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Introduction

Before describing our method, we first recall the basic

convex programming problem: Given a convex set in n-dimensional

Euclidean space (in the following called constraint set).

Given'a hyperplane (referred to as the cost plane) not inter-

secting the constraint set. The problem: find a point in the

set such that the distance from the hyperplane is minimal f
compared with all other points in the set. Any point that 1s

in the set but not necessarily the closest to the cost plane

18 called a feasible solution.

Our method is an evolution-process. We assume that we

have an initial feasible solution §0. The procedure 18 to
subject §o to processes abstracted from blological evolution:

"mutation", "mating" and "selection of the fittest".

Tbé A

By mutation we mean the following: Given a point x on
the boundary of the constraint set, we consider the vector

d = io - X. The coordinates of d may be thought of as corres-

ponding to "genes". We "mutate" d by adding a perturbation

e Y

vector all of whose coordinates are zero excep:! one (we are

mutating one gene at a time).

’
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By "mating" we understand the following: given points
X, z we have d_ =y _ - x and az - §o - 2 as the corresponding
directions. Let d = (ax + az)/z, then we consider the point
u on the constraint surface and the line with direction d
through §° to be “he "offspring" of the "mated parents",

X, Z. |

"Selection of the fittest" means that we choose the vector
whose cost 1s smallest from the family we generated. That
is to sdy, we choose from all the specimens generated the
optimum one. If this optimum is an improvement over the last one
in the cycle, we return for another one, providing we have not
cycled back more than a predesignated number of times.

We will first describe and analyze the method and its
implementation for linear constraint functions - linear programming.
Tﬁen we proceed to discuss the method for the more general problem
with non-linear constraints. The prrncess 1e started by taking as

first x the intersection point of the line through §o that 1is

perpendicular to the cost plane (the gradient direction).

I would 1like to thank the many persons who were so generous
with their help during all stages of this research. 1In parti-
cular, my thanks to Professor H. J. Bremermann for his help and
encouragement as committee chairman; to Professors G. B. Dantzig
and D. H. Lehmer for their suggestions as committee members;

to Steven Salaff, who had many constructive criticisms during
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tive criticisms duridg the early stages of this work.
Finally, I also want to express my gratitude to the Office
of Naval Research, without whose support this research
would not have been possible, and to C.E.I.R., Inc., who

made available their machine on many occasions.



Description of the Method

The problem that we are trying to solve is the following: Ve
are given a system of m 1linear inequalities In n unknovns

with real coefficients:

anx1 + alex2 + e + alnxn pd b1

1A%
o

amlx1 + am2x2 + <o 4+ a _x Z bo}

mn n

These inequalities shall also be called constralnts. To

simplify our notation we shall represent the constraints in

matrix form:

AX > b
where:
= a1:\
A= : . 1s the matrix of coefficients
aﬁl amn
and

We are also glven a linear cost function

CX-CIX1+02X2+"‘+CX = Z



We note that this linear cost function defines a hyperplane in

n-dimensional Euclidean space., Similarly the equations

$+4 ... ta, x_ = b1

811% 1n*n
also define hyperplanes which bound the convex polyhedron. We
say that a vector x = (xl, e ,xq) is feasible i1f Ax < b. That
is to say x satisfies the constraints. X is called optimal
if .x. is feasible and for any other feasible vector y cx < cy.
Our problem 3s to find such an optimal vector x , providing |
it exists.

Before we describe our method in detail we will briefly
outline it in an intuitive manner. Our me. hod assumes a given
initial feasible vector from which we can starr. Denote this
vector by Yor for n point in n-space. .From this point we travel
in the direction perpendicular to the cost hyperplane till we
reach the boundary of the constraint polyhedron. After this
point, whose coordinate vector we denote by x, has been found,
we proceed to "shoot a buckshot volley" in the direction X=Yq-

By "buckshot volley" we understand the following: Prom a point
inside the polyhedron we proceed in several random trial directions
that are contained in a circular cone of some given solid angle
around the given fixed direction. The distribution of the random
directions is analogous to the trajectories traced by individual
grains of a blast of buck shot. We then determine the inter-
section points of the trajectories with the polyhedron. The

coordinate vectors of these intersection points are feasible

1



The coordinate vectors of these intersection points are
feasible vectors since thz2y satisfy Ax < b (with the

equal sign occurqing in at least one component). Among
these vectors there is, we hope, one vector x' having a cost
that is “es= than the cost of x and also such that the

n
norm of the difference between x and x', i.e. Z (x'i-xi)2
=]

is greater than a certain ¢ which we will accept as the

smallest change in vectors.

If the norm of the difference 1s greater than g and we have

not exhausted a given maximum number of loops we then exchange

x' and x and shoot another "volley" around the new direction
determined by the new x and Yo- This method is continued
until we either are not improving our approximation fast
enough, that is }:(x'i-xi)2 £ ;, or we exceeded the maximum

number we allowed for iterations.

In what follows we shall try to describe the method we are

using to effect the above mentioned "buckshot" technique.

To simplify the description we want to introduce some further
notation: by e, we will understand the vector defined by

the point in our n-dimensional Euclidean space that has a 1

in the LEE coordinate and O0'c elsewhere. In other words:
’ L ) L E - 1 ir i-J
ey (611, 612, , 513, " bin) where bij {O 14

is Kronecker's delta.
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For the "buckshot" effect we need to hive some dimensions for
the cone which will determine how "wide" or "open" the
buckshot will be. For this we read in two factors h, £,

a high and a low factor respectively. The factor h will be
multiplied by a random number, uniformly distributed betweeﬁ
O and 1, during the course of each buckshot. The factor

£ will be set to %1§I(xi-x1)2 i 2 gigl(xi-xi)a, to

reduce the small cone and increase our rate of convergence

as the approximation comes closer to a limit point.

The process starts as follows: we generate a set of feasible
vectors by modifying the direction given by Yo and x, our
initial feasible vector and our current best approximation

respectively, by adding to 1it:
d = Yo - X + f e, for 1w}, ', n

when f 4s h or I, the high and low factors respectively.
This gives us for each of the n-dimensipns 4 new vectors énd
since we include x in the family we have 4n+l feasible
vectoré. These vectors, which we shall call the "parents"”,
are when "pairwise mated". If we denote by xJ  the members
of the parents set, J=l,°°°,4n+l, then by pairwise mating
we mean the fol) wing: We determine the coordinate vector z

of the intersection of the lines through Yo in the direction

d =y, - 0.5(xd + x*) where 1 < J £ bnsl
1 <k<4n+l and J i k




with the 'boundary of the const:raint polyhedron. By pairwicse

mating we thus obtain

(an+1

o / = 2n(ln+l) vectors. We note that for large
values of n this method implles a prohibitively large number
of operations. To somewhat counteract this problem we have
introduced a modification which will enable us to skip over a
number of parents in the "mating" process. We have thus been

able to analyze some higher dimensional cases.

By ranking this family of vectors according to the cost we
can proceed to find the one with lowest cost function value

and proceed with the iteration method described above.

We shall now give a description of how the method works in

a step by step manner:

1. Given the initial feasible vector y,, the
constraints AxX > b &nd the cost rugction
cx = 2z, our first stcp 1is to find the vector
X in the direction nocrmal to the plane defined
by the cost function. This vector x now
becomes the first vector in our scheme and the
iteration cycle begins

2. Ve take the direction determined by y,, our
initial feasible vectcr, and our curregt bect
approximation vector x:

Amyy-Xx= (Y5 =X95°°",¥g -X,)
0 0, ~*1°"""¥o_ “*n

and effect our bucltshot effect around this direction.

3. From the family gecnerated in step 2 we pick the
vector x' which has the least cost and we evaluate

x'-x] =\[ £ ( *
t = |x'-x| =\| = (x!-x




If ¢t > & then we proceed to exchange x and x'
and check whether this was the last permissible
iteration. We next proceed to check if our running
low factor for the buckshot effect, £, 13 .Le:ss
than ¢, if it 15 then we set [ = 1/2 t, otherwise
we leave it the same. Then, if we have not exceeded
the maximum number of iterations we return to step 2.
If not we finish this un by saving the information
gathered so far. On the other hand if t < e¢ then
we assume that our improvement is too slow and we
‘also proceed to save the information and exit.

We have so far repeatedly mentioned that we travel along a given
direction through the initial feasible vector until we hit a
face of the polyhedron, we shall now proceed to describe the

method by which we do this and also give the mathematical
Justification for it:

Let us denote by d the given direction in which we want to
travel starting from Yor And let Ryd be the non-negative
vector :b - Ayo.

-Ryoi
A= -min if for i =1, °°,m A,d € O
A,d<0 K, | o R 1
or
0y
A= min if for socme 1 A,d > O
A, >0 Ka 1
Ryo
vhere min 'I'Hl means we talke the smallest positive
A1d>0 b §

Ryo1
I;H' for {im=]1,°--,n.

We will show that the vector x =y, + Ad 1s a feasible vector

and for some 1 we have the condition’ Aix - bi’ which means

Oy
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cr

aefined
Proof.

k4
Py

1s on the hyperplane (vwe will say '"face" for short)

ty that ecuation.
Ve first conslider tae case vwhen for some

A,d > 0. Then

i AY
Ry R"'O
Oy 15
A = min =
A, >0 R,d A bI

then Ax = A(yo + Xd) = Ay, + AAd

Ryq \
y e
AX = Ayo + m—Ad
o
That is for J=1,""",m
Jl-:er
.LD .

AX!’Ayv o
J JO\AM J

now for

since

A

b

J =3 lo, Aiox = Aio yo +- \r"—ﬂ } Aiod = Ai

Ryo = bi - Ai y vie have

1o

X = A Yo+ By - Ay Yy =Dy

0 O J 0 O

thus chowlng for some iO Ai X = bi

O 0
Now for J # 1y we have
1. i A,d <O
J - R
v O
o ,
tiaen AJ}:‘:AJL’O‘F T\—I_T AJdS AJyOS D,j

+ Ryo



nence A.,x |
3¢ L0
Ry Vo,
2. if A4 >0 then —e > —2 >0
J A A, d
J 19
Rin Ryo
O a.d < A +miAd
thus X = 3 -
& I M TR V- S LU Ty S i
0 .

A,x < A,y + Ry s . _ o
J J’0 OJ AJJO + bJ AJyO bj

Hence if AJd > O for some J we Lave shown our clalim. For
the case AJd <0 for J=1,""",m we can consider exactly
tn2 same situatlion as above wita tne distinction that we
rultiply d by -1 anc then suabtract rather than add Ad.

his can be done since d 15 nothing hut an ordered set of
directlions numbers and by multiplyling by -1 we have not cnangec

the direction except for the sense 1In walch we were traveling on

the line given by the direction d and the vector Yo

For the initiallzatlon of the t=2cnnioue we give as a directlon
vector the normal to the cost plane, i1.e., the plane defined by
the linear cost function c¢. W2 do tinls In order to get an
"optimal" start to the method since furtner airec.lions are
going to be defined by the succzeding approximations together

with tae given initial feasible vector Y-

Before we go into discus.ing the experimental data ottained from

the method discussed above we willl describe a few changes whicn



were introduced dufing the course of the experimentation:

1. On page 5 we defined

. -m01
A= -mi if for i = 1,---,m A, d <O
A,d<0 R, S S
or
Ryoi
A= min f for some 1 A,d > 0
Ad > 0 Ad 1

We found that if we let

and define '

A = min (11 cd, A\, cd) when k = 1,2
Ak
then we know that we will not only travel aiong the direction
given by the d vector until we hit a face of the polyhedron
but we will minimize the cost in the subspace defined by d.
This modification did not affect the rate of convergence at

all among the analyzed problems.

2. Ve recall that the "buckshot" effect was accomplished
by generating a set of "parents" by (asexual) mutations on our
last best rector. These parents are then mated in a pairwise

manner. The change we introduced consists of allowing to skip
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ahead the generation of the parents and the palrwise mating,

if during the asexual mutations'we found a mutant which has an
improvement upon the running best vector that 18 greater than a
certailn € we read in as input data. That 18, 1f we find a
mutant whose cost 1s smaller than the cost of the last vector
minus €, then we conei&er the mutant the best vector, as 1f
we were of the end of & complete iteration and cortinue at the

beginning of the next one by considering the "asexual” improvement

the next best vector.

Tnis change, seemingly minor in character allowed for a tremendous
upsurge in the time rate of Iimprovement -- that 1s, timewise the
convergence was greatly accelerated. Because ¢6f this we were able
tc handle problems with almost comp.ete success which previously
were not feasible. Furthermore in those cases where the unmodi-

fied version worked well there was also an increase in the

accuracy of convergence.

3. A third change that was suggested, for . e buckshot
effect was not to "mate” parents which lie on the,same hyperplane.
That is, 1f we let x and 2z denote two arbitiary parents we

would not mate them if for some 1

b

This change does not seem to affect the experiements in any

t

measurable way. ‘ .
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4, The last suggested change was to move the original
vector Yo from its static location to a more centralized
location. Several different methods were attempted none of which

showed any improvement on preliminary tests.



A CLASS OF LINEAR PRCGRAMMING PROBLILMS

Next we shall describe the class of problems that was
used for the experimentation in the linear programming part:

Let us denote by I the n-dimensional identity matrix

by J the n X n matrix consisting of ‘l's

and by b the n-dimensional column vector consisting of 1l's

1

1
Further, lc¢t us define A = al + J where a 1s some positive
real number. The class of constraint inequalities was Ax > b,
with a linear objective function; the cost function cx = le,
i.e., ¢ = (1,*+++,1), the n-dimensional row vector consisting
of ones.

The main advantage in using these constraints lies in their
handling -:ase, as will be obvious in the éequel. The original
 suggestion to use.these matrices came from Hooke ard qeeves,
(15 ]}, who developed an intcresting search technique for

the solut .on of linear equationy,.

12



By the condition number of a matrix we understand tne ratio

r? the largest to the smallest eigen value of the matrix. To

find the eigen values of al <+ J we note that
laIn +J, - XInI - |(a - X)In + Jnl where the subséript n 1is

used to denote the dimensionallty of the determinants.

(a-A) +1 . . . . ...

|(@-N)I_ + I | = |l (a=A) w1 .

P EEEEEE (a-2) +1

1 iq-k+1)2-1 (a-2+1) -1
a-A+1l a-A+1 Ot a-A+]
= (a-A+1) :
1 (a-2A+1 2-1|
a-A+ a-A+1

(@+1)-241 1 . . . . . .
I (a+1)-2+1

IS iy ({a+1)-2)1

(a_le)n—-? n-1

.

. (a-3)P"1 . (a+1-k)p'2 o (a+n-3-x)2

(a+1-k)n'2 (a+2_x)n-3 (a+n-c-A)
I((a-m-?)-).)l2 + J-
“
= (a-2)"" 1 (a-i+n)
sence thae eligen values are a, n-1 times, and a+n once. ne

NV RS | i a'+'
condivcior. number is thus found to be ¢ = ‘62 which can be

|

15

|
!
|
!
|

i . . [ . . . . . . (G"'l)-)\f’l,
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readily changed by manipulating <«. The solution of the problem

is x-A'lb- éI-F(%WJ'b.

We shall first r.port;thé ex;Lriments thet were carried out ‘with
the original method deécribed on page 5. and thereafter ve will
discuss the effect of the modifications cescribed on page 9 .

Rather than discussing all the problems that we experi-
mented with we shall discuss two typical examples and only on
occasion comment on others as the need arises.

For the five dimensional case, 1.e., n=m =5, and with
a condition number of 5 we observed that the method converges.
The convergence, however, is strongly dependent on the value of
the dimensions of the cone of the buckshot effect. TFor example,
if we start with an f, = 2.0 and an f; = 0.08, where f, and
rl are the high ad low arguments respectively, the method
1t3ratés 11 times and then finds no improvement among the buckshot,
i.e., x = x'. The fesult remained, after 11 iterations with a
maximum error of 1/10. The same probleh run with fh = 1.0 and

f, = 0.1 converged beyond the point where the small component

1
factor started to be modified.

For the analogous problem with n = n = 5 but with a
condition number of 1.19 we find the same behavior except that
the error for this case came oué to be 1/1000 after 20
iterations.

It is interesting to note that this proﬁiem also crops up
when weldeal.with higher dimensional cases. We want to note

that the same problem of ‘cones that are too large for the buckshot
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effect was dramatized in the case for n = 30 = m with a
condition number of 2, when after 57 iterations we ferminated
the execution since no improvement was found in the family
generated by th and fl. They were rh = 1 and fl = 0.1,
This leads one to sbeculate that the perturbation factors
fh and fl may'be inversely related to the dimension of
the system.' .

Returning now to our discussion of the 5-dimensional
case we would like,to'discuss the effect of changing the
- original feasible vector in such a wéy that it is no longer
so "neatly" centralized. We noted that although the method
'empirically converges its rate of convergence 1is s.ower,

namely when:
Vo = (2.5, 9, 5.5, 3 14) as opposed to
yo = (3.5, 2, 4, 3, 5)

in 15 iterations the largest error was 2/100 whereas the
~largest error at the end of 20 iterations of centralized Yo
was 1/1000.

As the method was origihally programmed for a computer it
. was.not practical for larger systems at all, hence we introduced
a modification which would make the buckshot family smaller.
We recall that by making 2 large and 2 small perturbations for
each coordinate direction we have that the number of vectors in
the "parent" set is 4n. We then proceeded to pairwise mate
this set, incldding also the best running approximation we thus

“in+

.
gev \ )- 2n(4n+l) = 8n2 + 2n. For n = 100 this makes
2
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the family have 80288 vectors. To generate such a large famlly
is infeasible because of itiie considerations. We should mention -
that when we tried the full-blown scheme explained above for
n = 30 1t took 35 minutes on the IBM 7094 to iterate Just 9
. times. Tha way we have gotten arovnd this difficulty is by
s«ipping over a goodly number of the parents in our'mating.
When this was done, the time was considerably reduced but the
rate of convergence per majJor cycle for those experiments tried,
was not reduced in any mared way. For example, for n = §
we tried skipring over every 2 "parents". The number in the
total family was reduced oy°a factor of 4 and the rate of
convergence was not modiflec at all. In higher dimensions,
for the case: tried, this accelerated the convergence rate.

rFor one pearticular run on the 5-dimensional case we aiso
set up a prcblem where we had more constraints than variables.
In this problem again the method empirically converged. The

case we tried 1is:

2.25 1 1 1 1 /fxl 1 \\

1 2.25 ) - 1 |" X5 1 \
| “ N |
: i i 2.25 1 1 | x3 I 5 )
| 1 1 1 2.25 1 | Xy | 1

1 1 ot 1

2.25 xs/ 1
1 0 0 0 0o | 1
0 0 1 0 0 1

Tre estimated solution vector converged to

x = (1, =23, 1, =23, =-24) after 15 iterations.
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As we mentioned above we also tried some higher dimensional
cases. A 9-dimensional problem converged to the answer with a
maximum error of 2.5/1000 in 30 iterations. We ran a
30-dimensional case that had to be stopped as ~ fallure after
Lé ;tifggions. This took about sevén minutes. If we extrapolate
from our analysis of smaller dimensional cases the convergence
seemed to be on the right track and, apparently the size of
the cone was too large in our buckshot effect.

Let us now investigate the consequences of the changes
introduced on page 9 by comparing the results of identical runs
with the modified and unmodified versions of our method. We
want to note that the modification was introduced in such a
manner that it was possible to use the same program for both
versions by simply changing an input constant r. To accept
or reject "asexual" improvements depends on this T which
when large enough would reject all "asexual" improvements. We
want to note that the method was somewhat streamlined by more
efficient programming. This helped in reducing running time,
as can be observed by the time estimctes.

To begin with, we will start with the 5-dimensional
case, which is the one most extensively investigated:

- For a condition number of 2.25 the old version ran for 3.6
seconds and 6 loops to stop with a maximum error or 0.1128.
Tnis error seems largely due to the large cone factor for the
duckshot effect. The modified version, however, ran for 10.8
seconds and 17 loops to stop with a maximum error of 0.00026.

The maximum error after 6 loops in the second run was 0.0587;



Next let us consider the cases for a condition number of
5.07. With a large cone factor the unmodified version in 4.8
seconds looped 6 times and terminated with a maximum error of
0.009971; its associate looped 10 times in 7.2 seconds anq
terminated with ;n error of 0.000045. .

B& changing the constanp which 1limits the asexual improve-
ments also note some change in the rate of convergence to the
solution. For example, by letting <t ='0.1, the high cone
factor rh = 2., and the small cone factor f‘ = 0.1, we
obtained in 1.8 seconds 4 loops with an error of 0.067. By
changing v = 0.01 and the high cone factor to 1, we iterate
10 times for 4.8 seconds with a maximum error of 0.000035. By
further reducing T to zero in 3 seconds we iterate 6 times
and terminate with an error 0.000021 -- in this last run the
- high cone factor was 2.0. Now when we changed the cone factor
to 1 we found that we terminate in the second loop with a
maximum error of 0.017. .This pattern continues when we change
the condition numbers of the matrices we experiment with.
However for one case with a condition number of 10 we find
that with a high cone factor of 1 the unmodified version in
6.6 seconds loops 11 times and terminates with a maximum error
of 0.000256. With a T of 0.01 wé iterate for 10.2 seconds
and 16 loops to end with an error of 0.006666, and for T = 0
in 2., seconds and 3 loops we find a maximum error of 0.001446!
With a different set of random numberé, however, the above
described problem ran 4.8 seconds and 7 loops with a maximum

errcr of 0.00001%. The same pattern continues for condition

19
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numbers of 15 and 21. We refer to the summary table 2 at the
end of this discussion for a global picture of all the runs
we made for thb 5 dimensional problem.

Let us now 1nyostigate the 9 dimensional problems we
experimented with. For a condition number of 2.25 we found
that: '

If we let the cone factor be 0.1 the old version iterates in one
minute and 55.8 seconds 77 times and terminated with an error of
0.044760. Wnen the new version was uséd, with an asexual
improvement T of 0.01 we find that in 32.4 seconds and 13 loops
the maximum terminal error is 0.017109. When we nused a cone
factor of 2 and -1‘- .0l we find that in 10 iterations that
took 25.8 seconds .the erroi is 0.036451. By reducing to

7 =0 we have in T iterations and 22.2 seconds a maximum
error of 0.000044, with a large cone factor of 0.1. For

higher condition numbers we experimented with a ten dimensional
case, viz., we considered a condition number of 5. Wheh the high
cone factor was 2 and we used the older version we find that in
26 iterations and 2 minutes we achieved a maximum error of
C.045106. When we pcrmitted acexual 1mprovement3 of 0.01 we
find that the process is terminated in 41.4 seconds and 8.loops
with an error of 0.010270. When we had a cone factor of 1.0 we
1£erate 22 times in 92.4 seconds and terminate with an error of
" 0.002213. When we try to reduce the family size by 16 we find
that the sam; problem as above finds no improvements after 4.2
seconds and 2 loops and terminates with:a maximum error of
0.134343. It 1s worth mentioning that the preceding experiment



Table 1, page 25, summarizes our original results with
the unmodified version. Table 2, pages 26 through 28, summarizes
the comparison of the two methods. The flow chart which follows
the tables corresponds to the modified pirogram. We did not

include the flow chart of the unmodified version because we do

not believe that the addition would add any valuable information.
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CONVEX PROGRAMMINC

The metﬁod we discussed in the linear programming part was
extended in a "natural"” way to try to solve convex‘programming
problems. By convex programming w2 mean: given a convex set
(whose constraints or boundaries are not necessarily defined oy
linear functions), and a linear cost function, we want to find
a point in the convex set such tha: no other point in i1t hasa
smallercost. If the constraints are lincar the problem reduces
to linear programming. We note that the linearity of the
constraints in the linear progremming method was used exclusively
for finding the intersection of a ;iven line with the boundary,
and nowhere else. Thus this method becomes suitable for
generalization as soon as we have a way oI finding the inter-
section point of a line with The bdoundary of the convex set.

‘ Let us now analyze the method that vie used to find the point
on the boundary given by the interscction of the constraint
surface and a line defined by a veztor of direction numbers and
a point tharough which the lira nuss go;

The equation of a line tiarouvza a point y with given
direction numbers Q = (dl,"°,dn) is given by
X = (xl,---,xn) - (y1+ td,, y2+.td2,"',yn+ tdn) or simply
i - v o+ ta..

If we define our convex set a3 the iatersection ol several

convex sets given by the following ccuations:
¢i(i).$ b,, 1 =1, ++-, m, wicre o(:) are continuous functions.
' Then we can simply say that we waat to fiad a ;A such that:
# Note: The general convex programming.case admits a convex

« ObJective function.



S : )
Qi(y + Ad) <D for Z =1, ***, n and for some J
o (2 L 32
QJ(y + Ad) = b, .
Since the convex sets are houndzd we can say that for a
given ¢ > 1 we can find an n csueci taaetb

> 12 ' . .
@J v+ tpg) > bJ for some J and

icde

9]

F
~hn

w

oi(§ + tn'la) &b, for 1=1, «-+, m since y 1

the convex set. We now proceed by lixins |t] > 1, then we
can find n by multiplying t by |¢| until we find the desired

tn-l N

n. We then know that <A € &7, the order may be reversed

irf t < C. We can then by trial aad error find A by a
binary search witihin the interval. If we let < > O denote a-
tolerance which wefixed beforz we start our search for A ve

can concinue as follows: For notatlional simplicity let us

assume ¢ > 0.

n-1

Let o = to-% ana 8 ="l 12 @1(§ + (B + %“)a) L by

for 1 =1, *-*, m, and for some J, by - @3(5 + (B + %ﬂ)a) <7
thien we cefine A = B + %a. If for i =1, "', m

e

- oi(§ + (B + %a)é) > 7 then let us veplace B + éa for £

and ¢ for @ and contime. IS ¢J(§ + (b + é-c)?..) > bJ then

[

wer replace P - ﬁa for B and a for a and continue. This

N

method converges necause the constraint surfaces are continuous.

In this manner we find the pecins X whish lies on the line

-

;ith direction numbers & through y within <t of at least

one constraint surface.

e somma

\~N

\~
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Since in our method we crec scarchins within a cmell cone

of a given best vector we know thet sudhsccuent A's Go not
differ by very muen, in general, &nd are 7ood approximations to
each other. However, cven il tae approximations were not: Zood
wve have a -convergence for sterilirz IN] » 1 a% tae vesinning of
cach cyele, and.this is easlly zucirantced. For a precise
desceription of the ﬁethod ve refeir the r2ader to the flow

chart at the end of this section, p. 51.



A CLASS OF CONVEX PROGRAMMING PROBLEMS

As convex sets we used the n-dimensional ellipsoids
defined by
n X -ay 2
Qi(xlj‘c‘,xn) = z (‘%l) S ei, Where 1 ™ l’ .00' m,
J=1 1J

and m, n < 10.

Thils family was chosen (ur expediency reasons sincc any
such function 1s easily evaluated and therefore fast or. the
computer. The answers are also readlly checked for the case
m =1, as wlll be established in the sequel. For m > 1 the
»roblem 1s more complicated becausc the answer may “1e on the
curve défined by the intersection of the m ellipsoids. However,
the main reason for using m =1 1in our experiments was that
m 1s a factor of the length of time the computer takes in
doing a particular example. Thils can be readlly verified since
we spend mooe of our machine time in finding the intersection of
a line and the surface bounding the set, and there are m of
these equations to evaluate each time. Furthermore, 1t seems
reasonable to assume that if the method can solve problems for
m =1 then it can also solve them for m > 1.

We are glven together with the ellipsoid

R Xy-8yy 2
L (—==) < e, a linear cost function
J=l 1

which we are to‘minimize. The answer to

oL

n

EY
. x - z
=

A S
the problem then 1s: for m = l, the point of tangency at the



ellipsoid such that the tangent hyperplane has the direction

numbers given by C - (cl,---,.n), and such that the
n

DI P ¢
jo1 97

Without loss of generalization we can assume that

is the smaller of the two possible cutcomes.

n X,-a x_ 2
b3 (—{}——i).ﬁ e can be reduced to z(sﬂ) < e, by simply
J=1 J e

translating the ellipsoid. Since we are interestzd only in

_the boundary point we have

n X, e
z (v¥) =e.
N

From elementary calculus we have tnat the tangent plane at
n x,z

a point 2z can be represented by: Z -—igi - e, And this plane
n J=l bJ
1s to be parallel to Z CJXJ’ consequently we have
J=l
zy 2, z,
(= -, —2) - l(cl, Cos *°%) Cn) that 1s the direction
b1 b2 bn

numbers are proponrtional. Hence we have Z, = A bf Cy -

Substituting in the equation for the ellipse we have:

A x2bfcf - A n 2
b we 0 A me/(Z by c;) s and A= -\Je/( b
1al bi 1w 1+ 01 1m] 1

Since for our experimentation we chose 3 such that Cy 20

and at least one cJ > 0, we could always solve for two real
dfstinct A's. From these we can always pick the X which
gives us the smallest cost when we subst}tute for the answer. If
we denote by 3 the center of the ellipse then the answer is

> e 2 2 )

X = a + k(bicl, b2c2,°°-,bncn Note that this expression 1is

readily computable. '

2
i

) -



Another important aspect that aided us in the choice of
tilese functlons was the ease with which one can make changes
in the format of the ellipsoid by simply changing the coefficients.
We can make the convex set be an elongated "cigar”" in which the
search would be more difficult, if we malke the ratio of length to
width large enough. This probiem waa suggested py Bremermann
ang Sala&f [T

The program that we ran on tne IDN TO94 was written in
rorvran and AP. Its structure 1s in general the same as the
nodilied version of the linear programming provlems. That 1is
to say we Luilt Into the program the capacities we found
advantazeous in our previous e:perimentg. The program allows
"asexual" improvements durin~ the " arent” generation stage.
Jor a dctalled view of the process we refer the recader to the
flow charts at the end of this section, pp. %9 to 51.

posy of thie experiments we ran were with ellipsoids whose
coefliclents were rather well behaved, that 1s, in a range
vetween 1 and 10. The experiments were geared mostly to find
cut hcw tne method béhaves as we let n grow from 2 to 10.

We btezin by analyzing one of the simplest experiments
possidle:
' 2 2

(22 + ()

with a cost function 'z = X + y to be mininized. The point

N
—



—

of departure was y, = (5,9) which 1s within the ellipae

X, o (.486,880¢)
X, (oqu,!ﬂoc)

K, (v.607 , sr87)

Avswia e (8.6 . 8.79)

fon® Puped

Zn tnis case we can see that given a very propicious start the
poogress 1s as on2 would expect 1t: direct and fast. This
particular run took 2 loops and 1.2 seconds. Most of 1t,
however, 18 spent on the input and output of information. We

7 of the ellipse. If

note that x cones to within 2.57 x 10~
we now do the same problem but start with a y, of (7.5, 4.5),
our progress 1s a bit slower , the sequence of best vectors

belng:

xo C (5-533: 3.02“), xl = (u.495,‘3.27), x} = (3-50u: )'8 1)'

{

Between these vectors a great many more asexual improvements

come to span the X5 xi, Xp For the former case we only



nave 2 asexual 1improvements; for the latter we have 20. It
15 notewortr - that the latter 1lso toox 2.4 seconds to converge
t0 approximately the same answer,

Let us now consider a case which 1s an "elongated cirar
naped e.lipse: '

2 2
(x-lo)

10

.25 dellres an ellipse of length 100 units and width of 1.

Tae starting poinu we toox was (19,0.09) For a cost function

of ¢c = (10,1) tihe sequence of test vectors was:

%0

x, = (0.01501, C.0G442), X), = (0.01480, 0.09455).

5

S

Tac answer to the provlem is (0.1 x 1077, 0.09999). This run

took 7.2 seconds. VWhen we changed the large cone factor from
1.2 to 0.8 our method fared nmuch better. For in the sixth loop
the answer was Xo (C.L2 x 10'5, 0.09995). This result is

in line with our previous experiments in linear programming,
where we found that a smaller cone factor led in general to a

¢cr approximaction at the expense of a greater number of
iterutions. The lacter case took S5 seconds. In a subsequent
Tun we changed the cost function to make for a less well defined

point of tangency. We let ¢ = (1,10). The method converges

as followsa:

~

/7

= (17.85, 0.03806), X, = (0.1712, 0.08157), Xy = (0.1611, 0.08:

xo = (16.32, 0.04452), x, = (.1849, 0.08086), x, = (.1779, 0.08122).
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The answer 1s x = (0.04¢8, 0.0C005). At this point we should
note that the method does not behave very well when the tangent
0 the curve makes a very small angle with the line at the
intersection defining the points on the curve. This 1s due to

the constants used in the convergence to the point of inter-

section and also partly due to the limitations of the floating

point arithmetic of the computer. Although this problem is
surmountable we did not endeavor to conquer 1it, the interest

beling marginal.

Let us now investigate a typical 3-dimensional experiment

X;6)2 + ( 55)2 + (2&2)2 £ 1 with a cost function

¢ = (1,1,1), a cone factor of 1.2 and art initial feasible
vector Yo = (5,5,%). To 1ierate twice the method took
6 seconds and converged to Xy ® (4.339, 4.262, 2.014), the
correct answer being x = (4.31, 4.255, 2.02). When we
cnanged the cost plane to ¢ = (1,2,3) we converged in 7.2
seconds to Xy = (5.318, 4.373, 1.312), x = (5.29, 4.3068, 1.21).
If we took a long cigar in three dimensions we faced the
same sort of problem that we had in the 2-dimensional case.
For example let us look at the following:
(55%9)2 + (Xégfi)e + (Eégfl )2 < 1 with a cost plane
¢ = (10,1,1) and an initial feasible vector y, = (15, 0.09, 0.79).
For this case we stopped after 58.8 seconds at X, ™ (0.0008714,
0.1003, 2.09911). The true answer is x = (O.1x10'7, 0.09995, 0.09995



Let us now analyze a six dimensional example:
X,-4% 2 X -4 2 xj-u 2 xu-u c
——) + (=) + () teg) 4 () 4+ (—) <1
with a cost function ¢c = (1,1,1,1,1,1;, and Vo = (G,4,4,4,4,4),
In 1G.2 scconés the program lterated tﬁice and converged to

= (3.453, 2.816, 1.662, 1.912, 2.799, 3.444) the true answer
“ins: x = (3.475, 2.82, 1.89, 1.89, 2.82, 3.475). This
<¥o:r.mens was relatively trivial since we started out from the

cente  ¢f the ellipse. However, when we tried the following

10-dir.cnsional case:

=i 2 X5=3 e x3-4 e x6- 2
<;>+(—2—>+<7,.—>+<—-,—— +<—% —)
) 2 2 2 2
17-4 Xg-3 x9-4 xlo-e‘

(_7;_.) + (—g—_) + (_77_—) + (—-E——, < 1 with a cost

function ¢c = (1,2,2,3,2,4,1,2,2,3) and
JO = (493: 302: 4.“, 5.31 3-3: 2-3: '4-3) 3-2) 1‘“'4: 2'“)'

The meti.od 1terated 5 times 1a 91.2 seconds ard stopped at:

(‘J

Xg = (3.598,2.664,2.698,3.93%1,2.297,0.4893,3.0631,2.672,
2.675, -0.04223) compared to the true solution

x = (3.627,2.669,2.675,3.882,2.255,0.507,3.627,2.669,2.675,0.01)

Bclore we summarize our results let us discuss one two-dimensional

intersection of two ellipses which we ran.

XS +(X2_ ‘

35) . ~ ,,2
(Z2) + (iz}i) <1
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L2

With a cost function ¢ = (1,1) and a start o (6.5,5)

‘n two loops 1t converged to (3.209, 3.222). We note thnat

]

ct

nls point is within 0.0936 from the boundary of the first

ellipse anc 0.0077 from the second ore. That 1s to say, 1t
is approximately at the intersectlion where It shouid be.

In view of our experiments we {ind that what would be

expected from the consequences of the more widely experlimented

~irear programning would also nho.ld.true in the convex

.

progranming case. Namely, we wouid expect that the smaller
the cone for the "buckshot" thne better the approximarion and
the lengthler the proces.. This leacds us to belleve that the
method has not been tested widelv enough, and, even where tested,
rnot al. the features that the experiments suggest were
implemented. For example, if one wants to develop an efficlent
algoritnm based on thisapproach on should investigate the
nossioillity of a "selfl organizing" cone. That is, the dimen-
sions 0 the cone would be based on some possibly gross estimat-
ion of wrnat the surface "looxks" like in the neighborhood of a
given best point. This suggests . elf 1f we conslder the

following case

1\‘
)

)
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. we make even a small change in coordina“es at x and draw

a line X ok 5 ¢, then we sce the angle a 1s small but the

jl
effect 1s the same 1s for a much larger 6’ from a different

noint y'. This also points to tne need of moving the initial

Yy

easible vector to more favorable spots in the convex set.

In splte of some shortcomings of the program, some
resulis are very encourwsing. Even the poor convergence in
ellipsolics wrosce ratio of largest to smallest diameter i3
largze we [ind encouragement, for if we suitably modify the
taslc feasible vector we think that the method can become
more accurate.

I by convex set we understand a set such that gilven two
pcints in 1t the line segment Jolning them is also contalned by
toe ses; tHhen we want to note that in our discussion ve used
this property only very superficlally. What we used most was
our assunptlion that the given sets were bounded, and this only
in the direcction toward the rnost plane, and closed, that 1s we
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