
3K.

LI i ; -. -

I--

GRADUATE SCHOOL of INDUSTRIAL ADMINISTRATION

WlI tnLtim- "lon Fua.

I
j Management Sciences Research Report No. 46

A METHOD FOR SCHEDULING STUDENTS

TO CLASSES

by

Gerald L. Thompson

July, 1965

'NNAGIWMT SCIENCES RESARCH GROUP
GRADUATE SCHOOL OF INDUSTRIAL ADMIINISTRATION

CARNEGIE INSTITUTE OF TECHNLOGY
PITTSBURGH, PENNSYLVANIA 15213

This raport was prepared as part of the activities of the Manotgement Sciences
Research Group, Carnegie Institute of Technology, (under Contract Nonr 760(24)
NR 047-048 with the U. S. Office of Naval Research). Distribution of this
document is unlimited. Reproduction of this paper in whole or in part is
permitted for any purpose of the United States Government.

In most universities the mass rcheduling of students to classes

requires from a I-alf a man-year tc several man-years of time, counting onl

the time of the faculty members and administrators involved. Although the

job is spread over a number of individuals, it is an onerous tasV, that

seemingly should be done by a computing machine. Moreover, because most

scheduling is presently done in a decentralized way by many people, the

only objective that present scheduling techniques can have is that of

obtaining a feasible schedule, that is, one that the faculty aad students

can "live with". One can easily think of other objectives of a gocd

scheduling technique such as: to minimize the nur:.ber of sections of

multiple section courses, while keeping the size of the courses within

given bounds; to utilize classroom facilities as efficiently as possible;

to preserve as much flexibility as possible in the final schedule to aliL

for final manual adjustments late registration, course changes, etc. It

is reasonable to expect that an efficient computer progran for obtaining

a feasible schedule could also provide some of these other desirable

qualities in a completed feasible schedule.

Solving the scheduling problem for a single student is a relatively

simple task for humans. Freshmen learn what the combinatorial problem

is and how to deal with it during the first week or so that they are on

campus. Moreover, through years of experience, registrars a-' colleges

have learned how to "solve" the college-wide scheduling problem.

A great deal of effort has been expended over the lest 8 to 10

years in prograimning for computers heuristic solutions to college

-2-

scheduling problem.s. The literature cited in the bibliography *.s typical

of some of this effort. An examination of these programs reveal a number

of common characteristics. Very little if ai.y search of possible

alternatives at a decision point is carred out by these heuristic programs.

Instead, decisions are made on an ad hoc basis following the heurist'c

ideas developed by the author(s) of the programs. Thus such programs are,

roughly speaking, just as good as the schedulers who devised them. it is

easy to see why these methods do not consider a complete combinatorial

search of alternatives for Ehe entire scheduling problem, since that

problem is far too big. But it. is c.qually obvious that an improvement over

human :r straight heuristic performance should be possible if partial

search of the alternatives is carried out.

In the present paper the author proposes a method for solving thlc

problem that comnbines heuristic and algorithmic ideas. Namely. it 'Ies

heuristic ideas for deciding on the order in which to cox,:ider the

students, and for setting up the actual mathematical problem to be solved.

but in making the specific assignment of a student to class sections. an

integer progranmiing problem is solved whose objective function is to

minimize the sum of the slacks in the sections considered. As far as the

author knows this is the first time that heuristic and algorithmic ideas

have been combined in this manner.

The proposed method has the following featnres:

(1) Given (a) a list of the available courses sections, times

and maximum enrollments, and (b) for each student a list

-3-

of the courses he would like to take together with 2

or 3 hours during the week at which he would like to

be free, the program produces schedules for each student,

and an over-all feasible schedule for the whole university

that keeps within the prescribed bounds (providing such

a feasible schedule exists.)

(2) At the heart of the method is a streamlUied versio,1 ot

the "stopped simplex methud" for solving integer programming

problemns, developed by the author in [181.

(3) The resulting schedule is not necessarily optimal

relative to any objective function. However, several

heuristic rules are built into the code which give it

high probability of finding a schedule that is optimal

or nearly optimal relative to the objective function

proposed in the model.

(4) The model as we propose it has a built in objective function

that makes it and up with a relatively flexible final

schedule which permits final adjustments relatively easily.

(5) The computer time (IBM 7090 or equivalent machine)

required to schedule all the students in a university

having 15,000 to 20,000 students is estimated to be

2 or 3 24-hour days, i.e., a long weekend. hence the

method is practical on a real-time basis. Alternatively,

it could be designed for an "on-line, real-time" application.

-4-

(6) The objective function of the model can be changed

in various ways by individual users to meet other kinds

of scheduling objectives, such as the ones suggested in

the first paragraph above.

In the remainder of the paper we first discuss the feas164lity model,

the solution of which would resemble present scheduling techniques. Next

an improved model, the minimax slack model, is de:.cribed and a computational

method for using it is outlined. Finally, computational results with

specific examples is presented.

THE FEASIBILITY MODEL

In the present section we shall define a simple linear progranming

model of the classroom scheduling problem that is similar to present

methods i. hat it requires only feasibility of the resulting stude:,I's

schedule. There is no assurar.ce that if the feasibility method were used

over and over again to find schedules for all the students an overall

feasible schedule for the whole university wculd be found having any given

desirable property. We discuss the feasibility model to imitate present

scheduling techniques and to set the stage for an improved model that

we will discuss in a subsequent section.

Assume that a given student has indicated the courses that he wants

to take plus his free times. To define the linear programming problem of

the feaz.ibility model of the scheduling problem, let c be the course

number, s the section number, and t the time it meets. Thn define

-5-

the variables

(1 if the student takes course c, in
(1) x(cst) = section s, meeting at time t

0 otherwise.

We then define the following constraints on these variables:

(2) 7- x(c,s,t) = 1 for each course c desired
S ,t

This constraint insures that the student will be signed up for exactly

one section of course c. To insure that he will not be signed up for

more tharn one course at the same time, we also require:

(3) F x(c,s,t) < I for each t.
Cs

We also add constraints of the form

(4) E x(c,s't) - 0 for each tiI i-i,....k,
C',

where k is the number of free times and ti is the time of the Ith

free time. Also in case the student wishes to take a cou.se that has

only one section, a constraint of th'- form (4) will be added for each such

course. Since most of the courses that juniors and seniors take are one

section courses, only a trivial scheduling problem exists for them.

1/ This method of describing the problem is not the form which is best
to write e computer program; see later examples.

-6-

We also define the variables B(cs,t) whose initial values are the

numbers of seats in course c, section s, meeting at time t . If a

student is assigned to that section, the number is reduced by 1. In

order to close off a section when there are no more empty seats in the

room we add the restriction

(5) x(c,s,t) < B(c,s,t)

When B(c.st) 0 0, zhis constraint gives x(c.st = 0 so that no more

students will be assigned to that section.

Inequalities (1) - (4) to-ether with che fact that

0 < x(c.s,t) < 1 define a convex set of feasible vectors. We want

to find a point in the set that makes all of the values of x(c,s,t)

equal to 0 or 1. The computational method used is the stopped simplex

method for integer programuing described by the author in [I]. To turn

the problem into an integer prograusning problem it is necessary to define

an objective function. Exactly what objective function is unimportant

for the present model, so we choose the function:

(6) Minimize E x(c,st)

We know, in fact, that for any feasible solution the value of the

objective function is p where p is the number of courses the student

wants to take. Hence the objective function does not rule out the choice

of any feasible integer solution vector.

-7-

The model defined by (1)-(6) will be called the feasibility model.

Because of the form of the objective function, the S method (for

stopped simp.ex method) will simpl'; pick out some feasible schedule

and assign: it t*-. the student. -this resembles in many ways the present

methods of hand scheduling, except that hand schedulers may make some

attempt to even the load on various sections so that the "most desirable"

sections will not be closed out early in tle scieduling process, leaving

onl, the "less desirable" ones for late registrutions.

Exactly which feasible schedule the S2 method will choose depends

v'ery heavily on the order in which the constraints for the various sections

are listed in the problem. If, for instance, the sections were always

listed in the same fixed order, there would be a tendancy for sections

listed first to be filled up first, then those listed next, etc.

Because of the above objections to the feasibility model, it was not

tested out, and instead the minimax slack model, to be described next,

was developed.

THE MINIMAX SLACK MODEL

The problem of any scheduling method is to balance the conflicting

desires of (a) the students, and (b) the registrar (representing the

faculty and administration of the university.) Most students would like

to have their classes begin after 10 a.m. and end by 3 or ' p.m. They

also would like not to have S.iturday classes. Naturally such schedules

cannot be obtained for all studencs simultaneously. However, it is an

empirical observation of many students that, with the present scheduling

-8-

techniques, more of their desires can be fulfilled if they re-,ýster early

than if they register late. It seems that a good scheduling

technique should treat students on an equal basis as far as it is

possible, regardless of when thev arrive in the scheduling queue, so

long as they meet some registration deadline.

The main objective (if the registrar is the construction of a

feasible schedule for the whole lniversit% having the property that every

student takes the courses he wants without conflicts in his scheduled ti:nes,

and so that more students are not assigned to a classroom than there ,Lre

empty seats avai.able. After the main objective has been obtained, the

registrar would like to have other objectives such as flexibility,

classrooms used efficiently, etc.

The feasibility mode- of the previous section might be suffi:ient

to obtain an overall feasible schedule if care were taken on the order

of introduction of constraints, or alternatively, the entire problem were

passed through the computer several times. We propose instead a method

which will obtain simultaneously Lhe main objective of a feasible schedule

plus the secondary objectile of retaining as much flexibility as possible

for late registration and 3urse changes.

The minimax slack mod.l utilizes expressions (1)-(4) of the previous

section (but not (5) and (6)). Also new variables x(c) are added, one

for each course. Then the constraints

(7) x(c) - B(c,s,t) - x(c,s,t) for each s,t

-9-

require that x(c) be greater than either (a) B(c,st) or (b) B(c,s,t) - 1

depending upon whether x(c,st) is 0 or i. In other words, x(c)

is greater than or equal to the maximum Plack of any section of course c,

where we shall mean by slack the number of unassigned places in a given

section. We now, state the objctLive function as

(8) ;m x(c),
c

which means that the objective is to minimize the sum oi the mtximum

slacks in all of the courses. Thlis, in selecting sections for a given

student, the simplex method will try to select sections with maximum

slack, if it is feasible to do so.

In addition we built into the simplex method the rule that whenever

several vectors can be brought into the basis, the one with most n.wativve

slack is chosen to be brouaght In. is is a priority rule that tries first

of all to choose tho Clae section with maximuu slack as the first try

at assigning the section for that class. We considet the most negative

slack rule as part of the minlmax slack model. It would also be possible

to further refine the rule t,, wake the priority method for choosing come-in

vectors for the simplex method be in the order of decr,•eing r ck. The

latter has not yet been imlmamited 4- the program.

Equations (0)-(4), (7) a& (8) together with the most negative

indicator rule, constitute the minimax slack model. Since the variables

must have integer values, the model is an integer linear programing model.

in the next section we shall indicate a method foe finding solutions to

the problem, but first we shall give a simple example.

Suppose that the student wents to take three courses, Enslish,

Hathematics, and History, all of which meet on Monday, Wednesday, and

Friday. Suppose that the available times are as in Figure 1.

Course English Mathematics History

Times 9 10 11 10 11 9 10

Slacks 10 10 9 6 7 5 5

Figure 1

This means that the English section meeting at 9 has 10 unaisigned seats,

the mathematics seatf.ee at 11 bee 7 -emssived seats, etc. ,4e shall

set up the corremeposdie limew bateuw ppmian rroblem using a

notation that is loes cverems d thet is equations (l)-(S). Let

. m, and it be the smesee vof thles eles•poe r to the three

courses, ad let mses pts, es tdoee" lettat be the tamee that the sections

meet. Thus % is to gItsh at 9, N, is Mathematics st 11, etc. Then the

minimex slack model cemsists ot the espaeseios ()-(23*)

-11-

(9) E9 + E10 + E1 1 1

(10) M 10 + MI it I

(11) H9 + H A 19 ~ 1 A

(12) E9 + H9 < 1

(13) -lo + M10 < I

(14) E11 + l + H 11< I

(15) X > 10 - E9

(16) XE. 10 - ElO

(17) Xt 9- E11

(18) X> 6-1-io

(19) • 7- Mi

(20) %m 3 .- 9

(21) I5 - H11

(22) Xa + %X + % t

(23) Ninimuse t

lore expressions (9). (10), sd (11) correspond to (20; (12), (13), and

(14) to (3); and (1*(21) correspond to (7). Expressions (22) and (23)

need some explanation. Instead of putting the objective function in the

form (8) we add the constraint (22) which involves a new variable t, and

then seek to minimize t, as in (23). The reason for doing this is to

-12-

put the problem in prepared form so that the stopped simplex method,

described in the next section will be able to work on it immediately.

It is clear that (22) and (23) are equivalent to (8).

Because (9), (10) and (11) are equalities, they will be rewritten

as a pair of inequalities when put into the final linear programing

model. (Actually, it is well known that there are other ways of handling

equalities in linear prograuning, but this particularly simple method is

used in order to keep down the number of variables in the problem).

Hence the resulting linear programming problem will have 11 variables

and 17 constraints. Note thae all the coefficients of the variables are

either 1, -1, or 0.

It might be conjectured that the above linear programming problem

would have a solution given by the simplex method in integers, but,

unfortunately this is not the case and recourse must be had to some kind

of an integer programing e•Lgrita.

In general it cm be dthu that it a student wants C courses, such

that course i has 5 1sestion (tlt,..., C). which meet at T

different times then the ngultimg linear integer programing problem

will have S + C + I variables ad T + 2C + £ constraints, where
C

S Z S1. Thus the typiscl sise of a problem for a student who wants
i=1

5 courses in a medium sized college would be around 30 variables and 40

or soconstraints and perhaps considerably greater (see the example discussed

later.) Such a problem is an integer programming problem of rather

substantial size.

-13-

THE COMPUTATIONAL METHOD

As the previous example illustrates, the solution technique for

the problem requires an integer programuing technique that can solve

fairly big problems rapidly. To get an estimate of how fast the luethod

must be, note that if students can be handled at the rate of one a

minute then in one 24 hour period only 1,440 students will be scheduled.

This would be prohibitively slow, except for very small colleges. To

be able to schedule a large university with, say, 15,000 to 25,000 studenmb,

it is necessary to be able to schedule students about ten timer this

fast, on the average. That is, the scheduling technique should handle

a student in about 6 seconds on the average. We shall next describe

such a method.

in (181 the author describes the stopped simplex method for solving

integer programing problems. We shall describe a strmlined version of

that method here for solviag the alkve described scheduling problems.

in order to describe do special version of the stopped simplex

method vs start with a Imeer progrnminl problem in minimizing form:

Kin ub

Subject to
(24)

w c

v >0

Weassumethat w is Il, Aismxn, b isixl, and c islxn. Also

the components of A, b, and c are assumed to be integers (without loss

-14-

of essential generality.) We put (24) into what we shall call

orepared form, by adding one more variable w,,+, and extending

A, b, and c as follows

(25) A* a (A 0). b* = (-b
l, I) , C* - (C , 0)

0 1 •

and the new dimensions are A* is (m+l) x (n+l), b* is (nl)xl, and

c* is lx(n+l). Then the prepared foim of (24) is

min m

subject to

(26) -b* • 0

VA,* > C*

Note that w* a w,+ - wb so that minimnticg '601 in (26) is

entirely euivelent to minimiszig iA in (24).

In the stopped siuplex method certain of the variables are held

fired and the resulting linear progrmmtng problen is solved using the

remaining variables. To set up a notation for this we let

(27) w w(k) 4.+ W

where
v(k).(,...vo ,o

(28) w "' (vl#..Wkt 0, 0#*,0)

a(k) -(0, ... , o, '%1" ",ta)

-15-

Here the entries in s(k) are held fixed during the course of solving

a given linear progrimning problem. Specifically, suppose that a(k)

is a fixed vector vtieh nomnegative integer components. Then the linear

progriming probles P(k) to be solved is

M in wk

Subject to

(29) p(k): w(k) b* > *(k) b*

w(k) A* > (. - s~k)A*

W(k) a 0.

Note that (26) ti problem P

It should be reafW that plrebl of the form (29) are

Stoin the u pnl ood" same a6d one of the standard

techaiqies of ltmew preen-Am- wet be weed to prevent cycling or

slow eavergine wi the sklew saui.

Ve A41 use Wie smatlen •o to sted Ur "the mallest integer

x i". IPer lastso, (<-/b a 0, 4/2> a 1# <23> m -2 and <2> - 2.

Ve thall dirtly 8eve a fe1n0! deseriptin of the stopped simplex

allorittm. But fint we give a brief infeonml description. The method

begins by solving P(.l). Afet it ets oto l * 416we> OA solves P

Then it sets an - %> wd solves S"'M1), etc. At see point, say in

the solution of P(k),the problem may have no solution. When this happens,

the method marks the (bi.l)st variable a failure, replaces s ,l by a i%÷l

-16-

and resolves P When a variable has been marked a failure twice it

is "unstopped" and k is increased by 1, and the process continued.

The whole process is stopped when W=O. The mathematical basis for the

above search process is discussed in [18]. Note that the lover bound

calculations of that reference are not employed here.

A formal description of the special version of the stopped simplex

method for the classroom scheduling problem is as follows:

0. k il.

I. Solve p(k) If there is a solution go to 2; if not go to 4.

2. Let h be the index such that vh, e...Vk are zeros and

,hl is not a sero, or else hol. If h-i print out answer

and halt. If b > 1 go to 3.

3. Set sa - V M Ur 6 Jab...., k. Set k- h-1. Set

a k-a• G* te 1.

4. Set ka bel; if k V to 6. if not go to 5.

S. If k- w .l r wle #86, by sooel. set k- s. Go to 1.

6. Nsk Sbe (be'l)t wretileo & ftlun.

7. If the kth variable bas been asoked a failure twice to to 9;

otherwise go to I.

a. Replace %k by %k+'. #at hik-l. Go to I.

9. Set -k 0, replace k by WlI. Go to 4.

As it stands, the algorithm vili find Just one solution to the scheduling

problem; it can be modified to find all solutions if desired.

-17-

Computational experience with the above algorithm for solving

the minimex slack model of classroom scheduling will be discuss, in

the next section.

It should be observed that the above algorithm and the minimax

slack model solve the problem of scheduling one student optimally

(in the sense of the minimax slack model). But what does this mean

about the problem of scheduling 8j1 the students optimally? It is,

of course, impossible to set up the scheduling problem for all students

at a university at once, since that would lead te an integer programing

problem having billions end billions of variables.

What we do instead is to use heuristic ideas to extend the

minimax slack model to a scheduling technique for an entire university.

The ideas employed in the general program are as follows:

1. Put the desired ourse ad free time list for each student

an tape.

2. teed is the desired esures wd free times for a clock

of twdeits tam tqp (. S ."a the core memory caxn handle.)

3. Set up the teta pteIpls pemblem for a given student and

"solve It usiwb the I maeted. Print out his schedule, and

updote the slaeek of the couseas to which he is assigned.

(In asee so feaaible seheiule eists for a given student because

of filled sections, temove the student's froe time options sad

try sgain. If there is still no solution, print out that fact

so that the student can be scheduled by hand after consultation

with him.)

4. If all students are scheduled, halt. Otherwise go to 3.

Other heuristic@ are possible in order to simplify the resulting

scheduling problems and speed up the process. We list some of these next.

Hl. If the two occurrences of the word "zero" in step two of the

stoppeu simplex algorithm described above are replaced by the word

"integer," then the resulting code is not en algorithm. But is a very

good heuristic and will end up with feasible, if not optimal schedules.

It will also speed up the time to get an answer which will with high

probability be optimal. The computational results reported on in the

next section are with a code that has this replacement mode.

H2. Consider the students in the following order: special students.

seniors, juniors, sophomore, fresman. (Ike rationale behind this

heuristic is that the spectal etudiets vill be the most difficult to

schedule since they tod to vat uon 41Ai 6ourses. The juniors end

seniors will be vory easy to echedi stws they tend to take one-section

uoursea. The -qh -ne e ere We do. met time consuming to

schedule since they ted to eds ISM seet&on iatredustory courses

and hence have the usot faeiie seedwU . In tome of computation

time they are the moset difflat for the uouel.)

H3. if a course has son thee me settoe mosting a the sane

time, choose the one with tie larsest slack.

.14. if a course has (after 2) more tde 5 sections, chose a

subset of 5 at rendom, perhtaps weighted in the order of increasing

slack. Alternatively, let each student pick out a subset of 5

-19-

sections he would be willing to accept.

U15. if there are still too many feasible schedule*, let the

student pick 3 or even 4 hours he wishes to have free. In order to

prevent too sany students picking the same free hours, divide them

into priority classes and permit the student to pick at most one from

each class.

H6. To further speed up the camputation, permit each student

to propose a feasible schedule he would like to have and let the code

use the schedule as an initial start for the problem. If it is feasible

and optimasl the student will get that schedule, but If not, the program

will alter It to an optimal schedule.

H7. The schedulieg problem cen be decomposed into two parts by

arbitrarily chooaig esetasin euwee to be "m MY? and others on TTS.

Then two maller problems reslt A1tA em be solved very quickly. Some

sort of prierity isles as seo"ed to IOWlr" the tudent to have some

couroes ItS.

Obyteusly sW er ptresble bvisttteo am be used. in each

sabool thwe will be "ide. atiMMO Wh1 will live rise to

other bhuristie Uieas fo wvktle with the model. Me actual

develoimt of the a"e1 will we" frm seheel to school.

The stopped simples methed for solving uiniam slack problems has

been programmed for an electromic caquter (1090) and a number of exaples

AW -a- -AC..- '.D - b'ý - .- * w. - A I # - . - n ~ 9.. , *-. .

-0-%

have been solved with it. For instance, the problm of Figure 1 was

solved (exclusive of problin setup time.) in 1.2 seconds which includes

time for intermediate printouts. In the course of its solution, 3

stopped linear programming, problems were set up and solved and a total

of 31 pivots were made. This is, of course, a very simple example.

*1 but it dous correspond to the scheduling problem of an upperclassman,

since it is likely that at least 2 of his 5 courses would be one

section courses and only the remaining 3 would be multiple s.ction courses.

A more complicated example is shown in Figure 2.

Enal i sh

)WF 9 MWF 11 WF 2 TTS 8 "ITS 9 TTS 1o
(a) 18 17 16 17 7 ,
(b) 18 1i 15 15 1i 18

WG . W?9 MWlI MW2 TTS9 TTS O
(a) 19 to i9 t0 19 19
(b) 20 ft to g0 20 20

History
S 8? 169?to Mir I in 10

(a) 17 17 17 17
(b) 17 17 17 17

12 1212

Art Laborutory

TT 1-3 TT 3-5 MI 1-3
(a) 10 10 11
(b) 11 11 11

Ftgure 2

-21-

In that figure are shown the sections open to fi:-. different courses.

It is assumed that the student desiru6 HY 4 and TTS 11 as free times,

so that section-- of the courses open at these hours are not shown.

Underneath each section two different assumptions concerning slacks

are labelled (a) and (b). Note that in (a) the slacks are not all the

same in all the course sections, but in (b) all slacks are the same

for each bection of the same course. Tt is expected that (a) would

be the most typical situation, and it t.rns out to be much easier for

the stopped simplex method to solve (a) than (b). Ir either case the

problem leads to an A* matrix (see (25)) 2f dimensions 28x40. The

computer times, exclusive of problem setup times, are given in Figure 3

Problem (a) 8.4" LP 4 Pivots 73

Problem (b) 22.6" LP 9 Pivots 210.

Figure 3

if we regard the problem of Figure 1 ts typical of the scheduling

problem posed by am upper elassien, md that of Figure 2 at typical of a

lover classon (freshman or soqbdmre), and also regard (a) end such

more typical than (b), then a rough average estimate for all students

would be approxisately 6 to 7 second per student, including problem

setup and printout of ansver times. Because of the Limited experience

the author has had with this alSorithm this should be regarded as

merely an estimate, not a ftm time. More accurate estimates will await

the actual development of "he mathod in a specific scheduling application.

-22-

CONCWSION

With present computer speeds, according to the above estimates

it would be pces-ble to schedule about 15,000 students in one 48 hour

period. Hence the method is feasible on a real time basis for moderate

sized universities. Moreover, the resulting schedule should be

considerably better than present schedules in terms of flexibility.

Because of time pressures, it probably would be out of the questinn

to reschedule jing, say, a different order of introeucing the students,

jr using different heuristics, to see if a more desirable solution might

be found. However, if computing machine ýimea increase by a factor of

10, the some job could be done in 4.8 hours so ýhat it might be possible

to rtake seJeral reruns. Aad if c€uter speeds are improved by a factor

of 100, It would he possible to do the ebov scheduling job in 1/2 htur,

so that there would be coneidereble levy In recumunt Iproblems wLth

various conminatioas of heuristics.

-23-

BIBLIOGRAPHY

[1 Akin, G., "7070/74 and 1401 Class Scheduling", Guide General
Program Library 12.9.004, 50 pages and flow diagrams. Author's
address: IBM Data Center, 80 East Lake Street, Chicago, Illinois.

[2] Appleby, S. J., D. V. Blake, and E. A. Newman, "Techniques for
Producing School Time tables on a Computer and their Application
to other Scheduling Problems," The Computer Journal, 3, (1961)
pp. 230-245.

[3] Blakesley, J. R., "Computer Scheduling at Purdue University,"
Master's Thesis, Purdue University, 1963.

[4] Bossert, W. H., J. B. Harmon, M. L. Bullock, "Student Sectioning
on the IBM 7090", SHARE Distribution No. 1594 XYZ SSCP (PA).
June 1. 1963, 73 pages.

[5] Caima, J. and C. C. Gotlieb, "Test on a Computer Method for
Constructing School Time-tables," Comm. ACM, 1, (1964)
pp. 160-163.

[6] Gotlieb, C. C., "Thi Conscruction of Class-Teacher Time-tables,"
Proceedings of 7I1P Congress 62, Munich, North Holland Pub.
Co., Amsterdam (1963) pp. 73-77.

[7 R Haga, K. J., "Automatic Class Scheduling at the University of
Rhode Islamid," J Iour Business Education, 39 (1963) 120.

i 81 NaritdL. It. 3., 'LlUeer Prapoeming as an Aid in Solving
SdublbU Preblltos" A preogress Report. 'Jept. of Indus.

--tm l Aasad aoed. Sb. of Dus., 1963.

[9 1• liaison F. T., *9keotito of an 9ducatirnal Master Schedule-
& NtOWme fPmtugplU" X. S. Thesis, Dept. of Indus.
24pr., x. A . 4S401•, atiV. of Pittsburgh, 1964.

[10 N ol0a, L. 2,, "1 4G? Nhtuf1." Juma 1963. Available through
the %StOhm, L. 1. fies Asseetate Registrar, Mass. Inst. of
Tech., 0.-vridl, Ma.ss

r 11] Rola, R. 3., "Saheel osbefult8g - a Prospectus," Available as
to [101.

f 12 1 1olmm, A. 0., V. L furks. "Optimal Scheduling in Educational
lstitute," Cooperative Research Project, No. 1323, Univ. of
Pittsburgh, 1964.

-24-

[13] Sherman, G. R., "A Combinatorial Problem Arising from Scheduling
University Classes," Journal of the Tennessee Academy of
Science, 38, (1963) pp. 115-117.

[14 1 Sherman, G. R., "CombinatorL&l Scheduling: In Finding a
Partition of a Finite Set which Maximizes a Set Functions,"
Ph.D. Thesis, Purdue Univ., 1961.

F 15 1 Sherman, G. R., "The Sequential Method of Scheduling Students,"
Computer Research Report, Purdue Research Foundation, 1958.

16 1 SkillLng, H. H., "Computer Class Scheduling: Experience at the
University of Massachusetts," Office of Institutional Stu,0ies,
Uf•iversity of Mass., Amherst, Mass.

17] Stockman, J. W., "A Guide to Automated Class Scheduling,"
Data Processing Magazine, 6 (1964) pp. 30-33.

[1 18 1 Thompson, G. L., "The Stopped Simplex Method: I. Basic Theo.y
for Mixed Integer Progrmming; Integer Programing," Revue
Francaise de Recherche Operationelle (1964) pp. 159-182.

