o

AP619

\
V5.
T

Western Management Science Institute
University of California ® Los Angeles

i
p: AUG 30 1965
J{BbCJL.‘Ju v LD

DDC-IRA E

—

n)

|

&

T



University of California
Los Angeles

Western Management Science Institute

Woriire Paper No. 8o

The Econonics of Uncertainty X
by
¥arl Borch

June 1965

This paper consists of notes prepared for a series of lectures given
at the Graduate School of Business Administration, at the University
of California, Los Angecles, during the academic year 1964-1965. The
work has been supported by the Western Management Science Institute
under a grant irom the Ford Foundation, and by the Office of Naval
Rescarch under Task 047-041. Reproduction in whole or in part is
permitted for any purpose of the United States Government.



Chapter X

Notes on Some Bargaining Problems

10.1 In Chapter VII we discussed a number of situations in which two
persons could gain Ly making some kind of coopera+i.~ arrangement. We
found that the set of all possible arrangem~ats c-micined a subset of

arrangements having the property which we called Pareto crt iality. We

concluded that two rational persons would somehew be able tu reurn a
Pareto optimal arrangement, We were, however, not able to reach any firm
conclusions as to which particular arrangement in the subset the two
persons wculd make, All we had to say was that they in some way had to
barcain until they agrecd on a Pareto optimal arrangement. If our two
persons were unable to do this, we would not consider them as 'rational,"

In this Chapter we shall study more general situations of this kind,
Classical economic theory has little to say about the problems we want to
analyse, We shall, however, see that the Theory of Games Zi§7 makes it
pussible for us to come to grips with the problems, even if the theory at
the present stage of development does not always yield satisfactory
solutions,
MO 2 In general an n-person game is described by the following three
elements:

(i) Aset N of n players,

(ii) n sets of strategies Sy, Sp «aa S

The set S; consists of the strategies sy, sjo ... available

to player 1i.
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(iii) n payoff functions M;, My .ou My

The function M; = M; (slrl’ §2pg *o snrn)
is the payoff to player i if

player 1 uses strategy slrl E S

playcr 2 uses strategy 52r2 E So

If the rules of the game are such that each player mus choose his
strategy - pure or mixed - without any possibility of coorc iating his

choice with the choices of other players, we have a Non-cooperative game.

If the players have some possibilities of coordinating their choices -

to their mutual advantage - we have a Cooperative game,

From this it follows that a complete description of the game must
specify - in addition to the three basic elements - the possibilities of
cenrunication among the players.

For n=2 and M1(51-82-) = 'M2(51.s2.) we obtain the Two-person

zero-sumn game discussed in Chapter IX. In this case communication possi-
bilities are irreclevant, sirce the players cannot both gain by coordinatirg
their actions,
10,3 The model becomes very rich as soon as we drop the zero-sum
condition, and it may be useful to discuss a few simple examples which
will illustrate the wide variety of real life situations which can be
represented as a game,

Let us consider two competing firms, and assume:

(i) If both firms maintain their selling price, each will make a

profit of 1,

(ii) If one firm cuts the price, it will double its profits, provided
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that the other firm maintains its price, The latter firm will
then suffer a loss of 2.
(iii) If both firms cut the price, they will both lose 1.
This is an almost classical problem, usually known as "The Prisoner's
Dilemna" (ZIQ7 p. 94). It is easy to see that the situation can be repre-

sented by the foilowing payoff matrix:

Firm 2
Maintain Cut
Price Price
Maintain
Price (1, 1) (-2, 2)
Firm 1
Cut price (2, -2) (-1, -1)

As a cooperative game this situation is trivial, The obvious
"solution" is that the firms should agree to maintain the price., It seenms,
however, that they carrot reach this soiution unless they can communicate
with cach other, and unless the agreement they reach must be observed by
both parties.

10,4 If the two parties cannot communicate and make an enforceable
agreement, the situation is far from trivial, To illustrate this, let us
take the approach we used for the zero-sum game, and assume t.at the two
firms maintain the price with probabilities x and y respectively,
This will give the pavoffs

M, (x, y) ==-x + 3y =1

My (x, y) = 3x =y =1

It is easy to see that there is no strategy which can secure any

player an expected gain which is independent of what the opponent does.

It is, however, clear that Firm 1 which controls x must choose x =0
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in order to make 1!, as large as pcscible, and that Firm 2 must choose

y = 0. This means of course that both {irms will cut price and suffer a

loss.,

It does not seem promising to ccntinue analysing this situation in

its full generality. If we ack a person how he would decide in a situation

which can be represented by our recdel, it is most likely that he will reply

that

10,5

"it all depends,"

This naturally leads us to examine t..e elements on bich the

decision may depend, for instance:

(i) The possibilities of communication,

(ii) The degree to which the two parties trust each other.

(iii) The magnitude of tl'e payoffs.,

(iv) The number of times the game will be played.

also

We can do this by introspection and theoretical arguments, and we can

do it by controlled experiments., The latter cpproach has been taken

by Lave Z§7 and 127, and has led to some interesting results.

Lave studied a payoff matrix of the form

Plaver 2
1 2
4 (39 a) (b’ c)
Player 1
2 (Ca b) (d’ d)

where ¢ 5 a »d >b

He found that if the number of plays a was sc large that

k (d=-b) <n(a-d)

the subjects tended to choose the cooperative decision. In this inequality
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k 1is a parameter which surmarizes the attitudes of the subjects. (d - b)
represents the loss one suffers if one tries to cooperate, and the opponent
does not respond, (a - d) represerts the gain obtuincd by cooperation,
In his experiments with undergraduates at Reed College Lave found approxi-
mately k = 3, In a later experiment with Harvard undergraduates he found
a stronger tendency to cooperate, regardlecs of the magnitude of the payoffs.
Experiments of this kind hav> a cyisiderable psychological interest,
but their significance for economics is questionable, The b havior of a
student pleying for pennies does not ccntribute much to our owledge of
economic behavior. 1t does not help if the ecxperimenter asks the student
to behave as if he were the president of U.S, Steel and had to make deci-
sions involving millions of dollars, This will in Lave's words only give
us information about "r subject's individual (almost certainly naiv?)
conccption of the way he thinks Roger Blough behaves," To a psychologist
this may be interesting, but an economist nay well dismiss such information
as irrelevant to his problems,
10,6 As another example we shall discuss a secund cliassical game,

represented by the payoff matrix

Player 2
I 2
1 (10. 3) (0, 0)
Player 1
< (0, 0) (>, 10)

This game is generally known as the "Battle of the Secxes” (sz/ p. 90),

but it can easily be given economic interpretations.,

Here again tne first step towards a cooperative solution is trivial,
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If the players can communicate, it seems obvious that they should agree to
use either the two first strategies or the two sccond strategies, i.e., the
"strategy pairs" (1, 1) or (2, 2). The two other strategy pairs (1, 2)
and (2, 1) are ruled out as ineflicient,

As the next step the two players have to decide which cf the two
efficient strategy pairs they chall use, If they agree to make the deci-
sion by *ossing a coin, it is easy to see that edach player will receive
an 2xpected payoff of 7,5. This may appear as a fair solu ‘on, acceptable
to both parties, but it is not the only possible solution, he ployers
may for instance argue about the vandonm device which shall be used for
the final decision, Each player will then argrne in favor of the random
device which gives the highest probability to the efficient strategy pair
most advontageous to him., This clearly leads to a situation similar to
those discussed in Chapter VII, i.e, to deter—ine a particular Pareto
optimal arrangement as the solution to our problem,

If the t~» players fail to agrec on the random cevice which shall be
used for the final decision, they may consider playing the game in a non-
cooperative manner - "cach for hiaself,” If they use their first strategy
with probabilities x and y respectively, the payoffs will be:

S{l=-x-=(1-23x)y)

My (%, y) = 10xy + S (1 - x) (1 -y)

Sxy + 10 (1 = x) (L -y) =52 -2 -(2=-3y) x)

"

Hy (%, y)
Fror these expressions we see that ly choosing x = 1/3, Player 1
can secure an expected payoff of 10/3 for hinself, regardless of what
Player 2 does, Player 2 can in the same way make his expected paycff
eqiral to 10/3 by choosing y = 2/3,
10,7 In the economic situations which we want to discuss, it is

natural to assume that the parties involved can negotiate, and that
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contracts are fulfilled., This means that the '"Battle of the Sexes" is
the more relevant of the two examples which we have discussed., '"The
Prisoner's Dilemma" is as we have noted trivia®l when considered as a
cooperative game,

Let us now return to the general n-person game, and assume that the
n players meet and discuss how they should coordinate their decisions to
their mutual benefit, Each player will then argue for an n-tuple of
decisions (pure or mixed strategies) which is favorable to im, He may,
of course, use any argument which he believes that the othe players will
swallow, It seers, however, that in an asseably of rational pecple, he
can hope to achieve something only by advancinc arguments of the follov-
ing two types:

(i) He can threcaten to refuse to cooperate, i,e, he can threaten

to choose his own strategy without any regerd to the wishes
of the other players, and without informing them about his
choice,

(ii) He can appeal to somc general principle of fairness or ethics,

which he thinks nay Ve acceptable to the other players,

Frcm this it follows that we cannot solve a cooperative game problem
without consid ring the corresponding non-cooperative gare, This means
that non-cooperative games in _ome sense are more basic thlan cooperative
games, Any player can refuse to cooperate, and the payoff which he can
obtain by this refusal must Le an element of his '"bargaining power” in
the cooperative gane,

10,8 The moct intriguing problem in bargaining theory is to fortulate
the "genecral principle,' acceptable to rational perscns, as to how such

conflicts of interest shall be settled, Cince the rationality assumptions
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alone do not give a unique solution to the problem, it is obvious that we
need some additional assurmption about the hehavior of the players,

To illustrate the point, we shall return to the example discus<ced in
Chapter VII. In Table 2 of para 7.22 we found the Fa:eto optimal arrange-
ments whichk could be rcached by an exchange of con.on stork in the two
businesses, Ignoring that these arrangements arc nct really optimal
(because of the unnecessary restriction that only common stock can be
exchanged), w2 can seek an assumption which will single out ~ne particular
arrangement hich two rational persons can be expected to a ee upon,

In para 7,12 we assumed that the two persons behaved as they should
according to classical economic theory, and we found that this determined
a unique arrangement which gave the two persons the utilities

Ul = 3,66 and 02 = 3,58

It is, however, possible to introduce a number of alternative assump-
tions., Let us for instance assume that our two persons for some reason
have agreed that the two businesses have the same "intrincic value' (since
they offer the same expected profit), so that in all fairness the con.on
stock must be traded in the ratio 1 : 1,

In para 7.22 we found that the Pareto optimal arrangements were

determined by the relations

L= 48 - 41k o _ 16 - 9k
TRk + 14 ‘ Y© v+ 13

Here x and y are the sharcs which Person 1 owns of Business 1 and
2 respectively, !ith our r>w additional assumption, we obviously have
x +y =1, This deterrir.~s a unique arrangement, giving the two percons
the utilities

U. = 3,5 and U . = 3.72
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The corresponding chares are
x =0,598 and y = 0,402

10,9 The additional assumption which we introduced in the preceding
paragraph may secem very artificial. The assumption is, however, equiv-
alent to a principle which is widely applied in reinsurance. !lien two
friendly insurance companies of approximately the same size conclude a
reciprocal reinsurance treaty, they wilil usually agree at the outset that
the exchange of portfolios shall be on a "net premium basis " This means
that they agree to consider only the expected profit or the ortfolios
which they exchange under the treaty. The implications of an agrecment
of this kind have been discussed in some detail by Borch‘127 and LE-.

Our cvample shows that bargaining over the arrangement which the
parties should agree upon can be replaced by bargaining over the general
principle which should be applied to settle the conflict situation., It
scems that this may often happen in practice. In our exarple it is quite
likely that Person 1 will arrue foir settling the conflict vy the rules of
free competition and by applving the ideas of classical econonic theory,
since these will lead to an arrangement favorable to him, Person 2 may,
on the other hand, argue in {avor of some "fair price" principle, since
this will give him a better deal,

In bargaining betwcen labor and minagement, principles like "Lqual
pay for equal work'" or "Paynent based on productivity' may lead to very
different settlements, and either party may argue for the principle which
bect serves its own interests,

A general principle for resolving conflict situations should be
acceptable to all parties, We can formalize this by recquiring that the

principle should be acceptable as fair to us before we know which part we
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are going to play in the game, Ideas of this kind are behind much of our
legislation. l'e consider a law as "good" if we can accept it no matter
how we may come in contact with it, as tuyer or seller, as tenant or
landlord, as creditor or debtor, etc,

10,10 We shall now discuss a general principle prrposed by Nash 1127,
which gives a unique solution tr the two-person ba.gai.ing problem,

Nash lays down th~ following four conditions which an arrangement
must satis{y to qualify as a "solution" to the problem:

(i) A solution must be invariant under li~.ar transfo: 1ations

of the utility scale,

(i1) A solution must be Pareto optimal,

(iii) Assume that we have a solution, and reduce the problem by
removing some possible arrangemonts which do not represent a
solution, The solution to the original problem must also be
a solution to the reduced problem,

(iv) 1f the problem is completely symmetric, the solution is to
divide the gain obtained by cocperation equally between the
two parties,

Nash then proves that the only arrangement which satisfies these
four conditions is the arrangement which maximizes the product of the
gains in utility which the two persons make by cooperating.

Applied to the example which we have discussed earlier, the Nash
principle gives as solution the exchange of common stock (x, y) which
maximizes thc product

{Ul (x, y) - Ul (1, 0)) (UQ (l=-x,1=y)- U2 (0, l)]

This solution will give the two percons the utilities:

Ul = 3.58 and U2 = 3.62
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This result is different from the two "solutions' which we found in
para 10.8.
10.11 The N-sh cenditicns can be spe’i out with full methematical
precision, and the proof can be ccvried thrcuch in a rigorous manner. We
shall not do thisz, but we stall cive a heurist<c arg ment which will
illustra*e the cssential ideas bchind the proof,

Let us cen-’der the barsgainine situntion Filu<t :nted by Figure 1.

Al

| Figure 1
~ \\
! o~
\‘ -
2 )
N (3.5,1.25)

|

1

t

' I
- ‘

. |

! (vlnvz) ]
-4 - _— o} ~_i. LN TEE O — . — )
0 1 2 3 4 U

The n»ossihle arrangements are represented by the points between the

axes and tiae tvo lines

Up = 3.3
The point (Vl, V2) = (2, 1) represents the utilities which the two

persons can secure for themselves by acting in a non-coupcrative manner,
i.e. by using their mini-max strategies.

The point N, or (3, 1.5) naximizes the product (U1 - Vl)(U2 - V,).

Let us now change the origin on the utility scales so that the »oint
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(V,, V,) becomes the origin, i.e. we write Uj =U, -V, and Uy = U, -V

l, l 1 2 20
This will give us the cituation illustra*ed by Figu-e 2. The point N has

now becore (1, 0.7,

Fiyure 2
= ~
N
1
Let us n.ovt chance the utility sec o - Torson 2 by the transforma-
L L}
tion U2 = 2?2. This will give us the <.* - “on illns*ratad by Figure 3,
The point N now becores (1, 1),
A U'l
®
[
: Pl Figure 3
N
\ H
1 L \
\\
(1.5,0.5)
0 L >
1 2 v!
1

As a last step let us enlarge the rame by adding some new pessible
arrangerients at the lower right-hand corner so that we obtain the symmetric

situation illustrated by Figure 4.
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We can now reason backvards, From conditions (ii) and (iv) it
follows that the point N represents the unique solution to the game
illustrated by Figure 4. From condition (iii) it then follows (hat N
also is the solution to the game illustrated by Tigure 3. From condition
(i) it further follows that N also represents the solution to the
games illustrated by Figure 2 and Figure 1.

10,12 The conditions laid down by Nash are simple, and they look very
innocent, At first sight it may appear almoct as self-evident that any
arrangenent which can be seriously considered as a "solution" must satisfy
these four conditions, and one may be a little surprised that there exists
only one such arrangement, The Nash conditions may, however, in some
cases lead to solutions which many people find unreasonable, As an
example, let us consider the game illustrated by Figure S, Here the
possible arrangements are represented by the points of a triangle with
vertices (0, 0), (1, 1) and (0, 2).

The Nash solution is obviously represented by the point (1, 1).
This means, however, that Player 1 gets the highest payoff which he can

possibly obtain, whilst Player 2 only gets one half of the maximum gain
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7
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1

he might have hoped for, If Player 2 argues that this is unfair, he
implicitly rejects condition (iii), i.e. that the solution shall be

' If Player 2 presses his argu-

independent of '"irrelevant alternatives,'
ment, he may threaten to refuse to cocperate altogether, and thus reduce
the payoff of both players to zero, This means that he is also prepared
to reject condition (ii), i.e. that the solution should be a Pareto
optimal arrangement,

10,13 The considerations in the preceding paragraphs indicate that we
must take some care in specifying what we really mean by a "solution" to
a bargaining situation, or more generally to a cooperative game,

It may be tempting to require that a solution should enable us to
predict the actual outcome of a bargaining situation. This is, however,
clearly asking too much, unless we accept that predictions can only be
made in a probabilistic sense, We found already in our discussion of the
two-person zero-sum game that the best prediction we could hope to obtain
was a probability distribution over the set of all possible outcomes,

As a predictor the Nash solution is not very attractive, sinre it

considers only Pareto optimal arrangerents, There is ample evidence that
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oargaining situations in real life may lead to non-optimal arrangements.
Strikes occur, even if a strike never can be the optimal outcome of a
conflict between labor and management.

In the simple example which we discussed in para 10.6 the players
could threaten to refuse cooperation, and thus bring about a non-optimal
outcome, Such threats cannot be "credible' if we at the outset assume
that they will never be carried out in bargaining between rational persons.
It seems that if we belicve that threats play a real part i1 bargaining
situations, we must accept that the outcome sometimes may b« 3 sub-optimal
arrangement,

A solution theory which predicts the outcome of a bargaining situa-
tion by specifying a probabiliity distribution over the possible outcomes
is a hypothesis which can be tested experimentally., This is a very
attractive aspect of any theory, and there exists an extensive literatur.
on so-called "expcrimental games," We shall not try to summarize this
literature. The interested reader may consult a review article by Rapoport
and Orwant Zi§7, who discuss 30 different experiments, which constitute a
fairly representative sample of such studies made up to the end of 1961.
An interesting experiment, not mentioned in this review article, was con-
ducted by Stoao‘[IZ7 with students at Stanford University. Stome found
that the Nash solution did not give very good predictions of the outcome
of a series of games, which essentially were of the rnon-couperative kind.
10,14 Instead of taking the position of an outsider, trying to predict
the outcome, we can look at the bargaining situation from above, as an
umpire or arbiter, and draw up the general rules which we will use to
resolve the conflict, This leads us to look at the '"solution" as an

arbitration scheme, i.e, a set of rules which will make it possible for
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the arbiter to propose an arrangement which will be accepted as "fair' by
all parties, This idea was first formulated by R;iffa‘£I£7, but it is
inherent in many earlier papers on gam2 theory. An arbitration schere
will in fact give us just the '"general principle'" or "additional assump-
tion" which we have heen chasing earlier in this chapter.

As an arbitration scheme the Nash solution appears very attractive.
It seems almost self-evident that an arbitrated arrangement mu:ct be Fareto
optimal if it shall be accepted by the players (condition (ii)). It is
also nard to justify an arbitration scheme which does not 1 ad to a
symmetric arrangement when applied to a completely symmetric situation
(condition (iv)).

The only difficulty occurs in connection with condition (1ii), which
we now shall express as follows: "If a possible arrangement, which has
been rejected, bcecomes impossibie, this should not change the arbiter's
decision,” This seems a very reasonable condition, but it led to an
arrangement in para 10,12 vhich some people seem to reject as unfair,

The following argument may help to clarify this apparent paradox.

If it is possible for a player to inflict a loss on the opponent, he
can threaten to do so. Such threat possibilities will strengthen his
bargaining position, and this should be reflected in the arbitrated arrange-
ment, which in a sense must include the compensation the player receives
for not carrying out his threats. The Nash solution takes this element
into account by referring all gains to the minimum payoff which the player
can secure for himself - regardless of what the opponcnt does,

On the other hand, it is not obvious that the hargaining position of a
player should be weakened if it becomes possible for him to do the

opponent a "good turn,” Condition (iii) states essentially that such
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possibilities of exercising charity are irrelevant, and should not be taken
into account by an arbiter,

In practice such possibilities may, however, be considered - on vaguely
formulated ethical reasons., It is probably more profitable to sue an
insurance company with a weak case than to sue one's neighbor with a strong
case,

10,15 Let us now return to the gencral n-person game, From the mini-
max theorem it foilows that Player i can malke certain that his expected
payoff does not fall under a value v ( (1)), regardless of what the n-1
other players do.

Let us assume that Player i and Player j get together and form a
coalition which acts as one player in the game against n-2 other players,
By applying a minimax strategy, this coalition can make sure that its
expected payoff does not fall below a certain value v ( (i j} ).

It is natural to assume that the two plavers cannot lose by
forming a coalition, so that we have

v((13)) > v((t)) + v({3))

To generalize this idea, let us consider an aruitrary set of
players S © N . Let us assume that these players by forming a
coalition can make sure that their joint payoff is at least equal to
v(S)

Let us next consider two coalitions, represented by two disjoint
subsets R and S of N, and let v(RUS) be minimum gain which these
two coalitions can obtain by joining forces and acting as one player,

The argument used above leads us to assume

v(RUS) 2 v(R) + v(S)
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The function v(S) 1is called the characteristic function of the

game. It is a real-valued super-additive function, defined for all
subsets of N . It is clear that the whole strategic structure of
the game is contained in the characteristic function.

By introducing this central concept of game theory in such a
summary manncr, we have swept a number of difficulties under the
carpet. It has no meaning to talk about v(S§) as the payoff to a
coalition unless we make far-rcaching assumptions abouvt '"inter-personal
comparability of utility”" and unlimited possibility of "side-payments"
within coalitions. We shall however not formulate these assumptions.
Most of the results which we shall present can be stated without such
assumpt ions if we are prepared to introduce vector-valued characteristic
functions and the more cumbersome notation which this will involve.
10.16 Let us now consider an arbitrary payoff vector x= {xl,xz...xn},
i.c. an arrangement which gives Player i the payoff x1(1=1,2...n).

A payoff vector x is called an inpucation it satisf{ics the
two conditions:

(1) > v({1)) for all 1

1

neo x

(it) x. = v(N)

i=1 1

These two conditions express the individual and collective
rationality which we have encountered several times in the preceding
chapters. It scems natural to require a payoff vcctor to be an imputation,
if 1t shall be seriously considered as a potential solution to a bar-
gaining situation. However all imputations do not have equal merits
as solutions, and our problem is to eliminatc somc of the less attractive

imputations.
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Von Neumann and Morgenstern attack this problem by introducing
the concept of dominance

An imputation y={y1...yn] 1s said to dorinate an imputation
x=[x1...xn] if there exists a coalition S (a subset of N) such that

(1 V) > ko,

(11) Yy > x, for all 1€S

An imputation which is dominated via some set of players S does
not seem very acceptable as a solution, since these players can do

better by forming a coalition and "go it alone".

Von Neumann and Morgenstern define the Solution to the game us

the sct A of imputations which satisfy the following two conditions:

(1) No imputation in A is dominated by another imputation in A.
(11) Every imputation not in A is dominated by some imputeticn
in A,

To illustrate the mcaning of this Solution concept, we shall apply
it to a few simple examples.
10.17 As a first illustration let us consider a two person game of
the tyne we discussed in paragraph 10.6. Here the imputations arce the
payoff vectors (xl,xz) which satisfy the conditions

x. +x. = v((1,2)) = 15

1 2
3 >v((1)) = 10/3
xzzv((E]) = 10/3

Here there can be no dominance, so the solution consists of ﬂll
imputations, or {n our previous terminology, of all Parctlo-optimal
arrangements.

As our next cxample, lct us consider a three-person game defined

by the characteristic function
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v(l) = v(2) = v(3) =0
v(1,2) = v(1,3) = v(2,3) =1
v(1,2,2) =

Wwe shall [first consiuer the s>t F consisting of the three

imputations

., 3, 0
(3, 0, »

o, %,

and prove that this sct is a solution.

(1)

(11)

Let us consider an arbitrary imputation (xl.x2,x3).

From the defintion it follows that

i x1 = b x1 > 0
i=1

it is obvious that either:

2 elements in this vector is equal to {. and the third s
zero or:

2 elements arce smaller than ;.

In the former case our imputation belongs to our initial set F.

In the latter casec our imputaticn is dominated by one of the

three imputations in the inttial set F.

It is casy to sec that none of the three imputations dominatcs

the two others. Hence the set F constitutes a solution.

1,.18 Let us next consider the sect Fl(C) of all {mputations of the

[form

x. )

(cp x2- 3

where ¢ 1s a non-negative constant.

It 15 obvious that

x2 + x3 =1 - ¢
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and that nec impputation if Fl(c) dominates any of the other imputations
in the set.

Let us then consider an imputation (yl.yz,ya) not in Fl(c).

1f ¢ > y1 we have x2+x3 < y2+y3

y2 and y_ cannot both be greater than 2

3
If ¢ < %, we can take either x_, or x3 greater than %, and hence

find an imputation (c,x ,x3) in Fl(c) waich dominates (yl,yo,yS)

2

If ¢ < Yo we have x2+x3

In that case we find an imputationin Fl(c) which dominates

> .
- y2+y3

(Yl.Y2oy3) by taking x_ - y_ and x_ > y

2 2 3 3

F-~m these considerations it {ollows that the Solution consists

of che following four sets of imputations.

(i) F: (% % 0, (%, 0,% and (0, %, &
(13) Fl(c) s (e, X, x3)
(111) F2(c) : (xl, c, x3) 0 <c <
(iv) F3(C) : (xl. X, c)

10.19 Thc rcsults of the preceding paragraph mean that any imputation
in our simple threc-person game belongs to a set, which according to

the dcfinition of von Neumann and Morgenstern is a Solution to the

game. This {s not a very satisfactory conclusion for our purpose.
Ve set out to find onc payoff vector which we could accept as the
unique solution to a bargaining situation. It is then .irectly
disturbing to find that practically cvery payoff vector may have a
claim to Le accepted as a solution.

It would however be premature to launch any general critic'!sn

acainst the solution concept of von Neumann and Morgenstcrn from this
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basis. Most of the games which have been investigatied so far, have,
like our simple example, an embarveseipngly large number of solutions,

out 1t has so far not been possible tn prove that every gane has a sclicivn,

i.c. that there exists in every game a non-cmpty set A of imputations
wilch satisijes the two conditirns in paragraph 10.156.

Von Neumann an'! lorgenstern argue with strength and at length that
orly the sct A in {ts contirety can bec considered as the solution. ‘e
shall not try to summarize these arguments, but we shall cndorse the
following quotation from another book on game theory:

"The full flavor of their argume-ent is hard to recapture, and
it can only be recommended that the reader turn to the discussions of
solutions in their book™ ([10]) p. 206).

10.20 The essential idea behind the solution concept of von Neumann
and Jlorgenstern is that an imputation must anave some stability
propcerties to be acceptable as a solution., To illustirate this, let
us again consider the sct of {imputations F, which we studied in
paragraph 10.17.

Let us assume thet the players by some process have arrived at
the payotf wvector:

¢, 0,0

This 18 not very satisfactory to Player 3, and he may approach

Playcr 2 and propose the imputation
0.3 h

This duninates the origzinal imputation - via coalition (2,3)

1f Player 2 accepts this, Player 1 will be the dissatisfied one.
He may then approach Player 3, and propose the imputation:

('. On 4-)
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which dominates (O, %) via coalition (1, 3). Player 3 will in

TR

all probability accept this.

Now Player 2 may approach any of the other players and propose

imputations, such as
G130 or (0,7,

Hosever thesc two players should .:ow have learned by obscrving
the fate of Player 2. He was greedy, and tried to obtain more than
the solution allocated to him, and as a result he lost ever, sthing.
Hence the imputation (A, o, *) may remain stable.

Von Neumann and Morgenstern suggest that the ccnstant ¢ which
occurred in the other solutions Fl(c), Fz(c) and F3(c) may be
interpreted as a mcasure of the amount of discrimination which
society will permit. If unlimited discrimination is allowed, we
have c¢=0, and the solution consists of the three imputations in F.
10.21 In paragraph 10.15 we defined an imputation as a payoff
vector X =[x1...xn] which satisfied the two conditions:

(1) > v(1) for all

1

(11) x = v(N)

1 1

Mo x

i

The first of these conditions state that no player will accept less
than he can obtain by acting along - a~ainst the n-1 other players.
It is tempting to assume that each coalition will exercise the
same degree of rationality as an individual player.
This leads us to lay down a third condition

(111) X, > v(S) for all S in N

1€s X4
The sct of all imputations which satisfy these threce conditions

is called the Core of the game, a concept first introduced by Gillies

(4],
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At first sight the core appears to be a very atiractive c-ncept -
just the answer to our search for a device which will cut down the
number of imputaticns which may be considered as o::ntial scluticrs
to our proYblem. The rrouble is however that the core often does this
Job too drasticilly. In a number of games the core is empiv, 1.e. there
exists no impu*~tion which natisfies the three conditions.

In the th.ve-person gaue which we aiscussed in paragraph 10.17
the core is the set of vectors (x_,x ,x3) with non-negative ecicments

12

satisfying the four conditions:

x1 + x> v(l,2) =1
x1 + x3 > v(1,3) =1
x2 “ X, S ov(2,3) =1

x] + x2 + x3 = v(l1,2,3) =1
Adding the first three conditions we obtain
X, + Xy + x3 > 3/2
which obviously contradicts the fourth condition.
If the cor¢ is non-empty, i.e. if we have
v(l,2) + v(1.3) + v(2,3) < 2v(1,2,3)
we can obtain the following interval for the payoff to Player 1

v(l) < x. <v(1,2,5) - v(2,3)

1
The ~ight-hand inequality states that Player 1 cannot obtain more

than what he contributes by joining a coalition of the two other

players.

10.22 The contribution which a player can make by joining a coaliti~n

appears on intuitive reasons to be an cssential element of his bargainirg

power.
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To develog this idea let us consider an arbitrary coalition S
oi s players, and assume Player 1, who was not in S joins the coalition.
The contribution which Player i makes to the total payoff is

v( Su{1)) - v(s)

Let us now assume that the characteristic function is such that
an all-player coalition must be formed in order to obtain the rax?fwum
total payoff. Let us further assume that this n-player coalition 1is
formed by the players joining the coalition one at the time, i.e. by
a successive buildup of a 2, 3, 4 ... player coalition.

The n players can be ordered in n'! diffecrent seguences. Hence
the n-person coalition can be formed in n! different ways.

The s players which are in the ccalition S before Player 1 joins
cancbe arranged in s!: different ways. The n-s-1 players which join
the coalition after Player i can be arranged in (n-s-1). different
ways .,

If all the n! ways in which the n-player coalition can be formed
are cqually probable, tiuere will be a probability

s'(n-s-1)!

n.

that Player i1 shall join the coalition S.
Let us now assume that if this sh>uld happen, the payoff to
Player 1 will be exactly his contribution v( SU(1]}) - v(s). This

means that the expected payoff to Player i is

W o= ) 2 famst)l (v sula)) - v(s)

¢ in N
where the sum is taken over all subsets on N
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Ul is called the Shapley-value of the game to Player 1.

The expression above was derived by Shapley [15] via an approach
quite different from the one we have taken. His starting point was
to determine the value a player should assign to his right to participatc
in a game.
10.23 e shall now compute the Shapley value for a few simple games.

For n=2 there arec only four subsets: @, {1}, (2} and (1,2}, <o
that the Shapkywaluc to Player 1 is:

Y{v(1.2) - v(2)) + © (v(1) - v(2))

{
1]

F(v(1.2) = v(2) + v(1))

n

For Player 2 we find

"y = Tv(1,2) - v(1) + v(2))

If the game is zero-sum, we have v(1,2) = 0 and v(1) = -v(2), so
that the expressions reduce to

91 = v(l) and Sy = -v(1l)

This s the mini-max solution to the gamc.
The Nash-solution to the game is the payoif vector (xl,xz) which

maximizes the product

((x,= v (x, - v(2))

2

subject to the condition

— M
X+ X, = v(l.2)

If we solve this maximizing problem, we find

x1 = 1 and x2 = »«2

For the three-person zave which we have discussed earlier, we

find:

(v(1,2,3) - v(2,3)}) + v(1,2) - v(2);

—
N

s
P13 - @) = 3
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Since the game is symmetric, the Shapley value of the two other
players is also equal to % q

These examples show that the Shapley value contains the mini-max
solution and the Nush solution as special cases. It does however not
agree with the von Neumann-Morgenstern solution to the three-person
game, although the Shapley value is equal to the average payoff of the
three imputations in the solution set F.
10.24 The results in the prcceding paragraphs seem to indicate that
the Shapley value may be taken as the solution to our problem.

As an arbitration scheme the Shapivcy value appears very rcason-

able., It scems natural that an arbiter should consider the contriobutions
which a player cun make to all possible coalitions, and then assicn
him a payoff which 15 a weighted average of these potential contributions.
The Shapley valuc obviously leads to a Pareto optimai arrangement, and
1f the gace has a non-empty core, the Shapley value lies in the core.
As a predictor the Shapley value is less attractive, mainly
because it is crude. The shapley value can be interpreted as the
cexpected payof{ to a player, and an ideal predictor should give us the
probability distribution over all possible payoffs - not just the first
zomcent of this distribution.

In our threc-person yome the imput 1tion consisting of cxpected

11 1

3 3 3), and this did not have the stability properties

payoffs was (
which we would like to rcquire of an acceptable solution. Any two
players could form a coalition and bring about an imputation of the

type (', °, 0), which has the required stability. However the

1
l, 3) appears to be the conly reasonable arbitrated out-

1
n —— —
imputation (=, -

come of a symmetric thrce-person game.
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10.25 Our findings so far indicate that we somehow must make a
choice. It seems impossic.le to find a solution concept which at the
same time has all tne desirable stability properties, and also appears
as a reasonable arbitratod outcome of th. garc.

An attempt to capture the best of both worlds has been made Ly
Aumann and Maschler [1] who introduced the ingcnious, and mathematically

very elegant concept of the Bargeining Set.

The Bargaining Set includes:

(1) The core, if the game has a non-empty core

(i1) The equilibrium points correspondirg to the set F in the

three-person game which we have u.ed as an illustration.

Some experiments by Maschler (11, with nigh school students in
Jerusalem, indicate tnat thc Bargeining Set gives a fairly good pre-
diction of the outcome of bargaining situations. Aumann and Maschler
have not so far been able to cffer any suggestions as to the rclative
importance of the imputations in the core and the imputations which
satisfy the equilibrium condiiions. This is however not surprising,
since thr relative importance of these two considerations apparently
must depend on the particular environment in which the bargaining
takes place.,
10.26 ‘'ie cannot conclude this chapter without giving at lecast some
references to the work of Harsanyi, which 1s much too rich and
varied to be discussed in detail.

Harsanyi's first contribution {5] was to show that the solutions
to the bargaining problem suggested by Hicks and Zeuthen in terms of

classical economic theory, were ecquivalent to the Nasn solutiaon.
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lLater he has developed a number of general bargaining models (5] and

(7 , which 1.s. contain the Shapley value as a special case, when

inter-person comparisons of utility are possible.

(1)

(2

(3]

(10]

(11}

(12]

(13,
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