ESD-TDR-65-310

ESD-TDR-65-310

3

COPY

FILE

ESTI

ESD ACCESSION LIST, ESTI Call No. AL 47054 Copy No. / of / cys.

1965-20

A. G. Stanley

ESD RECORD COPY

SCIENTIFIC & TECHNICAL INFORMATION DIVISION (ESTI), BUILDING 1211

# Technical Note

Analysis of Radiation Effects in Telemetry Circuits

21 July 1965

Prepared under Electronic Systems Division Contract AF 19 (628)-5167 by

# Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Lexington, Massachusetts

ESKL



AD619387

The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology, with the support of the U.S. Air Force under Contract AF 19(628)-5167.

.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY LINCOLN LABORATORY

### ANALYSIS OF RADIATION EFFECTS IN TELEMETRY CIRCUITS

# ESTE Velense Lopt PWbric 12 Lopt PWbric 12 Lopt LTM Wreek

**TECHNICAL NOTE 1965-20** 

21 JULY 1965

LEXINGTON

MASSACHUSETTS



### ABSTRACT

The effects of nuclear radiation on the telemetry circuits in the LES satellites have been analysed by direct irradiation and by simulating the effects on individual components on a breadboarded circuit. The simulation method is described in detail. It requires a precise knowledge of the behavior of each component operating under specified bias conditions in a radiation environment, but may be applied to circuits of considerable complexity. The analysis confirmed that circuits such as the flip-flop, which operate at 50 per cent duty cycle, are insensitive to moderate leakage currents and have low gain requirements, are extremely radiation resistant. The converse holds for circuits that operate at low duty cycles, that are sensitive to leakage currents and that have more stringent gain requirements.

Accepted for the Air Force Stanley J. Wisniewski Lt Colonel, USAF Chief, Lincoln Laboratory Office



## TABLE OF CONTENTS

| 1. | Introduction                                             | 1  |
|----|----------------------------------------------------------|----|
| 2. | Simulation of Radiation Effects on Breadboarded Circuits | 1  |
| 3. | Inverter                                                 | 9  |
| 4. | Analog Voltage Translator                                | 12 |
| 5. | Flip-Flop                                                | 15 |
| 6. | Conclusion                                               | 22 |



### Analysis of Radiation Effects in Telemetry Circuits

### 1. INTRODUCTION

Low current switching circuits using bipolar transistors are susceptible to degradation and failure in a nuclear radiation environment produced by a decrease in current gain and by leakage currents across reverse biased junctions. This report considers their effects on the operation of telemetry circuits.

It should be noted that the decrease in current gain and the associated increase in  $V_{CE}$ (sat) is a fundamental property of bipolar transistors which may be alleviated by designing circuits with minimal current gain requirements and operating at current levels above 50  $\mu$  A. On the other hand, radiation induced leakage currents at low bias voltages (less than 10v) may be avoided altogether by screening out defective devices by suitable quality control procedures, e.g., by pre-irradiation with x-rays at a very low total dose.

### 2. Simulation of Radiation Effects on Breadboarded Circuits

The effect of nuclear radiation on the operation of a circuit may be tested either by direct irradiation or by simulating the effects on a breadboarded circuit. Both methods have their uses, since their advantages and disadvantages complement each other. The simulation method presupposes a thorough knowledge of the behavior of each component under irradiation based on previous experiments. It results in fairly precise design specifications for the circuit in a radiation environment. Direct irradiation of the circuit may be carried

out rapidly and may bring to light unsuspected failure mechanisms. On the other hand, a single circuit under test may not fail at all on account of the statistical nature of many of the effects. It is best, therefore, to use the simulation method for circuit design and the direct irradiation method as a quality control step.

It is easy to simulate bulk damage effects in transistors such as degradation of gain or increase in  $V_{CE}$  (sat) by having on hand a collection of devices that have previously been irradiated to a measured total dose. These units are substituted in turn for unirradiated transistors on the breadboard circuit. Some care must be taken to check d-c beta periodically, since there is a long-term annealing effect.

It is more difficult to simulate surface damage, since the effects anneal out rapidly after irradiation. The radiation sensitive components in the telemetry circuits of LES-1 are the 164N2 N-P-N and 172P2 P-N-P silicon planar transistors, which are subject to both bulk and surface degradation. When a P-N-P transistor is irradiated with the base collector junction reverse biased, the p-type collector forms an n-type surface inversion layer at the junction whose electrical characteristics may be represented by a non-linear shunt resistance across the junction. The I-V characteristics are shown in Fig. 1; they are quite typical of inversion layers formed by irradiating planar transistors under bias. Radiation causes the two  $I_{CBO}$  curves and the associated  $I_{CEO}$  curve ( $V_C$  negative) to be displaced along the current axis as the leakage current across the base-collector junction increases. No significant leakage currents were generated across the emitter-base junction. It would

3-63-3506





ω

be necessary to irradiate the transistors with the emitter-base junction under reverse bias to develop such leakage currents. This was not done, since it does not correspond to normal transistor operating conditions. In a recent modification of the 172P2 transistor the formation of an n-type inversion layer at the collector surface has been prevented by means of a highly doped p-type guard ring.

The 164N2 transistors that developed significant leakage currents under irradiation produced anomalous I-V characteristics after irradiation (Fig. 2) corresponding to the equivalent circuit shown in Fig. 3. The  $I_{CEO}$  vs  $V_{CE}$  curves indicate that the leakage paths across the base-collector and base-emitter junctions may be simulated by resistors  $R_{BC}$  and  $R_{BE}$  which are within the range 10K to 1M. The base lead appears to be connected to the body of the base through a rectifying contact with a capacitance of about 20 pF and a back resistance of about 10<sup>11</sup> ohms. This equivalent circuit was confirmed by measuring the d. c. and a. c. current gains over the range from 10<sup>-9</sup> to  $10^{-5}$  amps.

The structure of the 164N2 transistor is shown in Fig. 4. An unusual feature is that the emitter metallization extends over the oxide of the base region forming a metal-oxide-silicon sandwich. The thickness of the oxide is typically 1000 to 2000 Angstroms judging by its interference color. This structure is very susceptible to the formation of inversion layers. All the units that were opened up showed strong evidence of the formation of a gold-silicon-aluminum compound at the bonds know as 'purple plague'. It is be-lieved that this is the cause of the rectifying base contact. The formation of the 'purple plague' on the base lead may have been accelerated by a combination



a.  $I_{CBO}$  and  $I_{EBO}$ 













Fig. 4 Structure of 164N2 Transistor Cross section not drawn to scale

 $\infty$ 

of the irradiation and the passage of substantial leakage currents from emitter to collector for periods of up to eight hours with the base lead open.

The simulation of surface leakage effects is therefore quite complex. As a first order approximation to the problem suitable resistor values were placed in turn in parallel with any two of the three transistor terminals and the effect on the circuit performance was measured. A photo of a breadboarded flip-flop circuit with interchangeable transistors and clip-on resistors is shown in Fig. 5.

### 3. Inverter

The inverter circuit shown in Fig. 6 is one of the basic telemetry circuits accounting for at least half of all the transistors in the LES telemetry system. On account of its simplicity it was decided to test this circuit directly under electron irradiation and to study the effect of varying the duty cycle on the output current and output voltage. Surface radiation effects are caused by the drift of ions through the oxide under an applied field. Since the drift velocity is quite slow the resulting leakage currents should be strongly dependent on the length of time during which the drift field is applied and hence on the duty cycle.

6v square pulses of different widths were fed into the driver circuit shown in Fig. 6, which was d.c. coupled to the input of the inverter circuit. The load resistor  $R_L$  was chosen either as 250K or 2.2M to represent different loading conditions.  $I_o$ , the d.c. current to the collector supply, was measured on a Keithley Micro-microammeter which was connected through a 30 ft.



Fig. 5 Breadboarded Flip-Flop Circuit for Radiation Effects Analysis



Fig. 6 Inverter

### a. Inverter Circuit





b. Driver Circuit

shielded cable. The output pulse  $V_0$  was fed through a high impedance probe to a Tektronix Type 1121 amplifier shielded from the electron radiation and capable of delivering an output pulse through a 30ft. coaxial cable without distortion or attenuation.

The results of the measurements are shown in Table I. The output currents  $I_o$  are initially 16.6 and 2.6  $\mu$  A for 250K and 2.2M loads, respectively, so that collector-emitter leakage currents below these values would not be noticed. The corresponding output voltages  $V_o$  are 3.8v and 5v. The circuit is considered to have failed if  $V_o$  drops below 3v. It may be seen from the Table that the duty cycle must be greater than 5 per cent for a load resistance of 250K, but that with a load resistance of 2.2M ohms failure occurs only at a duty cycle of  $2 \times 10^{-4}$ . The average duty cycle in the telemetry circuits is  $3.12 \times 10^{-2}$  and the worst case is  $7.8 \times 10^{-3}$ . The pulse width is 80 milliseconds.

### 4. Analog Voltage Translator

The analog voltage translator circuit shown in Fig. 7 is of sufficient complexity to qualify for the breadboarding technique. A l2v positive pulse, 80 milliseconds long, is applied every 10 seconds to the gate input. The output load,  $R_L$ , is represented by a lM resistor to +6v. A variation of the d. c. level of the analog input is translated into a change in the pulse width of the 6. 4v output pulse (see Fig. 8). The circuit is considered to have failed either if the change in the pulse width at the 5v d. c. input level exceeds 2 per cent or if the pulse height decreases to less than 3v.

### TABLE I

### Values Irradiation Conditions Under Irradiation Initial Values Test Cycle Tota1 D.C. Output D.C. Output Electron Output Output RL Transistor Flux Current I On Time Duty Dose Pulse Current I Pulse e/cm<sup>2</sup>/sec e/cm<sup>2</sup> Unit Cycle Vo Vo sec μA μA $1 \times 10^{11}$ $2.93 \times 10^{14}$ E980 16.5 16.6 ON 1 250K $1 \times 10^{11}$ 250K 2.93x1014 E969 ON 1 16.7 17.0 - $1 \times 1011$ E967 ON 1 2.2M 2.93x1014 2.5 2.6 250K 3.49x10<sup>13</sup> 250K 3.49x10<sup>13</sup> 2.2M 3.49x10<sup>13</sup> 2.94x10<sup>8</sup> 2.94x10<sup>8</sup> 2.94x10<sup>8</sup> 2. 5x10<sup>-2</sup> 2. 5x10<sup>-2</sup> 2. 5x10<sup>-2</sup> 2. 5x10<sup>-2</sup> 5x10<sup>-1</sup> 5x10<sup>-1</sup> 5x10<sup>-1</sup> 5x10<sup>-1</sup> F185 16.6 16.6 3.8v 3.75v F196 3. 8v 16.7 3.5v 17.0 F158 5. Ov 2.6 5 v 2.6 2.5x10<sup>-3</sup> 2.5x10<sup>-3</sup> 2.5x10<sup>-3</sup> $5 \times 10^{-2}$ $5 \times 10^{-2}$ $5 \times 10^{-2}$ $5 \times 10^{-2}$ 250K 8.92x10<sup>13</sup> 250K 8.92x10<sup>13</sup> 2.2M 8.92x10<sup>13</sup> 2.35x10<sup>10</sup> 2.35x10<sup>10</sup> 2.35x10<sup>10</sup> 2.35x10 3. 8v F185 16.6 3.5v20.3 F196 3.8v 16.7 2.9v 32 2.8 F158 5. 0v 2.6 5 v 2.26x10<sup>10</sup> 2.26x10<sup>10</sup> 2.26x10<sup>10</sup> $2.64 \times 10^{-3}$ 2.64×10<sup>-3</sup> 250K 1.73x10<sup>14</sup> 2.2M 1.73x10<sup>14</sup> 2.2M 1.73x10<sup>14</sup> 1.66v F195 3.8v16.6 44 E999 5 v 2.6 22 3.85v $2.64 \times 10^{-3}$ F160 5 v 2.6 3.8 v 26 250K 8.92x10<sup>13</sup> 2.2M 8.92x10<sup>13</sup> 2.2M 8.92x10<sup>13</sup> 8.92x10<sup>13</sup> $\begin{array}{c} 10\\ 2.35 \times 10 \\ 2.35 \times 10 \\ 2.35 \times 10 \\ 2.35 \times 10 \end{array}$ $2 \times 10^{-4}$ $2 \times 10^{-4}$ $2 \times 10^{-4}$ F195 1 3.8v16.6 1.5 v 46 2.6 3.5v 25.2 E999 1 5.0v F160 2.5v 1 5.0v 2.6 33 $x10^{-6} x10^{-6} x10^{-6} x10^{-6}$ $2 \times 10^{-6}$ $2 \times 10^{-6}$ $2 \times 10^{-6}$ 250K 3.49x10<sup>13</sup> 2.2M 3.49x10<sup>13</sup> 2.2M 3.49x10<sup>13</sup> 3.49x10<sup>13</sup> 2.94x10<sup>8</sup> 2.94x10<sup>8</sup> 2.94x10<sup>8</sup> F195 41 1 3.8v 16.6 1.5v E999 1 5. Ov 2.6 3.5v 18.4 F160 1 5. Ov 2.6 2.5v28 2.35x10<sup>10</sup> 2.35x10<sup>10</sup> 2.35x10<sup>10</sup> 2.35x10 250K 8.92x10<sup>13</sup> 2.2M 8.92x10<sup>13</sup> 2.2M 8.92x10<sup>13</sup> 2.2M 8.92x10<sup>13</sup> F072 30 OFF 0 16.7 30 F056 OFF 0 2.64 F197 OFF 0 2.6 22.7

### IRRADIATION MEASUREMENTS ON INVERTER CIRCUITS



Fig. 7 Analog Voltage Translator

The results of the measurements are shown in Table II. The pulse width of the output pulse is very sensitive to the gain of transistor  $Q_1$ , which increases as the gain decreases (see Fig. 8). Changes in the gain of  $Q_2$  and  $Q_3$  have no effect on the output pulse.

The three 164N2 transistors used in the translator circuit may develop leakage currents across the emitter-collector terminals and also across the base-emitter and base-collector junctions. Small leakage currents below  $1 \mu$  A produce changes in the width of the output pulse; larger leakage currents cause the pulse to decrease in voltage and ultimately to disappear. These effects are enhanced by the low duty cycle of the circuit.

### 5. Flip Flop

The flip flop circuit shown in Fig. 9 was also subjected to the breadboarding technique. A 6v negative pulse, 80 milliseconds long, is applied every 10 seconds to either inputs 1 or 2. The load impedances  $R_L$  are represented by 250K resistors to ground. The output signal is normally either 5.8v or 0.05v. The circuit is considered to have failed if these values change to less than 5v and greater than lv, respectively.

The results of the measurements are shown in Table III. The circuit still operates with transistors whose d.c. gain is less than 5 and requires very large leakage currents to put it out of action. The detailed operation of this circuit is described in Ref. 1. The circuit will not fail as long as sufficient base current is available to drive the transistors. Furthermore, a build-up of large leakage currents is unlikely with a 50 per cent duty cycle.

### TABLE II

### SIMULATED RADIATION EFFECTS ON ANALOG VOLTAGE TRANSLATOR

Analog Input: = 5v d.c. Output Load: R<sub>L</sub> = 1

the Property States

A. Effect of D.C. Gain

| Transistor   | D.C. C         | Gain At         | ç               | $\mathcal{D}_1$        | Q               | 2                      | Q               | 3                      |
|--------------|----------------|-----------------|-----------------|------------------------|-----------------|------------------------|-----------------|------------------------|
|              | $I_c = 5\mu A$ | $I_c = 50\mu A$ | Output<br>Volts | Pulse Width<br>in msec | Output<br>Volts | Pulse Width<br>in msec | Output<br>Volts | Pulse Width<br>in msec |
| 29           | 13             | 35              | 6.4             | 37                     | 6.4             | 32.5                   | 6.4             | 32.5                   |
| 31           | 8.1            | 21              | 6.4             | 39                     | 6.4             | 32.5                   | 6.4             | 32.5                   |
| 33           | 5.6            | 14.7            | 6.4             | 42                     | 6.4             | 32.5                   | 6.4             | 32,5                   |
|              |                |                 |                 |                        |                 |                        |                 |                        |
| Unirradiated | 50-100         | 80-160          | 6.4             | 32.5                   | 6.4             | 32.5                   | 6.4             | 32.5                   |

a second s

### TABLE II (continued)

### SIMULATED RADIATION EFFECTS ON ANALOG VOLTAGE TRANSLATOR

B. Effect of Leakage Currents

Analog Input: = 5v d. c.Output Load: R. = 1

|     | Output  | Load: K | L-I |        |
|-----|---------|---------|-----|--------|
|     |         |         |     |        |
| dth | Leakage | Output  | Pu  | lse Wi |

| Shunt<br>Resistance        | Leakage<br>Current       | Output<br>Volts   | Pulse Width<br>in msec | Leakage<br>Current                     | Output<br>Volts          | Pulse Width<br>in msec       | Leakage<br>Current           | Output<br>Volts   | Pulse Width<br>in msec |
|----------------------------|--------------------------|-------------------|------------------------|----------------------------------------|--------------------------|------------------------------|------------------------------|-------------------|------------------------|
|                            |                          |                   |                        | 1. EMITTE                              | R-COLLE                  | CTOR                         |                              |                   |                        |
| то<br>50М<br>20М           | 0                        | 6.4               | 32.5                   | 0                                      | 6.4                      | 32.5                         | 0<br>10nA<br>25nA            | 6.4<br>6.4<br>6.4 | 32.5<br>33.5<br>35     |
| 10M<br>1M<br>500K          | 730nA<br>7.3μA<br>14.6μA | 6.4<br>6.1<br>4.2 | 32.5<br>31<br>31       | 20nA<br>200nA<br>400nA                 | 6.4<br>5.4<br>5.0        | 32.5<br>32.5<br>32.5         | 50nA<br>500nA<br>1µ A        | 6.4<br>6.4<br>6.4 | 39<br>39<br>40         |
| 200K<br>100K               | 36.5µ A                  | 0                 |                        | 2μ Α                                   | 1.0                      | 32.5                         | 5µ A                         | 1.9               | 80                     |
|                            |                          |                   |                        | 2. EMITTE                              | R-BASE                   |                              |                              |                   |                        |
| ∞<br>50M<br>20M            | 0                        | 6.4               | 32.5                   | 0<br>65nA<br>260nA                     | 6.4<br>6.4<br>6.4        | 32.5<br>32.7<br>34           | 0                            | 6.4               | 32.5                   |
| 10M<br>1M<br>500K          | 20nA<br>200nA<br>400nA   | 6.4<br>6.4<br>6.4 | 32.5<br>35.5<br>38.5   | 130nA<br>1. 3μ A                       | 6.4<br>6.4               | 35<br>37.5                   | 1. 2µ A                      | 6.4               | 32.5                   |
| 200K<br>100K               | 1μ Α<br>2μ Α             | 6.4<br>6.4        | 44<br>55               | 13µ A                                  | 6.4                      | 39.5                         | 3 μΑ<br>6 μΑ                 | 6.4<br>0          | 29.5                   |
|                            |                          |                   |                        | 3. BASE-CO                             | LLECTOR                  | R                            |                              |                   |                        |
| ∞<br>20M                   | 0<br>355nA               | 6.4<br>6.4        | 32.5<br>31.0           | 0                                      | 6.4                      | 32.5                         | 0<br>55nA                    | 6.4<br>6.4        | 32.5<br>35.5           |
| 10M<br>5M                  | 710nA<br>1. 42µ A        | 6.4<br>6.4        | 29.5<br>25.0           | 110nA                                  | 6.3                      | 32.5                         | 110nA<br>220nA               | 6.4<br>6.4        | 37.5<br>40.5           |
| 1M<br>500K<br>200K<br>100K | 7.Ц/А                    |                   |                        | 1. lμ A<br>2. 2μ A<br>5. 5μ A<br>llμ A | 5.4<br>4.4<br>2.8<br>2.0 | 32.5<br>32.5<br>31.5<br>31.0 | 1. μ Α<br>2. 2μ Α<br>5. 5μ Α | 6.4<br>2.0<br>0   | 72<br>80               |

.

0



Curve A: Unirradiated Transistors

Curve B: Irradiated Transistor with D.C. Gain of 5.6 at  $I_c = 5\mu A$  in Position  $Q_l$ 



HIGH FREQUENCY 430 pf



### TABLE III

### SIMULATED RADIATION EFFECTS ON FLIP FLOP

De states to

Output Load:  $R_L = 250K$ 

The Article Country of the Art

### A. Effect of D.C. Gain

D.C. Gain at

|              | $I_c = 5\mu A$ | $I_c = 50\mu A$ | Туре  | Circuit               | Transistor On | Transistor Off |
|--------------|----------------|-----------------|-------|-----------------------|---------------|----------------|
| Radiated     | 4.76           | 8. 3            | 172P2 | $Q_1 \text{ or } Q_2$ | 5.8v          | 0.05.v         |
| Unirradiated | 20-100         | 50-150          | 172P2 | $Q_1 \text{ or } Q_2$ | 5.8v          | 0.05v          |
| Radiated     | 5.6            | 14. 7           | 164N2 | $Q_3 \text{ or } Q_4$ | 0.05v         | 5.8v           |
| Unirradiated | 50-150         | 100-200         | 164N2 | $Q_3$ or $Q_4$        | 0.05v         | 5.8v           |

### TABLE III (continued)

۳.

### SIMULATED RADIATION EFFECTS ON FLIP FLOP

### B. Effect of Leakage Currents

| Shunt<br>Resistance             |                    | $Q_1 \text{ or } Q_2$            | 172                  | P2                               |                             | $Q_3 \text{ or } Q_4$            | 16-                            | 4N2                                 |
|---------------------------------|--------------------|----------------------------------|----------------------|----------------------------------|-----------------------------|----------------------------------|--------------------------------|-------------------------------------|
|                                 | OI                 | V                                | OF                   | F                                | C                           | DN                               | 0                              | FF                                  |
|                                 | Leakage<br>Current | Output<br>Voltage                | Leakage<br>Current   | Output<br>Voltage                | Leakage<br>Current          | Output<br>Voltage                | Leakage<br>Current             | Output<br>Voltage                   |
|                                 |                    |                                  | 1.                   | EMITTER-COLLE                    | CTOR                        |                                  |                                |                                     |
| ∞<br>100K<br>50K<br>20K<br>10K  | 0<br>2μ Α<br>20μ Α | 5.8v<br>5.8v<br>5.9v             | 0<br>60μ Α           | 0.05v<br>0.15v<br>0.2v           | 0<br>0<br>0<br>0            | 0.05v<br>0.05v<br>0.05v<br>0.05v | 0<br>58μ Α<br>116μ Α<br>290μ Α | 5.8v<br>5.8v<br>5.8v + tail<br>4.6v |
| IOK                             | 20μ Α              | 5.90                             | 600μ A<br>2          |                                  | 0                           | 0.05v                            | 580µ A                         | 0                                   |
| ∞<br>200K<br>100K<br>50K<br>10K | 0<br>1.2μΑ<br>6 μΑ | 5.8v<br>5.8v<br>0.05v            | 0<br>0.5μΑ<br>1 μΑ   | 0.05v<br>0.05v<br>0.05v          | 0<br>5µ А<br>10µ А<br>50µ А | 0.05v<br>0.8v<br>1.2v<br>5.9v    | 0<br>2µ A<br>4µ A<br>20µ A     | 5.8v<br>5.8v<br>5.8v<br>5.9v        |
|                                 |                    |                                  | 3                    | BASE COLLECTO                    |                             |                                  |                                |                                     |
| ∞<br>100K<br>50K                | 0<br>4μ Α<br>8μ Α  | 5.8v<br>5.8v<br>erratic<br>pulse | 0<br>59µ A<br>118µ A | 0.05<br>0.05<br>erratic<br>pulse | 0<br>5μ Α<br>10μ Α          | 0.05<br>0.05<br>0.05             | 0<br>56µ А<br>112µ А           | 5.8v<br>5.8v<br>0.05v               |

.

### 6. Conclusion

Table IV summarizes the failure modes of the different telemetry circuits. This includes the clock circuit (Fig. 10) whose failure mode was not verified experimentally. The flip-flops and also the clock circuit are very radiation resistant thanks to the 50 per cent duty cycle and the low gain requirements. At the other extreme, the analog voltage translators are very sensitive to radiation due to a combination of low duty cycle, sensitivity to low leakage currents and one transistor position with a moderately high gain requirement. The inverters are affected by leakage currents of about  $20\mu$  A and also have a low duty cycle.

The technique for simulating radiation effects described in this memo should be applicable to circuits of considerably greater complexity.

### TABLE IV

### SUMMARY OF RESULTS

### Failure Mode

|                        |                                   |             |            |             | L      | eakage C | urrent |
|------------------------|-----------------------------------|-------------|------------|-------------|--------|----------|--------|
| Circuit                | Sensitiv                          | e Component | Duty Cycle | Gain        | E-C    | E-B      | B-C    |
| Clock                  | Q <sub>1</sub> + Q <sub>2</sub> : | 172P2       | 50 ¢       | 5 at 50µ A  | 20µ A  |          |        |
|                        | Q <sub>3</sub>                    | : 164N2     | 50 %       | 10 at 50µA  | 25μ Α  |          |        |
|                        | $Q_4$                             | : 172P2     | 50 %       | 10 at 50µA  | 25µ A  |          |        |
| Flip-Flops             | Q <sub>1</sub> + Q <sub>2</sub>   | 172P2       | 50 %       | <5 at 5µ A  |        | 6µ A     | 8µ A   |
|                        | Q <sub>3</sub> + Q <sub>4</sub>   | : 164N2     | 50 %       | <5 at 5µ A  | 300µ A | 10µ A    | 100µ A |
| Inverters              |                                   | 164N2       | 0.8%, 3.1% | 10 at 60µ A | 20µ A  |          |        |
|                        |                                   | 172P2       | 0.8%, 3.1% | 10 at 60µA  | 20µ A  |          |        |
| Analog                 | Q <sub>1</sub>                    | : 164N2     | 0.8%       | >15 at 5µA  | 5μ Α   | 200nA    | 400nA  |
| Voltage<br>Translators | Q <sub>2</sub>                    | : 164N2     | 0.8%       | < 5 at 5µA  | 2μ Α   | 100nA    | 5µ A   |
|                        | Q <sub>3</sub>                    | : 164N2     | 0.8%       | < 5 at 5µA  | 10nA   | 3μ Α     | 50nA   |
|                        |                                   |             |            |             |        |          |        |



Fig. 10 Clock Circuit

.

### REFERENCES

 W. G. Schmidt and D. E. Chace, "Design Aspects of Minimal-Power Digital Circuitry", MIT Lincoln Laboratory Group Report 1965-6, 9 February 1965.

### DISTRIBUTION LIST

### Division 6

- G. P. Dinneen
- W. E. Morrow
- P. T. Prosser
- P. Rosen
- S. Gould

### Group 61

L. J. Ricardi R. N Assaly M. E. Devane J. B. Rankin

### Group 62

F. E. Heart I. L. Levow P. R. Drouilhet B. E. Nichols C. A. Reveal

### Group 63

- H. Sherman R. M. Lerner D. C. MacLellan P. Waldron M. Ash G. Ashley R. S. Berg J. Bex J. Binsack W. L. Black C. Burrowes R. Chick N. B. Childs M. C. Crocker J. B. Connolly F. W. Floyd A. I. Grayzel H. Hinteregger
- B. Howland

C. L. Mack J. Max J. D. McCarron R. E. McMahon L. D. Michelove L. Mondshein B. J. Moriarty D. Parker W. Roberts J. Ryan F. W. Sarles W. G. Schmidt V. Sferrino I. Shapiro R. L. Sicotte L. V. Slocum W. B. Smith D. M. Snider A. Stanley D. Tang L. J. Travis N. Trudeau E. Vrablik L. Whitehill Group 64

R. V. Wood R. G. Enticknap

Group 66

B. Reiffen

### Division 7

J. F. Hutzenlaub

### Group 73

H. C. Nichols

Extras - 10

UNCLASSIFIED

Security Classification

| (Security class                                                                                                                             | sification of title, body of abstract and                                                                                                                                                                                                                 | indexing annotation must be entered when the over | rall report is classified)                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                             | IVITY (Corporate author)                                                                                                                                                                                                                                  | 2a. REPORT SECT<br>Unclassif                      | URITY CLASSIFICATION                                                                                                                                 |
| Lincoln I                                                                                                                                   | Laboratory, M.I.T.                                                                                                                                                                                                                                        | 2b. GROUP<br>None                                 |                                                                                                                                                      |
| . REPORT TITLE                                                                                                                              |                                                                                                                                                                                                                                                           |                                                   |                                                                                                                                                      |
| Analysis                                                                                                                                    | of Radiation Effects in Telement                                                                                                                                                                                                                          | ry Circuits                                       |                                                                                                                                                      |
| . DESCRIPTIVE NOT                                                                                                                           | ES (Type of report and inclusive date                                                                                                                                                                                                                     | a)                                                |                                                                                                                                                      |
| Technica                                                                                                                                    | 1 Note                                                                                                                                                                                                                                                    |                                                   |                                                                                                                                                      |
| 5. AUTHOR(S) (Last n                                                                                                                        | ame, first name, initial)                                                                                                                                                                                                                                 |                                                   |                                                                                                                                                      |
| Stanley,                                                                                                                                    | Alan G.                                                                                                                                                                                                                                                   |                                                   |                                                                                                                                                      |
| . REPORT DATE                                                                                                                               |                                                                                                                                                                                                                                                           | 7a. TOTAL NO. OF PAGES                            | 7b. NO. OF REFS                                                                                                                                      |
| 21 July 19                                                                                                                                  | 965                                                                                                                                                                                                                                                       | 34                                                | 1                                                                                                                                                    |
| a. CONTRACT OR G                                                                                                                            |                                                                                                                                                                                                                                                           | 98. ORIGINATOR'S REPORT I                         | NUMBER(S)                                                                                                                                            |
| AF 19 (62                                                                                                                                   | 28)-5617                                                                                                                                                                                                                                                  | Technical Note 1                                  | 965-20                                                                                                                                               |
|                                                                                                                                             |                                                                                                                                                                                                                                                           | 96. OTHER REPORT NO(S) (A                         | Any other numbers that may be                                                                                                                        |
| С.                                                                                                                                          |                                                                                                                                                                                                                                                           | assigned this report)                             | 0                                                                                                                                                    |
| d.                                                                                                                                          |                                                                                                                                                                                                                                                           | ESD-TDR-65-31                                     | 0                                                                                                                                                    |
| None                                                                                                                                        |                                                                                                                                                                                                                                                           |                                                   |                                                                                                                                                      |
| None                                                                                                                                        |                                                                                                                                                                                                                                                           | 12. SPONSORING MILITARY A                         | ACTIVITY                                                                                                                                             |
| None                                                                                                                                        |                                                                                                                                                                                                                                                           |                                                   | activity<br>ms Command, USAF                                                                                                                         |
| None<br>1. supplementary<br>None                                                                                                            |                                                                                                                                                                                                                                                           |                                                   |                                                                                                                                                      |
| 1. SUPPLEMENTARY<br>None<br>3. ABSTRACT<br>The effect<br>by direct<br>circuit.<br>behavior<br>but may<br>such as t<br>currents<br>for circu | NOTES<br>ets of nuclear radiation on the t<br>irradiation and by simulating t<br>The simulation method is desc<br>of each component operating u<br>be applied to circuits of conside<br>he flip-flop, which operate at 5<br>and have low gain requirement |                                                   | ms Command, USAF<br>ve been analyzed<br>oreadboarded<br>wledge of the<br>on environment,<br>ed that circuits<br>noderate leakage<br>e converse holds |



Printed by United States Air Force L. G. Hanscom Field Bedford, Massachusetts