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l. SUMMARY

A helicopter rotor in forward flight is subjected to a complex system
of loads, both aerodynamic and inertial in origin. Of particular interest
are the oscillatory airloads occurring at harmonics of the rotor speed. These
loads are the primary source of the blade stresses which establish the fatigue |ife
of the structure and of the oscillatory hub loads which determine the fuselage
vibration level. Unlike a wing, the trailing~ and shed-vortex system of the blade
generates a spiral wake which returns close to the blade under most normal flight
conditions. This returning waoke critically influences the downwash distribution
over the rotor disc and is the primary source of the higher harmonic airloading.
The higher harmonic components of the airloading arise primarily from the down-
wash perpendicular to the plane of the rotor disc generated by this wake. Their
analytical determination, therefore, requires some means of computing the down-
wash, which takes into account the spiral waoke geometry, and of determining the
unsteady aerodynamic effects associated with the blade passage through this variable
velocity field, A better definition of the aerodynamics of a rotor in forward flight
will also help in the design of hub and blades for minimum drag at the higher speeds

envisaged for the next generation of helicopters.

It is the purpose of this report to present a solution to the problem of
determining rotor-blade harmonic loading which includes both the unsteady aero-
dynamic effects and the actual three~dimensional wake geometry. The basic
aerodynamic theory is first discussed and then related to the more familiar finite-
wing theory. A general discussion of the results of the investigation to date follows,
including an outline of the suggested approach based on certain simplifying assump-

tions which are subsiantiated in later sections of the report.
The problem is formulated for the complete case of the three-dimensional

rotor with a finite number of blades in forward flight. Methods of solution are

discussed starting with a relatively exact approach in which the airloads on the blade
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generated by the near wake are treated using lifting-surface theories, while the far
wake is treated using the lifting-line approximation. This suggested treatment is
then evaluated by applying it to the simpler two~dimensional case and comparing

the resulis with the exact two-dimensional solution available in the literature.

Analytical solutions are then obtained for the three-dimensiona! rotor in
vertical flight. This resuits in a simple solution for the lift-deficiency function and
provides a useful check on the numerical solutions obtained using the complete

theory.

The relationships required for the solution of the complete problem of the
airloads on a three-dimensional rotor in forward flight are then developed. The
concept of a "nonrigid" wake is introduced. It is shown that a more careful
definition of the wake geometry than the assumption of a rigid spiral of constant

spacing becomes important at the lower advance ratios.

Finally, approximate solutions are discussed and compared with the more
exact theory, It is shown that for many engineering applications, reasonably

accurate airloads may be calculated using fairly simple technigues of analysis.

During the course of the research outlined in this report, some fifty different
computer programs were developed and approximately 100 hours of 7090 computer
time were used. Many of these programs were developed primarily for research
and testing of various techniques of analysis and are not of permanent interest.

The final versions of the programs for the computation of downwash and airloads,

both exact and approximate, are given in Reference 36.




Il. INTRODUCTION

Probably one of the mest difficult problems facing the designer of rotary
wing aircraft at the present time is that of determining the blade aerodynamic
loading, and, in particular, the oscillatory content of this loading. The
magnitude of the problem may be appreciated if it is realized that an equivalent
ignorance on the part of the fixed wing designer would mean that no method existed
for predicting the spanwise-load distribution on a conventional wing. Consequently,
no rational design of the wing structure could be effected until the aircraft had
flown and extensive test data obtained which would permit substantiation of the
structure for all anticipated flight conditions. Uniil the advent of swept-back
wings, conventional aircraft were sufficiently stiff or the speed sufficiently low
so that aeroelastic effecis could be neglected in computing airload distributions,
at least to first order, and the simple elliptical load distributions obtained from
uniform downwash theory were known to give reasonable approximations for most
flight conditions. No such simplifications were ever permissible for rotor blades,
aeroelastic effects always being predominant, The nature of the airload distri-
butions furthermore can certainly not be generalized by elliptical, triangular or
any other simplified function, since even an approximate theory for the airload

distribution is lacking and no exact analysis has been attempted.

In the absence of a working theory, design of rotor blades has proceeded
on an empirical basis with rotor-blade life sukstantiated by flight-test experi=~
mentation. Although costly, such procedure is, of course, udequate, Provided
no major design changes are attempted with each new model and advances made
in small steps, even the costs are not excsssive since extrapolation from previous
experience is not too difficult. However, rotary wing aircraft at present are on
the threshold of a major advance in both speed and design technology which will
result in a considerable reduction in maintenance cost and increase in utility for
the short haul market. Empirical design techniques are certainly no longer ad-

issible if real advances are to be achieved with reasonable cost and effort,

Some knowledge of the nature of the aerodynamic loading on rotor blades and,




in particular, of the higher harmonic loading which determines the fatigue lift must,
therefore, be acquired if the design of helicopter and VTOL rotors is to be placed
on a rational basis and new structural design concepts introduced safely and rapidly

as required.

In addition to the all-important problem of rotor-blade~structural integrity,
the control of vibration levels is another important problem facing the helicopter
designer. Through the years much careful work has been done to determine the dy-
namic response characteristics of rotor blades and of fuselage to vibratory inputs and
this has resulted in a major reduction in helicopter vibration levels on most exisiing
helicopters, However, the process has been a costly and time-consuming one and
has been greatly handicapped by a lack of information on the nature of the inputs
which cause the vibratory response of the aircraft. These inputs are, of course,

directly associated with the higher harmonic airloaas acting on the rotor blades.

Finally, as helicopter speeds advance above 200 knots, it is necessary
to define as carefully as possible the angle~of-attack distribution over the rotor so
as to reduce the drag represented by the in-board shanks of the rotor blade and the
hub fairings. This problem is closely related to the two described above and is a
further reason for a more careful definition of rotor-blade aerodynamics in forward
flight.




Ill. DISCUSSION AND REVIEW CF BACKGRCUND LITERATURE

A rotor blade in forward flight is subjected to a time-varying flow field in
which the forward velocity adds to the rotational velocity on the advancing side
and substracts on the retreating side. The resulting first harmonic velocity change
will generated first- and second-harmonic-lift changes, lift being proportional to
the square of velocity. A flexible blade cr a blade with mechanical hinges at the
root will flap in the presence of this flow variation in such a way as to maintain
almost constant lift around the azimuth. Because a considerable amount of inter-
harmonic coupling exists, this flapping in response to the first- and second-harmonics
of lift change will generate higher hamonic lift changes ad infinitum. The simple
theory of rotor blade loading in forward flight in which a uniform or triangular inflow
distribution is assumed, indicates that these loadings will decrease as u" where
is the advance ratio and n indicates the nth harmonic of loading. This dces not
fit the observed facts since harmonics as high as the fifth or sixth are known to
produce appreciable biade stresses and vibratory shaft loads at advance ratios of
the order of 0.1 or 0. 2 where the simplified theory would indicate such loadings

to be negligible. See, for example, Reference 1.

One of the earliest attempts to compute the induced velocity field at the
rotor disc was that presented in the 1948/49 Cierva Memorial Prize Essay by Drees
in which, by an ingenious approximation, values for the average and first harmonic
inflow variation were obteined, primarily for the purposes of performance estima-

tion (Reference 2).

In Reference 3 a selution was obtained for the harmonic loading on a disc
with a prescribed loading distribution along the span and constant around the
azimuth with the further assumption that the forward velocity is high compared to
the disturbance velocities. This solution indicates the presence of appreciable

higher harmonic inflows with a strong concentration towards the tips of the blades.




In Reference 4 it was shown that the lift-deficiency function of classical
nonstationary~flow theory could approach very smali values at integers of rotor
speed when the effects of the returning wake were taken into consideration. This
implies a reduction in damping, but also a reduction in lift generated by the higher
harmonic inflow variations. However, the blade will respond elastically in dis-
tributed modes to a higher harmonic loading concentrated at the tip and, if the
harmonic approaches one of the natural frequencies of the blade, the mechanism

evidently exists for the excitation of appreciable blade stresses and hub shears.

In Reference 5 the theory of Reference 4 was applied to the calculation
of blade stability. Figure 1 taken from Reference 5 shows that, as might be
expected, neglect the effects of the returning wake in such calculations is
conservative. Experimental verification of these effects was obtained in the
tests reported in Reference 6. When an attempt was made to excite the blade
aerodynamically by harmonic pitch variation, no appreciable effects of the
returning wake were noticed; however, with mechanical excitation of the rotor
hub, a pronounced reduction in damping was evidenced by the large increase in

blade response. This is shown in Figure 2.

It is, therefore, clear that any attempt to predi ct the blade harmonic
loading and response to this loading must treat the effects of the returning wake with
some care, Furthermore, since interharmonic coupling in the presence of first- and
second~-harmonic-lift variations and a uniform wake cannot predict the observed order
of magnitude of these loads, the mechanism of their gereration must come from the
harmonic content of the interference velocities generated at the rotor disc by the
rotor wake. A three-dimensional model is required if the harmonic content of this

downwash is to be predicted with any degree of accuracy.

Wake-interference effects have been considered in great detail in the

literature for the case of airfoils operating at sufficiently high forward speeds so




that the wake may be assumed to remain in the plane of the airfoil. A clear inter-
pretation of the physics of this problem is given in Reference 7. The concept of
vortex pairs used therein is particularly adoptable to the problem considered in this
paper. An extension of the theory to a helicopter rotor was made in Rzferences 8
and 9, but these analyses were limited to the relatively secondary effects of the
harmonically varying forward velocity. The distortion of the wake due to this
variation was considered in Reference 8, for a somewhct simplified input; a more
exact blade motion was considered in Reference 9, but the effects of wake dis-
tortion were eliminated from the analysis. In either casé, the results were found
to be negligible, most probably because of the low reduced frequency represented
by first harmonic velocity variations. A useful extension of the theory to the

calculation of rofor-blade bending moments is contained in Reference 10.

The first analysis of the important effects of the returning wake was contained
in Reference 4. Similar analyses are contained in References 11 and 12, All these
analyses are limited to two-dimensional models. An extension to the three~dimen-
sional case of a hovering rotor is contained in Reference 13. The results of this
analysis confirm experience with similar high-aspect-ratio fixed-wing solutions in
which the two-dimensional model is found to be generally adequate for the prediction
of rotor-blade stability boundaries in the presence of pitch-~flap coupling. A valuable
contribution of Reference 13 lies in its deve lopment of the concept of the rotor as
operating in a straight "sheared" flow representing the velocity variations along the
blade, a concept which is particularly useful in the development of the theory of

this paper.

The three-dimensional sclution of the time~-averaged wake-interference
effects was first given in Reference 14, which extended the concepts of classical
propeller vortex theory, in which the wake is represented by an infinite vortex
cylinder to the case of a skewed cylinder. Reference 15, which contains a useful
table of induced velocities generated by displaced vortex rings, computes the veloci-

ties induced by an infinite vortex cylinder at several points in the vicinity of a




rotor. Both these references assumed constant blade circulation both with azimuth
(timewise} and radiclly along the blade. The latter limitation was removed in
Reference 16 although the less important assumption of constant circulation with
time was retained. In Reference 17 the induced velocities generated by an infinite
vortex cylinder with time-varying circulation and containing an infinite number of
inner sheets representing the shed vorticity in the presence of time variations in
circulation were considered. The induced velocities were presented for several
points in the lateral plane of the rotor, but at only one azimuth and, consequently,
the harmonic content of the wake could not be directly determined. However, it is
probable that this medel will give a close approximation to the wake-induced
velocities, although the assumption of an infinitely small wake displacement and,
hence, an infinite number of blades precludes any prediction of one of the important
effects of nonstationary~flow theory arising from the nonuniform downwash induced
by the wake along the blade chord. Uniess this effect is introduced, the phase

shift in lift generation represented by the imaginary part of the lift deficiency
function, C(k,m,h) of Reference 4, disappears. At the present time the importance
of this limitation is not clear, but the approximation is certainly valid for the purpose

for which the theory of Reference 17 was originally developed.

In Reference 18 the infinite vortex cylinder is replaced by segments of
straight wakes oriented below the rotor. Since this permits integration to infinity
in both directions, a combined analytical and digital approach is possible, utilizing
the techniques developed in the lifting-line theory for fixed wings. Although the
solution has been limited to the quasi-static case, extension to that of variable

wake strength would appear to present no major problems.

The effect of a finite wake spacing of spiral form was analyzed in Reference
19 where it is shown that a highly time-dependent-interference velocity is generated
as the blade passes over the immediately adjacent returning wake. An interesting
suggestion for further analyses is contained in Reference 20 in which the first spiral

is retained and the remaining wake replaced by an infinite vortex cylinder.




Experimental verification of the nonuniformity of rotor inflow was obtained
in flight and is presented in Reference 21. Wind tunnel tests reported in Reference 22
gave quantitative information on the first harmonic downwash variations deduced
from measured blade aerodynamic loading. In Reference 23 measurements of higher
narmonic airloads were presented for a teetering blade and in Reference 1 valuable
flight test information was obtained for blades of varying stiffness. Correlation with
existing theory of all these tests was disappointing and it was quite evident that a
considerable amount of further analytical effort is required if a reasonable method

of predicting airloads is to be established.

In order to obtain some quantitative information on the harmonic airloads and
some understanding of the mechanism by which they are produced, and in order to
determine the importance of the unsteady aerodynamic effects throughout the flight
regime, a solution using a finite number of blades and applicable nonstationary flow
theory was, therefore, attempted. Some of the results of this study were presented
in References 24, 25, 26, 27, and 28. The program is a continuing one and this
report is based on the interpretation of the results obtained to date. Agreement between
theory and experiment is, in general, good at advance ratios corresponding to cruise
conditions, but poorer at lower advance ratios where the effects at the nonuniform

wake probably dominate in establishing the wake geometry.

Furthermore, it should be noted that a rotor blade is a highly complex
aeroel astic system subjected to powerful coupling effects, due to the high centri-
fugal force field not encountered on fixed wings as discussed in Reference 5.
Consequently, any experimental verification of theory should include consideration
of these effects, It is probable that, for this reason, model tests under controlled
conditions may be most useful for the purpose of establishing such correlation.
A promising test technique, which may prove particularly useful for determining
the importance of certain assumptions, for example, that of a rigid wake, is reported
in Reference 20, In these tests flow visualization was achieved Ly smoke generation
at the blade tips. Continuation of these tests and extension of such fests to include

the generation of smoke at intermediate blade stations would appear most desirable.




IV. BASIC CONCEPTS

1) The Separate Elements of Helicopter Vibration

The dynamics of helicopter vibration may be conveniently discussed by
considering the three basic factors which contribute to this vibration as separable,

although heavily interacting, elements. These three elements are:

1) Rotor Aerodynamic Loading
2) Blade and Rotor Dynamics
3) Fuselage Dynamics

The combi nation of highly flexible blade attached to a flexible fuselage
and subjected to periodic aerodynamic loads, which, in turn, are proportional to
the blade motion, presents a dynamic problem of some magnitude. However, methods
for handling the last two items, fuselage and rotor dynamics, in a routine fashion
are now available using the well-established techniques of aeroelasticity. It is
with the first item, blade loads, that we are mainly concerned. Once it becomes
possible to predict the magnitude and time history of the aerodynamic loads, the
resultant phasing and magnitude of the hub loads can be predicted, as well ¢s the
degree to which these loads are amplified by rotor dynamics. Knowing the nature
of these loads, the fuselage response, which determines the vibration levels to which
the passengers and structure will be subjected, can be determined. Unless each
element in the chain of vibration buildup can be sep&rately defined, mitigation
and control of the vibration level, except on a hit and miss basis, is impossible.
Obviously, the first element in the chain on which all others depend is the harmonic

oirloading.

In emphasizing the need for quantitative information on this primary forcing
function, it is not intended to imply that the remaining steps in vibration control

are simple and straightforward, but rather that they then become subjected to




systematic analysis. As mentioned before, of considerable concern is the nature of
the blade torsion-bending coupling and its effect on the airloads, Accepting that
higher harmonic aerodynamic loads of appreciable magnitude do exist, then it is
evident that the blade will bend periodically in the presence of these loads out of the
plane of rotation and out of the plane of its twist axis. The potential significance

of this phenomenon may be demonstrated by a simple illustration. In Figure 3

a blade is shown with its normal elastic deflection. Torsional flexibility is assumed,
for simplicity, to occur primarily at the feathering hinge located near the blade root.
As the blade twists about, the feathering hinge components of centrifugal force act

to increase the twist. That is, a rotor biade bent out of its plane of rotation is not
in static equilibrium. Since the centrifugal force is several times the gross weight
of the ship, clearly powerful blade twisting moments can be producted by this mech-
anism unless relieved by motion about the lag hinge. In Reference 5 it was shown that
in certain cases, such as a teetering rigid blade, these moments could be equivalent

to those produced by a 6 per cent chord shift in CG of the rotor blades.

Since rotor blades must bend elastically in the presence of aerodynamic lift,
this centrifugal force component, and also the steady state drag, will cause periodic
twisting moments due to the periodic changes in blade bending deflection caused by
the higher harmonic airloads. in addition, periodic changes in induced drag due
to the higher harmonic content of the downwash will combine with the steady state
bending deflection of the blade to produce another source of periodic twisting moments.
Twisting moments from these sources will cause harmonic change in angle of attack.
Consequently, coupling between elastic flapping and torsion is potentially of con-

siderable importance in establishing blade loads.

Pitch flap coupling may also be used to reduce the oscillatory loads acting
on the rotor. In Reference 5 it was shown that by tuning the torsional frequency of
the blade to the frequency of the harmonic, which it was desired to attenuate,
and by offse tting the aerodynamic center and center of gravity of the blade about
3 per cent of the chord, reductions in the harmonic hub leads of the order of
50 per cent could be achieved. This was later demonstrated in flight using at




blade whose AC~CG offset was obtained by means of an aerodynamic surface
(servo flap}. The desired reduction in vertical vibratory force was achieved;
however, the inplane forces were not appreciably attenuated and, in this parti-
cular synchropter configuration, these forces were the primary source of fuselage

vibration.

The importance of establishing the magnitude and phasing of all components
of rotor hub loads is particularly important for the tandem helicopter. A can-
cellation of vibratory input, due to the phasing of the forces from the two hubs, is
conceivable for this configuration and probably for most other configurations, were
it possible to evaluate and controi, by design modification, both the phasing and

magnitude of forces entering the hubs and the hub loads themselves,

Pursuing the analogy of helicopter dynamics as consisting of separable
elements, it is possible to show these elements and their interaction schematically
as in Figure 4. The interaction between the elements determines the degree of
complexity required for numerical solutions. To date our studies have indicated that
the interactions shown by broken lines are not of primary importance. Consequently,
blade flapping and the dissymmetry of flow over the rotor disc have little direct
influence on the higher harmonic airloading. Also, the unsteady aerodynamic
effects can be treated independently of blade motions as a lift-deficiency function

and phase shift for the higher harmonic airloads, much as in the fixed wing case.

The effect of these conclusions is to largely uncouple the elements in our
schematic of the dynamics and, hence, to simplify the analysis, since each element
can now be separately investigated. Unfortunately, a further conclusion is that the
harmonic loading is critically dependent on wake geometry and this considerably cora-
plicates the analysis, since wake geomeiry is not subject to exact definition and is
certainly far different from any of the rigid wake concepts used in propeller anaiysis.
Reasonable agreement has, however, been obtained between theory and test for ti.e
normal cruising and high speed flight regimes. At the lower speeds, we are at least

beginning to understand some of the factors which contribute to transition roughness.
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2) Analogy with Fixed-Wing Aerodynamics

The underlying aerodynamic theory required will be better understood if the
equivalent fixed-wing problem is first examined. Consider a wing advancing at
constant angle of attack in a uniform airstream. By virtue of its geometrical angle
of attack, the airfoil will generate circulation and, consequently, lift. Assuming
for simplicity that this circulation is constant along the span, it must leave the wing
at the tips and trail downstream since, by one of the fundomental laws of hydrody-
namics, circulation cannot end abruptly but must continue back in a closed circuit
to the starting vortex generated at the beginning of the motion (Figure 5). After
the motion has continued for a sufficient length of time, this starting vortex may
be assurmed to be at an infinite distance from the airfoil, and its effects may be
neglected. The trailing vortex will induce velocities, w, at the wing which will,
in effect, reduce the angle of attack to something less than the geometric angle.
This results in the well-known aspect-ratio correction to the slope of the lift curve
of a finite airfoil. In practice, of course, the circulation is not constant along the
span and, therefore, the trailing vortices are distributed in a sheet all along the
span. The mathematical treatment of this problem is well known and is covered
in any text on wing theory. In its most useful applications, the wing is replaced
by a single vortex line whose strength is equal to the bound circulation on the air-
foil, resulting in the so-called lifting~line theory of classical aerodynamics. Simple
solutions are then obtained by assuming that the wake remains in the plane of the
airfoil and extends rearwards to infinity.

Retaining the analogy of a fixed wing in forward flight, consider now the
case where the geometrical angle of attack changes as the wing advances. Under
such conditions it is evident that the circulation will change, but since, in the case
of ideal fluid, total circulation must remain constant, there must be a counter vortex
in the wake corresponding to the change in circulation on the airfeil. This wake
vorticity is generally referred to as the shed vorticity to differentiate it from the
trailing vorticity which occurs both in the steady-state condition and when the

blade is «hanging angle of attack. Since, as was seen above, the spiral vortex

11




system, even with constant strength, will generate harmonic downwash at the rotor
disc, it is evident that the rotor blade in forward flight will have associated with it
a shed as well as a trailing vortex system. For the simple analogy of a wing with
constant circulation, the shed vorticity will be constant and parallei to the span
resulting in the picture shown in Figure 5. It is evident that 1t = shed vortex bears
the scme relationship to the trailing vortex as the starting vortex in the case cited
above of an airfoil at constant angle of attack. Howevor, since these vortices are
continuously being shed, they cannat be assumed to be at infinity but must be
correctly placed in the wake relative to the airfoil ata point in space determined
by the airfoil position at the instant of shedding. In the simple picture shown in
Figure 5 corresponding to an abrupt change of angie of attack at time t = A t with
the airfoil moving at constant velocity V, the distance §* of the airfoil from the

shed vortex at any time t, is simply

E*_ v at

where the star indicates that g* is dimensional. In forward flight, the velocity V
at the blade section is not consiant but varies with azimuth position. Consequently,
this effect must be taken into account in positioning the vortices in the wake. Also,
discrete line vortices are not shed if the blade is changing angle of attack harmoni-
cally, but instead a continuous sheet of vorticity whose strength varies harmonically

is created,

Evidently, this shed vorticity will also induce downwash at the airfoil and
will, in effect, result in a further reduction in angle of attack in addition to that
generated by the trailing vortex system, This change in angle of attack can be
evcluated for the simple two~dimensional case in terms of Bessel functions, and
since it results in a reduction in lift, it is frequently referred to as a lift-deficiency

function similar to the aspect-ratio effect of finite wing thecry.
Because of the time varying nature of the loading, it is, therefore, necessary,

in the case of a rotor, to consider not only the case of a trailing tip vortex and

distributed trailing vortices, but also that of a spiral represented by the shed vorticity.
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V. GENERAL DISCUSSION OF ROTOR LOADING

1) The Nature of the Aerodynamic Loading

In light of the discussions presented in the previous section, it becomes
possible to discuss the physics of rotor aerodynamic loading in fairly simple terms.
The primary element is the steady rotor lift generated by the bound circulation
on the rotor blades. This bound circulation, as it leaves the blades, generates
a spiral vortex system in the wake of constant strength dependent only on mean rotor
thrust. The vertical component of induced velocity generated by this vortex system
at a point on the blade, when combined with the horizontal velocity at the blade
due to the blade rotation and forward speed, determines the induced angle. In
the case of hovering flight, and for constant blade circulation along the span,
it is well known that the induced velocity is constant over the rotor disc. However,
in forward flight the wake spiral is not symmetrically iccated below the rotor but it
is distorted by the forward velocity as shown in Figure 6. The induced velocity due
to this distorted wake may be computed in terms of the wake geometry by the ex-
pressions given in Section VII. As might be expected, it is far from uniform over
the disc. Consequently, the blade is subjected to a constantly varying induced
angle as it rotaies, and this is the primary source of the higher harmonic-blade

loading.

Since the blade is subjected to time-varying airloads caused by the wake
generafed by the steady-state lift. In particular, for example, the airload varying
as the n'" harmonic of rotor speed must genercte a trailing-wake system of variable
strength which, in turn, will induce all harmonics of downwash at the rotor disc.
Since the blade circulation is changing, there must also be a vortex system shed
from the trailing edge of the blade at any instant equal and opposite in magnitude
vc the change in bound circulation, and this shed wake will also induce all
harmonics of downwash at the rotor disc. Consequently, interharmonic coupling

is potentially important. For example, if the nth harmonic airload induced large

. rh * [
steady~-state components of downwash to the m'" harmonic , then them " harmonic lift
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would be appreciably changed by the harmonic airload and no direct solution to the
problem could be obtained, It would be necessary to use an iterative procedure which
would involve many hours of computer time in order to arrive at one numerical solution,

and the question of convergence would always arise.

The numerical solutions for the forward flight case reported in Reference 24
were undertaken in order to explore the importance of this interharmonic coupling.
It was found that the results of the analysis could be more easily interpreted by
considering the wake in fwo parts; the'near" wake representing that porticn in
the immediate vicinity of the blade in question, and the "far" wake consisting of
that portion from a quarter of a quadrant away from the blade and extending to
infinity down the spiral. The exact boundaries of the near and far wakes are not

of primary importance.

The near wake is relatively undistorted since it induces only a small portion
of the spiral and, indeed, could be represented by a straight wake extending aft of
the blade to infinity, |t must, therefore, induce primarily the frequency of the
bound circulation by which it was generated. The far wake induces all harmonics
at the rotor disc due to its distorted spiral form; however, it is swept further down-
stream. and, hence, becomes of decreasing importance as the advance ratio increases.
Consequently, the coniribution of a particular harmonic of circulation, say the n' ,
to another harmonic, say the m*h, of downwash is usually of an orde  § magnitude
less than its contribution to the n'" harmenic of downwash. Also, the steady-state
or th harmonic of circulation, which determines the rotor thrust, is an order of
magnitude greater than any other harmonic of airicad and so is the downwash which
its wake induces at the rotor disc. Consequently, to first order, the nfh harmonic

of downwash at the blade consists primariiy of two components:

a) The afh harmonic of downwash induced by the vorticity in the wake
generated by the steady-state blade lift, and
b) The nﬂ'1 harmonic of downwash induced by the voriicity in the wake

generated by the nth harmonic variation in circulation,
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The lift changes due to (u) alone may be considered as a quasi-static lift
change arising from a harmonic variation in angle of attack due to the ronuniform
wake. This harmonic variation may be computed once the rotor and wake geometry
are known, and is unaffected by any other blade metions or harmonic lift variations.
The downwash components (b) result in a reduction and a phase shift of the quasi-
static lift by an amount which again depends only on the rotor and wake geometry.
This effect can, therefore, be tabulated as a generalized lift~deficiency function,
C(k), as has been done for the fixed wing case in, for example, Reference 29. In

Theodorsen's nomenclature
k) = F+iG
where F represents the reduction in lift and Tan -] G/F represents the phase shift.

Typical resuits are presented in Figure 7 for a shed wake of constant
radial strength. The computation of these functions is a lengthy process involving
extensive machine time and much manipulation because of the classical singularities
of nonstationary flow theory as discussed in Section X1-3, but once having been

computed, they are universally applicable.

In Figure 8, the contribution of all components of the wake to the lift
deficiency is plotted as a function advance ratio. The increasing importance of the
near wake, as the advance ratio increases, is evident as well as the relative unim-
portance of the trailing wake. In fact, at an advance ratio of 0. 2, the reduction
in lift, F, is substantially that which would be predicted by the two-dimensional
theory. Since the hovering flight case, p=0, is subject to a simple closed form
solution, as will be discussed later, it is possible that for many engineering appli-
cations a reasonable approximation to this very complex analysis for F and G couid
be obtained by fairing a simple curve through the two known points at p= 0.2 and
u=0,

The convergence of C (k) for all harmonics towards the classical two-dimensional
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solution for the higher advance ratios is shown in Figure 8, together with the
insensitivity of this function to frequency at hovering, which is a conclusicn of

the closed form solution for this case.

Before leaving this general discussion of the aerodynamic loading, it
is of interest to examine the components of downwash (o) and the general nature

of the trailing-wake system generated by the steady rotor iift.

Miaimum induced drag and, hence, the minimum energy and preferred con-
dition can be shown for the cose of hovering flight to correspond to the case of
uniform bound circulation aiong the blade. Our computations indicate that this
condition appears to persist in forward flight so that, regardless of twist, the
circulation remains substantially constant over at least the outer 50 per cent
of the blade span. The drop-off in circulation at the tip is quite rapid, depending
on the blade chord to span ratio. The trailing-wake system due to steady rotor lift
may, therefore, for purposes of discussion, and indeed for most anaiyses, be assumed
to consist of a single tip vortex of known strength, since the rotor thrust is known,
and another of equal strength located somewhat inboard of the 50 per cent span point.
These vortices are swept back relative to the rotor by the forward speed und, con-
sequently, a blade, as it advances toward the leading edge of the rotor, must pass
over a series of vortices generated by itself and the other blades (Figure 6). Similarly,
in returning towards the trailing edge, it must repass over this system of vortices.
Consequently, any point on the blade will experience a fairly abrupt change in
downwash on the advancing and retreating sides of the rotor, and this is a primary

source of rotor vibration,

Figure 9 taken from Reference 24 shows the abrupt change in computed down-~
wash as a function of azimuth induced by the tip vortex at the 95 per cent span lo-
cation for a three-bladed rotor. The experimental data used for comparison was taken
from some early tests conducted at M. 1. T. in 1949 (Reference 22) in which the
higher harmonics were attenuated. The rapid fluctuation in downwash predicted by

theory was, therefore, not clearly defined by the tests, More recent experimental
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data has, however, supported the prediction of these abrupt changes in downwash
near the 90° and 270° azimuth positions. In particular, flight test data obtained
on a four-bladed rotor by NASA (Reference 30) is compared in Figure 10 with loads
computed in the manner described above. The abrupt change in lcad near the $0°
aziruth is almost impulsive in nature and witi have a high harmonic content. The
number of blodes used in a rotor will, therefore, have relatively little effect on the

vibratory loads induced at the hub.

The computations of Reference 24 indicated that this abrupt load change is
largely dominated by the vortex generated by the immediately; -~receding blade,
in the case of the four-bladed rotor, that located 90° anead of the blade in question.
As the number of blades is increased, the vortex strength generated by each blade
is reduced; however, the blade spacings wili pass closer to the following blade.
Computation for two-, three-, or four-bladed rotors thus shows little effect on the

nature of this impulsive change in downwash,

The impulsive ioad, however, is highly localized along the blade and,
as evident from Figure 10, travels down the blade as it advances from 90° to 180°.
The localized nature of the downwash, due to the proximity of the vortex to the
blade and also the rapid fluctuations in downwash associated with both the intensity
of the vortex and this proximity, requires that all aspects of unsteady aerodynamics

be carefully examined in predicting the resultant blade loads.

2) Unsteady Aerodynamic Effects

The effects which are of main concern in the classical treatment of wings

in nonstationary flow are those due to
a) The existence of the shed wake in addition to the usual trailing

wake

b) The addition of an oscillatory component to the trailing wake, and
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c) the existence of an additional pressure change on the airfoil

due to its passage through a time-varying flow field.

If the nonstationary flow is defined as being oscillatory in nature, exact
solutions are possible in terms of tabulated functions for the two~dimensional airfoil
(Reference 29). Solutions have also been obtained for a two-dimensional approxi-
mation to the rotor in which the rotor wake is replaced by infinite vortex sheets at
corresponding locations below the blade (References 4, 11, and 12). These investi-
gations have shown that, for oscillations at harmonics of the rotor speed, the un-
steady aerodynamic effects become of paramount importance and, for cerzain flight
conditions, could result in values of the lift-deficiency function, F, ciose to zero.
More usual values for the case of conventionally loaded rotors are of the order of
C. 5 which, in effect, means that the slope of the lift curve of the blade for os-
ciliatory loads is reduced by 50 per cent; evidently not a negligible effect.

Once the change in blade circulation has been defined as being oscillatory
in nature, the strength of the shed vortex and its position, at any instant relative
to the blade, can be defined for any three~dimensional system such as a rotor in for-
ward flight. Consequently, the instantaneous velocity which the shed wake induces
at any point on a blade can be computed. Similarly, the strength of the trailing

vortex at any point in the wake is defined and its induced velocity field established.

Computation of the airloads is complicated by the existence of singularities
in the solution. These occur as the shed wake approaches the trailing edge of the
rotor and whenever the blade passes through a trailing vortex line generated by tself
or another blade. The treatment of the singuiarities and of the nonuniform flow field
presents no basic problem providing lifting-surface theory is used. However, this
requires the numerical evaluation of the downwash at several chordwise as well as
spanwise stations and, hence, may involve a prohibitive amount of machine compu-
tation time. Approximate methods have, therefore, been used to evaluate the un-

steady aerodynamic effects and these will be discussed in Section V-3 below.
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Before considering these treatments, it is interesting to review the case of
vertical flight for which closed form solutions to the integrals presented in Section VII
have been obtained. If it is assumed that the rotor has an infinite number of blades,
the vortex. spiral may be replaced by a coiumn of varticity and the vortex strength
at any point in the column defined by the nature of the assumed circulation change
along the blade. This circulation change could, for example, come from periodic
change in pitch of the blade. By integrating Eqs. 15 and 16 in Section VIl for the
hovering case, p= 0, from the rotor plane tc infinity, around the azimuth, p=0 to 2w,
and along the blade from root to tip, it was shown in Reference 24 in Sectizn IX the lift
deficiency function C (k) = F + i G has the value

where 0 is the blade solidity and A, the mean inflow through the rotor. This result
agrees almost exactly with the digital solution using a finite number of blades, except

that G, for the case shown in Figure 7, does have a small value.

The interesting cenciusion from this analysis is the fact that the lift-deficiency
function is independent of frequency and can be given by a simple expression depending
only on blade solidity and downwash. For the particular case of hovering flight and

an ideally twisted blade an alternative form is

where ay is the blade angle of attack at the tip.

The reduction in lift curveslope at a given steady angle of attack will, therefore,
become greateras the rotor loading and, hence, A, increases. Evidently the effect
of increasing the spacing of the vortex spirals is offsel by the increcsed intensity of

the wake vorticity.

19



The singularities normally encountered in the solution of t he downwash
integrals have been cancelled for the hovering case by the assumption of an infinite
number of blades which permits the solution in closed form given above. However,
in the forward flight case, the existence of a finite number of blades has been shown
in the previous section to be the dominant factor in determing rotor loads and it is,

therefore, necessary to devise techniques capable of handling these singularities.

3) Lifting-Line Approximations to the Unsteady Aerodynamic Effects

One of the most troublesome of the singularities is that associated with a shed
vortex approaching the blade. In the simplest solution for the blade airloads, it is
convenient to replace the blade by a single vortex line. Normally, the high-aspect
ratio of conventional rotors would suggest that this is a reasonable approach. However,
the following brief analysis illustrates the nature of the errors associated with the

lifting=line approximation.

Consider, for simplicity, the classical two-dimensional case in which the
wake is assumed to extend in the plane of the airfoil to infinity. The airfoil will
now be replaced by a point vortex and the geometric incidence, o, varied har-

monically with frequency w so that at any time t
a(t)=a_sinwt+a_cos ut
s c
The bound circulation " will, therefore, also vary harmonically or

r(f)= r;sinwf+ r;coswt

At a point in the wake a distance & from the blade, an element of vorticity
Y ( E) de  will have been shed at time t - At of strength equal and opposite
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fo the change in circulation on the airfoil when it passes this point. Therefore,

f(f)dg - - d F (f"'Af) dt

dt

= -g] Fscosm(t-Af)-chinw(f'l\f) ] dt

If the airfoil is moving with constant velocity V then

V = —dq—;g— , hence At = \y and

\Y

F(8)=- == [ cosutt- Z-) - [ sina(t-5-) ]

The velocity induced at the airfoil by the infinite wake in the plane of the airfoil is
O
I (&) 48

A 271 §

where € is a lower limit yet to be defined. The induced velocity w in turn induces
an angle w/V at the airfoil. The corresponding circulation, /; induced by the wake
is, therefore, for the simple lifting line case , Fw = 2 nbw where b is the half chord.

After substitution and expansion of the trigonometric functions, the wake-induced

rw= - klc[ rscoswt- rcsinwf]
"kls [Fssinwt+ Fccoswt]

where k is the reduced frequency, wb/V, and

-}
# . gt
L - f cos k B 4% , 1= sink 5 gt
]

2 é*"

circulation becomes




I+ k1
S

If the lower limit fs is replaced by zero, that is, if the wake is integrated up to the

vortex representing the airfoil, lS has the value 1/2 and

This value agrees closely with the exact value up to k of about 0. 5.

However, if Ic is not to be an improper integral, Ec must have some”
value other than zero. Several methods cf establishing the limit Ec for the purpose

of evaluating the rotor airloads in forward flight will now be discussed.

The simplest method is to eliminate I by choosing a sufficiently large value
of & , for example, equal to the interval size used in numerical integration, The.
infervgl size is usually of the order of five degrees of azimuth or greater, and the
nature of . is such that this interval size is sufficient to make ic insignificant, since
the numerical value of the cosine integral is higkly sensitive to the lower limit. On
the other hand, the numerical value of the sine integral 's is not sensitive to the lower
limit, at least for vaiues of k less than 0.5. The result of using this computation
technique is, therefore, to estimate the value of F with reasonable accuracy at the
lower reduced frequencies but to lose most of the phase shift due to the shed wake.
Such a solution, however, is certainly a first approximation to the unsteady aero-

dynamic effects,
Another method is that suggested in Reference 24 in which combined lifting~

line and lifting-surface theory was used. A limit € was chosen well away from the

blade, and this defines the limit of the far wake as previously discussed. The far
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wake was treated using lifting=line theory and the remainder of the wake, from &

to the blade, was treated using lifting-surface theory. Since the near wake is
relatively undistorted, the curved wake was replaced by a straight wake extending
aft to infinity. Also, since the work of Reference 13 indicated that a two-dimensional
solution closely approximates the three~dimensional solution for such a case, the near
wake was treated using techniques similar to the classical two-dimensionai theory.
However, the computational sequences for such a combined analytical and digital
soiution are clumsy and not weil suited to machine computational techniques.
Consequently, a simpler method was deveizped in Reference 25 in which € waos
chosen so that the lift deficiency and phase shift predicted by the simple lifting-line
theory developed above would be the same as that predicted by the equivalent lifting-
surface theory, for example, by F and G of Reference 29. The identities to be
satisfied are

T+ kI = k1l = 2O

F
and >
FZ + G2 S Y

trom which, for any value of k, the lower limits to the sine and cosine integrals may

be obtained from tabulated results. These limits are shown in Figure 11 and, for EC,

are ciose to the rear neutral point of the blade. By assuming that the limits will b2
unchanged by the small curvature of the near wake, they may be used directly in the
numerical integration of the expressions for rotor-wake induced flow given in Section VI,
The equivalent limit in azimuth position at blade station ¥R is A $ = E*b/ Y( R

and is of the order of one to two degrees for normal rotor blades.

4) Lifting-Surface Theory for Unsteady Aerodynamics

The airloads acting on a blade of finite chord due to an induced flow field
with rapid fluctuations may be conveniently obtained using thin airfoil theory. This
method is readily adaptable to the machine computational techniques used for ob-

taining the induced flow.

The method used here consists of representing the airfoil by a sheet of
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distributed chordwise vorticity. It wili be assumed that the spanwise components

of vorticity on the airfoil may be neglected, although this assumption is certainly
open to question in view of the rapid spanwise variations in load asscciated with
passage over the intense tip vortex. However, the assumption is believed to represent

a reasonable compromise between computational complexity and accuracy.

The chordwise vorticity may be represented by the series
e oQ
Y(x)=Aotcm-2- + ; Ansinne

where the distance from the center of the airfoil to any point on the airfoil is given by

Then the induced flow at any point x on the blade due to the bound vorticity

is {Reference 31)

00
A A

vx) = 0 + Z‘] N cosnB
2 2

if the vorticity w(x) induced at any peint on the airfoil by the wake vorticity
is expressed as a similar series

B Z B,
wix) = _.92._.... + | — 71— cos n 6

it follows that, in the linearized solution, A =B_since the boundary conditions
on the airfoil require that wix) + v(x) + u(x) = 0, where u(x) is the velocity normal

to the airfoil due to the geometric angle of incidence and the blade motions. If the

downwash is computed ot a sufficient number of stations along the chord, the coefficiznts

B, can be determined by harmonic analysis for cny wake-induced velocity distribution

which it is desired to examine.

24



nts

Analytical solution of the problem would require the evaluation of integrals
obtained from the expressions for the velocities w, u, and v derived in Sections VI
and VII in order to obtain the Fourier coefficients of chordwise vorticity distribution
along the blade chord. I is evident, from the expressions derived in the next section
for the velocity w(x), that direct solution for this type is no! possible because of the
obvious difficulty of solving the resulting integral equations in closed form. How-
ever, several approximate solutions have been obtained for the case of finite wings,
and exact solutions are available for the two-dimensional airfoil. A brief derivation,
using the approach developed in this report for the rotor, is presented in the following
section, since it has been found convenient to modify slightly the familiar treatments

when considering the three-dimensionai rotor.

Following this derivation the downwash is defined for the case of a three-
dimensional rotor and a method of solution suggested using the concept of a near
and far wake. This is the most accurate solution of the several developed in this
report and was developed in order to establish a reference for later approximations.
The adequacy of this solution is established by comparison with an equivalent two-

dimensional approximation.

Closed-form solutions are then obtained for the case of hovering rotor,

giving the results briefly referred to in Section V-2 above.

Techniques are then developed, using lifting=line theory, which result in
considerable simplifications in the analysis. The effects of a finite chord are then
separately evaluated. Finally, the possibility of developing generalized lift-

deficiency functions are evaluated and some typical values are presented.
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VI. TWO-DIMENSIONAL SOLUTION FOR OSCILLATING AIRFOIL

The following very brief analysis is included in order *5 relate the treatment
of the nonstationary flow effects contained in this paper ‘o the classical analyses in
the literature. Chapters 5 and 7 of Reference 32 contuin a complete development and

review of both the two- and three-dimensiomal cases.

If the chordwise vorticity is represented by the series

T(x) = Ao tan ﬁf + 2 An sinn @ (1

n=1

and the distance from the center of the airfoil to a poini aft on the airfoil is given by

*
X" =bcosH

then the induced flow af x , due to an element of vorticity on the airfoil at 7 , is

T(1)d7
21 (x" ~7)

dv(x)=

, positive down 12)

which, when integrated from -b to +b gives {Reference 31 ~ Chapter VIi)

>
o

1)
3>

, n
” '-2— cosn9

-~

3

Assume now that the cirfoil is meving with veiocity, V, and has a velocity
perpendicular to its surfacez, u(x) (positive down), at station x resuiting from the angle
of attack, o€, positive down and the vertical velocity at the center of twist, Z,
positive down. If the center of twist is located a distance ab aft from the center of

the airfoil, then . .
ux) =aV - Z + (X -ab) &
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Every change in circulation associated with these motions results in an element of
vorticity, Y d;"‘ , being shed at the trailing edge whose strength is equal and op-

posite to the change in bound circulaticn, Thus,

'fd§* =-d [ (3q)

"'* (] te ’ e o . o . .
g is the distance of the element of vorticity from the center of the airfoil, dimensional

when starred. The velocity at the airfoil perpendicular to its surface induced by Yd ?’

is, for the sign convention of Figure 3,

-% 45"

MR £ G S 4

In the linearized sclution, the boundary conditions on the airfoil require that, for

each element of vorticity in the wake,

vix) +u(x) +wix) =0 (5)

or

o0
A A
—-2-o—+ Z’T— cosn +[ AV - 24()("0[))0(]'-2-——(—5-—,‘)(6)

The Fourier coefficients An may be readily determined with the aid of Reference 3,

Page 99, from which is cbiainea

Sor———a——

}P“ gco'incgsg Je - L [§ - %2 -1 ]n
§2

7

whence A - + dg 1

o 1 ng

+ 2(Z~AV +abx )
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The incremental lift and moment on the airfoil, due to the instantaneous
displacements and in the presence of the flow field generated by Yd 5‘: may now be
computed for the vortex pair consisting of Yc{f’;nd dI’ L, on the airfoil, postulating
that these are the only two elements of vorticity existing in the system. Bernoulli's
equation, extended to unsteady flow, gives the pressure difference on the upper and

lower surfaces as
(P, = Pg) = —2p[—g{—(x) + v%ﬁ’;——(x) ] 9

The second term includes the quasi-static effects arising from the instantaneous
airfoil gecmetry; the first term accounts for the fime rate of change of velocity
perpendicular to the airfoil, including apparent mass effects and those arising

from the nonuniform velocity, w(x), at the airfoil due toy d§ . Therefore, when
replacing the blade by a lifting line, terms in 38/3t  due to - /Qt should

be dropped. When z # 0, as in the far wake, 3% /3t  will contain terms due

to 2. However, in general, i<<$ and its effects have, therefore, been neglected,
except as they determine the instantaneous vertical position of y d} in the "semi-

rigid" wake solutions,

The velocity potential, in terms of the distributed vorticity, is

x¥
¢(X)=..21._jb“( dx*

whence

__3_?._, (X) =

o0 X TL" Y (x)

and

»
X
oé _ 1 a/ *
Y3 (x) = 5 —;(—’--b v (x) dx
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The lift on the airfoil is
+5

L= -~ - +*
Jp  PyPy) dx

and after substituting y(x) in the form given by Eq. (1), the lift is obtained in terms

of the coefficients An’ as

W
dL:f“’{T 4 (A, = Ag)be 32(,—(Ao+—2]'Al)b+v(Ao+_.']Z'A])¥(w)

7

The circulation on the airfoil is
45
- ] _ 1
d/’ = f‘f d x —n(Ao+—2—A])b (n
-4

This is the |ift and circulation on the airfoil at any instant due to the element of
vorticity, y dE , in the wake and its counter vortex on the airfoil, d [ L+ Since
the rigid wake of constant strength is assumed, this elemsnt of vorticity in the woke

has constant strength with time or

If the element of vorticity and the blade circulation, d F‘b ;, are to constitute a vortex

pair, then N
d /1b = -vd§

and
—ﬁ— dl' = 'd%' A+ = A}) =0

which also defines the time history of airfoil motion required so that in moving a distance
*
; after shedding the element of vorticity, v d g* , ho additional circulation has

been generated by the a'..cil. Then
- 1 2 . ]
aL = prb {-2- o - 4 Apbevias LA
Differentiating the first term with respect to t and noting that /3 t=(Vh) 2 /3§

results in
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PNy dE

2
S -

dL=

-21r/)Vb [AV -2+ & (.5b-a*)]+/on(‘é ~AV +ak)E

The first two terms represent the lift due to the vortex pair of which the second term is
the “"quasi-static" lift, L . The third term represents the apparent mass and damping
effects due to the noncirculatory flow. Integrating the first term for the effects of all
elements of vorticity, which have been shed from the start of the motion, and leading

to the present instantaneous airfoil position,

v/w-lﬁ-g-— $L ~pm (AV -2 -aa) b2 (12)

/ 52 9 f

,‘/_, -1

blmllorly, the total circulation acting on the airfoil is, from Eq. (11)
[§+] -]_7Td§ -2ab [XAV - Z"d(5b-a)]

and this must be equal ond opposite to he total circulation in the wake or

Whence

oD
fﬁii_. T dE = 2ub[AYV -2~ (.5b-a")] = Lo

/Jﬁ': £V a3

Combining Eqs. (12) and (13) EydE

L=1 VE-1 “Pub(AV = o' X )

q o0
¥ yds Yo /
/ VEA ? '))55—1

If the displacements = and a vary harmonically with time, then L will also be of
the form L= Loe ot and, as in Section VIII, the first term, may be readily identified

as the classical lift-deficiency function C(k).
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The incremental moment about the center of twist acting on tha airfoil is

+b * ¥#*
dM = f (P, =P ) (x -ba)dx
® A 2A 2 A
. = T
-V (24, - A j

After substituting for the coefficients An and their time derivatives,

2 4 .
M= abdlr P T dE , mpdh SRV @Y - £ -abi %’
21@ -1 g

Adding dL from the previous analysis and summing up over the entire wake gives

¢ 4
3 A b
M=—PVb2/;°‘ =5y 43 - p [{V -2 ~aba | ab +/”g

152 /er(o(V-z-cbx)b

Substituting Eq. (13) results in

M= L (a4:5) ]
f"’Erxg / 7A€

' /5 ‘B3 (14)
.+/07r¢(;;»_;+ a..béi)f) +/0p'Vo'(é$—a()63+ /flzg(_é‘f

Examination of Eq. (14) and the expression for Lq ,

Lq “21r{i Vb [ V-2 +A b(.5-0)] ,

indicates that the forces and moments acting on the oscillating airfoil may be

resolved into the following components:

a) a force acting at the 25 per cent chord due to the angle of attack
at the 75 per cent chord (rear neutral point) and multiplied by C(k),

b) a force due to the angular velocity o< of the airfoil acting at the
75 per cent chord point and given by/on Vs b2,
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c) a force due to the apparent mass term, P b2 z, acting at the
center of the airfoil, and a moment T P b4 o< /8.

identification of the forces and moments in this manner frequently permits a considerable
amount of simplification in handling the aerodynamic coupling terms when

Xb(.5-a)K =

as is generally the case for helicopter rotor blades. This point is discussed further

in Reference 5.
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V1. THREE-DIMENSIONAL ROTOR-DOWNWASH RELATIONSHIPS

The basic relationship required to compute the downwash at the rotor disc
for a three~dimensional rotor operating in forward flight at an advance ratio, p,
will now be developed. Certain statements must first be made as to the nature of the

wake vorticity.

First, the concept of a "semirigid" wake will be introduced; i.e., every
element of vorticity will be assumed to retain the instantaneous vertical velocity
imparted to it at the moment it was shed or trailed. This establishes a spiral wake
descending at every spanwise station with a constant velocity in time, but permits
different vertical velocities azimuthwise. The spiral sheet representing the wake
thus continuously changes shape as it descends. Other than establishing the in-
stantaneous wake location, the effects of this wake velocity will be neglected
(see Section VI). The effect of the wake on its own velocity will also be neglected.
Changes in the mean velocity, which establish the spiral spacing as the wake descends,
are thus ignored as we!l as the tendency for vortex-vortex interaction of the indivi-
dual spirals. Since the inducedvelocity at the rotor plane is determined primarily
by the first few spirals, this assumption is believed to be valid. Furthermore, it is
most probable that the vortex sheets will roll up and form two individual vortex lines
in the fully developed wake as in the case of fixed wing aircraft; particularly since
a variable downward velocity, decreasing towards the center of the rotor, implies
an eventual crossing and almost certain infermingling of the vortex sheets in the wake.
Further refinement of the mathematical model does not, therefore, appear to be

warranted at the present time.

Second, the assumption, inherent in all fixed wing analyses, of a vortex
strength constant in time will be made; that is, viscous effects will be ignored.
Although this assumption is less satisfying for the case of the returning spiral wake
of the relatively lightly-loaded rotor than in the case of a wing in which the wake
extends rearward to infinity or far a highly-loaded propeller, it is consistent with

the previous assumption and is justifiable on the same basis.
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Finally, the effect of the wake~induced velocities in the plane of the blade

will be ignored.

The basic relationship required to compute the downwash at the rotor disc for
a three~dimensional rotor, operating at an advance ratio, p, will now be developed
(Figure 12). The downwash generated by an elementds of a trailing vortex line with
strength /70t a distance A from the element is, in vector notation,
-da - [’d; g A

4wa

It will be assumed that the element of vorticity has been generated from the
trailing edge of the blade at a spanwise station L from the center of rotation when the
blade was at azimuth angle 515 . The vertical component of downwash, dw], which
this element induces at another spanwise station 7 ard chordwise station x of the
blade when the blade has rotated to an azimuth angle ¥, is
] I ds o A -ds] A,
wy =

47R
(A 2 FA 2 +A32)3/2 (15)

= f($) d¢ b
where
ds]=pd¢cos# d52=pdé singg + £ 44

and
A]= j +dcosq§ - ”Z cos(¢“¢) -x sin(¥ "fﬁ)

A2= 7&+dsin¢5 + N sin(@-4) -x cos (p -ﬁ)'
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All distances are nondimensional in terms of biade radius, R. x is a chordwise
distance measured from a reference point on theblade; for example, the quarter chord
point and X is the distance from this point to the origin of the trailing vortex line.

d is the distance travelled by the rotor hub during the time t = %—é and =z is the
vertical distance of the element of vorticity below the blade. If m is the number of

wake spirals to be used, then
d=[(2m+ ¥ )-F+ €],
==l Qrm+p) -2+ ¥ a +207)-2,(¢

where Z,is the steady-state displacement of the blade out of the tip path nlane,
and § is the spacing between the biade generating the vorticity and the blade at
which the downwash is to be computed. For a rigid blade 2',(‘7 ) - 2.(L) =a.(7-,L),

If therigid wake is assumed, A is the mean inflow through the rotor determined
from ine known thrust and rotoi attitude. If nonrigid wake concepts are to be used,
then A is represented by the series:

>\=>\°+Z A ne cosn;‘ +>\nssinn¢

nsy
The coefficients >\n may be approximated, at advance ratios below p= 0. 1, by the

various harmonics of inflow at the rotor disc obtained from a first iteration using
initially uniform inflow. This is equivalent to assuming that each element of vortizity
retains the velocity imparted to it at the rotor disc at the instant it left the blade.
More accurately, the coefficients 7\n may be established by using a mean value of
inflow experienced by each element in one revolution as it travels rearward under

the rotor.

The total downwash due to a single trailing vortex is obtained by integrating
Eq. (15) up the wake for each blade.

This determines the downwash in terms of the strength [" of a trailing-vortex

filament in the wake generated by the change in bound circulation along the blade.

In the quasi-static solution, this change may be assumed to occur in n (usually five)
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increments along the blade and a vortex filament trailed between each increment

of strength, equal to the change in bound circulation between two adjacent incre-
ments. The downwash at the midpoint of each increment can be then expressed in
terms of the wake vortex strengths. The bound vortex strength is, in turn, expressed
in terms of the downwash and the blade pitch angle. The n resulting simultaneous

equations may then be solved for the downwash and loading.

The downwash due to the shed vortex system is

A d£
dwy = = ‘ . A4 yp_ T2
4nR dg 2 9 o
(A] + A2 +A3") 3/2

- F(g) db e

This expression should be integrated with respect to  over each finite interval

of the blade before integrating with respect to ¢(see Eq. (21), page 57).
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V1. SUGGESTED THREE-DIMENSIONAL SOLUTION AND COMPARISON WITH
EQUIVALENT TWO-DIMENSIONAL SOLUTION

1) Method of Solution

in this section a combined analytical and numerical procedure will be
considered to obtain the desired solutions. The rotor wake will be divided into
a "near" wake and a "far" wake, the near wake including that portion attached
to the blade and extending approximately one—quarter quadrant from the blade

trailing edge.

The chordwise variations in the velocity w induced at the airfoil by the
far wake will be neglected. This is equivalent to using lifting=line theory when
computing the effects of the far wake on the airfoil bound circulation and lift.

If f{¢) and F(¢ ) of Eqs. (15) and (16) are independent of x, then the Fourier
coefficients of blade chordwise vorticity are zero except for A  whose value,

for a uniform wake induced downwash, w, along the blade chord is, from Eq. (5)
and Eq. (3), Ao = -2 w. The bound circulation induced on the biade by w is,
therefore, from Eq. (11),

= =27bw
i -
and the corresponding lift is, from Eq. (10)
L= "'2 b =
PR WV I [y v (18)

The lifting-line approximation will also be used for the near trailing wake,
an approximation which is clearly justified for the high "aspectratios" of rotors

and rotor/propellers,

The near shed wake will be treated using analytical techniques and lifting

surface theory. In order to exomine the validity of this approach, the two-dimensional
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ireatment of the rotor of Reference 6 will be rederived using a similar treatment of

the near and far wake.

z) Evaluation of Far Wake Lifting-Line Approach for Two-Dimensional Case

In Reference 4, the effect of the returning wake is determined using a two-
dimensional model for the three~dimensional rotor.  The for wake is repiaced by rows
of distributed shed vorticity extending to ’?'==i°° below the rotor (Figure 12) at
distances z = nh from the rotor plane in which the near wake is contained. The
near wake extends from the trailing edge, §= 1, to infinity. All distances are

nondimensionalized in terms of the blade semichord, b.

The velocity induced by an element of vorticity, Y’cl§ ; in the far wake
will now be averaged cver the blade chord (Eq. (17} ), using the results derived
in Section VI for the element of vorticity, Yi? , in the near wake, and the
integrations performed over both partions of the wake separately. This results

in an expression for blade circulation
0 - § -
P b[————-——” -ljﬂg
0 N
g /
+ /V b

L
d -3 __
st o MWhE+ 1 v 45 * PV

where L_ is the quasi-static lift; that is, the lift generated in the absence of wake
effects. It is shown in Sec ion VI that the lift may be written in terms of the coef-

ficients of Eq, (1) as

dL= b/01r {é-—g%- (Ao-z—’-Az)b+V(Ao+2'A])f 5

38



and again, if the velocity induced over the blade by the far wake is constant over
the chord and 3#/.3i= 0, as discussed in Section VI for the lifting-line approximation,

then, after substitution for the coefficients and infegrai'ion over near and far wake,

L = /avb/fd§ /aVb; / § 2 Y/dg

]

tL -y B b2
q T
The last term represents the apparent mass or impu..ive force. |dentifying the shed
vorticity with the position of the hlade at the time of its shedding, t - At, and

assuming a harmonic variation, Y (1) = Y e mf’

y(t-an=7" e'““‘ffc(g‘ 1)
r\f’Af) =7 e iw[t- .Qe.(g‘]) ‘—Q—- ]
(o}

and with ¥ d§¥= - —%—Q—- dt (from Eq. (3a) ), the lift~deficiency function is

obtained after manipulaticns identical to those outlined in Section VI, as

L /i
Clk, m, h) = T L

q [ B SH#S +)"° A S
LT el o PSS F

where m= -?1- and k = I‘%E_ . The integrals may be evaluated as in References 4

and 29, whence,
Ji - 1Y

C(k, m, h) =
I

1
-iY]+YO+iJ0+

21
CAREAT Y _ [

Since the intermediate steps in the above aerivation follow the methods of Reference 4,
only the essential derivations have been included in the above very brief outline.

The nomenclature is the same as that of Reference 4, consequently, care should be taken
to avoid confusion of the n and m used here (in Referance 4, n defines the nth wake
below the rotor and m = -8—- ) with the n and m used elsewhere in this paper, which

define the harmonic of rotational speed and the m" wake spiral. For the conditions
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of harmonic loading, to which the analyses of this paper are confined, m= 8—- ;18
Arim
always an integer; therefore, & = 1.

in Figure 13, a comparison of the exact solution of Reference 4 with the
approximate solution given above is made for the range of reduced frequencies of
interest in the present analysis. The real portion of F(k), which establishes the
reduction in slope of the lift curve, is closely approximated. At the lower values
of h, the error in phase shift, represented by G (k), becomes appreciable. Since
the h of interest in rotors is usually above 1, this difference does not introduce serious

error.

The relative unimportance of the phase shift in determining the magnitude
of harmonic loading suggests a further simplification in which the rows of distributed
vorticity are replaced by a continuous vortex sheet, an assumpticn which has a close
parallel in the classical vortex theory of the propeller. When the frequency of oscil-
lation w is now restricted to harmonics of the rotational speed, the voitex strength
of any horizontal distance ; from the airfoil will be the same at all values of z,
where = is the vertical distance below the rotor and now replaces nh. The induced

velocity at the airfoil, due to an element of vorticity in the wake, is

1 § - = *
dw= = ——p [ZTH;_X)Z]T(&.Z)&%

An infinite spiral sheet implies an infinite number of blades in which case

x —»0 in the above expression, For harmonic loadings, the blade circulation, l"b,

will be of the form
Fb= l"n o INQ T = 7‘ne inQt

and the element of vorticity in the wake, ¥ (§,2), may be identified with the
circulation at the time of shedding at time t - At, For any spiral at distance =

below the rotor and using Eq. (3a)
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* *
r(5.2)d5= 7(5)45 =- 3 L 44

Also,
d&” _ and At = *
= - %
whence . e*
'X' (g ) = - in d Fn x e n dZ
n R T d=z =

For the "rigid" wake, the spacing between vortex rows, h, is given by

21 RA

Qh b _ = Ao,
5 —)\o or h--—Q—E

2w

where Q is the number of blades. Therefore, in the limit

d _ Qb [ oGt
d z 2 RXO n
Integrating the effect of the entire wake results in an expression for the mean

velocity at the airfoil
o0 O

in r eianQ // inb f/R
w = n . b 822+52 d ¥.dz

2
41rR/\o 0 ‘-0

The integrals may be evaluaied with the help of Reference 32, Table 103, giving

the result

W = Q r eian
41r/\oR n
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This is the instantaneous downwash at the blade. Since the airfoil dimension
in the x plane has not been considered, the instantaneous lift will be determined by
the quasi-static lift and this induced velocity. Assuming @ blade pitch variation of

the form

0 =8 eian
n

the instantaneous circulation is

W _ 27 QRbBO g,
rn—ZﬂQRb [en OF% ] 4 b
ZzoR

Following the usual definition, the blade solidity, 0~ , is givenby T = -2?%}3— .

Since the quasi-static circulation is f;= 27m QRb e, and the lift, when average

downwash velocities over the blade are used, is

L=pV ™y
it follows that the lifi-deficiency function now takes the form
c= —1
1+ LT
4 7

and is independent of the frequency.

At the lower reduced frequencies, it gives an excellent approximation to the
more exact soluti on although, by the nature of the analysis, the phase shift cannot be

predicted by this method.

Ar alternate form of the expression C, in terms of the wake spacing, h, is

1

m

T+ —

42



and this form has been used to obtain Figure 14 which shows a comparison with the
exact values, replotted from Figure 13. In view of the excellent agreement, between
the exact and approximate two~dimensional solutions, it is of interest to attempt a

similar analytical solution for the three-dimensional case in vertical flight.
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IX. THREE-DIMENSIONAL SOLUTIONS FOR VERTICAL FLIGHT

1) Uniform Downwash

Rotor-vortex theory is generally developed on the basis of uniform downwash.
This condition is satisfied if the blade has constant circulation along the span, and
this, in turn, is satisfied only for the case of ideal twist or taper; that is, varying
inversely as the radius. In practice, such a condition is closely approximated by the
usual linear twist distribution, sincs: the contributions of the blade sectiens in the

region close to the blade root, where the ideal twist is clearly not satisfied, are small.

Constant circulation implies a tip and center vortex only, with the tip vortex
alone contributing to downwash, For this specialized condition, Eq. {15) becomes,
for hovering or vertical flight,

o [1- Toos(¥=4)1d
dw, = z Y2
1 4R £/+)Z7-+g —-27605{(;—«47)]

The next step involves replacing the spiral of trailing vorticity, r, by a vortex
cylinder, which implies an infinite number of blades. The distribution of vorticity

along the z axis, as developed in the previous section, is then

dr _ [ aq
d =z “Z—n—;\_o'—

All distances are nondimensionalized in terms of the blade radius, R

The downwash velocity may now be obtained by integration over the complete

wake as O 2F

- % / p[/ "zcos(w-é)] d,édi
8vAR / 47[ + 2% 29cos (§ - f)]

27
. 8 f[””“‘ (¢'¢)] 2
[/f’lf’-l’zcas(iﬁ'ﬁy
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@ /‘27/_' //* ?cﬂ/’é—ﬁ)*?ﬁ“‘z[%-#)* ...... ]/ﬁ ?4/

: 813, I

Considering first the simple case of constani thrust and, hence, I© constant. This

results in . ['o Q
4n A oR
independent of ”- Since 7‘.‘.;';_% in hovering flight
[o_4x)? ot
Q

The total rotor thrust is
!
_ ar? } 2 2.2 52
T-QR/O P arfydr = 20k %2

or, with the definition Cr= T/ L 1rR2Q2R2

—_—
A
——
Consider next the case when r‘n varies harmonically with azimuth such that

r'—' /-'nssinnyé ¥ Fnc cosn¢

as in actuator disc theory.

Then

[2 [ o8

n
w=—-—252--— n"Znsinn)b+ __2______nc n 7 cosnp
8w /\0R 8 /\oR .
The downwash, thus, has the same periodicity as the ciraiilation change. The

spanwise distribution is increasingly concentrated at the tip as the order of the
harmonic increases, a result somewhat similar tc that obtained in Reference 3. How-

ever, a complete solution requires the introduction of the contributions of the shed
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vorticity. From Eq. (16), specialized for hovering, the total downwash due to the shed
vorticity is
O 2n

Wp = //f dP 45 4 T = n(? -4 324 ¢

[’71,24- £2+.22 -27Z.l cos (}"#)]

The order of integration may be interchanged since the singularities are retained in

either process. After integrating with respect to z and expanding in a sine series

Wa> 8/1‘,4,/2 f / /fd’/ [7{ an (- f’) £ L oin2(p-4) t-- - ]2
/ &' d g [? ”"’/‘/‘) *’9 .omz[%;y ]t/f

0\'

e

which reduces, after substituting [ = r'ns sinng + ]"m_ cos n$ and integrating
over ¢ond 7 to

- Q . :
wz-ﬂ:-z_)i:R [ ns(2-7zn)1rsmnjé+ [nc(2-7n)ncosnﬁ’]

Summing the downwash due to the trailing and shed vorticity results in the
[ Tomnpe [t ]

This is the same result us was obtained in the previous section for the two-dimensional

interesting result

case, and, in a similar manner results in a lifi-deficiency function

C=

g)_ Nonuniform Downwash

A more general solution may be obtained for the case where the circulation
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dz

on the blade is expressed as a power series

[\ = 2n bQRfT;Z

T=0

Solutions to this case may be more readily obtained if the periodicity of the

circulation is expressed in complex form

F=_'F,,e“

Furthermore, it will be assumed that the mean downwash through the rotor is initially

uniform over the disc.

The trailing vortex system will now consist of the tip vortex, whose vaiuve is

”
[y=20b QR §T,
’r—
and a sheet of trailing vorticity due to the change in circulation, c(r'/cu along the

span. The downwash due to this sheet of vorticity is given by Eq. (16) specialized
for the hovering case. The total downwash is obtained by integration over the complete
wake:

v (47) - mf/fjgw’ﬁf'”‘““ OJC  jpacas

42 [£i+p?+2 t-2p Lews(v-0))%2

which, after integration with respect to 2, results in

P

W (3 g A Lol D] e
i

T [ (P)i-2 Faces (-]

a7
! L [1- Mecos(y @] AL
MK/;[J az [ 1+ (WKJT-Z”/(C‘:K(S"@] “

The first integral gives the downwash in the rotar plane outside a vortex
cylinder extending to infinity from the rotor plane and is zero for I—'o. This, however,

is not the case when [ varies with time or azimuth and the independence of blade
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elements is not, therefore, as readily proved for this case.

Integration with respect to f may be performed when {7 has the form rne ing

by change of variable

y =e i (‘p’ft)

and application of the theorem of residues. The result is
in¥ P R
w =35 = [0 @r dé-n, G 1n3E
b gt R
o
Similarly, the contribution of the shed wake may be obtained as

msb n-
Wz’g 2» ® ’_““[f(()t d¢ +n) f(() cn-ld”]

To these must be added the contribution of the tip vortex

Qe in ¥
= 1
" tfﬂz/\oR nr( )

With r‘n =2bR 3 ¥ LT , the integrals may be evaluated by integrating

termby term ( £ < | ). The result is, for the nth harmonic of downwash

P " ~ -
Lan ), T 7T 1= ) 0 T
o o5

M= =5

" Bk

The downwash at i thus depends only on the circulation at N and the [ift
deficiency function is the same as that previously obtained. For example, if the

vaiation in downwash Yy-"(Y is obtained by a pitch variation of the form 6 =6 m,"”(‘/

then the instantaneous circulation is

(o= 2nqrbie T - ]

An
[
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or, since ] and y are interchangeable variables,
_ o

'“?T,Zr=e TH o "',r?l'f'
r..zf, Y "711 4 A %’ !

(o]
and T ]
L] r L

nt ]+%:5\—0‘

This reduction in circulation, due tothe wake, is of particular importance

as before.

when it is desired to vse a rigid or semirigid propeller as a control device by use of
a first harmonic cyclic pitch variation. Since small stiff propellers suggest high disc
loadings, CT will be high, or alternatively downwash, >‘o , is nigh, and eppreciable
reductions in moment over those predicted by quasi-static aerodynzimics will result.

For example, consider a rotoi/propeiler with a disc loading of 25 !b/Ffz, a
tip speed of QR = 700 ft/sec and operating at a mean angle of attack of ar= 0.1

radians. Then CT = —-%éz- = 0.0214 and C = 0. 49, resulting in about half the moment

Q"R
predicted by simpic blade element theory. Evidently, a similar result will occur following

rapid increase of collective pitch of a control rotor, resulting in a lag in thrust which

may become of importance if high-gain automatic—stabilization equipment is installed.

The above analysis has been developed with the usual assumption of a rigid wake.
The effect of this assumptica may be seen by deriving the same result from consideration

of simple momentum and blade~clement theory.

From momenium theory, for uniform steady inflow and a superimposed periodic

inQt in

thrust change, Tn e = 2x mass flow through rotor x w ne where w is the

velocity change through the rotor disc due to T .

Considering mean velocity only, W= A OQR in determing the mass flow

2 _
Tn=2x /ﬁvR x,\cQRx )\nQR °rCT—2Ao>‘n

49



From the blade element theory for uniform flow through the rotor and periodic change

in pitch, On e inCt

cp MY G (o, =) o

n

RO
0O

and with C =  g°7n Tw . = 1 _
an ) ¢ n '/ C
T 1+ L1
an 4x,

as in the vortex theory.

If, on the other hand, the periodic thrust were to be computed using the
nonrigid wake concept of vortex theory (Eq. (15) ), then >\n would have to be

included in the computation of mass flow.
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X. THREE-DIMENSIONAL SOLUTIONS IN FGRWARD FLIGHT

“ . sar 7
i MNear Ched Wole -/
i

L)

P

1
N

Having established the validity of the proposed approach and obtained an
analytical solution for the limiting case of vertical flight, it is possible to proceed
with some confidence to the solution for the three-dimensional rotor in forward flight.
The treatment of the near wake will be considered first and, in particular, the near
shed wake, since this wake introduces the important singularities of classical unsteady
aerodynamic thecry. The method of solution presented in the Appendix may be followed
directly if the curvature of the wake is neglected as in Reference 13 and, furthermore,
if the biade is treated as a two-dimensional airfoil in the presence of an element of
vorticity Y d’f* at §‘ from the origin. The considerable simplification in the
analysis, resulting from the latter assumption, appears justified on the basis of the
results of Reference 14 in which the close agreement was obtained between the two-
dimensional and three~dimensional solutions. This approximation is clearly inadmissible

when treating the far wake.

The circulation due to the near wake may thenbe determined by assuming
the straight near wake to extend aft of the blade to infinity. Following the treatment
in Section VI and integrating over the neor wake for all vortex elements, results in an

expression for the bound circulation on the blade due to the near shed wake
K1 4
[v ) sw(8) [ £z -1]43

To this must be added the circulation due to the far wake. Additional circulation

arises from the velocity u of Eq.(5) which will be designated as the quasi-static cir-
culation

[’q=~2nbu

For a symmetrical blade spacing, when the frequency of oscillation is an
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integer of rotational speed, the effects on one blade of the bound vortices from the
remaining blades are zero for the case of ro when n is equal to or a miltipie of the
number of biades. This is not otherwise true. However, unless a very large number
of wide chord blades are used, the effects of the bound vortices on each other are
negligible and may be ignored. This may be readily verified from Eq. (16), as dis-
cussed in determining the choice of upper limit in the integral obtained from Eq. (21)

below.

Since we are concerned here with harmonic blade {oads and motions, the

blade bound circulation l"b will be defined as

- w F
rb((/’) = %Z;D [’ns} sinnQt + Incz cosnQt )

where the trigonometric rather than the complex form is employed in keeping with

the more usual practice in rotary wing aerodynamics,

The distortion of the near shed-wake vorticity distribution, due to the first
harmonic variations of forward velocity, will be neglected; hence, the relationship

for velocity.

*
d¥7 _
—F— " @R

The shed vorticity in the wake may be related to the time rate of change of blade
circulation (Eq. (3a) ) as

v * .
7(§)d5 = = ——clf—— fbdf

Whence, since Q is constant,

o0
T(E)= - Q’?jR =g = g st - (ot
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An element of shed vorticity in the wake may then be identified with the position of the

blade trailing edge, b, at the time of its shedding, t = At. Now t= -g and At =
»
-b
SR Therefore,
L&

T(§$=l£:0 ) TZQR—{FnSCosn[\/— (g-])]-rncsmn [>1' (g D]

Subsﬁtufing in the integral for l"?\l above, results in

("’N(‘f) —-—R——=- [rmcosn)b-rncsinn?ﬂ] lc~[[’nssinn)’+ [‘nc

The coefficient nb/*t R appearing in the solution is the well-known reduced frequency
k specialized to the case of the nth harmonic of rotational speed at the blade station,

, inquestion. The integrals, first computed numerically in Reference 34, may be
identi fied (Reference 29) as

.= —7“-—— (‘{O+J])cosk--‘2'- (Y, -J) sink

= —f— (Y +J)sink - —5— (Y;-J_) cosk - —ﬁ-



2) Far Shed Wake ~ [ ,5:

The far shed wake will be treated by neglecting the chordwise variation of
velocity along the cirfoil chord due to the wake. Since the primary effect of the
wake appears as the blade passes over the shed or trailing vortex line generated
by itself or by another blade, and since the distance of these vortex lines below
the blade may be of the order of one chord length, the validity of the assumption
may well be questioned. However, the analysis of the equivalent assumption for the
two~dimensional case, given above for comparison with the exact solution obtained
in Reference 4, indicates that the assumption is certainly valid, at least for the

reduced frequencies of interest inrotor-blade loading analysis.

Setting x and X equal to zero in line with the above assumption, it is
possible to perform the integration of Eq. (16) with respect to £ for the case where A
is constant and obtain the contribution of a vortex line extending from0 to £ .

This integration may be performed with the aid of Formula 167, Reference 35, giving

the result sln (Y-4)+d smé
d, (4,9) 2~ TrR {255 D s domaT

{ f+<!cos;£ ’ZCOS(P"M
L2395 2% 45 2L cos (§-9)# 2dL{ees § - Ycosf] /e
_ dcosf Vcos(ﬁ’ 4) ]} dr'

(s e+ d-zqdeeap ] 39 98 5

X

(21)
%(95) Sb

4T\‘R

The total downwash at the blade at any station 1 and azimuth position ¥ is

obtained by integration over the far wake over m spirals

2ﬂm+)&+§k" 2

¢+$"k f(?é ) d?

W2—

54



The choice of the upper limit in the integration must be made with some care.
Defining the end of the far wake at an azimuth angle m/2 from the blade appears

to be reasonable, and little error is involved if this angle is varied from /2 to

31/2 or decreased to m/4. Evidently, this choice must be made on the basis of blade
and rotor geometry; however, a simple integration of Eq. (16) for the case 2=d =0
and ¥- ¢, varying from O to m/2 or greater, will generally clearly indicate the

desirable choice of upper limit.

As in the case of the near wake, elements of vorticity in the far wake are
identified with the position of the blade at the instant of their shedding and in terms

of the time rate of change of bound circulation. Whence, from {19)

R R N

n=
When the bound circulation varies appreciably over the span, the actual circulation

Il

may be represented by a series of straight distributions extending from 0 to various

spanwise locations, £ . Substituting in the integral for Wo

0 2tm+ ¥+ X - /2
vy

wy = éJLJ Tr':r_ﬁ_ f [rns cos n#- fnc sinrf]?(¢)d¢
n=0 prs

which may be written in the form

S <

VN n Qo k k.

LoL 7 5 [lw by emkprd, ikt e
n=20 k=0

k k.
- /’nc{ (Aps , k¥ +BL,sin k)”)]

where the coefficients A and B are obtained from harmonic analysis with respect
to % of the results of numerical evaluation of the integral over the wake for m spirals

at values of }// from O to 360 degrees.
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¢
A‘:‘c identifies the cosine coefficient of the k'h harmonic due to a cos n
variation of bound circulation extending from 0 to .£ and similarly with the

remaining coefficients,

3) Trailing Wake - PT

A treatment for the system of trailing vortices using Eq. (15) similar to that
used for the far shed wake, results in

0 21rm+9+5
\ \'
- 1 .
wy= E_{__, o.s [rns(SIanf+fnC( coanf]f(qu')
n=0 Y+8
Whence
o o0
LR
wy = g_, LO T;]T kz [/7 (Pk cos k ¢ + Qk sink}é)
n= =

0 ns  ns, ns, (23)
) k k .
+ [nc¢(Pnc cos k V + Q“CL sink ¥ )]

where £ now identifie< the spanwise blade station from which the trailing vortex is

assumed to originate.

4) Determination of Blade Circulation and Lift
Substituting the expressions for Wy and W in (17) results in an expression
for the bound circulation or the blade induced by a wake generated by changes in

this bound circulation.

The total bound circulation on the blade may now be obtained as

fo= S «[F"+,

(24)
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where Fq is the quasi-static circulation, previously defined as that which would

occur in the absence of any wake effects.

In order to obtain r;, it is necessary to define the blade motion, This
motion may consist of contributions from all the blade normal modes and, in cases
where the blade is operating close to resonance, the dominant mode should be
included. Fer the purpose of illustration, a rigid nontwisting blade flapping through
the onglelﬁ will be used, operating a pitch setting 8 (7), which includes the twist.
Then u is uniform over the blade chord and is given by

U=-QR[("L+psinf1 ) 8(7) - ("Zﬂ + o '5 cos¥) |

From (17) it follows that
rq =27nbu

The contributicn of the near shed wake is given by Eq. (20) which may be written

in the form
{15 =- ¥ (. ¢+ s
N /\J] won ne n) cos g+ ([0S, - nc Gl sinn ¥
n:
where

= - _ nb
Cn-—- 'Ck ’ Sn—'sk dndk——.—ﬁ'—R—

The contributions of the far shed wake and trailing wake may be expressed
in terms of the total downwash normal to the tip path plane expressed nondimensionally

as

Q R (25)
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where w, now contains only the far shed wake and i is the angle between the tip path

plane and the relative wind, positive nose up. Then, from (17)

T S
+ = =2rb QRA
L i
If the flapping angle B is expr%sed as

g:ao— Z [ ancosn)&+bnsinn)0]

nt
and the bound circulation and inflow A are defined in the series form given by Eq. (19),
then equating coefficients in Eq. (24) results in an expression for Pn . At this point,

a nondimensional form of the circulation will be introduced and defined as

Then in nondimensional form, -

,Xvo= [72,6-)0- .5_011
Ti=168 = Ag=o+ 4 by ) =(F75- Ty )

Tie=17 At by magp + = a1 =-( 73, G+ 17 5p) _
(26)

and
/fnf[')ns”"’l"n*‘ﬁ’ (b by q)] -(fnssn- T;\c )
’J"nc=['a’;c+n')tbn+ _5- (apyqra, )1-¢ 3rr:s(:n+ rr:csn) s

The lift, after summing over the entire wake, may be ootained separately:

for the near wake, from (12) in Section VI and, for the far wake, from (18) in the
form ,r ¢
d T ]” S oy 2
L(7)=p Vb Lds s ov([T+ + [ y+pnzb

which, after the identification of y ( £ ) with the blade position at the time of its

shedding, as was done for the circulation, becomes
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L(7)= -.%_REE_/&V[ /7nscosn$0 - /7ncsinn % ]l(’:
_ b .
-—,?ER/OV [Fnssmn%+/ﬁnc cos n ‘;ﬁ] I:

4T 1S (27)
+/0V[r'+/ +/-,q] +/0".Z.b2

where, w1fh|< —%—%— as before,

Ii= /smT[R(f 1);21 = -E— Jocosk +-—E—Yosink
and IoCr "/ .
|£= [cos——R(§ ]/\)/‘ffi—

That, Eq. (27) reduces to the classical case for a two~dimensional airfoil may be

T _ (" S
F
and expressing the circulation in complex form

O

Then with r = r' , Pns= i r‘n we obtain from (20) and (24)

n

--L“"[I-LI 1+ 05
‘"L)(F[f Lk(' ;)#Jg_ kae-tk§d§l+F

-E— Josink - -E— Yocosk

readily verified by letting

or

g

ik e‘kfw i j’_‘d}‘

= ]
n
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Slmllarly, with L= L ginidt From

—Lk/ov I—:‘I,]-FL +/0Tr:c:EZ
o ik ‘7
:-L'j{/o\/ " Lk/ -\dg +L%n+/97T.Z..bz
Since an =/0V l"qn ’ it follows that
w .
/ ge—.ks 45
]4/g2-] +1r/0 . .z'bz
/»'0 £§+]!e-ik§dg
/N

The coefficient of Lq may be readily identified as the lift~deficiency function C(k)
n .

of Reference 29,

5) Blade-Flapping Coefficients

The blade displacements are obtained from the blade~flapping equilibrium

equation

R+ B )=R7%%@wl

where the flapping hinge offset has been assumed substantially zero, The effect of the
offset is not large unless the biade Lock number is low and the offset appreciable.
The coefficients a _, b, decrease rapidly as n increases, consequently, the lift may

be approximated for the purpose of determining a s bn by its quasi=static value
(Eq. (18) ).

Lm>=/vﬁgn)
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or - !
2
! (‘_QB,H B )=2n/)1;0k402[(7z +psint ) x
[To-*- Z 3’;5 - sinny +—J;.cosn¢/]7l dn

The mass constant of Lock number of the rotor blade is

4
LN = 2/0‘ﬂ’bR
I

where the designation LN is used in place of the more usual y in order to avoid

confusion with the circulation.

After solution of the differential equation for the particular integral
representing steady-state {lapping motion, the coefficients of the Fourier series

for blade motion are obtained as

1
2 ) :
“n” 2??‘2--1) f{ln Tne* %%[f(nﬂ)s M-ml} 4

(28)

1 2
bn= 2(nL2N_1) [0{72 rns‘*‘ _5_’1 la'zn-l)c -f(n+l)c]} ‘”Z

All relationships necessary for the determination of the blade loading have

now been established.

As previously mentioned, solution of these equations for the blade loading
presents no particular problem using the above equations and standard techniques
of matrix inversion. However, the process is evidently a long and tedious one;
in particular, when the circulation varies appreciably along the span so that a tip
vortex, and a shed vortex extending from the root to the tip, cannot be used. For
this reason the interharmonic coupling terms appearing in References 22 and 24 were

examined in Reference 24 in some detail. As a result of these analyses, it is apparent
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that a reasonably exact solution can be obtained by taking advantage of the predomi-
nant effect of the steady-state circulation in determining the harmonic content of the
downwash, at least for the first iteration. A practical rotor blade, whether articulated
at the root or restrained to flap elastically, will, by virtue of the blade motion, have
small harmonic lift variations compared to the steady-state lift. Although these
harmonic-lift variations are the primary source of the fatigue loading on the blade

and the vibratory inputs to the rotor shafts, their magnitude is, nevertheless, smalj
compared to the steady-state lift carried by the rotor. Evidently, if this were not so,
the aircraft would be subjected to excessive vibration and would be otherwise unflyable.
Consequently, the following epproach suggests itself. First, assume a uniform inflow
distribution through the rotor computed by the approximate momentum relations which
are shown in Reference 24 to agree well with the exact values computed from vortex
theory. Knowing the rotor-thrust coefficient and the blade-twist distribution, determine
the downwash w; from (24) due to the steady circulation Y, only. For constant cir-

culation, n=0, W, is evidently zero and Eq. (24) becomes

w o <
B b p"
R G L Yoy o (29)
and the steady-state inflow due to the constant circulation is from (25)
o - RN b o
AT )= brenit L R Yoo Fag (30)
From Eq. (26), the bound circulation Yo is given by
- - 31
o = [M8(N) -} + & - a ) (31)
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In the first iteration a, may be computed from uniform inflow theory. The trailing
vorfex strength v~ at any station £ in the wake is related to the bound circulation

on the blode by 70(1 )= ('Y,? - Y, 'MI) and is obtained inthe numerical solution

by taking the change in bound circulation Y, over the desired increment of the blade.
In the integration of Eq. (15) the £ stations are then located midway between the
blade stations v - Substitution of the trailing vortex strength thus obtained in the
system of Eq. (30) and simultaneous solution, results in the first iteration of the steady
state downwash 7\2 . Normally five to seven stations along the blade will adequately

define the variation of downwash distribution.

New values of coefficient PZ may now be obtained using the new values of
)\g in Eq. (15). Physically, this has the effect of distorting the wake as shown in
Figure 15 and discussed on Page 35. The iteration is rapid as indicated by Figure 16
which shows the downwash distribution for an untwisted blade computed by assuming
constant )\o compared with the second iteration performed as described above. The
effect of the first harmonic downwash >\l was small for the particular case investigated
where the rotor is assumed to be inclined through o relatively large angle and the heli-
copter accelerated through transition. However, as shown in Reference 24, the effect
of this first harmonic variation in A may be of considerable importance for a helicopter

in equilibrium flight at slow speeds.

Having established the harmonic variations in downwash on the rotor due to
the steady-state lift of the blade, it is now possible to compute the harmonic airload
corresponding to this downwash distribution from Eqs. (26) and (27). Simultaneous
solution of this system of equations is evidently necessary. For the first iteration
it may be noted that, at least for the harmonics higher than the second, Eq. (26)
may be approximated by
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since, as is evident from Eq. (27), the flapping coefficients become small for values

of n of three and above. Expressed in another way, the lift alleviation due to flapping
becomes small for the higher harmonics. However, in the presence of resonance with
one of the elastic modes or in the case where one harmonic of downwash predominates

" over the next highest or lowest, blade flapping becomes significant, and its effect

should always be tested i the second iteration.

Treatment of the trailing-vortex system due to the higher harmonic airloading
follows exactly the same procedure as has been outlined above for that due to the oth
harmonic or steady-state loading. The computation of the additional coefficients Pri)
represents the only major machine comput ation process required in the solution of the
problem. These coefficients depend only on the wake spacing, the number of blades
used, and the advance ratio p.  Of these parameters, the advanced ratio appears

to be the more important,

As mentioned above, the computer time required to obtain a set of coefficients
varies considerably with the interval size used and number of spirals represented. A
considerable amount of time has been spent in an attempt to determine a reasonable
compromise between computer time and accuracy. |i has been concluded that a
minimum spacing of 7 1/2° for 51/, and 75 in the far wake appears desirable in order
to obtain an accurete prediction of the harmonics up to the sixth, with errors not
exceeding 20 per cent for harmonics up to the ninth. In the near wake minimum
intervals in yS of 2 1/2° appear desirable except that, in the case of Eq. (21)
and using the limits defined by Figure 11, a closer spacing of the last few stations
may be required. The near wake is defined as tha! located approximately an eighth or
a quarter of the disc away from the blade. The exact definition of the end of the near

wake is not of major significance within the limits quoted.

Three spirals appear to define the harmonic content within a few per cent,
although, if accuracies greater than 5 per cent are desired, six spirals should be
included. It is not believed that the precision of the mathematical model used

warrants this additional accuracy.
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In particular, it should be noted that the mathematical model ignores wake
interaction effects and, in particular, the tendency for vortex-vortex interaction, which
will, in general, result in the rolling up of the vortex sheet after a few spirals. Since
the major contribution to the airloads occurs from the first spiral, a more precise defini-
tion of the wake form is evidently not warranted and, as in the equivalent applications
of fixed wing theory, the mathematical model used in developing Eqs. (15) and (16)
is believed to be adequate.

Exact definition of the machine~computer time required for a particular problem
depends on the program used. However, the computation of a set of coefficients P and
Q for one value of 7 , X and § requires approximately one-half minute on an

IBM 7090 computer. The program is described in Reference 36.

The treatment of the shed vortex system follows a similar approach,
providing the approximate treatment of the phase shift suggested above is used,
and the integration stopped at the appropriate limit determined by the reduced

frequency corresponding to the harmonic and spanwise station under consideration.

To summarize the approach suggested above, the following steps may be

identified:

1. Assume a mean inflow through the rotor using approximate
momentum relationships to determine the induced flow component. Integration
of Eq. (15) for several values of }// then defines the coefficients P and Q of Eq. (23).

2. Using Eq. (31), the trailing vortex stength at V4 , corresponding to the
blade spanwise pitch distribution and the assumed uniform downwash distribution,
is obtained in terms of Ao ()? ). This value is then substituted into Eq. (29) and

. * . . . * * - o
a simple matrix inversion gives the first iteration for )\o along the span.

3. With this new value of Ag , obtain revised values of the coefficients P

and Q and repeat the process. Convergence is rapid and usually one repetition is
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sufficient. All the desired harmonics of downwash >\2 due to Yo My then be

obtained directly from Eq. (29).

4. The airload corresponding to any higher harmonic downwash is
obtained by computing the additional downwash from Egs. (15) and (16), neglecting
interharmenic coupling by setting j=n. y , is obtained from Eq. (26) where now
-)\n = 7\2 + Xg and the iterative procedure described above then followed.

The underlying assumption in the above=~outlined approach is evidentiy
the neglect of interharmonic coupling. This point has been discussed in some
detail in Reference 24, and many examples of the magnitude of this coupling
effect have been given. Evidently, the assumption must be used with some care
in the presence of resonance with one of the higher harmonic blade loadings, since
the interharmonic coupling effects may then induce appreciable airloads at the
next lowest and highest harmonics. In general, however, neglect of these harmonics

is generally valid because:
a) the primary coniribution to the higher harmonic inflow distribution
comes from the steady-state circuiation on the blade, and the contribution

of say, the nfh harmonic to the ifh harmonic is small in comparison.

b) the near wake induces primarily the harmonic of the bound circulation.
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Xl. EXAMPLES OF COMPUTATIONAL RESULTS

1) Computations of Downwash

In order to examine the nature of the induced flow through the rotor in
forward flight, Egs. (15) and (16) were programmed for numerical integration on high-
speed digital computers to determine the number, m, of spirals and intervals in both ff
and %required for an accurate prediction of the harmonic content of the wake up to
at least the sixth harmonic. The number of spirals were varied from m= 3to m= 12
and the interval sizes from A¢ = A ¢= 2.5° 10 20°, A satisfactory compromise was
found to be three spirals and intervals of 7. 5° in the far wake and 2. 5% in the near
wake, giving a solution time on the 7090 computer of approximately one-half minute

for the downwash at one spanwise location due to one blade wake and for one harmonic.

In Figures 17 and 18 are plotted the harmonic content, up to the sixth harmonic,
of the downwash at the rotor genercted by a tip vortex of constant strength for two
values of p corresponding to fransition and to cruise flight regimes. Unlike the
fixed wing, a rotor blade is highly loaded at the tip and much of the basic character-
istics of the downwash may, therefore, be determined by examining the effects of the
powerful system of trailing vortices shed over the outer few percent of theblade span,

a system adequately represented by a single tip vortex of strength equal * - the mean

blade circulation.

Considering first the transition case p = 0. 1, it is evident from Figure 17
that the steady-state value of downwash is substantially constant over the disc and

the initial assumption of constant r; is satisfied.

Of considerable interest is the pronounced first harmonic variation in downwash
generated by the tip voriex which, ¢* low advance ratios, will produce an upwash
at the leading edge. The existence of this first harmonic variation in downwash was
first predicted by the theory of Reference 14 and demonstrated by the flight-test

observations in Reference 21 and the wind-tunnel tests of Reference 22. In forward
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flight, the spiral formed by the tip vortex is displaced aft and, since the velocity

field outside the spiral has a vertical component, all points ahead will experience

an upwash. Evidently the assumption of uniform inflow is violated and a further

cycle is necessary before the downwash can be defined with any accuracy. Before

this can be done, it is necessary to relate *he downwash characteristics to a particu-
lar flight condition and rotor configuratior; in parficular, to the total inflow through
the rotor. This consists not only of the downwash; that is, the velocities induced

at the rotor disc by the wake, but also contains components of the forward and climbing
velocities. Although the curves of Figure 17 are specialized to a particular total inflow
of Ro =0.05, to a three-bladed rotor and to a ferward flight of y= 0. 10, they are

now otherwise generalized and will fit a wide variaticn of rotor attitudes, thrust

coefficients and solidities.

Since the wake is generated by the blades, the inflows which have been
computed are those relative to a particular blade. If the higher harmonic motions
of the blade above the first are ignored, a valid assumption and certainly well
within the limitations of the assumed wake geometry, then the inflows olotted are
those perpendicular to the plane containing the blade tips, or the tip poth plane.
The steady-state values of Aand p which appear in the solutions should, therefore,
be computed on this basis. It should be noted that the buik of published rotor
information uses the control axis as reference; however, the conversion from one
system to another involves minor corrections and is readily made. Fo: a discussion

of the different reference axes, see Reference 37.

The induced flo w is directly proportional to the strength of the tip vortex.
The steady-state component due to a steady-state tip vortex l'; is, from Eq. (23).
"1

L

Hence, from Eq. (25), the total inflow is

= _b o .
No™ TR YoPg “ptani
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Now Pg is a function only of Ao’ and the number of blades used. Consequently,
the numerical integrations from which Pg s obtained may be used to represent any
desired combination of rotor solidity, represented by %— , and the circulation Yo

determined in turn by the collective pitch setting 0.

For example, consider a helicopter climbing out at an angle of incidence
of i ® - 15°, or alternatively accelerating through transition with this tip path
plane inclination. These would be typical operational flight regimes at advance
ratios of the order of p=0.1. The induced flow is then, for % of 0.05,

= i =0. 02
}\oi Ao +p tan i 3
The corresponding rotor-thrust coefficient is, for constant bound circulation,

- a“"n'.
CT - 2 L

The rotor configuration must now be defined. Selecting a solidity of 0= 0.07
defines QER' = 0.0183. From Figure 17, the mean steady downwash coefficient is
PO 2 28, Whence,

= i 2R
Y= = . ~—f— =0.045

and

C. = 0.00495

I

Using the approximate momentum relations for forward flight suggested by

Glauert would give

e et

/.
Cr=2(pg*proni) f Ao ut =0.005
o]
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and evidently this approximate relations hip is in good agreement with the vortex

theory developed in this paper.

A correction will now be introduced in the numerical solutions for the first
harmonic variation in downwash. The tip vortex will be assumed to descend with
the steady and first harmonic inflows occurring at a repesentative tip station. z in
Eq. (15) must then be multiplied by )\o + >\] cosd or by

1
P .
N o ptani c ]
AO (.] ‘ Po (]+ )\o ! OS¢

o

instead of simply >‘o' For the conditions selected, and using Pl / Pg of 1.12

from Figure 17, resuits in

‘l -
P .
>\] - o (]+ kint -’—“'—0.5
Ao PZ o :

The effect of introducing this correction is indicated in Figure 17.

If, instead of accelerating or climbing out through transition, a helicopter
is toquired to maintain steady flight in this regime, then an interesting and highly
significant phenomenon occurs which may be described as a tendency for the rotor
to suck up its own wake into the leading edge of the tip path plane. Evidently
if i is small or even positive as would occur in a flare, then the ratio )] / P\o
may approach or exceed unity and the blades will pass through their own wake.
When this occurs, large higher harmonic components in inflow can be computed,
indicating large local variations in angle of attack. Such computations are, how-
ever, quantitatively meaningless since all the basic assumptions of the mathematical
model employed are violated, For example, the concept of ideal fluids with lines
of vorticity having infinite core velocities would have to be replaced by a core
structure determined from viscous flow considerations. Single vortex lines should
also be replaced by a more realistic drop off of circulation at the blade tip. Also,

the blade itself can no longer be replaced by a lifting line since the far wake in
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the vicinity of the leading edge has now very definitely become a near wake.

The more exact treatment reserved for the near wake must, therefore, be used for
the entire wake. However, even without the introduction of such refinements,

it is possible to draw some important qualitative conclusions from the results of the

simpler analysis.

Following a similar analysis to the one given above, consider a rotor
operating at an incidence angle of -5°. Under these conditions, using as a first
trial the values of )1 / A 0= 0.5 obtained above, a new estimate for )\] / A o

of )\
I~ 69
;(o

is obtained. A recomputation for the downwash using this value of )\ / >\

results in a new value, at W? 0.95. 1
SIS B

Ao

Evidently, as the leading edge of the spiral approaches the leading edge of the

disc, the upwash is intensified and a mildly unstable conditicii 2xists in which

the wake is drawn up info the leading edge of the rotor disc. This phenomenon

is believed to be of considerable qualitative significance, and to a large part
accounts for the roughness in transition and flares experienced on most helicopters,
and the choracteristic noise generated by rotors under conditions of wake interference.
Many methods of alieviating this cndition may be envisaged; for example, ensuring
as gradual a drop off of circulation at the blade tips as possible without urduly

sacrificing performance in order to reduce the intensity of the tip vortex.

This may be done by moderating twist, Operationally, of course, the
phenomenon may be greatly reduced by a climb-out or high acceleration threugh
transition, a maneuver which will not always be possible. On tandem configurations,
the possibility exists of providing relative tilt of the two tip path planes such that

the front rotor provides most of the propulsive force, thereby operating at high inflows.
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The rear rotor, operating in the downwash of the front rotors, presents a lesser
problem. As shown in Reference 38, the transition characteristics of a tandem con-

figuration may be widely varied by adjustment of stagger and overlap.

Finally, the experimental results in Refererice 22 showed the marked
reduction in the first harmonic inflow voriations which occur when the rotor is
allowed to carry a moment at the hub. This is because the blade no longer
equalizes lift around the azimuth and I',‘ becomes appreciable, thereby producing
a first harmonic downwash reducing the first harmonic upwash arising from Y,

In practice, carrying large rolling or pitching moments produces high cyclic loads
in the rotor system with attendant weight penalties. Furthermore, large offset

of the flapping hinge with low blade Lock numbers are required, since the biade
cannot be stiffened structuraily sufficiently to prevent elimination of mostof the
cyclic lift change by elastic flapping. A discussion of this phenomenon is given
in Reference 39 together with estimates of the rolling moment as a function of the

stall alleviation resulting from the cyclic lift variations.

2) Harmonic Content of the Downwash in Cruising Flight

In Figure 18 are plotted the harmonic contents of the wake at a p of 0.3 due
to the tip trailing vortex system for various harmonics. Of interest is the pronounced
phase shift as evidenced by the relatively large sine components of downwash compared
to the results of p of 0. 1.

Of particular inierest is the persistence of the higher harmonic content
at the higher advance ratio. At the lower advance ratio (Figure 17) the higher
harmonic induced flows are of the order of 20 per cent of the steady-state induced
flows. At the higher advance ratio (Figue 18) the mean value over the blade span
of the steady-siate component of the induced flow has been appreciably reduced,
as indicated by a comparison of Pg from Figures 17 and 18. This is a might be
expected since it is well known that, for a given lift, the induced flow decreases

with forward speed. However, contrary to previous expectation, the higher harmonic
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components of induced flow have not been appreciably reduced; hence, the
vibration level and also the blade fatigue stresses, due to nonuniform downwash,

are not alleviated with increasing forward speed.

In Figure 9 the downwash before harmonic analysis has been plotted against
azimuth and compared with the experimentally-determined downwash of Reference 22.
The two rotors are not strictly comparable; in particular, the rotor of Reference 22
operated at appreciably lower inflows, >\o’ than have been assumed here. However,
at advance ratios of p= 0. 3, the effect of z, and, hence, ko’ may ke expected
to be small compared to the effect of d, and, hence, p, and the two results should
be comparable at least as regards distribution of inflow with respect to azimuth
and span. Such a comparison can be made if both results are normalized at some
azimuth position. ¢= 0, close to the point of a maximum downwash, has been
selected for the common value. The agreement is excellent and it may, therefore,
be concluded that, as far as the lower harmonics are concerned, the mathematical
model chosen for this anolysis is adequate, The higher harmonics were attenuated
in tests of Reference 22 and, consequently, no direct comparison is possible between

theory and experiment,

3) Lift-Deficiency Function in Forward Flight

It is of interest to examine the order to magnitude of C(k), the lift deficiency
in forward flight for harmonic 1ift variations and-to compare the phase shift resulting
from the spiral form of the wake with that occurring in the two-dimensional case.

As a model, a harmonic variaticr in blade bound circulation will be assumed invariant
with span, a condition somewhat approximating the test techniques employed in
Reference 6 in which the hub was displaced harmonically. All interharmonic coupling
will be neglected.

For V(= 0.80, b/R=10.05, n= 3 the reduced frequency is nb/)z R= 0,187 and
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|_=2.95 |=1.29

lc=2.05 ls=l.2]

Considering only the shed near wake, from Eq. (26), the circulation deficiency

(which is somewhat less than the lift deficiency) is

3¢ 1 +5

-3 = = 0.675
3°q 24 (1+ )2
and
T3 _ C V3¢ - 0.298
7 .
3cq 1 +S Y 3cq

where V3. i the "quasi-static" circulation and may be represented by ferms in brackets in
Eq. (26). For example,
Yns'q [-Rns-n7°n+'§‘ (bn-i-li-bn-'l)]

The lift-deficiency function for this case is then, from Eq. (27),

L, Yas
/—-—G—JH k1034

Yc ' }’,_
/o\/l; Lk 1, Yaac?”Hs Y“"r]

These values are readily verified as being the values for the conventional lift

0.19

1]

deficiency function of Reference 29 for k = 0. 187.

To this lift deficiency will now be added that due to the shed far wake.
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From numerical calculations of Eq. (21) and for p=0. 10

3 _ 3
A3C —0.57 Bgc = 3,39
S

3
A3$ = "2.73 Bg =d 55

The coefficient nb/2R is 0. 075 for the parameters assumed above and Eq. (22)

then gives, for the shed far wake only,

g = 0.043 Ta +0205 T,
A3s =0, 254 XBS - 0.041 T:;C

Since all interharmonic coupling has been ncglected, a legitimate assumption when
one harmonic predominates in the input, the circulation deficiency may now be
computed directly from Eq. (26) with the above values of >\3c and A3s substituted
on the right-hand side,

The result is

73c

=0,5% , = 0. 234
73¢ Y3cq

q
The corresponding lift~deficiency function is, from Eq. (27)

L3C = 0,734 - 0,043 x -, 234 - 0,205 x -. 596 = 0. 602

/”V[—lacq

L35 =0.19 -0.254 x 0,234 + 0,041 x 0,596 = 0. 155

WVFchq
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The effect of the trailing wake will now be considered. For the conditions chosen,

3 _ 3 _ ;
3 _ 3 _
P3s— 2.42 Q 3& 6.78

Proceeding as before for the shed wake, Eq. (26) for the third harmonic

components yields, for the complete wake

7
< = p.570 T35 _=0.186

73 Y
Cq 3cq

The corresponding lift-deficiency function is, from Eq. (27)

b3e
/DV /73cq

b3s
IOVF&J

It is apparent from the above, that the near and far wakes contribute about

=0,602 + 0,06 x 0,186 - 0. 152 x 0.570 = 0, 525

=0.155-0.170 x 0. 186 - 0,06 x 0.570 = 0,090

equally to the lift deficiency or reduction in slope of the lift curve, for the

representative condition chosen.

It is of interest to compare the lift deficiency at p= 0.1 obtained above
with that predicted from the simplified hovering solution in closed form. The
numerical computations at a givenp required definition of A, Q, and b/R only.

The corresponding value of h is

- 2R A _ __2ax0.05 2
Qb 3 x8. 025 3
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and the lift-deficiency function is then, from Eq. (24)

= 0.40
1+ N

4) Examples of Load Computctions

Applications of the theory to load computations and the degree of refinement
required in the numerical solutions may best be discussed by considering certain

typical cases,

The airloads of Figure 10 have been computed using lifting~line theory and
the lift~deficiency functions obtained in the manner described above. Clearly,
large and rapid changes in blade angle and lor al loading are indicated. It is,
therefore, of interest to examine the effect of using lifting-surface theory as
discussed in Sections VI and VIiI. In Figure 19, the lift due to downwash alone
computed using lifting-surface theory (Eq. (10) ), is compared with the lifting-line
solution. These results have been obtained by computing the downwash at six
chordwise stations on the blade and reducing the interval size to one degree for
the case S = 90° over the last 180° of the integration. Evidently, from Figure 10,
the contribution of the time dependent terms is small except at the point of maximum
change in downwash. It would, therefore, appear that reasonable approximations
could frequently be obtained by using simply an average value of downwash along
the blade chord and eliminating the time dependent terms in Eq. (10) such that dL=

/01rbVAo. The lift deficiency functions of Figures 7 and 8 could then be applied
directly to this lift,

Another problem encountered in the computation of loads is what may be

termed the tip effect. The results in Figure 10 were obtained using five spanwise

stations and six discrete trailing vortex lines. This is a satisfactory solution for
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the rotor blade in question, which had a ratio of chard to radius of about 0. 05.

The outboard station was at 95 per cent of the span. This adequately defined

the drop-off in lift at the tip of the blade. However, on a two-bladed rotor

with a chord to radius ratio of 0. 15, specifically that of Reference 23, ten spanwise
stations were required before satisfactory agreement with the measured loads at

the tip was obtained. This is shown in Figure 20. Also shown in Figure 20 is

the effect of a two-station solution; that is, a tip vortex and one located at the

50 per cent radius point with constant circulation in between.

In Figure 21 has been plotted the theoretical and experimental barmonic
airloads at the 85 per cent station in which the lower harmonics up to and in-
cluding the second have been removed. Apart from emphasizing the effect of
the higher harmonics, elimination of the lower harmonics avoids a major problem
in computing airloads. The first harmonic airload is the smoll difference between
two large quantities; the first harmonic variation in downwash which, as will be
discussed in the next section, may be pronounced, and the blade first harmonic
flapping, also a relatively large quantity. This harmonic flapping is difficult
to measure experimentally because of the inevitable flexing of the rotor blade,
which makes the root articulation a poor indication of the mean-blade flapping
angle. However, harmonics above the second are relatively insensitive to blade-
flapping motion and, providing the blade is not close to resonance with one of its
elastic modes, the airloads above the second harmonic are substantially independent
of all blade motion and are directly proportional to the higher harmonic downwash.
Almost all the harmonic content of the airload, which is of interest for rotor
vibration, is contained in the harmonics above the second. Consequently,
the examination of these harmonics alone is a more rigorous technique than

examination of the complete airloads.

It is also interesting to observe in Figure 21 the effect of one spiral instead
of the usual three spirals of downwash used in the regular computations. Evidently,
very reasonable disiributions of higher harmonic airloads can be obtained using

fairly simplified rigid wake geometry concepts.

78



Xil. SiMPLIFIED SOLUTIONS

In view of the importance of those portions of the wake in the immediate
vicinity of the blade in determining the harmonic airload, a drastic simplificaticn
was attempted in computing the airloads. The spiral vortex line was eliminated
and replaced by an infinite straight vortex line wherever the blade passed over its
own or a wake generated by another biade and only if it passed over such a wake
during the first spiral. Following the approach of Reference 4 and Reference 18,
this straight vortex was assumed to extend to infinity in both directions below the

blade whick permitted the following simple solution to be obtained for its downwash
(Figure 15)

[ . =7 cos
2R 24y -1 ) eos’f

where ¥ R is the blade station at which the downwash is to be computed; yR is
the blade station under which the vortex line passes ct any instant; § is the angle
between the vortex line and a line perpendicular to the blade in the plane of the
blade and zR is the vertical displacement of the vortex line below the blade. if
the blade is at azimuth angle %ond the vortex line was generated when the blade

was at azimuth 75 then

y=dcos}”+ JZZ -dzsinz)é

and d, the distance travelled by the rotor hub between the time when the blade was
at }ZS and its present position at }& , is given by

d=y [ §’S +{ ¥ - ¢ )] where S is the spacing between blades
4
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By setting ( # - y‘) initially equal to zero, the value of d and y5 may be readily

obtained by iteration from these expressions together with the relationship

dsiny = [sin(:#’-sﬁ )

The angle & is obtained from

hep o st
¢ % ’lz+p.sin¢

The case 5 = 0 defines the near wake or %—¢= 0,d=2z=0andy =4 . The

vortex line is then integrated from 0 to ¢© and, hence, for §=0, w has the value

e - T
FaR (Z-T)cos s .

Since the solution requires no integrations along the wake, computer time is
reduced by a factor of the order of 50. Typical results are shown in Figure 23 to-
gether with the more complete solution and the experimental data. It is evident
that for many engineering appiications the simplified method is entirely adequate.
Of particular interest is the close agreement between the solution using a constant

circulation over the outer 50 per cent of the span and the more complete solution.

One other aspect of the downwash variations predicted by the theory may be
briefly reviewed. Large changes in downwash are predicted in the regions of the 90°
and 270° azimuth positions and the local blade angle changes associated with this
downwash variation will be of the same order as the mean blade angle of attack.

The changes occur sufficiently rapidly so that flapping may not provide much relief.
Consequently, it may be expected that the stall pattern over the ratio disc will be
appreciably different from that predicted by uniform inflow theory. Reference 40
indicates that the result is to provide an appreciable amount of stall alleviation over
the retreating side. An examination of Figure 9 indicates that this logically could
be expected in view of the increased downwash in this region and on the opposite

side of the disc.
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CONCLUSIONS

1) The nonuniform downwash induced at the rotor disc by the wake vortex
system has a sufficient amount of higher harmonic content to account for the higher
harmonic airloads encountered on rotor blades inforward flight. This higher harmonic
content does not decrease with forward speed, as does the steady-state component

of downwash,

2) The analysis and interpretation of the results are considerably simplified
by dividing the wake into a "near" wake extending from the blade to approximately
one quarter of the disc aft and a "far" wake containing the rest of the spiral. The
higher harmonic content of the downwash is due almost entirely to the far wake and
particularly to that portion passing under the biade and generated either by itself

or another blade.

3) It foilows from the previous conclusion that the harmonic airloads will be
sensitive to the vertical spacing of the wake. Consequently, it is necessary to
introduce the concept of a nonrigid wake, perticularly in low-speed transition flight
or under any condition where the wake spacing is reduced such as in a flare. Under
these conditions, the wake could be sucked up into the leading edge of the rotor disc.
It is believed that this is most probably the source of transition roughness and of the

characteristic rotor noise encountered under cetain flight regimes.

4) Unsteady aerodynamic effects are of considerable importance for the
rotor because of the proximity of the returning wake to a blade. Analysis of these
effects for the three-dimensional rotor is appreciably simplified if the far wake is
treated using lifting~line theory, and lifting-surface theory is used only for the near
wake, The vaiidity of this approach has been demonstrated by comparing the
equivalent treatment of a two-dimensional model of the returning wake system with

a treatment using lifting-surface theory for both the far and near wakes.
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5) In hovering flight, a simple closed~-form solution is obtained for the
reduction in lift due to unsteady aerodynamic effects by proceeding to the limiting
case of an infinite number of blades. It is shown that for normal rotor or rotor/propeller
operating conditions, .he harmonic lift generated by a cyclic change in blade, pitch
would be less than half that indicated by simple quasi-static theory and this reduction

in lift is substantially independent of frequency.

6) Generalized lift-deficiency functions can be developed for the rotor in
forward flight. "From the nature of these results, it is evident that, at advance
ratios above about p = 0.2, these functions appreach the classicai two-dimensional
values. This suggests a simplified treatment of the lift deficiency in which the
simple value obtained for the hovering case is faired into the two-dimensional value

at p= 0.2,

7) A simplified approach, using infinite vortex lines to represent the far
wake located below the blade at the point at which the blade passes over the
vortex, gives results in close agreement with the more accurate treatment, It
suggests several possible approximations which would result i n a major reduction

in required computer time.
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NOMENCLATURE
A = coefficients of chordwise vorticity distribution.

k

A e = coefficient of cosine component of kth harmonic of circulation or downwash at
£ station Z due toa cosn ¢) variaiion of shed wake vortex strength.
k _ . . .
8 = same, except sine component due a sin n 43 input.
ns
Z
k ko _ -
P Q = same, except due to trailing wake.
nCé . nS‘&

Clk,m,h), C(k), C= lifi-deficiency function.

C =kl
n c

CT = thrust coefficient=T/n p 2R4

F (qb) = integrand for far shed wake.

I+ I = Integra Is defining bl ade circulation due to near shed wake.
l'c , I‘S = |ntegrals de'ﬂning blade lift due to near shed wake.

L= lift

LN = blade Lock number (inertia parameter).
@ = number of blades

R = rotor radius

S =kl
n s

T = rotor thrust.
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V = forward velocity
a = distance between center of twist and center of airfoil = positive aft.

a,= blade-flapping angle (cosine component)

b = blade semichord

bn = blade-flapping angle (sine component) -

d = horizontal distance travelled by rotor hub

f( gb ) = integrand for trailing wake

g( @ ) = integrand for shed wake after integration over &
h = wake spacing

b =bh

i = angle between rotor disc and relative wind, positive nose up.

k= -2 = —95 = reduced frequency
7R QR7
¢l = rotor span parameter

m = number of wake spirals ~ also used for frequency ratio in two-dimensional solution

n = harmonic of rotor speed = also used for wake identification in two-dimensional solution

v e -

*

u = velocity at airfoil due to airfoil motion.

v = induced velocity due to blade-distributed vorticity

w = induced velocity at blade due to wake

x = distance along blade chord, nondimensionalized with respect to R unless starred

z = vertical distance travelled by rotor hub '

= vorticity in wake wnen unidentified by subscripts or superscripts, otherwise bound
circulation on blade -

Q= rotational speed

X= angle of attack

Ar= blade tip angle of attack
®

B = blade flapping angle =a _ - é a_ cosn W + bn sin n lp

=
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y = element of distributed vorticity

nondimensional form of blade circulation = ﬂ?
2nb QR

= coefficient of series for blade spanwise circulation

Tq

= blade spacing

= rotor-span parameter

inflow normal to rotor disc

7
£
A
X, = distance from reference point on blade to trailing edgé.
' V cos i

p = advance ratio = —OR

5 = distance to element of vorticity in wake

£ =bg

p = density of air
o’

in Section VI,
L}* = rotor azimuth measured from blade downwind position

rotor solidity _
azimuth of wake measured from downwind position; also used for velocity potential

Subscripts

q = quasi-static

N = near

F= far

nc = cosine n input

ns = sine n input

Superscripts
S = shed
T = trailing
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AXIS OF ROTATION

- - o —
Q CENTRIFUGAL
A FORCE

FEATHERING
AXIS

PLANE OF ROTATION
SIDE VIEW

COMPONENT OF C.F. NORMAL TO
BLADE FEATHERING AXI3

'35‘5&':-.'.-.- L

PLAN VIEW

Fig. 3 Side view and plan view of blade bending out of plane of rota-

tion and twisting about a feathering axis located near center of
rotatlon. Component of centrifugal force normal to feathering

axls causes additional twisting.
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Trailing Wake

) Shed Wake

Starting Vortex

Fig. 5 Simplified Diagram of Fixed Wing Wake Geometry
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ELEMENT OF
TRAILING WAKE

ELEMENT
g OF
SHED

Fig. 6 Wake geometry showing tratling tip vortex and element of shed

wake.
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o) S0° 180° 270°

360°

——— THEORY
———— TEST (REF 30)

| I |

o) 90° |180° 270°

Fig. 10 Comparison of computed and experimental airloads.
Four-bladed rotor p=0.2 .
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Fig. 11 Limit € * for shed-wake integration for use in lifting-line approxi-

mation
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Fig. 12 Geometry of Far Spiral Wake and Near Straight Wake.
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[3b NON RIGID WAKE

THREE BLADES -ONE SPIRAL ONLY SHOWN

Fig. 15 Geometry of wake at p =.05,
(a) Rigid wake showing upwash from vortex lines at lead-
ing edge of spiral.
(b) First approximation to nonrigid wake using downwash

computed from (a).
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Fig. 17 Spanwise Distribution of Harmonic Downwash Coefficients at Blade Due to

Wake of Constant Strength, n= 0. Transition Flight Regime.
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. 18 Spanwise Distribution of Harmonic Downwash Coefficients at Blade Due to

Wake of Constant Strength, n=0. Cruise Flight Regime.
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Fig. 19 Comparison between the lift generated by the downwash due to tip vortices

of constant strength. Lift deficiency effects due to shed wake; harmonic
trailing wake not included. p=0,2 N-0.75
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Fig. 20  Correlation between theory and test as a function of number of

spanwise stations used in solution. Spanwise distribution of

third harmonic airload.
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Fig. 21 Two-bladed rotor comparison between theory and test. Harmonics
below the third eliminated. p=0.2.
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Fig. 22 Geometry of straight-line approximation to spiral vortex line.
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Fig. 23 Airloads for four-bladed rotor of Fig. 7 with harmonics below
the third eliminated. p=0.2 n =095
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