AD G20/

PR o
;D i (‘g\

S S ——

¥

I RN . \
&4 :’ - ‘x i
[¥
=3 .= !
P e

[
P B
e BRI .
s RO

s KV R
% R R NG
il DS SN

(J n-‘:- [

:x‘ hans e B
it C ;n: ey .
it b‘\ z %]
ofn &2 :
B i
B :

EE" ;

i
L 3.

Carnegie Institute of Technology

Pitsborgh 13, Pesasylvenie e

1 e
JLos Ry
oot .
Léui\-»’o,, L b s
: .

wivedy i

——

GRADUATE SCHOOL of INDUSTRIAL ADMINISTRATION

Williaw Lachmer Mellon, Founder

T N ArgrY

Management Sciences Research Report No. 46

A METHOD FOR SCHEDULING STUDENTS
TO CLASSES

by

Gerald L. Thompson

July, 1965

MANAGEMENT SCIENCES RESEARCH GROUP
GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION
CARNEGIE INSTITUTE OF TECHNOLOGY
PITTSBURGH, PENNSYLVANIA 15213

This razport was prepared as part of the activities of the Management Sciences
Research Group, Carnegie Institute of Technology, (under Contract Nonr 760(24)
NR 047-048 with the U. S. Office of Naval Research). Distribution of this
document is unlimited. Reproduction of this paper in whole or in part is
permitted for any purpose of the United States Govermment,

In most universities the mass scheduling of students to classes
requires from a Falf a man-year tc several man-years of time, coun.ing onl
the time of the faculty members and administrators involved. Although the
job is spread over a number of individuals, it is an onerous tasl, that
seemingly should be done by a coumputing machine. Moreover, because most
scheduling is presently done in a decentralized way by many people, the
only objective that present scheduling techniques can have is that of
obtaining a feasible schedule, that is, one that the faculty aad student:
can "live with"., One can easily think of other objectives of a gocd
scheduling technique such as: to minimize the nutber of sections of
multiple section courses, while keeping the size of the courses within
given bounds; to utilize classroom facilities as efficiently as possible;
to preserve as much flexibility as pcssible in the final schedule to ali' »
for final manual adjustments late registration, course changes, etc. It
is reasonable to expect that an efficient computer program for obtaining
a feasible schedule could also provide some of these other desirable

qualities in a completed feasible schedule.

Solving the scheduling problem for a single student is a relatively
simple task for humans. Freshmen learn what the combinatorial problem
is and how to deal with it during the first week or so that they are on
campus. Moreover, through years of experience, registrars a* colleges

have learned how to '"solve" the college-wide scheduling problem.

A great deal of effort has been expended over the lest 8 to 10

years in programming for computers heuristic solutions to college

-2-

scheduling problems. The literature cited in the bibliography .s typical
of some of this effort. An examination of these pregrams reveal a number
of common characteristics. Very little if a.y search of possible
alternatives at a decision point is carred out by these heuristic programs.
Instead, decisions are made on an ad hoc basis following the heurist ¢
ideas developed by the author(s) of the programs. Thus such programs are.
roughlv speaking, just as good as the schedulers who devised them. [t is
easy to see why these methods do not consider a complete combinatorial
search of alternatives for the entire scheduling problem, since that
problem is far too big. But it is equally obvious that an improvement over
human or straight heuristic performance should be possible if « partial

search of the alternatives is carried out.

In the present paper the author proposes a method for solving the
problem that combines heuristic and algorithmic ideas. Namely. it uses
Leuristic ideas for deciding on the order in which to corsider the
students, and for setting up the actual mathematical problem to be solved,
but in making the specific assignment of a student to class sections. an
integer programming problem {s solved whose objective function is to
minimize the sum of the slacks in the sections considered. As far as the
author knows this is the first time that heuristic and algorithmic ideas

have heen combined in this manner.

The proposed method has the following features:
(1) Civen (a) a list of the available courses sections, times

and maximum enrollments, and (b) for each student a list

"~

(2)

(3)

(4)

(5)

of the courses he would like to take together with 2

or 3 hours during the week at which he would like to

be free, the program produces schedules for each student,
and an over-all feasible schedule for the whole university
that keeps within the prescribed bounds (providing such

a feasible schedule exists.)

At the heart of the method is a streamlined version ot

the "stopped simplex method" for solving integer programming
problems, developed by the author in [18].

The resulting schedule is not necessarily optimal

relative to any objective function. However, several
heuristic rules are built into the code which give it

high probability of finding a schedule that is optimal

or nearly optimal relative to the objective function
proposed in the model.

The model as we propose it has a built in objective function
that makes it end up with a relatively flexible final
schedule which permits final adjustments relatively easily.
The computer time (IBM 7090 or equivalent machine)

required to schedule all the students in a university
having 15,000 te 20,000 students is estimated to be

2 or 3 24<hour days, i.e., a long weekend. Hence the
method is practical on a real-time basis. Alternatively,

it could be designed tor an '"on-line, rcal-time" application.

(6) The objective function of the model can be changed
in various ways by individual users to meet other kinds
of scheduling objectives, such as the ones suggested in
the first paragraph above.
In the remainder of the paper we first discuss the feasibility model.
the solution of which would resemble present scheduling techniques. Next
an improved model, the minimax slack model, is de.cribed and a computational
method for using it is outlined. Finally, computational results with

specific examples is presented.

THE FEASTIBILITY MODEL

In the present section we shall define a simple linear programming
model of the classroom scheduling problem that is similar to present
methods i,. hat it requires only feasibility of the resulting studert's
schedule. There is no assurance that if the feasibility method were used
over and over again to find schedules for all the students an overall
feasible schedule for the whole university wculd be found having any given
desirable property. We discuss the feasibility model to imitate present
scheduling techniques and to set the stage for an improved model that

we will discuss in a subsequent section.

Assume that a given student has indicated the courses that he wants
to take plus his free times. To define the linear programming problem of
the feasibility model of the scheduling problem, let ¢ be the course

number, s the section number, and t the time it meets. Then define

1/

the variables

(1 if the student takes course c, in
1) x(c,s,t) = section s, meeting at time ¢t
Lo

otherwise.

We then define the following constraints on these variables:

(2) 5. x(c,s,t) =1 for each course c¢ desired

s,t
This constraint insures that the student will be signed up for exactly
one section of course c¢. To insure that he will not be signed up for

more than one course at the same time, we also require:

(3) > x(c,s,t) < 1 for each t.
c,s

We also add constraints of the form

(4) b x(c,s.ti) = 0 for each t i=1,....k,
c,s

where k is the number of free times and tl is the time of the ith

free time. Also in case the student wishes to take a cou.se that has
only one section, a constraint of th: form (4) will be added for each such
course. Since most of the courses that juniors and seniors take are one

section courses, only a trivial scheduling problem exists for them.

1/ This method of describing the problem is not the form which is best
to write & computer program; see later examples.

P -

We also define the variables B(c,s,t) whose initial values are the
numbers of seats in course c, section s, meeting at time t . If a
student is assigned to that section, the number is reduced by 1. In
order to close off a section when there are no more empty seats in the

room we add the restriction

(5) x(c,s,t) < B(c,s,t)

When B(c,s,t) = 0, this constraint gives x(c.,s,t = 0 <o that no more

students will be assigned to that section.

Inequalities (1) - (4) together with che fact that
0 < x(c.s,t) <1 define a8 convex set of feasible vectors. We want
to find a point in the set that makes all of the values of x(c,s,t)
equal to 0 or 1. The computational method used is the stopped simplex
method for integer programming described by the author in {l]. To turn
the problem into an integer programming problem it is necessary to cdefine
an objective function. Exactly what objective function is unimportant
for the present model, so we choose the function:

(6) Minimize £ x(c,s,t)
c,s,t

We know, in fact, that for any feasible solution the value of the
objective function is p where p 1is the number of courses the student
wants to take. Hence the objective function does not rule out the choice

of any feasible integer solution vector.

Py

The model defined by (1)-(6) will be called the feasibility model.

Because of the form of the objective function, the 82 method (for
stopped simp .ex mecthod) will simply pick out some feasible schedule

and assign it tu the student. This resembles in many ways the present
methods of hand scheduling. except that hand schedulers may make some
attempt to even the load on various sections so that the "most desirable"
sections will not be closed out early in the scieduling process, leaving

onl, the "less desirable" ones for late registrutions.

Exactly which feasible schedule the 52 method will choose depends
very heavily on the order in which the constraints for the various sections
are listed in the problem. If, for instance, the sections were always
listed in the same fixed order, “here would be a tendancy for sections

listed first to be filled up first, then those listed next, etc.

Because of the above objections to the feasibility model, it was not
tested out, and instead the minimax slack mode¢l, to be described next,

was developed.

THE MINIMAX SLACK MODEL
The problem of any scheduling method is to balance the conflicting
desires of (a) the students, and (b) the registrar {regresenting the
faculty and administration of the university.) Most students would like
to have their classes begin after 10 a.m. and end by 3 or 4 p.m. They
also would like not to have Saturday classes. Naturally such schedules
cannot be obtained for all studentcs simultaneously. However, it is an

empirical observation of many students that, with the present scheduling

techniques, more of their desires can be fulfilled if they register early
than if they register late. It seems that a good scheduling

technique should trvat students on an equal basis as far as it is
possible, regardless of when thev arrive in the scheduling queue., so

long as they meet some registration deadline.

Tha main objective of the registrar is the construction cf a
feasible schedule for the whole university having the preperty that everv
student takes the courses he wants without conflicts in his scheduled times,
and so that more students are not assigned to a classroom than there .re
empty seats avai.able. After the main objective has been obtained. the
registrar would like to have other objectives such as flexibility,

classrooms used efficiently, etc.

The feasibility mode. of the previous section might be sufficient
to obtain an overall feasible schedule if care were taken on the order
of introduction of constrairts, or alternatively, the entire problem were
passed through the computer several tLimes. We propose instead a methcd
which will obtain simultaneously the main objective of a feasible schedule
plus the secondary objective of retaining as much flexibility as possible

for late registration and »>urse changes.

The minimax slack model utilizes expressions (1)-(4) of the previous
section (but not (5) arnd (6)). Also new variables x(c) are added, one

for each course. Then the constraints

(7) x(c) > B{c,s,t) - x(c,s,t) for each s.t

require that x(c) be greater than either (a) B(c,s,t) or (b) B(:,s,t) = 1
depending upon vhether x(c,s,t) is 0 or i. In other words, x(c)
is greater than or equal to the maximum =lack of any section of course ¢,
where we shall mean by slack the number of unassigned places in a given
section. Ve now state the objuctive function as
(8) Min -~ x(e),

c
which means that the objective 1s to minimize the sum or the maximum
slacks in all of the courses. This, in selecting sections for a given
student, the simplex method will try to select sections with maximum

slack, if it is feasible to do so.

In addition we built into the simplex method the rule that whenever
several vectors can be brought into the basis, the one with most negative
slack is chosen to be broughtin. This is a priority rule that tries first
of all to choose tha class section with maximum slack as the first try
at assigning the section for that class. We conside:r the most negative
slack rule as part of the minimax slack model. It would also be possible
to further refine the rule t~ make the priority method for choosing come-in
vectors for the simplex method be in ths order of decr2esing ¢ .ck., The

latter has not yet been implamented ‘n the program.

Equations (1)-(4), (7) and (8) together with the most negative
indicator rule, constitute the minimax slack model. Since the varisbles

must have integer values, the mode. is an integer linesr programming model.

P

PO R g, o

e t T N ST L e e 2 MY PO MM

-lo-

In the next section we shall indicate a method fo. finding solutions to

the problem, but first ve shall give a simple example.

Suppose that the student wants to take three :ourses, English,
Mathematics, and History, all of which meet on Monday, Wednesday, and

Friday. Suppose that the available times are ss in Figure 1.

Course English Mathematics History
' Times 9 10 11 10 11 9 10
' Slacks 10 10 9 6 7 5 5
|
Figure 1

This means that the English section meeting at 9 has 10 unassigned seats,
the mathematics section at 11 heas 7 nassigned seats, stc. Ve shall

set up the corresponding linear integer programming prroblem using a
notation that is less cumbersems then that in equations (1)-(8). Let

E, M, end R bg the names of veriables corresponding to the three

courses, end let subscripts on these letters be the times that the sections
meet. Thus l, is English at 9, llu is Mathematics st 11, etc. Then the
rinimax slack model comsiste of the expressiorns (7)-(23)

-11-

(9 E,+E . +E_ =1

9 10 11
(10) Mg+ M, =1
(11) Hy +H, =1
(12) Eg +Hy <1
(13) Epo *Mp <t
(14) Ej, M, +H, <1
(15) Xg 210 - Eg
(16) X 210 - E,
(17) z 9-E,
(18) 2 6-M,
(19) Xe2 7 =My,
(20) Xg2 5 - H
(21) Xg2 5-H,
(22) Xgt Rtk st
(23) Minimize ¢

Hers expressions (9), (10), and (11) correspond to (20; (12), (13), and
(14) to (3); and (19-(21) correspond to (7). Expressions (22) and (23)
need some explanation. Instesd of putting the objective function in the
form (8) we add the constraint (22) which involves a new varisble t, and

then seek to minimize t, as in (23). The reason for doing this is to

T

-12-

put the problem in prepared form so that the stopped simplex method,
described in the next section will be able to work on it immediately.

It is clear that (22) and (23) are equivalent to (8).

Because (9), (10) and (11) are equalities, they will be rewritten
as a pair of inequalities when put into the final linear programming
model. (Actually, it is well known that there are other ways of handling
equalities in linear programming, but this particularly simple method is
used in order to keep down the number of variables in the problem).
Hence the resulting linear programming problem will have 11 variables
and 17 constraints. Note tha! all the coefficients of the variables are

either 1’ -1) or o.

It might be conjectured that the above linear programming problem
would have a solution given by the simplex method in integers, but,
unfortunately this is not the case and recourse must be had to some kind

of an integer programming algorithm.

In general it can be showm that if & student wants C courses, such

that course 1 has S, sections (4e1,..., C), which meet at T

i
different times, then the resultiag limesr integer programming problem

will have S + C+ 1 variables and T + 2C 4+ 8 constraints, vhere
C

o b

5 courses in a medium sized college would be around 30 variables and 40

Thus the typicsl sise of a problem for a student who wants

or soconstraints and perhaps considerably greater (sec the example discussed
later.) Such a problem is an integer programming problem of rather

substantial size.

el3-

THE COMPUTATIONAL METHOD

As the previous example illustrates, the solution technique for
the problem requires an integer programming technique that can solve
fairly big problems rapidly. To get an estimate of how fast the method
must be, note that 1f students can be handled at the rate of one a
minute then in one 24 hour period only 1,440 students will be scheduled.
This would be prohibitively slow, except for very small colleges. To
be able to schedule a large university with, say, 15,000 to 25,000 students,
it is necessary to be able to schedule students abtout ten timea this
fast, on the average. That is, the scheduling technique should handle
a student in about 6 seconds on the average. We shall next describe

such a method.

In [18] the author describes the stopped simplex method for solving
integer programming prodlems. We shall describe a streamlined version of
that wethod here for solviang the sbove descridbed scheduling problems.

In order to describe the special version of the stopped simplex
method we start vith & linesr programming problem in minimizing form:

Min wb
Subject to
(24)
W >c¢c

v >0

We assume that w is lxm, A ismxn, b is mxl, and ¢ {s lxn. Also

the components of A, b, and ¢ are assumed to be integers (without loss

R

[N

-16-

of essential generality.) We put (24) into what we shall call

orepared form, by adding one more variable w . ., and extending

m+l
A, b, and ¢ as follows

(25) avw (A0 , b¥ = c’"b\). ck = (c, 0)
01 \ 1!

and the new dimensions are A* is (m+1) x (n+1), b¥* is (m+l)xl, and

c* is 1x(n+l). Then the prepared foim of (24) is

min w

™1
subject to
(26) wb* > 0
WAk > c*
w >0,
Note that wb* = Vel ” wdb so that ainimizing Varl in (26) is

entirely equivalent to minimizing wh in (24).

In the stopped simplex method certain of the variables are held
fired and the resulting linear programming problem is solved using the

remaining variables. To set up a notation for this we let

27) v e w®) . K
vhere
(28) "(k) - (wl,ooo R o; Y .0)

.(k) L J (0. XN 0, '“1’... ,.ﬂl)

R L e RN

«lSe

(k)

Here the entries in s are held fixed during the course of solving

a given linear programming problem. Specifically, suppose that -(k)
is a fixed vector with nonnegative integer components. Then the linear

(k)

programming problem P to be solved is

Min ‘k

Subject to
(29) P(k): "(k) b* > - l(k) b*

w(k) A* > c* - l(k)A*
(k)

v

2 o.
Note that (26) is prodblem ,(ltl).

It should be remarked that problems of the form (29) are
deganerate in the wsual programing semse end one of the standard
techniques of linesr progrenming wust be used to prevent cycling or
slov converpence ia the sinplex mathed.

Ve shell use the netation OO te stand for "the smallest integer
2 x". Por instance, <=1/« 0, A/D> s 1, <D = =2 and <2> = 2.

We shall shortly give & fermal description of the stopped simplex
slgorithm., But first we give a brief informal description. The method

begins by solving r“"’” P").

. Then it sets o1 ® °'-r1> ad solves
Then it sets " «.> and solves !("”. etc. At some point, say in
the solution of P(k).tho problem may have no solution. When this happens,

the method marks the (b+l)st varisble a failure, replaces Sl by 'hbl“

w]lfe

P(k). When a variable has been marked & failure twice it

and resolves
is "unstopped" and k is increased by 1, and the process continued.

The wvhole process is stopped when k=0. The mathematical basis for the
ahove search process is discussed in [18]. Note that the lower bound

calculations of that reference are rot employed here.

A formal description of the special version of the stopped simplex
method for the classroom scheduling problem is as follows:
0. k= ml.
1. Solve P(k). If there is a solution go to 2; if not go to 4.
2. Let h be the index such that Wy o0V, 8re zeros and
¥,.1 i8 not & sero, or else hel, If h=l print out answer
and halt. If h>1 go to 3.
for ish, ..., k. Set k= h-l. Set

3, Set 3, v

i i

b, Set ke Wl if k<l go to 6. If not go to 5.

5. If k= =] replace el by -.nﬂ. Set k=m Go tol.

6. Mark the (+l)st varishle & failure.

7. 1f the kth varisble has beon merked a failure twice to to 9;
otherwise go to &.

8. Replace 8 by 'k*l’ Set kskel. Go to 1.

9. Set .k - 0. l‘"l‘ci k by ”10 Go to 4.

As it stands, the algorithm will find just one solution to the scheduling
problem; it can be modified to find all solutions if desired.

.17.

Computational experience with the above algorithm for solving
the minimex slack model of classroom scheduling will be discuss. in

the next section.

It should be observed that the above algorithm and the minimax
slack model solve the problem of scheduling one student optimally
(in the sense of the minimax slack model). But what does this mean
about the problem of scheduling al] the students optimally? It is,
of ccurse, impossible to set up the scheduling problem for all students
at a university at once, since that would lead tc an integer programming

problem having billions and billions of variables.

What we do instead is to use heuristic ideas tc extend the
minimax slack model to a scheduling technique for an entire university.
The ideas employed in the general program are as follows:

1. Put the desired course and free time list for each student

on tape.
2. Read in the desired courses and free times for a clock
of students from tape (s meny as the core memcry ccn handle.)
3. Set wp the integer pregramming prodlem for a given student and
solve it using the '2 methed. Primt out his schedule, and
update the slasks of the courses to which he is aszigned.
(1In case no feasidle schedule exists for a givem student because
of filled sections, remove the student's free time cptions sad
try again. If there {s still no solution, print out that fact

so that the student can be scheduled by hand after consultation
with him.)

o Ao W en

-18-

4. 1f all students are scheduled, halt. Otherwise go to 3.

Other heuristics are possible in order to simplif{y the resulting

scheduling problems and speed up the process. We list some of these next.

Hl. If the two occurrences of the word "zero" in step two of the
stoppe. simplex algorithm described above are replaced by the word
"integer," then the resulting code is not an algorithm. But is a very
good heuristic and will end up with feasible, {f not optimal schedules.
It will also speed up the time to get an answer which will with high
probability be optimal. The computational results reported on in the

next section are with a code that has this replacement made.

H2. Consider the students in the following order: special students.
seniors, juniors, sophomcre, fresimen. (The rationale behind this
heuristic is that the special students will be the wost difficult to
schedule since they tend to want nomestendasd courses. The juniors end
seniors will be very essy to sehedule simse they tend to take one-section
courses. The sophomores end freshmen ave the most time consuming to
schedule since they tend to toks lavgs section iatroductory courses
and hence have the mest fessible schedules. In terms of computation
time they are the most diffieult for the model.)

H3. 1f a course has more than one section meeting at the same
time, choose the one with the largest slack.

H4. 1f a course has (after 2) more than 5 sections, choese &
subset of 5 at random, perhaps weighted in the order of increasing
slack. Alternatively, let each student pick out a subset of 3

«]l9-

sections he would be willing to accept.

H5. 1f there are still too many fessible schedules, let the
atudent pick 3 or even 4 hours he wishes to have free. In order to
prevent too many students picking the same free hours, divide them
into priority classes and permit the student to pick at most one from

each class.

H6. To further speed up the computation, permit each student
to propose a feasible schedule he would like to have and let the code
use the schedule as sn initial start for the problem. If it is feasible
and optirial the student will get that schedule, but if not, the program
will alter it to an optimal schedule.

H7. The scheduling prodblem can ba (lecomposed into two parts by
arbitrarily choosing certain courees to be on MIF and others on TTS.
Then two smaller probleme result whish cam be solved very quickly. Some
sort of priesity rules are nesteld te require the gudent to have some

courses on TI8.

Obvieusly nauy ether peesible beuvistics can be used. In each
school thers will be spesial situstions which will give rise to
other heuristic idess for worhing with the model. 7The actual
development of the medal will very from school to sehool.

COMPUTATIONAL RESULTS
The stopped simplex method for solving minimax slack problems has
been programmed for an electronic computer (/090) and a number of examples

AR Y A P B ST W VI - N U GG & WA WY e Y, Sen W RIS - o, . W B PN, g menars

«20=

have been solved with it. For instance, the problem of Figure 1 was
solved (exclusive of problem setup times) in 1.2 seconds which includes
time for intermediate printouts. In the course of its sclution, 3
stopped linear programming, problems were set up and solved and s total
of 31 pivots were made. This is, of course, a very simple example.
but it dous correspond to the scheduling problem of an upperclassman,
since it is likely that at least 2 of his 5 courses would be one

section courses and only the remaining 3 would be multiple sc<ction courses.

A more complicated example is shown in Figure 2.

English
MIF 9 MF1l1 MIF2 TIS8 < TS 9 TTS 10
(a) 18 17 18 17 37 R
(b) 18 18 18 18 18 18
Mathemgtics
Mrs wrH Mrill Wr2 71189 TS 10
(a) 19 19 19 20 19 19
(b) 20 20 20 20 20 20
History
we s WY 20 wr1l T8 10
(a) 17 17 17 17
(») Y v 17 17
Economics
MF 11 wWr2 T8 9
ia) 12 12 12
b) 12 12 12
Axrt Laboxatory
TT 1«3 T1 3«5 M 13
(a) 10 10 11
(b) 11 11 11

Pigure 2

-2 1-

In that figure are shown the sections open to five different courses.
It is assumed that the student desired MJF 4 and TTS 11 as free times,
so that section. of the courses open at these hours are not shown.
Underneath each section two different assumptions concerring slacks
are labelled (a) and (b). Note that in {a) the slacks are not all the
same in all the course sections, but in (b) all slacks are the same
for each section of the same course. Tt is expected that (a) wnuld

be the most typical situation, and it turns out to be much easier for
the stopped simplex method to solve (a) than (b). 1Ir either case the
problem leads to an A* matrix (see (25)) of dimensions 28x40. The

computer times, exclusive of problem setup times, are given in Figure 3

Problem (a) 8.4" P &4 Pivots 73
Problem (b) 22.8% P 9 Pivots 210.
Figure 3

1f we regard the problem of Pigure 1 ts typical of the scheduling
problem posed by an upper classmen, and that of Tigure 2 as typical of a
lower classman (freshman or sophomors), and also regard (a) and much
more typical than (b), tien & rough average estimate fcr all students
would be approximutely 6 to 7 second per student, including problem
setup and printout of answer times. Because of the limited experionce
the author has had with this slgorithm this should be regarded as
merely an estimate, not & firm time. More accursie estimates will ewait

the actual developmen: of che method in a specific scheduling application,

EE— TR BT R auemmsn o opie aoha gl U S

22

CONCLUSION

With present computer speeds, according to the above estimstes
it would be pcexible to schedule about 15,000 students in one 48 hour
period. Hence the method is feasible on a real time basis for moderate
sized universities. Moreover, the resulting schedule shouid be
considerably better than present schedules in terms of flexibility.
Because of time pressures, it probably would be out of the question
to rescheduie Jing, say, a different order of introducing the students,
Jr using different heuristics, to see if a more desirable solution might
be fcund. However, if computing machine ‘imes increase by a factor of
10, the same job could be done in 4.8 hours so -hat it might be possible
to make secveral reruns. And {f computer speeds are improved by a factor
of 100, .t would he possible to do the sbove scheduling job in 1/2 hour,
s0 that there would be considerable leoswmy in rerumning problems with

various combinations of heuristics.

R - e

(10]

[11]

(12]

.2 3-

BIBLIOGRAPHY

Akin, G., "7070/74 and 1401 Class Scheduling", Guide General
Program Library 12.9.004, 50 pages and flow diagrams. Author's
address: IBM Data Center, 80 East Lake Street, Chicago, Illinois.

Appleby, S. J., D. V. Elake, and E. A. Newman, "Techniques for
Producing School Time tables on a Computer and their Application
to other Scheduling Problems," The Computer Journal, 3, (1961)
PP. 237=245,

Blakesley, J. R., "Computer Scheduling at Purdue University,"
Master's Thesis, Purdue University, 1963.

Bossert, W. H., J. B. Harmon, M. L. Bullock, "Student Sectioning
on the IBM 7090", SHARE Distribution No. 1594 XYZ SSCP (PA),
June 1. 1963, 73 pages.

Csima, J. and C. C. Gotlieb, "Test on a Computer Method for
Constructing School Time-tables," Comm. ACM, 1, (1964)
pp. 160-163,

Gotlieb, C. C., "Th: Conscruction of Class-Teacher Time-tables,"
Proceedings of IFIP Congress 62, Munich, North Holland Pub.

Haga, E. J., "Automatic Class Scheduling at the University of

Rhode Island,” Joyrnal om Pysiness Education, 39 (1963) 120.

Harding, R. E., "Linser Programming as an Aid in Solving
Scheduling Problems,” A Progress Report, Yept. of Indus.
Engineering and Grad. Sch. of Bus., 1963,

Holmers, F. T., "Coneration of sn Educatirnal Master Schedule-
8 Linear dng System,” N. 8. Thesis, Dept. of Indus.
h“o ’ Ao B, & ‘. Univ. of 'lttlhﬂ". 1964,

Bols, R. K., "Ihe GASP Manuel,” June 1963. Available through
the wuther, R. £. Nels, Associate Registrar, Mass. Inst. of
Tech. , Lasbridge, Mass.

ﬂolfioga E., "School Scheduling - a Prospectus," Availsble as
in .

Nolsmen, A. C., W. R. Turkes, "Optimal Scheduling in Educational
Institute,” Cooperstive Research Project, Nu. 1323, Univ. of
Pittsburgh, 1964,

-

13]

14]

15]

16]

17]

18]

Sherman, G. R., "A Combinatorial Problem Arising from Scheduling
University Classes," Journal of the Tennessee Academy of
Science, 38, (1963) pp. 115-117.

Sherman, G. R., "Combinatoriul Scheduling: In Finding a
Partition of a Finite Set which Maximizes a Set Functions,"
Ph.D. Thesis, Purdue Univ., 1961.

Sherman, G. R., "The Sequential Method of Scheduling Students,"
Computer Research Report, Purdue Research Foundation, 1958.

Skilling, H. H., "Computer Class Scheduling: Experience at the
University of Massachusetts," Office of Institutional Sturies,
University of Mass., Amherst, Mass.

Stockman, J. W., "A Guide to Automated Class Scheduling,"
Data Processing Magazine, 6 (1964) pp. 30-33.

Thompson, G. L., "The Stopped Simplex Method: 1I. Basic Thec:y
for Mixed Integer Programming; Integer Programming," Revue
Francaise de Recherche Operationelle (1964) pp. 159-182.

