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AUPA-15 ABSTRACT 

A perturbation theory oi the celf-consistent field is here developed 

using a Green's function method after the manner of Peng.    It is shown 

that a self-consistent perturbation theory yields the same answers as the 

conventional random phase approximation.    The equivalence of the perturbation 

approach to spin waves in metals developed by Herring and the random phase 

approximation for the same problem is seen to be an example of this.     The 

effect of the weak periodic field on a Hartree-Fock electron system is here 

explicitly done both by the perturbation approach and the the random phase 

approximation with the Green's function approach.    The Green's function 

approach is finally generalized so as to include, in principle, correlations 

beyond the Hartree-Fock. 



PERTURBATION   THEORY   OF   THE   SELF-CONSISTENT   FIELD 

by 

A.  K.  Rajagopal 

Division of Engineering and Applied Physics 

Harvard University,   Cambridge,  Massachusetts 

INTRODUCTION 

About twenty years ago,  Peng wrote a paper [1] with the above title, 

developing a straightforward perturbation theory of the Kartree-Fock (HF) 

self-consistent field equations when there is a small perturbing term in the 

Hamiltonian.    This method was used a decade later by Herring [2] in 

demonstrating the existence of spin waves in metals.    Recently,  this problem 

has been reexamined by many authors in the random phase approximations (RPA). 

In particular,  the present author noted [3] (where references to other work could 

be found) the close relationship between Herring's work and the RPA results he 

obtained by a Green's function approach.    But at the time of writing about it, 

we were not aware of an explicit relationship between the two apparently 

different approaches to such problems,  although the equivalence of the 

two methods  was   surmised.    In this report,  a proof of this equivalence is 

explicitly constructed,  in response to repeated demands for one by Professor 

Brooks earlier and more recently by Dr.   Herring.    It might also be of 

interest to mention here that the work of Thouless [4] on RPA is closely 

related to that of Peng [1],  even though Thouless uses a variational method 
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and Peng, a perturbation approach.    Slater [5], in his   Quantum Theory of 

Atomic Structure . Volume I, has a demonstration of the following simple 

theorem:   The equations obtained in a variational principle involving a certain 

basis set of functions are the same as those involving a perturbation approach 

where the same basis set is used as the zero-order functions.    The present 

report demonstrates this even when one has nonlocal self-consistent field 

equations. 

In most many-electron calculations, one deals with a uniform electron 

gas with a uniform compensating positive background.    We first treat, by the 

present techniques,  the effect of a weak periodic positive background on a HF 

electron gas.    (Professor Brooks informed the author that he gave this problem 

in one of his advanced courses on quantum theory of solids ten years ago at 

Harvard University.1)   This is essentially the nearly free-electron problem 

when we have HF correlations.    See Anderson [6] for a discussion of the same 

in the absence of HF correlations.    We do this problom first by the Peng 

method and then by the Green's function approach.    Finally,  we generalize 

this Green's function approach formally when the electron interactions are 

taken into account beyond the HF approximation.    This problem was suggested 

to the author by Professor Ehrenreich.    The results are quite similar to 

the recent work o£ Tanaka [7],  who uses a diagrammatic approach to this 

problem. 

-■..--    .-_  _     ■-i^-.'-T*^ 
-n;^-^-—-.--:.- -.— 
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PENG'S PERTURBATION EQUATIONS AND 

RANDOM PHASE APPROXIMATION 

We first collect Peng's [1] results and compare them with the RPA of 

Thouless [4].    Then we go on to develop & Green's function reformulation of the 

same type of perturbation theory in the HF approximation.    We then explicitly 

demonstrate the equivalence of our equations obtained here with those obtained 

earlier [3] for the case of spin waves in an electron gas.    In the next section, 

we examine the effect of a weak periodic field on a many-electron system. 

Peng proceeds as follows.    The HF equations for an n-e'ectron system are 

(T + V + G - E ) i    = 0   («y = 1?  2,   . . .    n) (1) 
T      T 

T   is the one-electron operator containing the kinetic and potential energies. 

V   is the one-electron external potential to be treated in perturbation theory. 

(Peng used a more general set of perturbing terms;    we have simplified it here 

for the present purposes.)   And   G   is the HF operator defined by 

n 
G*7 -I Wx'v+x>V(^'v*A] (2) 

X=l 

the first being the Coulomb term, and the second the exchange term, and 

s« 

(3) 

where   v   is the two-particle interaction potential which is self-adjoint and 

symmetric.      s   is the spin variable.    Inmost cases,    v = e  /jr-r'|.      The 

energy parameters   E     are the   HF one-electron energies.    Let the 
1 

unperturbed HF problem be assumed to have been solved: 
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(T + G - Ep
(0) ) ^(0)   =   0 (4) 

where 

C4<0' = I   [(+x<0'. v *x<0>) ^"K {^\ v^0', ^ 1 . ,5) 

Note that iiince   the   operator   G   ia self adjoint and line, r, the set    ^i    ] 

is orthonormal.    One may therefore-write 

K -1 ^ 
P 

py 

Writing 

^0>, T^) = Tfl; a^ve>) = V. Fß aß ß aß 

and 

(i(0) {,      (0)      yl^jijO),        s        v 

Eq.  (1) may be written as 

J 

(6) 

(7) 

n 

ß   L X=l M" 
^vß'^ßv^X' E7öaß   %y* 0 

(1) Let us denote   V ß = V g     ,  being of first order in perturbation. 

Then write 

ß7        ß7     ^ß7 
+ ^7 + -- 1 

E       =E(0)
+E  (1)

+E(2) + . 

(8) 

(9) 

(10) 

;^-^.__   - 
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One than has 

(0) 

-5- 

n 

I 
\ 

E  x  ' = T      +    >    (v ,,     - v ,   v  ) 
a aa      A       aXAa       aKaX. ' 

and (Ha) 
n 

a7 
K=l 

aVXT " VaX7K ) = 0   (a ^ Y) 

n 

E(i) = v u)+y y[( 
a aa        Li    Li      »V« 

(1) (D* 
a   VaKoM4^6*X,    + ^v„..\-" Vo.,«\^.v      1 

and 
^ (lib) 

(E(o).E(o) Y(i)+y y^ 
V-1     ii )i=l   ft 

.^ 

(1) 
07 (a/7) 

(2)_ 

K=l   ^i 
I ["aMa-W^M)!2'* <^)..-VaK»^!2**] + 

n 

Z^    ^.    tyiva     o^iav ^M^-      ^ vX. 
X=l    A«v 

and n 

<*tt
(0,-s(0,<2,+II" 

X.= l (I 
aX^i7     aX7/<  ^M^ 

(v - v ) ^  (2)* I   = 

n 

\ 

a 7     '7a7      LJ   Li        QWi     Q*i7V^-MX      ^ vX        ^ r 7/ 
X=l A*V 

(He) 
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Moreover, the normalization condition gives 

K <» + %w - o 
(lid) 

#(2)  +£, U)*   s     T  ^(U*^   (1 

ß etc 

Also nuite generally one has 

ßv/bia a^vß   ~     /iaßv (He) 

The homogeneous counterpart of the second of the equations (lib) will now 

be identified with the time-independent RPA equations of Thouless [4] . 

Suppose that <(.'    creates a particle with wave function   9.  .    The state 

v/ith   n-electrons occupied,is the Slater determinant 

1 *, > = < fr ^ ) 10 > (12) 

with   10 >     representing the vacuum state and such that   < *  | *   > = 1 

Thouless [4] showed that any   n-particle Slater determinant   | 9 >   which is 

not orthogonal to    | * >   can be written 1.1 the form 

! •> = 

_       n 00 — 

expT        V       C    .^    Ttf. 
Li        LJ mi^m   ^i 
i=l    m=n+l 

»   > 
o (13) 

where   C    .   are uniquely determined and conversely that any wave function of 

this form is an   n-particle Slater determinant.   Now suppose    ( *   >   is the HF 

state.    Choose   C    .   so as to minimize the average energy: E = <*|Hi*>/<*|*>. 

This gives equations of the form (lib) satisfied by ^        , and these are indeed 
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the RPA equations.    Note that to all orders the honnogeneous parts of the 

perturbation equations are the same and of the form of the homogeneous part 

of (lib).    When we generalize this in the Green's function formalism to a time- 

dependent form,  we see the identification with RPA equations even more closely. 

Both the Thouless and Peng calculations employ as starting point the 

complete set of the unperturbed HF solutions.    In ordinarv Quantum mechanical 

problems, Slater [5] showed that in such a procedure the perturbation equations 

and the equations obtained from the variational methods are identical.    This is 

seen to be the case even for the equations of the HF type.    Recently,  Fuki'da[8], 

without the knowledge of the work of Thoules* [4],  showed that whenever one 

has IT irturbations of the HF states due to any external fields,  the new state can 

be written in the form of a unitary transformation of the type (12).    Based on 

this,  he constructs stability conditions for the HF state when one has various 

external perturbations.    This again led him to RPA equations, again in 

conformity with Peng's calculations. 

We will now develop a simple Green's function formulation of the same 

basic ideas as in Peng's work except writing it in a time-dependent form which 

has some advantages.    Let us consider the HF Green's function equation [3] 

in the presence of an external perturbing firld   V(l). 

2 

GHF<12) lr"+2sr-u(1)-v(1) + iId5v(1-I)trGHF(5Tf) 

-i Jd5v(l-3) GHF(lI) GHFa2) = ö(4)(l-2) (14) 
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1 + where   G(12| - •j-<T {tp (l)^   (2))>   in the usual notation and   1   »tands for 

the «pace-time point   (rjt,).    Here   U{i)   is the one-particle potential in 

whoa* presence the problem with   V = 0   is assumed to be solvable.    We have 

the completeness relation 

C   GHF   (12) CHF{2i'}d2   =   Ö^V-l') 

J   G^dDG^-^lDdl   =   6(4){l-i') 

When   V = 0 , the   zero-order   HF equation is 

A 

J 

(15) 

at GHF0>^2) " ^^..UdlMjdlvd^trG^I^) 

-i^dl /(1-3)GH^0)(13) GHj.0,{3 2)   =   ö(4)(l-2) 

(Ift) 

and 

jGH^rI;iI)GHJ.0){2 1»)d2   =   0{4)(U1') 

jGHf!0)(i2)GHF
0r (2i')dl   =   aC4)(l-is)J 

We now develop a perturbation theory in   V.    For this purpose we write 

(17) 

'HF 

and 

(i2)=GlJ
(
l?

)(u) + f —^— v(T)di+X (T ~--iH-~-—~vcI1)va^;,)dI.dV- H.F 6V(I) 

2   pr Ö Gj,F(12) 

dv(Jt)önl,) 

ÖG   '/(i2) 
G     "^iZ^Gj,^"  (12)+   f    ^ v(5)df + 

(18 ) 

(Ift') 

:::-v- ^^^ 
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Firat let us u»e the relation (15) to write Eq.   {14} in the form 

,2 

GHF1(12):: i|r+-^-UU)-V{l)+i[d5v(l-J)trGHF{ITf) 

-iv(1.2)GHF(12)   . 

Then,collecting equations to each order, we have 

0^(1.2)- 

(19) 

GHF       (12)- ifp+^-mD + iJdTvd-DtrG^dl4) ö(4)(l-2)-iv(l-2)GH^)(12) 

(20a) 

6Gji(l2) 
H*        =.ö(i-2)6;i.3) + ijdlv(1.3)tr-r^n    öW(l-2) - -*V(3} 

iv 
r« G^I 2) 

(1-2)  ^JYJTj etc (20b) 

Now from (18), (18'),  (15) and (17) we have 

00^,(12) 

5V(3) = .jGHf(12) 
öG

HF
1(I5)

 ^ cc: GHy'(l2)d2 dl . (20c) 

ÖGH<:1(i2) 
Substituting this in (20b),we get an equation for   —ÄVTIS to ^ »olv«<i: 

6G£(i2) 
ö<4>( 1.2)6(4)(l-3).ij%d2dIdTv(l.I)trJG^(23)--5l^3r-.GHF(?rf) + 

ÖGji.tf?) 
+ iv(1.2)Jd5d?G^)(lI) -^i^jp. G^(?2) (20d} 



ARPA-15 -10- 

Thi» ia juat the RPA equation for   »y [3].    Note the appearance of   Gjip   in 

thi« equation.    It ia clear that we can generalize the approach when we have a 

more general   G*  '.    Once {20d) ia aolved,one puts it back in (18) and looka for 

the pole in the energy plane in   G.    We do this explicitly for the caae of the 

weak periodic field in the next aection. 

At thia point we would like to draw attention to the equivalence of 

Herring'a perturbation approach [2] and RPA [3] in the problem of apin wavea 

in metals.    Herring calculated, using Peng's equations,  the apin wave energy 

by applying an external atatic tranaverae field to second order,  it being a 

Hme-independent perturbation calculation.    We [3] studied the same problem 

by an approach similar to the one outlined above in the laat paragraph using 

a time-dependent external field, and using RPA.    The eigenvalue of this 

equation was the aame aa the apin wave energy obtained by Herring.    This 

anawera the query raiaed by Brooks and Herring in private communication. 

In the next aection, we work out an explicit example of thia. 

WEAK PERIODIC FIELD IN A MANY-ELECTRON SYSTEM 

We flrat atudy thia problem by the Peng approach and then derive the 

aame reaulta and generalizations thereof by the Green's function method. 

Let the weak periodic field be   V ( r)   such that 

V(r)=y   elK'r   V^CK)   (Kj reciprocal lattice vectora). (21) 

k 

--- 
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In the absence of Y( r), the Hi" equations of a uniform electron gas in a 

uniform positive background admit of plane waves as solutions. So, we 

employ these as our basis when   V   occurs in the problem.   Thus, 

v     Uk+Kj-r 
+k(r) -^   e X(k + K1)   . (22) 

1 

Then the resulting equation for   X,proceeding as in the las«, section,  is: 

Ik^i      X{k + K) +y V(1) (K^ Xtk + K-Kj)   v 
Kl 

+y     T     [v(K1-K2)-v(k1-k-K-K2)]X*(k1+K1)X(k1+K2)X(k+K+K1-K2) 

k,   K.K, 
1      1   ^ =   E (k) X(k + K) . (23) 

This is the generalized version of the problem of the nearly free electrons [6]. 

We now write 
« 

X(k + K) = öK 0 + X(1)(k + K^ + X(2)(k+K) + . . . 1 

E(k) = E(0)(k) + E{1)(k) + E<2)(k) + . . . J 

The normalization condition gives; 

X(1)(k) + X(1)*(k)   =   0 (25a) 

X(2>(k) + X(2) (k)   =   .y X(1) (k + K,) X^^k+K.)   etc. (25b) 

Ki 

Then the  zero-order   equations give the usual HF energy in the absence of   V 

2 
E(0)(k) = J-+y  [vjO-vik-kj)]   . (26) 

kl 
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The first-order equation gives 

E^(k)   =   V^^O)   =   0   for simplicity (27a) 

and 

(E<0){k+K)-Et0,;(k))X<1)(k+K)+T [vC-K^vlk-kj+ZK)] (X^lkj+KHX^ (kj-K)) = 

kl 

V^^K) (27b) 

Neglecting the exchange term   v(k-k.+2K), we find that 

x(1)(k+K> = - v
g /K\K) • -TUT—l m— (27c) 
€W El0?(k + K)-Elü,(k) 

where 

c (K) =   RPA dielectric constant 

=   1 + 2v(K)  y -j« i m  (27d) 
,y    x     E

iU,(k + K)-Elü,(k) k(occ) 

Note the appearance of HF energies   everywhere .        The second-order energy 

shift is 

E{2)(k) =7 V{1)(K1)X(i)(k-K1)+^ ^[v(-K1)-v(k-k1+K1)] ^^(kj+Kj) X^^k+Kj) 

Ki kl Kl 

+ 3"^ [v{K1)-v(k-k.1)] X(1)*(k1-K1) X^^kfKj) 

kl   Kl 

S^JS« >- 
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which simplifies to 

-13. 

E{Z){k) 
V{i}(Kj      2 

T E^(k+K^) - E(0)(k) 
(28) 

after neglecting the excha.ngc terms   vik-kj+K.)   and  v(k-k,).    Note that the 

weak periodic lield get» screened by the RPA dielectric constant. 

Let ns now   do this problem using the Green's function approach but 

including formally more general correlation» than   HF.    Specifically,  we 

rederive {28) ar a byproduct.    To this end,  we have to solve the foliov .ag set 

of easily derived equations which are all exact: 

2 1 

G (11') + i C v(l-D G(12) T (I4jl) KdT) G (-Tl')dTd2dId? 8t,      2m       ef f 

=   Ö<4>(1-1») (29) 

r(12;3) = -6{4)(l-2)ö<4){l-3)-iJv(l-T)G(14) r(?I;3)n(?D r(l2jI)K(3T) 

dTdldldidS 

+ i^v(l-T)G(12)    Sv^.^r   K(TT^ dT^ßdli 

+ iCv(l-T)G(12) r(2 2il)   y^^T^   dl dl dl (30) 

K(12) = 6(4)(l-2) + i f v(i-T)G(TI) r(2l;4) K(42) G(3l+) dT d? dl d4       (31) 

Veff(l)   =   jK(ll)Uext(T)dT (32) 

glsäA« =i;^^ - 
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where   U is introduced only to generate the proper term« arising from the 

Interactions between the particle». V ff. contains the weak periodic field, 

U, , and the Couloarrib self energy. We now make aiome approximations. 

We take 

(0), Mhi   ?-. R^h Txvl{lZ;3}   -   - d^fi.E) «^(1-3) . (33) 

It mixst be stressed here that this is not the uavial HF approximation.    Then 

K(0)ü2) = 6(4){K2)^iJv;i~r) GUI) Ki0)(lZ) G(Il+) dT dl (34) 

and 
"1 

.I^+IL. V (1) 
j      8t,      2m       eft -ijv G(ir)-i\  v(l-l)G(12)K(21)G(2r)dl d2    (35) 

=   ö^^i-l')  . 

Going to the Fourier representation we get 

L|ijG(kk')-^Veff(k1)G(k.k1ik'] 

i  7       vlkj) GCk+k^k^) ^k^kj) G(k3k•) = ökk, (36) 
klk2k3 

and 

K(kk') = fl^, .iv(k)    y        G(k+k1;k2+k3) G(k2; kj) K(k3k') .      (37) 

klk2k3 

In the absence of the periodic potential and   U        we have 

G(kk')   =   Gjk) öj^, 

..- ;_- 
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being a uniform system,   ao that 

ökk' K(kk')   -   Jfa 

with 

e(k) = 1 - ivik)^ Go(k + kl) Coikl) (38) 

'1 

and (36) takes the form 

Now 

'1 

Vef£(k)-^K(k; 

K 

^^-^TSTT^^^I)    G(kk')^Vef£(k1)G(k.k1;k') EÖvul kk' • 

K> V{1)(K) 

using only the periodic field,  so that one finally has 

u- S"M(k) G(kk,)-ZTrKrG(k-K'k,) = ökk' 
K 

(39) 

(40) 

where 

V   v(ki)    (0) 
M(k) = mass operator = i  )   —HTT (k + k,)   . 

1 

(41) 

This is the dynamically screened exchange interaction,    (k.    here stands for 

the four vector.)   Note also that   V     (K)   is statistically screened by   c(K), 

the generalized dielectric constant involving the   G    '   which is not the HFC, 

Thus, 
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1 
w " 2m 'U *kM* 

V^^KJ 
Gdck')^^,-^        €(K

1
)      Glk-K^k') (40') 

K, 1 

and 

"       Ik Kl2 1 V  V^^Kj) 
u-   ' ^'    -M{k-K4a)|  G(k-Kjk,) = )   »r^-y-GCk-K-K^ k') 

yd),   K) 
Kl 

(42) 

so that one finally has 

2 
y-S 

K, 

v(l)(Ki)  2 

l^T 
it)- 

(k-Kj) 
GCkk1) 

Sn M<k-KiJ«) 

= a^. . (43) 

The po'cs of   G(kk,)   determine the single particle behavior.    Writing the 

unperturbed single particle energy in the form 

2 2 
E(0)(k) = ^r +M(k;  ^r- ) (44) 

the modified energy dv    .o weak periodic field away from the Erilluoin zone 

boundaries may be vritten as 

I 

W-E^(k)-^ 
v(l)(Ki)   2 

K 1 
E^k-K^-E^k) 

(45) 

If 

M(k; -^ ) = MHF(k) ,    c(K) rl^ivW^^G^^K+k^G^^kj) 

k^ 

(0), 

1 
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we recovei the resxilt obtained earlier as expression (28)     At the zone 

bound?.ry where 

E(0)(k)   =   E(0)(k.K) (46) 

we examine the pole structure a little more carefully.    One then neglects all 

other terms ercept this one in (43) so that the pole is now determined by 

the equation 

M)i VVi,(K) 
e(K) 

2 
=   0   . (47) (u.E(0)(k)) (ü-E(0)(k-K)) - 

If we ignore the   u   dependence in   M , we arrive at a familiar looking 

expression for the energies at the zone edge 

E(0WE«VK)j   ,        //E^(k)-E^(k-K)|2    JV-^)[2 

(48) 

This generalizes the nearly free electron gap equation at the zone edge [6] 

for the interacting electron system.    Recently,   Tanaka [7] has also examined 

this problem using diagrammatic approach. 

DISCUSSION 

We have here constructed a perturbation method for self-consistent 

equations in a Green's function formulation.    This is a generalization of 

Peng's work for static HE equations.    We incidentally show that the amplitudes 

of the first-order wave function satisfy the usual RPA equations.    As an 

example of the method we briefly outline a calculation of   the effect of 

periodic field on a many-electron system. 
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