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ON THE CHARACTMIZTII OF FIELDS OF DIABATIC FLOW

Part II
Calculations of' Steady Diabatic Flow

in One and Two Dimensions

ABSTRAC T

The purpose of this report is to describe specific calculations of
I v diabatic flows in order that both the Physical understanding of these

flows and methods for their computation may be improved.

After a review of the previously formulated theory, one-dimens-
ional radial and vortex flows are considered. They illustrate several
differences betweon adiabatic and diabatic compressible flows such.-as
absence of limit circles and non-minimal stream-tubo area at sonic velo-
city. Two-dimensional (uniplanar) flows describable by a potential are

j computed next. For one form of potential flow, the exact partial
differential equation for the potential is linear with constant coeffi-
cients and always of elliptic type, if certain indirect analytical re-
strictions are placed upon the flow and upon the variation of the rate

7 of heat addition from point to point, Linearization of a wide variety
of uniplanar potential flows, including those of elliptic, parabolic
and hyperbolic type, is possible if the heat addition rate is not too
large. Scaling laws may be based on this linearization.

A third type of diabatic flw'. somewhat less general than, those
preceding, is analyzed in more detail. Here the flow is uniform at
infinity .but is perturbed by a localized heat source. The velocity,
pressure and donsity variations are calculated over the field of flow.
Since the largest perturbation is bon the density, it is the density per-
turbation which limits the size of the heat source that still permits a
first-order perturbation calculation.

The concluding section describes a formulation of the general
equations for uniplanar flow in terms of the componnts, 11, v of the
Crocco vector We The partial differential equation obtained, say for u,
is always hyperbolic and quasi-linear if it is asumod that v(x,y) is
specified first. The heat addition function is directly calculable onoe
u and v are hliow.

:i .'



LIST OF SYMBOLS-

* velocity of cound

0 gpeoific heat at con~tant pressure

2'Dal -N g + 1

D 0 A ocaistanit value oftD

* radial unit vector

2. unit vector orthogonal toe-

g~q) N v/[UR T]1/

14=d 1n. g/d in-N

Ij nit vectors In -the x and y directions respectively

N Mach number

I vector function chosen to rejwesent an irrotational field of
Sflow-

a number of dimensions less one

n unit vector normal to streamline

p pressure

Q heat added to the fluid per unit wAss and time

4j~j~42opTgRT~/2]

qIV Q4Vt3 (1 .12)]

ql heat addled pr unit mas, per volocity squared, Ler unit length

R gas constant

r radial distance

S sppoific entropy

6 unit vector tangent to streamline

T static tempe-rature

T t starpiation temperature



Pt stagnati on preszure

u', VI pertubation volocities in i and j directions (Section 4)

u, T components of the vector .T in the x and y directions respectively

(Section 5)

V fluid -velocityf

V, local -value of the limiting velocity (2 c T1/

x. y coordinatoa

rratio'o6f secific heats

9 angula9r coordinate in a polar coordinate system

a fuiiction. of u and v containing no second partial derivativea

Pdensity

Npotential for an irrotational N field

0potential for irrotational V /V L*.*Lld
a) 0

S Vorticity 7 M, SV Vb,' and v

I as a subscriPt, rofors to a transformed coordinate systsm

')refe to a portur-bation of a var~iable



IINTROJCTION

The study of diabatic (that is non-adiabatic) steady flows is re-
quired in order that phenomena associated with combustion in steadily
moving gases may be thoroughly umderstood. Since the heat release
during combustion has a strong influence upon the gas flow we consider
a theoretical model for moving, burning gases in which only the dy-

namical effects of the h, %t release are considered, and -the effecW of

viscosity, diffusion and of change in specific heat or in composition

of the gas are neglected. The steady mean flow of a turbulent burning

gas could, for example, be described by this model, or the pressure

distribution alon a boundary layer owing to combustion'outside 14e
boundary layer c ouid be computed. Theory based on the model is thus

concerned with steady diabatic flow o? an ideal;ized fluid just as

classical aerodynamic theory was concerned with the flow of air out-

side boundary layers.

-r The direct problem in diabatio flow theory consists in determining

characteristics of the flow pattern from knowledge -of the heat source

distribution. The inverse problem, in which calculation of heat sources

follows from knowledge of the flow pattern, is easier mathematically and

yet is of some help in planning the solution of the direct problem. In

our earlier nvestigations of both direct and inverse problems of dia-

batic flows (1,2) formal manipulations of the partial differential equa-

tions have been emphasized. The nature of the resulting physical and

mathematical problems has been described, but no detailed solutions of

the problems have been given. Accordingly, in this report we wish to

discuss several explicit solutions of the equations for stady diabatic

flow and shall derive from them a more intimate under.Rtanding of the

relation betieen the physical problems of aerodynamic combustion and

their mathematical solution. We note that in some cases only part ofa

calculated flow pattern has direct phy.ical interest, but that part is

worth calculating even by What appears to be artificial methods.

* " The differenoes, fAr each variety of fluid motion, between adia-

batic and diabatic flw are noteworthy. In adiabatic flow the enthalpy

of each fluid particle is constant and the entropy change of each

particle is zero except across shocks. On account of this special

thermodynamic behavior, adiababc compressible flows are characterized

physically, Ior example, by mininum area of stream tubes at sonic

velocity and mathematically by the identification of subsonic and super-

sonic flow, respectively, with elliptic and hyperbolic equations. Also

in this adiabatic case the two kinds of compressibility effects, namely

those associated with high Mach ntuber and those associated with density

or temperature changes, are closely coupled. In diabatic flowion the

the other hand, the enthalpy and entropy of fluid particles can vary

owing either to addition of heat locally by combustion or by conduction

Tir B. L. Hioks, "Diabatic Flow of a Compressible Fluid", Quart, App.

Math. 6, 221-237 (Oct. 1948) (Referred to later as D-1).

(2) B. L. Hicks, "On the Characterization of Fields of Diabatic Flow",

ERL Report No. 633, (May 10, 1947). Part I - General Theory of

Steady Diabatic Flow- or Quart. App. Math., 6, 407-416 (Jan 1949).

(Referred to later as D-2).



of heat from the neighborhood of the fluid particles. One has there-
fore no a prori- idea- of the b.1mavior of diebLt.o f-1ows with regard to
'minimum arew of -strean tubes and cannot ass6ciata the magnitude of the
Mach number with the mathematical type of the flow. Also the, two mani-
festations of 4compr ssibility-" are no less tightly coupled since the

. density can change appr*iably.with but small change in velocity and at
small Mach numbers. From the one-dimensional theory, however, via know
that the effects of heating and of stream tube area Variationare
similar. 'For example, a transition from sub- to super-sonic fio, imay be
accomplished in adiabatic flow by a converging-diverging nozzle. In
diabatic flow it may be effected, in a duct of uniform area, by proper
addition and abstraction,-Tt heat. Although one can, therefore, guess at
some of, the effects produced -by heating in two- or three-dimensional
flow, it is possible to gain a more general insight into diabatic flow
in the higher number of dimensions by studying examples 'of two- or
three-dimensional theory.

In Section -the basic equations developed in D-1, 2 for two- and
three-dimensional diabatic flow are summarized. The simplest flows are
then considered first (Section 2). These are flows which are one-dA.-

mensional in the sense that for them the local Mach number depends on
but- one space variable. The connection with both- the one-dimonsional
'o hydraulic approximation for flow in ducts and two- or three-dimension-
al diabatic flows can be exhibited as well as the relationship to various
adiabatic flows. The irrotational uniplanar diabatic flows (Section 3)
are next in order of simplicity because they are describable in terms of
a single potential function. Special elliptic, parabolic and hyperbolic

flows are discussed, and then -a general troatment of irrotational flows
is given, based on assumption of a slightly perturbed flow, which leads
to similarity laws.

The third type of flow-discussed (Section 4) is of the greatest
basic importance. Here one asks, what are the effects of -heat added
locally in, an unbounded' -gas, flowing steadily, whose velocity is uni-
form far upstream o' the local source of heat. -The equations are first
linearized according to a perturbation "scheme since even for low Mach
numbers the original equations are 'still non-linear. It is then possible
to understand how the effects of heat sources distributed in an arbitrary
fashion throughout the field of flow could be built up by superposition

-of the elementary solutions. The construction of' the elementary solution

itself offers some difficulty if the appearance in the field of vortex

filaments and of infinite changes in enthalpy is to be avoided.

From the consideration of these detailed problems one can formulate

what appears to be a reasonable approach to general two- or three- dimen-

sional problems in diabatic flow. This formulation has been examined

particularly (Section 5) for rotational two-dimensional diabatic flowe,

where it amounts to specifying throughout the field of flow one component

of the Crocco vector (Y1 =Y/V t where Vt is th local value of the limit-

velocity), and specifying the second component and its normal derivative

along some curve in the field. The differential equation to be sol,'red

8



is then always hyperbolic. After calculation of the second component
of -Wthe nature of the heat sources and of other characteristics of the
flow could be computed. This kind of procedure in which the heat nources
are not specified first seems to introduce somewhat more tractable equa-
tions, without unduly restricting the flow pattern, in almost all etses
of diabatic flow ti~t have been studied whether in one or more dimensions.
(See Section 5 and References 12 and-I3 for discussion of new work along
these lines.')

The theory developed in this paper :has been presented in part at
meetings of the American Physical Society in 1947-48 and in the Third
Symposium on Combustion. Flame and Explosion Phenomena, (Willi&=--n&
Wilkins, 1949J (212 - 222). The present report differs from the Sym-
-posium account only in additions and corrections that have been made,
particularly in Sections 2 to 5.

1. SU iMRY OF BASIC THEBRY Z

For an inviscid compressible fluid containing heat sources, the
equations of steady flew are

V p + PV V (.1)

o-v° VTt =T V VSzQ (1.3)

where the symbols p ,a, T, Tt V, S and Q stand respectively for pres-

sure, density, temperature, stagnation temperature, fluid velocity,
specific entropy and. he, t added to the fluid per unit mass and times The
quantity (Q/V) then ,gives the heat added to unit mass in unit distance
along a streamline. The stagnation temperature is a measure of the total
energy of a fluid particle. For the perfect gas here considered the
specific heat at constant pressure, c , is constant and the equation of
state is ,

p - R , T o (1.4)

Although variation of specific heat and of gas constant R occur in cornm-
.* bustion zones and the phenomena of diffusion and turbulence often play

a role, those complications are neglected here, as in earlier diabatic
flow theory, in order that the important effects of heat generation
alone can be examined. It is noted that thi term Q could include
effects of heat conduction explicitly although this possibility is not
examined further here.

As has been shown previously(cf. D-102) the. equations are placed
in their most generally useful form if transformation is made to Crocco

9



uectorP and stagnation pressuru, Pt. in place of velocity vector and

(static) pressure p through the equations

=vw (1.5)

P =r P W-(/ - (1.6)

where Vt is the local value of the limiting velocity

vt = (2 C Tt)/2 (1.7)

and the stagnation temperature Tt is related to the (stati4 temperature
Tby

T = Tt ( - 1) (1.8)

The transformed equations are

Vlogp - [(1= 27i 2 Iw ( xW) - qlr W (1.9)

V- (. -W2)1/, -1 W = qw (l - / ,1-1 (l+ -I ,2) (1.10)

W- V log V t = (1 ) (1.11)

in which

= Qt 3 (1 - W) (1.12)

The Crooco vector v.as Pirst used by the senior author and .his co-
workers-at the Cleveland Laboratory of the !ACA in 1945. The vector

suggested itself as a nat r I generalization of variables used in
one-dimonsional flow thoor3), of Crocco's languq, and as a corol-

lary of thUI&nh vector we nad introduced in 1943111. Recently Munk
and others 5 ,6) have also introduced the vector ! (their "reduced
velocity vector") which they arc now using in detailed studies of
general adiabatic flow.

(3) B. L. Hicks, D. J. Iontgomery and R. 11. Wasserman, "On the One-Dimen-

sional Theory of Steady Compressible Fluid Flow in Ducts with Friction
and Heat Addition", J. App. Phys. 18, 891-902 (Oct. 1947).

(4) B. L. Hicks, P. E; Guenther and R. 11. Wasserman, "New Formulation of
the Equations for Compressible Flow", Quart. App. Math. 5, 357-361,
(Oct. 1947)

(5) M. U. Munk and'R. PrLm, "The Multiplicity of Steady Gas Flows Hving

the Same Streamline Pattern", Proc., Nat. Acad. Sci. 33, 137-141
(May 1947).

(1 L.%. Ifunk and R. C. frim, "On the Canonical Form of the Equations of
Stdady-Iotion of a Perfect Gas", J. App. Phs. 1_9, 957-958, (Oct. 1948).
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If a flow dezcril.ed by equations (1.9 - 1.11) were irrotational in
the IT field (therefore aerdittint a potential 0.) then healt addition
rmist bo such thzit (cf. D-1)

',1: C (1.13)

so that q. is cozitant on scurfaces nqrral to streamlines. Although this

is a physically impcrtant and viiiualizable case, many other dikbatic
flov-s rotational in the '7 field may also be derived (cf. D-2) fro= a
potential function 5 :introduced with the more genera1 transfcrmtion

Vzf ,(N) 7, 1 v11 l (1.14)

in which g(N) can be arbitrarily specified. The- accopanying restriction
r-n Q .as found to be expressible as

+ q igg S = - --7- I G) V - S
1 2i ) 1

.4 - (1- (1 j gl) F ( i,(.5

9t d I]cC 9/d loj; N

/ (j H )1/2 (1.16)

We nero that and qo have alv-ys the zame sign as Q although their

variation in the field of flow .ay be different owing to the variation

of the factor ia/2 r(1). The quantity V S is the fractional rate of
change of streara-tub area Along a streamlinZ (4). S being the unit vec-
tor/, tangent to the steamline at each point in the field of flo.
The function contro2s the variation of g T) along streamlines,

1 gN I7 :& (G T) - F(55) (1,17)

fixes the variation of pressure throuGhout the field of now,

log pi + I dN - jF(11 d 4:6 constant (1.18)

and enters the partial differential equation v'hich tho potential N
IM It s htisI'y . - -

2. , t a~' .V Iz 1 ON J OW

r(XJ

2,\ 12 0.< . r ,



The type -of equation (1.19) is elliptic, parabolic or h:'perbolic ac-
cording to whetiter D) is ;;, =, or < 0. The f£nc tion D depends Only on

N1 and its form is fixed by cheice or 1;(x) alone,

D =1- N 2 - (1.20)

Bacause .of the presencefof two arbitrary functions, F($6,) and C (N),

frrotational N fields are expected to be somewha~t lezz restricted than
they appe-ar to be at first sigitt. A family of irrotational flews parh-
wterized -by D = D = constant iwere described in!) - 2 where expressions

were given for --(I) for- all real valuez of D. It is conmiainet to hzave

wavilabl the Gorresponding expessions for H. fx 2

HZ = 1 .(g/k)l 4DOIl- - j.

- -[~log (Ua1)j -l -1 1.1

Various general properties ot theze equations and of Ume correspon-
d-Ing physical 3ystens have been discussed in D-1, 2. We shall apply
then. here to the discussion of a nteber of zpecial cases. In all of
these cases, equation (1.11) shows that, in the n~otion of any fluid
particle, the fractio-ft1 rate of ch;Anre of is's total energy with re-
spect to distance is ziruply 2 o W(1 - 1 2)1W while the fractional rate

of change with respect-to tin* is 2 o, (1 - 1,)Vt.

* ~2. GUE-Dn.ME-SIo:ALL R=~T

As in other branches of' fluid dynamics an inderstanding of' one-
dimnsional flaas is essential before the more difficult proble1MS of
calculating nulti-dirennional flows are attoempted. Uniforgz, parallel,
one-dimensionsional flow that is diabatic has been the subject of nany
papers (cf. for example, reference 3 and papers cited there) because of
its direct applicability to jet propulsion and to detonation phenomena.
We shall Give here an introductory discuSsion of' one-diamnsional radial
and vortex f1cis.

Radial Plows

The equation

r 1(r) 9

doscribes a Limpla radial flaow for wihich tho magnitude of the Crocco
vector W? depends only on the radcial distance and the direction of the
verctor field is given by the radial unit .vector, er .I (n +i 1) indi-

cates the number of dimensions (n =1,2 corre-rond to line and point

12



sources respectively) then the equations of notion, continuity end energy,
equations (1.9 - 1.11) in W language become simply

log Pt -2 _Y
W .. (2.2)

rn n  e(1 W2)1' -1_ q 1 (1 2)lk -(1 + W1 ) (2.3)

- -O 
.4)

Although adiabatic, compressible radial flows are restricted to be
outside a limiting cir;le (or sphere) on which U2 = (W - )/(7 + 1),

(H = 1), dib atic flows are not so restricted. For integration of equa-
tion (2.3) give- r

.Wt(  122) ' (1 - 1,2 ) d r4 C1

r1

Both-C1 and the R.H.S of equation (2.5) are not negative. Since

W(U -W)1f cannot exceed its maxiuzm valuer.
1

we obtain the inequalities
r

0 4 f rr-(I AY ( + 4 W')o,,, r + C l-Cir n (2.6)-

If q 0- , > 0, (adiabatic case), the flcw is characterized by an

inner limiting circle -at r = CIt 2 . For arbitrary functions qW(r) ve

would expect one or more circles limiting the flow on either the out-

side or the inside. (cf. discussion of D = Di flows later in this

section.) For many functions q*(r) -w should find no limiting circles.

Thus a bounded function q.(r) can be found giving W r 1 (K __ 1) or

giving (1 - .72) C( r (12. 7- 1) at the origin. If W is to be differ-

ent from zarb at r = 0 then q,-m a there, and also qff.-oo/r- -0 if

0 -< K 1 or if 0 < K2 4 7 - 1. Ina'order that no limiting circle ex-

clude the origin it is nzcessary if q4C. r"3 near the origin either

that 13 exceed -1 or that, for K3 - 1, C2' 27 C3 /n ('- i).

13



To illu:Arazt some of thesce remarks we shall consider ta:o types of
radial flw. In equations (2.2 - 2.4) specification (it aay one of the
four quantities, p., W, qr V. as a function if r should in principle

permit calculation of the others. Some ccbination of the v-riabl3s
Might equally well be specified, for examrple q,, = qW [C 1 ( )P2

However, calculations are especially sirole if 1(r) is specified and q
pt, Yt ccputed subsequently, and this procedure will be adopted here.

For our first exeaiple we shall therefore assume a uniplanar flow (n = 1)
in whic the form of W(r) is

W = r(/ + 2 ( 1/2 r) (2.7)

corresponding to a flow extending from r = 0 to r =00 with a continuous

transition t.Iwough the velocity of sound at r 2 = (7 - 1)/2. The
heating parameter q" has, from equation (2.3), the value 2 at the origin

and depends oan r according to the equation

=2 [ - ) r2] [ + r2] -1 1 + r2] (2.8)

Owing to the divergence of the stream tubes, qW passes through zero for

a velocity greater than that of sound, namely for 1 = (Y - 1)/(7 + 1).

(2 = 4/(-3 ), r2 = ( '- 1)/(3 -7'). At sonic volocity

qf= 2( Y+ 1)ift1/2  (2.9)

in accordance, with equation (3-3) of D-l. The r-dependence of Vt is
found by integration to be

(' ~l-F2 -Y -iY 7 1)71/2 r 2 _( r2)' (?'-I + 27-r 2 )
(2.10)

in which Vt reaches its maximum value Vtmax whore q. = 01l) The velocity

ratio V/1t; r1- is obtained by multiplication with W. The other' quantities

can be obtained similarly.

In figure 1, a, b, c the computed characteristics of this diabatic
source flo ame illustrated for Y = 1.400. The not energy change of this
fluid in passing from r = 0 to r = is measured by [Tt(co )t a]

Vt (0]2 = 0.708. Thus only part of the energy added in

accelerating the fluid from rest and zero temperature at r = 0 to maxi-
mum energy at r = 0.707 is removed in continuing tha expansion to where
V = V, I M =o0, R =o. ThG maximum rate of heat evolution occurs for

W Actally Vt ma could be uifforent for each streamline, in analogy with

* the generalized adiabatic flows considered in references 4,5, and 6.

14
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S0036 (V 0.80) where it equals, (for V mi- 10 jnitlejsh/s
tx

2 x I0 See expressed i fr.d'uion released per tcvond -of total,
heat added between r - 0 and -r 0.707-. 1he I;u-of a -,r = "0.707
where Q= O, is 1.53. For lar~er alues of r, Q! ;0, bu aproacs
zero rapidly as r--e. The sttagnatidi presnur;o. Ygure .Ib, which
reaches a- rainizm tt r: 0.707, increases indefinitely as ,
illustrating the extre-- -sensitiviiy f hyperonic floi to 'I dto l.
Thus our example shows:-tb* possibility, already discuzsed in th hy-'Tu u )xm -d- An o- h-
draulic approkimation, k3 -of' obtaining sunersoiic -flow With -Otxbu-tion'
even though the, nozzle has no converCIn -g part. Oie could 1-ivo, . oir Ox-
ample, increased L beyond 1.58 by -adiabati- expansion instead of- by the
exothermic expansion calculated. Such a- radia1 f o c-1ld posslbly be
set up experimentally in a nozzle consisting of two -para§llel discs 'b--
tween Yi~ch combustiblg mixture is fed throuh tbes Cn th axis Of the
discs.

The second case of radial flow to be considered originertbs in the
use of potent-al functions in two and three dimensional fields (cf.
S tionz . and 3). It is'instructive there (see D-2) to study''1owsof
constant type (D =D = constant) leading to- fa family of functions

gCV(N, Do) parAketerized by Do . Specifications of the same g1 functions

for purely radial flow amounts in equations (2.2 - 2.4) to specification
of a combination of the variables qw and W and will illustrate again the

differences,between adiabatic and diabatic flow. We note that the

second arbitrary function F(1N), which occurs in equations (1.16, 18),

must also be given., if g is to be determined. For the present simple

illustrative case we place F(16p) == 0 -which corresponds (see D-2,

Section 3) in more general cases to irrotational V flow in which (VA)

can vary between streamlines. (In the next section irrotational flow!
for which F(yIT) +- 0 will be computed.)

We can again, ,consider two and three-dimensional radial diabatic

flows simultaneously. From the earlier theory (D-2), N rust satisfy
the equation

_n 4D -1 d ,16.2.i

r U (r n N d -r (1 0

so that

(N/ -K) (2.12)

where K is the the integration constant and N g becomes (D-2)

-j2 g (1 Do)(rrD(o -i 1)/ 0 -) Do -

n 1o~ ~ ~-l(2.13)
n log r D

180
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Now for real flows, 11g must be > 0. From elitiation (3.1) wo see that
r- is. orrospondingly restricted.

: i/b 0", r > 1 (z 14)

for all values of DO Since the value of D determines the type of flow
0'0

in non-radial cases according to its sign, we can carry over the termin-
ology and- say that for

elliptic flows, DO > 0; r > 1
40

hyperbolic flows, Do < 0; r I

(D = 0 is not considered since it implies, for F 0, that streamlines

are parallel.)' Thus a second departure from adiabatic flow behavior pre-
sents itself, for now we have exhibited flows which can be wholly within
as well as wholly without the circle r = 1. Also where r = 1, (N'K) = 1

and N 2g M7- becomes infinite for all Dr (0 O) whereas in the adiabatic

case M = 1 on the circle limiting the flow internally.

Vortex Flows

if
= W=(r,O) e (2.16)

the equations now are (cf. (D-1), equations (2.5), (3.2) with 7" S = 0),
in cylindrical polar coordinates,

-1 log p t 2I(
r-dO = - Wq (2.)W

- log Pt IT W
~L....)(2.18)

r W q(l + oW 2 ) (l (I )l).
-l ) - -4 w¢),(2.19)

( 7'+ )/( 7- I)

logT = - W

These equations shivw that for an adiabatic vortex flow, the velocity,
stagnation pressure and stagnation temperature are independent of 0.
For an irrotabional adiabatic Yi field, pt is everywhere the same, and Wr

constant, thus leading to an innor limitin circle. For a rotational
adiabatic flo W 1= (r) e. and equation (2.18) can be integrated,
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log Pt r -2 d (12 r2 )'21

The functional dependence of and A upon r is now not rostriced so

that flows in which there are no limiting circles are easy to construct.

FOr example with (compare equation (2.7) et, seq.) = r 2 /(l + r 2 )
again

W = (2 + r 2)/( + r2)3/2  (2.22)

and

log (PiPt( r2 )-)- r= (2.23)

Thus a vorticity that is everywhere finite can permit adiabatic vortex
flows without limit circles.

In diabatic vortex flots of the typo described by-equation (2.16)
W and pt can depend upon 0. However, wed notice that the difference .14-

twoen log pt and a cortain function of'W

i'1(W) =7= /wm -,aW") (l +46ir 2 ), (I -.W2) d (224

I f " U2] [? _l]l/7 -1-tn 1 +-

zat be independent of 0 or

Io; P p ."OT) + f(r) (2-25).

We can sunnarize the properties of the radial and vortex flovis thust

(i) rotational or irrot. Licnal adiab-itio radial fl ws have limit
circles owing to the foia of ]Lho continuity uquation;

(ii) adiabatic or diabatic irr'to%'ional W vortex flows have limit
circles owing to Vhe form of the irrot-atirkality condition;

(iii) foV"s without limit cirolos ean W constructed by adding
"" heat to radial florvm or vortex flIows or by changing the vorticity

pattern of vor tex flmr:.

3. IRROi'ATIOU;AL 11 FL,'T ,0- M1.,,IOS

If the vocL-or IT R g~ T] t, L rrotational thon its po-
tontial must satisfy equaAon ] .19) and the hor-ting functioni % in

given by equation (1.15). Since theso two equationn involve two arbit-ary
functions, G(N) and F( c N), tho nature of N flow patterns, oven thouh

20



irrotational, and the corresponding distribution of hoat sources can
still be quite varied. In order to illustrate the nature ok tho flavs
wo shall chooso certain functions g(K), F( I) and give approxitate

solutions of equation (1.19)with appropriate boundary or initial Pon-
ditions.

Elliptic Fl.i s
Equation (1.19) is simplified if D I which implies that the flow

is always elliptic (cf. D-2) and that

g = 2(k 2 _ N) (3.1)

The equations become, with the added -assumption F ( 95N 4

q(lW/4c) =21'[1 - (-Y+2) N2/7kjJY ~ +3 SIXk2 (3. 2)

2  (k2 +N 2 ) 6 (3.3)

A uniplanar elliptic flow described by these equations is the first case
of irrotational N flcai we shall treat.

The constant k/27can be removed by a change of scales in the (x,y)
plane*

r k r l27 (3.4)

which also transforms N N

X(3.5

The equations for qN and Oil become

2(1- 1 N12) q 2  -Y -+2) N 2/2 Y + Ni3 v 1 * Z / (3.6)

and

V12 (A 1~ N (3.7)

the subpcript I reforring to the now coordinate vector r31

The parameter k can be removed by a scale change in all the irrotation-
al flows parameterized by Do-

21



In crder to .cnplit: the opriicati-. of our pr b-.e adjoin to (3.7)
he boun 1:ir$ cenjt; -.n--

-O r (3.9)

corresponding to a diabatic flow around the circle r= 1 with pre-

ucribed 'valu83 for upon the larger circls = r Other boundary

ccnditi as and choice, for the functions F( have been discused

briefi- elaw.here(7). 76o believe that usofAIl resultsj may be obtained if
a~y Yin takeu -66 'vanish on r ,1 ,' 1 corres-pondinc to & -flop that is

uniform in dirsection at !are distances from the cylindrical obstacle
r 1. Then w h,.- the extenzion to vailues of D other than I is mzado by

ccnlin, rules thw. flrv. woull romain uniform L-n direction at ]argo lis-

tances. Aido Dr. Dinsdale of thaao Iaboratorie has chown that F(j 6)
In the more [.?noral olliptilflow equation

V 2 4.=( V,7 - 95 , .o
V~d~ ~(i..V'1 1 )F((3.10)

can be zo choz-on thitt exact lineari:ation is .ossible. Thus he makes
the transformation

Oil1/i' f cit exp (-f F(o-) d -) (3.11)

which leads to 9Ir

~ /'=Y lv F(9 1) exp Fj (s) ds) (3.12)

'Tho condition foir linearity of ~ isi that

F2 ( -z F(ONT. constant (.3

.Axcovding to the value of A there are then three possibilities4

(i)r 1 11 +~ F0u 0)'. =OC + b 0) 2 +; (3.14)

(7.) B. L, Hicks, "Simple Diabatic Flowvs of Elliptic Typo", Phys. Rev. 72,
179(A), (July 15, 19-17).
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4I, s[OC (16 4 96 )]~ + 1o; P~ () = o 2 of)

For thsse three cases calculation of diabatic flow fields can be b&sd4
in principle, wholly upon analytical coputaticas. rther study of
these cases might well be rewarding since, for example, exact calculation
of transonic diabetic fields would be possible. Our furti ,r treatment
here will be based upon approximate iinearization of equat.on (3.7). 5
parameter V 0 fixes the scale of 95" If 9 0 is mall enough, max Vr1

will be mall coonAred to one and equation (3.7) becmes

Mv, 2 x(3.17)

whose solutioa, for the boundary conditicns equations (3.8, 3.9) is

+ 7 os (LIo(u) - 1 (Kj(r) + [K0 (1) 4 K (li I lr]'j}

(L'0(1) ' Ii(l)lx K1 -c) + LO(l) + K1 (1i] II(ri'4}' (3.18)

Calculation have been made for r = 2 and 6 O. 0.2864 which insures

that max N1 = 0.203 (corresponding to max L = 0.242). The accurate

evuluation of 7 0 S in eqiation (3.6) requires here, as elsewhere, -om-

putation, of the expression

N3 7 *S N 2 5 -- 2r 2 # # $r

(or its equivalont)-

It would be difficult to obtain reasonable accuracy if the calculation
of S were based upon measurement of the divergence of streamlines
drawn by graphical interpolation or if it were basad upon values of 96 N

aad its deriv atives determined from say elaxation oaloulations that might
be required in a non-linear pro:blem0
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-A P/l 0 =.oo0c

FIG. 2b. ELLIPTIC DIABATIC FLOW
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In figures 2a, b, the streamline pattern aud lines of constant N.A P/P and 2qA 2 arc sho, pa being aproxintely the value of p at
r 2.) = 7f( Owing to ti. zYmetry or the flow abomt the y axis,
it Is Oly necessary to give thse curves for either half-plane.

lyperbolic and Parabolic Fla

Kxftples of wholly hyperbolic or parabolic flows can be easily can-structed where a Glauert - Prandtl tye of linearized treatment is per-
iatsible. In this way we shall obtain sew characteristics of diabatie

flws in curved ducts which will serv, to introduce an approximte general
similarity trjatcent of Irlbtational diabatio flows. .t us consider
first a wholly hyperbolio flow mentioed in D-2 (Section 8) which bas the

( property that the flow velocity is everywhere sonic (N = 1) and that

I(3.20)

TLas flow is derived by choosing g = 7A for which D =-(74 1).
The lineariied differential equation for 9 I (in two duMensions) be-

cmif F (Olff) =96 ~ (cf. D-2, equation (8.4)),

4741) + # * 71N ~ (3.21)
- 2- 2" - ; Wo

An eleinsntary solution of this hyperbolio eqTation is

$5 N X cosh( 0 Y (3.22),

satisfying the boundary conditions

961 = o 0
)Ay)an 0 (3.23)

Tba"linearization is valid when U j:r -N-N or
roughly in the region 1[.f1)4 if 2 , IN y 1

lwY V C j i )/Yl 1/2N xyZc1
The expression in Cartesian coordinates that is analogous to eoqaticn
(3.19) is

95X 96 oX %4

'which in our presont -pproximation becomes

v. s 1 ( )7 - /Z 0 xI ( I - 2 tanh2 yL) (.25)

25



/K

0 73

U.U

0-

U-

08

030
~C

)bCV

02



Y. i

-hac~c- beon nAde.;

*.~heating .sLctofr ij - given byi

The pr~ure~v~risi i fownd, to b6 (dfr. D--? equation(.)

The rekure *iaiM'(.1y

J- '

Tet~ratcan ('. lb(o ba oxnbuted. The xesulte
arlb i02ustrr~txl in figurG Z". lte, regona of vfj.Idd tY rfthis solu~tion

arh. aCnjj_!jC .byjj t4. -z xu't irr hicharo loo-i
of Constant -values c1 Of' zi y3, * Thuz at all po~rztr bonoath the

ci = 02 cu-rs tfwhe Y mljiporionm. of is no' great-or tinr 30% of the

~compcient.

% mnote general analysis- of' the hyorbolioeqouation (3.30) can-be
ba~iod or. the Rikinanr. funiction for the eq Ma-,on whic.1v iedds to thoe x-
prw~sion_ -1 4(

Y, 71fa 
Y

I I(z) d

where-[Y - )]uj

-~correapondiwg tn the bounda~ry coadition'
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"10 Vfitow I %%I i) 1 (z)tire woiii-d ros-0 nff~.~ f F(fi6 )

-~the solutioi R, b., obi 1.ted by replacing I- z by UJ(7.)]ald
(Z) by J Wz in oqnaticn (3..301.) rw exprossica for q6 b

f oried to read

+IUXej Y42x y+ Z2) +~x f3'i)] k2-) 12 2

y 1 :

/Y z +tx a/'1772)0 d z

In this formi it Is clear how the naturs of the solution differs from
that for a simple mays. Integration of the values of f as woll as

of' (O ,yj) = along the ,;upnort curve -,=0 are included and

tho TvaluesJ are T~oigrhted with the greateat weighting near tho endpoints,
(X1 ±Y) of tho region of inflimee for the point (x1l, y 1 ). The

coalution cannot satiscty the linearization condition f'or all x aztd y be-
caiuse of the divergence of I zend I I(%) as Oxp z for 1irc z. -Lhe

1WRIAtng factor fmd presoure satirfry Vesam equations (3.20), (3.28)
as befoeo. '.-76 also notico that change of 14 can be absorbod as a

acaling factor in eaoh of theso canes of hyperbolic flow,. If, would bo,
intcresting -to vwork throuigh no-rmo case ich as ( d96N/d ASOC (_J - tanli x)

bonau-je, sincao.1~ then rnood not be, nogativo for x < 0, a greater p~art of

the field iouild corre-ond to flow: with (cx~othermic) combustion. Asyrn-
motrical flom.i would occor if' () r 0/ oil YO =n 0.

as a Socond extunnIle of' duACt !ix,c: Consie>.z- tho 1iolly paIrabolic flows
icih occurs only -xhon 1) =_0. Uailkkcs I.ho special. hyperbo~ic fla7 jinst

oonido .d in: this parabolic I'Low th1 i4c e~vrc~,i h
G.1a.uort-TranntJ approximat Lonu, tho 'nartial dif fr-ontial oquatidon for
it In thia caro -(of. D-21 6quation (iww3 ~th b. 1 Yaoi

f 1(x) o h ( ri7 0 y) k' TV. S (3,35)
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for the boundary cpnditions

j } ny =O (3,36)

and In a val id approximation in the regions where f (X) ire'

If() y < (/) 1/2. The .ecial solution equation (3.31) of the pro-

non: hyperbol.c eluat ion was of the same form. However, the coordinate
'scale changes &re now different and th scaling of the beating factor
and the pressure are also changed. Thus correspdin to equation- (3.55)
and with the y scale change y 1 =(k 10)l/ y we find (cf. equation (7-5),'D-2)

= Al~x) f(x) , 2 (No) fe "(x)] cosh Yl (3.37)

where ) 1(N0) and I) Z1 are determinable fumctions of IO. (If % in

equation (3.37) were replaced by ti value of N calculated from equation
(3.35), q .id p/po might be calculated with slightly greater accuracy

in some instances.) The pressure variation is given by (cf. D-2, equation
(7-6))

(p/po) = (k -No) e" (" " )(.

For this parabolic fic it would. be possible to 3pecify a -function f(x)

for which-q1, willg generally be positive. For a specific illustration,

hovmvyr, we will take f(x) = x. Then

=-1 ) x cosh y, (3.39)

whore x1 = (k N 0 )1/2 x. The streamlines, region of validity of this

solution, and values of M, (p/po), (Tt/Ttoy and V/V 0 are: shown in
figures 4 a, b.

Similarity Rules

A general linearized treatnent of irrotational diabatic flavs can
be given which leads to similarity rules for these flows. Like moot
linearization treatments, the method cannot make adequate allowance for
large perturbations of density 'and temperature and therefore is limitod
in its range of usofulneso. Our development starts frm the partial

29,
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FIG. 4b. PARABOLIG DIABATIC FLOW
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differential equation
2 2'

D(Io) , N + N 2 + F(96 (3.40)

vhioh follows from equation (1.18) where 1140 ./dy* < I96/jx--, Ths

function F(011) depends only am and not on N. Accordingly all effects

of choice of g(R) and of free stream value of N - o oan be ,absorbed by

the scale changes.

~2 + I+ 1]D1)7 2 (Dcjo (3,41)

giving the equation
2 2

~*N + d it (3943)
- 1 y2

in which the +,sign corr"sponds to the ellipti; and hyperbolic cases*
D2 or D0<7 0. WhenD 0 (the parabolic case) the scale change

(3.42) gives
2

Boumdary oonditions ar6 usually representable in the for&

r(X*Y)0IF+4&(x,y)=A(XPy) j x X (3.45)

on curves f"i With the scale changes this becoms

l (Jj,:rv1J'o*N~ +/6 1 (XI- 1 No) =A 1(x1,y1  0)6

6(3.46

where n*(,

c.4(xy) =o~(X 0 y1 ,Wro); / (xy) =41 l(lyl9  o) (347)

Do:'1/2 2 g'')/lX'1 (N l(Wl (No -/
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Thus whenever one can wr'te do.sa a solution of tho system equations (3.46)
and (3.43) or equation (3.441 for General values of the functions

0 ,then solutions of the system equations (3.40), (3.45) can

be constructed for any value of N0 and for any form of the function g(No

so long as the same sign of D is kept (or the value zero in the parabolic

Case). It is most !kely that general solutions of te systea
(3a,46): and.,,O'43) pr (3.44) will be available- if the system is completely
linea.ized..Suppos6 for example that F(PN) = Our previous dis-

cussion of various, cases shows that three basic solutions for example,
04uktiui (3.18) in the elliptic case., equation (3.30) in the h yperbolic
ease and the expression

9N = f Wx) cosh y + g(.:) uinh Y.

a'-,AN (3.48)
WWccy0)

in the parabolic case permit immediate calculation of the flow pattern,
qK etc. for all valueo of Noiust by ziaking the scale ohanges, equations

(3.41) and (3.42). Thus all elliptic and hyperbolic flows (with F(t N)

= N) and with the boundary conditions given in equations (3.8), (3.9)-

and (3.32) respectively con be derived, no matter what the function

Of0a) , from equations (3o,8) and (3.30) in the Glauert-Prandtl approxi-

mattes. The equation for- 6, i

qN n I(o)t) (3.49)

in which q3 , q, are function , of It that are determinable once g(0o ) is
given. 0-

Te thu3 find the following imiilarity laws for linearized irro-
tational diabatic flow (In addition to equations (3.41, 3.42))

r-, 2 1/2VVoU/ "o . g ,.
g(W0 N C 0 C)/h 0

2 e(N0)] /2(3.50)

W( 3O5  (N0

J - 01YLo

.p(i0o #1)4(No 5,,) , (N0)I 2 (No ) (3.53)

)2



where (af. 0-2 equation (3-8), ) exp g() d 2. and

20la • q2 SC o 0 + d .

S ~w' ri/~)N] q2 [NI g)] + Y

Equation (3.53) could be used to-calculate pressure forces on bodies in
diabatic flow. The transwfation of N and g -ould of course distort

0
the body being considered just as in Glauert-P.andtl transformations for
adiabatio flow. 'We note t)at for all irrotational diabatlo flows

(1 + 1 N 2 g),. V log T- = (3.55)

If ?to is the free-stream value of the stagnation temprattre then

log (TtAo) = ./ . d A 2 (I+ y ,N 2 g)] (3.56)

where the integral is taken-along a streamline. The similarity law her.
in the Glauert-Prsndtl approximation is

lo T(N'.)/- o T- 2N)gL X -+ t d , x t T k( o(Nl ...)N 0 (l + 16' 0(u. )

qV(No)N'(i + 1 No'2 g(N')) (3o47)

Once N, p, Tt are known then of course M, V, pt' T, and Q can be oom-

puted. We firthor note that the vortic ity in V languagejI V X V [ is in
two dimensional irrotational flow, simply equal td (- f h log g
The accuracy of the various approximate expressions we have given may be
expected to be difterent for the different flow patterns and also for
the various equations.

4q-, PEZWMT;OK OF UVIZ'FOM FLOW BY A, 11CA SOURCE. OF AT (8)

Among the. suplor rotational diabatic flows only on. has been
troated t'lly by us, that of an almost uniform flow doflected by one

B. L. Hicks, "Perturbation of Steady Uniform Flow by Localized
Sources of foat", Phyao lev., 73 636 (L) (111roh 15, 1948).
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local twat source of the form Q OG " .n1 ore gonoral rotational
problems can be discussed by uxaminiag per turliation due to hoat sources
in-non-uniform flus, by superposition of more than one heat source in
almost uniform flow, or by relaxation or charactoristic parameter
methods for high Mah numbers (of. basic equations --Section i). We
hope to report ,som of these advanced calculations at a later tins.

We had expressed a doubt in the Madison paper that a unique ele-
mentary source of heat, analogous to a fluid source, could be defined

for diabatic flow. Comparison of the.results to be discusse& in this
Section with the calculations of reference (9) lead to the conclusion
that difficulties such as infinite jump in nthalpy or appearanoe of
vortex sheets could be ignored in a first treatment If the total heat
per second added to the fluid is kept constant as the spatial extent
of the heat source is reduced to make it a line or point source. (We
are indebted to Professor Tsien for sending us a prepublication copy
of his abstract.) It mast be recognized, howevor, that the infinite

velocities connected with an elementary line source make it partially
unsuitable for a perturbation theory. We will therefore present here
the perturbation calculation for the smoothed source'exp(- ar 1

2 ).

The unperturbed flow is unifcra and of velocity V0 in the direct-

ion of the positive x axis. In the perturbed flow lit

V=V +v v2z (V +u ') i+v'j (4.1)

V p  " + _P0 4 (4.2)

140 + /01 (4,3)T =/T + 1 (4.4)
t; =to %,

Lnl which the subscript zero refors to the unperturbed state and the
prime to the perturbed state.* Each of the quantities Vo9 o0 is

constant while in the case considered hero V9, pl and tP I are funo-
tios of (x, y). Tit first order perturbation equations are dorived
from equations (1.3) to (1.3). Thus

1 The effects of a line source of heat have beon described further in

recent first order perturbation thoory (99 10).

H. S. Talen and U. Bilock, "Heat Sour'co in a Uniform Flow", J. Aero.
So, 16, 756, (Dec.. 1949).

(10)- -
B.L. Hicks "An Extension of the Theory of Diabatic Flow", Phys. Rev.

77, 286 (M (Jai. 15, 1950).

For this first elemontary but fundamental computation it soomod appropri-
ate to use the V, l:nguage as being more familiar. For more conplex
flows or in more accurat6 troatmnts, the conolusione in D-2 (Soction 2)
suggest that the W laneuago may be more useful.
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v'" • (4.6)

o (40)

op v° - -- .. 4

P 0

Using equations (4.5) and (4.6), ,IubtliO '(4.7) can be re-aritton to
first ardor teorms as

01 - o2) + y'  N (, - )2 /o (4.,B)
0 1 d~ Yo 0QO

It can be shown that W = V x Yf to of necond order. We oan

therefore intorduce, a potential for V ioh V = VV and after

kv~ing the scale changes x I= -r~ %1 , j( 1) arrive

at the basic equations for this type of flow

- ( - u3QA (4.9)

The action of tho hoat souroe as an effective fluid soroe (of'. D-I) is
here illustrated. We note that the R..JS. -of equation (4.9) is liuqsi]y
2qm , in tho notAtion of D-.2, evaluated in the free stream whore Lhu

velocity of sound Is ao0

Lot us treat a subsonic oabo (If 1) and tak, Q to be a 1'tao;ion
only of r,, namoly

3 , q r12
2 CX :, ace 2 ,.10)

or an used It tho Wisoonsin Syampoasiua papor 2 C!-- qoV .
0 t

whero w ius a pnru'ntotor of compactuonn and q:L WaiAUU;)au 'L1h01481tY of
the hoat r,,]e.o,*

Wo oni ishuowi, if the perturbat Ion -volocity 0 to 1 ipill oemapnrod to
vbo, )us on'u b, calculatod ard 6i.voi i lratoLtoal wonaI;. Won u' it

siall, tia sintgral in equation (4.21) citt bo rpltiooI y / (Q/v) Ix
which iu oieu)y .vi~-;uatpd. For lfrror ul tho ansuo dov,lol ojnu1,o sil lI

Giveis a a ,1uitti tivo Idea of the 9)(LuJing of qt'

Fcom oqtuLlon (4.22), tho antlwly Incronno I'sout x *'. to
x . 4 0-:0 (a],oli thu t, rauiino y - 0 lu

o,A,rL c -r c o o(/-)( l2) /2( - Uo) ) qt (4-)
0) o
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Footnota ccutinuV,, fro.'.a&.: Z9

If z = (A TV/To ) is used as a roasure of the heatin -value of the com-

bustible ixtuft then in ter, of

qx- - ][1/A( Y_ - )(1 - .0 ?)' Kkl -I0((-I

and is thus directly prop ioal to kI and to the scale defined by the

compactness parsuter d - noe heat output of a combustion obaber is
usually expressed in terms of the loading factor 4'., the rate of energy
release per unit volume and pressure in the ch er. If to is the time

necessary for combustion to be completed, then it my be shown that

or if I is the loading given in the usual practical unit

BTU/ft 3 -atm-hr and t 0 s in secoods.

3, *44. Z'0 os/to) (4-iv)

Th two measures of heat release, ql andof, can be related if we say

that the distance A x = (Vto) necessary to complete combustion is

k o( -1t where J is of the -order of two. We then find

[k IOz , .,Y(I M01'Z (4'/KV 0)(-Y

For qin ft, ( in f;- in the-practical units and with k -'2,

M(i - Mo-0,130, Y= 1.40, V = 150 ft/sec, we obtain
0 0 0

.ql~ 3.5 x ]O-8(/1,/ot) (4-vi)

Therefore, for a oombustion chamber for a turbo-jet engine for example

with o'= 2 106 BTU/ftkati,4r, (X = 0.44( Ax 3 ft), q, is 0.16,

which corresponds to (1/6) of the stoichiometric value of 0.96 cal-

culated from (4-ii) for the same val es of M (I - 1 - and 1/2

Equivalent results are obtained if the volume of the combustion space
rather than its longitudinal dimension Ax is connected with o

The value O( = 1 is used in the plots to be discussed later. If a
different valueof c' is of interest, the x and y scales must be ro-

plaoed by O 1/2 x and C 1/2y, q1 by (qOc ) T' by (/07T),/ov by

(/%19) and uO by (/J ,)o
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The total heat added to the fluid ver vnit tim and thickness (the Q of
reference (9)) is thus

ZifO ,gQ r'r (1-ar*) pag1/rd 2(1X2' 3*

(4.n)

Acoording to equation (4.10), % is a fmctim of r, only and T .-
tion (4.9) reduces to

rl1  fr l(ri 2(-.I) OL -1 1, (4.12)

One integration gives

V 0 v =(Y-1)a q1 rl _ 1(1 e l) (4.13)

which differs from ths usual (fluid) point source in two-dimensions in
that there is no singularity at r I = 0. As a consequence it would be

possible to insur, the validity of the perturbation treatment in all
parts of the flow for not too large values of q,, It is important to

note that V79 with respect to the r1 space as radial components only,

but that the V 96 with respect to the physical space Is the perturbation
velocity vector which is not symetrical- about the heat soume location
in either the physical or ti r 1 space. However., for Mach numbers which

are very close to zero the perturbation wlocity deviation from syminory
in both the physical and rI space is very mall.

Because of the irrotathonality of V5 integration of equation (4.5)
for te perturbation pressure p' is immediate, and the vanishing of u'
at infinity yields

.= "OoVo 0' (4.04)

This simply expresses the pressure variation needed to effect the change
in mcntum in the x direction associated with the heating, other com-
ponents of the momentum being neligible. Finally, elimination of V1
between equations (4.6) and (4.8) followed by integration leads to

31.

o a o ' (4.15)
0 0

)4 /2q(..1) (.2)/ , + Or(( /2 X1)]

37



where , '-.' 0 as x1 -3" -o. The expresions for the perturbed

quantities in the ,case of a line source are obtained by Ieting &--*.*o.

If N = 0.20, Or= 1.0, 'Y 1.40, and q, = 0.098,. (corresponding
0

to k = (ATt/o) = 08) then nx j (VIft) 0.13, and to this extent
I 0 2

the linearization is Justified. Streamlines for this case (M0 neglected
comared to unity) are shown in fure 5a together with lines of don-
stant velooity, (or of perturbed static pressure) and also lines of son-
atent perturbed temperature (either static or stagnation within the
accuracy of the perturbation treatment).

Owing to the low Mach iumber the static and stagnation pressure changes
re =all. In figure 5b the variation of these pressure changes, p/po

and p c, along the x axis are shown. Perhaps the most interesting

aerodynamic effect illustrated is the slowing down of the fluid upstream
of the heated region as though the fluid were approaching a real obstacle.
F" larger values of q, there would be a stagnation point and actual re-

wergal a the -flow.

The calculation of p't for the Madison paper was based on the simple
formula

= X - (1 + - J (4.16)

and is the curve I for ql 0. 098 in figure 5b. Since recovery of stag-

nation pressure is impossible so long as no heat is abstracted frmo the
_flow, the apparent recovery must arise from some inaccuracy in the cal-
culation. In order to check this point a more careful calculation of

p I was made by intoeration nmerically equation (1.9) which, for the

-present case, reduces to

iLn pt -2 Yilo 0  *~r 2  T 2 (..lq r/ 02q.(,, .,-1 -+

V (4.17)

in *hich- W, and, (T,/T) can be computed from the .formulae already givon

for tho velocityj pressuro and density variations. Values of pt ob-

tained in this way are plotted as Curve II (for ql := 0.098) in figure 5b.

Comparison of i and II shows the large inaccuracy in equation (4.16),
w )ich is u ndoubtedly due to the large density variation along the x axis.
(cCf figur'e 5E) As a furthor check the calculations wore repeate(I for
q, 0 .0115 which is small enough so that equation (4.16) should be

rennbly accurkte. The pt urves for this value of q, for the two

. .. . .. • • . • . . - , ,, ,, , , . . -- --.3 8
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methods of calculation, as seen from figure 5b, do indeed lie close to-
Gether. From equation (4.16) the asywmptotic exprersion (x--i 0 . is

(-) =- / (4.18)
Po asylp

Sawe accurate asymptotic expression can be derived. The definition of
Ot together with the fact that p w po as x-w0 gives

pPt" Y-1 -.(4 1 N 2) :-1 (4.19)
P ayp 0

Since also V -0V as x -P-00
a

N TA0 (4.20)

Frm the energy equation (1.3)

( d = c(Tt0- TTo = (T,,- TO) (4.21)

Making the approximation that V V in the integral we find the.t

Too (4.22)--=! '-(7'"I)/1 Wi ]o2 ql, No- (4°)

whore the denominator is [i - o ) a symp obtainable frcm equation

(4.15). Combination of equationa (4.19, 20, 22) pormits calculation of
values of (ptl/p .).which are in error only because of the small difference

between V and o When M~ .4 1, this combination leads to the simple
expression

Y U (l -T2 (4.23)
asymp -

which reduces to equation (4.18) when TO/T and /0/o 0e< 1.

The variation of temperature or density along streamlines is approxi-
mately as shown in figure 5o, the letters a. b, c, d, on the curves re-
ferring to streamlines in figure 5ao The density or temperature changes
along thie axis amount to 701, of the unperturbed values and the cor ospond-
Ing entropy increase is about 1/2 cp Since max d log Tt/? a- 2qvVto
the maximian fractional time rate of change of' energy of a fluid particle

Is (for Vto = 500 unit lengths/see) equal to about 200 per sec. Thus

munh lovior burning rates than vere involved in the special case of radial
flow of Section 2 produce appreciable perturbations of the uniform fields
of fC IlM-.
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In orde~r to illustrate the-effect of M~ch number lot us take
NO .180 instead of 0.20. Both the heat source function and the per-

tUrbation velocity, binf 4 unctions of r1 , will be distorted sioe-r 1

L~~o x~Y The marnitude of the apparent rwad- snrce.
Is reducied cquation (4.12) by the f actor . 2/7I 1. 8 l(8
and the maximum velocity perturbation in increased by a acto f
(l-, 04)/(i-,64) =2.7 for 'a given total amount of heat added _to. the
fluid per unit time. The accuracy of the perturbation calcula-tion- si a
whole in thus about the same for N 0 0.8 as for N m 0.2 for Emill

values of ql.

5. ON THE COLIPUTATION 01' GKRMaLU1PAWR DIABATIC FLOW

The mathematical structure of the basic diabatic flow equation In,
W language, equations (1.9 - 1.11) has imediate physical imlications.
If we regard W as the quantity to be detormined, then we see that eq-
'uation (1.10) looks like an equation of continuity for a mdium
possessing apparent fluid isourco proportional to the heating factor qj.
The equation of motion, equation (1.9), however, shows that the only
Important dynamical quantity Is the stagnation pressure pt which acts

as a potential for the difference botwoon Yorticity and heating terms,
In fact -variations of pt along streamulines are associated only with

heating (between shock fronts) and variations perpendicular to stream-
lines with the distribution of the (reduced) vorticity~&)J Vx W.

The vorticity and heating effects are actually coupled, both because of
the continuity, equation and because ptacts as a potential for them.

This can be seen in dotaA after pt is eliminated by taking the curl of

equation (1.9). Since we shall only-concern ourselves here with uni-
planar flow, the curl of equation (1I,9Y yields the one equation (cf.

D(5.1

(1i W2 ) qV,(u ~v9-4) log

whore u and v are the components of the voctor W.* But is known

from the equation of continuity in terms of Wi. Therefore wo can obtain
finally an equation in u* v and their derivatives only

_v 7 +1 2 2 z 2 2 'Y+1 2vUlv )u, f2u(l+ TV )uxy +V(1+u4-vU
xy Y (5.2)

21 )2 ;)v .2)L!u+V 2  2x 21- U Y U 7=-u

Noto that u and v here bear no direct relation to the ul, V, of
Section 4.
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where -contauts no second partial-, Thic v.quation mu-s bc satisfied

by the components u, v of -the Crocco vectcr W for all steady uniplanar
diabatic flows. Functions u(cxy), v(xy) which satisfy it will determine

the nature of the beat s,"rco function q (xy) through the continuity

equation. We can +hen formulate a general method of attacking diabatic
flew problems if, as in the case of irrotational diabatic flws. we first

specify partially the flow pattern W and then calculate q- (11,12,13)**

It is recalled that specification of % first may lead to such undesired

Complications as slip lines or discontinuous temperature jumps in the

flow but that (of. Introduction) calculation of an indirect problem is
generally easier than of the direct problem.

Let us suppose that u is Given as a function of (x~y) throughout
the region R and let us inquire what is involved in finding v(x.,y).
Equation (5-2) is then a socond order partial differential equation
for Y that noy be shown to bo always herbolic. Consequently there
will be no difficulty with change of type of the equation either in the
field of flow or in going from one problem to anothor. Such equations
of constant type occurred as s)eci~a1_ cases in irrotational flcw (of.
Section 3). One needs to specify v and its normal derivative along
curves ;_ in R in order to permit solution of the equation for v with-

in some sub-region of R that is partially bordered by Fo Wo note that

the constant hyperbolic typa of equation (5-2) ie not an obvious advantage
in the adiabatic case (ioe., where q(x.y) is specified to be----0), be-
causo in general it is there still necessary to satisfy a second equation
in v which dees change type IIowevor,. it may be that some linearizod
adiabatic problems could best be handled by finding a solution of a re-
lated diabati~ flw problem containing parameters which are varied in
such a way that max, or tq.,1I d x dy or some other expression of the

heating faotors importance Ss minimized.,

Tie can examine tho equation (5-2) further in, the limiting cases of
small W ('inoclupressible" fiow) and of the almost uhirorm flow approxi-
mation,

-B.L. Iick.. "Ona the Calculation of Steady Diabatic FloS", Phys. Rev.
74, 1230(A) (NOov 1, 1948),.

(12) V.P. Starr, "OA Matematical Theory of 'Convction", J. Maetor, 6

188-e2 (June. 949). 
=-

(13) GoV°. Platnar m, "An Example of a General Integral of te 1Iydro,-

dynamical Equations", Private comnunication.,

Professor Starr has'ahoan that initial specification of the irctmetira
distribution leads to a partial differential equation for the
specific vo'lume vhich is second-.order but alays hyorbolic and
linear and cajculates a -;pef.iic exampla. ProfacLor PlwtzJnrin has
generalized theso results. We are indebted to these authors for
sending ud pro-,publication copies of thor papers.
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For W 1 I, the oquaLiLon bo.,:timies

(-vu +2uu +v .)- (-NU U7 . 2V* + U o (5.3)xI ly yy x Xly yy

Supposing again that u(xPy) is ionan, tho characteristics O6r -hit partial
differential equation: always exist since it is hyperbolic,. - T' r-tw
families of characteristics intersect orthogonally Non-ifneiiy-Gntrs"
only ow'ing to the coGfficiont v of the terM v, In oU. Ou rlier e frmula&-

tion of the theory -of low-zipood unip]anar diabatic-fir (D-4-- 6que.tioni-
(1.16)) the nonlinearity entered in the more com:plicated, eoupk:io oqua.tiO-L

(IlT2W - q .-- ; --- .

It might"be instructive to take computed valucs of u(xy) and v(x,o) from
the flow of Section 4 and recalculate v, qll Q, p, etc., throughout the

flow field as an improvemenC of the linearized treatment. In this check,
the coefficient v of v could be initially asstuned to hAve the -value

calculat d in Section 4 in starting an iterative solution for v(x,y).
Less ambitiously, the tora in oqiation (5.1) could be computed and their
amn compared to zero as a chock of' the linearized treatment of Section 4.

For flo'w which is almost uniform, u =u + u ." V VIP lu'b "v'k<u.o

const., a scale change loads to the !implor equation

V1 v0- 1 (5.4)

2 l 1  l --" -1

2 2 ?1 2with x ( -  2 -i 2 z (I -y Y The funotion -

is a linear combinatioa of tho form

A, (Uo)Xu U, + A2(U)U'x vV . A3(Uo)u'y v'
0 -, YLXY (5.5)

: + A 4(U°O)YU x Yl

which ncrmually would be5 suill c mpared to individual terms in the L. H. S.
of equation (5.4), 'io note that in th.rs Glauort-Prandtl approximation
the partial differential equation for v has boon wholly linearized ox--
copt for the presence of the (smill) to-m in v v'Xl yl

I-t appears that horo, as for irrotational flowMi, the almost uRi-
form or Glauort-Prandtl type of treatment Z11l i~jad -'ost quickly to
approximnate e!lculatlouns of interesting flows, t.,o notu that ini thu

j4r



case of all throe oquations (5.2, 3.4) the -olution nod not be ob-
tainod to as high a &,Greo of acculrawy a8 mu3t a kot.nntitl fnctionp forthe ltter must be differentiated in order to Ciye valu&t for up ve pe
T, etc., which are the primry -variables or interest.

B. L. Hicks

4Z.A A4. A
W. H. fobrank

S. rvitz
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