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Chapter X 

Notes on Some Bargaininp Problems 

10.1 In Chapter VII we discussed a number of situations  in which two 

persons could gain by rrakinr, some kind of coopera*"!".0 arrangement.    We 

found that the set of all possible arran^enrMts retained a subset of 

arrangements having the property which we called Pareto oyt   lality.    We 

concluded that two rational persons would somehow be able to reö'"'.i a 

Pareto optimal arrangement.    We were, however,  not able to reach any firm 

conclusions as to which particular arrangement  in the subset the two 

persons wculd make.    All we had to say was that they in some way had to 

bargain until they agreed on a Pareto optimal arrangement.     If our two 

persons were unable to do this, we would not consider them as  ''rational." 

In this Chapter we shall study more general situations of this kind. 

Classical economic theory has little to say about the problems we want to 

analyse.    We shall, however, see that the Theory of Games /\Zj makes  it 

possible for us to come to grips with the problems, even if the theory at 

the present stage of development does not always yield satisfactory 

solutions. 

10.2 In general an n-person game is described by the following three 

elements: 

(i)    A set    N    of    n   players, 

(ii)    n    sets of strategies Sp $2  ...    Sri 

The set    $£    consists of the strategies    sn, s^  ••• available 

to player    i. 
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(iii) a payoff functions M^, M2 ... Mn 

The function Mi = Mj (s^,  S2r2 ... s^^) 

is the payoff to player i if 

player 1 uses strategy s^  E S- 

playcr 2 uses strategy S2r  E S2 

If the rules of the game are such that each player rauf choose his 

strategy - pure or mixed - without any possibility of coorc iating his 

choice with the choices of other players, we have a Non-cooperative game. 

If the players have some possibilities of coordinating their choices - 

to their mutual advantage - we have a Cooperative game. 

From this it follows that a complete description of the game must 

specify - in addition to the three basic elements - the possibilities of 

cenrrunicntion among the players. 

Tor n=2 and M^s.So) = "^(Si^,) we 0^tain t^e Two-person 

zero-sum pane discussed in Chapter IX,  In this case communication possi- 

bilities are irrelevant, since the players cannot both gain by coordinating 

their actions, 

10,3    The model becomes very rich as soon as wo drop the zero-sur 

condition, and it may be useful to discuss a few simple examples which 

will illustrate the wide variety of rral life situations which can be 

represented as a game. 

Let us consider two competing firms, and assume: 

(i) If both firms maintain their selling price, each will make a 

profit of 1, 

(ii) If one firm cuts the pricf, it will double its profits, provided 
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that the other firm maintains its price. The latter firm will 

then suffer a loss of 2, 

(iii) If both firms cut the j-rlce, they will both lose 1. 

This is an almost classical problem, usually known as "The Prisoner's 

Dilenm" (/To7 p. 94). It is easy to see that the situation can be repre- 

sented by the following payoff matrix: 

Firm 2 

Maintain 
Price 

Cut 
Price 

(-2, 2) 

(-1, -1) 

Maintain 
Price (1, 1) 

Firm 1 
Cut price (2, -2) 

As a cooperative game this situation is trivial. The obvioub 

"solution" is that the firms should agree to maintain the price.  It seens, 

however, that they camot reach this solution unless they can communicate 

with each other, and unless the agreement they reach must be observed by 

both parties, 

10,4    If the two parties cannot communicate and make an enforceable 

agreement, the situation is far from trivial. To illustrate this, let us 

take the approach we used for the zero-sum game, and assume tuat the two 

firms maintain the price with probabilities x ar.d y respectively. 

This will give the payoffs 

\  (x, y) = -x + 3y - 1 

M2 (x, y) = 3x - y - 1 

It is easy to see that there is no strategy which can secure any 

player an expected gain which is independent of what the opponent docs. 

It is, however, clear that Firm 1 which controls x must choose x - 0 
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in order to make M, as large as possible, and that Firm 2 must choose 

y = 0. This means of course that both firms will cut price and suffer a 

loss. 

It does not seem promising to continue analysing this situation in 

its full generality. If w> ask a pprson how he would decide in a situation 

which can be represented by our ir.cdel, it is most likely that he will reply 

that "it all depends." 

10,5    This naturally leads us to examine ti.e elements on hich the 

decision may depend, for instance: 

(i) The possibilities of communication, 

(ii) The degree to which the two parties trust each other, 

(iii) The magnitude of tie payoffs, 

(iv) The number of times the game will be played. 

We can do this by introspection and theoretical arguments, and we can 

also do it by controlled experiments. The latter approach has been taken 

by Lave IT]  and /97, and has led to some interesting results. 

Lave studied a payoff matrix of the form 

Player 2 

1 (a, a) (b, c) 

Player 1 

2 (c, b) (d, d) 

where c > a > d > b 

He found that if the number of plays  n was so large that 

k (d - b) ^ n (a - d) 

the subjects tended to choose the cooperative decision.  In this inequality 
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k is a parameter which suranarizes the attitudes of the subjects, (d - b) 

represents the loss one suffers if one tries to cooperate, and the opponent 

does not respond, (a - d) represents the gain obtained by cooperation. 

In his experiments with undergraduates at Reed College Lave found approxi- 

mately k = 3, In a later exporir.ent with Harvard undergraduates he found 

a stronger tendency to cooperate, regardless of the magnitude of the payoffs. 

Experiments of this kind hav? a cvisiderable psychological interest, 

but their significance for economics is questionable. The b havior of a 

student playing for pennies does not contribute much to our  owledge of 

economic behavior. It does not help if the experimenter asks the student 

to behave as if he were the president of U,S, Steel and had to make deci- 

sions involving millions of dollars. This will in Lave's words only give 

us information about "r subject's individual (almost certainly naiv?) 

conception of the way he thinks Roger Blough behaves," To a psychologist 

this may be interesting, but an economist ruay well dismiss such information 

as irrelevant to his problems, 

10,6   As another example we shall discuss a second classical game, 

represented by tho payoff matrix 

Player 2 

1 2 

Player 1 

(10. 5) (o, o) 

(0, 0) (6, in) 

This game is generally known as the "Battle of the Sexes" (/T^7 P» 90)» 

but it can easily be given economic interpretations. 

Here again the first step towards a cooperative solution is trivial. 
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If the players can communicate, it seems obvious that they should agree to 

use either the two first strategies or the two second strategies, i.e. the 

"strategy pairs" (1,1) or (2,2). The two other strategy pairs (1, 2) 

and (2, 1) are ruled out as inefJicient, 

As the next step the two players have to decide which cf the two 

efficient strategy pairs they chall use. If they agree to make the deci- 

sion by 4-ossiiig a coin, it Is easy to see that each player will receive 

an 3xpected payoff of 7,5, This may appear as a fair solu Ion, acceptable 

to both parties, but it is not the only possible solution,  he plr.yers 

may for instance argue about the random device which shall be UP cd for 

the final decision. Each player will then argue in favor of the random 

device which ^ives the highest probability to the efficient strategy pair 

most advantageous to him. This clearly leads to a situation similar to 

those discussed in Chapter VII, i.e. to deter-ine a particular Pareto 

optimal arrangonent as the solution to our problem. 

If the t^ players fail to agree on the random device which shall be 

used for the final decision, they may consider playing the game in a non- 

cooperative manner - 'each for hi.nself.'' If they use their first strategy 

with probabilities x and y respectively, the payoffs wll be: 

M. (x, y) = lOxy + 5(l-x)(l-y) = 5{l-x-(l-3x)y) 

li,  (x, y) = Sxy ♦ 10 (1 - x) (1 - y) = 5{ 2 - 2y - (2 - 3y) x ) 

Fron these expressions we see that ly choosing    x  =  1/3, Player  1 

can secure an expected payoff uf    10/3    for hir.self,  regardlesb of what 

Player 2 does.    Player 2 can in the sane way make his expected payoff 

equal to    10/3    by choosing    y = 2/3, 

10,7 In the economic situations which we want to discuss, it i^ 

natural to assume that the parties involved can negotiate, and that 
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contracts are fulfilled.    This means that the "Battle of the Sexes" is 

the more relevant of the two examples which we have discussed,    "The 

Prisoner's Dilemma" is as we have noted trivial when considered as a 

cooperative game. 

Let us now return to the general n-person game, and assume that the 

n   players meet and discuss how they should coordinate their decisions to 

their mutual benefit.    Each player will then argue for an n-tuple of 

decisions (pure or mixed strategies) which is favorable to    im.    He may, 

of course, use any argument which he believes that the othe   players will 

swallow.    It secrrs, however, that  in an assembly of rational people, he 

can hope to achieve something only by adv(^ncin<, argu-nents of the follow- 

ing two types: 

(i)    He can threaten to refuse to cooperate,  i,e, he can threaten 

to choose his own strategy without any regard to the wishes 

of the other players, and without ir.forming then about his 

choice, 

(ii)    He can appeal to somr general principle of fairness or ethics, 

which he thinks nay be acceptable to the other players, 

Frrn this it follows lhat wo cannot solve a cooperative game probier. 

without consid.Ting the corresponding non-coopera live game.    This means 

that non-cooperative games  in .one sense are more basic than cooperative 

games.    Any player can reftso to cooperate, and the payoff which he can 

obtain by this refusal must be an elcmont of his  "bargaining power" in 

the cooperative game, 

10.8 The noct  intriguing problem in bargaining theory  is to foiT.ulate 

the "general principle," acceptable to rational persons, as to bov such 

conflicts of interest  shall be settled,    Since the rationality assumptions 



-8- 

alone do not give a uniqaf solution to the problen, it is obvious that we 

need some additional assumption about the behavior of the players. 

To illustrate the point, we shall return to the example discussed in 

Chapter VII. In Table 2 of para 7.22 we found the Faieto optimal arrange- 

ments which could bo reached by an exchange of con-Ton «tork in the two 

businesses. Ignoring that these arrangements are net really optimal 

(because of the unnecessary restriction that only common stock can be 

exchanged), v»3 can seek an assunption which will single out one particular 

arrangement ihich  two rational persons can be expected to a ee upon. 

In para 7,12 we assumed that the two persons behaved as they should 

according to classical economic theory, and we found that t'iis determined 

a unique arrangement wMch gave the two persons the utilities 

U, = 3.66  and  Uo = 3.58 
i «. 

It is, however, possible to introduce a number of alternative assump- 

tions .    Let us for instance assume that our two persons for some reason 

have agreed that the two businesses have the same "intrinsic value" (since 

they offer the same ejected profit), so that  in all fairness the con^non 

stock must be traded in the ratio    1 :  1, 

In para 7,22 we found that the Pareto optimal arrangements were 

determined by the relations 

_    48 - 4:k . _    16 - 9k x - TTTTT       
and    y - 7F-rn 

Here x and y are the shares which Person 1 owns of Business 1 and 

2 respectively. With our mu  additional assumption, we obviously have 

x + y = 1. This deterr.ir.',s a unique arrangement, giving the two per?ons 

the utilities 

U = 3.5-i  and  U = 3.72 
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The corresponding chares are 

x = 0.598      and      y = 0,402 

10,9 The additional assumption which we introduced in the preceding 

paragraph may seem very artificial.     The assumption is, however, equiv- 

alent to a principle which is widely applied in reinsurance,    l.'.ien two 

friendly insurance companies of approximately the same size conclude a 

reciprocal reinsurance treaty, they wixl usually agree at the outset that 

the exchange of portfolios shall be on a "net premium basis "   This means 

that they agree to consider only the expr-ctod profit or. the    ortfolios 

which they exchange under the treaty.    The implications of an agreomrnt 

of this kind have been discussed in some detail by Eorch pTf and /37, 

Our example shows that bargaining over the arrangement which the 

parties should agree upon can be replaced by bargaining over the general 

principle which should be applied to settle the conflict situation.    It 

seems that this may often happen in practice.    In our example it is quite 

likely that Person 1 will arf*ue foi  settling the conflict uy the rules of 

free competition and by applying the ideas of classical economic theory, 

since these will lead to an arrangement favorable to him.     Person 2 may, 

on the other hand, argue in favor of some "fair price" principle, since 

this will give him a better dnal. 

In bargaining botwe-cn labor and management, principles like "Equal 

pay for equal work" or "Payment based on productivity" may  If ad to very 

different settlements, and either party may argue for the principle which 

bept serves its own interests, 

A general principle for resolving conflict situations  should be 

acceptable to all parties.    We can formalize this by requiring that the 

principle should be acceptable as fair to us beforo we know which part we 
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are going to play in the game.  Ideas of this kind are behind much of our 

legislation, 1,'e consider a law as "good" if we can accept it no matter 

how we nay come in contact with it, as Vuyer or seller, as tenant or 

landlord, as creditor or debtor, etc. 

10,10    We shall now discuss a general principle proposed by Nash /i27, 

which gives a unique solution t^ the two-person ba-[jn L/.ing problcn, 

Nash lays down the following four conditions which an arrangement 

must satisfy to qualify as a "solution" to the problem: 

(i) A solution must be invariant under li-.i ^r transfo: ^tions 

of the utility scale, 

(il) A solution must be Pareto optimal, 

(iii) Assume that we have a solution, and reduce the problem by 

removing some possible arrangements which do not roprPsenL a 

solution. The solution to the original problem must also bo 

a solution to the reduced problem, 

(iv) If the problem is completely symmetric, the solution is to 

divide the gain obtained by cooperation equally between the 

two pirties, 

Nash then proves that the only arrangement which satisfies these 

four conditions is the arrangement which maximizes the product of the 

gains in utility which the two persons make by cooperating. 

Applied to the example which we have discussed earlier, the Nash 

principle gives as solution the exchange of common stock (x, y) which 

maximizes the product 

{U1 (x, y) - L^ (1, 0)} fU2 (1 - x, 1 - y) - LV, (0, l)j 

This solution will (*ive the two persons the utilities: 

U,   =    3,58      and      U0 =    3,62 
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This result is different fron the two "polutions" which we found  in 

para 10.8. 

10.11 The Nr'sh conditicns can be sp«,,'v out with  full mathematical 

precision,  and the proof can be cr^ried through  in a  rigorous manner.    We 

shall not  do this, but we shall pv'Q a hcuris'-o arf"^.ent which will 

illustrate the essential  ic'^as behind tho proo^". 

Let us ccn^ :.der the barjaininf! sitintion ^.Ilu^t'"ted by Figure 1. 

a' Jl Figure   1 

(3.5.1.25) 

1 _ 

(V1'V2) 

±  —     > 
0 12 3 4 U 

The possible arrangements  are represented by the points between the 

axes and  the tv)  lines 

U1 + 2U2 = 6 

U2  =   3.5 

The point    (V  , V9)   - (2,   1)    represents the utilities which the two 

persons  can secure for themselves by acting  in a non-cooperative manner, 

i.e.  by using their mini-rr.ax strategies. 

The point    N,    or    (3,  1.5)    maximizes the product    (U,   - V1)(U2 - V2), 

Let us now change the origin on the utility scale? so that the point 
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(V   , V ) becomes the origin,  i.e. we write    U,   = I'., •■ V.    and    U9 = ü2 - V9, 

This will give -JS the situation  illustrated by Figu-c 2.    The point    N    hcs 

now becorv    (1,  0. '). 

Fi'Miro 2 

i 

Let us r..vt change t^ie utility sc:.< 

tion    U      = 2''r),    This will give us the s 

The point    N    now becores    (1, 1), 

..■rson 2 bv the transfcrrrn- 

-"on illustrated by Figure 3. 

A   U" 

• 

0 

(1.5,0.5) 

I 

Figure  3 

1 2 

As a last step  let us  enlarge the ;:ane by adding some new pcssiblo 

arrangements at the lower right-hand corner so that we obtain the symmetric 

situation illustrated b>  Figure 4. 
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FJrur«.   4 

tf; 

We can now reason backvards.    From conditions    (ii)    and    (iv)     it 

follows that the point    N    represents the unique solution to the game 

illustrated by Figure 4.    From condition    (iii)    it then follow?  Lhat    N 

also is the solution to the game illustrated by Figure 3,    From condition 

(i)     it further follows that    N   also represents the solution to the 

games illustrated by Figure 2 and Figure i, 

10,12 The conditions laid down by Nash are simple, and they look very 

innocent.    At first sight it may appear almost as self-evident that any 

arrangement which can be seriously considered as a "solution" must satisfy 

these foui conditions, and one may be a little surprised that there exists 

only one such arrangement.    The Nash ronditions nay, howover,   in some 

cases  lead to solutions which rr^any people find  unreasonable.    As an 

example, let us consider the game illustrated by Figure 5,    Here the 

possible arrangements are represented by the points of a triangle with 

vertices    (0, 0),    (1,   1)    and    (0,  2). 

The Nash solution  is obviously represented by the point    (1,  1). 

This means, however, that Player 1 gets the highest payoff which he can 

possibly obtain, whilst Player 2 only gets one half of the maximum ^ain 
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k'-rnri  5 

-> 

Ul 

he might have hoped for.    If Player 2 argues that this is unfair, he 

implicitly rejects condition    (iii),  i.e.  that the solution shall be 

independent of "irrelevant alternatives."    If Player 2 presses hiz argu- 

ment, he may threaten to refuse to cooperate altogether, and thus reduce 

the payoff of both players to zero.    This means that he is also prepared 

to reject condition      (ii),  i.e. that the solution should be a Pareto 

optimal arrangement. 

10.13 The considerations in the preceding paragraphs  indicate that we 

must take some care in specifying what we really mean by a "solution" to 

a bargaining situation, or more generally to a cooperative game. 

It may be tempting to require that a solution should enable us to 

predict the actual outcome of a bargaining situation.    This  is, however, 

clearly asking too much, unless we accept that predictions can only bo 

made in a probabilistic sense.    We found already in our discussion of the 

two-person zero-sun game that the best prediction we could hope to obtain 

was a probability distribution over the set of all possible outcomes. 

As a predictor the Nash solution is not very attractive, sin^o it 

considers only Pareto optünal arrangements.    There is ample evidence that 
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bar^aining situations in real life may lead to non-optimal arrangements. 

Strikes occur, even if a strike never can be the optimal outcome of a 

conflict between labor and management. 

In the simple example which we discussed in para 10.6 the players 

could threaten to refuse cooperation, and thus bring about a non-optimal 

outcome.    Such threats cannot be "credible" if we at the outset assume 

that they will never be carried out in bargaining between rational persons. 

It seems that if we believe that threats play a real part ii   bargaining 

situations, we must accept that thp outcome sometimes may b<   a sub-optimal 

arrangement. 

A solution theory which predicts the outcome of a bargaining situa- 

tion by specifying a probability distribution over the possible outcomes 

is a hypothesis which can be tested experimentally.    This is a very 

attractive aspect of any theory, and there exists an extensive literature1 

on so-called "experimental games."    We shall not try to summarize this 

literature.    The interested reader may consult a review article by Rapoport 

and Orwant /l57, who discuss 30 different experiments, which constitute a 

fairly representative sample of such studies made up to the end of 1961. 

An interesting experiment, not mentioned in this review article, was con- 

ducted by Stoa« /I?/ with students at Stanford University,    stone found 

that the Nash solution did not give vory good predictions of the outcome 

of a series of games, which essentially were of the non-cooperative kind. 

10.14 Instead of taking the position of an outsider, trying to predict 

the outcome, we can look at the bargaining situation from above,  as an 

umpire or arbiter, and draw up the general rules which we will use to 

resolve the conflict.    This leads us to look at the "solution" as an 

arbitration scheme,  i.e. a set of rules which will make it possible for 
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the arbiter to propose an arrangement which will be accepted as "fair" by 

all parties. This idea was first formulated by P^iffa /l47, but it is 

inherent in many earlier papers on garrc? theory. An arbitration schere 

will in fact give us just tho "general principle" or "additional assump- 

tion" which we have been chasing earlier in this chapter. 

As an arbitration scheme tbo Nash solution appears very attractive. 

It seems almost self-evident that an arbitrated arrangement mu:t be Fareto 

optical if it shall be accepted by the players (condition (;.i)). It is 

also hard to justify an arbitration scheme which does not ] ad to a 

symmetric arrangement when applied to a completely symmetric situation 

(condition (iv)). 

The only difficulty occurs in connection vith condition (iii), which 

we now shall express as follows: "If a possible arrangement, which has 

been rejected, becomes impossible, this should not change the arbiter's 

decision," This seems a very reasonable condition, but it led to an 

arrangement in para 10.12 which some people seem to reject as unfair. 

The following argument may help to clarify this apparent paradox. 

If it is possible for a player to inflict a loss on the opponent, he 

can threaten to do so. Such threat possibilities will strengthen his 

bargaining position, and this should be reflected in the arbitrated arrange- 

ment, which in a sense must include the compensation the player receives 

for not carrying out his threats. The Nash solution takes this element 

into account by referring all gains to the minimum payoff which the player 

can secure for himself - regardless of what the opponent does. 

On the other hand, it is not obvious that the bargaining position of a 

player should be weakened if it becomes possible for him to do the 

opponent a "good turn," Condition (iii) states essentially that such 



-17- 

possibilities of exercising charity are irrelevant, and should not be taken 

into account by an arbiter. 

In practice such possibilities may, however, be considered - on vaguely 

fomulated ethical reasons.    It is probably more profitable to sue an 

insurance company with a weak case than to sue one's neighbor with a strong 

case. 

10,15 Let us now return to the genoral n-person game.    From the mini- 

max theorem it follows that Playor i can make certain that his expected 

payoff does not fall under a value    v ( (i) ),    regardless of what the    n-1 

other players do. 

Let us assume that Player i and Player j get together and form a 

coalition which acts as one player in the game against    n-2    other players. 

By applying a minimax strategy, this coalition can make sure that its 

expected payoff does not fall below a certain value    v (   (i j)  ). 

It   is  natural  to assume  that  the  two players cannot   lose by 

forming a coalition, so that wc  have 

v({ij))  >    v({l)) ♦  v((j)) 

To generalize  this  idea,   let  us consider an arbitrary set of 

players    S -  N   .     Let us  assume   that   these players  by   forming  a 

coalition can make sure  that  their Joint payoff  is at   least equal to 

v(S)   . 

Lot  us  next  consider two coalitions,  represented by  two disjoint 

subsets    R     and     S    of  N   ,   and   let     v(RUS)  be minimum gain which these 

two coalitions can obtain by Joining  forces and acting as one  playrr. 

The argument  used above  leads  us   to assume 

v(RUS)   ■> v(R) ♦  v(S) 



-18- 

The   function    v(S)     is  called  the characteristic   function of  the 

game.     It  is  a real-valued  super-additive  function, defined for all 

subsets  of    N   .     It  is  clear  that  the whole strategic  structure of 

the game  is contained  in  the characteristic  function. 

By   Introducing this central concept of game  theory  in such a 

summary  manner, we have  swept  a number of difficulties  under  the 

carpet.      It  has no meaning   to  talk about    v(S)     as   the   payoff   to a 

coalition unless we make  far-reaching assumptions   about  "inter-personal 

comparability of utility"  and unlimited  possibility of   "side-payments" 

within coalitions.    We shall  however not  formulate   these assumptions. 

Most  of   the results which we shall   present  can be  stated without such 

assumptions  if we are prepared   to  introduce vector-valued characteristic 

functions  and  the more cumbersome  notation which   this will  involvu. 

10.16    Let us  now consider an arbitrary  payoff  vector x«   (x,,x   ...x   ), 
12   n 

i.e. an arrangement which Rives Player i the payoff x (isl,2...n). 

A payoff vector x Is called an   loyutation     It satisfies the 

two conditions: 

(1)    x > v({i))    for all  1 
n 

(ii)   i^1  xl «= v(N) 

These  two conditions  express  the   Individual  and collective 

rationality which we  have encountered several  times   in   the  preceding 

chapters.     It seems  natural   to require a payoff  vector  to be an  imputation, 

if   it shall be seriously considered as a potential  solution to a bar- 

gaining  situation.     However all   imputations du not  have  equal merits 

as  solutions,   and our problem  is   to eliminate  some  of the  less attractive 

imputations. 
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Von Neumann and Morgenstern attack this  problem by  introducing 

the  concept  of dominance 

An   imputation y={y,...y   }   is  said  to dcxinate an   iaputatl< 
1 n   

Lon 

xs:{x   ...x  )   if  there exists  a coalition    S  (a subset  of N) such that 
1 n 

(i) v(S)  >    Zs     yi 

(11) y    > x      for  all     ies 

An  Imputation which  Is  dominated via some set  of   players S does 

not  seem very acceptable  as  a solution,  since  these  players can do 

better by forming a coalition and  "go it  alone". 

Von Neumann and Morgenstern define  the Solution   to  the game »a 

the set A of   imputations which satisfy the  following   two conditions: 

(I) No Imputation  in A   is dominated by  another  imputation  in A 

(II) Every   imputation not   in A is dominated by  some  impuctticn 
in A. 

To   illustrate   the  meaning  of   this Solution  concept, wc shall  ap:jly 

it  to a  few simple examples. 

10.17    As   a   first   Illustration   let   us consider a   two   person game of 

the   type  wc discussed   in   paragraph  10.6.     Here   the   imputations  are   the 

payoff   vectors   (x   ,x_)  which satisfy the conditions 

xl +  x2  =   v((l'2))   »   15 

Xj ^ v((l))   =   10/3 

x2 2 v(l2))   =   10/3 

Here   there can  be  no dominance,  so  the  solution consists  of  all 

imputations,   or  in  our  previous   terminology,   of   all  Parcto-optlraal 

arrangements. 

As   our next example,   let   us  consider a  three-person game defined 

by   the  characteristic   function 
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v(l)  ^  v(2)   =   v(3)     =   0 

v(l,2)   =  v(l,3)   =  v(2,3)     =   1 

v(l,2,3)        =     1 

We shall   first  consider  the s?t F consisting  of  the   three 

Imputations 

(1.   4,   0> 

('. o, b 

(o, h, h 

and   prove  that   this   set   is   a solution. 

Let us consider  an arbitrary  imputation  (x   ,x   ,x ). 

From the  defintion  it   follows  that 

x    =   1   ,     x    ^ 0 
1=1     1 

it   is  obvious   that  either: 

(I) 2 elements   in   this   vector   is equal   to   .,   and  the  third  is 
zero or: 

(II) 2 elements  are  smaller than   '. 

In  the   former case  our   Imputation  belongs   to our  Initial  set   F. 

In the  latter case  our   inputaticn   is  dominated by one  of   the 

three   imputations   in   the   initial set F. 

It   Is easy  to sec   that  none of   the   three   imputations doainatcs 

the   two others.     Hence   the   ^et F constitutes  a solution. 

J>.Ii!    Let  us  next  consider  the set  F   (c)   of  all   imputations   of   the 

lorm 

(c.   x2.   x^ 

where  c   Is a non-negative  constant. 

It   is   obvious   that 

x2  ♦   x3  -   1   -  c 
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and that nr imputation if F (c) dominates any of the other imputations 

in the set. 

Let us then consider an imputation (y.iY-iy,,) not in F (c). 
X   A   «3 X 

If  c ^ y.  we have x -tx^ < y +y 
'1 2  3   '2  3 

y  and y  cannot both be greater than  . 

If c < ^, we can take either xo, or x greater than f, and hence 

find an imputation (c,x ,x ) in F (c) waich dominates (y1iy0iy ) 
M       o X X      *.      .5 

If c   < y^ we have x2+x3 > y2+y3- 

In that case we  find an  imputationin F  (c)  which dominates 

(yry2'y3*   by takinß     x2    ' y2  and X3   N y3 

F   ^m  these considerations   it   follows   that   the Solution consists 

of   ehe   following  four sets  of   Imputations. 

(i) F   :   (i»,   ^  0)   ,   (*.  0,  h)    and  (0,  *,  *) 

(U) F^c)   :   (c,   x2,  x3) 

(iii) F2(c)   :   <xi, c,  x3) 0 < c  < T 

(iv) F3(c)   :   (x^  x2,  c) 

10.19    The   results of   the   preceding  paragraph mean   that   any   imputation 

in our simple  three-person game  belongs  to a set,  which  according  to 

the definition of  von Neumann and Morgenstern  is  a Solution  to the 

game.     This   is  not  a  very  satisfactory conclusion   for  our  purpose. 

We  set  out   to find one  payoff   vector which we coula  accept   as   the 

unique  solution  to a bargaining  situation.     It   is   then   alrectly 

disturbing   to  find  that   practically every  payoff   vector  may  have   a 

claim  to  be   accepted  as   a  solution. 

It would  however  be   premature  to   launch  any  general  criticism 

against   the  solution concept  of   von Neumann   and  Morgenstern   from  this 
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basis.  Most of the games which have been investigated so far, have, 

like our simple example, an embarvaawlcgly large number of solutions, 

but it has so far not been possible to prove that tM'»jry game has a sd itl'ii , 

i.e. that there existi in every game a non-empty set A of imputations 

which satisfies the two condltirs in paragraph 10.15. 

Von Neumann an' Morgenstern arguf with strength and at length that 

only the set A  in its entirety can be considered as the solution,  '.'/e 

shall not try to sun.inarize these arguments, but we shall endorse the 

following quotation from another book on game theory: 

"The full flavor of their argumerent is hard to recapture, and 

it can only be recommended that the reader turn to the discussions of 

Solutions in their book" ([lOj p. 205). 

10.20 The essential idea behind the solution concept of von Neumann 

and Morgenstern is that an imputation must have some stability 

properties to be acceptable as a solution.  To illustrate this, let 

us again consider the set of Imputations F, which we studied In 

paragraph 10.17. 

Let us assume that the players by some process have arrived at 

the payoff vector: 

(l, ', 0) 

This   is  not  very  satisfactory  to Player 3,   and  he may approach 

Player 2   and  propose   the   imputation 

This   d^nlnates   the   original   Imputation  -  via coalition  (2,3) 

If   Player 2   ace« »jts   this,   Player   I  will   be   the   dissatisfied  one. 

He  nay   then  approach  Player  3,   and   propose   ihc   imputation: 

C\ o, h 
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wbich dominates (0, -, -) via coalition (1, 3).  Player 3 will in 

all probability accept this. 

Now Player 2 may approach any of the other players and propose 

imputations, such as 

(T , -, 0)  or  «0, - , -) 

However these two players should ;;ow have learned by observing 

the fate of Player 2.  He was greedy, and tried to obtain more than 

the solution allocated to him, and as a result ho lost everything. 

Hence the imputation (A, 0, TJ) may remain stable. 

Von Neumann and Morgenstern suggest that the constant c which 

occurred in the other solutions F (c), F (c) und F (c) may be 

interpreted as a measure of the amount of discrimination which 

society will permit.  If unlimited discrimination is allowed, we 

have c=0, and the solution consists of the three imputations in F. 

10.21  In paragraph 10.13 we defined an imputation as a payoff 

vector x ={x ...x ) which satisfied the two conditions: 
1   n 

(1) x > vÜ)  ^o1" a11  1 
n 

(ii)       J^ xi = ^(N) 

The first of these conditions state that no player will accept less 

than he can obtain by acting along - against the n-1 other players. 

It is tempting to assume that each coalition will exercise the 

same degree of rationality as an individual player. 

This leads us to lay down a third condition 

(ill)   £ x > v(S)  for all S in N 

The set of all imputations which satisfy these three conditions 

Is called the Core of the game, a concept first introduced by Gillies [4 
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At   first sight   the core appears   to be   a  very attractive c^ncrpt   - 

just   the answer   to our search  for  a  device which will  cut  down  the 

number of   Imputitlcrs  which r.ay   be  considered  as    'O'.-ntial  sclutlcrs 

to our  problem.     The   trouble  Is  however  that   the core  often does   this 

job  too drasticilLy. In  a nuirber of  games   the   core  is  emply,   I.e.   there 

exists  no  lopntr.tion which   -ati^fles   the   three conditions. 

In  the   tn;ce-person  game which we  discussed   in paragraph   10.17 

the  core  is   the  set  of  vectors   (x   ,x   ,x  )  with non-negative  el«.raents 

satisfying   the   four conditions: 

x    +   xo v(l,2)   =   1 

Xl   ■   X3 -     v(1'3)   =   1 

X2 J   X3 -    v(2'i)   =   1 

X)   +   X2 +   X3  =   V(1 ,2,3)   =   1 

Adding the first three conditions we obtain 

Xl + X2 + X3 -  3/2 

which obviously contradicts the fourth condition. 

If the core is non-empty, i.e. if we have 

v(l,2) + v(l:3) + v(2,3) <2v(l,2,3) 

we can obtain the following interval for the payoff to Player I 

v(l) < xi < v(l,2,3) - v(2l3) 

The -Ight-hand inequality states that Player 1 cannot obtain more 

than what he contributes by Joining a coalition of the two other 

players. 

10.22 The contribution which a player can make by Joining a coalition 

appears on Intuitive reasons to be an essential element of his bargalnxrg 

power. 
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To develop  this   idea  let us  consider an  arbitrary coalition    S 

01   s   players,   and  assume  Player   1,  who was  not   in    S  Joins   the coalition. 

The contribution which  Player i makes   to the   total  payoff   is 

v(  SU{i))   -  v(S) 

Let us  now  assume   that  the characteristic  function  is  such that 

an all-player coalition must be  formed  in order  to obtain  the naxJuium 

total  payoff.     Let us  further assume  that   this  n-player coalition  is 

formed by the players  joining the coalition  ore at  the  time,   i.e.  by 

a successive buildup of  a 2,  3,  4   ...   player  coalition. 

The n  players  can  be  ordered   in nl  different seq-iences .     Hence 

the n-pcrson coalition can be formed  In n!  different ways. 

The s  players which are  in  the coalition S before Player  i Joins 

canube arranged  in si  different ways.     The n-s-1  players which Join 

the coalition after Player  i can be  arranged  In  (n-s-l)!  different 

ways . 

If all   the  nl  ways   in which  the n-player coalition can be  formed 

are equally probable,   there will  be a probability 

s!(n-s-l)I 
nl 

that Player 1 shall Join the coalition S. 

Let us now assume that if this should happen, the payoff to 

Player 1 will be exactly his contribution  v( SU{i)) - v(s).  This 

means that the expected payoff to Player i is 

vl =  ^      9: ^"S"1)!   (v( SU{1)) - v(s)) 

L   in N 
where  the sum is   taken over all  subsets on    N   . 
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v    is called the Shapley-value of the gane to Player 1. 

The expression above was derived by Shapley [IS] via an approach 

quite different from the one we have taken.  His  starting point was 

to determine the value a player should assign to his right to participate 

in a game. 

10.23 We shall now compute the Shapley value for a tew simple games. 

For n=2 there are only four subsets: 0,   (l), (2) and (1,2), co 

that the Shapty-value to Player 1 is: 

^ =  l{v(1.2) - v(2)) + ' {v(i) - v(^)) 

=  ^{v(1.2) - v(2) + v(l)] 

For Player 2 wc find 

V2 = • {v(l,2) - v(l) + v(2)) 

If  the  game   is   zero-sura,  we  have  v(l,2)  = 0 and  v(l)  =   -v(2) ,  so 

that   the  expressions   reduce   to 

C    =  v(l)     and    ^    =  -v(l) 

This is the mini-max solution to the came. 

The Nash-solution to the game is the puyoif vector (x ,x ) which 

maximizes the product 

{{Xj- v(l)) {x2 - v(2;} 

subject to the condition 

V X2 = v(1-2) 

If wc solve this maximizing problem, we find 

x1 = ^  and  x2 = '^ 

For   the   three-person ja-r-e which we   have  discussed   earlier,   wc 

find: 

- ,   =     F     (v(l,2,3)   -  v(2,3))   ♦  4   (v(1.2)   - v(2)] 

♦  i   {v(l,3)   -   v(3)]   =     i 
6 3 
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Slncc   the game   Is   symmetric,   the Shapley value of   the   two other 

players   is   also equal   to -   . 

These  examples   show  that  the Shapley value contains   the  Dini-max 

solution and   the  Nash solution as  special  cases.     It  does   however not 

agree with   the von Neumann-Korgenstern solution  to  the   three-person 

game,   although  the Shapley value   is  equal   to  the  average   payoff  of   the 

three   imputations   in   the solution set  F. 

10.24     The  results   in  the  preceding  paragraphs seem to  indicate  that 

the Shapley value  may  be  taken as   the solution to our  problem. 

As  an arbitration scheme  the Shapl.y  value appears  very  reason- 

able.     It  seems  natural   that  an  arbiter  shoulci consider  the  contributions 

which  a  player can make  to all   possible  coalitions,   and   then  assign 

him a  payoff  which  IJ   a weighted  average  of   these   potential  contributions 

The Shapley  value   obviously   leads   to a  Pareto optimal  arrangement,   and 

if  the game  has  a non-empty core,   the Shapley vnlue   lies   in   the  core. 

As  a   predictor  the Shapley  value   is   less  attractive,   mainly 

because   it   is crude.     The Shapley  value can  be   interpreted  as   the 

expected  payoff   to a  player,   and an  ideal   predictor should give  us  the 

probability  distribution over  all   possible   payoffs   -  not  Just   the   first 

moircnt  of   this  distribution. 

In our  three-person f'me   the   input ition consisting  of  expected 

payoffs was   (-,   -,   —) ,   and   this   did  not   have   the   stability   properties 
*) <3 ij 

which we  would   like   to  require   of  an  acceptable  solution.     Any  two 

players could   form a coalition  and bring   about an  imputation  of   the 

type   (   ,      ,0),  which has   the  required  stability.     However   the 

imputation   (r,  r.   _)   appears   to be   the   only  reasonable arbitrated out- 

come  of   a  symmetric   three-person game. 



10.25 Our findings so far Indicate that we somehow must make a 

choice.  It seems impossible to find a solution concept which at the 

same time has all tne desirable stabilit-y properties, and also appears 

as a reasonable arbitrated outcome of th>. ganc. 

An attempt to capture the best of both worlds has been made by 

Aumann and Maschler [l] who introduced the ingenious, and mathematically 

very elegant concept of the Bargaining Set■ 

The Bargaining Set includes: 

(i)  The core, if the game has a non-empty core 

(ii)  The equilibrium points corresponding to the set F in the 

three-person game which we have u.>ed as an illustration. 

Some experiments by Maschler [llj with high school students in 

Jerusalem, indicate tnat the Bargaining Set gives a fairly good pre- 

diction of the outcome of bargaining situations. Aumann and Waschler 

have not so far been able to offer any suggestions as to the relative 

importance of the imputations in the core and the Imputations which 

satisfy the equilibrium conditions.  This is however not surprising, 

since th^ relative importance of these two considerations apparently 

must depend on the particular environment in which the bargaining 

takes place. 

10.26 'Ve cannot conclude this chapter without giving at least some 

references to the work of Harsanyi, which is much too rich and 

varied to be discussed in detail. 

Harsanyi's first contribution [5] was to show that the solutions 

to the bargaining problem suggested by Hicks and Zeutheo in terms of 

classical economic theory, were equivalent to the Nasn solution. 
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Later he has developed a number of general bargaining models   [Sj  and 

[7   ,  which   i.m.   contain the Shapley value as  a special case,   when 

inter-person comparisons of  utility are  possible. 
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