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ABSTRACT 

The "seismic equalization" problem is that of correcting the 

response at one station to match that at another station which may 

have different instrument characteristics and different (and unknown) 

local reverberation characteristics.   In this note, the problem of 

seismic equalization is formulated mathematically, and that portion 

involving measurement or estimation of a transfer-function ratio is 

modeled and attacked on statistical terms, first by an ad hoc pro- 

cedure and then by the method of maximum likelihood. 
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I.   INTRODUCTION* 

The statistical problem examined in this note is motivated by the need for 

"sensor equalization" in seismic array processing.    To define "sensor equalization" 

we think of a sensor as a composite electromechanical transducer comprising (i) the 

local geology on which a seismic wave impinges, (ii) the coupling of this geology or 

terrain to the seismometer, and (iii) the seismometer itself.   The "sensor response" 

(as the term will be used here) is the combined response of all these elements, that is, 

the impulse response or (frequency) transfer function that relates the signature of the 

wave to the seismometer electrical output of the sensor.   Considering the nature of 

the elements (i) and (ii), it is only realistic to view the sensor responses as unknown, 

at least to some degree, and also to be a function of wave arrival angle. 

The measurement of each sensor response is at best difficult, for we have no 

control over the waves that must be relied on to "probe,"   nor can we know their 

signatures in detail.    The actual measurement of the complete sensor response is the 

basic "deconvolution" problem, which we will not discuss. 

If, however, we address the more modest "equalization" goal of obtaining 

identical sensor outputs (in the absence of noise) to a wave arriving at a known angle 

without explicitly finding the sensor responses, then there is reason to be more hope- 

ful.   Of course, even should identical outputs be obtainable, they will still suffer some 

distortion of the wave signature--but this should not unduly disturb trained seismolo- 

gists already familiar with such sensor aberrations. 

Thus, in the equalization problem, we seek to determine the ratio between the 

complex-valued transfer functions H,(w) and H„(uu) of a pair of sensors (this is equivalent 

to solving a linked pair of integral equations in the impulse responses, a conceptually 

more difficult task), and then to construct a filter having the transfer ratio H^ty/HJp) 

[or H (uu)/H (uu)] as its transfer    function.   Such a filter (which if not happening to be 

*  Seismic equalization has also been under study by Texas Instruments.    In addition, 
a paper by the late Dr. M. J.  Levin   pertains to this problem. 



physically realizable requires only that some delay be inserted in the system) when 

placed in tandem with the second sensor will convert its response into that of the first 

(or vice versa).   In this note we confine attention to the measurement of H,(Uü)/H2(W) 

rather than its realization, and deal with just a pair of sensors.   Should there be more 

than two, we would equalize pair-by-pair, or perhaps equalize each with respect to 

the sum (previous to equalization) of all. 

To perform the transfer-ratio measurement for a given arrival angle, we must 

rely on a collection of responses to probing waves (geophysically or atomically generated) 

that are of largely unknown signature but that are known to have arrived at that angle. 

Provided that for each event the same wave signature is received at each sensor input 

(apart from a fixed difference in relative amplitude) and that enough probing energy is 

accumulated at each frequency uu, relative to the system noise and to the number of 

responses in the collection, the measurement can be accomplished with vanishingly 

small rms error.   If, however, the first condition is violated, as can happen for 

example if the source fault plane or radiation pattern (at a given frequency) varies 

from event to event and the seismometers are far apart, then equalization is probably 

unattainable.   By means of the statistical analysis contained in this note it should be 

possible, through the setting up of confidence regions on the estimates of the transfer 

ratio from separate collections of responses, to test for such a contingency. 

To enjoy the convenience of working in the frequency domain, we use as the 

collection of sensor outputs the Fourier transforms of a selected set of seismometer 

output waveform sections.   The question arises of how long the output sections or ob- 

servations should be--too short an observation results in smearing of spectral detail, 

while one that is too long contains an inordinate amount of noise.   No guide on this 

point is presently available, other than intuition. 

To be realistic, we must presume in general that there is correlation between 

the noises in the sensor outputs, and even that the correlation may vary from the arrival 

time of one wave to that of the next (sorting as to arrival angle may result in such 

infrequent probing that the noise field can change considerably).   If not known, such 



correlation can so bias the measurement of H /H   as to render it void.    Fortunately, 

however, it is wholly reasonable to assume that the correlations, as well as the noise 

intensities at the two seismometer outputs, are known at all times.   This of course 

requires additional data-processing beyond that implied by the development presented 

in the following Sections, but hardly more than is already employed at present in 

sophisticated array work. 

We now proceed with a statistical analysis of the problem of measuring the 

ratio between a pair of transfer functions when noise disturbances are present. 



II.   THE STATISTICAL MODEL 

We adopt the following model for the single-frequency equalization problem. 

(Equalization is to be accomplished frequency-by-frequency.)    From data on N seismic 

events, we are given N pairs of Fourier-spectral observations { Y   , Y    } , known to 

be generated by 

Y,.   =  H,X. +N \ 
li 1   i       li 

>       i  =   1,...,N 

Y2i   =   H2Xi + N2i 

(1) 

where the frequency parameter UJ is henceforth left implicit.   Here, the sensor transfer- 

functions H ,H   and the event excitations (Fourier transforms of the wave signatures) 

{X.} are unknown complex constants (or mathematical, not random, variables) and the 

noise disturbances {N   }, {N   } are zero-mean, complex gaussian variates, taken to 

be independent between observation pairs: 

N  N      =  0  =  N*N when i ^ j; for k= 1,2 and 1= 1,2 (2) 

Our task is to form an estimate of the transfer-function ratio U/H   and to 

draw confidence regions about it, so that an effective signal equalizer may be con- 

structed with the aim of converting the mean of any Y2i into that of the corresponding 

Y^.   In forming the estimate, we are allowed knowledge only of the { Y^, Y2il and 

the noise statistics; in addition to the reasonable assumption   (2) , it is convenient 

to presuppose the observations to have been normalized (through individual weighting 

by positive real constants derived from the known noise intensities) so that 

lNki|
2   =   2[Re(Nki)]

2   =   2[Im(Nk.)]2   =   1;  all i,k (3) 

Equation (3)    implies statistical identity and independence between the real and 

imaginary components of each noise variate, conditions that in practice will as a rule 



be met quite closely.   The noise normalization both simplifies the analysis and has a 

valid basis in the well-accepted notion that one should play down observations known to 

have excessive noise and accent those for which the random disturbances are small. 

Furthermore, normalization is a reversible procedure, and no statistical "information" 

is lost in such an operation (in fact, the method of maximum likelihood can be shown 

to dictate such normalization). 

In order to retain the basic character of our model   (1)   when normalization is 

applied, however, we require the further, and perhaps on occasion unrealistic, assump- 

tion 

N |N    |2 /    |N    \Z
      =   Y> 0,   a constant independent of i (4) 

If Y = 1, the nature of the {X.} as unknowns leaves (1) quite unaltered after 

normalization; otherwise, the estimate of H,/H2 in the original, unnormalized situation 

is given by estimating H^/I^ from the normalized data and then multiplying by y. 

[Should   (4)   be violated, our results would no longer apply, but an appropriate 

generalization of the analysis no doubt exists. ] 

Finally, we permit noise correlation to exist within any observation pair.   The 

correlation must be known but may vary from pair to pair.   This enables most seismic 

situations to be modeled realistically: 

NliN2i  =   pi=   IPil<1 (5a) 

We assume, however, that for all i 

NliN2i  "  ° 
(5b) 

That no complex correlation coefficient p. can exceed unity in magnitude may be shown 

through the Schwarz inequality.   The condition (5b)    will be nearly true in most 

measurement situations. 



Except that complex quantities are involved, our problem is not new; 

investigations of this type have been the subject of considerable post-war research 

among statisticians.   Chapter 29 of Kendall and Stuart   furnishes an excellent intro- 

duction to this class of problems, showing that regression analysis constitutes a 

restricted subclass, and noting that the motivation and applications usually relate to 

the natural sciences and econometrics.   (I am indebted to Dr. Max Halperin for this 

reference, which although treating a scalar rather than complex-valued situation, 

parallels and confirms my independent efforts at a number of points.) 

In Kendall and Stuart ("K/S") terms, our problem is one of estimation within 

a "functional relation," where this relation is 

HlXi  =  <VH2> H2Xi (6) 

and H /H   is to be estimated when only randomly-perturbed versions of the {H X.} 

and {H X.} are observable, as in   (1).     In K/S, the scalar equivalents of the {H X.} 

and {H X.} are viewed either as non-random unknowns or as gaussian variates of 

unknown statistics, but both approaches yield similar results--in the seismic context 

it is probably more realistic to take the former view.   Also in K/S, the statistics of 

the gaussian disturbances {N   }, {N   } are considered unknown (but not i-dependent), 

and required to be estimated along with H /H   (again, however, we are interpreting 

their scalar results in terms of our notation).   We assume, however, that these statistics 

are available   (as is reasonable in the seismic context) even though the similarity be- 

tween our results and those of K/S implies that this additional information may not 

actually be needed in formulating an estimator.    (However, the confidence regions 

would be expected to differ according to whether the noise statistics are known or 

must be simultaneously estimated, and in fact we propose a different confidence pro- 

cedure from that of K/S, one that draws on our presumed additional knowledge.) 



III.   AD HOC ESTIMATION 

In first undertaking this study, we considered estimators of H /H   that were 

quite ad hoc, but which were completely explicit and fairly amenable to the statistical 

analysis required for setting confidence limits.   We now present these early results, 

deferring to Section IV   the generally more implicit, but often asymptotically more 

efficient, estimation procedure prescribed by the method of maximum likelihood. 

Let us begin by momentarily imagining that the variances of the components of 

the {N   } , {N   } are all zero, so that these variates vanish in (1),    but that H ,H 

and the {X.} remain unknown.   Then simply by forming the ratio Y   /Y   , for any i 

for which Y    ^ 0, the transfer ratio H /H   is immediately and exactly determined, 

since X. cancels out.   By this token, one next might attempt to average out the noise 

that is actually present through the estimator 

N /   N 

£ Yn / £ Y2i i=l i=l 
(7) 

True, the ratio between the numerator and denominator means is again exactly H /H , 

but such an estimate cannot be expected to do well in general.   This is so because 

normally (at least in seismology) the X., as vectors, will lie in no constructive rela- 

tionship, with the result that near-cancellation of the vector-sum mean component may 

occur in the numerator or the denominator of   (7).     When this happens, the estimate 

will be at the mercy of the noise. 

What seems to be needed is an estimator whose performance depends on the 

magnitudes of the {X.}, and not on their phase angles.   This suggests that, while 

adhering to a ratio scheme so that the influence of the {X.} on the mean value of the 

estimate of H /H   may still be suppressed, we involve the observables in the numerator, 

and in the denominator, in a nonlinear way.   The use of quadratics is particularly 

attractive, for much is known about the statistics of quadratic forms in gaussian 

variates, and we must look ahead to the need to obtain the estimate statistics, in order 

to determine confidence regions.   There are a number of ways in which suitable 



quadratics in the {Y   , Y   } may be formed, and selection among them would at first 

seem to be largely a matter of taste.   (Later, we shall show that maximum-likelihood 

estimation prescribes a particular selection of quadratics, and that the choice of 

quadratic-type nonlinearities themselves is no longer ad hoc in this context.) 

We have taken the following path.    First, we write the quantity to be estimated 

in polar form: 

J Hx/H2   =  ReJ R> 0 (8) 

since there appears to be no preference a priori for estimating H /I-L rather than 

H /H , and the polar form lends itself naturally to reciprocation.   Next, we consider 

the estimation of R separately from that of estimating 8 [either estimate will be seen 

to have a pleasing symmetry in the observables { Y   } ,{ Y   } by virtue of the repre- 

sentation (8). ]        Our ad hoc estimate* of R is: 

R  = 

N 
Z <lvlil

2-D 
i=l 

S(|Y2i|
2-D 

1=1       Z1 

1/2 

(9) 

and of 9: 

=    tan 
-1 

*•[ S<vi-Pi>] 
(10) 

with the quadrant assigned to 9 according to the sign of either the numerator or 

denominator of (10). 

*  It is interesting that the ad hoc estimator  (9)    is quite similar to a maximum- 
likelihood estimator (29. 32) of K/S. 



That both   (9)    and   (10)   are asymptotically unbiased and consistent estimates 

of R and 9, respectively, may be demonstrated by considering the typical term 

(Y..Y* - p.).    [The terms in (9)    may be viewed as special cases, in which p. = 1 and 

H   replaces H   in (1),   or vice versa. ]   We may write the term as 

Y   Y* - p    =  - |Y    + Y    P-- IY    - 
li  2i    Pi       4 '   li      2i'     4 '   li 

Y  |2 + i|Y +iY  l2—-iIY -IY  l2-p     (ii) 
*2i'      4 !   li    JI2i!      41   li    J   2i'      Pi      V    ' 

and then examine a single squared magnitude at a time.   Since later we will have need 

of a more general statistical treatment, let us actually find the mean value of a 
9 9 

product |Y j   |Y„|   formed on the new variates 

Y    = M1+N1 

Y2   =  M2+N2 

(12) 

where M   and M   are given complex means and N ,N   are zero-mean complex 

gaussian variates satisfying the conditions: 

N,     = i2   _ (Nk)]z       2[Im(Nk)]2  =  a£   ;  k= 1,2 

(13) 

N1N2   =   W2 ;   N1N2   =   ° 

If we set Mx =M2, c^ = c^ and let PQ = 0, we have |YX|
2 |Y2|

2 = |YX|
2 |Y2|

2 = [ lY^2]2, 

while if Po = 1,  |YX|
2 |Y2|2   =   JYj4 =  variance (|YX |2) + [ \YX \2 ] 2 .   Thus we may 

study the mean and fluctuation of any of the squared magnitudes in (11)    by taking the 

following general result  (14),    suitably identifying M, = M2 with H,X. and H2X. 

through (1), setting the value of a± = a2 by reference to  (1)    through   (5b),   and 

then either letting p =0 or p = 1. 

The general result is 



|Y,|2 |Y2|
2  =   [(m^n^ + dnjj+njj)2] [(m2R+n2R)2 + (m^+n,/] 

=   (m»R+m»1I+rf'1R+tf1I) K2R+m
8

2I+ri82R+nP2I) 

+ (n2
1R+„

2
n) (ri»2R+rf2I) - ^R+tfn) (n^+ny 

+ 4 (m1Rn1R + mllDlI) (m2Rn2R + m^) 

=  (IMJP +o2
1)(|M2P + ^2) + oa

1o
2

2|po|
3 + 2Re(M1M*p*)a1a2 04) 

where m     ,m    and n     ,n    are the real and imaginary parts of M   and N  , k = 1,2, 
kK      kl kK    kl k k 

respectively, and we have used [as a corollary of (13) ], 

"lRn2R   =  "lln2I 

"lln2R   =  " niRn2I 

alCT2 

CT1CT2 
(15) 

2     Im(po) 

Also, we have invoked the fourth-moment relation for zero-mean gaussian random 

variables: 

nin2n3n4   =  nin2' n3n4+nin3* Y4+nin4 * Vs 
(16) 

Upon employing (14)     in  (11)  with   pQ = 0, M, = M2, a   = a , we obtain for 

the mean: 

1        Ur      |2 2  .  . YliY2i-pi  =  i ^ir[|H1+H2l^|H1-H2^+j|H1+jH2|^-j|H1-jH2h 

+ i{[l + Re(p.)] -[1-Re(pi)] + j[ 1 + Im(p.)] - j[ 1 - Im(p.) ] } -p. 

IX. |   HlH* (17) 

10 



and with p   = 1 we find for the variance of each of the squared magnitudes appearing 

in   (11)    a function of the form C + D |X.| , where C and D depend on H, ,H2 and p.. 

Therefore, the variances of both the real and imaginary parts of (11)    are upper- 

bounded by functions of this form, and further study shows that weaker but similar 

bounds can be obtained that do not involve p..   Thus, the ratio of the variance of either 

the real or imaginary component of 

Z    <YliY2*i->i> 
1=1 

to the squared mean of either component is upper-bounded by a function of the form 

N        ,2 
EN + F   ^   IX.T 

i=l 
N 

E 
i=l 
Z  ixj 

(18) 

where E and F depend only on H, and H .   Hence so long as 

N"1/2   Z   Kl2 

i=l 
(19) 

tends to infinity as N -* °°(it can be demonstrated that this is in general also a necessary 

condition), the ratio in   (10)   will converge (probabilistically) to Im(H H*)/Re(H H*), 

so that this estimate of phase angle is asymptotically unbiased and consistent. (A little 

further work establishes that, asymptotically, the sign of the numerator or denominator 

will lie in the correct quadrant with probability one.) 

By letting H   be replaced by H   and setting p. = 1, we respectively force both 

the signals and the noises in (1)    to be identical, so that Y    = Y   .   Then by (17), 
JL\ 11 

|YU|2-1   =   |X.|2|Hl|
2 (20) 

11 



•1 

and similarly for |Y    |   .   A variance analysis like that just sketched for the phase 

estimate  (10)    now shows that if again   (19)   tends to infinity with growing N,   (9) 

is an asymptotically unbiased and consistent estimator of R = |H /H  |.   Thus, the 

ad hoc estimators   (9)    and (10)    together provide an asymptotically correct measure- 

ment of the transfer-function ratio H /H . 

Let us next consider the problem of obtaining the statistics of (9)  or   (10) 

more precisely, now letting H , H   and the {X.} be known.   As mentioned before, 
~   i9 

such analysis is needed in locating the confidence region about the estimate R e    of 

H /H .   [ We consider (9)  and   (10)      separately, although in principle the confidence 

region should be founded on their joint statistics. ]   The chief difficulty here is that of 

statistical dependence between numerator and denominator, which persists in (10) 

even when all the correlation coefficients {p.} vanish so that the {Y   , Y   } become 

independent within as well as between pairs. 

The first steps in handling the dependence are to write the cumulative probability 

function for the ratio in question in the form 

n 
Pr(-<x) 

and then apply the bounds 

Pr(n-xd< 0, d>0) + Pr (n-xd > 0, d < 0); [Pr(d = 0) = 0] 

(21) 

1 - Pr (n-xd > 0) - Pr (d < 0) ) f  Pr (n-xd < 0) 

> ^   Pr(n-xd< 0, d> 0) ^ \ 

0                    J ( Pr (d > 0) 

and similarly for Pr(n-xd > 0, d < 0).   This yields 

P(n-xd< 0)-Pr(d<0)   ^   Pr(^<x)  <   Pr (n-xd < 0) + Pr(d < 0) (22) 

12 



and if attention is limited* to those situations in which  (9)    affords a reasonably good 

estimate of the magnitude R of H /H , Pr (d < 0) will be entirely negligible.   Turning 

to  (10)   , good estimation conditions will not necessarily cause the denominator in 

the arctangent argument greatly to favor one sign, but should it not, then the numerator 

definitely will--therefore, in such circumstances the reciprocal of the argument can be 

tightly bounded** and this is equally satisfactory. 

With Pr ( — ^ x) thus closely approximated by Pr (n-xd < 0), a pair of linear 

transformations can be applied to the gaussian variates that appear quadratically in 

(n-xd), to yield a new expression identical in sign   to (n-xd), but in which all the 

quadratics are now mutually independent.    Proceeding in this manner for (9)     (hence- 

forth overlooking the approximation, and ignoring the magnitude signs in view of the 

virtual certainty that both numerator and denominator will be positive under good 

estimation conditions), we find 

N 
Pr(R<r)  =  Pr{    £   [ |zur " |Z2il

2 ] / (8Re(UR.)] - N(l-r2)< 0} (23) 
i=l 

where 

Zli  =   V1+^Ri) + r(1^Ri)Y2i 

z2i = V-^ + 'U + ^a 
(24) 

and 

^Ri 

2jr Im(p.) +V(1 +r2)2-4rs |p.P 

l+r2-2rRe(p.) 
(25) 

*  In discussing their estimate (29.32), K/S cite the "inescapable difficulty" met with 
estimators of the type (9) - (10)     when Pr (d < 0) f 0. 

**  Here, Pr (d > 0) may just as likely be the negligible quantity, rather than Pr (d < 0); 
in essence we are noting that under good estimation conditions there is virtually no 
chance of wrongly guessing the pair (or pairs) of adjacent quadrants in which the phase 
estimate will lie.   K/S argue similarly in their Section 29. 21. 

13 



For any i, it may be verified through    (1) t   (3) , and (5)    that ZUZ*. - (Z     *  Z* ) 

=  0  =  Z^Z2^ - (Z^* Z2j); this establishes the independence of Z,, and Z2i» since 

they are jointly gaussian variates.   Since the real and imaginary parts of Z^ or Z2J 

are independent and of equal variance, the { JZ,. | ,  |z~-1  } constitute a set of mutually 

independent non-central chi-square variates, each having two degrees of freedom. 

It can be shown that if the noise correlations {p.} are all equal in magnitude 

(|p. I = |p| for all i, a condition that may not always apply in seismic equalization), the 

component variances of the {Z   } are all equal, and likewise for the {Z2J}.   The sum 

Er-    2    K/ziSRe^.)] 
1=1 

then has a non-central chi-square distribution of 2N degrees of freedom, with 

probability density given by 

v(N-l)/2 
PÄ> = ai <VV        expi-oqAp/2] Vi(^V;Ei>0 (26) 

where 1^    (z) is the modified Bessel function of argument z and order (N-l).   Here, 

4 ■ 2/^ and 

4a2   =  s + l-r2 ;   s = ^(l+r2)2 - 4r* |pf (27) 

N 
2   Ix.f [|H1hl+ia + s) + ia|H2l

a(l+ta-s)-4r3Re(H1H»p*)] 

X1   =   ^  (28) 
s2 + s(l-r2) 

A like result [the subscripts in  (26)    changing from "1" to "2"] obtains for the 

probability density of 

Z2  =  Z    |Z   f/lSRe^)] 
i=l 

with 

14 



4a2
2  =  s- 1 + r2 

N 

\   = 

YJ   IX.RIHJ  (l+r2-s)+r3|H2r(l+r2 + s)-4r2Re(H1H*p*)] 
i=l 

s2 + s(l-r2) 

Thus, 

Pr(R<r)  = ;P9(E9)dZ9        I 
EO+NCI-I

3
) 

2V^2' 
0 

»i<Ei> dEx 

(29) 

(30) 

(3D 

and the statistics of the estimate (9)   of |H /H  | are available through a double integral 

involving a pair of Bessel functions in the integrand.   It does not appear possible to 

perform the integration analytically.     Incidentally, when all the { p.} vanish, n and d 

in   (21)    involve quadratic variates that are independent, and it then happens that 

Pr (R < r) can be evaluated precisely through a combination of double integrations like 

that of (31)      where the double inequalities in the probability statements of (21)    are 

met through suitable choice of the integration limits.   This affords a numerical check 

of the approximate, asymptotic result   (38)    that is given later. 

The statistics of the phase estimate 0 of (10)    may be closely approximated in 

a manner paralleling that just developed for R.   In this way we find, when p. = p for all 

i (equality of correlation magnitudes is no longer sufficient), and ignoring the 

approximation, 

;        v       v   Z4+N[Im(P)-tRe(p)] 
Pr (tan 0 < t) : = J  p4 <£4> d£4 J p,<£q> d£, 

0 

if it is virtually certain that 

Re 

'3^3' 

\ l (V"Y;'" P>1 

(32) 

>0 . 

When the opposite is virtually certain,    (32)   equals Pr (tan 0 > t); if neither is certain 

because the angle 0 of H./H   lies near (TT/2) or — 0V2), then we deal with ctn 0 whose 

15 



denominator is of virtually certain sign, and obtain a similar expression to (32).    In 

(32) P3 and p^ are given by (26) as re-subscripted, where 

4a*   = u-Re [Q+t)p] ; u = Vl + s2-{lm[(j+t)p]}2 

4a*    = u + Re [Q+s)p] 

N 
[ YJ   |X.h [(f + lXlHjl  +|H2| )-2Im[(j-ft)H1H*]Im[Ü-rt)p)-2uRe[0+t)H1Hp 

i»l 

"A 

4u2 - 4u Re [ (j+t) P ] 

N 22 
[ £  |X.| HOP+lXlH^  +|H2| )-2Im[Ü-tt)H1H*]Im[Ü-rt)p] + 2uRe[Ü-H:)H1H*] 

\     = —  
4u2 + 4u Re [ (j+t) P ] 

(If all the {p.} vanish,   (32)    may be evaluated analytically through Price. ) Equations 

(32) and (33)     follow from the relation, valid when the denominator of the arctangent 

argument in (10)    is certain to be positive, 

N N 
Pr(tan0<t)  =  Pr{ £ [ lz3il ~ lz4il] / l^Re^.)] - £ [Im(p.) - tRe(p.)] < 0}        (34) 

i=l i=l 

Here the {Z   , Z   } are mutually independent gaussian variates given by 

1(33) 

Z3i  =   IV<¥> Vlll <1+V + [Y2i + (i?>Yli1 (1-V 

-Ä fj+ll 
z4i " 'Y2i-(T>Yn] d-^ + l^ + ^ii"1^ 

where 

^9i  " 

-4 jIm [0+t) P.] + 4 Vl+^-ilmKj+OpjlP 

1 + t2 

(35) 

(36) 
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Thus, when all the noise correlations { p.} are equal and good estimation 

conditions exist, we are able to obtain from   (26)   through   (33)    quite accurate results 

for the statistics of the estimated magnitude and phase of the transfer-function ratio 

H,/H2.   Using these statistics, confidence regions can be set up about the estimate of 

H./H-, and by treating different sets of observation-pairs the validity of the model 

(1)    itself can be quantitatively tested.   It is interesting to note that, as desired, the 

phasa angles of the {X.} never affect the performance of the estimate; moreover, when 

all the {p.} are equal, the performance does not depend on the individual { |x. |} but 

only on the total signal "energy" in the observations 

i=l 
(37) 

as multiplied by either one of the energy gains |H  | ,  |H  | .   This is fortunate, for 

it leaves just a single unspecified parameter in the determination of the confidence 

region (assuming that a confidence percentage has been assigned and that there is no 

question of how this probability should be distributed in the excluded region--see 

Chapter 20 of K/S).   Increasing this parameter E (presumably) shrinks the confidence 

region, and E can probably be conservatively estimated through the numerator or 

denominator of  (9),    or perhaps both together. 

A complicating factor in determining the confidence region is that one does not 

have the joint statistics of R and 0 (they are generally dependent, even for asymp- 

totically large N ) and yet in general their individual statistics depend on both true 

values R and 0.   This problem needs further examination (or recourse to a search of 

the literature), but the following expedient seems reasonable.   First, for the estimate 

R given by  (9)      find the confidence intervals for R corresponding to all values of the 

true parameter 0, using  (26)    through   (31)   (if all the {p.} vanish, there will be no 

dependence on 0).   Then do the converse for the estimate 0 given by (10) , using 

(32) - (33).     In this manner we obtain two regions, both in R and 0.   The intersection 
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of these two regions may be taken to be the final confidence region, with a confidence 

of the order of whatever common percentage was adopted in setting up all of the con- 

fidence intervals. 

It seems plausible that as N - °°, the quadratic sums in the right members of 

(23)   and (34)   will become gaussianly distributed.   At least, this occurs if all the 

noise correlations { p.} are equal, for then the component variances of the Z   , Z   , 
i    i2 Z0., and Z,. do not depend on i, and the   X.     enter into the statistics of the sums 

3i 4i r l1 

only through their sum.   Thus when the latter sum is imagined to be reapportioned 

equally among all i, the Central Limit Theorem applies to each of the quadratic sums. 

The range of the { p.} being restricted (|p. | ^ 1), one feels that N - °° implies sufficient 

"bunching" of the { p4} that the Central Limit Theorem is still effective, although this 

certainly remains to be proven. 

If, furthermore, estimation conditions improve as N -* °°, as they will if the 

total signal energy E of   (37) grows faster than JN, then in (23)   and (34)    the local 

linearity of the right members in r and tan"l t, respectively, implies that Rand 9 will 

themselves be asymptotically gaussian (with means equaling the true values R and 0). 

Here, we are drawing on the asymptotic consistency and lack of bias established 

earlier for (9) and (10).        It is of interest to determine the variances of Rand 9 in 

the asymptotic situation, for if they are asymptotically normal these are all that we 

need in order to draw a confidence region.   By employing   (14) with p = 0 or 1 in 

(23) and (34) ,      some manipulation shows that the asymptotic variances are given by 

R2 

N 
-1 

N 
£ |x | [R+R" -2|P |cos<e-e)]     £ [R2+Rr2-2|Pir] 
i=l i=l 

2|HX| |H2IE: 4|H1|2|H2|2E2 
(38) 

N N 

o8 = 

YJ   |x.|2[R+R"1-2|pi|cos(9-ei)] fi   [1- |pi|
2H-2|p.|cos2 (6- 9.)] 

i=l i=l 

2 tHl| lH2| E- 2|H1|
2|H2|

2E2 
(39) 

18 



where p. = |p. | exp [j0.] and E is given by   (37).   [That the asymptotic means are R 

and 9 is verified concurrently.   These mean-and-variance results can no doubt be 

derived directly from (9)   and  (10)   and the assumption of improving estimation con- 

ditions (E -»°°), without any appeal to asymptotic normality, and perhaps even without 

requiring N -♦ °°. ] 
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IV.   Maximum-Likelihood ("ML") Estimation 

We now take an entirely synthetic rather than ad hoc approach to the problem 

of estimating the transfer-function ratio H /H   from the given complex-valued observa- 

tion pairs { Y   , Y   } , i = 1,... ,N, generated as in ( 1).     Setting up the likelihood 

function, i. e., the probability density function of the { Y   , Y   }, we proceed to choose 

the unknowns H,,H   and {X.} so that this function achieves its maximum value, and 
12 l .^^ • 

take the ratio H /H   thus found as our estimate H /H .   Of course, the notion that it 

is good to maximize the likelihood is ad hoc in the first place.   Furthermore, we shall 

see that this estimate is in general far less explicit than  (9)  —  (10)     and even when 

explicit, its statistics are usually difficult to derive.   When estimation conditions are 

sufficiently good, however, the ML estimate can be definitely superior to the ad hoc 

estimate provided by (9) — (10)     and thus certainly merits our attention. 

We begin as before by assuming the conditions (2) ,   (3) ,   and (5) .     Should 

the noise intensities initially differ from observation to observation, but   (4)  be 

satisfied, it is not difficult to show that the ML method dictates the noise normalization 

as given.   Rather than deal with the {Y   , Y   } directly, which are usually correlated, 

we may equivalently and more conveniently maximize the likelihood of the linearly 

transformed (and still gaussian) variates 

Y-. - iYU+(jr=r^-jPli)Y ]/yi-^.+pR.vr^: 

(40) 

r2. = [(-7P^+jPIi)Yu + Y21j/Vi-^-pRiVi-^l 

where 

Pi  =   PRi + jpIi 
(41) 

is the known noise correlation coefficient for the itn observation pair.   A little calcula- 

tion now shows that the {Y'.., Y* } L   lv    2iJ 

components all of equal variance. 

tion now shows that the {Y*  , Y' } are mutually independent, and have real and imaginary 
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Upon finding the means of the { Yf  , Y'   } from   (1), we determine that the 

likelihood is maximized when we minimize the quantity 

N    l[Y11+Y2i(yT^_JPii)] -x.^+H^l-^.-jPj.)!2 

i=l ^li^Ri'^ 

+   N       \[Yij(-JT^.+jPl.) + Y2.]-X.lU1(-JT^i + iPli) + H2]\ ^2) 

i=l ^li^Ri^Ä 

This is most conveniently done term-by-term, maximizing on the {X.} while at first 

holding H   and H   fixed.    Expanding the squared magnitudes, it is seen by inspection 

that for |X.. | given, the minimizing angle of X. is that of [HJY   +H*Y   -p    (H*Y   +H*Y   ) 

— 2jp   (H*Y   - H*Y   ) ].   The quadratic in |X. | obtained upon substituting this result 

back in the itn term of the expanded version of (42)   may now be straightforwardly 

minimized by differentiation, whereupon our ML estimate of X. is found to be 

X.   = 
l 

HlYli + H2Y2i-piHTY2i-prH2Yl 

iH^+lH^-aReO^H*?*) 
(43) 

With (43)   substituted in   (42)    we determine, after considerable algebra, 

that now 

N 

z 
i=l 

lYii-cwV 
1 -t- lH1/H2l   -2Re[(H1/H2)p*] 

(44) 

is to be minimized with respect to H. and H .   Note, however, that (44)  involves H 

and H   only through H /H , the very parameter that we seek to estimate.   In general, 
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we must stop here, leaving it to a computer to perform the minimization of (44) with 

respect to the magnitude and angle of H /H .    Even when all the { p.} are equal but 

non-zero, it does not seem possible to proceed explicitly beyond the maximization with 

respect to magnitude for a given angle, or vice versa. 

When the { p.} all vanish, however, we find that the minimizing angle 9 is that 

of 
N 
7    Y     Y* Li H    X9i 
i=l li    2i 

so that in this case the ad hoc   (10) and ML estimates are identical.   On the other 

hand, the ML estimate of the transfer-function magnitude is found to be, for vanishing 

noise correlations, 

N 
Z [|Y,r-iYj2] 

R     - 
i=l 

li 2V 

N 
+ 

2 I   7  Yr Y*   | 1 4i    li    2i ' 

N 
2[|Y/-|Y2ih 

1=1 
N 

+ 1 (45) 

2 I   I   Yli Y2i 
1=1 

which is quite in contrast to (9) , even though quadratics in the [ Y   , Y    } are involved 
•LA       Zt\. 

in both.  [Equation   (45) does not appear amenable to statistical analysis except when 
N 

I    7   Y     Y*   I 1  H-    li   2i' 
N 

can with high probability be closely approximated by Re {   /_j  Y.. Y* e J   }, 
i=l 

where 8 is the angle of H /H . ]   It is interesting to compare    (45) with the similar 
1     ^ 

result (29. 29) that K/S obtain in the scalar analog to  (1). 

The final goal of this analysis is to study the asymptotic behavior of the estimate 

H,/H9 that maximizes  (44 ) , and to compare it with that of the ad hoc estimate pro- 

vided by (9) - (10) .     It is fortunate that even though the ML estimate itself must 

in general be found through trial-and-error, its asymptotic statistics can be determined 
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quite explicitly.   Our procedure is to evaluate the second derivative of the mean value 

of  (44),   taken with respect to the logarithm of the magnitude (or the phase) of Hj/h^ 

at the true value of H /H   (where the mean of (44)   must asymptotically have its 

maximum), and divide the square of this derivative into the variance of the companion 

first derivative.   The result is the asymptotic variance of the log-magnitude (or phase) 

estimate. 

Performing this analysis for the log-magnitude B = logR, where R is given by 

(8)     we find by applying  (14)   to the derivatives of (44)   and doing considerable 

algebra that the asymptotic variance of the ML estimate is (since 0=0) 

(0-S)2  =    \ 
tX.|2 IHJ |H, N 

i=l    R+R     -2|p.|cos (0- 0.)_ 
-1 

-1 

*\ 

N l-|p.| y     nLj  

i=l    [R + R_1- 2|p. I cos (9 - 9.)]2 

Ix/lHjlH. 
-i-2 

N 

2 "   -   . . i=l   R+R    -2|p.|cos (0-9.) 
.-1 

(46) 

where again 9. is the angle of the ith noise correlation coefficient.   Upon carrying 

through the like analysis for the asymptotic variance of the ML phase estimate 0 , we 

obtain identically the same result as   (46) , which is quite pleasing, and to be con- 

trasted with      • (38)   and (39)   for the ad hoc estimation.   Moreover, the magnitude 

and phase errors of the ad hoc estimates are generally found to be coupled, whereas 

further analysis shows that the first derivative of  (44)   with respect to 0 is asymp- 

totically uncorrelated with that with respect to 0, when both are taken at the true value 

of H1/H2=exp(0+j0). 

Thus, the errors in the ML estimate are asymptotically uncorrelated, and since 

the estimate should have gaussian statistics asymptotically (we beg this question), the 

errors are asymptotically independent.   An asymptotically circular confidence region, 

centered on the estimate, can therefore be drawn in the plane whose rectangular 

23 



coordinates are (0,9), where the radius is determined by the desired confidence and 

is proportional to the square root of (46) .    [The asymptotic independence of the ML 

log-magnitude and phase estimates, and their common asymptotic variance, imply that 

the real and imaginary parts of H,/H   have asymptotic statistical properties like those 

of (8,0).] 

We close this study with a comparison of (46)   against (38)   and  (39),  to 

see how the asymptotic performance of the ML estimate relates to that of the ad hoc 

estimate (9) — (10) .    The first term of (46)   maybe shown through the Schwarz 

inequality to never exceed either of the (common) first terms of   (38)  and  (39), 

while if the { |p. | cos (9 - 0.)} happen to be the same for all i, the second term of 

(46)   is by inspection less than or equal to either of the second terms of   (38) and 

(39) .   (Note:   R2 + R"2 ^ 2 for all positive R; also, when all the { p.} vanish, (39) 

equals (46)  , as it should since   (10 ) then happens to be the ML estimator.)    Thus, 

under these circumstances the ML estimate is uniformly better* than the ad hoc 

estimate, at least asymptotically. 

If, however, the { |p. | cos (9 - 9.)} (which are the projections of the complex 

noise correlations on the H,/H   vector) are permitted to depend on i (this is the actual 

seismic situation), the ML estimate can be poorer than the ad hoc, and to an unlimited 

degree (while both nonetheless remain in their asymptotic regions).   To illustrate, let 

us suppose that N = 2, R = |H /Hj =1, 9=6= 9, X   = 0 = p .   Then for the variance 

of the ML estimate of either the log-magnitude or the phase, we have from (46) 

* It cannot be hoped that the ML estimate is uniformly better than all other estimates, 
even asymptotically, because of the presence of the unknown "incidental" parameters 
{X^}--certainly, other estimators exist that will, by chance, be better "tuned" to a 
particular set of {X^} than the ML estimator.   For example, the ML procedure uses 
all observations, irrespective of whether they actually contain probing energy or not; 
other estimators may fortuitously reject such observations.   Perhaps the ML esti- 
mator is best in some minimax sense, but this remains to be shown--for studies of the 
effects of incidental parameters, see the papers by Neyman and Scott, and by Kiefer 
and Wolfowitz, referenced by K/S. 
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i-2 -2 
(ß-ß)    = |x2Hj~z[i+ 1x^1^/(1-^1)] 

while for the ad hoc estimates we have from (38) — (39) 

o^/R2  =   |X2H1|"
2 [ 1 + |X2H11"2 (1 - -^) 1 

, <?B = ix2H1r
2in-ix2H1r

2<i+iPli- J^J-)i 

As |p  I -* 1,  |X H  I must clearly be increased much more for ML estimation than for 

ad hoc estimation, to obtain comparable performance (the value of |X H   | being great 

enough that the variances are asymptotically small in either case).   Of course, were 

we somehow to know that X. = 0 in performing the estimation, we would naturally 

ignore the first pair of observations, then obtaining Ix^HjJ"2 [ 1 + |X2H1|~   / 2 ] as the 

common variance for the log-magnitude and phase estimation by both the ML and 

ad hoc methods.   This, however, would be clairvoyance. 
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