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ABSTRACT: The propellant flow in a constant accel-
eration gas gun has been presented by the method of

{ characteristics., The presentation has been done in
Eulerian as well as Lagrangian coordinates. To
illustrate the properties of constant acceleration
flows and to facilitate the investigation by the
method of characteristics a simple means of generating
the flow has been examined in more detail. The
equations describing constant acceleration flows

have been reviewed and extended.
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INTRODUCTION

It was first reported by Stanyukovich (Ref. 1) that the
launching of a projectile from a gas gun can be accomplished
with constant pressure at the base of the projectile if a
particular kind of propellant flow is utilized in the gun
barrel. Stanyukovich derived the equation of the required
flow from the assumption that the flow velocity is a function
of time only. Independently of Stanyukovich, Curtis (Ref. 2)
and the author (Ref. 3) arrived at the same analytical solu-
tion, but used different approaches. Curtis derived the
solution from an analogy with the earth's atmosphere, the
author from the necessary and sufficient condition to main-
tain constant pressure of each element of a fluid in motion.
Various investigators have elaborated on the solution and
suggested modifications of two-stage gas guns to approximate
the conditions for a constant base pressure launching of a
projectile (Refs. 2 through 6).

In the present report the part.-mlar flow required in
the gun barrel will be studied by the method of characteristics.
The investigation will not be restricted to the propellant
flow in the gun barrel, but will be extended to the more gen-
eral flow phenomeson, which has been termed ''constant accel-
eration flow" by the author. To facilitate the presentation
by the method of characteristics the production of a constant
acceleration flow by a simple means will be investigated in
more detail. The constant acceleration flow equations will
be reviewed briefly, for reason of reference, and some relations
will be derived which have not been given elsewhere.
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CONSTANT ACCELERATION FLOW EQUATIONS

Assuming a oue dimensional flow in the absence of vis-
cosity and heat conduction, the author has shown, in reference
3, that the pressure of each fluid element can only resain
constant in time if no relative velocity variation exists
throughout the flow. This is obviously the case for a fluid
at rest or in constant velocity motion. But the fluid also
exhibits no relative velocity variation if the same force is
acting on the unit mass throughout the fluid at each instant
of time. In the absence of body forces, pressure times area
forces are active only and it follows that the force is con-
stant and thus produces a flow of constant acceleration.

The proof, that the "no relative velocity variation" is
a necessary and sufficient condition for the pressure of each
fluid element to remain constant in time, follows from the
continuity equation

ox (1)

with 9”/3;- O one obtains a,‘o/dé-a and it can be shown
(see Ref. 3) that @/ ..o as & consequence of XL/l ka0
independent of both the process by which the flow has been
generated and the equation of state of the fluid used. For
the strictly one-dimensional flow, Euler's equation of motion

becomes with F«/5, = 0

du _ . 2L (2)
5¢ = %"~ P 3k
vhere <& is a constant.

The constant acceleration flow exhibits a pressure gra-

dient which does not vary with time and a constant temporal



NOLTR 64-69

velocity gradient. A temperature gradient is present in the
flow unless the flow has been produced by an isothermal pro-
cess., Using Lagrangian coordinates one can easily show that
none of the properties of each fluid element changes with time.
The integration of the equation of motion leads to

oax « /2o et
P

where Po is a reference pressure and f(t) is the time dependent
constant of integration. Since neither p nor p depend on time,
differentiation with respect to time gives

f//f/':.a% -““-O(zl‘

if u=o0 for t = o. The general equation of a constant accel-
eration flow then becomes

y - P2
_/ %”.?-fcxx-—’/z“t-'o (3)

For an isentropic p-p relation of an ideal gas one obtains
from Eq. 3

r-/
o, )V, - s I P 2f*
///"o/ oAy - Y-

(4)

where Po and p, denote their values at x = o and t = o. Intro-
ducing the speed of sound in Eq. 4 we have

= 2
aat aoz- /r—//“x* xT/azt (5)

where a = a, for x = o and t = o. This equation has first
been derived by Stanyukovich (Ref. 1)
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CONSTANT ACCELERATION FLOW PROPERTIES

The simplest and most illustrative way to produce a con-
stant acceleration flow is to set a horizontal pipe enclosing
& certain awount of fluid into motion of constant acceleration.
Depending on the degree of acceleration and the length of the
pipe, the transition of the enclosed gas from rest into the
accelerated motion may or may not lead to the formation of a
shock wave. In order to avoid this it is assumed here that
the acceleration o« is approached sufficiently slowly. The
adjustment of the enclosed gas to constant acceleration motion
then has taken place isentropically. To describe the condi-
tions within the gas in Eulerian coordinates, the time will be
counted from the instant the acceleration o¢ is reached. The
origin of the coordinate system is placed at the location of
the reference pressure p, (Eq. 4) at time t = 0 and held sta-
tionary. The positive x- axis points into the direction of
motion of the fluid. The conditions in each cross section of
fluid are then given as functions of position and time by Egs.
4 and 5. Simpler expressions of the constant acceleration
flow are obtained by means of Larrangian coordinates. The
coordinate system then moves with the fluid and the origin is
attached to the cross ssection which exhibits the reference
pressure p, after the acceleration o is reached. Since none of
the gas properties change with time the conditions throughout
the fluid are, according to Eqs. 4 and S5, given by

/"@/%’;;/—!;’& as-/p/,o,/‘r_/ (6)

7 Lo
and

2 2
X o - (r-7)XS (1)
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The coordinate s, used here for reason of distinction, repre-
sents the distance of a given fluid particle from the reference
cross section at the time o« is reached. The values of s
increase in the direction of the accelerated motion. In
describing the flow phenonenon further, we will use Lagrangian
presentation for reason of convenience.

The above equations indicate that the pressure p, the
density p, and the sound speed become zero for a certain
coordinate s*, This cross section is given by

*» Y p. ao #

i = = (r-’) X (8)

S

A vacuum thus exists in that part of the pipe for which s = s*%,

The temperature distribution is obtained from Eq. 7 as

— &

where Cp is the specific heat at constant pressure. The tem-
perature thus decreases linearl; with s and becomes zero for
8* =Cs70/y, The enthalpy also decreases linearly with s
according to

A - Hy — XS

(10)
with zero enthalpy for the particle at s* = h,/«.

The variation cf pressure, density temperature, and sound
speed as a function of s are shown in Fig. 1. The pressure
and density approach gradually with horizontal tangent the
value zero. The speed of sound according to its parabolic
form of variation
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Qe tyr-1)x (s7-5) T

decreases abruptly with vertical tangent to zero.

For values of 8 > s* the enthalpy and temperature becomes
negative, the pressure, density, and sound speed become imagi-
nary. A constant acceleration flow cannot physically be real-
ized beyond s*., It will be shown later that the zero density
particle path plays the particular role of an envelope of
characteristics.

The relation will now be derived between the conditions
in the pipe before and after the acceleration is reached.
This could be dome by evaluating the average density p from an
integration of Eq. 6. The average density can, however, be
derived with less effort by direct integration of Euler's
equation at constant time, It foullows then for a pipe of
length 8 that

5 —
Po - p = “Z/Dd““’”f‘“"’" (12)

where ng is the mass of the enclosed gas. Eq. 12 is valid
independent of the p-p relation. The above equation becomes
particularly simple if the pipe is of length s*., It follows

then that

Po = XL S (13)

and one obtains by replacing s* by its value

r —
FPo = w7~ (14)
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It is now interesting to determine at what distance s the
average density p occurs., At this point all state variables
will be the same as they had been before the pipe was acceler-
ated. Eq. 14 and Eq. 6 give

/,x_,/r-/= S S sw (15)

From Eq. 14, 15, 9 and 6 one obtains

Fbr'ya 73' ror f“.ié
s = 0.39s" §= 0965
,5. = O 29 Po /5 = O.%0pPo
7 = 0677 7 = o0s% 7%
P = 077 Po B = 0.22 P

To illustrate the generation of a constant acceleration
flow further, it will be assumed that the flow is produced by
erecting a pipe enclosing a certain amount of gas from a hori-
zontal to a vertical position. The acceleration then equals
the acceleration of gravity g. A Lagrangian coordinate system
will be placed with the origin at the bottom of the pipe and
the positive s- axis vertically up. Assume the pipe has been
filled in a horizontal position with air of one amagat at a
temperature of T =300°K. Cne finds then that the pressure
becomes zero at the upper end of the pipe if its length is
s* = 3lkm, The density at the bottom enclosure of the pipe
bas increased to 3.5 amagat, the temperature to 495°K, and
the pressure to 5.8 atmospheres. The distance 8, where the
density of one amagat would be found, is at a height of s=12km.
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This artifical atmosphere, which was created by an isen-
tropic adjustment from the horizontal to the vertical position
of the pipe, differs noticeably from an ordinary atmosphere.

If by heat conduction the same temperature could be established
throughout the enclosed gas, the conditions then become similar
to those of the surrounding atmosphere. The '"flow'" now present
in the pipe represents an isothermal constant acceleration flow.
The existance of this flow in the earth's atmosphere was proved
by the author (Ref. 3) employing Eulerian coordinates. The
properties of an isothermal constant acceleration flow will now
be given.

With p/p = const. the solution of the general equation of
a constant acceleration flow (Eq. 3) becomes in Eulerian
coordinates

2,2
/oa//aa 4;’0//00 +“X—%lo‘é = O (16)
In Lagrangian coordinates one obtains

A
Plo, = To, = exp /— /,00“5/ (17)

The Lagrangian presentation shows best the similarity to an
isothermal atmosphere where the pressure decreases exponen-
tially with increasing height. The significant difference
of the constant acceleration flows involving either an isen-
tropic or an isothermal process is that in the isothermal
case the pressure becomes zero only at infinity,
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CONSTANT ACCELERATION FLOW CHARACTERISTICS

The equations of the characteristics can easily be derived
since a and u are known as functions of x and t. We write the
characteristics in the form Y/ & *a = A . The families
of curves which present the net of the characteristics are
then generated by using k as a parameter., With u = o0 for t = o
it is most convenient to use as a parameter a, which represents
the local speed of sound along the x- axis. The value of ay
is given by Eq. 5. Ve have

/.
r-/ =
Ty = o // ~ gLt 0()’) (18)

where a, equals the sound speed of the fluid element initially
at position x = o. The equations expressing the net of char-
acteristics become

in—’u:a.a, (19)

and with
Y2

E
-r F 3
arac//""%_:?’—."t
U = Q’é

one obtains by rearrangement

2 (3-ylas - 2a,*
ﬂ‘ ot j // i ‘/ (20)
(3-y)X (3-x) a’/ o (r-7)03-a)
The characteristics are parabolas. The nxes of the parabolas

are all parallel to the x- axis. With x’=/ / and 2'=()
the parabolas become

’

< P
(3-y) o< (21)

All parabolas are of this identical shape.

10
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Eliminating a, between the expression for x' and t' we
derive an equation which describes the locus of the vertices
of the parabolas as

22 20(r-+) /a"‘ _ X/
“oa-y) ((y-n) (22)

Since the vertices of the parabolas represent for the charsc-

teristics the points of zero slope, the equation (22) indicates
wvhere sonic conditions occur in the flow. The above parabola
will therefore be called the sonic parabola. 1Its equation
could aiso have been derived from the condition «+asO0.

The sonic parabola intersects the x- axis at a distance
a

of X = (.;__%‘- wvhere ax = o. The intersection with the
t - axis is at Z~ 7 53/3/3-3( . At this time sonic conditions

occur in a constant acceleration gun at the gun barrel entrance.

The particle path describes a parabola of the form

A VA" (23)

where x, indicates the initial position of the particle.

Two particle paths, of initial position x = o0 and x =
ao‘/{(-/JO( , the sonic parabola and two characteristics are
shown in Fig. 2. A schematic net of characteristics is illus-
trated by Fig. 3. Notations have been omitted in this figure
80 as not to distract from its Op-Art value.

We obser-ve that the system of characteristics is symmetri-
cal to the x- axis and that the separation of neighboring
characteristics reduces with increasing x value. The inter-
section points of infinitely closely spaced characteristics

11
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define an envelope with the equation
2
2= Y [ - a°//r-//o</ (24)

This envelope is a parabola whose vertex is at x = S 2/6’-/10(
where ay = o. Its equation describes the path of the particle
initially at a location where ay, = o. The gas element which
moves along this patk exhibits, as has been shown, zero pres-
sure, temperature, density, and sound velocity. The physically
realizable segment of the x, t plane in which a constant accel-
eration flow produced by an isentropic process can exist is
thus the above zero density particle path and the x- axis. To
the right of the zero density particle path the sound velocity
assumes imaginary values. The separation of neighboring char-
acteristics increases again in this region.

For the particular case.of a constant acceleration gun
with projectile position at x = o for t = o, the constant
acceleration flow exists only to the left of the particle path
originating at x = o. Sound velocity is reached at the base
of the projectile where the path of the particle originally at
x = 0 intersects the sonic parabcla. It occurs at the time

? = Qo/X . If x = o0 is the position of the barrel entrance,
sonic conditions occur there at the time indicated by the inter-
section of the sonic parabola with the positive t- axis. This
time is t = %—'- /‘%-J . Tha propellant flow will be restricted
to u = a from now on for a chambered gun.

The outstanding feature of the constant acceleration
flow is especially well illustrated by presenting the charac-
teristics in Lagrangian coordinates. We select again ayx as
the parameter. The equations of the characteristics for the

14
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isentropically produced constant acceleration flow follow from
the relations which express u and a as functions of the particle
coordinate s and time t. We have u = t and a(s,t)=

Qo //- 0’-’/ since in Lagrangian coordinates 9"/3# =0 .
Ve obtain then

a’—/
Tz

(25)
or after rearrangement

= 2Is )2 <
/Z‘* (r-7) o =/r—//o( )'—//cx _/(r—//d[ / (26)

where ay has been replaced by ag and ;;rzr—— by s*., Setting
() =t'"and [ ]/ = s' the parabolas can be transformed
into one parabola with the equation

I& 4 /
The vertices form the envelope
3
Qo *>
- - 6
S TR (28)

For this 8 value we have ag, pressure, density, and
temperature equal to zero. To the right of the envelope the
sound velocity assumes imaginary values. The positive sign in
equation (25) is satisfied by the lower branch of the parabola
of equation (26) and its extension as the upper branch into
the region of imaginay sound speeds, the negative sign by the
upper bronach of the parabola and its extension into the imagi-
nary sound speed region. The net of characteristics is
illustrated by Fig. 4. The sonic parabola, which is also

15
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shown, has in Lagrangian coordinates the equation

2 Y-/ Qo _ I fal4 5*-5 (29)
e N B (572

For ruvference the position in time of the x = o Eulerian
coordinate has been included in Fig. 4. 1Its equation is

% - = (30)

For a constant acceleration gun with the projectile at
8 =0 for t = 0 we find from equation 28 that at the time

=
Z= T/ (31)

sonic conditions are reached at the base of the projectile.
Sonic velocity occurs at the barrel entrance x = o at the
intersection point of the parabola represented by Eqs. (28)
and (29). We obtain

S-= o
) X(3-y) (32)

¢ o /V’.z
& 3-x (33)

The Lagrangian presentation illustrates best the fact
that the forward and backward running waves completely cancel
each other and that, consequently, the properties of the flow
cannot change with time.

The effort of drawing the characteristic net in Lagrangian
coordinates can be reduced greatly by using an a versus u plot.
The characteristics in these coordinates are then two families

2
of straight lines with slopes of ~ -7 + This is in general

17
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true independent of the particular flow under comsideration.
The unique difference here is that for a constant acceleration
flow in Lagrangian coordinates the sound spced is a function
of the initial coordinate alone. We have then u = u(t) and

a = a(s) and thus an a, u plot also presents an s, t plot.

In nondimensional coordinates the relations are ¢/ = %%/
- //2 S, //Z
and Va,= (/- %‘xsj = //—/5‘7

The straight line characteristic net is shown in Fig. 5
for the case of y-~8§. The sonic parabola degenerates into
twvo straight lines ¢« «~* a2 as shown. The Eulerian coordinates
X = o0 prescribe a hyperbola of the equation

(@fa,)— L~ /‘(/do/z" / (34)

Point A gives the time when at the base of the projectile

and point B when at the barrel entrance sonic conditions
occur. The C, and the C_ characteristics through point B are
the same characteristics which are shown in Fig. 2. The C_
characteristic through point B is tangent to the hyperbola.

18
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