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TEMPERATURES AND AIR VELOCITIES

ABSTRACT

The oxidation kinetics of pyrolytic grasphite was studied as a function
of time, temperature, and air velocity. It wus found that the oxidation of
pyrolytic graphite is controlled by chemical activity below 1600 F. At
1600 F and above, the reacticn is under diffusion control and the rzaction
rate is proportional to tke 0.4 power of the air velocity. Oxidation pro-

ceeded preferentially in the "a" :!irection and is attributed to th: weaker
bonding between pianes.
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NOMENCLATURE

Equation |

N = specific reartion rate, moles/cm’/sec

¢ = constant

D, = diffusivity of 0, at 273 K, cm?/sec

d = diameter, cm

V = velocity of fluid, cm/sec

R = molar gas constant, ml-atm/degree/mol

P, = partial pressure of (, in amkiznt air stream, atm

T = absolute temperature, degrees Kelvin
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INTRODUCT { ON

Grapkite has been considered for many high-temperature applications
Lecause of its high refractoriness, low density, low coefficient of thlermal
expansion, and high mechanical strength at elevated temperatures.

Recently, emphasis has been placed on pyrolytic graphite, a special-

ized, polycrystalline form of graphite. Pyrolytic graphite has greater
strength than normal graphite.

Although many papers are available on the reactions of graphite with
nxidizing gases,!°® little or no data have been reported on the oxidstion
oi pyrolytic graphite at air velocities above 1 cm/sec.

Hortoa® presented kinetic data for oxidation of pyrolytic graphite
between 1137 F and 2854 F at low air velocities (0.27 to 0.50 cm/sec).
Neither gas velocity nor diffusion sffected the observed rates which were
one-half order with respect to oxygen concentration. An activation energy
of about 35 kcal/mol was calculated. Levy!? studied the oxidation of
pyroiytic graphite in quiescent air between 1250 F and 1850 F. A break in
the plect of reciprocal of temperature versus log of reaction rate occurred
at 1550 F, This breuk may have been due to a change in controlling mecha-
nism, but could not be ascertained in a quiescent system.

This report presents a gravimetric study of the oxidation kinetics of
pyrolytic graphite between 1400 F and 1800 F at air velocities of 25 to 109
cn/sec and «uc atmospheric pressure. Under these conditions valid conclu-
sions may be drawz regarding chemical and diffusion processes. The aniso-

tropic buhevior of pyrolytic graphite as reflected in its oxidation behavior
was also studie:.

APPARATUS AND EXPERIMENTAL PROCEDURE

An automatic weighing and recording reaction system (Aminco Thermograv)
was used to obtain the rates of oxidation of pyrolytic graphite. The weight
sensitivity of -he system was between 1.0 and 4.0 mg for a 200-mg full range
of deflection. The furnace temperature was regulated by a calibrated
chromel-alumel furnace thermocouple which controlled the power input to the
furnace. An additional calibrated chromel-alumel thermocouple placed
directly below the sample was usad to maintain the desired tempersture with-
in ¢ 3.5 F during the oxidation runs. This assured that the difference be-

tween the temperatures of the sample and the furnace would be minimized as
much as possible under the experimental conditions.

Air was introduced at the bottow of the reaction chamber, measured with
flowmeters, and dried with Drierite.

According to the supplier (High Temperature Materials Department,
Raytheon Co., Waltham, Mass.), the pvrolvtic graphite was deposited from
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INTRODUCTION

Grapkite has been considered for many high-temperature applications
because of its high refractoriness, low density, low coefficient of tlermal
expansion, and high mechanical strength at elevated temperatures.

Recently, emphasis has been placed on pyrolytic graphite. a spacial-

ized, polycrystaliine form of graphite. Pyrolytic graphite has greater
strength than normal graphite.

Although many papers are available on the reactions of graphite with
nxidizing gases,!*® little or no data have been reported on the oxidetion
oi pyrolytic graphite at air velocities above 1 cm/sec.

Horton® presented kinetic data for oxidation of pyrolytic graphite
between 1137 F and 2854 F at low air velocities (0.27 to 0.50 cm/sec).
Neither gas velocity nor diffusion sifected the observed rates which were
one-~half order with respect to oxygen concentration. An activation energy
of absut 35 kcal/mol was calculated. Levy!? studied the oxidstion of
pyrolytic graphite in quiescent air between 1250 F and 1850 F. A break in
the plet of reciprocal of temperature versus log of reaction rate occurred
at 1550 F. This breuk may have been due to a change in controlling mecha-
nism, but could not be ascertained in a quiescent system.

This report presents a gravimetric study of the oxidation kineties of
pyrolytic graphiie between 1400 F and 1800 F at air velocities of 25 to 109
cm/sec and w«c atmospheric pressure. Under these conditions valid conclu-
sions may be drawn regarding chemical and diffusion processes. The aniso-

tropic buhevior of pyrolytic graphite as reflected in its oxidation behavior
was also studie:.

APPARATUS AND EXPERIMENTAL PROCEDURE

An sutomatic weighing and recording reaction system (Aminco Thermograv)
was used to obtain the rates of oxidation of pyrolytic graphite. The weight
sensitivity of -he system was between 1.0 and 4.0 mg for a 200-mg full range
of deflection. The furnace temperature was regulated by a calibrated
chromel-alumel furnace thermocouple which controlled the power input to the
furnace. An additional calibrated chromel-alumel thermocouple placed
directly below the sample was usad to maintain the desired temperature with-
in ¢+ 3.5 F during the oxidation runs. This assured that the difference be-

tween the temperatures of the sample and the furnace would be minimized as
much as possible under the experimental conditions.

Air was introduced at the bottor of the reaction chamber, measured with
flowmeters, and dried with Drierite.

According to the supplier (High Temperature Materials Department,
Raytheon Co., Walthem, Mass.), the pvrolvtic graphite was deposited from




nethane on & synthetic graphite subscrate at 3812 F and has a density of
2,20 g/cc. Specimens were 0.925 cm square and 0.318 cm thick and were
rsinsed ~ith ethyl alcohol and dried to constant weight. The specimen
surface area was 3.024 sq cm.

The oxidation of pyrolytic graphite was studied as a function of time,
temperature, and air velocity. Runs were made at 1400 F, 1500 F, 1600 F,
1700 F, 1800 F at flow rates of 25, 50, 75, and 100 cm/sec for each temper-
ature. Runs were terminated at 200-mg weight loss of samples to minimize
dimensional changes. Thermocouples placed below the specimens may not be
adequate to indicate the surface temperature of pyrolytic graphite reacting
with air. The experimental setup precluded temperature measurements by
optical or radiation pyrometry. In lieu of calculating approximate surface
temperatures, duplicate runs were made at each temperature and velocity,
rnd actual measurements were taken by imbedding a calibrar.d thermocouple
in the graphite specimen. These data are contained in Table I. Temperature
increases due to oxidation were found to be less than 36 F. For the anisot-
ropy study, disk-like specimens 1.588 cm iu diameter by 0.064 cm thick were
machined from a i-inch-thick pyrolytic graphite plate, both parallel and
perpendicular to the plane of deposition. Thus specimens were prepared
which exposed primarily the basal plane ("c" direction) or the edges ("a*
direction) in a 12:1 ratio (surface area). Runs were made with both types
of specimens at temperatures between 1400 F and 1800 F in a quiescent
atmosphere.

Table I. DIFFERENCE BETWEEN FURNACE TEMPERATURE
AND SPECIMEN TEMPERATURE

Difference Between
Air Farnace Specimen Furnace and Speci-
Velocit Temperature Teapcrature men Temperature
(cm/sec (degrees F) (degrees F) (degrees F)

25 1400 1418 i8

25 1500 1526 25

25 1600 1625 25

25 1700 1736 36

25 1800 1836 36

50 1400 1418 18

S0 1500 1528 28

50 1600 1629 29

50 1700 1735 35

50 1800 1836 36

15 1400 1416 16

15 1500 1528 28

15 1600 1629 29

75 1700 1736 36

15 1300 1834 34
100 1400 1415 16
100 1500 1527 27
100 1600 1630 30
100 1700 1736 36
100 1800 1836 36




RESULTS AND DISCUSSION
Effect of Time and Temperature

Figure 1 shows oxidation curves at an air velocity of 50 cm/sec for
temperatures between 1400 F and 1800 F. Generally, the oxidation may be
considered to proceed in two stages. The first stage represents the time
necessary for the graphite to reach a relatively uniform oxidation temper-
ature, approximately five minutes. The second stage is characterized by
the most constant temperature, although there is a relatively slight in-
crease in oxidation rate with increasing time (probably due to a gradual
increase in surface area). A large increase in the rate of oxidation occurs
between 1500 F and 1600 F. Similar results were obtained for air velocities
of 25, 75, and 100 cm/sec. A major change in the mechanism occurs in this
region. This suggests a transition from chemical to diffusien control. The
existence of a change in mechanism of reaction at approximately 1600 F was
reported for nornal graphite?:3:5:7:8 and for pyrolytic graphite.l®
Gulbransen’ found that the transition between chemical and diffusion control
depends on pressure, sample size, and the nature of the reaction system.
Since earlier investigators aisc reported transition temperatures near -
1600 F, their reaction system, specimen areas, and oxidation conditions were
probably similar.

Temperature Dependence and Energy of Activation

A plot of reaction rate versus 1/T for several air velocities is shown
in Figure 2. Limiting tangents at the l:ianger exposure times were employed
for the determination of reaction rate constants, The temperature of oxi-
dation was then at constant value for each exnosure. The initial portion
of the curves between 1400 F and 1600 F clearly represents a region in which 4
the chemical resistance is controlling, since che effect of velocity is
overshadowed by that of tempersture. For this regicn an activation energy
of 43 kcal/mol was calculated. Additional runs were made at 1550 F to de-
fine the plots more accurately. At 1600 F and above, a change is observed
in oxidation kinetics at all gas velocities. In this region an activetion
energy of 8 kcal/mol was calculated. This data is in fair agreement with
that reported by Gulbransen.’

Dependence on Air Velocity

The effect of velocity for severa] temperatures is shown in Figure 3,
both scales of which are logarithmic. Below 1600 F the curves are nearly
parallel to the velocity axis, showing a lack of dependence of reaction
rate on air velocity because of the predominant effect of ~hemical resistance
at the surface. The slopes of the isotherms increase at 1600 F and above,
where i1t ia substantially independent of temperature. The substantial
parallelism of the curves for this temperature region indicates that
chemical resistance appears tc have no importance between 1600 F and 1800 F
when the combustion rate® is defined as containing two additive terms, the
first of which corresponds to & diffusional! resistance and the second to a
chemical resistance
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If the reaction is in the diffusion-controlled region, one would
expect the reaction rate to increase with increasing air velocity. This
was the case for the reactions at 1600 F, 1700 F, and 1800 F.

Figure 3 also shows that the reaction rate constant in the 1600 F to
1800 F temperature range is proportional to V%% where V is the gas velocity
expressed in centimeters per second. This agrees with the work of Smith and
Gudmundsen (V%-42), Hottel (V¢ -VO0%7) Kuchta, et al (V°*%), Chukinov avd
Karzhavina (V%4). In the first three works, electrode carbon was used,
while in the other, charcoal was used. This velocity effect is in good
agreement with theoretical calculations in which diffusion is assumed to b
the controlling factor. Kuchta’ defined the rate of a diffusion-controlled
process by

Dop2 v %
N=¢ -
RT®-25 d

At relatively high air velocities, the rate is theoretically almost in-
dependent of temperature and proportional to the square root of the velocity
in the diffusional region of burning.

Anisotropic Behavior

Figure 4 illustrates the columnar structure of pyrolytic graphite.
The c-axis lies parallel to the cone axis, the apex of the cone being
nearest to the deposition face. The "a”" direction is perpendicular to the
axes of these cones. These are probably planar surfaces of low chemical
activity, since the bonding between planes is only by Van der Waals’ forces.
The edge atoms of the carbon planes should be more active because of their
residual valence bonds; thus, oxidation should proceed preferentially along
the direction perpendicular to the cone axis ("a" direction). The apparerntc
greater porosity of the :dges may also be a contributing factor. Figure §
shows weight loss of py-olytic graphite as a function of time and temper-
ature when exposed in the "a" direction and the "c" direction. Temperatures
between 1400 F and 1502 F only were considered because chemical activity is
the controlling mechanism in this region. Above 1600 F gas diffusion is
rate controlling and anisotropy should have no effect. Oxidation is more
rapid for specimens exposed in the "a" direction. The reaction-rate con-
stants for the "a” and "c" direction runs at temperatures between 1400 F
and 1600 F are contained in Table II. 1In this temperature range, oxidation
proceeds about twice as rapidly in the "a" direction and this ratio in-
creases with increasing temperature.

Table II. REACTION RATE CONSTANTS FOR °*a°® AND °®c” DIRECTION
SPECIMENS AT TEMPERATURES BETWEEN 1400 F AND 1600 F

Reaction Rate Constent, Reaction Rate Constant, Re ]
Temperature *a® Direction (Ra) °c® Direction (Rc) —
(degrees F) xg/cn/ain ag/cal/ain Re
1400 0.388 0.248 1.%% g
1500 0.700 0.420 F1.67
1600 0.993 0.466 B ERE
Lot ug




In a prior study, Levy!? reported that oxidation appeared to proceed
preferentially in the *"c® direction which was contrary to expectation.
However, this was based on a visual examination of oxidized specimens,
rather than controlled experimentation. The present study demonstrates

that oxidation of pyrolytic graphite occurs preferentially in the "a”® di-
rection.

SUMMARY

The oxidation of pyrolytic graphite is controlled by chemical activity
below 1600 F. In this region, an activation energy of 43 kcal/mol was
calculated. At 1600 F, a major change occurs in the mechanism, a transi-
tion from chemical to diffusion contrel. In the region 1600 F to 1800 F,
an activation energy of 8 kcal/mol was calculated. In this diffusion-
controlled region, the reaction rete was proportional to the 0.4 power of
the velocity. The anisotropism study showed that the oxidation of
pyrolytic graphite proceeds preferentially in the "a" direction, in the
ratio of approximately 2 to 1. This ratio increased with increasing
temperature.
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Figure |. EFFECT OF TEMPERATURE ON OXIDATION OF
PYROLYTIC GRAPHITE, 1400 F TO 1800 F,
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