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ARPA-15 ABSTRACT

A perturbation thesry of the self-consistent field is here developed
using a Green's function method after the manner of Peng. It is shown
that a self-consistent perturbation theory yields the game answers as the
conventional random phase approximation. The equivaience of the perturbation
approach to spin waves in metals developed by Herring and the random phase
approximation for the same problem is seen to e an example of this. The
effect of the weak periodic field on a Hartree-Fock electron system is here
explicitly done both by the perturbation approach and the the random phase
approximation with the Green's function approeach. The Green's function
approach is finally generalized so as to include, in principle, correlations

beyond the Hartree-Fock.
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by

&
A, K. Rajagopal
Division of Engineering and Applied Physics
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INTRODUCTION

About twenty years ago, Peng wrote a paper [1] with the above title,
developing a straightiorward perturbation theory of the Kartree-Fock (HF)
self-consistent field equations when there is a small perturbing term in the
Hamiltonian. This method was used a decade later by Herring [2] in
demonstrating the existence of spin waves in metals. Recently, this problem
has been reexamined by many authors in the randorn phase approximations (RPA).
In particular, the present author noted [3] (where references to other work could
be found) the close relationship between Herring's work and the RPA results he
obtained by a Green's function approach. But at the time of writing abonut it,
we were not aware of an explicit relationship between the two apparently
different approaches to such problems, although the equivalence of the
two methods was surmised. In this report, a proof of this equivalence is
explicitly constructed, in response to repeated dernands for one by Professor
Brooks earlier and more recently by Dr. Herring. It might also be of
interest to mention here that the work of Thouless [4] on RPA is closely

related to that of Peng (1], even though Thouless uses a variational method

*
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and Peng, a perturbation approach. Slater [5], in his Quantum Theory of

Atomic Structure, Volume I, has a demonstration of the following simple

theorem: The equations obtained in a variational principle involving a certain
basis szet of functions 4re the same as those involving a perturbation approach
where the same basis set is used as the zero-order functions. The present
report demonstrates this even when one has nonlocal self-consistent field

€ quations.

In most many-electren calculations, one deals with a uniform electron
gas with a uniform compensating positive background. We first treat, by the
present techniques, the effect of a weak periodic positive background on a HF
electron gas. (Professor Brooks informed the author that he gave this problera
in one of his advanced courses on quantum theory of solids ten years ago at
Harvard University!) This is essentially the nearly free-electron problem
when we have HF correlations. See Anderson [6] for a discussion of the same
in the absen:e of HF correlations. We do this problem first by the Peng
method and then by the Green's function approach. Finally, we generalize
this Green's function approach formally when the electron interactions are
taken into account beyond the HF approximation. This problem was suggested
to the author by Professor Ehrenreich. The results are quite similar to
the recent work of Tanaka [7], who uses a diagrammatic approach to this

problem.
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PENG'S PERTURBATION EQUATIONS AND
RANDOM PHASE APPROXIMATICN

We first collect Peng's [1] results and compare¢ them with the RPA of
Thouless [4]. Then we go on to develop a Green's function reformulation of the
same type of perturbation theory in the HF approximation. We then explicitly
demonstrate the equivalence of our equations obtained here with those obtained
eariier [3] for the case of spin waves in an electron gas. In the next section,
we examine the effect of a weak periodic field on 2 many-electron system.

Peng proceeds as follows. The HF equations for an n-.ecitron system are

(T+V+G-Ey)$7=0(7=1,2,... n) (1)

T is the one-electron operator containing the kinetic and potential energies.

V is the one-electron external potential to be treated in perturbation theory.
(Peng used a more general set of perturbing terms; we have simplified it here
for the present purposes.) And G is the HF operator defined by

n

Goy = ) [y, v by - by, v )b ] (2)

7
A=l

the first being the Coulomb term, and the second the exchange term, and

*
= ! talt . ;' tal
($)‘,v¢7) =Z Sdr *)‘ (ra)v(ra,ra)&y(ra) (3)
ﬂ'
where v is the two-particle interaction potential which is sezlf-adjoint and
symmetric. 8 ia the spin variable. In most cases, v = ez/l?-;'{. The

energy parameters E‘Y are the HF one-electron energies. Let the

unperturbed HF problem be assurned to have been golved:
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(T+G - E;m ) %(0) -0 (4)
where
n
A=zl

the set ( $(0) l

’ QLA

Note that since the operator G is self adjoint and line. ¢

is orthonormal. Cne may therefore-write

A
67'2*6 Upr . (6)
p
Writing N
@, T =g @ vl = v,

and f (7)

apvp J

Eq. (1) may be written as

%[T +v‘322%*(~”ﬂ Yaupy B E “‘{]%1 2

A=l pv

(1)

Let us denote Va = VM3 , being of first order in perturbation. (9)

p

Then write
_ (1) (2) ,
Wﬁv'oﬁv+%7 ?/ !

E - O,g M g@,
y T Fy y y

(10)
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One then has

n
(0) _ - ZE
Ea - Taa * (va)\)\a ~ Vakar )

(1la)

(1ib)

(1)*

A=l
and
n
Ta‘y ¥ Z (va)\)w “ Vaxa ) =0 (a1
A=
( n .
1) _ (1) (1) (1)*
2n 7 Vi +Z Z[(vawa'vako.un{uk "("wm"'waxw ]
= Ve
and n
(0)_ & (0) (1) (1), -
(B, - Ey ’al(cw 12 Z Yanuy” Mw)z(u FVauny Vnu‘r\’?/
- v, @
(2) (2) (2)
*a i 2, Marsa “erad @™ Vgpna Yopean %o
A=l u
(1)% 4, (1)
Z Z( uuva uuav)z(u Z(v)\
A=l uv
and

(0) (0) (2) (2)
BBy Y ay Z Z (Vargy™ Yary! Cu

(2)*
(v Vaury” awk’ 2(

n
LWy NS (1)%4,
(B '-Ey Wa’! 'z L Youvy owvz{ 2

(1)
128 (a

7 v)

J

(l1le)
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Moreovez, the normalization condition gives

(1) (1)* _
2(7k + Z(k_y = 0 N
(11d)

—_—

2 (2) (2% _ (1% g (1)
2 %’sz «

Tk ky = eth

Also nuite generally one has

*
YBvua = Yauvp  Ymapy tHie)
The homogeneous counterpart of the second of the eyuations (11b) will now
be identified with the time-independent RPA equations of Thouless [4] .
Suppose that é’f creates a particle with wave function &’i . The state

with n-electrons occupied,is the Slater determinant

T 4.1
!c:l~¢,>=(£[14i )| o> (12)
1=

with |0 > representing the vacuum state and such that <Q°| Qo >=1.
Thouless [4] showed that any n-particle Slater determinant | ®> which is
not orthogonal to | ® > can be written i1 the form

n Q0

lo> = Expz Z cmi(_m+4]|¢o> (13)

izl m=n+l
where Cmi are uniquely determined and conversely that any wave function of
this form is an n- particle Slater deterrninant. Now suppose | Qo > is the HF

state. Choose cmi 8o as to minimize the average energy: E= <Q|H|Q>/< &>

This gives equations of the form (11b) satisfied by 2{0(‘:), and these are indeed
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the RPA equations. Note that to all ~cders the homogeneous parts of the
perturbation equations are the same and of the form of the homogeneous part

of (11b). When we generalize this in the Green's functioa formalism to a time-
dependent form, we see the identification with RPA equations even more closely.

Both the Thouless and Peng calculations employ as starting point the
complete set of the unperturbed HXF solutions. In ordinarv Quintum mechanical
problems, Slater [5] showed that in such a procedure the perturbation equations
and the equations obtained from the variational methods are identical. Tlis is
seen to be the case even for the equations of the HF type. Recently, Fukvda 8],
without the knowledge of the work of Thouless [4], showed that whenever one
has r :rturbations of the HF states due to any external fields, the new state can
be written in the form of a unitary transformation of the type (12). Based on
this, he constructs stability conditions for the HF state when one has various
external perturbations. This again led him to RPA equations, again in
conformity with Peng'a calculations.

We will now develop a simple Green's function formulation of the same
basic ideas as in Peng's work except writing it ir a time-dependent form which
has some advantages. Let us consider the HF Green's iunction equation [3]
in the presence of an external perturbing field V(l).

2 -

8 +v1 u(l) V(l)+'Sd'§ (1-Dtr G, (37| G, (12
Yot tam t V- 1) d3vii-3)tr Gyel nrl! 2) -

4 S d3 v(1-3) Gy 19 G (32) = 8l ) (14)
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where G(12) = —<T (¥ (1)%" (2)> in the usual notation and 1 stands for
the space-time peint (r;t;). Here U(l} is the one-particle potential in
whos* ;[ r2sence the problem with V = 0 is asaumed to be solvable. We have

the cornpleteness relation

{ @ -‘I(IZ)G 7147 = o401y
HF HF

4
(15)
' RPN C) ,
S Guplld Gyp (Zl)df = 67 (1-1")
When V = 0,the zero-order HF equation is
—y W (0 (0)
i%;*m—-t’(lhigd?v(l—?) tr Gy )(3'3"] (12) -
(16)
~i§d3 A6, V03 6 M3 - e
and
(‘G 0! 13 G zimaz = Moy
(17)

~1

0),; 5 0} 3 sl4)
S‘H (12) Gy’ (E1dZ

1

(1-47)

We now develop a perturbation theory in V. For this purpose we write

6G,. (12} Gyoea(12)
(o) S‘ HF 1 HF \ , _,
(12) G (12)+\ ——=——— V(DN dT+ ; S vi3,1v({5,)a3,a%+ .
5V (3 2 S‘ﬁ\f(? TR0 R
and (18 )
-1 3G, 2tz
(0) HF ° " ,
Gy Yz Gy (Fz)+ S vi{3id3+ . .. (18%)

= T
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First let us use the relation (15) to write Eq. (14) in the form

2
v
GH,}I(IZ) - E§q+-§;- U(1)~V(1)+iSd3'v'(l-3')tr Gy (3TH) 84 (1.2)-

-iv (l-Z)GHF(IZ) . (19)

Then,collecting equations to each order,we have

GHI(,°’ (12)= [gt —-;--U(l)ﬂSdTv(l NtrG ‘°)(3”3*)J 8*-2)-iv012)G, P 2)
(20a)
6G.ohi12) 6. (3T
.,ﬁ%:—--6(1-2)6;'1-3)HSd?vu-E)tr -b-‘;%,—-— 6¥(1.2) -
3Gy p(12)
- iv{l-2) W etc. (20b)
Now from (18), (18"), (15) and (17) we have
i .
8G,,..(12) 8G (23 .
_ﬁ‘!('ﬂ_.. -. “’)(1') % GH‘E?'(B'z)dE a3 . (20¢)
GG (12)

Substituting this in (20b),we get an equation for —B'V'ﬂ')_— to be solved:

5G. 2 (12) 8G. 1 (37)
HE . 6(4’(1-2)6“’(1-3)-iSd'id§dTv(1-§)trl;(o’(ﬂ)—x%-—GHF(n";l +
-1 -. -
8G(37)
+av(1-z)Sdfdzc ‘°)(13") g‘('ST“ G‘°’ 32) . (20d)
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This is just the RPA equation for%%-: [3]. Note the appearance of G}gg.) in
this equation. It is clear that we can generalize the approach when we have a
more general G(o). Once (20d) is solved,one puts it back in (18) and looks for
the pole in the energy plane in G. We do this explicitly for the case of the
weak periodic field in the next section.

At this point we would like to draw attention to the equivalence of
Herring's perturbation approach [2] and RPA [3] in the problem of spin waves
in metals. Herringcalculated, using Peng's equations, the spin wave energy
by applying an external static transverse field to second order, it being a
time-independent perturbation calculation. We [3] studied the same problem
by an approach similar to the one outlined above in the last paragraph using
a time-dependent external field, and using RPA. The eigenvalue of this
equation was the same as the spin wave energy obtained by Herring. Thisa
answers the query raised by Brooks and Herring in private communication. .

In the next section, we work out an explicit example of this.

WEAK PERIODIC FIELD IN A MANY-ELECTRON SYSTEM

We first study this problem by the Peng approach and then derive the
same resuits and generalizations thereof by the Green's function method.

Let the weak periodic field be V(r) such that

V(r) =§ eiK' r V“)(K) (K: reciprocal lattice vectors). (21)
v
K
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In the absence of V(r), the HF equations of a uniform electron gas in a
uniferm positive background admit of plane waves as solutions. So, we

employ these as our basis when V occurs in the problem. Thus,

- i(k+Kl)'r
J,k(r).-:z e X(k+K,) . (22)

K
1

Then the resulting equation for X, proceeding as in the las. section, is:

2
k+K| (1) ,
‘LTnT'_ X (k +K) +Z VY (K)) X(k+K-K,)) &

K

R
+Z Z [V(Kl-KZ)-v(kl -k-K—KZ,] X (kl+Kl) X(k1+KZ) X(k+K+Kl-K

k, KK,

2)
= E(k) X(k+K) . (23)
This is the generalized version of the problem of the nearly free electrons [6].

We now write

Fx Mk + xRy + .

X(k+K) = GK,O
(0) (1) (2) L
E(k) = EQ) + EM k) + EY¥ () + ..
The normalization condition gives:
Dy + k) = o (25a)
*
A2y + x5y = - k+K ) et K)) ete. (25b)

~

- d

K,

Then the zerc-order equations give the usual HF energy in the absence of V

2
E‘O’(k)=%+z [Vie) - vik-Kk))] . (26)

k)
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The first-order equation gives

E(”(k) = V(U(O) = 0 for simplicity (27a)

and

EO 1K) -E (1) XD 1er ) +z [v (-K)-v (- +2)] (D e+ X0 o k) =

k)

- v‘”(x) (27b)

Neglecting the exchange term v(k-k1+2K), we find that

(1)
1 \4 1
Xk +K) = - < X) . =) ()P (27¢)
EV''{k+K)-E'" (k)
where
€ (K) = RPA dielectric constant
1
= 1+ 2v(K) Z ()] T0) ° (27d)
0
k {occ) E'V(k+K)-E'" (k)
Note the appearance of HF energies everywhere. The second-order energy
shift is

E@) ) = Z vl ).k ) +z Z[v(-Kl)-v(k-kli-Kl)] x Ve +r ) X ek )

K, k, K,

—— %
+z [viK )-vik-k )} X ek ) X ek )

+

w

R

1
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which simplifies to

£ - .

ond

K

2
1

E K, ) - E%)

(28)

'V'“)(Kl)
9 i

after neglecting the exchange terms v(k-klﬂix} and v(k-kll. Note that the
weak periodic sield gets screened by the RPA dielectric constant.

Let us now do this problem using the Green's function approach but
including formally more general correlations than HF. Specifically, we
rederive {28) ar a byproduct. To this end, we have to solve the follov'.ag set
of easily derived equations which are all exact:
= -2

i%r‘*’:zi?;"'eff(il G(“'Hi5 vit-NIGOATZFHIKBNG(d1)dT dZ2d3 a4
L 1

s 1.1 (29)
(125 3) = -6 1225 8 1-3) -igv(l-T)G(l HrE53GEDTELDKED

dT dZd3d44d3%
OI'(22;3) _

+ iSv(l-T)G(l 2) WK(TT) dl d2 43 +
et

. - = 1 5,.3 OK@BTI =
+ lSv(l-l)G(lZ) r(zz,E)-K-vff—f-ﬂT dT dz 43 (30)

K(12) = 6" (1-2) + S vil-IGTDHTETL D KEF2) G(3TH) dT d7dT 4T (31)

Veff(l) = S.K(IT) uext('r) dY (32)
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where Uex’& is introduced only to generate the proper terms arising from the

interactions between the particles. Veff contains the weak periodic field,

Uext , and the Coulamb seif energy. We now make some approximations.

We take

r%azs - .6 s, (33)

It must be stressed here that this ia not the usual HF approximation. Then

k%12 - 8% 2)- iSvil-»T) c@D k%2 a1t aT a2 (34)
and -
2 1
{avx (1) TV G (13 K (3T) G (310 dT o3
R IR G{l1')-i§v(l-l)G(lZ)K(le)G(Z1‘)d1dZ (35)
]_ ] “ - .

6.1

Going to the Fourier representation we get

2
..l.(__ t ]
w- m) G (kk") - Zveff(kl) Glk-k; k') -
/ k,
3 -' ‘kik. ' ; " =
- i z vk} Gikek;k,tky) Kiky;k ) Glkyk') = 8, (36)
k) kyky

and

Kikk') = okk' -1 vi{k) Z G(k+k1;k2+k3) G(kz; k) K(k3k') . (37)
k1k2k3
In the absence of the periodic potential and Uext we have

G {kk') = Go(k) okk'
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being a uniform system, so that

0 e
Kk = 7x7
witﬂ
e(k)zl-iv(k)zGo(k+kl)Go(k1) (38)
k)
and (36) takes the form
2 — vik,)
E,- = -iZ —e-ﬁ%)' G(o)(k+kl) G (kk') -Zveﬁ(kl)c(k-kl;k') =0y .
l— L35 k)
Now
V, gk = Z K (k; K' vV (K) (39)
K

using only the periodic field, so that one finally has

2 ()
Eo- = -M(kﬂ G - ) T G koK, k) = 8y, (40)
R .
where
) = S vik) ()
) = mass operator = lLJ '?(F{TC‘ (k+kl) . (41)
k

1

This is the dynamically screened exchange interaction. (kl here stands for
the four vector.) Note also that V(l)(K) is statistically screened by ¢(K),
the generalized dielectric constant involving the G(O} which is not the HF G.

Thus y
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1)
.2 vl (K,))
l:)-%:;-!\i(kw) G(kk)- Z —'(K—T—G(k Kl,k) (40")

and

(K)
[ _L,__L M(kKu G (k-K; k') = Z—wm—,—c(kxxl,k')

(l)
X —eTRT— G(kk) (42)
so that one finally has
k2 RANUN ! s
K) w-—g— - M (k-K | j0)
= akk' . (43)

The pcles of G(kk') determine the singie particle behavior. Writing the

unperturbed single particle energy in the form

2 2
E(o)(k)z%n—+M(k; ) (44)

the modified energy duv .o weak periodic field away from the Erilluoin zone

boundaries may be v'ritten as

0= EQ(x)- Z
K

1

1
E(o)(k-Kl) - )

v(l)(Kl) 2
—& T

(45)

If

2
Mk 5= ) = M(k), e(K) =1-.-iv(K)ZG O (k+k, )Gy (0)(k )

k)




ARPA-15 -17-
we recove: the result obtained earlier as expression (28). At the zone
boundary where

%) = Q% k) (46)
we examine the pole structure a little more carefully. One then neglects all
other terms e:"cept this one in (43) so that the pole is now determined by
the equation

vilik) |2

. 0. (47)

(- EO)) tw-Ek-K)) - |

If we ignore the w dependence in M, we arrive at a familiar looking

expression for the energies at the zone edge

2

[ EDq + £ k-x) EQ 4 - 9 (x-K)
w= z )

B

2
(1)
" I v K)l
5 .
(48)
This generalizes the nearly free electron gap equation at the zone edge (6]

for the interacting electron system. Recently, Tanaka [7] has also examined

this problem using diagrammatic approach.

DISCUSSION
We have here constructed a perturbation method for self-consistent
equations in a Green's function formulation. This is a generalization of
Peng's work for static HF equations. We incidentally show that the amplitudes
of the first-order wave function satisfy the usual RPA equations. As an
example of the method we briefly outline a calculation of the effect of

periodic field on a many-electron system.
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