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FOREWORD

This report was prepared by Measurement Analysis Corporation,
los Angeles, California, for the Aerospace Dynamics Branch, Vehicle
Dynamics Division, AF Flight Dynamics Laboratory, Wright-Patterson
Air Force Base, Ohio 45433, under Coatract No. AF353(615)-1418. The
research performed { part of a continuing effort to provide advanced
techniques in the application of random process theory and statistics to
vibration problems whichic part of the Research & Technology Division,
Air Force Systems Command's exploratory development program. The
contzract was initiatesd urder Project No. 1370, "Cypamic Froblemsin
Flight Vehicles, ' Tark ilo. 137005, "¥redictionand Control of Structural
Vibration, " Mr. R. G. derile of the Vehicle Dynamics Division, FDDS,
was the prolect engineer,

,

This report covers work condu:ted from March 1944 to January
1965. TI'hs contractor's report number is MAC 403-08. Manuscript
released by auntsors Fabruary 1965 for publicationasaa Air FotceFlight
Dynamics ilaberstory Technical Report.
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ABSTRACT

The report describes fundamenta: concepte involved in the
statistical analysis of multiple-input singie-output time-invariant
linear systems. The definitions of a matrix {r:quency response
function aud a multiple goherence “unction are presented. Also
discussed are marginal and conditicoal (p;rtul; coherence func~

¢ eons with empbasis on their iaterpretationa ‘&

Formulas for computing simultaneous confidence bands for
all elements of the matrix irequency response function are pre-
sented. Obtaining these confidence bands recuire the use of the
standard "F" distribution. Expressions for these confidence bands”
are given both as a function of the various t'/pes of coherences and
of the elements of the cpectra!{’den-ity matrix. The effect of the
various quantities onthe width of the confidence bards is discussed
in detail. Confidence bandg for the gains and phases of the {re-
quency response functions a&e also dave.vped.

The interpretation of linear system computaiional -results
in tezms of & time invariantnonlinear system model is described.
It is shown how the linear system results provide whatmay be
thought of as a '""veost" linear fit to the nonlinear model. The
multiple coherence function then givere a quantitative mezsure of
goodness of this {it. In this sens¢ the coherence tunction/-nly bt
uced to provide a test for system ‘lnearity. ,
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1. THZ MEASUREMENT OF THE VARIOUS TYPES OF GOHERENCE

‘ In measuring frequency response functions and in many other applicationa'.
for example, measuring the kind-and degree of relat;on between simultaneously
recorded vibration reccrds, one is led to the problem of measuring coherences
of multiple stationary random functions (time series). There are various

]
,'t'/pf:l of coh:rences. Four types ar¢ discussed here. They are (a) multiple

coherence, (b) marginal multiple coherence, (c) conditional (or partial)

i multiple cohererce, and (d) mn;inal conditional muitiple coherence. The
‘ various types of coberence men'tic‘ncd above are 3ll particular functions of the
elements of a spectral density matx"i.x of a multiple stationary time series.
{Formulas for the various type'e of coherence will be stated subsequently. )
A spectral density matrix of a melitiple stationary time series is a function of
frequency f, and coherences are then also functions of frequency f. In speaking
of a spectral density matrix or § coherence, one is really speaking of a spectral
density matrix or a cohe'rence At a ptrticu.l*r frequency fo.

From finite length recoj)s (e. g., simultaneously measured vibration '
records W'be a finite length sample of a multiple stationary
time series, one computes irran appropriaie manner sample spectral density
matrices corresponding to a"collection of frequencies. To be more precise,
each sample spectral denslt‘r matrix corresponding to a particular {requency l()
in reality pextains o a (usually) small frequency band of bandwidth B centered
at frequency Io. It is convenient, however, to speak of the sample spectral
density matrix at frequency fo.
The sample counterparts or estimatoss for the various types of coherences

M‘._\_____

mentioned above are obtained in the following manner. At a particular frequency

IO , each sampie coherence is the .ume function of the elements of the sample

spectral density matrix at frequencyvy fo as the corresponding true coherence is

! of the elements of the true spectral density matrix. Subject to certain hypctheses,




the joiut distribulion of the 2lements of a sample spectral density matrix has
been darived in closed form (Reference 1). Furth'ermore, it is demonstrated
in Reference 1 that if the frequencies correspouding to the collection of

sample 'spcctral density matrices are spaced a n'nuble distance «part, the
saraple spectral density matrices are essentially independcntly distributed.
(This necessary spacirg is the analysis bandwidth B where B is defined in

a reagonable manner.) Since sample coherenc_‘s ars functions of the elements
of a sample spectral density matrix corresponding to a particular frequency,
sample coherences corresponding to different frequencies are 4lso essentially
independently diatributed if the {requency spacing mentioned above prevails. |
With such a frequency spacing, the statistical uncertainty of sample coherenges

may then be described separately at each frequency
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1. 1" DEFINITION OF MULTIPLE COHERENCE

Formulas for ax® interpretations of the types of coherence mentioned
above will now be stated.

Let xl(t), xz(t). ven ,xpl(t). xpl“(t). coe 'xplﬂ’z
P + P, ® pth order multiple stationary time series possessing the p x p spectrai

{t} dencte s

density matrix (at frequency f).

o ) -
. ' S, . S‘me :sl'pl”(z). c e .slpm
’0 . F . ' ° o
. . | . / .
' . . ! . ' .
Cg
S . { S f}). . ...8 {
o pl'lif) 91")() : Pl‘pl+l() plp() 0
R R N RN U
plﬂ.l le.pl : I.H'PX” l+l,p
) . ‘ . : . e
! . ‘ 3 : . .
I' S o« & o o o o s S » o & @ os
L pl(f) ppl(f) : P-Pl*‘m pp(f) B

in Eq." (1) the element Sjk(l) of the matrix L(f) denotes the cross-spectral
density (at frequency f) between xj(t) and ka » ok =1,...,p). A spectral
density matrix Z{f) is ;l\v'ay- Hermitian non-negative definite. It will be
presumed {(for the preunt,dilcuutpn) t}.nt the matrix I{f) is positive
definite, and hence non-singular. Let.

R ] B e e (@)




Ny .
| whez@the matrices 2,0, T,(0, T, (), T,,(0) in Eq. (2] are the sub-
Ymattices of Z{f) indicated by the partitioning in Eq. (1). Let

SRR /
o oy £ - ]s™w] ¢’ (3)
' )

i p {

The multiple coherence at frequency f between xp(t) and xl(t),xz(t). ,xp 1(t)]

is given by the formula
¢

2 1
_ W= 1= *
——y Y‘, 1,2, see .P'l S (‘) Spp“) ( )
PP

The myltiple coherence YZ ({) ranges between zero and unity

prl.2,...,p-1
and measares or describes the degree to which (at frequency f) xp(t) is

reiated to [xl(t).xz(t). el ,xp_l(t)] by means of linear time invariant operators
ka. kz1,...,p-1 acting on x (t), k=1,...,p-1 respectively. Stated another

vy Yoo 1,2,...,p-1

frequency f) the system diagram indicated below prevails. '
' ' :

(fy measures or describes the degree to which (at

. - e ey 14 te li . .
In Eq. (5), Lpl 1..pz N Lp' p-1 enote linear time invariant operators
A multiple coherence cf zoﬁcates no such relation prevails; the larger
the multiple coherence is, the re nearly Eq. (5) represents the irue

\
re'.ation with such a relation prevailing periectly as multiple coherence becomes

uni‘ly.
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Since the subscripts oun the x(t) may be regarded as arbit'rary labels,
it is clear hy‘l Eq. (4) ia a formula for other multiple coherences (at frequency f}. ,

For exampje, the multiple cohegence at frequency { between xj(t) and th’
. v 1)

remaining (p-1) components of xx(t), e ,xp(t)] is given by

) o

! ) ‘ . Ly

2 l,. N ) ’ .j 11
Yoz, .01 gen,... 0 (Sjj(f)sj(f))‘,

—

Since any submatrix of Z{f) which is symmetric with respect to the
main diagonal is a spectral density matrix (at frequency f} of selected com-
ponents of xl(t), xz(t), ce ,xp(t). one may employ such submatrices to compute
other multiple coherences. Such multiple coherences are termed marginal

multiple coherences or aimply multiple coherences, when proper subscript

notation indicates which components are involved. For c¢xarnple, if one

congiders [xl(t), e X (t)] then yz . ‘L) is the multiple
p Pl ,thnngpx-«"

coherence at frequency { between xp (t) and [ l(t),.. . .x l(t)] To com-
1
_l(f) one starts with the lubm:trix Zn(f) of Z(f) and

2
pute y_
P, l,Z,...,pl

suitably applies the formula given by Eq. (4). It is clear that the interpretation

of marginal multiple coherences is the same as that for multiple coherences.

1.2 CONDITIONAL (PARTIAL) COHERENCE
With respect to F.q. (1) there {s a matrix computation that may be

performed on Z{f) to yield a spectral density matrix of smaller dimensions.

Such a smaller spectral density rma trix is called ay‘diﬁoml (or partial)

spectral density matrix. The formula for computdng such a matrix and its

interpretation will be explained with the partitioning and submatrices appearing

in Eq. (1).and Eq. (2)
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' ! A z', .
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* r4
,. '1 "
) P
! v’ , ' .
' . Cpnsider the P,¥P, Hermitian matrix defined by:
4 7 :
W4 _ , -1
YRA zpl+l,...,41,2,...,pl(f) 2 M0 <5, (02, (DZ,,0) (6)

Recall that 222({) is a P, XP, matrix (where P; * p-pl), Eu(f) and le(f)
are P, xp, and p xp, respectively, and T, ,(f) is p xp,. Since If} is
t

positive definite, it follows that “pitl.upli2p

definite (and hence also non-singular). Since Z

(f) is positive
1

i) is a
pﬁl,...,p 1,2,...px()

P, XP, Hermitian positive definite matrix it could be the spectral density

" matrix (at frequency f) of a pzth order multiple stationary time series

[w
, p,*
thelpnvious section, it is possible to represent the pzth order multiple

+ Ct)] in the following form:
PI*R;
i, .

)= Ly, x,(t)+ L, x(t)+... +L

l(t),. . ,vp(t)].. With re¢spect to the discussion on multiple coherence of

stationary time series [xp‘“(t). cee )X

13

B A x (8)Hw ()

P, P

"p +2(t) x Lzl xl(t) + L 2 xz(t) +... sz x (t)+ wp +2(t) (7

1 2 1 Py 1
' '
x {t)= L x (t)+ L x (ty+... ¢ L x (t)+ w t)
P *P, Pyl P2 2 P,P; Py p,+Pz(
¢
[ ]

‘
The interpretation of Eq. {7) is as follows. ¢In Eq. (7), [xl(t),. .o ,xp (t),
!

e P + = 4 . .
pxﬂ(t)' xpx"'Pz(t)] is the original P,*P, pth prder mu!nele stationary

time series of the previous section. The ij of Eq. (7) represent linear time
invariant operators. Omne furthermore has [w t),...,w (t)],
Pyt PI*P,

X
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’

a pzth order multiple staticnary time series with each of {ts components

'p +k(t)' (k=1,... .PZ). possessing ;& all frequencies { a multiple cobcrence

1 }

of zero with [xl(t). xz(t), coe ,xpl(t)’],/ The preceding property of the wsl*k(q
4 A

may be explained roughly as foll’ow-. 5he components wpl+k(t). k=1, g Py

are the original componerts xp'ﬂ‘w. k=1,..., P, with the linear 'effect' of the
) .

Temalning componenis xj(t), J=1, “;‘, Py subtracted out. Since the linear

4
"effect” between x (t), k =l.l, ’p . and x(t), j=1,...,p,.,has been sub-
p,*k 2 b I

tracted out to obt‘ainl each wp +k(t), the multiple coherence between each
1

wpl+k(t) and [xl(t). ces ,xp](t)] is zero. The P,XP; spectral density matrix

of [w (t)eese,w (t)] in Eq. (7) is given b . (6).

The representation Eq. (7) is unique, and one may write formulss
expressing the frequency response functions ij(() corresponding to the ij
in terms of the elements of the spectral density matrix Z{f) of Eq. (1). The
formulas for the frequency response functions ij(f) are not stated here since

they are not needed for the present discussion. However, let d

4

2 L“xl(t)+L12x2(t)+... + L (t)

x
pl+l 1pl P,

x_(t) (8)

1::l(t)'b L pr P,

xz(t)+... + L

"p1+z : L 22

. ] . L] . » L] . » L] L] o o * . L] L] . .
4

v
- +
pl+p2 = L lxl(t) L xz(t) +... +L (t) .

2 x
P2 P2 PP Py
’ ¢
' “9 ’
b _ o
From the discussion on multiple coherence of the preyidus section, it is clear

that [vp +l(t),. e,V (t)] is a pzth order :nuitiple stationa .y time series

P, tp

1 1 72
with each of its components - (t), (k=1,...,p,), possessing at all
——— pl+k 2 —




frequencies { a multiple coherence of unity with [xl(t), xz(t), .- ,xp (t)] .
]

That is, by construction, there is a perfect linear relation between vP <H"(t‘),
1

k=1,... 1Py and xj(t),j zl, .08 Py Now, from Eq. (8), one may write Eq. (V)
in the form (uniquely)

¥ 44

[~ - -y p-
x (t) 7 v t w +.(t))
pl+l 'pl+1() Pl l( )

xpl+2(t) vpl#Z(” 'pl+2(t)
. = . + . {9)

'

. . .
. . .
. L] v

t t t
+pz‘ U L.vpl'l'pz'( ).. ;wpl{rpz( )_.

Lx,

1

where the V component is perfectly coherent at sll frequencies { and the

t
W component is perfectly incoherent at all frequencies f, with [xl(t), cos ,xp (t)] .
1

The conditional (or partial)spectral density matrix T (£)

plrﬂ....,p'l,Z,...,p1

therefore is the P, X P; spectral density matrix of[xp “(t). oo ,xp +p (t)]
1 1 %2

after subtracting from [xp + 1(t), ooy xp +p (t)} that part which is attributable

to the linear time invariant operators aciing‘ on [xl(t). .o ,xp (t)] .
1
A conditional (or partial) multiple coherence {s a multiple coherence

computed frocm a conditional (or partial) spectral density matrix. The formuls
for a cond itional spectral density matrix is given by Eq. {6); the formula for

a multiple coherence by Eq. (4). Appropriate identification of submatrices and
use of Eqgs. '(6) and (4) enable conditional muitiple coherences to be datermined

from Zif) of Eq. (1},




v

The following example illustrates the notation for conditions]l multiple
coherence. The muitiple coherence {at frequency f) between x (t) and

x (t),..o,
[ p-1 ) p1

“(t)] after conditioning on [xl(t), xz(t),. .o .xp (t)] ie denoted
1

2 o .

by H" p-l,p-2,... 'Plﬂ ll'z" .., 1(f). To be specific, if a two input xl(t)

and xz(t), single outpz{t x3(t) » linear system is being analyzed then the multiple
conditional cohcrcuce’etween xl(t) and xs(t) conditioned on xz(t) is denoted

by 112. 3 2(I). This special case reduces to the ordinary (2-dimensional) coherenc :
between xl(t) and x3(t) after conditioning on xz(t) and i# discussed in detail

in Reference 5 with a slight change in subscript notation. A conditionc! multiple
coherence measures Or describes the degrec to which (at frequency f) 2 com-
ponent xp(t) is related by linear time invariant operators to other componeuts
xp_l(t), ‘e .xp “(t) after "effects' due to linear time invariant relations with

other components xl(t), xz(t). ces .xp {t) have been subtracted from
1

xp(t). xp-l(t)' ves s X {t).

pl+l

A marginal conditional multiple coherence is a marginal multiple

coherence computed from a conditional spectral deusity matrix. The vrevious
discussions on marginal multiple coherence and conditional multiple coherence
indicate how marginal conditional multiple cohercnce is to be interpreted.

The following example illustrates the notation for marginal conditioral multiple
coherence. The marginal multiple coherence (at frequency f) between xp(t)

5

and the components ["p-l(t)' xpoz(t)] of [ xp-;(t). xpcz(t). xp_s(t), oy xPl"l(t:"

).

2
after conditioning on [xl(t).xz(t). con .xpl(t)] is denoted by Yp, p- l'P'Z': 2. P

More specifically, if a three input [xi(t), i=1,2, 3] single output x‘(t) linear
system is urder consideration. then yzl. 4]2“) is the marginal multiple
ccherence between the input xl(t) and the output x4(t). In this case the
conditioning is on xz(t) and the third input x3(t) is effectively ignored.




1.3 THE DISTRIBUTION OF SAMPLE COHERENCE

From the above discussion on coherence and sample cohersnce it is
clear that (at a particular h‘e'quency fo) the various sample coherences
corresponding to the varicus types of coherence are, in general, different
functions of the eler:. :nts Qf the sample spectral density matrix ﬁ(fo)
corresponding tc the spectral density matrix 2([0) of Eq. (1). (The hat "A "
notation will denote a sample [estimate]of the indicated quantity) The statistical
distribution corresponding to sach type of sample coherence cel* 'd above
has been derived, and the results obtained in closed form. (See /.{e[erence.
l and 2.) The statistical distributions of the various types of ux‘plc': coherznce
are, i{r general, different. That is clearly to be expected. Howevc’nghe
probability density function of the distribution of the four types f)f sample
coherence defined above may be expressed by the following general formula:
Let '

n = effective number of degrees-of-freedom,

p = effective number of records

Yz = true coherence (10}

= y = sample coherence

The protability density function of any type of sample coherence defined
above is then given by

Ln) (1-¥5) P72 (1-9)™"P Fin, nip-Liy2y), (0< y <1)

[(p-1) T(n-p+1) (1)

C(yln.p,YZ) =

2
In Eq. (11), F(n,n;p-!;y y) is the hypergeometric function with the indicated
parameters and variables. The method of determining the parameters
2
n,p,y of Eq. (10) for the various types of sample coherences defined

previously is now described.

10
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With respect to Eq. (11) let N = BT denote the effective number of degrees-of-
freedom ?f the spectral density estimator e(fo) of 2(10). For & sample multiple
coherence or a sample margipal MuRiple coherence n = N. For any sample
conditional coh'ol‘:cg n ='N- P where P\ denctes the number of components
that have been condirxoned.' For any type of lapzple multiple coherence, the
parameter p is given by‘i‘he total number of components involved in th’ Lonerence
relation (not in general the total number of components of the multiplé stationary

2.
time series). The parameter Yy 1is always the true value of coherence whatever

the type. Examples: With reference to Eq.(11) and the previous discussion

(f.).

).

. A2 _ _ 2 _ 2
2oFor YL g, palfg) onemren =N pEpand vy G el
A2 o 23 2 ‘
b. For Ypl' l,Z.....pl-l(‘O) one has n=N,p=p,, and y Ypl' l,Z,...,pl-l('O
c. ForA2

Ypp-1,p-2,...,p #1102, ,p ol R Pesm 2 Nopy, popy

2_ 2

= Yp,p,['p-z,...,pl+l P.,Z,....pl“

and ¥ 0) .

d. For QZ

pp- .-2l1,2,... 'pl(fo) one has n = N—;l,p: 3,

and 2y

f
pp-1p-2l1, 2,0,

0) ’
For more concrete examples, assumne a three input [xi(t), i=l,2,3] single

output, x4(t), linear system with N degrees-of-freedom in the measurements.

a. The sample multiple ccherence between the output x4(t) and the

inputs is (f) and one has n=N, p=4 and y2= (f}.

A2 2
Yg.1,2,3 Y4.1,2,3

b. The sample marginal multipie ccherence between the input 13(1) and
the inputs x;(t) and xz(t) while ignoring the output x4(t) is ’Y‘Z}’ i 2({)

and one has n=N, p=3 and YZ = yz (n.

31,2
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¢. The sample conditional multiple coherence between the output x‘(t)
A2
and 2.!;0 two inputs x, (t) and x_(t) conditioned on xl(t) is Yg 3 Z“(!')

and one has n:=N-1, p=3, and y = yi. 32 l(f).

~d. The sample marginal conditional multiple coherence between the

woix?pix’t'x"x't)-and. the input x3(t) while conditioning on xl(t) and
! 2 2
ignoring xz(t) 13 ﬁ 3Il(f) and one has n=N-1, p=2, and y = Y";ll(n.

Tables of the cumulative distribution function corresponding to the
probability density function, Eq. (l1), aave been calculated for the parameter
" p ranging from two through ten, and for n such that p<n <20(Reference 3.
The rp}eg‘t'or n anl p described above may be applied in order to properly

make use of these tables.
1]
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2. THE MEASUREI#ENT OF MATRIX FREQUENCY
! RES?ONSE FUNCTIONS

v/
Consider q time functions xl(t), e ,xq(t) and a time function y(t)

related by the equation: ‘ N

- ,).'-‘:"" 2.-dq xl(t) + LZ x,

S~ e~

P

(t)+... ¢+ Lq xq(t) +e(t) . (12)

H
:

- ama—

In Eq."’[IZ) the Ly » k=1,...,q denote lincar time invariant operators
possdssing corresponding frequency response functiors H (1), k=1,...,q.
The function e(t) is presumed to be a zgro mean ntaltionary Gaussian random
function statistically independent of M_Mns :ék(t), k=1,...,q. The
spectral density Se(f) of e(t) is p"dumed unknown. The frequency response
functions H.k(f), k=1,...,q are also presumed to be unknown.

Equation (I2) may be viewed as expressing the multiple-input single-output

(with extraneous noise) block dizagram illustrated beicw.

xz(t)————ﬁ Hz(f) ‘—__’szz(t) y(t) 113)

. L O e T T N Y I Y S S
~
. L I S S S R I Y Sr')

oh 2 e & ¢ 0 o & 0 &

x q L T Hq (£ ....___.,quq(t)

The ! xq {complex valued) matrix

r .
H(f) = [Hl(f), ..., H (f)] = LHlR(f)+ xHu(f),. “oy HqR(f) + inI(f)] (14)

¢

"is called the matrix frequency function of Eq., (12) or equivalently of the system
)
described by the block diagram.
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2.1 FREQUENCY RESPONSE FUNCTION ESTIMATES

Suppose 7 single finite realization 0 gt § T of the function,
x (t). v ,x (t), y(t) of Eq. (12) is observed (recorded). From the finite
length observed records oi[x t),... ,x (t), y(t)]nxr iltaneous confidence

bands for the elements of the matrix Irequency response function H(f ) ata

o

particular frequency f are to be determined. A discussion analogous to that

of Section 1 eltabli.heg that estimators {or the matrix frequency response
function at a collection LI frequencies are essentially statistically independent
if the frequencies are spaced suitably apart. Thus, with such a frequency
spacing, simultaneous confidence bands for the elements of the matrix
freguency response function H(fo) may be independently determired at each
particular irec‘;uencyl\fo.
An estimator H(fo) for the matrik frequency response function H(fo)
is obtained in the following manner. The f{inite length (0 <t < T) of records
[x (t),... ,x (t), (t)] are treated as if they were a finite realization of a
(q+1)th order multiple stationary time series. Proceeding by the method of

spectral estimation (Reference 1) a (q+l)x{q+l) sample spectral density matrix

\at frequency {0

. i |
exx(!o) : sxy(go)

I e (15)
& wy 1 &
- yx 0 yy 0

/

)
is then computed. It is presumed that the degrees-of-freedom parameter n

associated with %(i ) satisfies n 2 g+ 1. Itis also assumed that the g x g
matrix % (I ) is non-singular. The estimator I—‘(f )} for H(i ) is then

A
(f )+iH

A
H (f )]’ lK(f )+1Q (f ),....HqR 0

At 1 A
H ) =2 (f,) 2l (A,

ql

£y

(16’




2.2 CONFIDENCE BANDS FOR MATRIX FREQUENCY RESPONSE FUNCTIONS

At frequency f the sample conditional spectrai density of y(t) conditioned
onfx (... ,x (t)} is

A
o) = 2,0 -2 B (. (17)

Define the two quantities

‘A
All,)

%ﬁxao)

A .
B(Io)

A '
(H(f y - H{f )) (f ) (H(Io) - H(fo)) (18)

As a specirl case of general regults summarized in Relesnncc 4, it follows
o)

that under appropriate hypotheses the quantity (9—;3)— m possesses the

standard F distribution with 2q and 2(n-q) degrees-oi-freedom. The cumu-

lative distribution of
A A -1
Aegeduy LA 1)
() + Bity) (£

is therefore directly and easily determined from the cimulative F distribution,

Without going into hypotheses details, it ie nevertheless important to men*ion
here that the hypotheses do not involve statistical distribution conditions on
the input functions xl(t). ‘o ,xq(t). For example, the input functions
xl(t), ves ,xo(fﬁ ~se permitted to be nonstationary or nonrandom, etc.

Given a probability (confidence level) Fo {0 < Py < 1) or.e may then,
using the distribution result stated above, determine the corresponding unique

constant ao(O <a_ < ]) sothat

0

IR
g (20)

prob[‘ < - S——
0 A A
+
A(fo) B(fo)

i
<
o
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From Eq. (18) and Eq. (20), using various algebraic results and inequalities
(Reference 4), the simultaneous confidence bands for all the elements of the
matrix frequency response function H(fo) stated below are obtained.

|1 1) - ﬁk(fo)lzf_(;%- 1)9 1) 855 )

Prob 2 p, 1)

k=1,...,q9

In Eq. (21), 9 (I ) is given by Eq. (17) and ex:‘k(f ).k = 1,...,q denote
the indicated dhgoml eclements of the q x q matrix e ‘(fo) where the matrix
(f ) is defined in Eq.(15).

2.3 CONFIDENCE AS FUNCTION OF COHERENCE

For the case where the inputs: xl(t), ‘e ,xq(t) are stationary random
functions, it is desirable for interpreting and describing results related to
the measurement of frequency response Tunctions to rephrase Eq.(21), From
Eq. (15), (f ) is the q x q sample spectral den-ity matrix at {frequency fo
of the multiple inputs x (t), .o ,x (t}. Alno from Eq. (15) one may regard

% (f JYtobethegxq eample maanal spactral density matrix of the (q+1)x(q+!)

umple spectral density matrix 2(! ) marginal on x (t), oo ,x (t).

From Reference 1, the sample multiple coherence at frequency fo

between the input x.k(t) and the’ other (q-!) inputs xl(t), ‘e ,xk_;(t),xk“(t). ,xq(t)
is given by~

A2 " kk
Ve xe e AR () 2 (zo)) La)22)
k 1..-0, k_l' k+l,-ci' q k

A
In Eq. (22}, Z x (fo) denotes the sample spectral density at frequency fo of
x

xk(t) and %;:‘(fo) in defined at the conclusion f Section 2.2. From Eq. (22)

one obtaing

16
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2)

>
[
kk, . 1
25ty = = (23)
=0T 4 )E ()
R SRR T SWETIRE ,xq x X
2 .
Let v (£ ) denote the sample multiple coherence at frequency
y'xl.xz,...,xq 0

fo betwcen the output y(t) and the q inputs x (t), Z(t). .o .x (t). On applying

the equation for sample multiple coherence (Rcfercnce 1) to the matrix ﬁa )
given by Eq. (15), performing the necessary matrix calculations and using
Eq. (17), one obtains

5 f)-(l 42 « ))2 (£} (24)
ypxfol =1 Yy q " yy'o’

1P Xpeere X

From Eqgs. (23) and (24) one may write Eq. (21) in the form

A
| 1 )-H () < \(l DTy Epx X “°))z
f wa———r
H\t Hk ,}l A2 ] ] ‘fo)
Prob Vg xeen PO L 7 L e " 2P,
(k= ‘t““’Q) ‘25) -

Equation (25) expresses the simultaneous confidence bands for al} the elements
of the matrix frequency recponse function H(fo) in terms of the sample multiple
coherence between the output and all the inputs, the sample multipie coherence
betwean each input and alY tbe oti\er inputu, and the ratio between the sample
output spectral dennty to the sample input spectral densities.

From Eq. (25) one ma, discern hg:{ the various sample coherences,
sample spectral densities, and parameters q and n govern the accuracy with
which frequency response functicnw are measured. One notes, for example,

that the accuracy with which {requency response functions are measured;
o

17




a. {improves as the sample muitiple coherence between the output

and inputs QZ (f.) increases toward unity,
Y XyaXpueeo ,xq 0

b. diminishes as sample multiple coherences between inputs

increase,
c. \'improvu as sample input spectral densities increase,

d. improves as the degrees-of-freedom parameter n increases
(since for fixea Py and q the ''constant" (a(;l - 1) diminishes as

n increases).

The distributions of the sample coherences appearing in Eq. (25) are

given by Eq. (11). For Q"; . x . (f,) the prrameter p in Eq. (11)
. l Z‘a ey

q
is p=q+ 1. For the sample coherences ?Z ) (k=1,...,q)
x.k xl.... ,xk-l ‘k+l‘ ,...,Xq
the parameter pin Eq. (11)is p = q. In all cases yz in Eq. (11) denotes

the true value of the respective coherences.

The simuitaneous confidence bands con all the elements H.k(lo) {k=1,...,q)
of the matrix frequency response function H(fo) given by Eq. (25) are determined
by the sample frequency response functions, the sample coherences, and the
sample spectral densities appearing in Eq. (25). It is important to notice that
one requires no apriori knowledge of the {requency response functions, the
coherences, or the spectral densitiea to determine the confidence bands on the
elements of the matrix frequency resporse function H(IO) in using Eq. (25).

One may also use Eq. (25) as a guide in planning measurement programs
or experiments to determine the elements of 3 matrix frequency response function
H(f). When that is done,a priori estimates or knowledge of sample coherences
and sample spectral densities expected to be obtained are substituted in Eq. (25)
and the results yield apriori estimates of accuracies with which the elements

of a matrix frequency response function H(f) will be determined. If one is

18
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limited to only measuring the inputs and output one is then only able to estimate
the degrees-of-freedom parameter n (or alternatively the lengtha of record and
frequency resolutions) needed to approximately achieve desired accuracy in
measuring frequency response functions. If one, say in some experiment. is
able to control or select the inputs to some degree more may be achieved. In
that regard, the previous remarks (on how coherences and spectral densities
govern the accuracy with which frequency response functions are measureéd)
become especially helpful. For example, one would, if possible, select inputs
that are incoherent with each other. |

2.4 CONFIDENCE BANDS FOR GAIN AND PHASE
In niost applied work one customarily expresses frequency reoponte

functions in termq of gains and phases. From Eq (25) oimultancous confidence

bands on all the rexl parts, the imaginary parts, the gains, and the phases of
the frequency response functions }'k(io), k=1,...,q, may be obtained. With
reference to Eq.' {23), let
A2
-5 (fo)) £ uy)

Az nl y.xlpngoochq

xkao)z(;o -1) v " » (k=l,...,q)

-y )
XX pree Xy Xy e .xq Zﬁxk(lo) |
| @) .

Furthermore, let

|e*4 , &t e

H(£)) = H o (1) + 1M (£) =[H, (€)

and

|e N (k=l,...,q)  (28)

A
H, (f,) HkR(f )+ mu@ ) = hg((f )

Equation (27) defines the real parts HkR(fO" the imaginary parts Hu(fo),

19
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a)

the gains 'Hk(fo)' , and the phases ¢k(10) of the frequency *esponse functions
A
H}(f )s k=1,...,q. Equation (28) defines the sample real parts Hk {£.), the
.10 A R'0
uq:ple gainal ﬁk(fo)l ,» the sample imaginary parts H.kl(fo), and the samplse
phases ¢k(f0) of the frequency response functions H'k(fo)' k=l....,q. Consider
the diagram sketched in Figure 1 below.

¥

Figure 1. Confidence Band Diagram

A
In drawing the diagram of Figure |, it is presuined that ?k(fc) < '}{k(fo)'.

One has A
T )

Il

A
A¢k(fo) =z Arc sin , (k=1,...,q) (29)
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From Eq. (25),

the simultaneous confidence b

Prob

Figure 1, and the various d

g

A ‘ A ~ "’ A

H g (o) - Tilfp) < Herlfo) < H pifo) * Ty lfo)
HERTRIRE S UY < B g + 2,060
LA )}- 21y <l o] sIR el g
A l A A

3 g, - 8%, s, ) <9, 0) + o 41 0)

(k=3,...

and statement:

-

> Py

' q)
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8. THE APPLJCATION OF
COHERENCE FUNCTIONS TO NONLINEAR MULTIPLE-INPUT
SINGLE-OUTPUT TIME INVARIANT SYSTEMS

Consider q time functions xl(t).. .o .xq(t) and a time fuaction y(t)
now related by the equation:

yit) = X x (@) + K, x () +... + quqn) (31)

In Eq. {31} the Kk » k=1,...,q denote time invariant operators here not
(necessariiy)linear. The operators !& , k=l,...,q are presumed to be
unknown. Equation (31) describes a multiple-input single-output (possibly)
nonlinear time invariant system.

Supporse a single f{inite realization 0 <t < T of each of the functions
xl(t), cee ,xq(t), y(t) is observed (recorded). Suppose furthermore that the
finite length (0 <t < T) of records [xl(t),. .o ,xq(t), y(tgarc treated as if
they were a finite realization of a §+1)th order multipie stationary time series.
Proceeding by the method of apectral estimation of Reierence 1, a (q+l)x{q+l)

sample spectral density matrix at frequency (0

- | T
' 2:;“0) : exy(zo)
Q(IO) 2 """'"’% """" (32)
4
-grx(fo} I QY‘/({O) .

may then be computed. It is presumed that the degrees-of-freedom arameter
n associzated with %(zo) satisfies n 2 q+l1 , and that the gxq matrix %m(fo)
is nonsingular,

The reader will note that the (possibly) nonlinear time invariant system
described by Eq. (31), in general, may be different from the linear time
invariant system described by Eq. {i2). The reader will, however, ’

N
note that from the sample spectral density matrix Z(fo) of Eq. (32) one may

22
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formally compute all the sample entities described in Section 2. The topic
that is now briefly discussed is the relevance, interpretation, and Usefuiness
of sucl sample entities in ralztion to 2 multiple-input single-output (possibly)
nonlinear time invoriant system described by Eq. (31).

In the present discussion it is presumed that [xl(t). ey xq(t)] are
multiple stationary random functions. Since the operators Kk k=1,...,q9
are time invariant, it follows that [xlt‘}, e .x (t), y(t)J are also mulitiple
stationary random functions. Furtherzmore, it iollowo that 2\! } of Eq. (32)
is then an estimator of the (q+l)x(q+l) spectzal density matrix 2({) of
[xl(t). e ,xq(t). y(t)] at frequency fo . Even though y(t) is determined
by xl(t), e ,xq(t) in the (pcssibly) nonlinear manner described by Eq. (31),
there is an interpretation that enatles the relation between y(t) and
x (t), ces .x (t) to be described by the block diagram illustrated by Eq. (13).
Stated another way, one imnay write Eq. (31) in the form of Eq. (12) provided
one properly defines LX" .oy Lq and e(t) of S?/(IZ) in relation to Eq. (31).
Since [x (t),... ,x (t), y(t)]are multiple su[iomry random f{unctions, there

exists a unique decompontion of y(t) where

y(t) = yL(t) + ye(t) (33

-
i

In Eq. (33), yL(t) {e the part of y(t).'th;t {s related to xl(t), ces ,xq(t) by
¢

the equation

yL(t)I.z Ll xl(t) + Lz xz(t) Teoo ¥ Lq xq(t) (34‘)

. ¢
e Lk » k=1,...,q in Eq. (34) denote linear time invariant operators

possessing correspondir; frequency response functions Hk(f)' k=1,...,q.

In Eq. (33), ye(t) is the part of y(t} that is multiply incoherent with
xl(t). e ,xq(t). If the (q+1)x(q+1) spectral density matrix of [xl(t), “ee ,xq(t), y(t)]
of Eq. (31) is

.
4 e ™,




' -
£_{) : ley(f)
B0z |-mmnm- R ' - 0s)
| T (f S )
i () : yy( ) |

then the H.k(l') corresponding to the L k=1,...,q, of Eq. (34) are given

kl
by '

! -1
Ho {0, nw) 2 2oz o (3)

From the preceding discussion one then Aas the block diagram (13)
holding for Eq. (31) where H.k(f), k=1,...,q arc given by Eq. (36) and
e(t) of Eq. (13) is replaced oy ye(t) = y(t) - yL(t). One has ye(t) multiply
incoherent with xl(t),. .o ,xq(t). From Ey. (33) cnc may interpret ye(t)
to be that part of y(t) of Eq. (31) that is unaccounted for by the linear time
invariant operators I‘k' k=1,...,q of Eq. (34) that '"best'' approximate
y(t) by acting on the inputs xl(t),. .o ,xq(t). In summary, one is able to
write Eq. (31) in the form Eq. (12) provided e(t) of Eq. '(12) {s replaced
by ye(t). In Section 2, e(t) was presumed to be a zexro mean stationary
Gaussian random function statistically independent of the input functions
xk(t), k=1,...,q. Here, ye(t) is a random function multiply incoherent of
the input functions 'xk(t). k=1,...,q. The applicability of the results of
Section 2 to describing (or approximating) nonlinear time invariant systems
by linear time invariant systems therefore depends on how the differing
properties of ye(t) and e{l) affect the results of Section 2,

’Generally speaking, the sample entities of Section 2 maintain their
relevance, intex’;ﬂ'etation,\ and usefulness. For example, Eq. (16) for
ﬁ' (fo') in the possibly) nonlinear context of this section is now interpreted

to be an estimator at frequency f_ for the matrix frequency response

0

function H' (f) of Eq. (36). The sample multiple coherence ,Y\zyx x (IO)
1t Xg
at frequency fo between the output y(t) and the q inputs xl(t), oo ,xq(t) is
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now interpreted tb be an estimator of the mulitiple co)xé'i'ence yi ST (Io).
i.e., an estimator of the degree to which the outﬁu/t y(t) at frequency ‘0 is
related by linear time'invariant operators to the q inputs xx(t). eoe ,xq(t).

The remaining question concerns the applicability of the sampling
distribution and confidence baand rccult’o/ of Sections 1 and 2. The output y(t)
of a time invariant nonlinear system is, in general, a non-Gaussian random
function even if the inputs xl(t'),fi .o ,xq(t) are multiple stationary Gauseian
random functions. The sampling distribution and confidence band results of
Secticns 1 and 2 are based on Gaussian theory prevailiug in the frequency
domain. 'I’hé computation of the sample entities of Section 2 inherently involves
"narrow band frequency filtering." An important result often observed in
practice is that many stationary non-Gaussian random functions become nearly
Gaussian when oo,"lﬁltered. " Thus, one may expect the distribution and -
confidence band results of Sections 1 and 2 to be approximately valid for
many multiﬁl; s‘tatiomry non-Gaussian random functions. In that regard,
one may expect tne sampling distribution padcOnfidence hand resnults of
Sections | and 2 to be ik many cases ag;:roximnely applicable to the method
of studying nonlinear systems describediabove.

The reader will note that the methods of this section indicate how a
(possibly) nonlineaz time invariant system may be (a) approximated by a
linear time invariant system, and (b) provide a measure (sample multiple
coherence; of how accurate (at each frequency fo) such a linear time invariant
system approximaticn is. The methods of this section may therefore also
be roughly used to test the hypothesis that & time invariant system is lineaz.
The general idea is that a time invariant system capable of being suitably
approximated by a linear time invariant system may for many practical

purposes be regavrded 28 a linear time invariant system.
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