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ABSTRACT 

The governing equations and a computer program are 

developed which calculate the static and dynamic aerodynamic 

coefficients for bodies composed of right circular cone frusta. 

The resulting combined body possesses one plane of symmetry 

and the coefficients are referred to that plane. The center 

of gravity and the moment reference point are arbitrary locations 

in the plane of symmetry. Flow shielding for the complete 

angle of attack range is considered for each frustum segment, 

but mutual shielding of one segment on another is neglected. 

The effect of any gap-overlap region at the junctions of ro¬ 

tated segments is also neglected. 

Example calculations are presented for an asymmetric 

conical body and an asymmetric cone-cylinder-flare configuration. 
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SECTION I 

INTRODUCTION 

hi many trajectory problems it is necessary to be able 

to estimate the aerodynamic coefficients for sizable angles of 

attack* For hypersonic flow,the only alternative to experimental 

testing that appears tractable at this time is Newtonian impact 

theory• 

As a result of the adaptability of Newtonian theory to 

conditions involving large angles of attack, many investigations 

have been carried out heretofore* References 1, 2, 3, for 

example, consider bodies of revolution under a variety of 

conditions* Calculations for a body of revolution with an off¬ 

set center of gravity are reported in Reference 1 and reasonable 

correlation with experimental values has been found over the full 

angle of attack range* Reference 2 treated incomplete bodies 

of revolution, but at present no attempts seem to have been 

made to consider small degrees of body asymmetry* 

In this report, a computer program has been written to 

calculate the force, moment, and damping coefficients over the 

full 360° range of angle of attack for a certain class of 

bodies* These bodies have one plane of symmetry and are composed 

of simple conical frusta* Such composite bodies were considered 

in Ref. 3. However, those results are limited to axisynmetric 

bodies at zero angle of attack* The static aerodynamic character 

istics of a canted cone were considered in Refs* 4 and 5 for 

small and large angles of attack. The present report, however, 

is more general in that it considers the pitch-damping- 

characteristics and is applicable to a body composed of several 

segments. 

* Manuscript released by the authors in February 1965. 
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In computing the overall coefficients in this report, 

it is assumed that the aerodynamic behavior of the component 

frusta are independent of any surrounding frusta. This procedure 

is only approximate since apparently some flow interference will 

be present for some angle of attack range. Also, an unrealistic 

gap-overlap region occurs at the junction of segments rotated 

with respect to each other. For the case of small asymmetries, 

these effects may be neglected. 

In theory, any number of body segments may be taken into 

account, thus allowing considerable flexibility in the body 

shapes considered. 
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SECTION II 

ANALYSIS 

2.1 General 

The basic assumption involved in Newtonian flow theory 

is that a stream of air impinging upon a surface loses its 

component of momentum normal to the surface but travels along 

the surface with its tangential component of momentum unchanged. 

The force which results is directed inward to the body and is 

equal to the time rate of change of the normal component of 

momentum lost by the flow. 

Consider a general body, as in Fig. 1, where x,y,z are 

body axes located at the nose. If n is an inwardly directed 

unit normal vector to an element of area, dS, located at (x,y,z), 

the inward incremencal force on this area, according to Newtonian 

flow, is 

(2.1) 

whereU is the local flow velocity. The moment about an 

arbitrary point (x0,y0,z0) resulting from this incremental force 

is 

hör = /„ * (2.2) 

where /,is the length vector from (x0>y0»z0) t0 the area> 

A body which is rotating with an angular velocity vector 
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¿5 and which is iinmcrscd in a flow with a free stream velocity 

, will experience the following relative flow velocity 

at the point (x,y,z) 

U = - ¿3 * (2*3) 

where ¿3 is the angular velocity vector of a body axis system 

which is located at the center of gravity and Jtc*is the 

length vector from the center of gravity to the area dS. 

Restricting the motion of the body to the x-z plane, 

the scalar components of the total force F and total moment 

Ç acting on the body are found from Eqs» 2.1 and 2«2 by integrat¬ 

ing over the surface area of the body which is exposed to the 

flow. The forces X (axial), N (normal) and the moment M about 

an axis through (x0iz0)» defined positive as shown in Fig. 2, 

are 

(2.4) 

(2.5) 
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M = ^ f(î7*[j *(í# * ñ)jdS (2.6) 

S 

The determination of the forces and moment thus Involves 

the specification of the body surface geometry, the determination 

of the normal velocity component (Ü S ) to the surface area 

dS and integration over the body surface area which is exposed 

to the flow. 

2.2 Body of Revolution 

Consider a body of revolution whose radius, r, is a 

function of x (Fig. 3). Such a surface is described by 

<L =: f (V) - A. =-° (2.7) 

and the inward unit normal vector to this surface is 

n (2.Ö) 

Ivr 
Using r - Jt+i* and denoting df(x)/dx by f , the unit normal 

vector in Cartesian coordinates is 

n f f(i - fj - i i (2.9) 

fj I + CO’ 
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In cylindrical coordinates 

F i - Ua, 

v/TTcr^ 
(2.10) 

where is the unit radial vector (Fig. 3) 

The incremental surface area, dS, may be related to its 

projection, dA, on the cylindrical surface 

= /V JO Jx (2.11) 

In Eq. 2.11, the absolute magnitude of the dot product was 

taken because only positive areas are desired. Thus 

= •:-=-!-, (2.12) 
I «•.•*! 

Substituting Eq. 2.10 into Eq. 2.12, the element of area for 

a surface of revolution which is described by Eq. 2.7 is 

js = (2-13) 

Restricting motion to the x-z plane, then 

i0 s (*-%•)t t (2.14) 
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V* (r°s<* i + ie ) (2.17) V 09 

Utilizing Eqs. 2.7, 2.9, 2.14, and 

I = A SIN 9 r Î SlN ® 

the following relations are obtained 

(2.18) 

"n = JTTW 

J . ñ = - sin Q_ (2.19) 

,/TTW 

7> <- (^)1 
j • (1,^ fi) 



Substituting Xcet» LÕ » and from ^3, 2«15» 2.16, and 

2.17 into Eq. 2.3, the local flow velocity vector for this 

planar case is 

Ü = *• [v.k (2-20) 

and the normal component of this velocity vector to the surface 

area dS is 

U-n = 

Jl HO 
f [v. cosei - <^(f SIW0 - Zcft)] 

(2.21) 

- 2>|W efv. Siw* + I 

Also 

(¡7 ñ) = X), [ K , - K^SInG f KjSli/oj (2.22) 

where 

» i 

K, = __L_r COS oC + 2 ¿ce, (Í ) 
I kOH 

(2.23) 

K, = -i—Í S.N2M+ 2 SIN* -2^(1)^ 
i +tf')lL vV 'í. J 
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K> * TTSyf1”''' - “-(7J’’"“I 

I ^(f) 

2 
In the above, higher order terms involving q were neglected, 

Substituting Eqs. 2.13, 2,19, and 2.22 into Eq. 2.4 - 2.6, 

the forces and moment become 

tx •» 

X =}V. 
*. 9, 

f(i'/cosV - S'n6 

ff' ^ xa\ ¿i 
+ ft SINK >IN ö I ^ 

(2.24) 

9x 

- f(f ) cesV SIN 0 

(2.25) 

f ff'siNlK SIN1# - fSINK SIN ® 
dH 

> HO1 
J9 

9 
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n 0» 

M = 

K. 0, » 

Cl f Cl SIN9 - C5 SIN 0 4- C»# Sin ’el^_ 

Ji fCf')' 

(2.26) 

J0 

where 

C, = - oC 4» 2 1 c<5 
COS* 

] 
(2.27) 

ct = w’)l(f *'♦*-*.) cos^ V z 2CS (X. 1 tes* 
Æ) ““] 

f (-f') 2:, [il* 1* +Zîc<^ijsiN* -ZHt4(î. jte**j 

(2.28) 

4- Hi’)* (f fen)?« 2-(-) 
I" \ tot A 

C3 = f i'df't 4 2 2t* (i. )»'N* -Z<<4(L)ces*j 

t If'iKn-n.) ^2-(^ ) ÍOS*í| 

f if 2. S IN << - I 1(t 

(2.29) 

fî’(ff +k) H.fz(I) si'9«( 1 
** V(| J 
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(2.30) 

In obtaining Eq. 2.24 and 2.25, the terms Involving 

the pitching velocity q were neglected because the forces X 

and N are mainly dependent on the angle of attack a. However, 

the q terms were retained In the moment expression, Eq. 2.26, 

since they provide the damping-ln-pitch for the vehicle. 

The forces and moment can also be expressed In terms of 

nondimensional coefficients. The defining equations are 

X = 4 îv- s ct 

N ^ J yV,,1 s cN (2.31) 

where is the static moment coefficient, S Is an arbitrary 

reference area, and d Is an arbitrary reference diameter. 

Assuming the 0 limits of Integration are Independent of 

X, the X and 0 Integrations may be performed separately. The 

consequence resulting from these Independent integrations is 

discussed In Subsection 2.3. Carrying out these operations and 

comparing terms in Eqs. 2.24-2.26 with the corresponding 

11 



terms in Eqs. 2.31, the following aerodynamic coefficients are 

obtained: 

Cx r 1('~)[A *•*«< 

Cn = 2(j)[-Bc0i,*< ^ 

c* ~ 1(s)(j)[E-costA 

+ Csini(X f, - p s,.V 

Î, - Í, 4- G si*)V i»] 

(2.32) 

(2.33) 

(2.34) 

- ¢)( ~)C'M t"“)}11 

' ( r* * t) 6 >■"' * (ÎK rV1'*”' * t"*] 
where L is an arbitrary reference length. 

In Eqs. 2.32 - 2.33, the x-integrations, which depend 

only on the shape of the body surface, are represented by the 

following: 

12 



r 

A = 
£ 

t(t') 

i ♦ff;* 

¿ % a 

»•A 

(.f/L) 
J (f/l) 

.J C»/1-) 

1 + 
MflQV 

.4 (#/1.)] 

Hr) 

Similarly 

»*/t 

5 * 

c = 1¾ na 
J* i4COv 

‘»A 

Kîr) 
llL I * (f')‘ 

. 4 (lV 

F 

*tlL 

[ ¿(i) 

Ih. I 4 (P ')l 

*i/u 

l 

(Í/l)- fV/L) 

I 4 (f ') UL 

I 

(2.36) 
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I 

u/l 

llL 1 ♦(fV 

*xll 

[mV)1- 

4 i ♦(*')’ 
+i 

hIl 

U» 

/u 
i f(r) 

<»/l 

í^/lhWu)1 

4 >*c»r 

*l/l »v/t *»/l- 

[ (t/o-^';1 J(L) +, jri) f [ iw (Vo1 j L 

4 ' Hf)1 L 4^(í')1 L J. i mí’/ L 
%'/l 

The 9-iategrations are given by , , $» and <£* 

below. For a body of revolution, the ©-integration may be 

carried oat over half the body and then doubled 

(2.37) 

Bt 

= 7-jsifv/0J0 

0, 

- 0, f 

*2- Z 
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vn*0J9 

e, 

- 2 - cos Ô 

The Ö-integrations are seen to depend on both the body 

shape (f) and the amount of flow shielding (9^, This 

flow shielding is discussed in the following section. 

2.3 Flow Shielding 

There will be some angles of attack at which portions 

of the body surface are inclined away from the local velocity 

direction, (i.e., surfaces which are not exposed to the flow). 

Newtonian theory assumes that there is no pressure (and hence, 

no force) on such "shielded" surfaces. Therefore, the limits 

of integration must be such that shielded areas are excluded, 

and the integration is carried out only over that portion 

of the body surface which is exposed to the flow. 

The boundary between the shielded and unshielded portions 

occurs at points where the local velocity U is tangent to the 

body surface. Thus, the surface normal vector, n, and the 

local velocity, ÏT, are perpendicular at the shielding boundary. 

Hence, the shielding boundary is given by 

U-ñ = 0 (2*38) 

where the expression for IT • n is given by Eq. 2.21. 
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The shielding boundary is then determined by setting Eq. 2.21 

equal to zero, and obtaining the corresponding value of 0. 

Denoting this solution as 0Q , then 

-I 
Sift) M 

[cos + ( 
1 

SINtft 4 i 
it! 
u. 

♦ 
► 

(2.39) 

Thus, the shielding condition is seen to depend on the 

body shape, the angle of attack, the nondimensional pitch rate 

term , and the center-of-gravity location. A great 

simplification results if the pitching term is neglected. This 

can be justified in the many cases where Neglecting 

the q terms in Eq. 2.39, the shielding boundary reduces to 

9 u 
«i ’ 

Sift) 

(A 

(2.40) 

Note that the q terms have also been omitted previously 

in the force expressions, Eqs. 2.24 and 2.25, but were retained 

in the moment expression, Eq. 2.26. 

It is seen from Eq. 2.40 that the limits on the ©-integra¬ 

tion in Eqs. 2.24 - 2.26 are generally a function of x. In 

obtaining Eqs. 2.32 - 2.35, the limits were taken as invariant 

with x,making it possible to divide the problem into two inde¬ 

pendent integrations; an x-integration as in Eqs. 2.36 and a 

©-integration as in Eqs. 2.37. ihus when shielding is present, 

Eqs. 2.32 - 2.35 apply only to a body of revolution where fix) 

is a linear function, i.e., a cone, frustum and cylinder, all 

of which are derivable as special cases of a right circular 

16 



cone frustum. When no flow shielding exists, Eqs. 2.32 - 2.33 

apply to any body of revolution. 

For an axially-symmetric body, the shielded portion of 

the surface is exactly reversed for positive and negative 

angles of attack (Fig. 4). Using Eq. 2.40 and referring to 

Fig. 4, the upper and lower limits on 0 (0^ and are 

summarized below in terms of the argument f'/tanoC . 

(a) The surface has NO SHIELDING when: 

—.— — 1 and 

"tosK 0( 

•f 0( >0 

then e IT 

z 
tr 
2 

(2.41a) 

(b) The surface is PARTIALLY SHIELDED when: 

(1) for positive angles of attack (o 1®^}; i»e. 

SI* p( > o 

then 9 IT 
2. 

(2) for negative angles of attack(if/C < 3$®^; i.e. 

SiU o( < 0 

then 
(2.41c) 

17 



(c) The surface is COMPLETELY SHIELDED when: 

> 1 and ■f Co5<< O 

then 

(2.4Id) 

Thus, when the body surface is completely shielded from 

the flow, a ©2 » and 

(2.42) 
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SECTION III 

APPLICATION TO SPECIFIC SHAPES 

The bodies of revolution which are considered in this 

report, as a consequence of assuming the 9 and x-integrations 

are independent (i.e., f(x) * const), are a right circular cone 

frustum, right circular cone, and cylinder. 

In applying the results of Section II to a specific 

body shape, the radius function f of Eq. 2.7 must be specified 

and the x-integrations A, B, C, ... I, of Eq. 2.36 carried 

out. Then the shielding condition, Eqs. 2.41, must be determined 

as a function of a, enabling the 9-integrations, 5,, <ix, ¢, , 

and 5»! of Eq. 2.37 to be evaluated. The force and moment 

coefficients Cx, CN, CM, CM may then be determined from Eqs. 

2.32 - 2.35. q 

3.1 Frustum of Right Circular Cone 

Since the cone and cylinder geometries are derivable 

from a right circular frustum, the frustum may be selected as 

the typical nth segment of the composite body. 

Consider the frustum of a right circular cone (Fig. 5) 

where the front and rear bases are not exposed to the flow. 

For such a body of revolution, the function , Eq. 2.7, 

is 

(3.1) 

L 
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J (WO 
d c^h/l; 

S t<Uw ^1 

Substituting into Eqs. 2.36 and integrating over the segment 

L./L 

length, Ln, 

An f [yi(J-/U 

src S, 

A, = 

Similarly, one obtains 

8- > T »A.[£)(¾) ‘(r)“1"*” 

C» = ¿ ^i«^»£o4 
s.['r>'T> * (t')'**-7-] 

= W^ÎTHr1 * (r)1 

(3.2) 

*(i * 5 5Ä,(t) ] 

20 



F* = 
i sil/ > 4-t^, 5„)( L ) (-J) \ /Ln\ 

f T 4 (r) J 
<j^ - 

> “>'S„ 

*- î- ^ 1" /ii'l'l 
’ c.»*îwLl/J 

= k^,u\[Hi1) + ï Cr) (r) (l *"* 

Iv, = T‘:eils-[Hl^)î(Tl)w'5■' ■*■ î(t)(1:)^-(lt4",ls-) 
€*V Stf 

H, 

+ ï * îir)1^”'5' 

The shielding boundary, Eq. 2.40, is also a function of 

the body shape. Since f'n ■ tanSn, Eqs. 2.41 show that the 

frustum is completely immersed in the flow (unshielded) when 

the local angle of attack an is less than or equal to the 

angle S n (i.e., when 1**1 £ S* )• However, when the angle 

of attack exceeds the angle S partial shielding occurs. 

The amount of this shielding varies with the local angle of 

attack since 

-I 
s 110 

t>-*v ^ h 
(3.3) 
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The shielding increases with angle of attack until the frustum 

becomes completely shielded at <*h >_ t (iBo - S^) . 

Having determined and from Eqs. 2.41 and £,, 

from Eqs. 2.37, the force and moment coefficients of the frustum 

are obtained by substituting Eqs. 3.2 into Eqs. 2.32 - 2.35. 

3.2 Right Circular Cone 

The cone case is obtained directly from the frustum by 

setting the front base diameter d^ equal to zero in Eqs. 3.2. 

The procedure involved in obtaining C^, C^, C^, for the cone 

is then exactly as outlined in Subsection 3.1. 

For the purpose of illustrating the procedure, closed- 

form c'-pressions are derived for the simple case of small angles 

of attack. For a cone^q. 3.1 gives 

ál = L„ tun. % (3.4) 
2 

where d is the cone base diameter, L is the cone length, and 

c is the cone half angle. Since L, S, and d appearing in 

Eqs. 2.32 - 2.35 are arbitrary reference quantities, they may 

be selected as 

L 

s 

d = 

(3.5) 

22 



Thus 

I 

TT Uu+t % S 

d z W S 

(3.6) 

For simplicity, the cone will be assumed completely 

immersed in the flow. Thus, for small angles of attack 

( |<*j £ ^ ), when no shielding takes place, Eqs. 2.41 give 

9 Tf 

2 

2T 
1 

and Eqs. 2.37 give 

(3.7) 

= Z.-" 

^ = o 
(3.8) 

for both -Ki and -a. Substituting Eqs. 3.2, with d^ ■ 0 and 

Ln/L * 1, into Eqs. 2.32 - 2.35 and using Eqs. 3.6 and 3.8, 

the force and moment coefficients of the cone for small a 

(unshielded)are 



4> S i N2o( Cl ^ ) 1 
1 

SlKJ S 

CN r cos1"^ SI* 

(3.9) 

Cot ^ SI» ^ Í (“j 

- co(li cps* F - sec*I - hJh + 
*- 5a L 

It should be noted that in Eq. 3.9 the cone is pitching 

about the center of gravity (x ,0,0) with an angular velocity 
cb 

q, and that and are both given with respect to the 

point (xQ,0,0) . 

3.3 Cylinder 

A cylinder is easily derived from the frustum case by 

setting the angle S>n = 0. Most of the x-integrations in 

Eqs. 2.36 are zero. Those remaining are 

p- -- rlT'Xr) 

6- = j('fHr)1 O'1"' 

i, = 

24 



The shielding boundary for the cylinder becomes Q ,■ 0 
.» / u 

since o*,, = o • This means that either the lower 

half or the upper half of the cylinder is exposed to the flow, 

depending on whether the angle of attack & is positive or 

negative. 

3.4 Flat Circular Base 

Section II dealt with a body of revolution whose radius 

is a function of the axial distance x. In this section, the 

equations are derived for a surface which is not a function of 

x. The surface considered here is a flat circular base that 

is perpendicular to the x-direction (Fig. 6). 

Assuming the flow strikes the rear surface of the base, 

the inward unit normal vector is 

h = - I (3.11) 

The forces and moments on the surface are again given 

by Eqs. 2.4 - 2.6, where now 

L - h = - 1 

Jt*h - * 0 (3.12) 

j • J0* V> = -/LSIH0 ♦ 2, 

and 

U*h = £ cos* - i (/V. - 2*^ (3.13) 
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After dropping the higher order q term, as in Eq. 2.22, 

_ i 2. r 2 f- 
Cu-íã) - CO Set - Z — cosot(/tSiN0 - 2C(^ (3.14) 

The fiat base is taken to be circular since only bodies 

of revolution are considered. Using polar coordinates, the 

area dS is 

^ J-i Je (3.15) 

The shielding boundary is given by ^ ) « 0 as in 

Eq. 2.38. Setting Eq. 3.13 equal to zero and neglecting the 

q term as in Eq. 2.40, the shielding boundary for the base is 

cos oC - 0 (3.16) 

for nonzero V« . A flat base which has only the rear surface 

exposed to the flow is thus completely shielded when 

H (3.17) 
2 2 

and is completely exposed for all other a. 

When the base is exposed (90°/ o< ¿ Z70°), the forces 

on the base are obtained by putting Eqs. 3.12, 3.14, and 3.15 

into Eqs. 2.4 - 2.6, obtaining 
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N 

M 

- o 

Tl1r 

” \ [ + S,fÍ ^ K ^ ^ 0 

0 0 

(3.18) 

where, as in Eqs. 2.24 - 2.26, the q terms have been dropped 

from the X-force equation for the base, but have been retained 

in the moment equation. In the M-equation above, 

Cs = 

C, = 

20 cos* 

r t 
-/V I ¿oso( 

Co<>¿ 

(3.19) 

Integrating Eqs. 3.18 and nondimensionalizing as in 

Eqs. 2.31, the aerodynamic coefficients for the circula., oase 

are 

c* 

= 0 

7 . 
Co S 

TT 

2 
CO S o4 

(3.20) 
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c 
, 1 . 2 I 

A circuli.r base which has its front surface exposed to 

the flow is unshielded for (90 > ct > 2~l0 ) • 

For this case ñ = 4- L and the forces and moment expressions 

in Eqs. 3.20 still apply with a change in sign. 
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SECTION IV 

COMPOSITE BODIES 

The body shapes which were discussed in Section III (all 

derivable as special cases of a right circular cone frustum) may 

be combined appropriately to form a composite body. For example, 

the axisymmetric composite body of Fig. 8 (solid lines) consists 

of a cone, frustum, cylinder, another frustum and finally a 

circular base. These same five segments can also be used to 

form an asymmetric body (dashed lines) by rotating each segment 

through an angle ßn with respect to the principal body axis, x. 

For convenience, the principal body axis, x, has been selected 

to coincide with the xn axis of the rear frustum (segment n - A), 

but this is not a necessity. 

The total forces and moment on a composite body may be 

found by summing the contributions due to a number of indepen¬ 

dent segments. However, within the present scheme for calcula¬ 

ting the aerodynamic coefficients for a composite body, there 

are two problems: (1) when an asymmetric body is formed as 

shown in Fig. 8, an unrealistic gap-overlap region occurs at 

the junction of segments rotated relative to each other and 

(2) for both axisymmetric and asymmetric composite bodies, the 

presence of mutual shielding, in which one segment shields 

another from the flow, has been neglected. These two effects 

have been investigated to some extent in Ref. 6 and are discussed 

in the following paragraphs. 

Only the general shape of an asymmetric body is achieved 

by rotating and translating segments as indicated. Since the 

segments considered are right circular cone frusta, they will 

not join smoothly if one segment is rotated relative to another. 
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It would be possible to connect the rotated frusta by an 

additional segment at their junction, but such a segment would 

require a more complex mathematical shape than has been considered. 

Instead, this report uses a less complicated approach in which 

the segments are rotated as shown in Fig. 8, resulting in an 

overlap of areas on one side and a gap on the other side of 

the junction. 

Reference 6 shows that, for small break angles (|ß|< 5°) 

for a bent cone, the coefficients obtained by rotating the 

segments in this manner differ only slightly from values obtained 

using a better approximation to the break region. For small 

break angles, it was found that the several means for accounting 

more realistically for the "former" gap-overlap region resulted 

in aerodynamic coefficients which differed very little from 

each other. As the break angle increases, the bend region 

should be treated more realistically than indicated in Fig. 8 

if theoretically-accurate aerodynamic coefficients are to be 

predicted. 

Some caution must also be used with regard to "mutual 

shielding" when composite bodies are formed. In Section III, 

the forces and moment on independent body-of-revolution segments 

were found by using the shielding criterion, 

(4.1) O 

However, when dealing with composite bodies, an additional type 

of shielding may occur when one segment shields another segment 

from the flow. An example of this "mutual" shielding is shown 

in Fig. 7. When o< 4 S, < both the cone and the frustum seg¬ 

ments are completely exposed to the flow and no mutual shielding 

occurs. As the angle of attack Increases ( &, <rf < &2 )> the cone 
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segment becomes Independently shielded along the boundary AB, 

according to Eq. 4.1. Although Eq. 4.1 states that the frustum 

is completely unshielded until o( > Sf , in reality, the cone 

will block part of the flow and result in a mutually shielded 

region, BC, on the frustum. When oC > $%t independent shielding 
of the frustum will begin and will partially account for the 

mutual shielding* Thus, there will be a range of angles of 

attack for which the direct addition of Independent segments 

to form a composite body will be in error since the shielding of 

some segments Is partially determined by the position of preceding 

segments instead of by the local normal vector* The extent of 

this mutual shielding error will depend upon the number and type 

of the segments and their rotation angles, ßn* 

Another body possessing mutual shielding is the bent 

cone of Fig. 9* Mutual shielding first occurs when the rotated 

cone segment casts a shadow onto the rear frustum segment (a »&+ 0) 

although the frustum is not independently shielded until a - ± S* 

When the angle of attack reaches 90°, mutual shielding ceases* 

The assumption of independent segments causes another 

error when the flow strikes the bent cone from the rear such 

that the tip of the cone segment begins to appear over the edge 

of the flat base* As an independent segment, the rotated cone 

segment becomes unshielded ata*v+(S + ß); however, the 

tip does not actually become visible to the flow until a ■ ir + £ , 

where tan € ■ (tan S + ~ sin ß)/( ^ cos ß + b). Most of 

this premature unshlelding has disappeared when a ■ r + S but 

the segments are not strictly independent until a - 270°. 

Reference 6 presents a limited numerical assessment of the 

mutual shielding effect on a bent cone which shows that for 

|ß| < 5° the effect is very small and limited to a small range 

of angle of attack. Of course, as ß Increases, mutual shielding 

can be expected to become more important. 
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Consider « body composed of K segments (n ■ 1| 2, N). 

Each segment will be considered to be a special case of the 

typical right-circular-cone frustum which is shown rotated and 

translated with respect to the principal x-z axis system in 

Fig. 5. For each segment, dn/L, Ln/Lt Sn» and 0n must be 

specified in order to evaluate the coefficients An, Bn, ...» In 

(n - 1, ...» N) in Eq. 3.2. Following the procedure outlined 

in Section III, the forces and moment for the n segment are 

obtained from Eqs. 2.32-2.35. For example, for segment n is 

t»0 V . (h) 

1(^)(7) [E„ i» - F, 

^ * i00! rW» c'"' CArtMll + J *(j) [— Cn " -1 
(4.2) 

where L, S, and d are arbitrary reference quantities, (yo)n» 

( 10) jare the coordinates of ( %« , Z0 ) in the*n ^n 

and ci is the local angle of attack for the n^ segment, that is 
n 

(4.3) 

where a is the angle of attack of the composite body with 

respect to the principal x-axis. 

Through a translation and rotation of axes, any point 

(x,z) given in the principal body axis system has coordinates 

^n,2n)in the ax*8 system attached to each segment: 
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% __ (*t)» 1 COS^ + 

L L 1 
L 

UtV 

L - 

si 

(4.4) 

2 

X 
Ur)*, 

X“ 

CO ,1». - [i - "«p. 

«here 0<T)n, ( ?t)„ are specifled coordinates locating the 

origin of the X - - 2 . system. Equations 4.4 are used to trans¬ 

form the points X. . 2. and *£. , le> into the segment coordinate 

axis system. In this way, the moment due to each segment s 

always taken about the same point( > ^o)» 

The forces and CN^ as calculated by Eqs. 2.32 

and 2.33 are directed along the **, and H*, axes. These components 

may be resolved into components along the principal body axes, 

X , Z. Denoting by C<n) and the components directed 

along the principal axes (Fig. 5), 

C*. 
- cosp, 

{*) (^) 
ü n H P11 

N 
- CH suoPH 

+• Ckl Co* Ph 

(4.3) 

Finally, the total forces and moment acting on the com¬ 

posite body are obtained by sunning the contributions due to 

each segment : 

(b) 

= L 
w r i 
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rr \ A Ch) 
^nk)Tct - ¿ 

•1= I 

^V.T - I ^ 

/ _ -V ^ CM «n),.T - X c„v 

(4.6) 

It may be convenier.w to resolve these forces from body 

axes to wind axes. If this is desired, the total drag and 

lift on the body are 

(Ot.t = C(-uh)t.t iiwo<' +• (?0T4oso( 

(4.7) 

COr.r * ^Ot.t CoS!< - 
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SECTION V 

NUMERICAL APPLICATION 

The computer program embodying the foregoing analysis Is 

presented In Appendix A and has been used to calculate the 

aerodynamic coefficients for the example composite bodies 

presented In Fig. 9. The first body consists of three segments, 

a cone, cone frustum and circular base; the cone segment Is 

rotated about the 80 and 20 percent body stations. When P - 0, 

the resulting body Is a 10° cone. The second body consists 

of four segments, a cone, cylinder, frustum and a circular base 

where the cone-cylinder combination Is rotated arbitrarilly 

about the 79 percent body stations. Figures 10 - 18 present 

the numerical results as a function of the angle P for the 
vehicles pitching about the point . *• = *e* • 

The results for the cone "broken" at the 80 percent body 

station show that Cx, CN, CM, and CMq are significantly affected 

by P. At angles of attack less than approximately 40 (Fig. 11), 

C increases significantly as the cone segment is rotated upward 

(P is defined positive counter-clockwise); 0½)^ . however, 

is seen to decrease. The axial force coefficient, Fig. 10, 

also increases significantly for o< £ 100°. The Increases 

in the coefficients are attributed to the increased local angle 

of attack ( ¢( - P) of the cone segment in these angle-of-attack 
ranges. The effect on CM, Fig. 12, Is to Increase the o( - 0 

value and to increase the trim angle of attack, o(T . Thus, 

a cone "broken" (nose up) at the 80 percent station will exper¬ 

ience both a greater normal force and Increased drag, and will 

be flying at a higher trim angle of attack than an "unbroken" 

cone (P - 0). The effect on the resulting flight trajectory 

could be significant. The effect on the pitch-damping behavior 

is in the direction of increased dynamic stability since 
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increases negatively for 80 ,(Fig. 13). 

For the cone "broken" at the 20 percent station, however, 

calculations show that the changes in the forces on the rotated 

tip are too small to influence Cx, CN, and significantly. 

However, since these changes in force are located away from the 

C.G. C shows a distinct dependence on (3 (Fig. 14). 

The results for the cone-cylinder-flare body are the same, 

qualitatively, as for the 80 percent cone casa and are given in 

Figs. 15 - 18. 

Figures 19 and 20 summarize the effect of ß on the trim 

angle of attack and the trim lift-drag ratio. The trim angle 

of attack is increased appreciably as -ß increases, for each 

configuration. The (L/D)t increases, reaches a maximum, and 

then decreases. Thus, these configurations may have significant 

L/D at the trim condition for relatively small values of ß. 
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SECTION VI 

CONCLUSIONS 

Newtonian impact theory was used to obtain expressions 

for the static and dynamic aerodynamic coefficients of bodies 

composed of bodies of revolution. The resulting combined body 

possesses one plane of symmetry and motion was restricted to 

that plane. 

When the angle of attack is sufficiently small such that 

no flow shielding is present, the developed expressions (Eqs. 

2.32 - 2.35) apply to any segment body of revolution. However, 

at sufficiently large angles of attack when shielding is present, 

the limits of integration are not independent, and the developed 

expressions are restricted to right-circular-cone frusta. 

In combining the segment frusta to obtain a composite body, the 

effects of mutual shielding and any gap-overlap regions have 

been neglected. Reference 6 shows that, for a bent cone, these 

two effects appear to be negligible for small asymmetries. 

A computer program was developed to calculate the coef¬ 

ficients Cx, CN, CM, CMq for motion in the plane of symmetry 

for the case where the composite body segments are right cir¬ 

cular cone frusta. The complete angle of attack range was 

considered, and the center of gravity and the moment reference 

points can both be arbitrary in the plane of symmetry. 

Example calculations are given for a body consisting of 

a cone, cone frustum and circular base, and for a body consisting 

of a cone, cylinder, cone frustum and a circular base. It was 

shown that significant changes in the trim angle of attack and 

lift to drag ratio may result because of the asymmetry of the 

body. 
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FIG. t GENERAL BODY COORDINATE SYSTEM 

FIG. 2 COORDINATE SYSTEM AND FORCE 
NOTATION IN x-z PLANE 
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FIG. 3 BODY OF REVOLUTION GEOMETRY 

POSITIVE a(0ia<l80°) NEGATIVE a (l80o<a<360°) 

FIG. 4 SHIELDING BOUNDARY FOR BODY OF REVOLUTION 
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FIG. 6 CIRCULAR BASE GEOMETRY 

FIG. 7 MUTUAL SHIELDING EFFECT 
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APPENDIX A 

COMPUTER PROGRAM 

A FORTRAN program for the IBM 1620 computer is presented 

which calculates the force and moment coefficients for com¬ 

binations of bodies derivable from a right circular cone frustum. 

This program utilizes the theory presented in this report and 

calculates the coefficients for 0° £ <* £ 360°. A complete 

program listing is given on page 71. 
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A.1 List of FORTRAN Symbols 

FORTRAN Symbols Mathemathical Symbols 

A(I), B(I), C(I), ... 1(1) 

AANG 

ALP(I) 

ALPHA(I) 

BETA(I) 

CM 

CMT 

% 

CMQ 

CMQT 

CN 

CNR 

, B , C , 
n n n 

a 
n 

a (in rad.) 

• • • 

a (in deg.) 

c(n) 

Mtot 

c(n> 
LMq 

C 

C 

Mqtot 

(n) 
N 

CNT 

cx 

CXR 

CXT 

DA 

DELTA(I) 

DT (I) 

tot 

Aa(in deg.) 

in 
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DOL 

EL(I) 

IBS(I) 

NA 

NBS 

PHONE 

PHTWO 

PHTHR 

PHFOR 

THONE 

THTWO 

XCGL 

XT (I) 

XZL 

ZCGL 

ZT(I) 

d/L 

VL 
types of nt:^ segment 

no. of a's 

no. of segments 

■T ^ ) 

i1;5 

9. 

0, 

VL 

xo/L 

WL 

ZZL 
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A.2 Flow Chart 

A flow chart of the program is given in Figure A.l. 

The general steps in the calculations are outlined below. If 

more detail is desired, the program listing may be consulted. 

1. The program first must read a series of control quan¬ 

tities which determine the number of cases to be com¬ 

puted and the range of a for which data will be obtain¬ 

ed. These quantities appear on input cards 1 and 2 

and their meanings arc given in Section A.3 - Input 

Data. 

2. Next, the program reads the nondimensional properties 

which are characteristic of the vehicle. These include 

the reference area, S/L , the length used for the 

moment coefficients, d/L, the point about which the 

moment is to be computed (xq/L , zoA) and the C.G. 
position (xcg/L , z/l). (See Section A.3, card No.3). 

3. The program enters a loop which reads and calculates 

data for each of the n segments. The input data 

describes the shape of the nc^ segment, and its 

orientation with respect to the principal axis system. 

(See Section A.3, card No. 4). The segments which are 

possible are a frustum, cone, cylinder, and circular 

base. 

If the segment is a frustum, cone, or cylinder, the 

x-integrations An, Bn, Cn, ... In are also evaluated 

for that segment, Eq. 3.2. The point about which the 

moment is to be computed and the C.G. position are 

expressed in the coordinate system of the nth 

segment, Eq. 4.4. After this calculation, the program 
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returns to read data (card No. 4) Cor another segment. 

4. After completing the first loop, another large loop is 

entered. This loop starts with the given initial 

angle of attack and then increments through the range 

of angle of attack for which data is desired. 

Using the angle of attack, and hence the relative angle 

of attack, the forces and moment on each segment can 

be calculated once the amount of shielding is determined. 

The shielding depends on the type of body segment as 

well as the relative angle of attack. 

5. If the nch segment is a rearward facing circular plate, 

the shielding criterion is simple. When the relative 

angle of attack is in the range 90° 4 4 270°, 

the forces and moments on the plate are given by Eq. 

3.20. Othenise, there is no contribution. 

6. If the segment is a frustum, cone, or cylinder the 

shielding angles 0, and 09, are determined by the tests 
i ¿ in) -(HI Tl*|/ 

given in Eq. 2.41. The 0-integrations, , > 

$¡h) ,Eq, 2.37, can then be found and used to calculate 

the force and moment due to that segment, Eqs. 2.32 

2.35. 

7. When the nth segment is rotated, the normal and axial 

force on it must be resolved back to the principal 

axis system. This is done so that the forces on all 

segments will be in the same direction when they are 

summed. If the sense switch number 2 is off, the 

coefficients for each segment are punched. The program 

returns to STEP 4 for another segment. 
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8. The segment coefficients are added to obtain the total 

forces and moment on the composite body* These total 

body coefficients are then punched. 

9. As an option, (sense switch No* 1), the total body 

coefficients may also be obtained as lift and drag 

coefficients, Eq. 4.7. 

10. The program returns to STEP 4 and repeats STEPS 4 thru 

10 for another angle of attack. 
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* 

FIG AI MAIN PROGRAM FLOW CHART 
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A.3 Input Information 

Program Controls 

II A counter which controls the number of times which 

the angle of attack range and increment are to 

be changed. Set II » 1 if no change is desired. 

IJ A counter which controls the number of cases to K 

run for an angle of attack range. For example, it 

may be desirable to obtain within the same run, the 

coefficients for several composite body shapes, or 

to vary the center of gravity location for a given 

composite body shape. 

NA The total number of angles of attack. This number 

should include the initial angle of attack, also. 

DA The increment in angle of attack (in degrees). 

ALP(l) The initial angle of attack (in degrees). The 

program calculates coefficients starting with 

ALP(l), then increments by DA and re-calculates, 

until a total of NA calculations have been performed. 

Vehicle Parameters 

NBS The number of body segments 

TITLE(I) Alphabetic information for a title for each case 

(limited to 24 characters, including spaces). 

2 
SLS Nondimensional reference area, S/L . 

DOL Nondimensional reference diameter, d/L. 
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XZL 

ZZL 

XCGL 

ZCGL 

Segment 

DELTAfl) 

BETA(I) 

ET.(I) 

D(I) 

XT(I) 

ZT(T) 

IBS(I) 

Nondimensional x-coordinate of the point about which 

the moment is to be computed, xo/L. 

Nondimensional z-coordinate of the point about which 

the moment is to be computed, zo/L. 

Nondimensional x-coordinate of the total body center 

of gravity, xcg/L. 

Nondimensional z-coordinate of the total body center 

of gravity, zcgA. 

Parameters 

The frustum or cone half angle for the Ith segment 

(in degrees). Set DELTA(I) * 0.0 for a cylinder 

or a flat base. 

The rotation angle of the Ith segment (in degrees). 

Nondimensional length of the Ith segment, LnA. 

Nondimensional front base diameter of the Ith 

segment dn/L. For a cone segment, set D(I) - 0.0. 

Nondimensional x-coordinate of the origin of the 

Ith segment, 

Nondimensional z-coordinate of the origin of the 

Ith segment, 

The class of body shape to which the Ith segment 

belongs. 
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IBS(I) - +1 means the segment is a frustum cone 

or cylinder. 

IBS(I) = +2 applies to a general body. This was 

used to allov; for later expansion of the program. 

Do not use IBS(I) = +2. 

IBS(I) = +3 means the segment is a flat base. 

Input Format 

Card No. 1 II IJ NA DA ALP(l) 
12 12 13 F7.2 F7.2 

This card may be repeated II times. The last 

card No. 1 should have II = +1 

Card No. 2 NBS TITLE(I) 
13 6 A4 

Card No. 3 

Card No. 4 

A card No. 2, card No. 3, and NBS number of card 
No. 4 are required for each of the IJ cases. 

SLS 
E13.8 

ZCGL 
E13.8 

DOL 
E13.8 

XZL 
E13.8 

ZZL 
E13.8 

XCGL 
E13.8 

DELTA(I) BETA(I) EL(I) D(I) XT(I) 
F6.2 F6.2 E13.8 E13.8 E13.8 

ZT(I) IBS(I) 
E13.8 13 

There are NBS number of card No. 4's required for 
each card No. 2. 

As an example, the following data apply for one of the 

cases considered in Section V; a 10° cone broken upward at 0.8 of 

its length. 

♦ 
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Card No. 1 II IJ NA DA ALP(l) 
+1 +1 +73 3.0 0.0 

Only one range of angle of attack will be used.o 
Data will be calculated for a = 0° to 360° at 3 
intervals. Only one configuration or case is 
considered. 

Card No. 2 

-- Card No. 3 

NBS TITLE(I) 
3 BENT CONE 

SLS DOL XZL ZZL XCGL 
0.097679? 0.35266 0.65 0.0 0.65 

ZCGL 
0.0 
For this case, it was decided to nondimensionaliiie 
with respect to the base area, base diameter 
and total body length 

Then 

— 2 ^ 
A_ 

L 
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For the first segment (Cone): 

Card No. 4 DELTA(I) BETA(I) 
10.0 -6.0 

EL(I) D(I) XT(I) 
0.8 0.0 0.00438248 

ZT(I) IBS(I) 
0.0836228 +1 

For the particular case of abent cone, anc^ 
are given by the equations 

- ( i ^ cos P.) 
L 

= - — siu P, 
L 

For the second segment (Frustum): 

Card No. 4 DELTA(I) BETA(I) EL(I) 
10.0 0.0 0.2 

ZT(I) IBS(I) 
0.0 +1 

For the third segment (Circular base): 

Card No. 4 DELTA(I) BETA(I) EL(I) 
0.0 0.0 0.0 

ZT(I) IBS(I) 
0.0 +3 

The output for this example is given on page 70 for 

D(I) XT(I) 
0.282128 0.8 

D(I) XT(I) 
0.35266 1.0 
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A.¿ Output Information 

Sense Switches 

Sense Switch 1: 

ON - The total body force coefficients will also be 

expressed as lift and drag coefficients, CL and C^, 
OFF - No lift and drag coefficients. 

Sense Switch 2: 

ON - The force and moment contribution of each segment 

is NOT punched. 

OFF - The coefficients for each segment are punched. 

Output Key 

Line 1: 

Line 2: 

Line 3: 

Alphabetic information giving title. 
2 

S/L*L nondimensional reference area, S/L 

D/L nondimensional diameter, d/L 

XO/L nondimensional coordinates of point about 
ZO/L which moment is computed, xq/L, zq/L 

XCG/L nondimensional coordinates of total body 
ZCG/L center of gravity, x /L, z /L. 

CS 
A list of data pertaining to each of the segments. 
Data for each segment is given on a separate line. 

L(N)/L nondimensional segment length, Ln/L 

DELTA segment half angle (in degrees) 

D(N)/L nondimensional segment diameter, d /L 

BETA segment rotation angle (in degrees), ßn 

X(T)/L nondimensional coordinates of front of 

Z(T)/L segment, (x^/L , (zT)n/L 
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Line 4: ALPHA angle of attack (in degrees) 

SHAPE the number of the segments 

CN normal force coefficient, 

CX axial force coefficient, 

CM static moment coefficient, 

CMQ pitch damping coefficient, Cj^ 

CL composite body lift coefficient, C^ 

CD composite body drag coefficient, C^ 

Ii sense switch 3 is off, the segment coefficients are punched 

as well as the total composite body coefficients. The segments 

are numbered by the order in which the data is read. 

The output for the example considered in Appendix A.3 

follows. 
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bent cone 

5/L*L • .09767 D'l ■ .35266 XO/L • .63000 20/L • 0.00000 XCG/L ■ .63000 

UN)/L 

.60000 

.20000 

0.00000 

AtPHA SHAPE 

0.00 
1 

2 
3 

total 

DIN)/1 

0.00000 

.28212 

.35266 

CN 

1.23640E-01 
O.OOOOOE-99 
O.OOOOOE-99 

1.23640E-01 

BETA 

-6.00 

0.00 

0.00 

CX 

5.B19B1E-02 
2.17102E-02 
O.OOOOOE-99 

7.990B4E-02 

XITl/L 

.00438 

.80000 

1.00000 

CM 

3.89227E-02 

2 I T ) /L 

.08362 

0.00000 

0.00000 

CMS 

9.59318E-01 

CL 

1.23640E-01 

O.OOOOOE-99 -9.60201E-01 
0.00000E-99 O.OOOOOE-99 

3.89227E-02 -1.91972E-00 

DELTA 

10.00 

10.00 

0.00 

3.00 
1 
2 
3 

2.25149E-01 
6.062T1E-02 
O.OOOOUE-99 

8.37527E-02 
2.41974E-02 
Ü.00000E-99 

6.92309E-02 
4.84455E-02 
O.OOOOOE-99 

-9.69460E-01 
-9.56548E-01 
O.OOOOOE-99 

TOTAL 2.85777E-01 1.079S0E-01 2.07853E-02 -1.92600E-00 2.75281E-01 

10.00 
1 
2 
3 

3.29925E-01 
1.19412E-01 
O.OOOOOE-99 

1.15827E-01 
3.15834E-02 
O.OOOOOE-99 

1.00936E-01 
9.54191E-02 
0.00000E-99 

-1.12364E-00 
-9.45614E-01 
O.OOOOOE-99 

TOTAL 4.49337E-01 1.47410E-01 5.51749E-03 -2.06925E-00 4.16913E-01 

15.00 
1 
2 
1 

4.4567 IE-01 
1.78759E-01 
0.0U000E-99 

1.52 373E-01 
4.2866 IE-02 
0.00000E-O9 

1.36044E-01 
1.42842E-01 
O.OOOOOE-99 

-1.29621E-00 
-1.07742E-00 
O.OOOOOE-99 

TOTAL 6.24431E-01 1,95239E-01 -6.79776E-03 -2.37364E-00 5.32622E-01 

2CG/L ■ 0.00000 

CD 

7.99084E-02 

1.32446E-01 

2.23197E-01 

3.30201E-01 
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A.5 FORTRAN Program Listing 

The program includes the following: 

1. MAIN - the main program which calculates the aero 

dynamic coefficients for bodies composed 

of cone frusta and flat plates. 

2. FRUST - a subroutine to calculate the x-integra¬ 

tions, V V cn» ^ for a 

conical frustum segment. 

3. GENER - a subroutine to allow for future program 

expansion. At the present time, no calcula 

tions are performed by this subroutine. 

4. ASINF - a function which calculates the arcsine. 

Values from - y to + Y are possible. 
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1. HAIN 

DIMENSION ALPHA!100>»ALP!100)tI 11 LE>6)«DLL I AI b )•Ü£1A ! 6 ) »bulbJ » 
IDL(b)tXT(6)*¿í(6)>IBSI6)*COB(6) » SIÜI 6) iXOP( b I«¿OR!b)»ACOR Ib ) • 
2¿CGR < 6 ) •Atb)*b(b)>Clb)*D(b)*E!b)*F(b)*G!6)*H(b)*EMb)*FP<b) 

COMMON A*B*C*D»E*F»G*H*tl»DELTA»ELtOL 
I READ I I»IJ«NA*DAiALP!1' 
? F0RMAT121¿,I3.¿F7.2) 

AlPHAI 1 ) ».17<*53¿9¿E-l«ALPt 1 ) 
DO 3 J » 2»NA 
ALP! J)»AlPI J-D+DA 
ALPHA«J)».174332 92E-1*ALP IJ) 

3 CONTINUE 
5 READ 4*NBS»<T1TLE! 1)•1s1*b) 
4 FORMAT!I3«bA4) 

READ btSLS»DOLtXZL»¿¿t-*XCGLt¿CGL 
6 FORMA T(bE13 »Ö) 

CW.O/SLS 
C4«4,0»C1/!DOL**2) 
PUNCH 7 » ! T I TLE ! I ) * I «1 ‘b ) * jL-j • üOL »AlL'AÁL» XCGL • alGL 

7 FORMAT! 1H1 b^4/ 0H0S/l.»L *FÔ»3t7H U/L *Fb«3»oh AU/L *Fo»3*oh 4 
10/L ■FBtStÍrt XCo/L *Fb»3/Vn> ¿Lü/c *Fö»3//S*ny l!N)/L wli-TA 
2 U(N)/L oETA a ! T ) / L ¿IT)/D 

A FORMAT ( lH0*2!FÖ»3»3XtFO»4*AA) lFÒ»3tjAFe«3) 
DO 15 I * l.NBS 
READ 9tDELTA<1)tbtT A!1)«EL ( I )«OL!I )*AT( I )»ZI(1) i IBS!I ) 

9 FORMAT(2Fb.2*4E13.B»I3) 
PUNCH 0»EL‘P »DELTA!1)»DU I )»BETA! I ).XT!I )»ZT!I » 
DELTA!I )*.17453292E-1*DElTA!I ) 
BETA! I)*.1743 32V2E-l»títíAlI ) 

N-IBSU ) 
GO TO ! 10.11.12 ) .N 

10 CALL FRUST ! I»FPI I ) ) 
GO TO 13 

II CALL GENtRlI»FP l I U 
GO TO 13 

12 BCX»-1.57079b3*<DHI)**2)/SLS 
BCM—BCX/DOL 
BCMQ«4.0»BCM/OOL 

BTRM*.0625MUL< I )**2) 
13 COB!I)«C0$F! BETA!I )) 

SIB( I)»SlNF(bETA(I )) 
DX-XZL-XT!I ) 
DE»ZZL-ZT<I ) 
DXC«XCGL-XT! I ) 
DZC-ZCGL-ZT!I ) 
XORlI )»ÜXACOol1)4lZ#S1olI I 
ZORlI )«02*000lI)-uA*Sioll) 
XCGR! I )«uXL*Lüol I )-»OZC*SIot I ) 
ZCGR!I )«OZC*^Otí! I )-ÜXC*51b( I ) 

15 CONTINUE 
PUNCH lb 

lb FORMAT!75H0 ALPHA SHAPE CN Cx CM 
1 CMQ CL/9H-. CD) 

DO 40 J * l.NA 
PUNCH 17 • ALP IJ) 

17 FORMAT!1H0F7.2) 
CNT-0.0 
CXT-0.0 
CMT «0.0 
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CMQT-0.0 
DO 35 I » 1 » NB3 
AANG-ALPHA( J)-8i.TA( I ) 
CO“COSF(AANG J 
S-SINFlAANG) 
I F ( IBS! 1)-3 ) 22.18.22 

18 IF ( CO ) 19.20.20 
19 CS-C0*«2 

CN - 0.0 
CX»BCX*CS 
CM-BCM»Ci»«Z0K( I ) 
CMQ*BCM0#C0*(20K( I )#ZCoH( 1 )>.dTKMI 
GO TO 330 

20 CNR-0.0 
CXR-0.0 
CM»0.0 
CMQ«0.0 
GO TO 33 

22 IF(AB¿F<CO>-*00^001) 25.29.23 
23 IF ( AB¿>F U>/CO>>A05F (FPI 1 I l-.OuoOOOOl ) 24.^4.25 
24 I F l FP( I )*C0) 20.20.28 
25 ARG»FP(1)»CO/S 

THET-ASINF(AKG) 
1F (3) 2 7.28.26 

26 TH0NE«-1.5707963 
THTWO-THET 
GO TC 31 

27 THONE * TmET 
THTtoO-l.5707963 
GO TO 31 

28 THTwO*l.5707963 
TMONE--THTWO 

31 PMONE-2.0»! înT»U-TrlGNt) 
IF l Ab jF t PmoNU-.00001 ) 20.20.32 

32 CUNO»COSF<THUNE) 
CD0S-C05F« ÎHIWO) 
PHTikO»2. O* I CON0-CD03 ) 
PhThR«0.5*1PHQNt^b1NF)2•O*I HONE )-81NFl2.0*ThT«O )) 
PHF OR* PH TWO'.. 66 66 8 66 7* I CDÜ3*» 3-CUN0*» 3 ) 
CP1*CO*PHONE 
CP2*C0*PHTW0 
CP3«C0»PnTHR 

SP2*S*PhT WO 
SP3*S«PHThR 
SP4*S*PHF0R 
ACB3-AI I >»CPi-dU )*3P2 
CSBC*C(I )*jP3-BI I )4CP2 
CCDS«C<I)*CP3-D»I)*SP4 
ECFS«EII)«CP2-F(I)»SP3 
GSFC*G( I )•SP4-F íI )»CP3 
CX»C1*(C0»ACö3.8»CSBC) 
CN*Cl»lC0*CSdC*S*CCDS) 
CM* ( C !• < C0*ECF3.5*G3FC ) .AOKl 1 (•CN-i.ORl 1 )*CA)200u 
CMQ«C4»( C3bC*(20Rl I >»ACGRl I ) .XOR( 1 )*¿CGHl I ) )-XUHl I )»X(.GH( 1 ) »OV-Ui 

1 -¿OR I I )»2CGR» I )»ACö8.tM I )»3P4-m( 1 ) •CP3.CCF 3« t tuK U )42tGKU ))- 
2 GSFC*(XCGRI I )♦XORl1))) 

330 CXR*CX»CUBU )-CN*3lb( I ) 
CNR*CX«Slbll)*CN*COb( I I 
CNT-CNT.CNR 
CX T *CX T♦CXR 
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CM!«CMT♦CM 
C^QT »CMQT^CMU 

3 IF ( SENSE SWITCH 2) 35*39 
39 PUNCH .34» I »CNR»CXR»CM»CMQ 
34 FORMATUH 10a«I2»1X»4U<»U2»:>1 > 
35 CONTINUE 

IFUENSE SwUCH 1) 3 7 » JÖ 
37 CA«COSF(ALPHMlj)I 

SA«SINF(ALPHA«J)) 
CO«CNT*SA-*CXl»CA 
CL-CNT»CA-CXl»iA 
PUNCH 36*CNT*CXI.CMT»CMUI»CLtCO 
GO TO 40 

38 PUNCH 36.CNTtCXT.CMT.CMQT 
40 CONTINUE 
36 FORMAT! IH0.8A.SHTQTALO(1A.EÍ2.5)/1H*-E12.3) 

IJ ■ IJ - I 
I F (lj) 42.42.5 

42 II » Il - 1 
IF ( 1 1 ) 43.43*1 

43 CALL EXIT 
END 

« I i . i'll 
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2.. SURPOUTI\F FRUST ( I » TO ) 
DIMENSION A ( 6 ) »6(6) »C*6) iD<6> *EI6) *F(6> »G(6) »Htfel *CI <fc) #i)ELTA(6 ) * 

1EL < 6)*01(6 I 
COMMON A*9tC»D»E»F »G*H»EI»OELFA»El*OL 
CO'COSEI DELT A ( I )) 
S*SINF(DELTA(! ) ) 
TO*S/CO 
SS«1.0/(C0»*2) 
Q*rLI I)* TD 
CON’El ( n*(DLU )*Q) 
SL«( FL ( I )**2)#SS 
CT0*0.5*0LlI)*TD*C0N+jL*<C»5*DLlI)*«6666666T*Q) 

CTh«SL*SS*( CON-0.5#El< I )*Q)+01«I)*(SL*(»75*TD*DL<I )-.66666667«eL 
i ( m^.25*DL( n*Q#(Oi( i )-elU n ) 

RbO.S*CON«S 
a I i ) * c,*Q 

C(1)■CO*R 
0( I ) »0.5*C0*C0#C0N 
A ( I )*TO*ö( I ) 
T*0.5*CTO»CO 
G ( I )*CC*T 
F ( I ) » S*T 
F( I ) « 5* F ( n/CO 

W«0*S*CO*CTH 
H ( I ) « 5*W 
c I ( I ) «C0»'*< 
6F turn 
eN0 
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SUBROUTINE GENER«I»FP> 
RETURN __ .. 
END 
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FUNCTION AS I NF (XX) 

C RANGE -1 L*E* X L • t « ♦!* -Pi/2 L • t • ASIN L»c.» +P 1 / 2 
1 X ■ ABSF(XX) 

if (x-i.o) a*n*4 

11 PSI»l(llU-,u*'1262<»91 1#a> , ju66 7U(J9u1 )*A-,ol7u8öl26)*A+.U3utt9l0öl )* 
lX-.050174i0i)J*X*»0iitt9 7öyö7)*x-.^l45yoäUI*A+i»3 70 796j 
ASINF»1.5 707963-¿UKTF(1.0-A »»Pal 
IF (XX ) 2 » 3 » 3 

2 ASI NF»-AS I NF 
3 RETURN 
4 PRINT 100.XX 

CALL EXIT 
10U FORMAT </34HA*Gurtfc.NT IlM AaiNF oKEATlk TnAN l.UclO.O) 

END 




