a1   -   < «lp/*Tr > av   for 1   >   0,    1   ?<   v. 

5.    Kotum to 3. 

A £o\( preliminary oboervations aiv> in order.    Slnco   x+1   >   <x>   >   x 

for any x, the definition"   *4    ■   a.      -   < a.  /a   > ä       and   ä     -   a ^   >   0 ir ix if   er     or or or 

together Imply that   0   >   a.      >   -a.,   (i^o)    after each application 

of Stop 2.    Thio meano then that a      io the only pocitivo a.    for i > 0, 

and   < »■_/« r 
>   m   ^ 'or Ä^^ ^ i^ O"    Thuo, from the diocuoolon of the 

conotraint (2) in Section 3.2, tho new %   variable created by the tronefcrmtion 

defined at Stop 2 must be nonnegativo, ard of couroo integer.    Tho came 

ccnclusiono apply ccnoemlng Stop .'«,  roplaclng o by v.    The nonnogativity of 

the new w   «rd w   may alternately bo Juetified by oboerving that the 

tranDfonratlone aro alno given by pivoting on tho Gctnory inequality 

^ < a*-/^^ v4     >     < ft VA >» where  ^ -   a     at Stop 2 and    A -   5 

at Step A«    Tho oelectod pivot ix>w8t a   and a   roopoctively, may of course 

be different fron thooe cpocifled by the ordinary linear progrnaraing pivot 

rulee      applied with reference to the Gonory Incqualitleo . 

To prove that the method convorgos ve have tvo principal objoctivee: 

first, to ohow that whenever ecao a    (1 > 1) becoraoa lex pooitlve when tho 

tableau io updated following Step 2, the method will rootoro the upper tableau 

to lex negativity after a finite number of iterationo of Stop 4)    Bud eo-cond, 

to ohow that the a0 vector will be lex larger on each visit to Step 1 than 
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ou tho pravimio vinit.   The Comory proof of convergenco for tho all-lntcsor 

algorithm thon appllos   for tho approprlato choico of r at Step 2, and our 

goal will bo achievod. 

Wo may rouchly outlina ths otratoc;^ of our proofs as fo}lo\;D.    By tho 

preceding rorj-rkn, ©Rch timo Stop k lo violtscl, vhcthor ria tho rout^ from 

Stop 2 or from Stop U itoolf, «xactly ono conponon*  of column r vdll bo 

pooltlvo.    The row in which this component appcaro will bo lox nogntlv«, 

honco thio row corroopondo to tho curront a .    Wo will undortak« to pmvt 

that two othor Important charactorlotico of the tableau will aleo b« preserved 

ot each visit to Stop 4»    (l) all a1* for lex pooltlvo a    (i > 1) will bo 

lox larger than the current a8», mid (ii) all lex pooltlvo a    will bo leoc 

anallor thtin - a8,    Th*» latter fact, dorotident upon tho former, irnpllco that 

- a8 muet itoolf bo lox docreaolngf and henoo that tho number of itoratlono 

at Step U muot bo finite. 

To px'ovo nloo that a0 is lex larger at each vioit to ^tcp 1 than on 

the pTisvious vielt, wo will In fact ohow that tho waount of the lex incrcaoo 

in a0 munt altmya be at loast as largo oo that rcsultlivj frcm pivoting witli 

the simplex method wlvm a     lo the ooleCt<9d pivot oleraont. 

5,    Lr^nn, ThocT^'.: t  wM[ Prcofo. 

1    -s   -v 
In what follown wo inteivJ to Identify a with a or a , as appvopri^.to, 

and to identify a with ono of the other tableau rowo. Hence vv dofiro 

o 2 - A
2 a  "a - < a_ /a. > a , for coico opecifiod r, 0 < r < n, euch 

that a. 7*   0. (When refcnlng opeciflcally to the mothod it will of couroo 

be true that r > 1 and a^, > 0„) Similarly, wo dcflno a * ao in tho 

preceding oeotion for each 1 ouch that A. J^ 0. 

1. This applicability is aouured by tho fact that a # ^ 0 oach tine tho 
tableau ie updated at Stop 3. 
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Thocrcrt 1. Connlder vectors a1 and «  such that 

«i.. / 0, «, > 0.  Tlien 
ir      2r 

1 2 
(i) a * 1B lex lArger than a * 

if and only if i 

(il)    a      io lox nogativo 

or 

(Hi;   ft-     <   0   ftnxl    a «   io lox larger than   tr*. 

To oljnplif/ tho proof of thio thoorom vo otat« and prove the following 

throo ?.nrn7ruin. 

1 2 Lwrm 1^.    Let a   and n    bo ^ivon as in Thcorom 1, and aaoumo that 

a       •»   0.   Then (1* it» true if and only if (11) is tmo, 

ÜTS^f of I^rrrin 1,    To prove thio lar/aa A» ohall derive an oxproasiou 

for a?. that will be uued again in provir^ Lcscma 2.    By dofinition 

h%  m  ft2J   " < •a/'ir >'u-   Al00'   V   " Var ^ V 
••   &, -jAip» o0 that *21   "   a210 a2r   rrui     a1.1   "*   a1.1* '^Ir*    Subotituti',S 

for a?. ard a- . in the dofinition of iL. thuo yield« 

'2j     "    a2J*&2r   "   < a2r/alr > V V" 
Dy the dofinition of a^   lfa *iaT0 

&1J* a2r   "     *\f D2r   "     < «SfcAr > V V' 
and thuo fron tho preceding oxpanolon of &~. ><« obtain 

(3) J2J     "     V:2P    +     V(V   "   V5- 
V/licn a^.   ■»   0, tho fact that a^,   >   0   iiuplloo by (3) that 

(a*      a2.   -   0   if and only if   a21*   M   tti «**     and 

(b)      a21   <   0   if and only if   a   *   <   a..*, 

- -2-2 Lot »„   bo the firot nonzero cemponont of a'.    Then a    lo lex nog.itivo if ard 

only If a«      <   0.    Aloo, by (a) abowo, ft2 *   -   a.  ♦    foi«   J    <   p, fnd 
1 9 

f;9 *■ >a ÄiD*' Thor-fore, a * io lox larsor than a ^ if and only if 

r. * < a. *, But then by (b) wo have that a^» lo lox larger than a * 

if and only if a is lex negative, which is what we desired to prove. 
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Remark I:     Levma I hold by exactly the same proof when    a    la alternately 
2 1 defined to equal    a    - Ka   , where K la any number,   thus  increasing the 

generality of the preceding result.    Lemnas 2 and  3 below likewise hold for 
-2 thia weakened definition of    a , 

J/mvjK 2*   Let a   &nd &   be any two vectoro euch that a.,, a-     ^   0 

1 '   ~2r   f*   0.   Thon for any J,    0   <   J   £   n. 

Proof of LcBTnia 2.    Undor t.ho aosumntlon that a-,   ^   0, vo havo 

a_.*   «   A2i/*2r   ^7 doflnitlon.    Subetltutlng the value of A^.    given by 

equation (3) of Lecma 1 into thin laot equation gives 

(0 a2J*     -     a1J*     -r     a^Cajy*   -   a^*)/ä^. 

For a     and iL     nonsero, it ie cloar from (4) that    a^,*   "•   a. * Implios 

a_.*   •■   a-.*, and convoroely thnt    a«.»   ■■   a. «    implioo   ä«.*   -   a. .*, 

Lrnma. 2»    Lot a   and a   bo any two vcit.oro ouch that a., a^,   ^   0 

and a,,     ^   0.   Ascurao, moroovor, that   apr/vp   <   0«    Thon 

a ♦ if lex larßor (crcallor) than a ♦ if ard only UP    a »   is lox liurger 
2 

(rraal3.or) than a *. 

Proof of L3r.nv\ 2»    Exclwrtlng the cneo   a *   «■   a *   -   a », which io 

Iri'olovent to the concluolon of th j Ictura, it io aoeurod by Losiaa 2 that 

thcix> oxJ.sta an icdox q such that   a   «■   /   a, ♦,      ^2«*   ^   ^hn*' ^^^ 

a, .<*   "   a,*   •■   a2 ♦   for j   <   q.    But fron equation (4) of Ltnraa 2» 

a- /a^     <   0   Implioo that   a, *   <   a0 *   if and only if   a   *   >   a.-», 2r    2r '^ Iq 2q " iq 2q 

This provuo Lcnma 3« 

Proof of Thooran 1.    By definition   ä-     ■•   a.      -   < a« /a,    > a.  . 

:iJnce a^,   >   0 and   a^ a^,   <     < «2r/alr ^    ^ thereJfor,^ h&vo 

ä^_   <   0«        If a-     *   0, thon Theocem 1 is true by Laura* 1, vhilo if 2r   — zr 

äp     <   0, than   a2r^2r   **   ^' an<* TJlooroi:B ^ ^8 true by L^UA» 3. 

Rrmrk cL    By the foregoing proof we see that Theorcxa 1 io also true it  (11) 

-2 - is altered to read "a   is lex negative and a-     -   0," thereby incrcaein^ tho 
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generallty of the "only if" part of the Theorem. 

1 2 Theorem 2^.     Let    a    and  a      be given aa  in Theorem 1 and  assume 

1 2 in addition that a    and a    are both lex negative.    Then if (i) 

-2 -2 1 
is true and a    is  lex positive,  it  follows that a    is lex smaller than - a . 

Moreover, the first nonzero component of    - a    is larger than the 
-2 corresponding component of a . 

Proof of Thcorcn 2.    Lot iL   bo the fJjrot nonzero cowponcnt of a • 

If a,.   /   0 for oome J    <   p, tb«\ tho aonertlon le Inncdlntoly true, 

AIPO, a. .    -   0 for all J   <   p 13 lmpoooU)lo eince thon a«.   ••   a^. 

2 for J   <   p and thus a   io lex porjltlvo, contrary to aooumptlon.    Thun 

euppooo that a.    lb aloo tho first ncmoro component of a    (where It le given 

that iL   lo the first nonzoro coroponont of S )•    Since a^ la lex larger 

than a », wo have   i^*^   >   tt2/a2r'   honoe   Ä2x^alr   -   ^^Ip' 

rlnco a,    < 0 and a«   > 0,    It followo that    < »2r^ILlr >     ~     < *2r/*lo > 

fjid     ^oi^lr '*     <     ft2T/Äl     +   ^'   Frfln tho definition of a^ , 

*2p   "■   *2p   '   < a2/alr > alp'   m thoi-ofore havo 

52p     <     a2p   *    (a2/alp   +1)V 
txA henco   a«     <   - a^r>•    This completes the proof. 

1 2 Thoc>t?rm g1.    Conoldor two vectors a   and a   ouch  that 

alr ^  0, a2r < 0'  *2 ^ 0' 

Then 

(1) a^* Is lex larger than a1« 

If and only 1ft 

(11)    a    Is lox negativ« 

o:* 

(111)   a^   <   0 and   ä2* 1« isx larger than aX 
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Remark 3;    The conclusion    of Lemma 1 continues to hold,  following the same 

1      2 pattern of proof as above, when a  , a    and condition (1) are alternately 

given as In Theorem 3.     Likewise, the conclusion of Theorem 2 holds under 

1 2 the same modifications when a    Is lex negative and a    is lex positive. 

Remark A:    When the assumption    a-, /ä-    < 0 Is replaced by    a» /a«    > 0   r 2r    2r r /      2r    2r 

In l<tmA 3» a eimilar «rgumont yioldn the conclusion that a « io lox. 

larger (nmaller) than ar* if atd only if a ♦ in lex larger (tn-Allor) th/m 

a1*. 

P^.^cof of Theorem 2«    57 roforenoo to the procodlnf, iieir.arka, tho proof 

of Thoonan 3 mirror» that of Thoorean 1. 

The or a^ fa.    If any a f i > lf i.i maflo lox pooltlvo f o n romilt of 

the tranaforaiatlon dofir.cd at Step 2, then all a   for i > 1 ^rfJLL 

boccme lox nogativo aftor a finite ntmber of itorationo of Slcp /♦. 

Pyopf of Thnorcm z^.    Lct.tii\3 eB corrcepond to &   and a   to a    (i 7* e)t 

it follcwo from Thoorcm 1 that if a   i» lox positive at Stop 2, thon 

a<^   <   0.   Hanno, after updating tho tableau« all lox poeltlvo a      (i > 1) 

are candidates for a   tho fimt tine Step U is vloitod.    It alno follows 

from Thoorcm 1 that a * lo lex lirger than tho provious a *.    Lot it bt> 

v Im^lned tluit Step U lo broken into two pcrta, vhore flrct a   io ropü/ii.xl 

by c.    (viilch we continue to refea* to ae a   inotcod of the noy u ), but tho 

rcci^lndei' of tho updating of tho tableau io doferrod, ao befovo, imtil Stop 3 

V ""V v 
lo violtod. Thuo, by tho above remarks, whon a lo replaced b.7 a  «= « a , 

bub boforo any of the rest of the tableau la updated, thon a natlofloo the 

di^fljiltlon to qualify ao tho now a0« Moreover, by doflnition» a  In 

lox greater than av« (•• aY*) for all lex pooltlvo a (1 > 1, 1 ^ v)„ Thtia, 

aopociatlng aY with a and aaeoclatlng the lex positive a with a in 

Thocrem 3, we see that each such a will remain lox positive after Stop 4 
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-i -▼ 1 only if a «> Jo lox larger than a ♦.    On tho othor hand, any a    other than 

the cu/ront n   that is lo^ negative whon tho tableau ie updated at Stop 3 

will rimain lex nogeitive after ea^h ouboequont iteration of Stop /».   Thle 

follow.! from tho fact that a^.   <   0 for all ouch a , and hence only a 

nonponHivo multiple (< a- /a   >) of the lox nogativo ftV will bo oubtractsd 

fzxan those rovo flue to tho transfonn/itlon :\]jcc.iSic<i at Stop U»    Conooqu^nbly, 

oa.rh aubocqucnt Iteration of Step /*, an v-oll ao the first, will  insure *-hat 

(a)   a.^   <   0 for all lex pooitivo a ,    (b) tho curront Sv corroapondu by 

definition to tho current a    (whon aT repLncoa a   but tho reot of tho tableau 

.1B not yet updated),    (o) a * le lex largos than aV* for all currently 

lox poltlve a    (i > l), aitl  (d) -aach lex uogativn a    othor than tho on3 the.t 

0 . —V v 
V«.B a  v before a    replaced a   will romaln lux nogatlve «ifter tho iteration of 

itop h lo coiiplotod and tho tablo»u lo ajxi'itod at Stop 3.,      So long as 

thooo nutuilly tntcrr^jpondent coniltiona obtain vre shall aloo hoMO by Theoremo 1, 
and  their accompanying remarks 

2 and .J/that all aJ" that avo lox poaitd.vo at the end of Stop /> trill bo lox 

fnillc;v than - a , and honio that tho new «i   determined at thß  »tart r.f the 

i>o\t j'-.cration at Stop A ^rlll bo lex rviallur than the jiro'/louc. a ,    SJnoo 
v 

the voibo'o are changed by intcgor aroounlf', tho a    vacloro cannot be 

indefinitely decreased  lexicographically in the indicated components and 

remain lex positive.       Moreover, by Theorem 2 (and Remark 3) the first 

nonzero component of the old a   must be larger than the corresponding 

component  in the new aV.    Thus,  eventually all a    for i > 1 must be made 

lex negative.     (The fact that the tableau rows are linearly Independent 

v 
assures that there will only be one vector qualifying for a    at any given 

time,  and hence  that none of the a    will be reduced to the zero vector.) 

Pnnark^,.    Tho lant pirt of the forcgoinr, proof may alternately bo ostabllahnd 

by obnorvijig that 0   >   a.      >   - a.    on each vioit to Stop Uf  and honc^ that, 

tho a.    ara otoadily being incroaiod (in integer amounto) toward 0 hj tho 

JnoroaMnft valuo of - a      (equal to tho procoding o    ).    Fut, since condition 
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(a) of the foregoing proof mußt hold at each iteration, none of the a.^ for 

lex pooltlvo a    can actually reach 0f and hence eventually all a   muet 

becano lox negative. 

Theorem ^,    On each vielt to Step 1, the a0 vector vlll be lox larger 

than en the provlouo vielt.   Moroovor, the amount of the tncrenoo 

vlll be at leact ao largo ne that rooultlng from pivoting on column r 

by the rules of the olmplex method. 

Romark 6 •    la proving Theorem 5 vro will lot a0,    a8*,   a , and e0 derote 

the  indicated rectors as they are doflmxl >/hon applying Step 2.    In «dd.'tlon, 

for e ich iteration h (h > 0) at Stop 4, lot k.   denote the currort < a   /a     >, 

"V 'V p^ denoto the current a    vector,    p.* denote the current a *, ard 

p. ^ denote the current n    .    Thuo, if a0 denoiiee the final a   vector after hr vr ' 

the laot iteration of Stop 4, we i:ay write 

(5) a0   ■   a0    -   Si    ^PJ, *     **& 
h 

(6) V   ~     *cv   -     ^     Vhr * 

Ifcrnnr1.: J.,    By the definition of an*,    an vlll be the pivot row vhen pivoting 

on column r with the simplex method.    Alao, the vector to replace a   by the 

olmplex pivoting rules io   a      -   a   a *.    We note that this rccults in a 

lex inci'oasü In a    oinco a       >   0 and a •* le lax norative. or 

Proof oil Theorem ^.    To prove the thoorem W»J must show, ly the 

foregoing remarko, that ä    io lex greater than or equal to   a     -   a    a ^, 

Since a       <   0, from (6) we obtoln or   "* 

(7) aor     <     2 khPhr. 

Py the dofinltlon of p. * and p.    i/e aleo have 

(a) 21 Vh     "    ^VhA"- 
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Ao oliown In tho proof of Thoorea /», BUCCOOBIVO xtjappllcatlons of Theorerno 1 

nnd 3 InpXy thf\t    p ♦    lo lex lar/jer thon a8» for each h.    Sine« k.    ^   0 

And p.      >   0, it followi tvoa (0) that    T. Icp.  Is lax loeo than or 

equal to    ft *   :E KiPhr*     ^l"0» «ince a * lo lex no/jjatlvo, vo have hy (7) 

that    E UvPu    i* lox looa thnn or equal to    a   a *.    Thuo, from equation (5) 

\^-a ccnclndo that a    lo lex greater tlian ^r equal to   iT     -     a   a ♦, 
^ o Ol" 

Finally, using the fact that a    a0*   -   a*, the definitions of T. ' and ä , or o or 

yield       a     -   a   a *     -     a     -   a   a ♦.      Thlo proves the theorem. or or 

Tlrooran 6.    The method syectfled in Section U will obtain an opllroal 

solution In a finite number of steps for any problem that has n 

nonempty solution oet and that satisfies the asoumptlono of Soctlon 2. 

Proof of Theorem 6.    The proof is Immediate from Gomory'o comTrgonco 

proof for tho all-integer integer prograraaing algor.thm applied to tho results 

of tho foregoing theorems. 

6.    F-/ample Problcmp and CcnnentB. 

Wo solve three example problems in thlo section to illustrate various 

aspecte of the method of Section 4.    Tho first probloJa presentr. a straifht- 

formrd application.    Tho eocond problem is Included to illustrate hov the 

problem n^y be solved boforo dual feasibility is restored at Step &.    Tho 

meonr for rocognlKing when a problem has boon "prenaturely" rolvad loads 

to the conoldoration of other methods based on the results of Section 5» 

which wo aloo discuce.    Finally, the third problem depicts a tjjo of 

nituo^ion in which the method of Section A oxporleneoo substantial difficulty 

jn restoring d>jal feasibility ot Step U»    The implicatlone of this behavior 

In temp of matching tranoformatlons to problem structure ar» conslderod 

briefly iri tho concluding remarks. 
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Exnmplo prob 3 on 1. 

Minimize     23H.    +   17w     + 3v3   +     ^ 

e.t.      27H.    +   20H„   +   16U.,   +   IVv, 
x Z j h 

22H1   +    lAv2 9H3   -     ^ 

Wl' W2' W3' */» 

> 

> 

> 

128 

1*5 

0 

Tranolfttlng thla Into the tabloAU Harm of Section 2, we have 

0, -23 27 22 1 0 0 0 

-17 20 1A 0 3. 0 0 

-3 16 -9 0 0 1 0 

-7 17 -2 0 0 0 1 

0 320 /^ 0 0 0 0 

whore we hava Inocrted an additional partition botwoon the A    «ur.d the I matrix. 

Dy tho procedure opoclf led In Section 4 wo oboorve, boginnlng with 

Stop I, that a  .    >   0   for J » 1 and J ■■ 2, hence wo proceed to Stop 2. 

Vie select fo:' column r at Stop 2 the one that contalno the fewcrt positli'e 

conpencnte.      Thuo,  In thio inatanco, r " 2, ao indicated by the anx.v In 

the tableau abovo pointing to eclumn 2.    ?rcsa tho definition of & * MO ere 

that a ■» 1 when r "2, henco tho a.rro pointing to row 1.    The tranoformations 

preocrlbcd at Stop 2 jrlald at Step 3 tho new tableau 

1. 

^> 

-23 27 22 1 0 0 0 

6 -7 -C -1 I 0 0 

-3 16 -9 0 0 1 0 

_.-J 17   . -? 0 0 0 ]. 

69 /i7 . »21 -'i 0 0 0 
-r 

1,    Cur choico hero lo dictated by the conceptual franowork underlying the 
bound encalation method.    For more rofinod criteria, oeo [3J. 



:u 

In thlu tibloau row a   hno bocomo lex pooitlv«.    Thorofor«, with r 

still at 2, wo prooood to Stop /» end apply the Indicated tronBifornuitlon 

for v - 2.    Tho updated tableau obtained at Step 3 Is then 

2, 

-> 

-5 L -2 -5 3 0 ~" 

-6 7 J 1 -1 0 0 

-9 23 -1 1 -1 1 0 

-7 17 -2 0 0 0 1 

57 61 .   -? -1 -2 0 0 

None of tho a   for 1 > 1 le lox positive, and wo return to Step 1, 

Slnco a . - 61 > 0, we proceed to Step 2 and let r - 1, thlo bolng tho onlT* 

cholco.    Now e •« 3; and by applying Stepo 2   and 3 vs obtain 

3. /» -17 -1 -3 4 -1 0 

3 -16 9 0 0 -1 0 

-9 23 -1 1 -1 0 

2 -6 -1 -1 1 ••1 1 

ö/f -Ö -2 -4 1 ■» T 0 

Once again the upper tableau hae lex positive rows.    At Stop A V3 

dotemlno that v ■» /», thereby at Step 3 yielding the tableau 

0 -5 1 -1 2 1 -2 

-1 •* 11 4. -2 1 -2 

-1 -i -5 -3 3 -3 k 

-2 • 
1 1 -1 I -1 

n? -2 -]. -3 0 -2 -1 

1.    TI\lo tabloau may aloo bo obtained aftor two pivots with Gouory's nil- 
Inte^or nlgorltl»m,    Thoroafter, howovor, the all-Integer method requl-vs 9 
additional pivot etopa before obtaining the oolutlon. 
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All *   . Aro nonposltlT« for J > 1» hono« the problem la solved.    From 

the leat m conpcnente of a   the optimal oolution le oeon to bo 

¥1   ■■   3»    w2   " 0•    w3   "   2»   ^   "    1• 

Tho next exnmplo problem to be solved contaii.J only a single 

constraint• 

Exnrarle Problem 2. 

Minliulzo 3w1    i- fr2   + 9"3   + 1«k   +   13w5 

s.t,     fo^   +   15w2   +   36<f3   +    23K.    +   Uv-     >     39Ö 

V w2» w3' ^'Z»' w5 ^ 0 

For convenience vo will not bothor to write down the Lar.t fivo 

ooltsons of the tableau corresponding to tho I matrix and tho z<r*o roclor,, 

but will explicitly represent these colurrns only when they rre changorl frau 

their original form.    Thus, for the .'jiitl&l tableau we have 

0. -3 i> 

-5 15 

-^ -9 36 

-7 23 

1   -13 a 
o ??ß_ 

The arr^/s accompanying th* tableau point to column r and row •'„ 

Sliico s '=• 3» tho third column of the orlcinal I matrix will bo modifiod 

by tho trannformation acflned at Stop .?.    Thus, In the rooultiig tableau 

bolo'./ this BiodiTici column is iroluded fcllo^dng the modifiod columns 0 ar-ul 1, 

and if., i» written above the new column to Wontify the varinblo with nhich 

the column xs associated. 
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1. I    6 -30 1    "1   1 
k SI -1 

-9 36 1 

1      2 -13 -1 

5 -31    1 1     -2   1 

L 103 -^     1  -12 .1 

At Step U the tranafonnatlone are initiated to return the lex positive 

rowo to ?ox nogatiTity.    Since v ■• 1, the first column of the original I 0if.t;*lx 

will now bo changed, yielding the column below w.. in the tableau belou. 

1  "6 30 1 -1   1 

•> u -21 -1 0 

3 -2h -1 2 

2 -13 -1 0 

1     -1 -1 -1 -1 

J :«02 1    -k -11 -1   1 

•Thin tableau still contajjns lex positive a   for i ^ 1, end Step 4 

must thorofore l« ropoatcd. 

1    2 -12 -1 -i 2    1 

-4 21 1 0 -1 

1    ■'1 -3 0 2 -1 

2 -13 -1 0 0   I 

1    x -1 -1 -1 0 

1 1W -ii -n «i 0   1 
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U. 

Once again ropoatlnj Step 4 vo obtain 

w^ 

-2 12 1 1 -2 

0 -3 -1 -2 3 

-1 -3 0 2 -1 

0 -1 0 1 -2 

-3. -1 -1 -1 0 

102 -A -11 -1 0 

The problom is now solved, and an optimal solution is given hj 

Wl   "   1'    ^2 0,    w,    -   11,    ^i    "   0»    w5   "   0« 

For the procoding probl«rf vo note that the optimal solution vr,»s 

alrflmly p.tven ir Tableau 2.    Since oome of the a.    for 1 > 1 >«?re positivu, 

howovor, the solution was not iclontlfiod as optimal at that point,    Tc 

woulxl luxvo boon possible to mako this idontificatlon, howrvcr, in tho 

folloMinf »-ay. 

Wo shall create a new row from aV (v - 2) in Tablotu 2 by divJ.iiin^ 

aV thixju^h by   - a       ( " ~ 4)»      and then add this new rcw to tho tableau 

by inciortlng it above tho other».    Sines the variable asccciatod with this 

ix>w (call it z) must bo aero in the final solution« we also adjoin tho t-io 

constraints    - t,   >   0   and    z   >   0 at the end of the tableau.,    Carrjdas 

out this procedvrs rolativo to Tableau 2, we obtain 

1,    If a      ■a 0, wo instead divide through by the first nonzero coupon nt of 
r 

a * 



. ., 
.3 -~ 

. -1 ~ -~ 0 -1 ·'-4 '· 
-6 .30 1 -1 0 0 

4 -21 -1 0 0 0 

.3 -24 -1 2 0 0 

2 -1.3 -1 0 0 0 

-1 -1 -1 -1 0 · o 

102 --~~ -11 -1 '_Q 0 
1' 

The nau top row and the now colum:BD are eegrogntt'd b7 the addvd 

pc1rtitione. It io o,rident b7 ita construction thnt the now row muct qu~lJ.t7 

-v 1 ae n at Stop 4. Thue the method JM.7 b~ awlled h7 proceeding treat Tnhl.f:o.u 2A 

inotcnd ot tl'all Tableau 2. 

It ie unnoco:Jear;r to carr;r out the coaputntions in order to prHdht 

two th1n&3 about tho ai that v1l.l be dutined at St.ep 4. Firot, l'ir.«:t• Ull' 

!!ret ca.npt:m1mt (a ) ot the nt~v row io '-1 and thA canpcnents o! ccih!!IIlt (J 
TO 

'- - -·1 ( .J. ) aro i nto!i:e -ra, W'3 DW.7 pr~ict that a10 • 0 !or. r.U. lex pooitiV(l 8 .1 r 0 ~ 

TM.fl f'oD.o•r.~ !ran the r-;,sulte o! the pl•et:edL&g oac:tion, l·;hich nesur <! tlmt 

11 1 -i -v a ex positive a will be lex smaller than - a , and that the first 

onzero component of - ;v will be larger than the corre1ponding component 
-i of the lex positiYe a • 

The second. thing to;, be obnorved h thnt, in tJte r-r~uaent. ease, 

< a 18. > - 0 (tor a - ··4 and a - 21/4) 1' orl-u or vr and bone'!~ ;:!l •• 0 
u .. 

Th~ .f'n~t and the one j"11ot not.bbllohed .9.3EUJ"I? t.ha1~ the 1'eao1blo Eolution 

gbc-.n by the bottom l"C\1 o! Tabl~nu 2 (e.n~ 2A) auat aloo be optjllll'.l. I n t:t,c:t"l:., 

we have cDtnblish~ thnt < a ra > - 0 1D a ou!ti.,lent condition :tr.r or v-r 

1. ConeoV.~uallJr, 'lo:o IDAJ' :UnugiM th1.1t tb' n~Jnative or th3 ne•.1 t•"'' t 't:•.v ncl~ ~ ~JtoJ 
at St.op J, vhoraupon th.lo row ' :ould <'Orr~opend b7 dcfj.nJ.t.icn t~ R v c.t. ~3t<, p 4., 
Horc UOln r .'ll)ij,., or COUl":lO,hH'O m~r adjoin lllV lox nO!!IltiYIJ 1"0\1 R (t.c. t!\ in} i.f·.·· 1

' -II it - \'• • 
1\:J t ho m •w a ouch that n · io lex emnller th~n t.he cUJ·r~nt a Qllt.. lr!X J a r ·'Gl• 

l1 " than t.hu Cltrrcnt. a * ~ 
2. ·1';• p-:n-..ltt.ing r-nt.iort:ll numbers in t.h'J tableau, U ou!Cicr}r. mo?."tt cr.~wr .~·. :t.l. ~· t,., 
MJ.ect, tt-.e i'irot. ccmponcnt avo oJ~ the· nd.)oincd roll to be - · lf,.: 1 l·!hn1·~ l:t·.

1
, in 

tm ir.t cr.c r for -9.1! 1 and j. It collllu., 0 alrondy consit.t.e or nonpoe~.t:~'ro J 
componontB, then avo-- 0, and our ro:•~<ll:.:'ktJ ha,re rofcronee instead ·to tho t.b:·n~• 
c-.ol\Nlll J nuch that a j r 0. To domonotrato that a tons:i.b .e solution 111 OI;t.if!'ll, 
holre-v-or, conoid"r.'lt.ioX rn.v be limited no above to eolum 0. 
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a toaoible eolu~ion to bo op~imal, whore i is detenninod as outlined above vr 

(but not b7 roteroneo to the unexp1nded tRbleau). 

It adjoinad row and columns aro actufll.l7 omplo,-ed in solving tho 

J>robl~m, arri not e:1Jnpl7 no a meRna or checking tor optilnality, ~hen it ld.ll 

ftVontuall7 bft poeeible to restore the t6bleau to ite original eize.1 Thb 

appro:tc h l)f adjoining rowe· lllll7 A.leo be ueoo a1~ St.op 2 to prevent the a1 

from be~anil'\1 lex positivo in the tint plttce 4 There are clearly a number 

ot po:lsible \'1\riations, and 'b7 tolloldt'& the appropriate I"Ul.eo tho tableau. 

need not bo oxpanded to tho oxt(}nt <lopJ.ct.,d by our illustration aaeh t:inte a 

nov variable io added. To insure conve1·g·snee it io or ceurse necesee.1·7 to 

have oaao moans tor assuring the.t the succession or rows And columna e.dd(Jd 

to the tabloau vill not be \Ulcmdin!;~ 

For our l.net OJC9JDple, ve nov turn to a verr uimple problena tbat. 

:tllus tratee a situation in vhieh the method or Section 4 encounto1•e ~or.lou.r. 

•dCflcult.r in rc-eetablbh!ne dual f\"·a.stbilit7. 

~.m:ele Problem l· 

Uinirn.~ zo lv1 + 28v2 

e.,t. lv1 + 4~v2 !! 913 

"1' "2 ~ 0 

o, E±l 1 'j -+ 0 .. 

,'8 0 n 
t 

The ne.xt three tabloatl5 are VJ i.tton vithout adrlitlonal c:orornont .. 

------------------------
J ., fly Mloctine ono or t he oU1er or the adjoined r.olumn~ ():hiel1 will Rhra ~'3 
t,t- lho ne! f.at. !. ·.m or cnch othel_") as colu'llll r, and J:E>.l"n,.nt.il"lg in th la, ii' nccn~ .;J 'lry, 
n ftor thoir bot. tom l'OW eomp<>l~ents are 0, even' .uAlly there· llilt r o u.'ljn or.J.J" 
nno r vv or t.h a tableau with nonzer-o componontu in thoeo c ~lumnr., at wh:i.ch ~ . .iJr.o 
tho 1r.-J1cnt~ row ar.d eohurJ13 mn.r be dropped. Th~ optimt l oolutton mt:' y of 
courllo bo obtained be tore t.hio oize reduct' on proecea is co:npl.et.,d , 
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p7- 
-28 

-A/» 

A5 

1        -1 

0            1 

Lü!»-^ -37 0         -3 

2. j-27 

1   2*> 
AA 

-A3 

-1          ll 

2          -1 

\   fi'f -?7 0,         -3 | 

3. 25 

-26 A3 

3         -1 

-2            1 

P't -?7 0        -3 

One nay infer fron the structuro of this problem that After six 

more et ope wo will obtain 

i19 

1-20 

-36 

37 

9         -1 

-8           1 

1   6A 0 -8         -2 1 

Thia tobleau gives an optimal solution by the remarkn relating to 

tho provious example problem.    Hovrover, to restore dual feutiibillty   by th? 

mothod of Section A vo may project by inference that 20 additional stepn 

are required, at which point we obtain 

1 '■1 

|     0 

18 

-17 

-27           1 

28         -1 

1   *A 0 -8         -2 

Two Interacting foaturae of the tableau bequeathed by Step 2 ap^r 

to haTo contributed to the difficulty encountered at Step Ux    (i)   *^ ^«^ 
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2 
a ^ voro naarly the oiuno, nnd (11) tho componentB a-    and n.    of tho vnctor 

3 12 a     ■•   a     -f   a     wor« mnall In abooluto valu« relntlvo to tho corroopondlng 

1 2 conpanonta of both   a   and a . 

The extent to which these foatureo may apply more generally to 

chpractorise situations in which tho trnnaformations of Section /i rhoild be 

byfasacd and others employed In their place is not yet known.    Hewovo.-, 

a number of related considerationo ero evidently invol^'rd in dot-orMunlnp 

whrit types of transformations chould be employed — e,ß«f  the freq\>pncy with 

which structures that ora difficult for the method arire In practic«, 

tho ability to predict tho rerult of eovoral Iteratlonn of Stop U for those 

difficult structures, and the availability of criteria for rootorinr dual 

fe.-xnibillty at an earlier point than otherwise pomittod by unintor. ^ip^o^l 

application of Step /»•    We do not at present know a sinniflcunt aroo^int 

about these considerations, but can only acknowledge their relevanc«.  in 

detorraining the uses to which the results of the preceding sections may 

be put. 
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