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I
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Vibration, "Mr. R. G. U*r.le 01 the Vehicle Dyuamics Division, FDD6,
was the proiect engineer.
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ABSTRACT
/

The report describes fundamentai concepts involved in the
statistical analysis ol ultiple-input single-outptt time-invariant
linear systems. The definitions of x matrix fr.,quency response
function a"d 4 multiple 4ohe-ence "unction are piesented. Also
discussed are marginal and conditiciml (partiala coherence func-

# on,& with emphasis on their LUterpretation.4 ~

Fornmas for comput'ng simultaneous confidence banis for
all elements of the mratrix frequency re.iponse function are pre-
sented. Obtainirg these confidence bands require the use of the
standard "F" distribution. Expressions for Uh se confidence bands"
are given both as a function of the variozA' tjpeu of coherence# and
of the elements of the ;pectrak'density matrix. The effect of the
various quantities on the width of the confidence bar do is discussed
in detail. Confidence band for the gains and phases of the fre-
quency response functions ae also dosve ,.)ped.

The interpretation of linear system corn~aton41..resuts
in terms of a time invariant nonlinear system model Is described. ,

It is shown how the linear system results provide what may be
thought of as a 1:^v.st"I linear fit to the nonlinear model. The

multiple coherence function then give* a quantitative mneasure of

goodness of this fit. In this senst the coherence function y
uted to provide a test for system .-nearity. // /
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LIST OF SYMBOLS

B small frequency bandwidth of spectral analysis

e(t) extraneous noise variable

f frequency variable

Hk(f) frequency response function between xj(t) and xk(t)

H(f) lxq ratrix frequincy response function [H1 (,... , Hq(f)]

HkR(f) real part of H

"k14) ,imaginary part of H,(f)

V 1. imaginary unit

Kk nonlinear time invariant operator relating input xK(t) with outrut y(t)

Lpk linea. time invariant operator relating record x(t) with x (p)

n number of effective decree-of-freedom in coherence estimato

N N x BT, the number of degrees-of-freedom in the spectral analysis
where B = analysis ba dwidth and T = record length. Many other

- reports use the convention N = 2-BT, double the value defined he). v
Use' care when comparing results.

p total number of records (time series) in analysis, i. e. , the dimension
ofthe multivariate random process

q the number of input variables

S jk(f) cross-spectral density finction of x.(t) and xk(t ) . Power spectral
density function when k. d

v pl+k(t) that part of x pl+k(t) )vich i#.a linear functional of x(t), xp (t),

k = It,...,poplI p1

w pl+k(t) kth conditioned process, conditioned on xI(t),... x p (t), k=l ... p'pi

x (t) kth random ,pro ss
k/

Ax random variable which is estirate of parameter x

tro e of 3t, when x denotes a matrix

• ?, . : . V
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I sjkf) matrix with elements Sjk(f)

SjkiI f invorse of matrix.I k with elements Sik (f)
Yj.I, Z,... ,J-Ij+l,... p~) Wultiple coherence function between variable

x.(t) and variables xI(t) .... xj (t),x jl(t), .. Wx(t

ZP

pp-l,p-z,...,pl +L 2,..., p, multiple conditional coherence between x p(t) and

? I(t), X (t).., x +I(t) when conditioned on

I (t ), 2 (t) ., P I(t).
p1

4(f) phase of H(f)

Z(f) pxp spectral density matrix. Elements are the

spectral density functions S jk(f).

ZJk(I) submatrix of Z(f) when 2Z(f) is partitioned
At

zp i~j a I the conditional spectral density matrix of the
•1 6 lpIvariables Zpl+l(t)....,x (t) conditioned on the

variables x (t), .... ' (t). That is, the spectral

density rrmAtrij of the'time series 'PI+k(t),

-

qxq spectral density matr4 of input variables
Xt,...,Oxq(t) , €, , , *

x( [z(f)] qx 1 (1 x pectralodensityvector of'Azputs I
x ) YX) x (t), . ,x 2 (t) with output y(t)

Zyt Ix I spectral density matrix of output y(t)

[identically equal W Sfyy )]

E y(f) the conditio"al spectral density matrix of an out-
>

f  .t put variale y(t) conditioned on the input vari-

ables xI(t). x M

- (f) inverse matrix ofmatatjix L(f)

k (f) the ktli diagonal elementbf the matrix Z (f)

kk -
E (1) the kth diagonal element of the matrix Z (f)
xx xx
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6A

1. THE MEASUREMENT OF THE VARIOUS TYPES OF qOHERENCE

In measuring frequency response functions and In many other applications,

for example, measuring the kindand degree of relation between simultaneously

recorded vibration records, one is led to the problem of measuring coherences

of multiple stationary random functions (time series). There are various*

,typs of coh,-rences. Four types arf discussed here. They are (a) multiple
, /

coherence, (b) marginal multiple coherence, (c) conditional (or partiall

I multiple cohererce, and (d) mai 3inal conditional multiple coherence. The

various types of coberence mentined above are all particular functions of the
I

elements of a spectral density matrix of a multiple stationary time seriec.

(Formulas for the various types of coherence will be stated subsequently.)

A spectral density matrix of a m,ltiple stationary time series is a function of

frequency f, and coherences arethen also functions of frequency f. In speaking

of a spectral density matrix or (coherence, one is really speaking of a spectral

density matrix or a coherence At a particuar frequency f0'

- From finite length records (e. g., simultaneously measured vibration

L tbe a finite length sample of a multiple stationary

time series, one computes ifran appropria.e manner sample spectral density

matrices corresponding to a-collection of frequencies. To be more precise,

each ampie spectral density matrix corresponding to a particular frequency f0

in reality pe\tains to a (usuftlly) small frequency band of bandwidth B centered

at frequency f0 ' It is convenient, however, to speak of the sample spectr;*l

density matrix at frequency f0 "

The sample counterparts or estimxt:os for the various types of coherence.

mentioned above are obtained in the following manner. At a particular frequency

fO F each sample coherence is the L.,me function of the elements of the sample

spectrel. density matrix at frequencv fO as the corresponding true coherence is

of the elements of the true spectral density matrix. Subject to certain hypotheses,

L1



the joiut distribu~ion of the' aIlements of a sample spectral density matrix has

been derived in closed form (Reference 1). Furthermore, it is demonstrated

in Reference I that if the frequencies correspcru4ing to the collection of

sample spectral density matrices are spaced a suitable distance &part, thef
saxaple spectral density matrices are essentially independently distributed.

(This necessary apacizg is the analysis bandwidth B where B is defined in

a reasonable manner.) Since sample coherencts are functions of the elements /
of a sample spectral density matrix corresponding to a particular frequency, ,

sample coherences corresponding to different frequencies are also essentially./

independently distributed if the frequency spacing mentioned above prevails.

With such a frequency spacing, tie statistical uncertainty of sample coherences

may then be described separately at each frequency f0

II
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1. 1 " DEFINITION OF MULTIPLE 'COHERENCE

Formulas for ai' interpretations of the types of coherence mentioned

above will now be stated.

Let x1(t), x 2 (t), ... x (t). xPl+l(t),...ux It) denote a

P1 + P2 = pth order multiple stationary time series possessing the p x p spectral

density matrix (at frequevcy f).

S " ...S.. S p I (f) s .p .....

-, -r - - -• I • • 1I PIsp*, M ..... S p W Is . ..... S (f )

*p~ . . .. ,p
In .. (1 .t Se n S , (f) othmaix p pe a

p1  * !1l~ 1 'P~ 1
1

dest mti "~f to "ly H~i no-egtv dfnt. I ilb

I l

In Eq.) (1) the element Sjk(f) of the matrix Z(f) denote the cross-spectral
density (at frequency f) between xj(t) and x,1 (t) , (4,k •I,... , p). A spectral

density matrix Z. f) is always Herrritin non-negative definite. It will be
presumed (for the preient~discussef ) that the matrix 2.(f) is positive

definite, and hence non-singular. Let.

- (f

I
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wI-Jith marcs 11 (f 12 '2 (f). 7_Z2 (f) in Eq. (Z are the sub-

4n%&#tices of Z(f) indicated by the partitioning in Eq. (1).' Let

I *~Z(f) ISjkfI t (3)

The multiple coherence at frequency f between x p(t) andffx 1 t), x Z(t).. .xp-1(01
is given by the formula

ppM M

The m~jltiple coherence y 2 (f) ranges between zero and unity

And measires or describes tiie degree to which (at frequency f) x p(t) i s

related to lx I(t). xZ tM..I" ,xP1(tM] by means of linear time invariant operators

LPk#l. .. . p-I acti on x.k(t), k ,. .. p-I respectively. Stated another

Way, Y~ ,...pl measures or describes the degree to which (at

frequency f) the system diagram indicated below prevails.

x' (t) L

xP-M p, p-l

In Eq. (5), L tLZ L denote linear time invariant operators.
P~ P, P- 1

A multiple coherence of zec e.~d'ctes no such relation prevails; the larger

tho multiple coherence is, the x~~.e nearly Eq. (5) represents the %rue

r~ation with such a relation prevailinr periectly as multiple coherence becomes

uniy.

4



Since the subscripts on the x(t) may be regarded as arbitrary Labels,

it is clear h4 Eq. (4) is a formu.tl for other multiple coherences (at frequency f).

For exampe, the multiple cohe/ence at frequencyf between x.(t) and thl

remaining (p-1) components of .X (t) . Xp(t) is given by

(f I *i M Ii

Since any submatrix of Z4f) whi..h is symmetric with respect to the

main diagonal is a spectral density matrix (at frequincy f) of selected com-

ponents of xI(t), x 2 (t),... ,x (t), one may employ such submatricea to compute

other multiple coherences. Such multiple coherences are tern-d marginal

multiple coherences or simply multiple coherences, when proper subscript

notation indicates which components are involved. For .xarnple, if one

considers Ix 1 t) .... ,Xp (t) then N p IPL s the multiple

coherence at frequency f between x (t) and IxI(t),  .x .(t) To com-

puts YPl" 1,2,...,pI-1 (f ) one starts with the submatrix Z 1 1 (f) of 2Z(f) and

suitably applies 'the formula given by Eq. (4). It is clear that !he interpretation

of marginal multiple coherences is the same as that for multiple coherence*.

1. 2 CONDITIONAL (PARTIAL) COHERENCE

With respe..t to Fq. (1) there is a matrix computation that may be

performed on (f) to yield a spectral density matrix of smaller dimensions.

Such a srnall,_.r spectral density rm trix is called a c(ditional (orp

spectral density matrix. The formula for compu ng such a matrix and its

interpretation will be explained with the partitioning and submatrices appearing

in Eq. (1) and Eq. (2).
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Censider the pZ p2 Hermitian matrix defined by:

'' ~ ~ ~ ~ ~ ~ f z1l,. Mpl2. ZP Mf ()i (6)

+ PipI() 'ZZ) Z I 1 1

Recall that 2 Z(f) is a p2 xp 2 n)atrix (where p2 
=  P-Pl ), z 2 1 (f) and 2: 1 (f)

&'re pZ xp, and pIxp2 respectively, and 2 1 (f) is plxp,. Since Z(f) is

positive definite, it follows that 11P*+... ,p I IZ,... pl(f) is positive

definite (and hence also non-singular). Since Z:Pl+l,... ,pIl , ,. .. PIf) is a

p,2 xP Hermitian positive definite matrix it could be the spectral density

matrix (at frequency f) of a pZth order multiple stationary time series

Iwpl+l (t),.. .w p (t)].. With rGqspect to the discussion on multiple coherence of

the previous section, it i possible to represent the p2 th order multiple

stationary time series [x +I(t)... ,x Ct)] in the following form:

XPl+l(t) x L xI(t) + L 2x 2(t) +... +Li I x p(t)+W pl+l(t)

xpl+2 (t)" L21 xI(t) + L22 x2(t) + ... +L pI Xpi(t) wpl+2(t) (7)

x (t) Lp x (t) + L x(t)+.. + L x (t) + w (t)
pl+pP I I p 2 2z p2 pl P1  p+p 2

I

The interpretation of Eq. (7) is as follows, gin Eq. (7), [x1 (t),. .. ,x (t),

x M.t),...x (t)Jin the original p +p? = pth Prder multiple stationary
pl+1  p1 +p2

time series of the previous section. The L.. of Eq. (7) represent linear time

invariant operators. One furthermore has 1wp1+1(t) ... .Pl+p 2 M

6



t

a pzth order multiple stationary time series with each of its components

Wpl+k(t). (k=l,... ,p.), possessing a all frequencies f a multiple cobt.rence

of zero with rxI(t), x2(t),.X. p(t)1 The preceding property of the w I k

may be explained roughly as follows. A'ALe components w (t), k=1, ..
pl+k

are the original components xp+kl, kl,... ,p 2 with the linear "effect" of the

rernaiung componeno x.(t), j=l.4d4p , subtracted out. Since the linear

"effect" between x (t),k -=J P., and x (t), jzl,... ,p,,has been &ub-
p1 -&k .1I

tracted out to obtain each wp +k(t), the multiple coherence between each

wpl+k(t) and [xI(t),... ,x (t)] is zero. The pZxpZ spectral density matrix

of [w pl+l(t)...,Wpi+pM(t)] in Eq. (7) is given by Eq. (6).

Tho representation Eq. (7) is unique, and one may write formulas

expresstng the frequency response functions H k(f) corresponding to the L.k

in terms of the elements of the spectral density matrix Z(f) of Eq. (1). The

formulas for the frequency response functions H (fl are not stated here since

they are not needed for the present discussion. However, let

v Ll x (t) + L2 x2 (t) 
+ ' + L x (t)

pl+ L + 1 + p I Xplt)8

vp+2 1 xI(t) +L2 x( ' L"

vpI+p2 L LpZI l(t) +L p2 x2(t) + ... + Lpzpl x p(t).

From the discussion on multiple coherence of the preyidus section, it is clear

that [vp, +(t).... ,vp!+p(t)] is a pzth orde!r zutiple stationa. y time series

with each of its components +k(t), (kl,... , p2 ), possessing at all

7



frequencies f a multiple coherence of unity with [x(t), xz(t),... x i

That is, by construction, there is a perfect linear relation between v pl+k(r) ,

k=l,... ,p2 and x.(t),j -I,. . -,p. Now, from Eq. (8), one may write Eq. (7)

in the form (uniqxlely)
I,

xpl+2 (t) v p+Z(t) w pi+Z(t)
• •+ •(9)

where the V compoent is perfectly coherent at &U frequencies f and the

W component is perfectly incoherent at all frequencies f, with X (t).., ,x (t]

The conditional (or partial)spectral density matrix Z .. , I 1... M

therefore i the p2 x p. spectral density matrix of [x +(t),... 'Xp M(t)]

after subtracting from [xp + I(t),... ,Xp +p(t] that part which is attributable

to the linear time invariant operators acling2 o. (t),... ,x (t)J.

A conditional (or partial) multipe, coherence is a multiple coherence

computed from a corditional (or partial) spectral density matrix. The formiIl.

for a corlitional spectral density matrix is given by Eq. (6); the formula for

a multiple coherence by Eq. (4). Appropriate identificatlon of submatrices and

use of Eqs. (6) and (4) enable conditional multiple coherences to be dztermined

from E(f) of Eq. (1),

8
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The following example illustrates the notation for conditional multiple

coherence. The nmltiple coherence (at frequency f) between x (t) and

[x pI(t),...,, P +1(t) after conditioning on [x (t), x 2 (t),... ,x (t) is denoted

2 p

by 2p . 2 . 2. ,p(f) " To 1w specific, ifa two input xW(t)'P - , .-Z .- ,+

and x 2 (t), single output x 3 (t) , linear system is being analyzed then the multiple

conditional cohereuce~etween x1 (t) and x. t) conditioned on x 2 (t) is denoted
2

by y1 32( f ) . This special case reduces tr the ordinary (Z-dimensional) cohere nc

between xI(t) and x 3 (t) after conditioning on x 2 (t) and it discussed in detail

in Reference 5 with a slight chLnge in subscript notation. A conditional multiple

coherence measures )r describes the degree to which (at frequency f) a com-

ponent x p(t) is related by linear time invariant operators toother components

x pI(t)... ,xpl+I(t) after "effects" due to linear time invariant relations with

other components xI(t), x(t),... ,x (t) have been subtracted from

Xp(t), XpI p 1 +t),.. , pi+l(t).

A marginal conditional multiple coherence is a marginal multiple

coherence cotnputed from a conditional spectral density matrix. The .revious

discussions on marginal mtitiple coherence and conditional multiple coherence

'indicate how ma-ginal coiditional multiple coherence is to be interpreted.

The following example illustrates the notation for marginal conditio'al multiple

coherence. The marginal multiple coherence (at frequency f) between x p t

and the component I[x 1 (t). x () of,1.. I I(t), x 2 (t). X. p 3 ),.. *N (t,

after conditioning on "x(t,xz(t),. ,X (t0j is denoted by 2  Z" ,pl

More specifically, if a three input I xI.(t), i=1,2. 3J single output x 4 (t) linear

system is under consideration, then y2 j. 41 (f) is the marginal multiple

coherence between the input xI(t) and the output x4 (t). In this case the

conditioning is on x2(t) aad the third input x 3 (t) is effectively ignored.

9



1. 3 THE DISTRIBUTION OF SAMPLE COHERENCE

From the above discusston on coherence and sample coherence it is

clear that (at a particular 6e'quency f0 ) the various sample coherencee

correispondinZ to the varicts types of coherence are, in general, different
A

functions of the elerr.mts of the sample spectral density matrix rI)

corresponding tW tbe spectral density matrix (f0 ) of Eq. (1). (The )At "

notation will denote a sample [es tiratel of the indicated quantity.) The statistical

distribution corresponding to each type of sample coherence CeC, d above

has been derived, and the results obtained in closed form. (See t~elerencea

I and 2. ) The statistical distributions of the various types of saTple coherence

are, in general, different. That is clearly to be expected. Howeve I J4 e

probability density function of the distribution of the four types of samle

coherence defined above may be expressed by the following general formula:

Let

n z effective number of degrees-of-freedom,

p = effective number of records

= true coherence (10)

y xy z sample coherence

The proLablity density function of any type of sample coherence defined

above is then agiven by

C(yjn, p, y2 ) = r(n) (1 )nypZ(l-y)fn p F(n,n;p-; yZy),(0< y<1)
r(p- i) r(n-p+ 1) (11)

In Eq. (11), F(n,n;p-!;y 2y) is the hypergeometric functioi, with the indicatcd

parameters and variables. The method of determining the parameters
2

n, ,y of Eq. (10) for the various types of sample coherences defined

previously is now described.

10



With respect to Eq. (11) let N = BT denote the effective number of degrees-of-

freeom of the spectral density es4imator < f0) of Ey10. For , samle multiple

coherence'or a sample margyal nhuhiple coherence n N. For any sample

conditional cohe nc n -z p1I where p1 denotes the number of components

that have been cond~ioned. r For any type of sample multiple coherence, the

parameter p is givep byithe total number of components involved in the conerence

relation '(not in general the total number of components of the multiple stationary
time series). The parameter y is always the true value of coherence whatever

the type. Examples: With reference to Eq.(ll) and the previous discussion

^2 2 2

a. For yPC 1,2 .... ,poI(f 0 ) one has n= N, p =p, and y 2 Yp' 1 .... p(f0 )

^ 2

C. For YPPI,P,. .. pi 12'.Pi(f ) one has n:~~l n = NP' 1,2,...pZ -(0

^Zan Yl~ (f0 (nf,. n- -IPP
c. For Yp" p-2,p-2,..., !lZ,... ,p0

b. A2 2

d. For' 2 p(f0 ) one has n=N-pn z3,
p'p- p-211,20 ... OP, 0

and Y 2 NYp L . (f1 p0 ) "
p-lP p oz2i 1,2, ... ,

For more concrete examples, assume a three input [xi(t), i=1,2,3] single

output, x4 (t), linear system with N degrees-of-freedom in the measurements.

a. The sample multiple coherence between the output x 4 (t) and the
A2 2- 2

inputs is I4. 1,2, 3 (f) and one has n-N, p=4 and y = y4. 1,2,3 ( f ) .

b. The sarnple marginal multipi-t coherence between the input x 3 (t) arid

the inputs x,(t) and x2 (t) while ignoring the output x 4 (t) is M. 1 , 2 (f)

and one has n-N, p= 3 and y2 = y3 1 , 2 (f).

11
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c. The sample conditional multiple coherence between the output x 4 (t)

and the two inputs x 2 (t) and x (t) conditioned on x 1 (t) is 4. 3,211 M

and one has nN-i, p= 3 , and y I = Y.3,211(f).

d. The sample marginal conditional multiple coherence between the

ouiip 'r' 4 t).-and the input x 3 (t) while conditioning on xI(t) and

ignoring x2 (ty xi Y . (f ) and one has nN-l, p=Z, andy .y l(.

4* 3 1l(f 4- 311

Tables of the cumulative distribution function corresponding to the

probability density function, Eq. (11), aave been calculated for the parameter

p rangigg from two through ten, and for n such that p < n <2(OReference 31.

The rules for n ao, p described above may be applied in order to proptrly

make use of these tables.

I



2. THE MEASURE ENT OF MATRIX FREQUENCY
RESPONSE FUNCTIONS

Consider q time functions x Wt)...,x q(t) and a time function y(t)

related by the equation:

In Eq.'./12) the L., k=1 ,... ,q denote linear time invariant operators

pos~sii~ corres ponding frequency respoinse functions Hk(f), k= 1g, q.

The function e"(t) is prepumned to be a zVo mean statio~nary Gaussian random

function statistically independent of ~)f no 4 W,) k= I... q. The

spectral density S e(f) of e(t) is pq'tkumed unknown. The frequen~cy response

functions HkI(f), k= .. ,q are also presumed to be unknown.

Equation (rZ) may be viewed as expressing the m~ultiple -input single-output

(with extraneous noise) block diagram illustrated bt-1kw.

Te1xq cmlea matrixq

1-(f) H() 1 .W , H (f)]r [Hl(f)+iHlI(f),... ,HR(f) + iH 1 (0) (14)

is called the matrix frequency function of Eq. (12) or equivalently of the system

described by the block diagram.

13
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2. 1 FREQUENCY RESPONSE FUNCflON ESTIMATES

Suppose r single finite realization 0 S t S T of the funrtion.

xI(t),...,x (t), y(t) of Eq. (12) is obseried (recorded). From the finite

length observed records of x I (t),... Xq(t), y(t)]sirr. ,itaneous confidence

bands for the elements of the matrix frequency response function H(f 0 ) at a

particular frequency f 0 are to be determined. A discussion analogous to that

of Section 1 establishes that estimators for the matrix frequency response

function at a collection bf frequencies are essentially statistically independent

If the frequencies are spaced suitably apart. Thus, with such a frequency

spacing, simultaneous confidence bands for the elements of the matrix

frequency response function H(f 0 ) may be independently determined at each

particular frequency f.

An estimator H(f 0 ) for the matrik frequency response function H(f 0 )

is obtained in the following manner. The finite length (0 < t < T) of records

IxI(t).... ,xq(t). y(t)] are treated as if they were a finite realization of a

(q+l)th order multiple stationary time series. Proceeding by the method of

spectral estimation (Reference 1) a (q+l)x(q+l) sample spectral density matrix

at frequency f 0

- - - y- - -

~/

is then computed. It is presumed that the degrees-of~freedom parameter n

associated with (fO) satisfies n e q + 1. It is also assumed that the q x q
A A

matrix 2(f 0 ) is non-singular. 1he estimator H(f 0 ) for H(f 0 ) is then

At A . Hr AA A)(fo - ~(fo) 2 y(fO  [P (fo0), --f (f)inlf) ,qR(f0)+ Hqlf

y.0 Xy 0q0 IY

(6'
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2.2 CONFIDENCE BANDS FOR MATRIX FREQUENCY RESPONSE FUNCTIONS

At frequency f0 the sample conditional spectral density of y(t) conditioned

on~~~xl Mt, . X~ ) is

A A ^-I A

=_ (Lyy O(o 0 (f) Z (f0 ) z y(fo )  (17)

Define the two quantities

,Af 0AV0) -y x o)

A A A
B- H(f 0 ) zxx(f 0) H(f 0  H(f 0 ) (18)

As a specip.l case of general.zaagltv summarized in Reference 4, it follows

that under appropriate hypotheses the quantity q A possesses the

standard F distribution with Zq and Z(n-q) degrees-of-freedom. The cumu-

lative distribution of

Ag ) B(f o0)
A A- I + -- j-(19)
A( 0 ) + B(f0 ) (f0

is therefore directly and easily determined from the cAhmlative F distribution.

Without going into hypotheses details, it is nevertheless important to menion

here that the hypotheses do not involve statistical distribution conditions on

the input functions xI(t),... ,x q(t). For example, the input functions

xI(t),,.. ,x -t;e p4'rmittee, to be nonstationary or nonrandom, etc.

Given a probability (confidence level) p0 (0 < p0 < 1) ore may then,

using the distribution result stated above, deterrn'ine the corresponding unique

constant a0 (0 < a0 < 1) so that
A

Prob [a 0 < - 3 = PO (20)

1,(fo0) + B o

15
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From Sq. (18) and Eq. (20), using various algebraic results and inequalities

(Reference 4), the sinmultaneous confidence bands for all the elements of the

matrix frequency response function H(f 0 ) stated below are obtained.

H,(f0 H, (kf0< (- S ( xf f0

Prob 0 a 0)y - 0 > P0  (21)

k .* q

In Eq. (21) , (f0) is given by Eq. (17) a kkifk - 1,... ,q denote

the indicated diagonal elenents of the q x q matrix ., (f 0) where the matrix
A x
Xxx(f 0 ) is defined in Eq.(15).

2.3 CONFIDENCE AS FUNCTION OF COHERENCE

For the case where the inputs, xI(t),... ,x (t) are stationary randomq
functions, it is desirable for interpreting and describing results related to

the measurement of frequency response 'functions to rephrase Eq. (21). From

Eq. (15), Exx(f0) is the q x q sample spectral density matrix at frequency f0

of the multiple inputs x 1 (t)... ,x(t). Also from Eq. (15) one may regard

(f ) to be the q x q sample marginal spectral den'sity matrix of the (q+l)x(q+1)

sample spectral density matrix yf0 ) marginal on xI(t),... ,x q(t).

From Reference 1, the sample multiple coherence at frequency f0

between the input xk(t) and the other (q-l) inputs x (t),... ,Xk .(t)xk+ (t), X... x q

is given by.

Xk.X .... , l,xk+I ., x q(f0) = I Z(- XX f0)I (f0 (k l, .. ,q) (22)

A
In Eq. (22), , 'k(f 0) denotes the sample spectral density at frequency f 0 of

xk(t) and kk (f0Y in defined at the coniclusion f Section 2. 2. From Eq. (22)

one obtains

/ 16



(f - (23)

AZ

Let (fO) denote the sample multiple, coherence at frequency

the equation for sample multiple coherence (Reference 1) to the matrix S.f )

given by Eq. (15), performing the necessary matrix calculations and using

Eq. (17), one obtains

E yf0) 0 - 'yY. XlX 2 ... r(0 ))yy(f 0 (24)

From Eqs. (23) and (24) one may write Eq. (21) in the form

H 00 )-H 001 < IyAZ (
Prob O -( ( Yx k .Xl,... ,Xk- lIXk+l, .. ,xfxkxk0 > PO

(k z),..,q (ZS)

Equation (25) expresses the simultaneous confidence bands for all the elements

of the matrix frequency response function H(f 0 ) in terms of the sample multiple

coherence between the output and all the inputs, the sample multiple coherence

between each input and all t e other inputs, and the ratio between the sample

output spectral density to the sampl, input spectral densities.

From Eq. (25) one may discern h 1  the various sample coherences,

sample spectral densities, and parameters q and n govern the accuracy with

which frequency response functionw are measured. One notes, for example,

that the accuracy with which frequency reiponse functions are measured;

17



a. improves as the sample multiple coherence between the output
and inputs V (f ) increases toward unity,

Y'XS 1 xz ... ,xq 0

b. diminishes as sample multiple coherences between inputs

increase.

c. improves ag sample input spectral densities increase,

d. improves as the degrees-of-freedom parameter n increases

(since for fixe6 p0 and q the "constant" (a0 - 1) diminishes as

n increases).

The distributions of the sample coherences appearing in Eq. (ZS) are

given by Eq. (11). For Y .xIX 2 .. q (f 0 ) the prrameter p in Eq. (11)

is p = q + 1. For the sample coherences xk P - *...,k- I 'k+ *"".xq(k=l".... q)

the parameter p in Eq. (11) is p = q. In all cases -y in Eq. (II) denotes

the true value of the respective coherences.

The simultaneous confidence bands on all the elements H(f 0 ) (k:l,... ,q)

of the matrix frequency response function H(f 0 ) given by Eq. (25) are determined

by the sample frequency response functions, the sample coherences, and th4

sample spectral densities appearing in Eq. (25). It is important to notice that

one requires no a priori knowledge of the frequency response functions, the

coherences, or the spectral densitlea to determine the confidence bands on the

elements of the matrix frequency resporse function H(f 0 ) in using Eq. (25).

One may also use Eq. (25) as a guide in planning measurement programs

or experiments to determine the elements of a matrix frequency response function

H(f). When that is done,a priori estimates or knowledge of sample coherence@

and sample spectral densities expected to be obtained are substituted in Eq. (25)

and the results yield apriori estimates of accuracies with which the elements

of a matrix frequency response function H(f) will be determined. If one is

18



limited to only measuring the inputs and output one is then only able to estimate

the degrees-of-freedom parameter n (or alternatively the length of record and

frequency resolutions) needed to approinately achieve desired accuracy in

measuring frequency response functions. If one, say in some experiment, is

able to control or select the inputs to some degree more may be achieved. In

that regard, the previous remarks (on how coherences and spectral densities

govern the accuracy with which frequency response functions are measurtd)

become especially helpful. For example, one would, if possible, select inputs

that are incoherent with each other.

Z. 4 CONFIDENCE BANDS FOR GAIN AND PHASE

In m7ost applied work one customarily expresses frequency response

functions in terme of gains and phases. From Eq. (25) simultaneous confidence

hands on all the real parts, the imajinary parts, the gains, and the phases of

the frequency response functions 'k(f0), k=l,... ,q, may be obtained. With

reference to Eq.' (25), let

'I" 'X- AZl (f . (f% k~0

A2 -16 Y. 1x2 Ixq0 T

(26)

Furthermore, let

Hk(f0) HkR(f0 ) + IHkI(f 0 ) _IH.k(fc) e (f0) , (k=l,... ,q) (27)

and A
,^~i (f)'lI0

,o- (fo) + i -tHkf0e( , (k: ,... ,q) (28)

Equation (27) defines the real parts H'kR(O0}, the imaginary parts Hkl(fO),

19
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*the gains I lik(fo) ~'and the phases +00f) of the frequency -esponse functions

0,k=1,.. Dq. Equation (28) defineb the sample real parts HkR(fo), the

sar~rple gains I kV o)I the sample imaginary parts HkI(fo), and the sample

phases +k (fO0 of fhe frequency response functions kkz(l0...k I q. Consider

the diagram, sketched in Figure 1 below.

)k(f0

A~k~fO) ArAia 0 0#1H~t (f I

20



From Eq. (25), Figure 1, and the various defining equations aboIe. one obtains

the simultaneous confidence band statement:

'-LRO (.- r k(f 0) "k R !k ,f +rk(f0

A o (f

k 0 '  k0 " lk 0 (o) + A y)

Prob 
A 

k'OA-kfO 4kf) IkOIkfO *P 0  (30)

0) Ak(f ) k(fo0) 1k t0 :f^(ol

L O,:,... q)

Z!I



B. THE APP14CATION OF
COHERENCE FUNCTIONS TO NONLINEAR MULTIPLE-INPUT

SINGLE-OUTPUT TIME INVARIANT SY.TEMS

Consider q time functions x(t),... ,x (t) and a time function y(t)q
now related by the equation:

y(t) = N I xI(t) + K2 xz(t) + ... + Kq x q(t) (31)

in Eq. (31) the Kk , k=l.... ,q denote time invariant operators here not

(necessarly)linear. The operators Kk , k=l,... ,q are presumed to be

unknown. Equation (31) describes a multiple-input single-output (possibly)

nonlinear time invariant system.

Suppose a single finite realization 0 < t < T of each of the functions

xI(t),... x (t), y(t) is observed (recorded). Suppose furthermore that theq t

finite length (0 < t < T) of records Ixl (t)0 ... x q(t), y(t are treated as if

they were a finite realization of a ti+l)th order multiple stationary time series.

Proceeding by the method of spectral estimation of Reierence 1, a (q+1)x(q+l)

sample spectral density matrix at frequency f0

((f x (IZ

yx Of o yy 0o
- (fi

may then be computed. It is presumed that the degrees-of-freedom rarameter
A A

associated with (y0satisfies n a q+l , and that the qxq matrix Ex (fO)

is nonsingular.

The reader will note that the (possibly) nonlinear time invariant system

described by Eq. (31), in general, may be different from the linear time

invariant system described by Eq. (12). The reader will, however,14

note that from the sample spectral density matrix 2(f0 ) of Eq. (3Z) one may
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formally compute all the sample entities described in Section Z. The topic

that is now briefly discussed is the relevance, interpretation, and dsefulness

of such sample entities in relption to a multiple-input single-output (possibly)

nonlinear time inv'riant system described by Eq. (31).

In the present discussion it is presumed that [ I XIt .... IXqt] are

multiple stationary random functions. Since the operators Kk, k=,... ,q

are time invariant, it follows that [I%... 0 q (t0. y are also multiple

stationary random functions. Furthermore, it follows that (f0) of Eq. (32)

is then an estimator of the (q+l)x(q+l) spectral density matrix (f) of

xI(t),....,xq(t), y(t)] at frequency f0" Even though y(t) is determined

by xI(t),... ,x q(t) in the (possibly) nonlinear manner described by Eq. (31),

there is an interpretation that enales the relation between y(t) and

x (t),... ,x (t) to be described by the block diagram illustrated by Eq. (13).I q

Stated another way. oae may write Eq. (31) in the form of Eq. (1Z) provided

one properly defines L.,... .L and e(t) of r.1. in relation to Eq. (31).q
Since x I (t ) . .. , x q(t), yIt}Iare multiple sta iotury random functions, there

exists a unique decomposition of y(t) whce f

y(t) yL(t) + Ye(t) (331

In Eq. (33), y,(t) it the part of y(t) that is related to x,(t) , ... ,x (t) by
q

the equation

y (t). L X (t) + L x (t) ... + L x (t) (34)S2 q q

whe rVe _Lk , k=I.. q in Eq. (34) denote linear time Invariant operators

possessing correspondir frequency response functions Hk(f) , k--1, ... ,q.

In Eq. (33), y e(t) is the part of y(t) that is multiply incoherent with

x (t),.. . ,xq (t). If the (q+l)x(q+l) spectral density matrix of [xI(t),. . . ,Xq (t), yt)]

of Eq. (31) is

23
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-y I

7sf) B (35)

I yy J

then the Hk(f) dorresponding to the Lk , k 1... q , of Eq. (34) are given

by

f) LH (f).. ,H(f) E- (f)M (36)

From the preceding diacussion one then aas the block diagram (13)

holding for Eq. (31) where \k(f), k=l,. .. , q are given by Eq. (36) and

e(t) of Eq. (13) is replaced oy y e(t) y(t) - y L(t). One has y e(t) multiply

incoherent with xl(t),... ,x (t). From Eq. (33) cne may interpret ye(t)q

to be that part of y(t) of Eq. (31) that is unaccounted for by the linear time

invariant operators Lk , k=.,... ,q of Eq. (34) that "best" approximate

y(t) by acting on the inputs xI(t),... ,x (t). In summary, one is able to

write Eq. (31) in the form Eq. (12) provided e(t) of Eq. (12) fs replaced

by ye(t). In Section 2, e(t) was presumed to be a zero mean stationary

Gaussian random function statistically independent of the input functions

xk(t), k=l1... ,q. Here, ye(t) is a random function multiply incoherent of

the input functions ,xk(t), k=1,... , q. The applicability of the results of

Section 2 to describing (or approximating) nonlinear time Invariant systems

by linear time invariant systems therefox e depends on how the differing

properties of ye.(t) and e(t) affect the results of Section 2.

Generally speaking, the sample entities of Section 2' maintain their

relevance, inteA~etation,, and usefulness. For example, Eq. (16) for

A' af0) in the (ossibly) nonlinear context of this section is now interpreted

to be an estimator at frequency f 0 for the matrix frequency response
function H'(f) of Eq. (36). The sample multiple coherence *q (f'o

at frequency f0 between the output y(t) and the q inputs xI(t),. . . ,x (t) is
q
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now interpreted th be an estimator of the multiple co'rence yy. ZIP .. (f0),
q

i. e., an estimator of the degree to which the output y(t) at frequency f0 is

related by linear time invariant operators to the q inputs x (t)... ,x (t).
I q

The remaining question concerns tb'e applicability of the sampling
/

distribution and confidence band results of Sections I and 2. The output y(t)

of a time invariant nonlinear system is, in general, a non-Gaussian random

function even if the inputs x (t),'.. ,x (t) are multiple stationary Gaustlan
I I q

random functions. The sampling distribution and confidence band results of

Sections 1 and 2 are based on Gaussian theory prevailing in the frequency

domain. The computation of the sample entities of Section 2 inherently involves

"narrow band frequendy filtering. " An important result often observed in

practice is that many stationary non-Gaussian random functions become nearly

Gaussian when so "filtered. " Thus, one may expect the distribution and,

confidence band results of Sections I and 2 to be approximately valid for

many multiple stationary non-Gaussian random functions. In that regard,

one may expect trne sampling distribution ,.An*-Whfidence band resilts of

Sections I and 2 to be 1h many cases a proximately applicable to the method

of studying nonlinear systems describeAabove.

The reader will note that the methods of this section indicate how a

(possibly) nonlinear time invariant system may be (a) approximated by a

linear time invariant system, and (b) provide a measure (sample multiple

coherence; of how accurate (at each frequency f0 ) such a linear time invariant

system approximration is. The methods of this section may therefore also

be roughly used to teet the hypothesis that a time invariant system is linear.

The general idea Is that a time invariant system capable of being suitably

approximated by a linear time invariant system may for many practical

purposes be regarded as a linear time invariant system.
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