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I. SUMMARY

A helicopter rotor in forward flight is subjected to a complex system

of loads, both aerodynamic and inertial in origin. Of particular interest

are the oscillatory airloads occurring at harmonics of the rotor speed. These

loads are the primary source of the blade stresses which establish the fatigue life

of the structure and of the oscillatory hub loads which determine the fuselage

vibration level. Unlike a wing, the trailing- and shed-vortex system of the blade

generates a spiral wake which returns close to the blade under most normal flight

conditions. This returning wake critically influences the downwash distribution

over the rotor disc and is the primary source of the higher harmonic airloading.

The higher harmonic components of the airloading arise primarily from the down-

wash perpendicular to the plane of the rotor disc generated by this wake. Their
analytical determination, therefore, requires some means of computing the down-

wash, which takes into account the spiral wake geometry, and of determining the

unsteady aerodynamic effects associated with the blade passage through this variable

velocity field. A better definition of the aerodynamics of a rotor in forward flight

will also help in the design of hub and blades for minimum drag at the higher speeds

envisaged for the nect generation of helicopters.

It is the purpose of this report to present a solution to the problem of

determining rotor-blade harmonic loading which includes both the unsteady aero-

dynamic effects and the actual three-dimensional wake geometry. The basic

aerodynamic theory is first discussed and then related to the more familiar finite-

wing theory. A general discussion of the results of the investigation to date follows,

including an outline of the suggested approach based on certain simplifying assump-

tions which are substantiated in later sections of the report.

The problem is formulated for the complete case of the three-dimensional

rotor with a finite number of blades in forward flight. Methods of solution are

discussed starting with a relatively exact approach in which the airloads on the blade
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generated by the near wake are treated using lifting-surface theories, while the far

wake is treated using the lifting-line approximation. This suggested treatment is

then evaluated by applying it to the simpler two-dimensional case and comparing

the results with the exact two-dimensional solution available in the literature.

Analytical solutions are then obtained for the three-dimensional rotor in

vertical flight. This results in a simple solution for the lift-deficiency function and

provides a useful check on the numerical solutions obtained using the complete

theory.

The relationships required for the solution of the complete problem of the

airloads on a three-dimensional rotor in forward flight are then developed. The

concept of a "nonrigid" wake is introduced. It is shown that a more careful

definition of the wake geometry than the assumption of a rigid spiral of constant

spacing becomes important at the lower advance ratios.

Finally, approximate solutions are discussed and compared with the more

exact theory. It is shown that for many engineering applications, reasonably

accurate airloads may be calculated using fairly simple techniques of analysis.

During '1e course of the research outlined in this report, some fifty different

computer programs were developed and approximtely 100 hours of 7090 computer

time were used. Man), of these programs were developed primarily for research

and testing of various techniques of analysis and are not of permanent interest.

The final versions of the programs for the computation of downwash and airloads,

both exact and approximate, are given in Reference 36.
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II. INTRODUCTION

Probably one of the mcst difficult problems facing the designer of rotary

wing aircraft at the present time is that of determining the blade aerodynamic

loading, and, in particular, the oscillatory content of this loading. The

magnitude of the problem may be appreciated if it is realized that an equivalent
ignorance on the part of the fixed wing designer would mean that no method existed
for predicting the spanwise-load distribution on a conventional wing. Consequently,

no rational design of the wing structure could be effected until the aircraft had

flown and extensive test data obtained which would permit substantiation of the
structure for all anticipated flight conditions. Until the advent of swept-back
wings, conventional aircraft were sufficiently stiff or the speed sufficiently low
so that aeroelastic effects could be neglected in computing airload distributions,
at least to first order, and the simple elliptical load distributions obtained from

uniform downwash theory were known to give reasonable approximations for most
flight conditions. No such simplifications were ever permissible for rotor blades,
aeroelastic effects always being predominant. The nature of the airload distri-

butions furthermore can certainly not be generalized by elliptical, triangular or
any other simplified function, since even an approximate theory for the airload
distribution is lacking and no exact analysis has been attempted.

In the absence of a working theory, design of rotor blades has proceeded
on an empirical basis with rotor-blade life substantiated by flight-test experi-
mentation. Although costly, such procedure is, of course, adequate. Provided

no major design changes are attempted with each new model and advances made
in small steps, even the costs are not excessive since extrapolation from previous
experience is not too difficult. However, rotary wing aircraft at present are on
the threshold of a major advance in both speed and design technology which will
result in a considerable reduction in maintenance cost and increase in utility for

the short haul market. Empirical design techniques are certainly no longer ad-

missible if real advances are to be achieved with reasonable cost and effort.

Some knowledge of the nature of the aerodynamic loading on rotor blades and,



in particular, of the higher harmonic loading which determines the fatigue lift must,

therefore, be acquired if the design of helicopter and VTOL rotors is to be placed

on a rational basis and new structural design concepts introduced safely and rapidly

as required.

In addition to the all-important problem of rotor-blade-structural integrity,

the control of vibration levels is another important problem facing the helicopter

designer. Through the years much careful work has been done to determine the dy-

namic response characteristics of rotor blades and of fuselage to vibratory inputs and

this has resulted in a major reduction in helicopter vibration levels on most exising

helicopters. However, the process has been a costly and time-consuming one and

has been greatly handicapped by a lack of information on the nature of the inputs

which cause the vibratory response of the aircraft. These inputs are, of course,

directly associated with the higher harmonic airloacis acting on the rotor blades.

Finally, as helicopter speeds advance above 200 knots, it is necessary

to define as carefully as possible the angle-of-attack distribution over the rotor so

as to reduce the drag represented by the in-board shanks of the rotor blade and the

hub fairings. This problem is closely related to the two described above and is a

further reason for a more careful definition of rotor-blade aerodynamics in forward

flight.
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Ill. DISCUSSION AND REVIEW OF BACKGROUND LITERATURE

A rotor blade in forward flight is subjected to a time-varying flow field in

which the forward velocity adds to the rotational velocity on the advancing side

and substracts on the retreating side. The resulting first harmonic velocity change

will generated first- and second-harmonic-lift changes, lift being proportional to

the square of velocity. A flexible blade or a blade with mechanical hinges at the

root will flap in the presence of this flow variation in such a way as to maintain

almost constant lift around the azimuth. Because a considerable amount of inter-

harmonic coupling exists, this flapping in response to the first- and second-harmonics

of lift change will generate higher harmonic lift changes ad infinitum. The simple

theory of rotor blade loading in forward flight in which a uniform or triangular inflow

distribution is assumed, indicates that these loadings will decrease as pn where p
th

is the advance ratio and n indicates the n harmonic of loading. This does not

fit the observed facts since harmonics as high as the fifth or sixth are known to

produce appreciable blcade stresses and vibratory shaft loads at advance ratios of

the order of 0. 1 or 0. 2 where the simplified theory wou!d indicate such loadings

to be negligible. See, for example, Reference 1.

One )f the earlie:t attempts to compute the induced velocity field at the

rotor disc wa. that presented in the 1948/49 Cierva Memorial Prize Essay by Drees

in which, by an ingenious approximation, values for the average and first harmonic

inflow variation were obtained, primarily for the purposes of performance estirpa-

tion (Reference 2).

ln Reference 3 a sokt;on was obtained for the harmonic loading on a disc

with a prescribed loading distribution along the span and constant around the

azimuth with the further assumption that the forward velocity is high compared to

the disturbance velocities. This solution indicates the presence of appreciable

higher harmonic inflows with a strong concentration towards the tips of the blades.

3



In Reference 4 it was shown that the lift-deficiency function of classical

nonstationary-flow theory could approach very small values at integers of rotor

speed when the effects of the returning wake were taken into consideration. This
implies a reduction in damping, but also a reduction in lift generated by the higher

harmonic inflow variations. However, ihe blade will respond elastically in dis-

tributed modes to a higher harmonic loading concentrated at the tip and, if the

harmonic approaches one of the natural frequencies of the blade, the mechanism

evidently exists for the excitation of appreciable blade stresses and hub shears.

In Reference 5 the theory of Reference 4 was applied to the calculation

of blade stability. Figure 1 taken from Reference 5 shows that, as might be
expected, neglect the effects of the returning wake in such calculations is

conservative. Experimental verification of these effects was obtained in the

tests reported in Refe'ence 6. When an attempt was made to excite the blade

aerodynamically by harmonic pitch variation, no appreciable effects of the

returning wake were noticed; however, with mechanical excitation of the rotor

hub, a p'onounced reduction in damping was evidenced by the large increase in

blade response. This is shown in Figure 2.

It is, therefore, clear that any attempt to predict the blade harmonic
loading and response to this loading must treat the effects of the returning wake with

some care. Furthermore, since interharmonic coupling in the presence of first- and

second-harmonic-lift variations and a uniform wake cannot predict the observed order

of magnitude of these loads, the mechanism of their generation must come from the

harmonic content of the interference velocities generated at the rotor disc by the

rotor wake. A three-dimensional model is required if the harmonic content of this

downwash is to be predicted with any degree of accuracy.

Wake-interference effects have been considered in great detail in the

literature for the case of airfoils operating at sufficiently high forward speeds so
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that the wake may be assumed to remain in the plane of the airfoil. A clear inter-
pretation of the physics of this problem is given in Reference 7. The concept of

vortex pairs used therein is particularly adoptable to the problem considered in this

paper. An extension of the theory to a helicopter rotor was made in References 8
and 9, but these analyses were limited to the relatively secondary effects of the

harmonically varying forward velocity. The distortion of the wake due to this
variation was considered in Reference 8, for a somewhct simplified input; a more

exact blade motion was considered in Reference 9, but the effects of wake dis-

tortion were eliminated from the analysis. In either case, the results were found

to be negligible, most probably because of the low reduced frequency represented
by first harmonic velocity variations. A useful extension of the theory to the

calculation of rotor-blade bending moments is contained in Reference 10.

The first analysis of the important effects of the returning wake was contained

in Reference 4. Similar analyses are contained in References 11 and 12. All these

analyses are limited to two-dimensional models. An extension to the three-dimen-

sional case of a hovering rotor is contained in Reference 13. The results of this
analysis confirm experience with similar high-aspect-ratio fixed-wing solutions in

which the two-dimensional model is found to be generally adequate for the prediction

of rotor-blade stability boundaries in the presence of pitch-flap coupling. A valuable
contribution of Reference 13 lies in its development of the concept of the rotor as

operating in a straight "sheared" flow representing the velocity variations along the

blade, a concept which is particularly useful in the development of the theory of

this paper.

The three-dimensional solution of the time-averaged wake-interference

effects was first given in Reference 14, which extended the concepts of classical

propeller vortex theory, in which the wake is represented by an infinite vortex

cylinder to the case of a skewed cylinder. Reference 15, which contains a useful

table of induced velocities generated by displaced vortex rings, computes the veloci-

ties induced by an infinite vortex cylinder at several points in the vicinity of a
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rotor. Both these references assumed constant blade circulation both with azimuth
(timewise) and radially along the blade. The latter limitation was removed in
Reference 16 although the less important assumption of constant circulation with
time was retained. In Reference 17 the induced velocities generated by an infinite
vortex cylinder with time-varying circulation and containing an infinite number of

inner sheets representing the shed vorticity in the presence of time variations in
circulation were considered. The induced velocities were presented for several
points in the lateral plane of the rotor, but at only one azimuth and, consequently,
the harmonic content of the wake could not be directly' determined. However, it is
probable that this model will give a close approximation to the wake-induced

velocities, although the assumption of an infinitely small wake displacement and,
hence, an infinite number of blades precludes any prediction of one of the important
effects of nonstationary-flow theory arising from the nonuniform downwash induced

by the wake along the blade chord. Unless this effect is introduced, the phase
shift in lift generation represented by the imaginary part of the lift deficiency
function, C(k,m,h) of Reference 4, disappears. At the present time the importance
of this limitation is not clear, but the approximation , certainly valid for the purpose

for which the theory of Reference 17 was originally developed.

In Reference 18 the infinite vortex cylinder is replaced by segments of
straight wakes oriented below the rotor. Since this permits integration to infinity

in both directions, a combined analytical and digital approach is possible, utilizing

the techniques developed in the lifting-line theory for fixed wings. Although the

solution has been limited to the quasi-static case, extension to that of variable

wake strength would appear to present no major problems.

The effect of a finite wake spacing of spiral form was analyzed in Reference
19 where it is shown that a highly time-dependent-interference velocity is generated

as the blade passes over the immediately adjacent returning wake. An interesting
suggestion for further analyses is contained in Reference 20 in which the first spiral
is retained and the remaining wake replaced by an infinite vortex cylinder.

6



Experimental verification of the nonuniformity of rotor inflow was obtained

in flight and is presented in Reference 21. Wind tunnel tests reported in Reference 22
gave quantitative information on the first harmonic downwash variations deduced

from measured blade aerodynamic loading. In Reference 23 measurements of higher

harmonic airloads were presented for a teetering blade and in Reference 1 valuable

flight test information was obtained for blades of varying stiffness. Correlation with
existing theory of all these tests was disappointing and it was quite evident that a

considerable amount of further analytical effort is required if a reasonable method

of predicting airloads is to be established.

In order to obtain some quantitative information on the harmonic airloads and

some understanding of the mechanism by which they are produced, and in order to

determine the importance of the unsteady aerodynamic effects throughout the flight

regime, a solution using a finite number of blades and applicable nonstationary flow

theory was, therefore, attempted. Some of the results of this study were presented

in References 24, 25, 26, 27, and 28. The program is a continuing one and this
report is based on the interpretation of the results obtained to date. Agreement between

theory and experiment is, in general, good at advance ratios corresponding to cruise

conditions, but poorer at lower advance ratios where the effects at the nonuniform

wake probably dominate in establishing the wake geometry.

Furthermore, it should be noted that a rotor blade is a highly complex

aeroelastic system subjected to powerful coupling effects, due to the high centri-

fugal force field not encountered on fixed wings as discussed in Reference 5.
Consequently, any experimental verification of theory should include consideration

of these effects. It is probable that, for this reason, model tests under controlled
conditions may be most useful for the purpose of establishing such correlation.

A promising test technique, which may prove particularly useful for determining

the importance of certain assumptions, for example, that of a rigid wake, is reported

in Reference 20. In these tests flow visualization was achieved Ly smoke generation
at the blade tips. Continuation of these tests and extension of such tests to include

the generation of smoke at intermediate blade stations would appear most desirable.

7



IV. BASIC CONCEPTS

1) The Separate Elements of Helicopter Vibration

The dynamics of helicopter vibration may be conveniently discussed by

considering the three basic factors which contribute to this vibration as separable,
although heavily interacting, elements. These three elements are:

1) Rotor Aerodynamic Loading

2) Blade and Rotor Dynamics

3) Fuselage Dynamics

The combi nation of a highly flexible blade attached to a flexible fuselage

and subjected to periodic aerodynamic loads, which, in turn, are proportional to

the blade motion, presents a dynamic problem of some magnitude. However, methods

for handling the last two items, fuselage and rotor dynamics, in a routi ne fashion

are now available using the well-established techniques of aeroelasticity. It is

with the first item, blade loads, that we are mainly concerned. Once it becomes

possible to predict the magnitude and time history of the aerodynamic loads, the

resultant phasing and magnitude of the hub loads can be predicted, as well as the

degree to which these loads are amplified by rotor dynamics. Knowing the nature

of these loads, the fuselage response, which determines the vibration levels to which

the passengers and structu.e will be subjected, can be determined. Unless each

element in the chain of vibration buildup can be separately defined, mitigation

and control of the vibration level, except on a hit and miss basis, is impossible.

Obviously, the first element in the chain on which all others depend is the harmonic

airloading.

In emphasizing the need for quantitative information on this primary forcing

function, it is not intended to imply that the remaining steps in vibration control

are simple and straightforward, but rather that they then become subjected to

8



systematic analysis. As mentioned before, of considerable concern is the nature of

the blade torsion-bending coupling and its effect on the airloads. Accepting that

higher harmonic aerodynamic loads of appreciable magnitude do exist, then it is

evident that the blade will bend periodically in the presence of these loads out of the

plane of rotation and out of the plane of its twist axis. The potential significance

of this phenomenon may be demonstrated by a simple illustration. In Figure 3

a blade is shown with its normal elastic deflection. Torsional flexibility is assumed,

for simplicity, to occur primarily at the feathering hinge located near the blade root.

As the blade twists about, the feathering hinge components of centrifugal force act

to increase the twist. That is, a rotor blade bent out of its plane of rotation is not

in static equilibrium. Since the centrifugal force is several times the gross weight

of the ship, clearly powerful blade twisting moments can be producted by this mech-

anism unless relieved by motion about the lag hinge. In Reference 5 it was shown that

in certain cases, such as a teetering rigid blade, these moments could be equivalent

to those produced by a 6 per cent chord shift in CG of the rotor blades.

Since rotor blades must bend elastically in the presence of aerodynamic lift,

this centrifugal force component, and also the steady state drag, will cause periodic

twisting moments due to the periodic changes in blade bending deflection caused by

the higher harmonic airloads. in addition, periodic changes in induced drag due

to the higher harmonic content of the downwash will combine with the steady state

bending deflection of the blade to produce another source of periodic twisting moments.

Twisting moments from these sources will cause harmonic change in atigle of attack.

Consequently, coupling between elastic flapping and torsion is potentially of con-

siderable importance in establishing blade loads.

Pitch flap coupling may also be used to reduce the oscillatory loads acting

on the rotor. In Reference 5 it was shown that by tuning the torsional frequency of

the blade to the frequency of the harmonic, which it was desired to attenuate,

and by offse tting the aerodynamic center and center of gravity of the blade about

3 per cent of the chord, reductions in the harmonic hub loads of the order of
50 per cent could be achieved. This was later demonstrated in flight using ai

9



blade whose AC-CG offset was obtained by means of an aerodynamic surface

(servo flap). The desired reduction in vertical vibratory force was achieved;

however, the inplane forces were not appreciably attenuated and, in this parti-

cular synchropter configuration, these forces were the primary source of fuselage

vibration.

The importance of establishing the magnitude and phasing of all components
of rotor hub loads is particularly important for the tandem helicopter. A can-

cellation of vibratory input, due to the phasing of the forces from the two hubs, is

conceivable for this configuration and probably for most other configurations, were

it possible to evaluate and control, by design modification, both the phasing and

magnitude of forces entering the hubs and the hub loads themselves.

Pursuing the analogy of helicopter dynamics as consisting of separable

elements, it is possible to show these elements and their interaction schematically

as in Figure 4. The interaction between the elements determines the degree of

complexity required for numerical solutions. To date our studies have indicated that

the interactions shown by broken lines are not of primary importance. Consequently,

blade flapping and the dissymmetry of flow over the rotor disc have little direct

influence on the higher harmonic airloading. Also, the unsteady aerodynamic

effects can be treated independently of blade motions as a lift-deficiency function

and phase shift for the higher harmonic airloads, much as in the fixed wing case.

The effect of these conclusions is to largely uncouple the elements in our

schematic of the dynamics and, hence, to simplify the analy;is, since each element
can now be separately investigated. Unfortunately, a further conclusion is that the

harmonic loading is critically dependent on wake geometry and this considerably corn-

plicates the analysis, since wake geometry is not subject to exact definition and is

certainly far different from any of the rigid wake concepts used in propeller anaiyss.

Reasonable agreement has, however, been obtained between theory and test for t:.e

normal cruising and high speed flight regimes. At the lower speeds, we are at least
beginning to understand some of the factors which contribute to transitiun roughness.

10



2) Analogy with Fixed-Wing Aerodynamics

The underlying aerodynamic theory required will be better understood if the

equivalent fixed-wing problem is first examined. Consider a wing advancing at

constant angle of attack in a uniform airstream. By virtue of its geometrical angle

of attack, the airfoil will generate circulation and, consequently, lift. Assuming

for simplicity that this circulation is constant along the span, it must leave the wing

at the tips and trail downstream since, by one of the fundamental laws of hydrody-

namics, circulation cannot end abruptly but must continue back in a closed circuit

to the starting vortex generated at the beginning of the motion (Figure 5). After

the motion has continued for a sufficient length of time, this starting vortex may

be assumed to be at an infinite distance from the airfoil, and its effects may be

neglected. The trailing vortex will induce velocities, w, at the wing which will,

in effect, reduce the angle of attack to something less than the geometric angle.

Thia results in the well-known aspect-ratio correction to the slope of the lift curve

of a finite airfoil. In practice, of course, the circulation is not constant along the

span and, therefore, the trailing vortices are distributed in a sheet all along the

span. The mathematical treatment of this problem is well known and is covered

in any text on wing theory. In its most useful applications, the wing is replaced

by a single vortex line whose strength is equal to the bound circulation on the air-

foil, resulting in the so-called lifting-line theory of classical aerodynamics. Simple

solutions are then obtained by assuming that the wake remains in the plane of the

airfoil and extends rearwards to infinity.

Retaining the analogy of a fixed wing in forward flight, consider now the

case where the geometrical angle of attack changes as the wing advances. Under

such conditions it is evident that the circulation will change, but since, in the case

of ideal fluid, total circulation must remain constant, there must be a counter vortex

in the wake corresponding to the change in circulation on the airfoil. This wake

vorticity is generally referred to as the shed vorticity to differentiate it from the

trailing vorticity which occurs both in the steady-state condition and when the

blade is changing angle of attack. Since, as was seen above, the spiral vortex

*11



system, even with constant strength, will generate harmonic downwash at the rotor

disc, it is evident that the rotor blade in forward flight will have associated with it

a shed as well as a trailing vortex system, For the simple analogy of a wing with

constant circulation, the shed vorticity will be constant and parallel to the span

resulting in the picture shown in Figure 5. It is evident that t'tq shed vortex bears

the same relationship to the traing vortex as the starting vortex in the case cited

above of an airfoil at constant angle of attack. However, since these vortices are

continuously being shed, they cannot be assumed to be at infinity but must be

correctly placed in the wake relative to $e airfoil ata point in space determined

by the airfoil position at the instant of shedding. In the simple picture shown in

Figure 5 corresponding to an abrupt change of angic of attack at time t - A t with

the airfoil moving at constant velocity V, the distance of the airfoil from the

shed vortex at any time t, is simply

F'* =V A t

where the star indicates thcia is dimensional. In forward flight, the velocity V

at the blade section is no constant but varies with azimuth position. Consequently,

this effect must be taken into account in positioring the vortices in the wake. Also,

discrete line vortices are not shed if the blade is changing angle of attack harmoni-

cally, but instead a continuous sheet of vorticity whose strength varies harmonically

is created.

Evidently, this shed vorticity will c!so induce downwash at the airfoil and

will, in effect, result in a further reduction in cungle of attack in addition to that

generated by the trailing vortex system. This change in angle of attack can be

evaluated for the simple two-dimensional case in terms of Bessel functions, and

since it results in a reduction in lift, it is frequently referred to as a lift-deficiency

function similar to the aspect-ratio effect of finite wing theory.

Because of the time varying nature of the loading, it is, therefore, necessary,

in the case of a rotor, to consider not only the case of o truiling tip vortex and

distributed trailing vortices, but also that of a spiral represented by the shed vorticity.
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V. GENERAL DISCUSSION OF ROTOR LOADING

1) The Nature of the Aerodynamic Loading

In light of the discussions presented in the previous section, it becomes

possible to discuss the physics of rotor aerodynamic loading in fairly simple terms.

The primary element is the steady rotor lift generated by the bound circulation

on the rotor blades. This bound circulation, as it leaves the blades, generates

a spiral vortex system in the wake of constant strength dependent only on mean rotor

thrust. The vertical component of induced velocity generated by this vortex system

at a point on the blade, when combined with the horizontal velocity at the blade

due to the blade rotation and forward speed, determines the induced angle. In

the case of hovering flight, and for constant blade circulation along the span,

it is welil known that the induced velocity is constant over the rotor disc. However,

in forward flight the wake spiral is not symmetrically located below the rotor but it

is distorted by the forward velocity as shown in Figure 6. The induced velocity due

to this distorted wake may be computed in terms of the wake geometry by the ex-

pressions given in Section VII. As might be expected, it is far from uniform over

the disc. Consequently, the blade is subjected to a constantly varying induced

angle as it rotates, and this is the primary source of the higher harmonic-blade

loading.

Since the blade is subjected to time-varying airloads caused by the wake

generated by the steady-state lift. In particular, for example, the airload varying

as the n , harmonic of rotor speed must generate a trailit-wake system of variable

strength which, in turn, will induce all harmonics of downwash at the rotor disc.

Since the blade circulation is changing, there must also be a vortex system shed

from the trailing edge of the blade at any instant equal and opposite in magnitude

ic the change in bound circulation, and this shed wake will also induce all

harmonics of downwash at the rotor disc. Consequently, interharmonic coupling

is potentially important. For example, if the ntt h harmonic airload induced large
steady-state components of downwash to the mth harmonic, then the mth harmonic lift

13



would be appreciably changed by the harmonic airload and no direct solution to the

problem could be obtained. It would be necessary to use an iterative procedure which

would involve many hours of computer time in order to arrive at one numerical solution,

and the question of convergence would always arise.

The numerical solutions for the forward flight case reported in Reference 24

were undertaken in order to explore the importance of this interharmonic coupling.

It was found that the results of the analysis could be more easily interpreted by

considering the wake in two parts; the"near" wake representing that portion in

the immediate vicinity of the blade in question, and the "far" wake consisting of

that portion from a quarter of a quadrant away from the blade and extending to

infinity down the spiral. The exact boundaries of the near and far wakes are not

of primary importance.

The near wake is relatively undistorted since it induces only a small portion

of the spiral and, indeed, could be represented by a straight wake extending aft of

the blade to infinity. It must, therefore, induce primarily the frequency of the

bound circulation by which it was generated. The far wake induces all harmonics

at the rotor disc due to its distorted spiral form; however, it is swept further down-

stream and, hence, becomes of decreasing importance as the advance ratio increases.
th

Consequently, the coniribution of a particular harmonic of circulation, say the n ,

to another harmonic, say the m th, of downwash is usually of an ord .S ,rYgn;1ude

less than its contribution to the n th harmonic of downwash. Also, the steady-state

or 0 th harmonic of circulation, which determines the rotor thrust, is an order of

magnitude greater than any other harmonic of airload and so is the downwash which

its wake induces at the rotor disc. Consequently, to first order, the nth harmonic

of downwash at the blade consists primarily of two components:

a) The nth harmonic of downwash induced by the vorticity in the vake

generated by the steady-state blade lift, and

b) The nth harmonic of downwash induced by the vorticity in the wake

generated by the n th harmonic variation in circolation.
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The lift changes due to (a) alone may be considered as a quasi-static lift

change arising from a harmonic variation in angle of attack due to the nonuniform

wake. This harmonic variation may be computed once the rotor and wake geometry

are known, and is unaffected by any other blade motions or harmonic lift variations.

The downwash components (b) result in a reduction and a phase shift of the quasi-

static lift by an amount which again depends only on the rotor and wake geometry.

This effect can, therefore, be tabulated as a generalized lift-deficiency function,

C(k), as has been done for the fixed wing case in, for example, Reference 29. In

Theodorsen's nomenclature

C(k) = F + i G

where F represents the reduction in lift and Tan - G/F represents the phase shift.

Typical re. uts are presented in Figure 7 for a shed wake of constant

radial strengt,. The computation of these functions is a lengthy process involving

extensive machine time and much manipulation because of the classical singularities

of nonstationary flow theory as discussed in Section XI-3, but once having been
computed, they are universally applicable.

In Figure 8, the contribution of all components of the wake to the lift
deficiency is plotted as a function advance ratio. The increasing importance of the

near wake, as the advance ratio increases, is evident as well as the relative unim--

portance of the trailing wake. In fact, at an advance ratio of 0. 2, the reduction

in lift, F, is substantially that which would be predicted by the two-dimensional

theory. Since the hovering flight case, p = 0, is subject to a simple closed form

solution, as will be discussed later, it is possible that for many engineering appli-

cations a reasonable approximation to this very complex analysis for F and G couid

be obtained by fairing a simple curve through the two known points at p = 0. 2 and

p=0.

The convergence of C (k) for all harmonics towards the classical two-dimensional
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solution for the higher advance ratios is shown in Figure 8, together with the

insensitivity of this function to frequency at hovering, which is a conclusion of

the closed form solution for this case.

Before leaving this general discussion of the aerodynamic loading, it

is of interest to examine the components of downwash (a) and the general nature

of the trailing-wake system generated by the steady rotor lift.

M.nimum induced drag and, hence, the minimum energy and preferred con-

dit*,on can be shown for the case of hovering flight to correspond to the case of

uniform bound circulation aiong the blade. Our computations indicate that this

condition appears to persist in forward flight so that, regardless of twist, the

circulation remains substantially constant over at least the outer 50 per cent

of the blade span. The drop-off in circulation at the tip is quite rapid, depending

on the blade chord to span ratio. The trailing-wake system due to steady rotor lift

may, therefore, for purposes of discussion, and indeed for most anaiyses, be as. .umed

to consist of a single tip vortex of known strength, since the rotor thrust IS known,

and another of equal strength located somewhat inboard of the 50 per cent span point.

These vortices are swept back relative to the rotor by the forward speed crid, :on-

sequently, a blade, as it advances toward the leading edge of the rotor, must pass

over a series of vortices generated by itself and the other blades (Figure 6). Similarly,

in returning towards the trailing edge, it must repass over this system of vortices.

Consequently, any point on the blade will experience a fairly abrupt change in

downwash on the advancing and retreating sides of the rotor, and this is a primary

source of rotor vibration.

Figure 9 taken from Reference 24 shows the abrupt change in computed down-

wash as a function of azimuth induced by the tip vortex at the 95 per cent span lo-

cation for a three-bladed rotor. The experimental data used for comparison was taken

from some early tests conducted at M. i. T. in 1949 (Reference 22) in which the

higher harmonics were attenuated. The rapid fluctuation in downwash predicted by

theory was, therefore, not clearly defined by the tests. More recent experimental
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data has, however, supported the prediction of these abrupt changes in downwash

near the 90° and 2700 azimuth positions. In particular, flight test data obtained

on a four-bladed rotor by NASA (Reference 30) is compared in Figure 10 with loads
computed in the manner described above. The abrupt change in icad near the 90°

azimuth is almost impulsive in nature and will have a high harmonic content. The

number of blades used in a rotor will, therefore, have relatively little effect on the

vibratory loads induced at the hub.

The computations of Reference 24 indicated that this abrupt load change is

largely dominated by the vortex generated by the immediately-rcc ding blade,

in the case of the four-biaded rotor, that located 900 anead of the blade in question.

As the number of blades is increased, the vortex strength generated by each blade

is reduced; however, the blade spacings will pass closer to the following blade.
Computation for two-, three-, or four-bladed rotors thus shows little effect on the

nature of this impulsive change in downwash.

The impulsive load, however, is highly localized along the blade and,
as evident from Figure 10, travels down the blade as it advances from 900 to 1800.

The localized nature of the downwash, due to the proximity of the vortex to the

blade and also the rapid fluctuations in downwash associated with both the intensity

of the vortex and this proximity, requires that all aspects of unsteady aerodynamics

be carefully examined in predicting the resultant blade loads.

2) Unsteady Aerodynamic Effects

The effects which are of main concern in the classical treatment of wi4gs

in non stationary flow are those due to

a) The existence of the shed wake in addition to the usual trailing

wake

b) The addition of an oscillatory component to the trailing wake, and
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c) the existence of an additional pressure change on the airfoil

due to its passage through a time-varying flow field.

If the nonstationary flow is defined as being oscillatory in nature, exact

solutions are possible in terms of tabulated functions for the two-dimensional airfoil

(Reference 29). Solutions have also been obtained for a two-dimensional approxi-

mation to the rotor in which the rotor wake is replaced by infinite vortex sheets at

corresponding locations below the blade (References 4, 11, and 12). These investi-

gations have shown that, for oscillations at harmonics of the rotor speed, the un-

steady aerodynamic effects become of paramount importance and, for ceriain flight

conditions, could result in values of the lift-deficiency function, F, close to zero.

More usual values for the case of conventionally loaded rotors are of the order of

0. 5 which, in effect, means that the slope of the lift curve of the blade for os-

ciliatory loads is reduced by 50 per cent; evidently not a negligible effect.

Once the change in blade circulation has been defined as being oscillatory

in nature, the strength of the shed vortex and its position, at any instant relative

to the blade, can be defined for any three-dimensional system such as a rotor in for-

ward flight. Consequently, the instantaneous velocity which the shed wake induces

at any point on a blade can be computed. Similarly, the strength of the trailing

vortex at any point ;n the wake is defined and its induced velocity field established.

Computation of the airloads is complicated by the existence of singularities

in the solution. These occur -is the shed wake approaches the trailing edge of the

rotor and whenever the blade passes through a trailing vortex line generated by :tself

or another blade. The treatment of the singularities and of the nonuniform flow field

presents no basic problem providing lifting-surface theory is used. However, this

requires the numerical evaluation of the downwash at several chordwise as well as

spcnwise stations and, hence, may involve a prohibitive amount of machine compu-

tation time. Approximate methods have, therefore, been used to evaluate the un-

steady aerodynamic effects and these will be discussed in Section V-3 below.
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Before considering these treatments, it is interesting to review the case of

vertical flight for which closed form solutions to the integrals presented in Section Ill

have been obtained. If it is assumed that the rotor has an infinite nmber of blades,

the vortex spiral may be replaced by a column of vortlcity and the vortex strength

at any point in the column defined by the nature of the assumed circulation change

along the blade. This circulation change could, for example, come from periodic

change in pitch of the blade. By integrating Eqs. 15 and 16 in Section VII for the

hovering case, p = 0, from the rotor plane to infinity, around the azimuth, p = 0 to 2 u,

and along the blade from root to tip, it was shown in Reference 24 in Secticn IX the lift

deficiency function C (k) = F + i G has the value

F= 1 a,
1+ 0 r

4 71

where 0" is the blade solidity and A0.tne mean inflow through the rotor. This result

agrees almost exactly with the digital solution using a finite number ui blades, except

that G, for the case shown in Figure 7, does have a small value.

The interesting conclusion from this analysis is the fact that the lift.deficiency

function is independent of frequency and can be given by a simple expression depending

only on blade solidity and downwash. For the particular case of hovering flight and

an ideally twisted blade an alternative form is

1F =1

i + a T

where aT is the blade angle of attack at the tip.

The reduction in lift curveslope at a given steady angle of attack will, therefore,

become greateras the rotor loading and, hence, AO increases. Evidently the effect

of increasing the spacing of the vortex spirals is offset by the increased intensity of

the wake vorticity.

19



The singularities normally encountered in the solution of the downwash

integrals have been cancelled for the hovering case by the assumption of an infinite

number of blades which permits the solution in closed form given above. However,

in the forward flight case, the existence of a finite number of blades has been shown

in the previous section to be the dominant factor in determing rotor loads and it is,

therefore, necessary to devise techniques capable of handling these singularities.

3) Lifting-Une Approximations to the Unsteady Aerodynamic Effects

One of the most troublesome of the singularities is that associated with a shed

vortex approaching the blade. In the simplest solution for the blade airloads, it is

convenient to replace the blade by a single vortex line. Normally, the high-aspect

ratio of conventional rotors would suggest that this is a reasonable approach. However,

the following brief analysis illustrates the nature of the errors associated with the

lifting-line approximation.

Consider, for simplicity, the classical two-dimensional case in which the

wake is assumed to extend in the plane of the airfoil to infinity. The airfoil will

now be replaced by a point vortex and the geometric incidence, a, varied har-

monically with frequency w so that at any time t

a(t)=a sin t+a c coswt

The bound circulation r will, therefore, also vary harmonically or

F~) Fsin w t+ Fcos wt

At a point in the wake a distance from the blade, an element of vorticity

Y ( ) d will have been shed at time t - At of strength equal and opposite
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to the change in circulation on the airfoil when it passes this point. Therefore,

d (t-At) dt
dt

= -[ Fscos (t- At) - 'c sin w (t - At) I dt

If the airfoil is moving with constant velocity V then

V = d ? ,hence At - and
dt V

=- [ s cos W(t - -V--) - Pcsinwt- --
V

The velocity induced at the airfoil by the infinite wake in the plane of the airfoil is

W((.) dW

where E is a lower limit yet to be defined. The induced velocity w in turn induces

an angle w/V at the airfoil. The corresponding circulation, /y induced by the wake

is, therefore, for the simple lifting line case, F w = 2 ibw where b is the half chord.

After substitution and expansion of the trigonometric functions the wake-induced

circulation becomes

r = - k' c s coswt rc sin w t]

-kI Lrssinwt+ PcCosWt]

where k is the reduced frequency, ub/V, and
100

cosk d5JI sin k d

6C
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F - I

I+ k1Is

If the lower limit E is replaced by zero, that is, if the wake is integrated up 11o the
S

vortex representing the airfoil, Is has the value r/2 and

F=

1+-- k

This value agrees closely with the exact value up to k of about 0.5.

However, if Ic is not to be an improper integral, E c must have some

value other than zero. Several methods of establishing the limit Ec for the purpose
o. evaluating the rotor airloads in forward flight will now be discussed.

The simplest method is to eliminate Ic by choosing a sufficiently large value

of 4 c' for example, equal to the interval size used in numerical integration. The.

interval size is usually of the order of five degrees of azimuth or greater, and the

nature of I is such that this interval size is sufficient to make ic insignificant, since

the numerical value of the cosine integral is highly sensitive to the lower limit. On

the other hand, the numerical value of the sine integral IS is not sensitive to the lower

limit, at least for values of k less than 0. 5. The result of using this computation

technique is, therefore, to estimate the value of F with reasonable accuracy at the

lower reduced frequencies but to lose most of the phase shift due to the shed wake.

Such a solution, however, is certainly a first approximation to the unsteady aero-

dynamic effects.

Another method is that suggested in Reference 24 in which combined lifting-

line and lifting-surface theory was used. A limit E was chosen well away from the

blade, and this defines the limit of the far wake as previously discussed. The far
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wake was treated using lifting-line theory and the remainder of the wake, From E

to the blade, was treated using lifting-surface theory. Since the near wake is

relatively undistorted, the curved wake was replaced by a straight wake extending

aft to infinity. Also, since the work of Reference 13 indicated that a two-dimensional

solution closely approximates the three-dimensional solution for such a case, the near

wake was treated using techniques similar to the classical two-dimensional theory.

However, the computational sequences for such a combined analytical and digital

solution are clumsy and not well suited to machine computational techniques.

Consequently, a simpler method was devec, ped in Reference 25 in which E was

chosen so that the lift deficiency and phase shift predicted by the simple lifting-line

theory developed above would be the same as that predicted by the equivalent lifting-

surface theory, for example, by F and G of Reference 29. The identities to be

satisfied are

1 + k l = F and k I - G
sF z + G c 3 + G 2

from which, for any value of k, the lower limits to the sine and cosine integrals may

be obtained from tabulated results. These !imits are shown in Figure 11 and, for Ec,

are ciose to the rear neutral point of he blade. By assuming that the limits will Lb

unchanged by the small curvature of the near wake, they may be used directly in the

numerical integration of the expressions for rotor-wake induced flow given in Section VII.

The equiva!ent limit in azimuth position at blade station I R is A = E*b/ v R

and is of the order of one to two degrees for normal rotor blades.

4) Lifting-Surface Theory for Unsteady Aerodynamics

The airloads acting on a blade of finite chord due to an induced flow field

with rapid Fluctuations may be conveniently obtained using thin airfoil theory. This

method is readily adaptable to the machine computational techniques used for ob-

taining the induced flow.

The method used here consists of representing the airfoil by a sheet of
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distributed chordwise vorticity. It will be assumed that the spanwise components

of vorticity on the airfoil may be neglected, although this assumption is certainly

open to question in view of the rapid spanwise variations in load associated with

passage over the intense tip vortex. However, the assumption is believed to represent

a reasonable compromise between computational complexity and accuracy.

The chordwise vorticity may be represented by the series

Vo -3" A sinn e
4 (x) =A tan + A nsin

where the distance from the center of the airfoil to any point on the airfoil is given by

x b Co "

Then ihe induced flow at any point x on the blade due to the bound vorticity

is (Reference 31)
o0

A A
v (x) + n cos n e

2 2

if the vorticity w(x) induced at any point on the airfoil by the wake vorticity

is expressed as a similar series

B B
W() 0 + n conw:x1 = cos n e

it follows that, in the linearized solution, A = B since the boundary conditions
n n

on the airfoil require that w(x) + v(x) + u(x) = 0, where u(x) is th-, velocity normal

to the airfoil due to the geometric angle of incidence and the blade motions, If the

downwash is computed at a sufficient number of stations along the chord, the coefficiants

Bn can be determined by harmonic analysis for any wake-induced velocity distribution

which it is desired to examine.
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Analytical solution of the problem would require the evaluation of integrals
obtained from the expressions for the velocities w, u, and v derived in Sections VI

and VII in order to obtain the Fourier coefficients of chordwise vorticity distribution

along the blade chord, 1r is evident, from the expressions derived in the next section

for the velocity w(x), that direct solution for this type is no, possible because of the

obvious difficulty of solving the resulting integral equations in closed form. How-

ever, several approximate solutions have been obtained for the case of finite wings,
and exact solutions are available for the two-dimensional airfoil. A brief derivation,

using the approach developed in this report for the rotor, is presented in the following

section, since it has been found convenient to modify slightly the familiar treatments

when considering the three-dimensional rotor.

Following this derivation the downwash is defined for the case of a three-

dimensional rotor and a method of solution suggested using the concept of a near

and far wake. This is the most accurate solution of the several developed in this

report and was developed in order to establish a reference for later approximations.

The adequacy of this solution is established by comparison with an equivalent two-

dimensional approximation.

Closed-form solutions are then obtained for the case of hovering rotor,

giving the results briefly referred to in Section V-2 above.

Techniques are then developed, using lifting-line theory, which result in

considerable simplifications in the analysis. The effects of a finite chord are then

separately evaluated. Finally, the possibility of developing generalized lift-
deficiency functions are evaluated and some typical values are presented.

n2ts
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VI. TWO-DIMENSIONAL SOLUTION FOR OSCILLATING AIRFOIL

The following very brief analysis is included in order to relate the treatment

of the nonstationary flow effects contained in this paper to the classical analyses in

the literature. Chapters 5 and 7 of Reference 32 contain a complete development and

review of both the two- and three-dimensional cases.

If the chordwise vorticity is represented by the series

(x) = A tan - + A sinnO (1)
n n
n=-I

and the distance from the center of the airfoil to a point aft on the airfoil is given by

x = b cos 0

then the induced flow at x , due to an element of vorticity on 'he airfoil at , is

d v ( d ,positive down2T- (x$ - )(2)

which, when integrated from -b to +b gives (Reference 31 - Chapter V1)

A
v(x)= o + A

cos n e

Assume now that the airfoil is moving with veo.,ty, V, and has a velocity

perpendicular to its surface, u(x) (positive down), at station x resulting from the angle

of attack, OC , positive down and the vertical velocity at the center of twist, Z .

positive down. If the center of twist is iocated a distance ab aft from the center of

the airfoil, then
u(x)::aV - " + (,*.-ab)
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Eveiy change in circulation associated with these motions results in an element of

vorticity, Y drF , being shed at the trailing edge whose strength is equal and op-

posite to the change in bound circulaticn, Thus,

'd' =-d Pb (3a)

is the distance of the element of vorticity from the center of the airfoil, dimensional.

when starred. The velocity at the airfoil perpendicular to its surface induced by Y ,*

is, for the sign convention of Figure 3,

wC27r )=O T -xO) (4)

in he linearized solution, the boundary conditions on the airfoil require that, for

each element of vorticity in the wake,

v(x) + u (x) + w (x) = 0 (5)

or

0  + n d+ cos n 0 -( * b ()C 6)

The Fourier coefficients A may be readily determined with the aid of Reference 3,n
Page 99, from which is obtained

cosn" IT I -1 ]n

- (7)

whence A d + 2A = 1 + 2(Z-,,(V+ab;( )
0 T2 

7
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All% '! E(8)

The incremental lift and moment on the airfoil, due to the instantaneous

displacements and in the presence of the flow field generated by d , may now be

computed for the vortex pair consisting of YdF and d Fb on the airfoil, postulating

that these are the only two elements of vorticity existing in the system. Bernoulli's

equation, extended to unsteady flow, gives the pressure difference on the upper and

lower surfaces as

2 + V *P-(X)1()
(Pu- Pf ) x ) (9)

The second term includes the quasi-static effects arising from the instantaneous

airfoil geometry; the first term accounts for the time rate of change of velocity

perpendicular to the airfoil, including apparent mass effects and those arising

from the nonuniform velocity, w(x), at the airfoil due toy d . Therefore, when

replacing the blade by a lifting line, terms in ? / t due to )/ t should

be dropped. When z * 0, as in the far wake, ?0 /t wi ll contain terms due

to i. However, in general, 2 << - and its effects have, therefore, been neglected,

except as they determine the instantaneous vertical position of y d in the "semi-

rigid" wake solutions.

The velocity potential, in terms of the distributed vorticity, is

( )=" -Ijr i dx1P

whence

(X) = ' (x)a x (× - T X

and
1___ _ 1

( x) = -T (x)d x
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The lift on the airfoil is

L= (P -Pt ) dx

and after substituting y(x) in the form given by Eq. (1), the lift is obtained in terms

of the coefficients An, as

dL=,O~rb f4 . -L- (A--- A)b I~( + A, ) b + V (A + 1 A~o
Y, 0 Li 0 -foA1

The circulation on the airfoil is

= "T" dx n (A + A1)b (11)

This is the lift and circulation on the airfoil at any instant due to the elerrent of

vorticity, y d , in the wake and its counter vortex on the airfoil, d Fb . Since

the rigid wake of constant strength is assumed, this effement of vorticity in the wake

has constant strength with time or

If the element of vorticity and the blade circulation, d rb , are to constitute a vortex

pair, then
d Ib = -d.

and

-J7 d - (Ao+ 4A 1 ) 0

which also defines the time history of airfoil motion required so that in moving a distance
* after shedding the elementof vortkcity, y d * , no additional circulation has

been generated by the a*.,joil. Then
A" 7 b .(A A2) b + V A + IAdL ~ -- # - at 7- 2A zA1

Differentiating the first term with respect to t and noting that )/ t = (V/b)

results in
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2  a-A

The first two terms represent the lift due to the vortex pair of which the second term is

the "quasi-static" lift, L . The third term represents the apparent mass and dampingq
effects due to the noncirculatory flow. Integrating the first term for the effects of all

elements of vorticity, which have been shed from the start of the motion, and leading

to the present instantaneous airfoil position,

L -V " 'd= + Lq1 (q V-7 -ak) (12)

Similarly, the total circulation acting on the airfoil is, from Eq. (11)
Ubf [7/+2i -1]T"d -2rb [ V- -((.Sb-d')J

P/b =

and this must be equal and opposite to fhe total circulation in the wake or

Pb dy
Whence

00

+ d = 27tb 0( V - o (.5b a")] - '
If 52 /o V (13)

Combining Eqs. (12) and (13) Jr r a 9

L= L --- /0 b2  )V a -a

If the displacemetits z and a vary harmonically with time, then L will also be of

the form L= L0e igt and, as in Section VIII, the first term, may be readily identified

as the classical lift-deficiency function C(k).
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The incremental moment about the center of twist acting on the airfoil is+b

dM= b (P -P ) (x -ba) dx7

-b
b2 dA 0  3 dA,

a bdL- '4b 2 b-f-- + ---b-- -;F b at
-V (2AO - A2 )j

After substituting for the coefficients An and their time derivatives,

dM ab L V b27 d' + IT 04 n V (AV - z" -abk )b 2

2ndM= abdLl- Vb2 ds + p( 4 2

Adding dL from the previous analysis and summing up over the entire wake gives

2 . - rd - [5V- -aboIab 3 +b

-fit V(o(V - -ab )

Substituting Eq. (13) results in

(14)

z(ii4 +

Examination of Eq. (14) and the expression for L q

Lq =- -2 fr Vb [ o V-Z + k b(.5-a)] ,

indicates that the forces and moments acting on the oscillating airfoil may be

resolved into the following components:

a) a force acting at the 25 per cent chord due to the angle of attack

at the 75 per cent chord (rear neutral point) and multiplied by C(k),

b) a force due to the angular velocity c-. of the airfoil acting at the

75 per cent chord point and given byoi V - b2
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c) a force due to the apparent mass term, Tr,4 b 2  acting at the

center of the airfoil, and a moment fr,/o b- o / 8.

Identification of the forces and moments in this manner frequently permits a considerable

amount of simplification in handling the aerodynamic coupling terms when

6b ( .5 -a) << i

as is generally the case for helicopter rotor blades. This point is discussed further

in Reference 5.
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VII. THREE-DIMENSIONAL ROTOR-DOWNWASH RELATIONSHIPS

The basic relationship required to compute the downwash at the rotor disc

for a three-dimensional rotor operating in forward flight at an advance ratio, I,

will now be developed. Certain statements must first be made as to the nature of the

wake vorticity.

First, the concept of a "semirigid" wake will be introduced; i. e., every

element of vorticity will be assumed to retain the instantaneous vertical velocity

imparted to it at the moment it was shed or trailed. This establishes a spiral wake
descending at every spanwise station with a constant velocity in time, but permits
different vertical velocities azimuthwise. The spiral sheet representing the wake

thus continuously changes shape as it descends. Other than establishing the in-

stantaneous wake location, the effects of this wake velocity will be neglected

(see Section VI). The effect of the wake on its own velocity will also be neglected.
Changes in the mean velocity, which establish the spiral spacing as the wake descends,

are thus ignored as well as the tendency for vortex-vortex interaction of the indivi-

dual spirals. Since the induced velocity at the rotor plane is determined primarily

by the first few spirals, this assumption is believed to be valid. Furthermore, it is

most probable that the vortex sheets will roll up and form two individual vortex lines
in the fully developed wake as in the case of fixed wing aircraft; particularly since
a variable downward velocit/, decreasing towards the center of the rotor, implies

an eventual crossing and almost certain intermingling of the vortex sheets in the wake.
Further refinement of the mathematical model does not, therefore, appear to be

warranted at the present time.

Second, the assumption, inherent in all fixed wing analyses, of a vortex

strength constant in time will be made; that is, viscous effects will be ignored.
Although this assumption is less satisfying for the case of the returning spiral wake

of the relatively lightly-loaded rotor than in the case of a wing in which the wake
extends rearward to infinity or far a highly-loaded propeller, it is consistent with

the previous assumption and is justifiable on the same basis.
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Finally, the effect of the wake-induced velocities in the plane of 'he blade

will be ignored.

The basic relationship required to compute the dawnwash at the rotor disc for

a three-dim3nsional rotor, operating at an advance ratio, p, will now be developed

(Figure 12). The downwash generated by an elementd$ of a trailing vortex line with

strength /Pat a distance A from the element is, in vector notation,

.dq ff ds x A
dq ~ 4 ,, a

It will be assumed that the element of vorticity has been generated from the

trailing edge of the blade at a spanwise station I from the center of rotation when the

blade was at azimuth angle . The vertical component of downwash, dw1 , which
this element induces at another spanwise station and chordwise station x of the

blade when the blade has rotated to an azimuth angle V1, is

dwp ds 2 A1  -dsIA 2
4rR 2 2 + 2)3/2 (15)

- f(i) do (A1  A2  A 3

where
ds1  pid $ cost ds2 =d # sinq + I d .

and

A I= Y + dcos - ' cos( -5)-xsin(5 -f)

A2 - '= + dsin + si sin(t-€) xcos (y -F5)

A3  - z
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All distances are nondimensional in terms of blade radius, R. x is a chordwise

distance measured from a reference point on the blade; for example, the quarter chord

point and X is the distance from this point to the origin of the trailing vortex line.

d is the distance travelled by the rotor hub during the time t = 0-0 and 7 is the

vertical distance of the element of vorticity below the blade. If m is the number of

wake spirals to be used, then

d= [(2irm+ P' )- + ]

where Z. is the steady-state displacement of the blade out of the tip path plane,
and S is the spacing between the blade generating the vorticity and the blade at

which the downwash is to be computed. For a rigid blade -.(7 ) - .(,L) = a,(-J.).

If the rigid wake is assumed, A is the mean inflow through the rotor determined

fron. i , c , kr...w. hrust and rotor attitude. If nonrigid wake concepts are to be used,

then A is represented by the series:

A 0+ Z > ccos n ~ sin 5n

The coefficients "Xn may be approximated, at advance ratios below V = 0. 1; by the

various harmonics of inflow at the rotor disc obtained from a first iteration using

initially uniform inflow. This is equivalent to assuming that each element of vorticity

retains the velocity imparted to it at the rotor disc at the instant it left the blade.

More accurately, the coefficierts An may be established by using a mean value of

inflow experienced by each element in one revolution as it travels rearward under

the rotor.

The total downwash due to a single trailing vortex is obtained by integrating

Eq. (15) up the wake for each blade.

This determines the downwash in terms of the strength F of a trailing-vortex

filament in the wake genetated by the change in bound circulation along the blade.

In the quasi-static solution, this change may be assumed to occur in n (usually five)
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increments along the blade and a vortex filament trailed between each increment

of strength, equal to the change in bound cir,,ulation between two adjacent incre-

ments. The downwash at the midpoint of each increment can be then expressed in

terms of the wake vortex strengths. The bound vortex strength is, in turn, expressed

in terms of the downwash and the blade pitch angle. The n resulting simultaneous

equations may then be solved for the downwash and loading.

The downwash due to the shed vortex system is

dw2 = - 1 x d dV5  A 2  d9

($) 4R d' (A1 2 + A2
2  +A 3 ) 3/2

= F (~ ~(16)

This expression should be integrated with respect to) over each finite interval

of the blade before integrating with respect to O(see Eq. (21), page 57).
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VIII. SUGGESTED THREE-DIMENSIONAL SOLUTION AND COMPARISON WITH
EQUIVALENT TWO-DIMENSIONAL SOLUTION

1) Method of Solution

In this section a combined analytical and numerical procedure will be
considered to obtain the desired solutions. The rotor wake will be divided into

a "near" wake and a "far" wake, the near wake including that portion attached

to the blade and extending approximately one-quarter quadrant from the blade

trailing edge.

The chordwise variations in the velocity w induced at the airfoil by the

far wake will be neglected. This is equivalent to using lifting-line theory when
computing the effects of the far wake on the airfoil bound circulation and lift.

If f(#) and F(O) of Eqs. (15) and (16) are independent of x, then the Fourier
coefficients of blade chordwise vorticity are zero except for A whose value,0
for a uniform wake induced downwash, w, along the blade chord is, from Eq. (5)

and Eq. (3), A0 = -2 w. The bound circulation induced on the blade by w is,

therefore, from Eq. (11),

- -2nbw

and the corresponding lift is, from Eq. (10)

L=l-b2 Tbwv= r V (18)

The lifting-line approximation will also be used for the near trailing wake,

an approximation which is clearly ;ustified for the high "aspect ratios" of rotors
and rotor/propellers.

The near shed wake will be treated using analytical techniques and lifting

surface theory. In order to examine the validity of this approach, the two-dimensional
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treatment of the rotor of Reference 6 will be rederived using a similar treatment of

the near and far wake.

2) Evaluation of Far Wake Lifting-Line Approach for Two-Dimensional Case

In Reference 4, the effect ot the returning wake is determined using a two-

dimensional model for the three-dimensional rotor. Tho far wake is repiaced by rows

of distributed shed vorticity extending toht: below the rotor (Figure 12) at
distances z = nh from the rotor plane in which the near wake is contained. The

near wake extends from the trailing edge, . = 1, to infinity. All distances are

nond.mensiona!ized in terms of the blade semichord, b.

The velocity induced by an element of vorticity, Yd , in the far wake
will now be averaged over the blade chord (Eq. (17)), using the results derived

in Section VI for the element of vorticity, Yd. , in the near wake, and the
integrations performed over both portions of the wake separately. This results

in an expression for blade circulation

Pb= b 2 + I T d.

+-,.f _WA f ,

where L is the quasi-static lift; that is, the lift generated in the absence of wakeq
effects. It is shown in Sec ion VI that the lift may be written in terms of the coef-

ficients of Eq. (1) as

dL= b r / (A0 - -I A 2 )b+V (A+ A 1 )j
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and again, if the velocity induced over the blade by the far wake is constant over

the chord and D/ t= 0, as discussed in Section VI for the lifting-line approximation,

then, after substitution for the coefficients and integration over near and far wake,

L =Vb d + Vbj - d5

1# - ~'0 -, n2h2 +g2
2 zw 10 nh +

S - Tr 2

The last term represents the apparent mass or impu..ive force. Identifying the shed

vorticity with the position of the blade at the time of its shedding, t - At, and
assuming a harmonic va riation, Y(t) = 'Y e i t

t- At)=" e"a[t-A(- 1)]
0 b 2un

'o e c [ t ( -I

and with "Y' .9= d dt (from Eq. (3a)), the lift-deficiency function is

obtained after manipulations identical to those outlined in Section VI, as

C (k , m , h ) - L_ 
d,9g . ,,

where m = T and k= M The integrals may be evaluated as in References 4

and 29, whence,

C (k, , h) - i Y1

J1 - i Y1 +Yo +iJ +

Since the intermediate steps in the above derivation follow the methods of Reference 4,

only the essential derivations have been included in the above very brief outline.

The nomenclature is the same as that of Refeience 4, consequently, care should be taken
th

to avoid confusion of the n and m used here (in Reference 4, n defines the n wake

below the rotor and m = - ) with the n and m used elsewhere in this paper, which
thdefine the harmonic of rotational speed and them wake spiral. For the conditions
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of harmonic loading, to which the analyses of this paper are confined, m = L"T ,is
always an integer; therefore, e = 1.

In Figure 13, a comparison of the exact solution of Reference 4 with the

approximate solution given above is made for the range of reduced frequencies of

interest in the present analysis. The real portion of F(k), which establishes the

reduction in slope of the lift curve, is closely approximated. At the lower values

of h, the error in phase shift, represented by G (k), becomes appreciable. Since

the h of interest in rotors is usually above 1, this difference does not introduce serious

error.

The relative unimportance of the phase shift in determining the magnitude

of harmonic loading suggests a further simplification in which the rows of distributed

vorticity are replaced by a continuous vortex sheet, an assumption which has a close

parallel in the classical vortex theory of the propeller. When the frequency of oscil-

lation w is now restricted to harmonics of the rotational speed, the vol tex strength

of any horizontal distance from the airfoil will be the same at all values of z,

where E is the vertical distance below the rotor and now replaces nh. The induced

velocity at the airfoil, due to an element of vorticity in the wake, is

dw = 1 r (,d

An infinite spiral sheet implies an infinite number of blades in which case

x -- P0 in the above expression. For harmonic loadings, the blade circulation, r'b,

will be of the form

Pb =  e i e in~t

and the element of vorticity in the wake, Y ) may be identified with the

circulation at the time of shedding at time t - At. For any spiral at distance Z

below the rotor and using Eq. (3a)
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%=- d d zd

Also,

=f R and Atdt

whence n
n zn

For the "rigid" wake, the spacing between vortex rows, h, is given by

Q h b = or h 2 n RAo
2 1TR 0 Qb6

where Q is the number of blades. Therefore, in the limit

d P Qb P e inQtd z 2 Tr RX°  n

Integrating the effect of the entire wake results in an expression for the mean

velocity at the airfoil

in r e n Q inb - /R2n *b e d&. dzw 2 f" " 2 +S _2"
4i RA _ 00 z

The integrals may be evaluated with the help of Reference 32, Table 103, giving

the resu It

Q in

4TrAoR1
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This is the instantaneous downwash at the blade. Since the airfoil dimension

in the x plane has not been considered, the instantaneous lift will be determined by

the quasi-static lift and this induced velocity. Assuming a blade pitch variation of

the form

inQt
n

the instantaneous circulation is

n- w 2irQRbOnnn I- b

Following the usual definition, the blade solidity, a- is given by - 2 Q b
Since the quasi--static circulation is =2 r Rb en ,and the lift, whenaerag

Sine te qas -sati cicuatin i F 2Tr R 9 ndthelif, wenaverage

downwash velocities over the blade are used, is

L=fV r b

it follows that the lift-deficiency function now takes the form

C = I

1+ a, T

and is independent of the frequency.

At the lower reduced frequencies, it gives an excellent approximation to the

more exact soluti on although, by the nature of the analysis, the phase shift cannot be

predicted by this method.

Ar alternate form of the expression C, in terrrs of the wake spacing, h, is

1
C4

+ T
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and this form has been used to obtain Figure 14 which shows a comparison with the

exact values, replotted from Figure 13. In view of the excellent agreement, between

the exact and approximate two-dimensional solutions, it is of interest to attempt a

similar analytical solution for the three-dimensional case in vertical flight.
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IX. THREE-DIMENSIONAL SOLUTIONS FOR VERTICAL FLIGHT

1) Uniform Downwash

Rotor-vortex theory is generally developed on the basis of uniform downwash.

This condition is satisfied if the blade has constant circulation along the span, and

this, in turn, is satisfied only for the case of ideal twist or taper; that is, varying

inversely as the radius. In practice, such a condition is closely approximated by the

usual linear twist distribution, since the contributions of the blade sections in the

region close to the blade root, where the ideal twist is clearly not satisfied, are small.

Constant circulation implies a tip and center vortex only, with the tip vortex

alone contributing to downwash. For this specialized condition, Eq. (15) becomes,

for hovering or vertical flight,
Pn [ I - 1Zcos (iP'-€ d

dWl 4 7 -/+ q z+ it - * ? ev.5

The next step involves replacing the spiral of trailing vorticity, r, by a vortex

cylinder, which implies an infinite number of blades. The distribution of vorticity

along the z axis, as developed in the previous section, is then

d P P Q

a- Z 2T

All distances are nondimensionalized in terms of the blade radius, R.

The downwash velocity may now be obtained by integration over the complete

wake as

44 cs( ]
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Considering first the simple case of constant thrust and, hence, r constant. This

results in PO

4n R

independent of .Since ?j in hovering flight

4 A 2 QR 2

Q

The total rotor thrust is

T =QR 2f /0 Q dV 11 2 R 2 . 2 2 > 2

or, with, the definition C T :=T/ n iR 2 )2 R 2

7 -w

as in actuator disc theory.

Consider next the case when "n varies harmonically with azimuth such that

r ns sin n + f'nc cos 11

Then

I ns T 0  i n. + Inc n71nco
2-

1T roRr h O

The downwash, thus, has the same periodicity as the circ2Ration change. The

spanwise distribution is increasingly concent-ated at the tip as the order of the

harmonic increases, a result somewhat similar tc that obtained in Reference 3. How-
ever, a complete solution requires the introduction of the contributions of the shed
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vorticity. From Eq. (16), specialized for hovering, the total downwash due to the shed

vorticity is
,o 2n

d d d V__ sin($ - ) 3/2d9dz
W -a- ['L.d+l"2+2 z2 1?t cos( -y¢)]

1 [2 2 + z2-2 co

The order of integration may be interchanged since the singularities are retained in

either process. After integrating with respect to z and expanding in a sine series

:~~ ~ -! ,ain,2-) ,i ( -) 't. Z.....?(

which reduces, after substituting = Fns sin n + rnC cos no and integrating

over $and 1 to

w2=- 2" f ns(2 - 7)sinn k  + fnc(2- zn)nrcosn

Summing the downwash due to the trailing and shed vorticity results in the

interesting result

W RQ Crns sin n + Pnc cos n(/]

This is the same result as was obtained in the previous section for the two-dimensional

case, and, in a similar manner results in a lift-deficiency function

1

2) Nonuniform Downwash

A more general solution may be obtained for the case where the circulation

46



on the blade is expressed as a power series

dz b (= 0

Solutions to this case may be more readily obtained if the periodicity of the

circulation is expressed in complex form

e = ne

Furthermore, it will be assumed that the mean downwash through the rotor is initially

uniform over the disc.

The trailing vortex system will now consist of the tip vortex, whose value is

2rb R ET,
1=c

and a sheet of trailing vorticity due to the change in circulation,- C/McJ, along the

span. The downwash due to this sheet of vorticity is given by Eq. (16) specialized

for the hovering case. The total downwash is obtained by integration over the complete

wake:

which, after integration with respect to z, results in

The first integral gives the downwash in the roter plane outside a vortex

cylinder extending to infinity from the rotor plane and is zero for Foo. This, however,

is not the case when Pvaries with time or azimuth and the independence of blade
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elements is not, therefore, as readily proved for this case.

Integration with respect to/ may be performed when P has the form rn e in

by change of variable

and application of the theorem of residues. The result is
I

w] Q n 2or d Fn() (e)nd -  d - In 'Zn

L -d n lJle f

Similarly, the contribution of the shed wake may be obtained as

in V. n - I7 16 + id
W 2 n R Ln F(0< n n~ +nT ~ ()-2 k R

To these must be added the contribution of the tip vortex

Qe in' p
1l 7 r2 o R (1)

eIT AOR

With Iln = 2n bQR : b . , the integrals may be evaluated by integrating

term by term ( . 1 ). The result is, for the nth harn'monic of downwash

00

The downwash at I thus depends only on the circulation at , and the lift

deficiency function is the same as that previously obtained. For example, if the

va'iation in downwash iv" Y" is obtained by a pitch variation of the form 0 = 0 n l

then the instantaneous circulation is

rn= 2 Tr 0 1' b [0 -Y
Pn n8'
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or, since I and are interchangeable variables,

yo 4 o o

and I as before.
0n 1 IT

This reduction in circulation, due tothe wake, is of particular importance

when it is desired to ose a rigid or semirigid propeller as a control device by use of

a first harmonic cyclic pitch variation. Since small stiff propellers suggest high disc

loadings, CT will be high, or alternatively downwash, ?*0 , is ihigh, and appreciable

reductions in moment over those predicted by quasi-static aerod' =_Mcs wiil result.

For example, conside.- a rotui/propeller with a disc loading of 25 lb/ft2, a

tip speed of DR = 700 ft/sec and operating at a mean angle of attack of aT = 0. 1

radians. Then CT= 25 0.0214 and C = 0.49, resulting in about half the moment

predicted by simpie blade element theory. Evidently, a similar result will occur following

rapid increase of collective pitch of a control rotor, resulting in a lag in thrust which

may become of importance if high-gain automatic-stabilization equipment is installed.

The above analysis has been developed with the usual assumption of a rigid wake.

The effect of this assumpticon may be seen by deriving the same result from consideration

of simple momentum and blade-element theory.

From momentum theory, for uniform steady inflow and a superimposed periodic

thrust change, Tn e in)t = 2x mass flow through rotor x w ne int where w n is the

velocity change through the rotor disc due to Tn .

Considering mean velocity only, w0 = N 0R in determing the mass flow

T=2x it R2 x ORx AnQR orCT= 2 Ao X n
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From the blade element theory for uniform flow through the rotor and periodic change
inQt

in pitch, 0n e

inOt -- ) e r t

CT e n - 8 n )n
n

and with C -- CT = 
qn n ' C T  q n-+qn 1 +4k '

as in the vortex theory.

If, on the other hand, the periodic thrust were to ba computed using the

nonrigid wake concept of vortex theory (Eq. (15) ), then ?n would have to be

included in the computation of mass flow.
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X. THREE-DIMENSIONAL SOLUTIONS IN FORWARD FLIGHT

Having established the validity of the proposed approach and obtained an

analytical solution for the limiting case of vertical flight, it is possible to proceed

with some confidence to the solution for the three-dimensional rotor in forward flight.

The treatment of the near wake will be considered first and, in particular, the near

shed wake, since this wake introduces the important singularities of classical unsteady

aerodynamic theory. The method of solution presented in the Appendix may be followed

directly if the curvature of the wake is neglected as in Reference 13 and, furthermore,

if the blade is treated as a two-dimensional airfoil in the presence of an element of

vorticity I ' df at from the origin. The considerable simplification in the

analysis, resulting from the latter assumption, appears justified on the basis of the
results of Reference 14 in which the close agreement was obtained between the two-

dimensional and three-dimensional solutions. This approximation is clearly inadmissible

when treating the far wake.

The circulation due to the near wake may then be determined by assuming

the straight near wake to extend aft of the blade to infinity. Following the treatment

in Section VI and integrating over the necr wake for all vortex elements, results in an

expression for the bound circulation on the blade due to the near shed wake

To this must be added the circulation due to the far wake. Additional circulation

arises from the velocity u of Eq. (5) which will be designated as the quasi-static cir-

culation

= -2 Tr b u

For a symmetrical blade spacing, when the frequency of oscillation is an
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integer of rotational speed, the effects on one blade of the bound vortices from the

remaining blades are zero for the case of r ° when n is equal to or a miltiple of the

number of blades. This is not othe-.wise true. However, unless a very large number

of wide chord blades are used, the effect- of the bound vortices on each other are

negligible and may be ignored. This may be readily verified from Eq. (16), as dis-

cussed in determining the choice of upper limit in the integral obtained from Eq. (21)

below.

Since we are oncerned here with harmonic blade loads and motions, the

blade bound circulation rb will be defined as

['($) Z f's0 sin n Qt + r cos n Qtrb( ) --() (19)

where the trigonometric rather than the complex form is employed in keeping with

the more usual practice in rotary wing aerodynamics.

The distortion of the near shed-wake vorticity distribution, due to the first

harmonic variations of forward velocity, will be neglected; hence, the relationship

for velocity.

-dt

The shed vorticity in the wake may be related to the time rate of change of blade

circulation (Eq. (3a)) as

= _ d dtadt b d

Whence, since Q is constant,
10

2d n  C/, f2.-t
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An element of shed vorticity in the wake may then be identified with the position of the

blade trailing edge, b, at the time of its shedding, t - At. Now t = and At =

- Therefore,

n= ns co 1)] - nc sin n [ - b,

Substituting in the integrg! for F S above, results in

[ (I) - b  t -n csin nf.I 'c-m sin n + Pncc n C'] is5 " (20)

where nb L-/+1 ]

c ~ R2

= ~ sin n- () L-1] dg

The coefficient nb/I R appearing in the solution is the well-known reduced frequency
k specialized to the case of the nt h harmonic of rotational speed at the blade station,

I J in question. The integrals, first computed numerically in Reference 34, may be
identi fied (Reference 29) as

IcT" r + J1I ) cos k - -T F(YI- Jo sin k

(Y +J 1 )sink- (Y 1 -J )cosk- k-
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2) Far Shed Wake - r SF

The far shed wake will be treated by neglecting the chordwise variation of

velocity along the airfoil chord due to the wake. Since the primary effect of the

wake appears as the blade passes over the shed or trailing vortex line generated

by itself or by another blade, and since the distance of these vortex lines below

the blade may be of the order of one chord length, the validity of the assumption

may well be questioned. However, the analysis of the equivalent assumption for the

two-dimensional case, given above for comparison with the exact solution obtained

in Reference 4, indicates that the assumption is certainly valid, at least for the

reduced frequencies of interest in rotor-blade loading analysis.

Setting x and -X. equal to zero in line with the above assumption, it is

possible to perform the integration of Eq. (16) with respect to d for the case where

is constant and obtain the contribution of a vortex line extending fromO to -, .

This integration may be performed with the aid of Formula 167, Reference 35, giving

the result . - sin

+ os f Cos )7 Cos 11 Y- '- )
Z Z+ d - li c05(h.0J2J ~~ Co (21)-

+ .

The total downwash at the blade at any station I and azimuth position Y' is

obtained by integration over the far wake over m spirals

2nm+ +g'k- -M

w=. 0 ( ) d54+. k do (.
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The choice of the upper limit in the integration must be made with some care.

Defining the end of the far wake at an azimuth angle n/2 from the blade appears

to be reasonable, and little error is involved if this angle is varied from iT/2 to

3n/2 or decreased to Tr/4. Evidently, this choice must be made on the basis of blade

and rotor geometry; however, a simple integration of Eq. (16) for the case a = d = 0

and Y'- 0, varying from 0 to iT/2 or greater, will generally clearly indicate the

desirable choice of upper limit.

As in the case of the near wake, elements of vorticity in the far wake are

identified with the position of the blade at the instant of their shedding and in terms

of the time rate of change of bound circulation. Whence, from (19)

d1 - n f rn
1  

cosn - nc sinn
n = 0 n

When the bound circulation varies appreciably over the span, the actual circulation

may be represented by a series of straight distributions extending from 0 to various

spanwise locations, .1. Substituting in the integral for w2 I
2 nm + V-1"+ S -/2

n r ~cos n sin nftddZ

w2  ir J Ijns jnc

n =0

which may be written in the form

00 0
2 - (Ak k Bk (22)

W2 [t>n (A cos k + sin kn e k', nce

n=0 k=0 - p (Ak +Bk sink)
(nc.o n nsZ

where the coefficients A and B are obtained from harmonic analysis with respect

to ;/of the results of numerical evaluation of the integral over the wake for m spirals

at values of , from 0 to 360 degrees.
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Ak identifies the cosine coefficient of the kth harmonic due to a cos nncvariation of bound circulation extending from 0 to .1 and similarly with the

remaining coefficients.

3) Trailing Wake - rT

A treatment for the system of trailing vortices using Eq. (15) similar to that

used for the far shed wake, results in
a0 2Trm + + f'

W, la 14~ irR sin n 0 t+--Pnc cos n 'tf

Whence
00

W4= . 1 2 cosk'+ Q k )

Sn 0 k=0 ns ns,  nse (23)

k coskP + Qn sink$')]

where i now identifi'. the spanwise blade station from which the trailing vortex is

assumed to originate.

4) Determination of Blade Circulation and Lift

Substituting the expressions for w I and w2 in (17) results in an expression

for the bound circulation or the blade induced by a wake generated by changes in

this bound circulation.

The total bound circulation on the blade may now be obtained as

6(24)
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where r is the quasi-static circulation, previously defined as that which wouldq
occur in the absence of any wake effects.

In order to obtain it is necessary to define the blade motion. This

motion may consist of contributions from all the blade normal modes and, in cases

where the blade is operating close to resonance, the dominant mode should be

included. Far the purpose of illustration, a rigid nontwisting blade flapping through

the angler will be used, operating a pitch setting 0 (Y), which includes the twist.

Then u is uniform over the blade chord and is given by

U= QR[(?+psin9) (l)- + fiCos~'

From (17) it follows that

Pq =2 T b u

The contributicn of the near shed wake is given by Eq. (20) which may be written

in the form
~0

(I'1 C +f S ) Cos n + (r -Pn

_N ns n nc n ns Sn c ) sinn=lI

where

C= Ic k , Sn= 1k andk nb

The contributions of the far shed wake and trailing wake may be expressed

in terms of the total downwash normal to the tip path plane expressed nondimensionally

as

w= w2  p tan i

R (25)
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where w2 now contains only the far shed wake and i is the angle between the tip path

plane and the relative wind, positive nose up. Then, from (17)

T + [S -2rb QR,0

F
If the flapping angle P is expressed as

a a cos n +b nsinni

and the bound circulation and inflow ?i are defined in the series form given by Eq. (19),

then equating coefficients in Eq. (24) results in an expression for n " At this point,

a nondimensional form of the circulation will be introduced and defined as

f'n

n 
/7=

n

Then in nondimensional form,
'ro= [e - Ao- - aII

Is=[Pe - AIs -a11 L + - b2 ]-( s S1 - "1c C1 )

TIc= A1 +bl ao + a2]-( 'flsC1 + 'cS1 )
(26)

and

ns [ - -nn +--(bn +b n )]-( nsSn - 'ncCn
S~ ~ + sn n+ n n~

(n c n+nb n+ (an+ +a n )( nsC + nc'n
The lift, after summing over the entire wake, may be obtained separately:

for the near wake, from (12) in Section VI and, for the far wake, from (18) in the

form L( ,) Vb d + V(fPT + F + q +/0

which, after the identification of y ( ? ) with the blade position at the time of its

shedding, as was done for the circulation, becomes
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L('. I R ['nsn ~ -/nc~' Ibjc

n bI sin n ck' o s n~ v/'II- n/ V  [ ns + n c cos

(27)+ V + qT +-1 +r' b 2

where. with k = nb as before,

I=n b =-1 Jo cosk +-TrY sink

and I <, 1

n cosb (-1)4: = T J sink - T Y coskc If1/ CO-1R2

That, Eq. (27) reduces to the classical case for a two-dimensional airfoil may be

readily verified by letting

T S =0
F

and expressing the circulation in complex form

= P e in #P fq = q n e in *

Then with n ns i we obtain from (20) and (24)
nc n

C +

or

e' k f k

kekf~ e 59
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Similarly, with L= Ln ent from
-from ~±rrb

L VF C , +' o 7" V
+ L

Since L =/OV I" it follows that
qn qn 005 -ik -9 - .

L n= k n q ,I r2 + 7 zb2

n 00,,+ 1 e - ik .9

1 Jg2-. 1 . d

The coefficient of L may be readily identified as the lift-deficilncy function C(k)

of Reference 29.

5) Blade-Flapping Coefficients

The blade displacements are obtained from the blade-flapping equilibrium

equation

where the flapping hinge offset has been assumed substantially zero. The effect of the

offset is not large unless the blade Lock number is low and the offset appreciable.

The coefficients an, b n decrease rapidly as n increases, consequently, the lift may

be approximated for the purpose of determining an , bn by its quasi-static value

(Eq. (18)).
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or 2
2 J 4 R 402+ pJ sin~t x

* 1T'~+ o , .~ sinn + cosns+ ]1 d

The mass constant of Lock number of the rotor blade is

LN 2_ nbR 4

T

where the designation LN is used in place of the more usual y in order to avoid

confusion with the circulation.

After solution of the differential equation for the particular integral
representing steady-state flapping motion, the coefficients of the Fourier series

for blade motion are obtained as
1

n 2N(n2  f S26 nc+ nf( +l)s- V(n-1)s d (28)

o (8
b n 2Tn) 1irns+ I(n-1)c -t~(n+lcJ d7

All relationships necessary for the determination of the blade loading have
now been established.

As previously mentioned, solution of these equations for the blade loading
presents no particular problem using the above equations and standard techniques

of matrix inversion. However, the process is evidently a long and tedious one;
in particular, when the circulation varies appreciably along the span so that a tip
vortex, and a shed vortex extending from the root to the tip, cannot be used. For
this reason the interharmonic coupling terms appearing in References 22 and 24 were

examined in Reference 24 in some detail. As a result of these analyses, it is apparent
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that a reasonably exact solution can be obtained by taking advantage of the predomi-

nant effect of the steady-state circulation in determining the harmonic content of the

downwash, at least for the first iteration. A practical rotor blade, whether articulated

at the root or restrained to flap elastically, will, by virtue of the blade motion, have

small harmonic lift variations compared to the steady-state lift. Although these

harmonic-lift variations are the primary source of the fatigue loading on the blade
and the vibratory inputs to the rotor shafts, their magnitude is, nevertheless, smali

compared to the steady-state lift carried by the rotor. Evidently, if this were not so,

the aircraft would be subjected to excessive vibration and would be otherwise unflyable.

Consequently, the following approach suggests itself. First, assume a uniform inflow

distribution through the rotor computed by the approximate momentum relations which

are shown in Reference 24 to agree well with the exact values computed from vortex

theory. Knowing the rotor-thrust coefficient and the blade-twist distribution, determine

the downwash w1 from (24) due to the steady circulation y 0 only. For constant cir-

culation, n = 0, w2 is evidently zero and Eq. (24) becomes

W I , b pn

0 o (29)

and the steady-state inflow due to the constant circulation is from (25)

0 (¢ )-_tani+ b pOS0, oe (30)

From Eq. (26), the bound circulation y,0 is given by

YO= 0 - 0 .. al (31)
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In the first iteration a1 may be computed from uniform inflow theory. The trailing

vortex strength y 1 at any station I in the wake is related to the bound circulation

on the blade byy o(,)= (Y - Y, ) anJ is obtained inthe numerical solution

by taking the change in bound circulation y over the desired increment of the blade.

In the integration of Eq. (15) the ,1 stations are then located midway between the

blade stations Y . Substitution of the trailing vortex strength thus obtained in the

system of Eq. (30) and simultaneous solution, results in the first iteration of the steady

0
state downwash Ao . Normally five to seven stations along the blade will adequately

define the variation of downwash distribution.

New values of coefficient PO may now be obtained using the new values of

.o in Eq. (15). Physically, this has the effect of distorting the wake as shown in

Figure 15 and discussed on Page 35. The iteration is rapid as indicated by Figure 16

which shows the downwash distribution for an untwisted blade computed by assuming

constant o compared with the second iteration performed as described above. The

effect of the first harmonic downwash o was small for the particular case investigated

where the rotor is assumed to be inclined through a relatively large angle and the heli-

copter accelerated through transition. However, as shown in Reference 24, the effect

of this first hcrnimonic variation in ) may be of considerable importance for a helicopter

in equilibrium flight at slow speeds.

Having established the harmonic variations in downwash on the rotor due to

the steady-state lift of the blade, il is now possible to compute the harmonic airload

corresponding to this downwash distribution from Eqs. (26) and (27). Simultaneous

solution of this system of equations is evidently necessary. For the first iteration

it may be noted that, at least for the harmonics higher than the second, Eq. (26)

may be approximated by

Y ns - ns Ync =  nc
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since, as is evident from Eq. (27), the flapping coefficients become small for values

of n of three and above. Expressed in another way, the lift alleviation due to flapping

becomes small for the higher harmonics. However, in the presence of resonancr with

one of the elastic modes or in the case where one harmonic of downwash predominates

over the next highest or lowest, blade flapping becomes significant, and its effect

should always be tested in the second iteration.

Treatment of the trailing-vortex system due to the higher harmonic airloading

follows exactly the same procedure as has been outlined above for that due to the 0 th

harmonic or steady-state loading. The computation of the additional coefficients Pi
represents the only major machine computation process required in the solution of the

problem. These coefficients depend only on the wake spacing, the number of blades

used, and the advance ratio p. Of these parameters, the advanced ratio apears

to be the more important.

As mentioned above, the computer time required to obtain a set of coefficients
varies considerably with the interval size used arid number of spirals represented. A

considerable amount of time has been spent in an attempt to determine a reasonable

compromise between computer time and accuracy. 1, has been concluded that a

minimum spacing of 7 1/20 for ,, and / in the far wake appears desirable in order

to obtain an accurate prediction of the harmonics up to the sixth, with errors not

exceeding 20 per cent for harmonics up to the ninth. In the near wake minimum

intervals in of 2 1/20 appear desirable except that, in the case of Eq. (21)

and using the limits defined by Figure 11, a closer spacing of the last few stations

may be required. The near wake is defined as tha. located approximately an eighth or

a quarter of the disc away from the blade. The exact definition of the end of the near

wake is not of major significance within the limits quoted.

Three spirals appear to define the harmonic content within a few per cent,

although, if accuracies greater than 5 per cent are desired, six spirals should be

included. It is not believed that the precision of the mathematical model used

warrants this additional accuracy.
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In particular, it should be noted that the m.athematical model ignores wake

interaction effects and, in particular, the tendency for vortex-vortex interaction, which

will, in general, result in the rolling up of the vortex sheet after a few spirals. Since

the major contribution to the airloads occurs from the first spiral, a more precise defini-

tion of the wake form is evidently not warranted and, as in the equivalent applications

of fixed wing theory, the mathematical model used in developing Eqs. (15) and (16)

is believed to be adequate.

Exact definition of the machine-computer time required for a particular problem

depends on the program used. However, the computation of a set of coefficients P and

Q for one value of 1, and 5 requires approximately one-half minute on an

IBM 7090 computer. The program is described in Reference 36.

The treatment of the shed vortex system follows a similar approach,

providing the approximate treatment of the phase shift suggested above is used,

and the integration stopped at the appropriate limit determined by the reduced

frequency corresponding to the harmonic and spanwise station under consideration.

To summarize the approach suggested above, the following steps may be

identified:

1. Assume a mean inflow through the rotor using approximate

momentum relationships to determine the induced flow component. Integration

of Eq. (15) for several values of / then defines the coefficients P and Q of Eq. (23).

2. Using Eq. (31), the trailing vortex stength at 1, corresponding to the

blade spanwise pitch distribution and the assumed uniform downwash distribution,

is obtained in terms of AO (  ). This value is then substituted into Eq. (29) and
a simple matrix inversion gives the first iteration for 0along the span.

3. With 1his new value of A0 , obtain revised values of the coefficients P
0

and Q and repeat the process. Convergence is rapid and usually one repetition ;s
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sufficient. All the desired harmonics of downwash Xn due to y may then be
00obtained directly from Eq. (29).

4. The airload corresponding to any higher harmonic downwash is

obtained by computing the additional downwash from Eqs. (15) and (16), neglecting
interharmonic coupling by setting j = n. y n is obtained from Eq. (26) where now

_X = -\n + -n and the iterative procedure described above then followed.n n o

The underlying assumption in the above-outlined approach is evidently

the neglect of interharmonic coupling. This point has been discussed in some
detail in Reference 24, and many examples of the magnitude of this coupling

effect have been given. Evidently, the assumption must be used with some care

in the presence of resonance with one of the higher harmonic blade loadings, since

the interharmonic coupling effects may then induce appreciable airloads at the

next lowest and highest harmonics. In general, however, neglect of these harmonics

is generally valid because:

a) the primary contribution to the higher harmonic inflow distribution

comes from the steady-state circulation on the blade, and the contribution

of say, the nth harmonic to the 1th harmonic is small in comparison.

b) the near wake induces primarily the harmonic of the bound circulation.
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XI. EXAMPLES OF COMPUTATIONAL RESULTS

1) Computations of Downwash

In order to examine the nature of the induced flow through the rotor in

forward flight, Eqs. (15) and (16)were programmed for numerical integration on high-

speed digital computers to determine the number, m, of spirals and intervals in both

and ,brequired for an accorate prediction of the harmonic content of the wake up to

at least the sixth harmonic. The number of spirals were varied from m = 3 to m = 12

and the interval sizes from A0 = A 1'= 2.50 to 200. A satisfactory compromise was

found to be three spirals and intervals of 7. 50 in the far wake and 2. 50 in the near

wake, giving a solution time on the 7090 computer of approxiately one-half minute

for the downwash at one spanwise location due to one blade wake and for one harmonic.

In Figures 17 and 18 are plotted the harmonic content, up to the sixth harmonic,

of the downwash at the rotor generated by a tip vortex of constant strength for two

values of p corresponding to transition and to cruise flight regimes. Unlike the

fixed wing, a rotor blade is highly loaded at the tip and much of the basic character-

istics of the downwash may, therefore, be determined by examining the effects of the

powerful system of trailing vortices shed over the outer .ew percent of the blade span,

a system adequately represented by a single tip vortex of strength equal ' the mean

blade circulation.

Considering first the transition case p = 0. 1, it is evident from Figure 17

that the steady-state value of downwash is substantially constant over the disc and

the initial assumption ot constant o is satisfied.

Of considerable interest is the pronounced first harmonic variation in downwash

generated by the tip vorlex which, v, low advance ratios, will produce an upwash

at the leading edge. The existence of this first harmonic variation in downwash was

first predicted by the theory of Reference 14 and demonstrated by the flight-test

observations in Reference 21 and the wind-tunnel tests of Reference 22. In forward
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flight, the spiral formed by the tip vortex is displaced aft and, since the velocity

field outside the spiral has a vertical component, all points ahead will experience

an upwash. Evidently the assumption of uniform inflow is violated and a further

cycle is necessary before the downwash can be defined with any accuracy. Before

this can be done, it is necessary to relate 'he downwash characteristics to a particu-

lar flight condition and rotor configuration; in particular, to the total inflow through

the rotor. This consists not only of the downwash; that is, the velocities induced

at the rotor disc by the wake, but also contains components of the forward and climbing

velocities. Although the curves of Figure 17 are specialized to a particular total inflow

of k = 0.05, to a three-bladed rotor and to a forward flight of p = 0. 10, they are

now otherwise generalized and will fit a wide variation of rotor attitudes, thrust
coefficients and solidities.

Since the wake is generated by the blades, the inflows which have been
computed are those relative to a particular blade. If the higher harmonic motions

of the blade above the first are ignored, a valid assumption and certainly well
within the limitations of the assumed wake geometry, then the inflows plotted are

those perpendicular to the plane containing the blade tips, or 1he tip pa'eh plane.

The steady-state values of - and p which appear in the solutions should, therefore,

be computed on this basis. It should be noted that the buik of published rotor

information uses the control axis as reference; however, the conversion from one

system to another involves minor corrections and is readily made. Foi a discussion

of the different reference axes, see Reference 37.

The induced flo w is directly proportional to the strength of the tip vortex.

The steady-state component due to a steady-state tip vortex P is, from Eq. (23).

S= b Yo o

Hence, from Eq. (25), the total inflow is
_ b Y P -pO tnbo .R 1' o - I tani

0 200
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Now P is a function only of Ao, and the number of blades used. Consequently,
the numerical integrations from which P' is obtained may be used to represent anyb
desired combination of rotor solidity, represented by b-, and the circulation y
determined in turn by Phe collective pitch setting 0.

For example, consider a helicopter climbing out at an angle of incidence

of i L- - 150, or alternatively accelerating through transition with this tip path
plane inclination. These would be typical operational flight regimes at advance

ratios of the order of p = 0.1. The induced flow is then, br X of 0.05,
0

0.= +ptani =0.023

The corresponding rotor-thrust coefficient is, for constant bound circulation,

C T =7 7r YO2 0

The rotor configuration must now be defined. Selecting a solidity of Gr= 0. 07

defines = 0.0183. From Figure 17, the mean steady downwash coefficient is

P0 ,, 28. Whence,0

0 0 2R
0'o pO " 0. 045

0

and

CT = 0.00495

Using the approximate momentum relations for forward flight suggested by

Glauert would give

CT. = 2( +ptan i)2 + P 2 =0.005
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and evidently this approximate relationship is in good agreement with the vortex

theory developed in this paper.

A correct'on will now be introduced in the numerical solutions for the first

harmonic variation in downwash. The tip vortex will be assumed to descend with

the steady and first harmonic inflows occurring at a repisentative tip station. z in

Eq. (15) must then be multiplied by o+ A,1 cos$ or by

P 1
__2_O ( 1+ 1 otani ) cos01

0

instead of simply ?o For the conditions selected, and using Po / Po of 1. 12
00 0

from Figure 17, results in

_ o (1+ -)"P0  - .

0o PO

The effect of introducing this correction is indicated in Figure 17.

If, instead of accelerating or climbing out through transition, a helicopter

is rquired to maintain steady flight in this regime, then an interesting and highly

significant phenomenon occurs which may be described as a tendency for the rotor

to suck up its own wake into the leading edge of the tip path plane. Evidently

if i is small or even positive as would occur in a flare, then the ratio 1 / o

may approach or exceed unity and the blades will pass through their own wake.

When this occurs, large higher harmonic components in inflow can be computed,

indicating large local variations in angle of attack. Such computations are, how-

ever, quantitatively meaningless since all the basic assumptions of the mathematical

model employed are violated. For example, the concept of ideal fluids with lines

of vorticity having infinite core velocities would have to be replaced by a core

structure determined from viscous flow considerations. Single vortex lines should

also be replaced by a more realistic drop off of circulation at the blade tip. Also,

the blade itself can no longer be replaced by a lifting line since the far wake in
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the vicinity of the leading edge has now very definitely become a near wake.

The more exact treatment reserved for the near wake must, therefore, be used for

the entire wake. However, even without the introduction of such refinements,

it is possible to draw some important qualitative conclusions from the results of t'ie

simpler analysis.

Following a similar analysis to the one given above, consider a rotor

operating at an incidence angle of -50 . Under these conditions, using as a first

trial the values of 0 / 0 . 5 obtained above, a new estimate for o / o

of

A 
0.9

is obtained. A recomputation for the downwash using this value of ) / )o
results in a new value, at =. 95. 1

I = 1.28

A0
Evidently, as the leading edge of the spiral approaches the leading edge of the

disc, the upwash is intensified and a mildly unstable conditi- exists in which

the wake is drawn up into the leading edge of the rotor disc. This phenomenon

is believed to be of considerable qualitative significance, and to a large part

accounts for the roughness in transition and flares experienued on most helicopters,

and the characteristic noise generated by rotors under conditions of wake interference.

Many methods of alleviating this caidition may be envisaged; for example, ensuring

as gradual a drop off of circulation at the blade tips as possible without unduly

sacrificing performance in order to reduce the intensity of the tip vortex.

This may be done by moderating twist. Operationally, of course, the

phenomenon may be greatly reduced by a climb-out or high acceleration through

transition, a maneuver which will not always be possible. On tandem configurations,

the possibility exists of providing relative tilt of the two tip path planes such that

the front rotor provides most of the propulsive force, thereby operating at high inflows.
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The rear rotor, operating in the downwash of the front rotors, presents a lesser

problem. As shown in Reference 38, the transition characteristics of a tandem con-

figuration may be widely varied by adjustment of stagger and overlap.

Finally, the experimental results in Reference 22 showed the marked
reduction in the first harmonic inflow variations which occur when the rotor is

allowed to carry a moment at the hub. This is because the blade no longer

equalizes lift around the azimuth and F becomes appreciable, thereby producing

a first harmonic downwash reducing the first harmonic upwash arising from y o .

In practice, carrying large rolling or pitching moments produces high cyclic loads

in the rotor system with attendant weight penalties. Furthermore, large offset

of the flapping hinge with low blade Lock numbers are required, since the blade

cannot be stiffened structurally sufficiently to prevent elimination of mostof the
cyclic lift change by elastic flapping. A discussion of this phenomenon is given

in Reference 39 together with estimates of the rolling moent as a function of the

stall alleviation resulting from the cyclic lift variations.

2) Harmonic Content of the Downwash in Cruising Flight

In Figure 18 are plotted the harmonic contents of the wake at a p of 0. 3 due

to the tip trailing vortex system for various harmonics. Of interest is the pronounced

phase shift as evidenced by the relatively large sine components of downwash compared

to the results of p of O. 1.

Of particular inlerest is the persistence of the higher harmonic content

at the higher advance ratio. At the lower advance ratio (Figure 17) the higher

harmonic induced flows are of the order of 20 per cent of the steady-state induced

flows. At the higher advance ratio (Figute 18) the mean value over the blade span

of the steady-state component of the induced flow has been appreciably reduced,

as indicated by a comparison of PO from Figures 17 and 18. This is a might be0
expected since it is well known that, for a given lift, the induced flow decreases

with forward speed. However, contrary to previous expectation, the higher harmonic
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components of induced flow have not been appreciably reduced; hence, the

vibration level and also the blade fatigue stresses, due to nonuniform downwash,

are not alleviated with increasing forward speed.

In Figure 9 the downwash before harmonic analysis has been plotted against

azimuth and compared with the experimentally-determined downwash of Reference 22.

The two rotors are not strictly comparable; in particular, the rotor of Reference 22

operated at appreciably lower inflows, ko than have been assumed here. However,

at advance ratios of p = 0. 3, the effect of z, and, hence, ko, may be expected

to be small compared to the effect of d, and, hence, pz, and the two results should

be comparable at least as regards distribution of inflow with respect to azimuth

and span. Such a comparison can be made if both results are normalized at some

azimuth position. P = 0, close to the point of a maximum downwash, has been

selected for the common value. The agreement is excellent and it may, therefore,

be concluded that, as far as the lower harmonics are concerned, the mathematical

model chosen for this analysis is adequate. The higher harmonics were attenuated

in tests of Reference 22 and, consequently, no direct comparison is possible between

theory and experiment.

3) Lift-Deficiency Function in Forward Flight

It is of interest to examine the order to magnitude of C(k), the lift deficiency

in forward flight for harmonic llfi variations and-to compare the phase shift resulting

from the spiral form of the wake with that occurring in the two-dimensional case.

As a model, a harmonic variatlcn :n blade bound circulation will be assumed invariant

with span, a condition somewhat approximating the test techniques employed in

Reference 6 in which the hub was displaced harmonically. All interharmonic coupling

will be neglected.

For 0. 80, b/R = 0. 05, n = 3 the reduced frequency is nb/ I R= 0. 187 and

73



i = 2.95 1 = 1.29
c s

I = 2.05 1 = 1.21C s

Considering only the shed near wake, from Eq. (26), the circulation deficiency

(which is somewhat less than the lift deficiency) is

'3c 1 + S 0.675
qY3Cq C + (1 + S)2

and

'3s - C 1'3c = 0.298
13cq I + S Y 3c

where y3c is the "quasi-static" circulation and may be represented by terms in brackets in
q

Eq. (26). For example,

Ynsq ns - nla n++ (b n+Ib )

The lift-deficiency function for this case is then, from Eq. (27),

Ya . ' Y, k+ ] 7 3 4 .V , C_ ; < I

[s k 11 3c "(cj

These values are readily verified as being the values for the conventional lift

deficiency function of Reference 29 for k = 0. 187.

To this lift deficiency will now be added that due to the shed far wake.
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From numerical calculations of Eq. (21) and for !i = 0. 10

A3c =0.57 Bc =3.39
3c 3c

A3s = -2.73 Bs =455

The coefficient nb/2R is 0. 075 for the parameters assumed above and Eq. (22)

then gives, for the shed far wake only,

S3c = 0.043 T3, + 0.205 3c

A3s =0.254 T 3s -0.041 T3c

Since all interharmonic coupling has been nrglected, a legitimate assumption when

one harmonic predorninate.: in the input, the circulation deficiency may now be

computed directly from Eq. (26) with the above values of 3c and A3s substituted

on the right-hand side.

The result is

y3c = 0. 596 , -0.234

Y3c Y3c
q q

The corresponding lift-deficiency function is, from Eq. (27)

LIc = 0.734 - 0. 043 x -. 234 - 0. 205 x -. 596 = 0.602

/IVP3cq

L3s =0.19 - 0.254 x 0.234 + 0.041 x 0.596 = 0.155

/V r3c
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The effect of the trailing wake will now be considered. For the conditions chosen,

.07 Q3 -25P3c 6.7Q3c=2.5

Q3 = .78
3s 3s

Proceeding as before for the shed wake, Eq. (26) for the third harmonic

components yields, for the complete wake

"f3 c 0.50Y3s O. 186~'c = C.570 , -=18

)3c Y3c
ci q

The corresponding lift-deficiency function is, from Eq. (27)

'3c = 0. 602 + 0.06 x 0. 186 - 0. 152 x 0. 570= 0. 525

P V F 3 c
q

Is =0. 155 - O. 170 x 0. 186 - 0. 06 x 0. 570 0. 090

PO VP 3 q

It is apparent from the above, that the near and far wakes contribute about

equally to the lift deficiency or reduction in slope of the lift curve, for the

representative condition chosen.

It is of interest to compare the lift deficiency at i = 0. 1 obtained above

with that predicted from the simplified hovering solution in closed form. The

numerical computations at a givenpJ required definition of ?, Q, and b/R only.

The corresponding value of h is

h= 2TrR -
2 w xO.05 2 2-

Qb 3 xO. 025 3
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and the lift-deficiency function is then, from Eq. (24)

I_ - = 0.40

1+ T

4) Examples of Load Computations

Applications of the theory to load computations and the degree of refinement

required in the numerical solutions may best be discussed by considering certain

typical cases.

The airloads of Figure 10 have been computed using lifting-line theory and

the lift-deficiency functions obtained in the manner described above. Clearly,

large and rapid changes in blade angle and lo, al loading are indicated. It is,

therefore, of interest to examine the effect of using lifting-surface theory as

discussed in Sections VI and Vii. In Figure 19, the lift due to downwash alone

computed using lifting-surface theory (Eq. (10) ), is compared with the lifting-line

solution. These results have been obtained by computing the downwash at six

chordwise stations on the blade and reducing the interval size to one degree for

the case 5 = 900 over the last 1800 of the integration. Evidently, from Figure 10,

the contribution of the time dependent terms is small except at the point of maximum

change in downwash. It would, therefore, appear that reasonable approximations

could frequently be obtained by using simply an average value of downwash along

the blade chord and eliminating 'he time dependent terms in Eq. (.10) such that dL

,irbVA0 . The lift deficiency functions of Figures 7 and 8 could then be applied

directly to this lift.

Another problem encountered in the computation of loads is what may be

termed the tip effect. The results in Figure 10 were obtained using five spar~wise

stations and six discrete trailing vortex lines. This is a satisfactory solution for
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the rotor blade in question, which ',ad a ratio of chord to radius of about 0. 05.

The outboard station was at 95 per cent of the span. This adequately defined

the drop-off in lift at the tip of the blade. However, on a two-bladed rotor
with a chord to radius ratio of 0. 15, specifically that of Reference 23, ten spanwise

stations were required before satisfactory agreement with the measured loads at

the tip was obtained. This is shown in Figure 20. Also shown in Figure 20 is

the effect of a two-station solution; that is, a tip vortex and one located at the

50 per cent radius point with constant circulation in between.

In Figure 21 has been plotted the theoretical and experimental harmonic

airloads at the 85 per cent station in which the lower harmonics up to and in-

cluding the second have been removed. Apart from emphasizing the effect of

the higher harmonics, elimination of the lower harmonics avoids a major problem

in computing airloads. The first harmonic airload is the small difference between

two large quantities; the first harmonic variation in downwash which, as will be

discussed in the next section, may be pronounced, and the blade first harmonic

flapping, also a relatively large quantity. This harmonic flapping is difficult

to measure experimentally because of the inevitable flexing of the rotor blade,

which makes the root articulation a poor indication of the mean-blade flapping

angle. However, harmonics above the second are relatively insensitive to blade-

flapping motion and, providing the blade is not close to resonance with one of its

elastic modes, the airloads above the second harmonic are substantially independent

of all blade motion and are directly proportional to the higher harmonic downwash.

Almost all the harmonic content of the airload, which is of interest for rotor

vibration, is contained in the harmonics above the second. Consequently,

the examination of these harmonics alone is a more rigorous technique than

examination of the complete airloads.

It is also interesting to observe in Figure 21 the effect of one spiral instead

of the usual three spirals of downwash used in the regular computations. Evidently,
very reasonable distributions of higher harmonic airloads can be obtained using
fairly simplified rigid wake geometry concepts.
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XII. SIMPLIFIED SOLUTIONS

In view of the importance of those portions of the wake in the immediate
vicinity of the blade in determining the harmonic airload, a drastic simplificaticn

was attempted in computing the airloads. The spiral vortex line was eliminated
and replaced by an infinite straight vortex line wherever the blade passed over its

own or a wake generated by 6nother blade and only if it passed over such a wake
during the first spiral. Following the approach of Reference 4 and Reference 18,
this straight vortex was assumed to extend to infinity in both directions below the

blade which permitted the following simple solution to be obtained for its downwash
(Figure 15)

P (y-'2 C

2WnR 2 + 2 22 R +(y- ) cos2 g

where I R is the blade station at which the downwash is to be computed; yR is
the blade station under which the vortex line passes ct any instant; 8 is the angle
between the vortex line and a line perpendicular to the blade in the plane of the
blade and zR is the vertical displacement of the vortex line below the blade. If
the blade is at azimuth angle /and the vortex line was generated when the blade

was at azimuth then

y dcos + C4 i2 nd2  2

and d, the distance travelled by the rotor hub between the time when the blade was
at and its present position at , is given by

d=j[ +( L - $; )]] where S is the spacing between blades

+(
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By setting (j2,_ ) initially equal to zero, the value of d and may be readily

obtained by iteration from these expressions together with the relationship

dsinb = ,sin(# -h )

The angle 8 is obtained from

tan('-i -8)= -Cosin
" + iJsin

The case = 0 defines the near wake or/ -#= 0, d= z= 0 and y=. The

vortex line is then integrated from 0 to oo and, hence, for 5= 0, w has the value

[F 1
w= -4rR(e7)Cos s

Since the solution requires no integrations along the wake, computer time is

reduced by a factor of the order of 50. Typical results are shown in Figure 23 to-

gether with the more complete solution and the experimental data. It is evident

that for many engineering applications the simplified method is entirely adequate.

Of particular interest is the close agreement between the solution using a constant

circulation over the outer 50 per cent of the span and ,he more complete solution.

One other aspect of the downwash variations predicted by the theory may be

briefly reviewed. Large changes in downwash are predicted in the regions of the 900

and 2700 azimufih positions and the local blade angle changes associated with this

downwash variation will be of the same order as the mean blade angle of attack.

The changes occur sufficiently rapidly so that flapping may not provide much relief.

Consequently, it may be expected that the stall pattern over the ratio disc will be

appreciably different from that predicted by uniform inflow theory. Reference 40

indicates that the result is to provide an appreciable amount of stall alleviation over

the retreating side. An examination of Figure 9 indicates that this logically could

be expected in view of the increased downwash in this region and on the opposite

side of the disc.
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CONC LUS IONS

1) The nonuniform downwash induced at the rotor disc by the wake vortex

system has a sufficient amount of higher harmonic content to account for the higher

harmonic airloads encountered on rotor blades inforward flight. This higher harmonic

content does not decrease with forward speed, as does the steady-state component

of downwash.

2) The analysis and interpretation of the results are considerably simplified

by dividing the wake into a "near" wake extending from the blade to approximately

one quarter of the disc aft and a "far" wake containing the rest of the spiral. The

higher harmonic content of the downwash is due almost entirely to the far wake and

particularly to that portion passing under the blade and generated eitherby itself

or another blade.

3) It follows from the previous conclusion that the harmonic airloads will be

sensitive to the vertical spacing of the wake. Consequently, it is necessary to

introduce the concept of a nonrigid wake, particularly in low-speed transition flight

or under any condition where the wake spacing is reduced such as in a flare. Under

these conditions, the wake could be sucked up into the leading edge of the rotor disc.

It is believed that this is most probably the source of transition roughness and of the

characteristic rotor noise encountered under cetain flight regimes.

4) Unsteady aerodynamic effects are of considerable importance for the

rotor because of the proximity of the returning wake to a blade. Analysis of these

effects for the three-dimensional rotor is appreciably simplified if the far wake is

treated using lifting-line theory, and lifting-surface theory is used only for the near

wake. The vaiidity of this approach has been demonstrated by comparing the

equivalent treatment of a two-dimensional model of the returning wake system with

a treatment using lifting-surface theory for both the far and near wakes.

81



5) In hovering flight, a simple closed-form solution is obtained for the
reduction in lift due to unsteady aerodynamic effects by proceeding to the limiting
case of an infinite number of blades. It is shown that for normal rotor or rotor/propeller

operating conditions, .he harmonic lift generated by a cyclic change in blade, pitch
would be less than half that indicated by simple quasi-static theory and this reduction

in lift is substantially independent of frequency.

6) Generalized lift-deficiency functions can be developed for the rotor in

forward flight. "From the nature of these results, it is evident that, at advance

ratios above about p = 0. 2, these functions approach the classical two-dimensional

values. This suggests a simplified treatment of the lift deficiency in which the

simple value obtained for the hovering case is faired into the two-dimensional value
at p = 0. 2.

7) A simplified approach, using infinite vortex lines to represent the far

wake located below the blade at the point at which the blade passes over the
vortex, gives results in close agreement with the more accurate treatment. It

suggests several possible approximations which would result i n a major reduction
in required computer time.
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NOMENCLATURE

A = coefficients of chordwise vorticity distribution.

Ak = coefficient of cosine component of kth harmonic of circulation or downwash at
station e due to a cos n 0 variation of shed wake vortex strength.

Bk same, except sine component due a sin n input.n$s

pk Qk same, except due to trailing wake.
n c, ns

C(k,m,h), C(k), C= lift-deficiency function.

C =kl
n c

CT = thrust coefficient= T/ r p c 2R4

F (t) integrand for far shed wake.

Ic  I s = Integrals defining blade circulation due to near shed wake.

1' C I' = Integrals de'fining blade lift due to near shed wake.c t  S

L= lift

LN = blade Lock number (inertia parameter).

.9 number of blades

R = rotor radius

S =kln s

T = rotor thrust.
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V forward velocity

a = distance between center of twist and center of airfoil - positive aft.
a n blade-flapping angle (cosine component)n

b = blade semichord

bn = blade-flapping angle (sine component)

d = horizontal distance travelled by rotor hub

f( q5 ) = integrand for trailing wake

g (( ) = integrand for shed wake after integration over

h = wake spacing

h =bh

i= angle between rotor disc and relative wind, positive nose up.

k nb _ - b = reduced frequency
R OR?

= rotor span parameter

m = number of wake spirals - also used for frequency ratio in two-dimensional solution

n = harmonic of rotor speed -also used for wake identification in two-dimensional solution

u velocity at airfoil due to airfoil motion.

v = induced velocity due to blade-distributed vorticity

w = induced velocity at blade due to wake

x = distance along blade chord, nondimensionalized with respect to R unless starred

z = vertical distance travelled by rotor hub

z = vorticity in wake when unidentified by subscripts or superscriptsotherwise bound

circulation on blade -

Q= rotational speed

cde.= angle of attack

oKT = blade tip angle of attack

= blade flapping angle = a 0 a na1cos+L b nbsinn I
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y element of distributed vorticity

y = nondimensional form of blade circulation= _ '__

21rb R

yr coefficient of series for blade spanwise circulation

= blade spacing

-- rotor-span parameter

- inflow normal to rotor disc

S= distance from reference point on blade to trailing edge.
V cos i

-advance ratio = n R

= distance to element of vorticity in wake

b

= density of air

"= rotor solidity

azimuth of wake measured from downwind position; also used for velocity potential

in Section VI.

= rotor azimuth measured from blade downwind position

Subscrpts

q = quasi-static

N= near

F= far

nc = cosine n input

ns= sine n input

Superscripts

S = shed

T = trailing
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Fig. 3 Side view and plan view of blade bending out of plane of rota-

tion and twisting about a feathering axis located near center of
rotation. Component of centrifugal force normal to feathering

axis causes additional twisting.
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P Trailing Wake

(t)

(t - At)Starting Vortex

Fig. 5 Simplified Diagram of Fixed Wing Wake Geometry
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ELE EN

Fig. 6 Wake geometry showing trailing tip vortex and element of shed

wake.
95



1.0

F

0.5-

0 n-aI n,2 n,3 n-4 na6

0.3

-G

0 I 2 3 4 6

ADVANCE RATIO OF k 0.3
ADVANCE RATIO OF~ 0.1
HOVER, /wO
TWO-DIMENSIONAL CLASSICAL-
AIRFOIL THEORY, C(k)= F 4. i G

-1G
Fig. 7 Three-dim6nslonal lift deficiency F, and phase shift tan F as

a function of harmonic n. Conditions same as Fig. 4.

96



w

zE
0'I 7E)-I

0

w:

' ocn z 0T

I li
9-Q(N V -d

97



0

~0

0 ?

or
4-

a::

o U) P -

0 0

00

ULL

i..j0

W D0 CM
(M N~

98



°,, /

20-

m I0 =.95
_1

0 900 1800 2700 3600
I I I-/,,

20

m,/ =.85

THEORY
TEST (REF 30)

0 goo 1800 2700 3600

Fig. 10 Comparison of computed and experimental airloads.

Four-bladed rotor ps -o. 2 .

99



1.0

0 0.5 cb 1.0
REDUCED FREQUENCY, k

Fig. 11 Limit 6 ~'for shed-wake integration for use in lifting-line approxi-
mation
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13a RIGID WAKE

13b NON RIGID WAKE

TI-QEE BLADES-ONE SPIRAL ONLY SHOWN

Fig. 15 Geometry of wake at P =.05.
(a) Rigid wake showing upwash from vortex lines at lead-

ing edge of spiral.
(b) First approximation to nonrigid wake using downwash

computed from (a).
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Fig. 22 Geometry of straight-line approximation to spirtil vortex line.



[\ (a) HEORY-6 STATIONS 3 SPIRALS
TEST

4

r (b) THEORY-6 STATIONS 3 SPIRALS
-----------APPROXIMATE SOLUTION-6 STATIONS

I I SPIRAL

4~J

-4

(C) A PPROXI MATE SOLUTION - I SPIRAL

6 STATIONS

4 2 STATIONS

Fig. 23 Airloods for four-b laded rotor of Fig. 7 with harmonics below
the third eliminated. wj =0. 2 ' 95

0 1800 3600

112


