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ABSTRACT

The bound eocalation method is an algoritlm for solving integer linear
programs that 1s closoly rolated %o the all-integer integer programming
nlgorithm doveloped by Ralph Gemory. In the bound soccaletion methexi the
plvoting procoss i8 decomposod into two separato stages. In the firct stage
the problom matrix is subjected to a series of nonsingular intogor linecor
trancfomations (corrosponding to integral row additions and subtractiona In
+he problem tableau) to creato a now problem oxhibiting a spsciel structuro
called tho bounding form. The recond stage thon operatec on the bounding forn
to cobltain lower bounds for a subset of tha current problem variables, and thie
inforwation is utilized in conjunction with the succossively derived pioblam
matrices to guarantee convergzenco to the optimal solution for the originel
problom in e finlto nminmnber of stops.

The extension of the bourd escalation method dovelcped in this poper
18 still maro closely allied to Gemory’s sll-intoger algorithm, end indeed
ray alternately be regcrded as an extonailon of that methcd. The extunsion
arinos out of a special case in which the bounding form conelsts of a single
colunn vector. With the bounding foru thus restricted, the Gomory all -integer
algorithin may be regarduvd as an applicaticn of the bound cscalatia mnthod to
constraints that mayy be wesker thun those in the tablecau, the purpose of the
restrictod application being to ootain a eingle-colunn beunding form in cne
stop. This interprotation leads to the concideration of "enc-utap"
t.rancformiationa that yield a bounding form without employing weakoncd couctraints,
Drawing on other considerstions daveloped in the papor, the trans’oriuition

we select results from pivoting a a Gomory inequality in viclation of the



rule that maintaine tho tablesau dual feasible., This choice is accazpanied
by a rocovery phace in which dual feasibility is once again restored,
allowing compariocon with the primal method of R. D. Young. The rulos
governing the recovery guarantoo a net advance toward tho optimal ocolution,
thus also invoking an analogy with the primal-dual algorithm of ordinary
linear programming. Other varintions aloo arising out of the results of the
paper are briefly discussed in a concluding secticn.



1. troduction,

In this paper an extension of the bound escalation method is presonted
that enables tha customary dual foasibility requircment in the integer
programuing tableau to bo systeuatically violated., The purpore of this
extonsion 12 to enlarge the numhor of solution ctratezios at our disposal for
oolving integor programing problems. At this stage we do not know a great
doal atout matching algorithms to specific problems; howover, the e¢fficloncy
of the extension proposed hore in solving sme of tho problens exanined
oncouragos the hopo that it may find usaful application as wo gain incercasod
knowledgo of its particular strengths and weaknescos in rclatica to various
problen types.

The general cour3e of the presentation in this paper will be as follows.
A description cf the intogor progremming problem and the notation to boe usod
arec givon in Scction 2. Beginning with Section 3, and coatinuing througa its
several subsections, an informal outline of the bound escalaticn method is
prosonted, higchlipghting the concept of the bounding form and the relation of
the bound escalation mothod to Gomory’s all-integer mecthod. The implications
of tho similaritios and contraots betwcen the two methods, establishcd
within the contoxt of the single-constraint bounding foym, provide the basis
for the extenoion devoloped in the following section.

Section 4, and particularly Scction 5, which together contain the
basic results of this paper, follow a more formal pattern. Those interested
chiefly in tho rosulte of theso sectionn, and less concerned about theo
background natcrial, may skip directly fram Section 2 to Scction 4 without
sacrificing the ability to follow the. accompanying theorems and proofs.

Fxample problems illustrating the method aro solved in Section 6, wheiu
ppacial variations implied by the rcoults of the preceding soctions are

0lso outlincd.




2, Notation and Doscription of the Problem.
The integer linear programming problem may be written

(1) Minimizo wb + b/
subject to WA > ¢, w 2> O and w integer,

whore bo is & ccrdar, b 10 an m x 1 column vector, A 4is an m x n matrix,

¢ is a 1l x n row vector, and w 15 a 1 x m row vector of variables. Wo ascume

that A has the form (A°, I), where I is the m x m identity matrix, and that

¢ corroopondingly has the form (oo, 0), where O denotos the 1 x m zero vestor.

Thus, wA > c is casposod of the constraining relations wA° 2 o° and

wl > O, so that the nonnegativity conditions on w are included in the goneral

matrix incquality wvA > ec.

We shall additionally assume that the components of b, A, and ¢ are
integoras (although rational numbers are permisoible), and that the cugmentod
matrix (-b, A) is lexicographically (lex) nogstive™ by row, thus satisfyding
the coml‘ticns of dusl feasibility.

We alternately represent problem (1) by the following tableau

bﬂ | [
1. A nonzoyo vector is sald to be loxicegraphically (lox) negative

whon its first rontoro ccmponont, is negative. A lox positive veci.w is

simd*arly defincd.

2. Dwal). feasibility is satisficd whenever b > O, although for corwvenlencs

va shall frequertly refer to dunl feasibility as synonymous with the mo:v
rostrictive conditiwns imposed on (=b, A) rbove. Wa choose to deal with

(-b, A) rather than (b, -A) ~- vhich must then bo laox positive — to establirch
notational unifernity tetween the prenent. papor and [35? whero this canvention
waa cmployod to pormit cortain relationships involving the constraints sunnriced

by wA > ¢ to be glimpsed more roadily.




We dooignate the - b colunn of the tabloau (including bo) as colvmn O,
ard the first column of A (including °1) as column 1 of the tableau, and so

forth. For convenionce in referring to the rows of tho tableau, we dosignate

the ith row by ni,

i
a° = (‘io’ 8410 B4os eve nm), 1 = 1,2, ceo , m,

where Mo ™ - b1 and 84y donotos the ijth element of the A matrix for

i, J 2 1. Similarly, we designato tho bottom row of the tableau by a°,

[4)
a = (a a ces
( oo’ %01’ o2’ ***? a‘c.m)’

where ‘oo = bo and aOJ

c, for J > 1.

J

3. An Outline of the Pound Escalation Mcthod.

3.1. Optimality amd stratozic objcstives.--Wo observe that if the ¢

vector happens to be nonpositive, an optimal solution to problem (1) io
irmediately given by w = 0. For then vA > c¢ is satisfied, and also
wb + bo L] bo’ there being no sualler value posusible for wb + bo vhon
b is ronnogative and w > O. Thus our objective in oolving problem (1)
will be to obtain “‘mn its place a new problea satisfying the following four
conditions: (1) an optimal integer solution to the original problem is
immediately dotermined by specifying an optimal solution to the new problem,
(11) the (~b, A) matrix for the now problem is laox ncgative by row, (iii) the
c vector for the new problem is nonpositive, and (iv) the variables of the
now piovblem are constrained to be nonneogative integoers urder ths sususptlon
that the original variables are so constrained.

As wo have scen, tho last threo conditions assure that an optimal
solution for the new problem will be obtainoed by setting all variablen equal

to zero. Condition (1) then assures that the original piroblem is thereby

solvad,




The foregoing of course corresponds to one of the usual strategies for
solving linear prograuming problems, and the conditions (13) and (411i) are
~ustomarily referrod to as the conditions of dual and primal feasibility,
rospectively.

To croato the now problem of the dosired form, the bcund escalation
mothcd oporates on the tableau of the original problem to obtain a succossion
of new problans each satisfying conditions (1), (i1), and (iv), until
evontually a problem is created that also satisfiees cordition (3ii). Thus
tho tablcaus for the aucceaaivé problcms moy be represented in the samo fom

1 and the final tabloau is obtained when the ¢ voctor

aoc that of the original,
is drivon nonpoeitivoe. The solution to the original problem is then given by

w = ¢, vhore G denotes the last m camponents of the final ¢ voctor (the
portion that bogan as the O vector).

As we have outlined it to this point, the bound escalation mcthod follows
the vame gonora). pattern as the simplex method of linuar programming. Houavor,
the bound cacalation mathod permits only integer transformations to be applicd
to the tableau, in order to assure that each of the now variables w©o created
may be oxmressed as an integer linear combination of the original variables
plus an integor cc:m:t.zmt'..2

Each intoger transformation correospcnds to adding integor multiples
of a row a° to the other rows. Thess row opoerativns, appropriately rostricted
so as to maintain the curreny problem variadbles nonnegative and the upper

tzblesu lox ncgutive, are first applied to the (-b, A) matrix to cv:ata the

stiucturs called the bounding foim. Theroupon, positive lowor bounds are

l.o It 1o not noceosary, however, that the successive A matrices bo of the fom
(A%, I).

2. Tho rosamblance here to Gomory’s all-integer mothod is apparent, and will
be olaborated upon shortly.




dutemined for a subset of the problem varinbles, amd Lhe bottcm row a° in
modified in such a manner as to advance the problem toward solutien. Thuo,
spacifically, tho bound escalation mothod consists of two altornaticyy otagoes
that may bo suwnarized as followns

J. Sianu 1: Use row opmiations that preaerve Jex nerativity in
the (-b, A) matvix to croato a new problan in nonnegative intf,eszcr variasbles
oxhibiting a strusture called the bounding foim.

2. Stope 2: Operato on the bounding formm to ohbtsin positive intepnor
lowor bounds for a subLact of the problem variables (the lowor bounds for the
romaining variables of courss being zero). Replace ths ¢ vector by tho vestor
¢ - WA, and replaco b, by b, + Wo, where @ denc*es the vector of the inaicatedl
lower bounis.,

3. Repeat the foregoing procoss until the current ¢ vcetor brcomes
nonpositiva, wheroupon an optimal solutian to the original problem fs given
by sotting w equal to the negative of the last m camponents of the curvent

¢ veator (or ao).l

3.2. Ths bourding foirm.--We now consider tho stiucture that provides

the cornerstone for the methcd. In applying the first stage of the Lound
escalation mothod we desire to create a tableau which upon suitable 3Jrdexing

may be partitioned as follows.

D

-b k *
Q

bo d #

1. Followving the eriterion oatablished by Gowory, to inrure that Lhie ¢ veatay
vill evontuslly be driven nonpositivo it osuffices to uso any rule for croni fwe
a bounding form thut will oventuslly include a coluwn r in the boundiny foin
styvcture for which c. has not otherwise bcen dsiven nonpositive,




Here D 1o a p x p square matrix with positive ontrics along the main
diagonal and nonpositive entries everywhore else. Q is a matrix composed
entirely of nonpositive entries, and d is a p component row vector at least

1 Under thoss conditiono wo rofer to the

one of whose entries is positive,
spocial structuze of D, Q, and d as constituting the bounding form. We are
unconcernod with the portions of tho tabloau marked with an aoterisk.

Whend > O (d ¥ 0), the assumption that the problem has a fossible
solution implies that the inverse of D, D-l, exdsts and consists entirely of
nonnegative camponents. In addition it may be shown that the nonnegative

ld gives lowor bounds for the first p camponents of the current w

vector D~
(not nocossarily the original w). Any fractional compenents of p~1a may

of course be rounded upward to the next highest integer to give integer lowor
boundo for the olemonts of w.

It is also possible to obtain lowor hounds in a eimilar fashion when d
containe negative as well as positive components, though such considerations
will not Lo puwrsued here.

Boginning with the specified lower bounds, the bound escalation method
continuos by sr elementary process of incrementing these bounds as necessaxry
to odbtain a resulting vector of lower bounds d*, d* > 0, such that
d - d* < 0. The vector d* may then be usod to give the first p components
of i, thus enabling the current ¢ voctor to be modifiod as described in Saction
3.1,

For the purposes of the paper we shall eoansider only the caso in which
D, Q, and d constitute a single column of the tableau. In this instanco,

d and D each are composed of a 3ingle positive olecmont, @ - and dl 1reapect.ivoly,
so that the canetraint aosooiatod with this column may bo written

1. D, Q, and d need notl appoar explicitly in tho tableau, but may Lo genorated
by any nonnogative linoar combination of the tableau columns (excluding
column 0).




n
(2) dyw, + 12-‘?2 dw, 2 d,

where di < Ofori > 2. The integoer lower bound Ql for v in this cace

1o simply <d_/d, >, 1 a0 may be inforred immediatoly from the fact that
m

4 2-'2 dw, S 0, and honce w, 2 do/d].‘

The spocial form of the constraint (2}, which gives the simplest instance
of the bounding fom structure, also supplies a condition undor which row
operations in tlio tableau presecive nonnegativity in tho resulting variables.
Thus, if multiples of row al aro added to the other rows, thoreby replacing
the original v variable by a now vy, we can be assured that the new W) is
nonnegative if the tableau exhibits a conotraint euch as (2). Of course, this
conclusion aleo holds when d < O provided < do/dl >> 0 (do/dl > =-1).

Gonerally spoaking, as long as the tableau is kopt lex negative,
negativa multiples of ol ("row subtractions") are alimys permissible since
the constraint ¥ > 0 (implicitly if not explicitly associatod with the
tableau) is thoroby changed into the desired form. On the other haid,

1 arc loss froquently available

pooitive multiples ("row additiona") of a
eince thoi cannot be justified by reference to a tranaformed nonnegativity
constraint. In spito of this, row additions are generally desirable whenover
thoy aro possible, since the new variables oo definod aro usually smaller
than those they replace. This may bo scen from the fact that adding a® to a2,
for example, corrosponds to roplacing v by the variable wl’ - - W

The contrary conclusion of course holds concerning row subtra-tions.

1. Vo use the notation < x > to denote the least integer greater than or
oqual to x.



3.3. Croating a sinzlc-consiraint bounding form.—\le now consider

how to manufacture a constraint of the form of (2) from at leant one column
of the tablcau. We asoume that a° is not all nonpooitive (disrogarding a °0)
and that tha problam hao a feasiblo solution. Tho first stop 18 then to
solect a column r (r > 1) of tho tableau for which 8 . (= °r) > 0. If only
onolof the components of that column is positive (other than uor) then the

asoocinted consotraint
T3

-~
RN
is alroady in the specified form. Otherwiso, we may croate a conatiajnt
such a8 (2) by the following gencral rule.?
(1) Select any two positive compononts L. and L of colwn r
(p, @ > 1). By cholce of indexing, ascwme aP 1s lox largor than

a9,
(11) Replace a by ad - aP, denigrating the rosuiting row as the
new aqo

(111) Repoeat the process until only one positive a,,. vomains foir 1 > 1.

At each application of the foregoing process the tablcau is wmaintained
lax nogativo and one of the positiwvo coefficicnts in column r 13 decreaood
by oubtr .ing one of tho othor positive coefficients fraa it. Thus, it is

clear Lhat ovontually a..l but one of the positive 8y, will become nonpoaitf.:lvo.3

3.4. Rolntion to the Geory inequalities.-- While many veriat:ions

are subsumed undor the faregoing genoral rule, a variation of particular

1. at leaot ono a, (12 1) must be positive if the problca han a feaoiblo

oolu’.ion.

2. M. L. Balinoki [1] iao pointed out that this rule establishi:s a closo
corrsspondonce boitwoon tho first stags of the bourd oscalation mothad and the
ouclidean algorithn., Of cource, in order to maintain the ncw variablos nen~
negative, keep the tablcau lox nogativo, and croato a bounding form, we cuploy
opecializaticns not ordinarily rcquircd of the euclidean algorithm.

3. Thio is acourcd by the asoumption that the ccmpononts of A are intoger

(or rational).



intercat loads to tho croation of a conutraint ouch as (2) in a oinglo stop.

1 is tho lex

To ses how this variation arines, suppriec, for axamplo, Lhat a
largest row in the upper tableau having a ponitiva componont in colwwn r.
¥ for 1 > 1, than ul rey bo oudbtracted

If a,_ 1o tho largost of the pooitivo a

ilr i
once from all a.i such that B, >0 (1> 2) to give a conctraint in the form
of (2) at once. But if 8. is ouallor than oomo of the othor 8.0 ¥ WY
work inastoad with a wecalor constraint in which Ay io increcasod by any dcsired
emount, Cle rly, it mey not bo noceozary to moke 3. the lurgeol pocitive
coofficiont in tho weakcnoad constraint, aince poscibly moe thon a unit
multiple of al may bo subtractod Zrou Lthe other rowo.

It turns out that, whon 2 is increassd only ac much as nocescary,
and ecll pormiosible row additions axe made after thoe required sudiractiono,
tho scmo traneformation of tho tableau xosults as by the uoual pivoling
proccdure of Gemory’s all-irtocer ulgori’:.hmnl

Hovwsver, it is not alwaju desirable to tiry to creato a constraint osuch
as (2) in a single step, particularly if a substantlally weakor conutraint
than the originel must be employed in order to do so. Therofore, diffevcnt
mothcds have been proposcd for creating a single-conotraint boundinz foru

than the o praccrited by tho all-integer algorithm. Ozo such mothod,

sugrostod in (3], providos the starting point for the extcnoion dovoloprd in
this papsr,

3.5. Bnaerkarourd of tho proponsd oxtonsion.-~The necthod to which we

have rolorence concisto olmply of carrying out all
row cporations with the -+ c¢hat wonld o.dinarily bo uscd for plvoting with

the cimplex mothod. Spocifically, tho largost possible multiple of tho

1. The canplete corrospordonca follows upon altoring the 2 vow by dctormining
tho lowor bound for the raoulting Wy e Moro gonerally, ooloctinyg the sizo of

4, corroosponda to dotermining the parsmotor A 1n the Gorory incquality

Z< air/A>w1 > <a°x/}.>.
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selected row is subtractod from each of tho other rowo, subject to the two
qualifications that the upper tableau must be maintained lex ncgative and no
multiplo ie usod which is lsrger than that required to make the 8, of the
other rows nonpositive. Until a bounding form is created, the lex amallost
row ouch that LI > 0 must of couroe be excluded in dotormining the row for
carrying out row subtractions. Theroafter, all row additions that mrcserve
the bounding form structure are carried out, and the a® rov 1e adjustod in
the fachion indicatod earlier.

While this rule can be shown to bo more effective than the approach
of the all-integer method in certain caces, it is also frequently lecos
offective, prinwarily duo to the fact that the lex nogativity requircment
may soverely restrict the row operations availsble.

In this papor we preusnt a mothod that uses the orms row choice as
the preceding rule, but which ovorcames suane of the limitations of this rule
by allowing certain of the rows of ths (-b, A) matrix to boccmm lex poeitivo.
In fact, the method bogins preciesely as the one outlined above oxcept that
the lex ordering of the tableau is ignorod, thus making it possible to obtain
a bounding form on oach step without weakening any of the problam conctrainte.
Ao ovr proviocus discussion indicates, the resulting transformation of tho
tableau corrosponds to one obtaimmd fram pivoting on an apprropriace Gemory
inequality, although this inequality will be pircocribed by the all-integoer
moethod only if recourss to a weakenod constraint is unneceosary to assure
lex negativity in the upper tableau.

Vhen one or more of the tableau rows becomes lex positive, thoe phaso

of restoring the (~b, A) matrix to lex negativity is irmodiately iniated.
At the conclusion of this phase the a? row 1s lex larger than at any provious

point when (-b, A) was lex négatin.
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Thus, in brief, our extension of the bound escalation method may bs
rogarded as a "pseudo" primal-dual method of the Gomory varioty, exlibiting
cortain foaturos in comuon both with Gomory’s all-integer algorithn and with

1

R, D. Young”s primal method.” Ve now turn to spocifying the form of this

axtonsion proecisoly.

To facilitate the cnouing esposition we introduce the following
additional notatiun ani definitions. Relative to a spscifiod coluwem r,

define

i
L3 (a,/8000 ngy/8000 oee s vy fag ),

for each 4, 1 < 1 < m, such that a, ¥ 0. Purther, lot a®t donote

tho lex largost ui* such that ai is lox regutive ond LT > 0. Finslly,

lot a'# denote tho lox munllest a"* such that ai is lox positive ard by < 0.
Then, beginning with the tableoau of Section 2, the integur yiogronring

mothod propoaed in this eection 'may bo described es follows.

l. ¥ 83 < Ofor all § > 1, an optimsl solution to the problem
ie given by w = - 'So, whore 2° donotes the laot m ccamponents of a°,
Othsririve,

2. Select? a colunn r ouch that a.> 0 r 2 1. Idontify the

rov na, where a®* 1o defined as above, and let

-0 (5]
a = a,
& = ol o< /A>3 for1z0, tihe

ir “or =’ > Ba

3. Update tho tablcau so that ai = Ei foralli > 0, If

1. Another primal integer programming algorithm that employs Garory
jnoqualitizu 3e duo to Bon-Isracl and Charnes (2], although the Bon-Iaraol -
Charnes mothed requisreo the soluticn of & sories of intermediate auwsiliacy

probl.cna,
2. Wo escuvus that the rule of cholce opnrates within tho fraucwork opecificd

Ly Ganory in (4].
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the rosulting ai aro all lox negative for 4 > 1, retum to 1.
Otherwine,
L. Identify the row o, whore a'# 1s definod as above, and lat
a’ = -a’,

sl - W <a1l./i“.>iiv fori > 0, 1 ¥ v,

S. Roturn to 3.

A fow proliminary observations aiv in order., Since x+1 > <x> > x

for any x, the dofinitions a, = a, - < aufﬁm} a,. and 3 = a > (0]

togothor imply that 0 2> a, > - E” (1 £ 8) aftor onch application
of Step 2. Thinp moans then that K” ie the only pocitive Eir for 1 >0,
and < '—‘h/;er > = O for all 1 o. Thus, fram the discussion of ths
conotraint (2) in Section 3.2, tho new L variable creatod by the transfarmaticn
dofined at Stop 2 must be nonnegctive, and of course intecger. The gsame
canclusions apply eoncerning Stop 4, roplacing s by v. The nonncgativity of
the now v, snd W may altermately bo justified by observing that the
trancforrations are aleo given by pivoting on tho Gamory incquality
f_(ah/)\>ui 2 <a /A> vhoro \ = a_ at Step 2 and A = 3.
at Step /4. Tho seloctod pivot 1ows, a® ard a¥ roopoctively, muy of couise
be dii‘feront. from those spocified by the ordinary linear prograuming pivot
rules applicd with referonce to the Gamory inequalities .

To prove that the method convorgoes we have two principal objoctives:
firast, to chow that whonever samo ai (1> 1) becamos lex positive whon tho
tableau is urdated following Step 2, the method will rostore the upper tableau

to lex nsgativity aftor a finito number of iterations of Step 43 and eorond,
to ohow that the a® vector will be lex larger on ocach visit to Step 1 than
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on tho pirovious visit. The Gomory proof of conveigence for the all-integor
algorithm thon applioal for the appropriate choice of r at Step 2, and our
o3l will bo achieved.

Vo may roughly outlins ths stratog of our proofs as follows. By the
preccding rovwrrka, oach time Stap 4 1o vinitsd, whetheor via Sho routn from
Step 2 or from Step 4 itoolf, exactly one ccmponor of column r vill bo
positive. The row in which this component, appears will be lox nogativae,
hence this row correoponds to the curront a®. Vo will undertake to piv vy
that two other important charactorictico of the tebleau will also ba preserved
ot each visit to Stop 43 (1) all aj'* for lox pooitivo al (1 > 1) 111 be
lox 1larger than the curront &«®*, and (14) all lex positive al will bo lax
omllor then - a®., The lattor fact, depoudent upon the formsr, implica thet
- a® muet itoelf be lox docreasinz, and henne that the number of iterationo
at Step 4 must bo finite.

To prove aloo that a® 1s lex larger at cach viait to Step 1 than on
tho previous vieit, wo will in fact chow that the emount of the lex inercase
in a° munt alimys be at loast ar largo as that resulting frcem piveting with

the oimplex method wiitn LI jo the oolectsd pivot olecamt,

$. Lzman, Theoronsz, ard Preofs.

1

In what follows wo intond to idontify a™ with a° or ;v’ o8 appvoprieto,

ard to identify a2 with ono of the othex tab'eau rowos. Honco vwe dofino
a2 = 8% - < aZx/alr > al, for coro opecified r, 0 < ¥ < n, ouch
that a,  # 0. (Whon referiing opecifically to the mothed it will of courso

bo truo that r > land a_ > 0.) Similarly, wo defino a** ac in the

1r
proceding section for each i such that a, % 0.

1. This applicability is asvured by the fact that a
tabloau is updatsd at Step 3.

oS 0 each tino the
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Thoercn 1. Consider vectors al and az such that
a, %0, A, > 0. Then
(1) al* 1o 1lox larger than 22w

if and only ifs

(11) ;2 1o lex negative
or
(111} 52' < 0 and a%% 4o lex larger than alw,

To 0implify the proof of this thocrwm wo state and prove the following

threa Jrmwmn,

1

lenmia 1. Let a™ and a2

be given as in Theorem 1, and assune that

521' = 0, Then (1" 1o trus if and only if (i4) is truw.

Proof of I2rmn ). To prove this leiaa v shall derive an oxprass=ion

for 52 5 that will be uvcd again in provirg Lemma 2. By dofinition

a - = * o »

8)4 84 < azr/alr > 8y Also, Y aZJ/aZr and 2

] - ] - &
a:J/a]r, po that 85 3, ta, . end 8, au* 8. Subotituling

for a2,1 ard N 3 in the dafinition of “23 thus yiolds

T L aZr/alr > au* 8.

By the dofinition of a,. 12 have

a - 5 . *
S14% Bop 84" Cop <a,fo . >a 0
and thus fron tho preceding oxpanslon of EZJ ve obtain

(3) 394 - ‘13* . + 32w(a23* - &l.')*)'
Vhen 322. = 0, the fact that 3, > 0 d4nplies by (3) that

(a) a,, = 0 if amd only if AZJ’ o alj*’ and

23
a # #*
(b) 8, < 0 if and only if 023? < 8, 4*-
Lot Ezp bo the first nonzoro cemponent of a°, Then A2 10 lex nogative i€ ard

only it E2p < 0. Awo, by (a) abovo, 523* - alJ* far J < p, end

£, % 4 a. #. Thor:fore, nl* is lex largor than n?‘* if and only if

2p 1p
,,21)* < alp*' But then by (b) wo havo that n]‘* ia lox larger than a2*

if and only if 52 13 lex negative, which is what we desired to prove.

- ———
- TR e
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Remark 1: Lemma 1 hold by exactly the same proof when ;2 is alternately

defined to equal a2 - Kal. where K is any number, thus increasing the

generality of the preceding result. Lemmas 2 and 3 below likewise hold for

this weakened definition of ;2.

Inma 2. Lot o' and a2

o ?21‘ ¥ O. Thenforany J, 0 < J < n,

* = » -
an azJ* if and only if r.u* azd*.

Prcof of Lotma 2. Urdor tho assumption that 52‘. # 0, wo havo

be any two vectors such that a, , a, ¥ 0

;23* - KzJ/izr by dofinition. Substituting the value of 52 3 given by
equaticn (3) of Lexma 1 into thin last equation gives
(n) 323* - &13* r na.(azd* - nu*)/ 8o

For “?r and an

QZJ* o a.n*, and conversely that a?‘,* - ‘IJ* implics 323* - ‘)_J*’

nonzero, it is clear from (4) that 323* o alf implivs

1

L~ma 3. Lot a~ and a2 bo any two ve:tors such that a, , 8, ¥ 0

and E"r o 0, Assume, morvover, that azr/a’hr < 0. Thon

) §

a2 40 lex largor (eraller) than a’# if ard only 4if ale e 2ox lrrgey

(tmallor) than a%s,

Proof of Lormy 3. Exclwding the case alt = 2% = 3‘2*, which 1s
irrelovant to the conclusion of the larra, it is assured by Lamaa 2 that
theio axists an 11:!ch: q such that 8" f u‘lq*’ Ezq* ¥ #, and
o, * = a,* =w g # forJ < q. But from equation (4) of Leuma 2,

AN 2 2)

<. 0 implioo that a; + < a, & if and cnly if a) * > hzq'h

nop/B0e

This piovoes Lenma 3.

Proof of Thoorem 1. By dofinition &, = 8, - <a, r/alr X

Since ay > 0 and azl/ 8, < <a,/a, > wo therefore hevo

8o 2r

EZr < 0, thon aa_ﬁin < 0, and Theoram 1 is true by Lmuar 3.

< O, Ifa, = 0, then Theccem 1 is true by Loama 1, whilo Af

Romaric . By the foregoing proof we see that Theorem 1 is also true it (14)

i{is alterod to read "52 is lex negative and a. - 0," thoreby increasing tho
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generality of the "only 1if'" part of the Theorem.
Theorem 2. Let al and a be given as in Theorem 1 and assume
in addition that al and ‘2 are both lex negative. Then 1if (1)
is true and ;2 is lex positive, it follows that ;2 is lex sma’ler than - 01.

Moreover, the first nonzero component of - al is larger than the

corresponding component of ;2.

Pront of Theorem 2. Let sz bo the first nonzero component of 32.

If a,, ¥ O for come §J < p, than tho aonertion ie irmedintoly true.

1)

Alco, n,, = O for all J < p 13 impossiblo eince thon sz = 8y,

13
for § < pand thuo n2 1o lex positivo, contrary to acoumptinn. Thun
suppooo that alp is aloo the first naizero component of al (vaere it 1is given
that 32’) is the first nonzero compcnent of 22). Since alw 18 lex larger
than a%#, we have °lp/.lr > a, ;/021:" honce az/alr < a, p/alp’

rinco a, <O and ay > 0. It follows that <a, /o) > < < azp/alp >
end <, fa, < s, p/alp + 1. Fron tho definition of EZp’

s

fop = %o - < aZr/nlr >y, w thorelore have

a, < 8y, - (a2 p/alp +1)alp,

end hence E2p < = a'lp' This completes the proof.

2

Thacotrm 3. Connider two vectors al and &~ cuch that

-2
alr" 0, a2r<0, a ¢ 0.

Then

1

(1) a’* 18 lox larger than a™#

if &nd only if:
(11) &2 1s lox neget ive
o

(111) @, < Oand &% is lex larger than ale,
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Remark 3: The conclusion of Lemma 1 continues to hold, following the same

pattern of proof as above, when al. .2 and condition (1) are alternately
given as in Theorem 3. Likewise, the conclusion of Theorem 2 holds under
the same modifications when al is lex negative and 12 is lex positive.
Remark 4: When the assumption aZr/EZr < 0 {8 replaced by ‘2r/;2r >0
in Jema 3, a simlar argament yleldn the conclusion that a2 10 lox
lar;or (mnaller) than ale 1f ard only if a* 15 lex larger (ernller) than

u]‘

Picof of Theorew 3. By roforenso to the procoding remarks, the proof

of Thoorum 3 mirrors that of Thoorem 1.

Theeron 4o I any ai, 1>1, 1> mado lox positive eo o renult of

the transformation dofired at Step 2, then all ai for 4 > 1 vl
boccme lox negativo aftor a finite nunber of itarationo of Sicp A.

Proof of Thoorcm 4. Letting &° correspond to al and a* to &% (1 ¥ o),

{t follcwn from Thoorcam 1 that i a* 4s lox positive at Step 2, thon

a,. < 0. Haneo, after updating the tableau, all lox positivo ot (1 > 1)
are candidates for a' tho first tine Step 4 is vinited. It alno follows
from Thoorem 1 that a# 1o lex larger than tho pruvious 2%, Let it bo
imagined that Step & 16 broken into two perts, whore first @' is raylncd
by 2 (wxhich we continuo to refer to as &' inotead of the row a'), but tho

renninder of the updating of tho tebleau is defeorrod, av befors, until Stop 3

io vioited. Thus, by the above remarks, whon a’ 1o replaced by a’ = - av,

but bofcre any of the rost of the tabloau is updated, thon a’ natierien the

1%

dofindtion to qualify as the now a”. Moreover, by definition, a* in

lex groctor than a'# (= a¥*) for all lox positivo al (1>1, £ v). Thus,

1 2

and associating the lox positive a® with &2 in

i

asrociating &' with a

Thocrem 3, we see that each such a™ will remain lex positive after Stop 4
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-4 5
only if a™# 45 lox larger than a*, On tho other hand, any ai other than

the cucrent a® that is lox negative whon the table.u is updnted at Step 3
will rumain lex nogative after eash subsequent iteration of Stop /4. Thie
follows from the fact that 8, < 0 for all ouch ai, and hience only a
nonpoadtive multiple (< a. l,/HW)-) of the lox nogativo & will be subtractsd
fram those rows due to the transformation specified at Step 4. Consequantly,

oach subscquent iteration of Step 4L, an woll as the first, will insure “hat

(a) a,, < 0 for all lex pooitive ai, (b) the curront a’ corroaponds by

definition to tho current a® (when a’ replicos 2’ but the rest of tho tableau

is not yet updated), (o) ai* 16 lex large:» than a'# for all currently

lox poiitive ui (1 >1), ad (d) =ach lex nogative ai other than the ons thet

vus o’ before o’ roplaced a¥ will remaln lox nogative after tho iteration of

&Lop 4 1o canploted and the tableosu 1s updnted at Stop 3. So long as

thaoo 1wutvally interdupendent coniitions obtain we shall alno hove ty Theorems 1,
and their acgompanying remarks

2 and )/that all a” that are lex positivo at the exd of Step /; vill be lox

£1711ler than - Kv’ and hen<o that the new u' determined at the rtart f the

rext Jheration et Stap 4 wlll be lex maller than the jrovioun a¥. Sinzn

the ve:ters ave changed by dntegee amounts, tho Y vactors ennnot ko

indefinitely decreased lexicographically in the indi:ated components and

remain lex positive. Moreover, by Theorem 2 (and Remark 3) the first

nonzero component of the old a’ must be larger than the corresponding

component .in the new a'. Thus, eventually all al for 1 > 1 must be made
lex negative. (The fact that the tableau rows are linearly independent

assures that there will only be one vector qualifying for a’ at any given
time, and hence that none of the ai will be reduced to the zero vector.)

Ponackk 5., Tho Jast part of the foregoing proof may alternately bo estailished

- e ———

by obaceving that O > a . > - 8, ON ench visit to Stop 4, and hence that

the a , 8T stondily boing incroased (in integor amounts) toward O Ly tha

i
incroaning valuo of - & r (cqual to tho proceding svr)' [Cut. since condition
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(a) of the foregoing proof must hold at each iteration, none of the L for
lox positivo ni can actually reach O, and honce ovontually all ai must

becane lax negatiwe,

Thoowwm 5. On each visit to Step 1, the 2° vector will te lax largor
than an tho provious vieit. Moroover, the amount of the increnso
wvill be at lenct as largo as that rosulting from pivoting on coluan r
by tho rules of tha simplex mothod,

Romark 6 . In mroving Theoram 5 vu will lot ao, aaﬁ, a’, and 2° derote

the iadicated voctors as they are dofincd vhen applying Step 2. In sddition,
for each iteration h (h > 0) at Stop 4, lot k), denoto the currort < aonﬁvr >
[N dcaote the current a© voctor, ph* donate tho current a'# , ard

Phy donote the current Evr' Thus, if §° denof.es tho {inal ao vector ofter

the laot iteration of Stop 4, we 1ay write

(5) T-?-El%oh, and
h
(6) Bor = Bor ~ Zh KpPop

Remark 7. Dy the definition of 2", a” will be the pivot row vhen pivoting
on column r with the simplex moethad. Also, the vector to replaco a® by the
simplex pivoting rules is a° - nwna*. We note that this recults in «

lex incroaso in a° since 8o p > 0ani a® is lex nogative.

Dicof off Thecrem 5. To provo the thoorem wo must show, Ly the

foregoing remarks, that a" 10 lex greater than or oqual to a° - aora"*r.

Since Eo < 0, from (6) wo obtain

r
(7) 6. < P Ky Py p
By the dofinition of ph* and Prp ' also have

B
(8) Zkp, - z"h"hr"h"‘
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Ao ohown in tho proof of Thoorem I, succoosive roapplications of Theoremo 1
and 3 inply that op* 1s lex larger than a®* for each h. Since kh <0
and p . > 0, it follows from (8) that & kbph is lox loss than or

equal to o’ g K Phpe AlE0, since a% 15 lex nogative, wo have by (7)

is lox less than or equal to Eorna*. Thus, frem equation (5)

that zkhph

wa ccnelude that a° 1o lex greater than or equal to 50 - Em.aa*.
Finally, using the fact that K”a"# = a°%, the dofiniticne of ¢ , and &
yield a’ - Eora!’* - a% - aorna*. This provos the theoram,

Thaozcn 6. The mathod specified in Section 4 will obtain an oplinal
solution in a finite numter of steps for any problem thet has a
nonenpty solution set and that satisfios the aasumptions of Scetion 2,

Proof of Theorem 6. The proof ie immediate from Gomory’s convergence

proof for the all-integor intoger programning algor:.thm applied to tho results

of tho foregoing thoorems.

6. Frzamrle Problems and Comnents.

Vo solve thrce exanple problems in this section to illustrate various
aspects of .the mcthod of Section 4. Tho firet problem presentc a straight-
foierd application. Tho second problem is includod Lo illustrate hou the
problcn nay bs solved beforo dusl fcasibility is restored at Step L. The
meont for rovcognizing when a problam has beon "prenaturely" rolved loads
to the considoration of other methods based on the rosults of Section 5,
which wo also discucs. Finally, the third problem dopicts a tyjo of
nituation in which the method of Soction /, exporiencos substantianl difficulty
in restoring dual feasibility at Step 4. The implications of this behavior
in tcime of matching transformations to problam structure ars considersd

briofly in the concluding remarks.




Exnmple Problem 1.

Minimlze 23w1 + 1™, + v, + v

2 3 I
s.t. 27w + 20w, + 16113 + 17»11‘ > 128
2w, + Uw, - 9\-!3 - w2 L5
Wis Vo v3, I > 0

Tranolating this into the tablsau form of Section 2, we have

6. S -3 27 2 | L0 0 0
-7 20 u | o 2 o 0

-3 16 9] 0 o 1 o0

-1 17 2] 0o o 0 1

of 12 51 0 0o 0 0

ip
where wa havs inserted an edditlional partition batwoon the A° erd the I matrix.
By the procedure spocificd in Section 4 wo observe, beginning with

Step 1, that a > 0 for j=1and J = 2, hence wo procecd to Step 2.

J
Ve sclect for column r at Stop 2 the one that contains the fewcet pocitive
compc-ncnta.l Thus, in thie instance, r = 2, as indicated by the aricv: in
the tablcau above pointing to cclumn 2. Frcm the definition of 2% vio eoo

that 3 = 1 when 1 =2, heuco the arrow pointinz to row 1. The transeformations

preacribed at Step 2 ylald at Step 3 tho new tableau

1. -23 27 22 1 0 3 0
> 6 =7 -8 | -1 i 0 0

-3 16 -9 0 0 ! 0

I A Y =2 0 0 0 ]

L69 l W =2 | -3 0O __0 0

2

1. Cur cholco hare 1o dictated by tr2 conceptiual framework underlyin; the
bouns escalation mothod. For more refinod eriteria, sece [3].



In this tableau row a2 has becomo lex positive. Therofore, with r

st1ll at 2, wo prooooed to Stop /, end apply the indicatod transfomation

for v = 2, Tho updated tableau obtained at Step 3 is then®
2. -5 6 -2 -2 3 0 0,
v 7 3 1 -1 0 o
> | 23 2 1 -2 1 o0
2l -2 o o o 1
57 16 -5 |1 -2 0 0

™

None of tho a> for 1 2 1 1s lox poaitive, and we return to Step 1,

Sinco ‘ol

= 61 > 0, we proceed Lo Stcp 2 and let r© = 1, this boing tha only

choico. Now & *» 3, and by appling Steps 2 and 3 ws obtain

3.

»|_2 T U I S N N |

4L -17 -1 -3 L =1 0
3 ~16 9 0 0 =1 0
-9 2 ~1 1 -1 1 0

8’ 1 -8 -:2 -g ]. "'3 0

Onco again the upper tableau has lex positive rows., At Stop 4 w3

dotermine

lt «

that v = 4, thereby at Step 3 ylelding the tabloau

0 -5 1 -1 2 1 -2
=1l -l 11 z =2 1 -2
-1 -1 -5 -3 3 -3 L
-2 0 1 1 =1, p -1
82 -2 =), -3 0 =2 =)

1. Tiis tabhloau may also bo obtained after two pivots with Gomory’s nll-
intesor algoritlm. Thorealter, howovor, the all-integer method requi-:.s 9
additionnl pivot stops bofore obtaining the oolution.
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A1l 8, 8re nonpositive for § > 1, honce the problem is solved. From
the last m components of a® the optimal solution is oson to be
v1-3, wz-o, w3-2, "A-J“

Tho next examplo problem to he solved contairs only a oingle

constrairt.

Eranyle Problem 2.

Mininize 3\11 r Swz + 9\(3 + 7wh + 13\15

a.t, 6"1 4 15\:2 + 361:3 + 23"& + alws 398

v

Wis Wor My, w", ws > o
For convenience we will not bothor to write down the lant five
coluuns of the tablmau correspoiding to the I matrix and the zero wvocior,

but will explicitly represent these columns only when they are changal fran

their original form., Thus, for the ‘nitial tableau we have

0. -3 6
-5 15

S| -9 36

-7 23

=33 4)

0 26

S

The arrms accompanyirg tha tableau point to column r and row .
Surice 8 = 3, the third column of the original I matrix will be modifinud
by the tranoformation uefined at Step 2. Thuo, in the roscultiig tablean
below this modifierl colunn is ineluded following the modifiod columns O and 1,
and w3 ia wirritton above the new column to ilentify the variablo with uhich

the column is ansociated.



L.

rouwn to lox negativity.

Y3
> 8 =30 -1
A ~21 =1
-9 36 1
2 <13 -1
3 ] =21 =2
103 _ | =34 -12

4\

At Step 4 the transformations ers initiated to return the lex posit.ive

Since v = 1, the first column of the original I mctilx

will now be changed, ylelding tho column below w in the tableau belov,

2.

3.

vy 2]
-6 30 1 -1
> L -21 -1 0
3 =2 -1 2
2 =13 -1 o
~1 -1 -1 -1
102 -l =11 -1
A
Thin tableau still contains lex positive ai for 1 > 1, snd Step 4
muet thorafore te ropsated.
vy vy w,
> T2 |12 a1 = 2
-, 21 1 0 =1
-1 -3 0 2 -1
2 -12 -1 0 0
1 -1 -1 -1 ¢)
J. 102 A 11 -] 0



N
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Onco agnin repcating Step 4 wo obtain

y wl v,
be -2 12 1 1 -2
0 -3 -1 -2 3
-1 -3 0 2 -1
0 -1 0] 1 -2
=) -1 =1 -1 0
02 l = =11 =1 )

Tho problem is now solved!, and an >ptimal solution is given by
wlnl, v2-=0, w3-11, VL-O, ws-O.

For the preceding probler, wo note that the optimal solution vae
alrendy gliven in Tableau 2. Since oome of the LI for 1 > 1 were positivu,
howover, the solution wae not icontified as optimal at that point. IL
woull have boen possible to mako this idontification, however, in thu
folloving way.

Wo chall create a new row from a' (v = 2) in Tablecu 2 by dividing
o’ through by ~a (- 4),1 and then add this new rew to tho tabloou
by inserting it above the others. Since tho variadle ascociatod with this
row (cnll it z) must bo wero in the final solution, we aloo adjoin tho two
constrainis -1 > O and z > O at the end of the tableau. Carrring

out this procedvre rolative to Tableau 2, we obtain

1. If a "~ 0, wo instead divido through by the first ncnzero compon-nt of
v

a4 ,




'ﬂ3 "1 -2 ]

2A. =] -1 = s 0 -1 3
% 30 1 -1 0 0

L -21 2 0 0 0

-2k 3 2 0 0

2 -13 A 0 0 0

-1 =3 o o3 oo

102 & | 4 1 o 0

T
The now top row and the new columas are sej;rogated by the addcd

partitions. It is evident by its construction that the new row must qualify
as ' at Step L.} Thus the method may bs applied by proceeding frem Tableau 2A
inotcad of from Tableau 2.

It is unnecessary to carry out the computations in order to predict
two things about the al that will be defined at Step 4. First, sirce the
firet component (Ev o) of the now row is ‘=1 and the compcnents of colivmi O

are *_ntop;em,?’ w3 may predict that 840 ™ 0 for 21). lex pouitive E\'i (1 #0).

()
Thie follows from the rosults of the preceding section, which assurc thet
all lex positive ;1 will be lex smaller than = :v. and that the first
nonzero component of = a’ will be larger than the corresponding component

of the lex positive ;1.

The second thing to be obnorved is that, in the ypresent casc,
- = -0 = O
< am/E" > = 0 (for a .= ~kanda 21/4). and hence a 8.
This fact and the one just estublished assur? that the feasible solutiocn
given by the bottom row of Tablenu 2 (and 2A) must alco be optimel. In chowh,

wo have cstablishel that < aor/i“} = 0 1s a sufficient condition Yer

1. Coneoptually, wo may imagine that thy negative of th2 new row yas ad’cined
at Steop 3, whorsupon thls row vould corrzspend by definiticn to gv el Slep 4.
Morc gemmRy, of courze,,we may adjoin any lex negative row ",n to qunl)if;r
ans the now 37/ such that a' " is lex emaller than the current &' * ar® Juox Jarscy
than tho currcnt s,

2. ¥ prniltting rational numbers in the tablean, it suffiecne move gener:idy Lo
select the Tirst ccmponcnt &  of the adjoined row to be - 1/, vhors hz,, in
an irteger for all 1 and j. TIf colvmn O alrcady consists of nonpositive”
compononts, then a = 0, and our rouarkn have roference instced to the firnt
colvan J such that a_, ¥ 0. To domonstrate that a feasible solution in optimal,
however, conoidaratioxjmy be limitcd ao above to colum O.
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a foasible solution to bo optimal, whore K" is determined as outlined above
(but not by roferonco to the unexmnded tableau).

If adjoined rowe and columns aro actually employed in solving the
problzm, and not simply as a means of checking for optimality, then it will
ovontually bs possible to restore the tableau to its original aizo.l This
approich of adjoining rows may also be used at. Step 2 to provent the ai
from becoming lex positive in the first place. There are clearly a nuaber
of poosible variations, and by following the appropriate rules tho tableav
need not be oxpanded to the axtent doploted by our 11iustration each time a
new variable is added. To insure convergsnce it is of ccurse necessary to
have same moans for assuring that the succession of rows and columns zdded
to the tableau will not be unending.,

For our last example, we now turn to a very simple problem that

A1lustrates a situation in which the method of Section 4 encounters sorlious

wiffizulty in re-establishing dual fcasibility.

Ex:mple Problem 3.

Hinlmize lwl

et v+ Lfw, > 98

+ 28\12

Vi, W, 2 0

0. l“ <1 1 1
> | -28 1,5 0
)

I 0 og 0 0O
4

The next, threeo tableanus are wi itton without additional camnment..

1, DRy selocting onc or the other of the adjoined column< (vhich will alwa:s

be the nezatim of each other) as column r, and persistirg in this, if neccossary,
after their bottom row comporents are 0, even’ually there will reamajn orly

nne row of the tableau with nonzero components in these c¢slumns, at which ‘imo
the irdicatod row ard columns may be droyped. The optimel solution mry of
coursa be ohtainced before this size reductlon process is completed.
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1= | 27 W 1 -1
| .-28 L5 l 0 1

Lo |22 | o -

2. [ =27 Ly | -1 1
26 -1,3 2 -1

8% =37 0 =3

3 . ﬁ25 i "162 R 3 "1
I -26 43 -2 1

Cne nay infer from the structure of this problem that aftor six

nmore stops we will obtain

19 | =36 | 9 -1
-20 47 -8 1
&L 0 -8 -2

This tobleau gives an optimal solution by the remaris relating to
the provious example problem. Howover, to restore dual feuuibiIily by ths
mathod of Section 4 wo may project by inferonce that 20 additional stepn

are roquired, at which pojnt we obtain

| -1 l 18 | -27 1
o_| -17 28 -1
w | o |8 -2

Two interacting foatures of the tableaun bequeathed by Step 2 appu:r

to havo contributed to the difficulty oncountered at Step 4t (i) alt rnd
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;2“ vero nearly the samo, and (11) tho components 83, and s of tho wnctor

3 1 2

a© = a~ + a° wore small in abooluto value relative tn tho corrveponding

landaz.

cc.:mponont.a of both a
The extent to which these featuren may apply more gonorally to
chexractorize situations in which the transformations of Scction L rhoild be

byrasacd and others employed in thoir place is not yot known. Howovow,

a nuaber of related considerations arn evidently involved in dotomining
what types of transformations should be cuployed — e.g., tho frequency with
which structures that ars difficult for the method arite in practice,

tho ability to predict the result of soveral iterationn of Step 4 for these
difficult structures, and the availabllity of criteria for rustoring dual
foanibllity at an earlier point than otherwiso permmitted by uninter.sipled
application of Step 4. We do not at present know a sirnificunt amownt

about these considerations, but can only acknowledge their rvlevanc:. in

detormining the uses to which the results of the preceding socctions may

be put,
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(3]
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