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Part II

Calculations of Steady Diabatic Flow
in One and Two Dimensions

ABSTRACT

The purpose of this report is to describe specific calculations of
diabatic flows in order that both the physical understanding of these
flows and methods for their computaticn may be improved. .

After a review of fhe previously formuleted theory, one-dimens=-
ional radial and vortex flows are considered. They illustrate several
differences betwecn adiabatic and diabatic compressible flows such-as
absence of limit circles and non-minimal stream-tubo area at sonic velo-
city. Two~dimensional (uniplanar) flows describable by a potential are
computed next. For one form of potential flow, the exact partial
differential equation for the potential is linear with constant coeffi-
cients and alweys of elliptic type, if -certain indirect analytical re-
strictions -are placod upon the flow and upon the variution of the rate
of heat addition from point to point. Linearization of a wide variety
of uniplanar potential flows, including those of elliptic, parabolic
and hyperbolic type, is possible if the heat addition rate is not too
large, Scaling laws may be based on this linearization,

A third type of diabatic flow, somowhat less gencral than those
preceding, is analyzed in more detail, Here the flow is uniform at
infinity but is porturbed by & localized heat sourco. The velocity,
pressure and -donsi¢y variations areo calculated ovor the field of flow.
Since the largest porturbation is on the densiity, it is the density per-
turbation which limits the sizo of the heat source that still permits a
first~order perturbation calculation.

The concluding section describes a formulation of the general
equations for uniplanar flow in terme of the compenents, w, v of tho
Crocco vector W. The partial differential cquation obtainod, say for u,
is always hyperbolic and quasi-linear if it is assumed thet v(x,y) is
specified first. Tho heat addition function is directly calculable once
u and v are known,
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LIST OF SYMBOLS.

velocity of sound

specific heat at constant pressure

DEl1-K g4y

D ° A oon,utan‘f value of D

2 radial wmit vector

% unit vector arthogonal to e

o~ e ~§‘"
gv) = v/[nz R 1 ]Y/2 |

‘lf‘. d1ln 8/d In N
Hgiiibe///F d(%;)

3!,2’ wnit vectors in the x and y direotions respectively

i’ Mach number

N wector function chosen to represent an irrotational field of
~  flow -
n number of dimensions less one

n  unit vector normal to streamline

p pressure

Q heat added to the fluid per unit mass and time

=Y o 1 (@R V]

a2 Vfv -]

9 heat added g?r unit mass, per velocity squared, per unit length
R gas constant

r radial distence

S specific entropy

8 unit vector tangent to streamline

T static temperature
Tt stapnation temperature
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X, Y

stagnation presaure -
pertubation velécities in i and j directions (Section 4)

components of the vector W in the x and y directions respectively
{Soction 5)

fluid valocity’

local value of the limiting velocity = (2 ¢ 1‘1:)1/2

Y/,

coordinatos

A= (y+1}/(7-1)

Y
8
s 4
—
,O

P

N
¢
¢V

Qggpffv

~
R e —

R

ratio.-of specific heats
angutar coordinate in a polar coordinate system

a function of u and v containing no second partial derivatives

density
potential for an irrotational N field

~

&
potential for irrotational V /VQ ficld

4

vorticity 7NN, VXV, {U»V' and Vx!l’_,

as a subscript, refers to a transformed coordinate system

referc to a porturbation of a variable
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THTRODUCTION

The study of diabatic (that is non-adiabatic) steady flows is re-
quired in order that phenomena mssociated with combustion in steadily
moving gases may be thoroughly urderstood. Since the hedt release
during cambustion has a strong influence upon the gas flow we consider
a theoretical model for moving, burning gases in which only the dy-
nenical effects of the a2t release are considered, and the effecs of
viscosity, diffusion and of change in specific heat or in composition
of the gas are neglectsd. The steady mean flow of a turbulent burning
gas could, fot sxample, be described by this model, or the pressure
distribution along & boundary layer owing to combustion-outside the
boundary layer could be computed. Theory based on the model is thus
concerned with steady diabatic flow of an idealdzed fluid just as
classical aerodynamic theory was concerned with the flow of air out-
side boundary layers. i

The direct problem in diabatic flow theory consists in determining
characteristics of the flow pattern from knowledge -of the heat source
distribution. The inverse problem, in which calculation of heat sources
follows from knowledge of the flow pattern, is easier mathematically and
yet is of same help in planning the solution of the direct probleme In
our earlier investigations of both direct and inverse problems of dia-
batic flow, 1:2 formal manipulations of the partial differential equa-
tions have been emphasized. The nature of the resulting physical and
mathematical problems has been described, but no detailed solutions. of
the problems have been given. Accordingly, in this report we wish to
discuss several explicit sclutions of the equations for steady diabatic
flow and shall derive from them a more intimate understending of the
relation betiveen the physical problems cof aerodynamic combustion and
their mathematical solution. We note that in some cases only part of a
calculated flow pattern has direct physical interest, but that part is
worth calculating even by what appears to be artificial methods.

The differences, fg; each variety of fluid motion, between adia-
batic and diabatic flow are noteworthy., In adiabatic flow the enthalpy
of vach fluid particle is constant and the entropy change of oach
poarticle is zero except across shocks. On account of this special
thermodynamic behavior, adisbatic compressible flows are characterized

- physically, for example, by minimum area of stream tubes at sonic

velocity and mathematically by the identification of subsonic and super-
sonic flow, respectively, with elliptic and hyperbolic equations. Also
in this adiabatic case the two kinds of compressibility effects, namely
those associated with high Mach number and those associatod with density
or temperature chenges, are closely coupled. In diabatic flow, on the
tne other hand; the enthalpy and entrofy of fluid particles can vary
owing either to addition of heat locally by combustion or by conduction

1) B. L. Hicks, "Disbatic Flow of a Comprossible Fluid", Quart. App.
Math. 6, 221-237 {Oct. 1948) (Referred to later as D-1).

(2) B. L. Hicks, "On the Characterization of Fields of Diabatic Flow",
BRL Report No, 633, (May 10, 1947). Part I =~ Genoral Theory of .
Steady Diabatic Flow: or Quart. App. Math. 6, 407-416 (Jan 1949).

(Referred to later as D-2).
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of heat from the neighborhood of the fluid particles. One has there-
fore no a priori idea of the belavior of dinbutic flows with regard to
minimum area of strcam tubes and cannot associatz the magnitude of the
Mach number with the mathomatical type of the flow. Also the two mani-
festations of “comprezsibility" are now less tightly coupled since the
density can change apprgpiably with but small change in velocity and at
small Mach numbers, From the one-dimensional theory, however, we know
that the effects of heating and of stream tube area variation:-are
similar, For example, a transition from sub- to super-sonic flow may be

‘accomplished in adiabatic flow by a converging-diverging nozzle. 1In

diabatic flow it may be cffected, in a duct of uniform area, by proper
addition and abstraction. :C heat. Although one ean, therefore, guess at
some of the effects produced. by hesting in two- or three=-dimensional
flow, it is possible  to gain & more :general insight into diabatic flow
in the higher number of dimensions by studying examples of two- or
three~dimensional theory.

In Section 1-the basic equations developed in D-1, 2 for two- and
three~dimensional diabatic flow are summarized, The simplest flows are
then considered first (Section 2). These ara flows which are one-di-
wensional in the sense that for them the local Mach number depends on

- hut. one space variable., The connection with both- the one-dimensional
-or hydraulic approximation for flow in ducts and two- or three-dimension-

al diabatic flows can be exhibited as well as tho relaticnship to various
adiabatic flows. The irrotational uniplanar diabatic flows (Section 3)
are next in order of simplicity bocause they are describable in terms of
8 single potential function. Special elliptic, parabolic and hyperbolic
flows are discussed, and then .a general troatment of irrotational flows
is given, based on assumption of & slightly perturbed flow, which leads
to similarity laws.

The third type of flow discussed (Section 4) is of the greatest
basic importance, Here one asks, what are tho effects of heat added
locally in an unbounded -gas, flowing steadily, whose velocity is uni-
form far upstream of the local source of licat, The equations are first
linearized according to a perturbation scheme since even for low Mach
numbers the original equations are still non~-linear. It is then posuible
%o understand how thé effects of heat sources distributed in an arbitrary
fashion throughout the field of flow could be built up by superposition
‘of the elementary solutions. The construction of the elementary soluticn
itpelf offers some difficulty if the appearance in the field of vortex
filaments and of infinite changes in enthalpy is to be avoided.

From the consideration of these detailed problems one can formulate
what appears to be & reasonable approach to general two- or throe- dimen~
sional problems in diabatic flow, This formulation has been examinod
particularly (Section 5§) for rotational two-dimensional diabatic flowsz,
where it amounts to specifying throughout the field of flow one component

of the Crocco vector (W ==‘_Y/'Vt where Vt is the locel value of the limit-

volocity), and specifying the second component and its normal derivative
along some curve in tho field, The differential equation %o be solved
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is then always hyperbolic. After calculation of the second component
of W the nature of the heat sources and of other characteristics of the
flow could be computed. This kind of procedure in which the heat aources
aro not specified first seems to introduce somewhat more tractable equa-
tions, without unduly reéstricting the flow pattern, in almost all c2ses
of diabatic flow thet have been studied whether in one or more dimensions.
(See Section 5 and References 12 and 13 for discussion of new work along
these lines.)

‘The theory develeped in this paper has been presented in part at
meetings of the American Physical Society in 1947-48 and in the Third
Symposium on Combustion., Flame and Explosion Phenomena, (Williams and
Wilkins, (212 = 222). The present report differs from the Sym-
‘posium account only in additions and corrections that have been made,
particularly in Sections 2 to 5.

1. SUMMARY OF BASIC THERY T

For an inviscid compressible fluid containing heat sources, the
equations of steady flow are

Vpt pVe V=0 (1.1)
Ve £y =0 : (1.2)
¥ VI =TV ¥S=Q (1.3)

where the symbols p, o , T, Tt V, S and Q stand respectively for pres-

sure, density, temperature, stagnation temperature, fluid velocity,
specific entropy and hefit added to the fluid per unit mass and time: The
quantity (Q/V) then gives the heat added to unit mass in unit distance
along a streamline., Tho stagnation temperature is a measure of the total
energy of a fluid particle. TFor the perfect gas here conaidered the
specific heat at constant pressure, ¢ _, is constant and the equation of
state is P

p-Rp 720 (1.4)

Although variation of specific heat and of gas constant R occur in com=
bustion zones and the phenomena of diffusion and turbulence often play
a role, those complications are neglected here, as in earlier diabetic
flow theory, in order that the important effects of heat generation
alone can be examined, It is noted that ths term Q could include
effacts of heat conduction explicitly although this possibility is not
examined further hera,

As has boen shown praviously(Cf’ D-1,2) the. equations are placed
in their most generally useful form if transformation is made to Crocco




vectar® ! and stognation pressure, Py» in place of velocity vector and
_ {static) pressure p through the equations

v=vw (1.5)

v 7, .
' P = pya(l - W) 7 (1.6)

-
-

where Yt is the local value of the limiting welocity

‘ V= (e, rt)l/ 2 (1.7)

snd the stagnation temperature T, is related to the (statiq temperature
T by )

t=10-W) (1.8)
The transformed equations are
Vlog Py =;—ZI [(1-?42)’11:((7)(1)-4;'!,] (1.9)
V- -y ly= gy (1 - w71 . ;’fi w) - (1.10)
W JlgVy=(2- ) q' (1.11)
in which
3y = Q/"ts 1 - w) (1.12)
*

The Crooco vector was Pirst used by the senior author and his co-
workers at the Cleveland Laboratory of the NACA in 1945. The vector
¥ suggested itself as a natx(rs’l generalization of wvariablas used in
one-dimonsional flow thoory\3J), of Crocco's lapguzgs, and as a corol-
lary of the{ lhih vector we nad introduced in 1943\%*/, Recently llunk
and others\%:6) have also introduced the vector N (their "reduced
velocity vector™) which they are now using in detailed studies of
general adiabatic flow.

(3)

B. L. Hicks, D. J. lontgomery and R. H. Wasserman, "On the One-Dimen-
sional Theory of Steady Compressible Fluid Flow in Ducts with Friction
and Heat Addition", J. App. Phys. 18, 891-502 (Oct. 1947).

B. L. Hicks, P. E: Guenther and R. H. Wasserman, "lew Formulation of
the Equations for Compressible Flow", Quart. App. Math. 5, 357-3€1,
(Oct. 1947)

(5) M. M. Munk and 'R, Prim, "The Multiplicity of Steady Gas Flows Having
the Samo Streamline Pattern", Proc. Nat. Acad. Sci. 33, 137-141
(¥ay 1947). . .

Mo M. Muok and R, C, ¥rim, "On the Canonical Form of the Equations of
Stoady Yotion of a Perfect Gas", J. App. Phs. 19, 957-958, (Oct. 1948).

(1)

(6)

L4
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If a flow descrived by equations (1.2 - 1.11) were irrotational in
the W field {therefere adnitiing a potential ¢_) tren heat eddition
mst be such that (cf. D-1)

= 6 APy (1.12)

so that U is comtant on surfaces nqrmal to streamlines. Although this

is a physically mport:mc and visualizable case, rany other diabatic
flows rotational in the W ficld may also be derived (ef. D-2) from &
potential function ¢ introduced with tle more generel transfeorrmation

l”‘:[ﬁ(?;) RT} }/2 V;SH; ;ﬁ { = k= l V¢H' (1“14)

in which g(¥) can be erbizrerily specified. The accorpenying restriction
«n Q wes found to be expressible &s

{1'};284'8‘[) “*21: (61-1-11‘2) V”§
+5 (1 -;, K| 5)(1 + -2— gp) ¥ (b,), (1.15)
gp = d leg g/d4 log ¥
24 = Q/Z Gp (g. R T)l/z (1.16)

We noto that Qe 8nd g heve alwiys the sape sign as Q although their
& E)
variation in the field of flow may be different owing to the varistion

of the factor IS/ 2 ~{I.) The quantily ¥ « § is the fractionel rate of
change of siream-tubg arca aleng & streamline (4). S being the unit vec-
tor W/‘.’ tangent ¢o the strezmline at cach pom.. in the ficld of flow.
The function F(g,) controis the variation of {g T) along streamlines,

38X Vg (g 1) = Fighy) (1.17)

fixes the variation of pressure throughout the field of flow,

log p + //fg d %N‘: -{F(¢“) d ¢I\' = constant (1.18)

end enters the partial differential equation which the potential ¢ #u
must, sm,lsgy ‘

BBy |y - _,}j(\cz.., D)Zmﬂ 36y I’ -
‘a?{i | a7, | 2Ry oXj X o
¢ >J

(1.19)




The type -of eguation (1.19) is elliptic, parabolic or hrperbolic &c—
cording to whether D i< >, =, or <O. The fanction D depends only on
K and its form is fixed by cheice of g(M) aleme,

D=1 - ng + 5'1 (1.20)

Bocause of the px:nsenco'of two srbitrary functions, P(ﬁ,.,) and g(%),

irrotational N fields are expected to be somewhat less restricted than
they appear . €5 bte at first sight. A fanily of irrotational ficws pari-
materized by D = D = constant were described in D - 2 where expressions

were given for '(H) for all reel walues of D. Itis convenmet to have

available the corresponding exprescions for = exp [ E d , nazely,
ﬂzzll?(!ﬂ)l*nol -1 ) ,ﬁof°1 .

= -[10¢ (1'!/!)] i D, =-1 (1.21)

0o

Various general propertics of these equations and of the correspon-
ding physical 3ystens havée been discussed in D-1, 2. We shall apply
them here to the discussion of a muxber of cpecial cases. In all of
these cases, equation (1.11) shows that, in the motion of any fluid
particle, the fractio:fhl rate or change of its total emergy with re-
spect to distance is sizply 2 (1 - #) /= tm-lo the fractional rate

cf change with respect-to tn:c is 2 o (1 - )V

2. ONE-DIIENSICH:L FLOJS

As in other obranches of fluid dynemics, an understending of one-
dimensional flows is essential before the more difficult probléms of
calculating multi~dirmensional flows are attompted. Uniforim, parallel,
one-dimensionsional flow that is diabatic has been the subject of many
papers (cf. for example, reference 3 and papers cited there } tecause of
its direoct ayphcﬁbxhty to jet propulsicn and to detonaeticn phenomena.
We shall give here &n introductory discussion of one-dimensional readial
and vortsx flows.

Radial Plows

The equation

LEL O

describes 2 simple radial flow for which the magnitude of the Crocco
vector W depends only on the radial distance and the direction of the
vector ficld is given by the radial unitv wector, L. If (n + 1) indi-

cates the number of dimensions (n = 1,2 corresrond to line and point

12




sources respectively) then the equations of motion, continuity end enmergy,
equations (1.9 - 1.11) in W larnguage become simply

dlosp, _,y

ar 7T

r 2 -,lr- 21 - ) L a2 - ) g
p. log vt _ - i2) q.'

or w

-

L | (2.2)

7—?3— '2) (2.3)

(2.4)

Although adiabetic, capressible radial flows are restricted to be
outside a limiting cirgle {or sphere) on which w=(7-1)/(7 +1),
(M = 1), diabatic flows are not so restricted. Por integration of equa- .

tion (2.3) gives - .-
n '2711 4 n '216, 1 .2 (2.5)
— — - ’ - -
r W1 ) = rq"l ) Y, (1+7Z:I )dr-l(!‘l
1
Both-C; and the R.H.S of eguation (2.5) are not negative. Since
w1 - '2) 14 7 1 cannot exceed itla maximun value,
o= [G2]" [T
2 1+1 7 41
we obtain the inequalities
r
1” '—1 -,
ne, 741 = n - ;
05/ =1 = ¥) (1 +7, = '.f‘)q'd r+C,< C,r (2.6)
!

If g =0, G‘i > 0, (adiabatic case), the flow is characterized by an
inner liniting circle at r" =€,/6,. For arbitrary functions ‘h(r) ve

would expect ome or more circles limiting the flow on either: ths out-
side or the inside. (cf. discussion of D =L flows later in this

section.) For many functions q'(r) o should\ find no limiting circles.
Thus & bounded funcl*léion q'(r) can be found giving Wa r 1 (Kl 2 1) or
giving (1 - ¥)a r © (K, 27~ 1) at the origin. If W is to be differ-
ent from zero at r = 0 then q'—v-oogh@re, and also q"--r°°/ r »0 if
0<K <lorif 0<K,< 7 - 1. Inorder that no limiting circle ex-
cludoe the origin it is ngcessary if Gy <Cy rKE near the origin either

that KS exceced =1 or that, for K:5 =-1, c2> 27 c3/n (7 -1).

13
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Te illustrate some of these remerks we skall consider two types of
radial flow. In equations (2.2 - 2.4) specification ¢f aay one of the
four quantities, P> W, %ipr ‘«-’c as & function »f r should in principle

perxait calculation of tho others. Some combination of the wveriables
night equally well be specificd, for example Gy = qw[s(aﬁ(i‘)] 1/2,

However, calculations aro espocially sirpls if R(r) is specified and g,
Py» ‘It computed subsequently, end this procedure will be adopted here.

Par our first example we shall therefore assume a uniplanar flow (n =1)
in which the form of W(r) is

-1/2 1/2
=r1+7?) ;M= 1) (2.7)

corresponding to a flow extending from r = 0 to r =00 with a continuous

transition through the velocity of sound at r2 = (7 - 1)/2. The
heating parameter qu las, from equation (2.3), the value 2 at the origin

and dependz on r according to the equation

: -1 -1 /2
_ 3-7 .2 27 2 z]
q'—z 1 (m) r][1+7_1r] [l—l'l' (2.8)
Owing to the divergence of the strecam tubes, Gy Passes through zero for

a velocity greater than that of sound, namely for W - (7 -1)/(7 +1),
0 =4/(3-7), r2=2(7-1)/(5-7). At sonic volocity

oy = [2( 7+ 1)}'1/2 (2.9)

in accordance. wit}; eqmtio;z (3-3) of D-1. The r~-dependence of Vt is
found by integration to be
1/2 -3/2
741l 1/2 2 2 2
(VN ey = (—2-—){57( g 1)] /2 . (1+r%) (7-1 +271r%)
(2.10)

; ts maxi = 0Je) :
in which Vt reachss its maximum valuo Vt X whore Gy 0d*) The velocity

ratio VAV & max is obtained by multiplilation with W. The other quantities
can be obtained similarly.
In figure 1, a, b, c the computed characteristics of this diabatic

source flow are illustrated for » = 1,400. The net energy change of this
fluid in passing fromr = 0 to r = @9 is measurod by [Tt(m )/'rt nax | =

[Vt(oo)/v,, mx]?‘ = 0.708. Thus only part of the energy added in

accelerating the fluid from rest and zero temperature at r = 0 to maxi-
mum energy at r = 0,707 is removed in continuing ths oxpansion to where
V= vt’ i =00, R =00. Thc maximum rate of heat -evolution occurs for

) (‘?Act'-;ally Vt X could be uifferent for each streamline, in analogy with

-the generalized adiabatic flews considered in refercnces 4,5, and 6.,

14
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r ~ 0,36 (M ~ 0.80) whore it eauals. {for ¥, =hpmﬁimymﬁ@)

v nmiX .

- ~2x 10 scg-l; cxpressed a5 fraction released per Second of total
- heat added botweon r = 0 and r = 0,707, The valug of 2 atr =0.707
. whére @ = 0, is 1.53. For larzer J2lues of r, Q&0 Gut 8pproaches

zero rapidly as ro~-c0, The stagnation pressurs; Figure b, which
reaches a minimuw £t r = 0.707, increases indsfinitely as r-+uo0,
illustrating the extrenms sensitivity of hypersonic flom to heating,
‘Thus our example shérvis:;.tsa possibility, already discussed in tho hy-
draulic ‘approximation, t3) of obtaining supersonic flow with combustion
even though the nozzle has no converging pert. One could Lave, .of ex-=
ample, increased M boyond 1.56 by sdiabatis expansion instead -of by the
exothermic expansion calculated. Sick a radial flow could possibiy be
set up experimentally in & nozzle coasisting of two parallel discs be-
tween which combustilble mixture is fed through tutes on the axis of the
discs. : i

The second case of radial flow to bé censidered originates in the
use of poteéntial functions in two and three dimensicnal fields (cf.
Sections 1 and 3)& It is’instructive there (see D-2) to study flows -of
constant type (D =D_ = constant) leading to. & family of functions

g,‘(}{, Do) paraneterized by Do. Specifications of thc same By functions

for purely radial flow amounts in equations (2.2 - 2.4) to specification
of a combination of the variables Gy and W and will illustrate again the

differences between adiabatic and diabatic flow. We note that the
second arbitrary function F(¢H), which occurs in equations (1,16, 18),

mst also be given, if g is to be determined. For the present simple
illustrative casc we place F(g#;) = O which corresponds (seo D-2,

Section 3) in more general cases to irrotational ¥ flow in which (VA1)
can vary between streamlines. (In the next section irrotational flows
for which F(¢“) £ 0 will be computed.)

We can again: consider two and throc-dimensional radial diabatic
flows simultaneously. ~From the carlier theory (D-2), ¢ y st satisfy
the equation

N

D-1g4
-n 4 n 0 fu, _ _
gy a7 ) =0 (2.12)

gso thut
(N /K) :,rrn/b° (2.12)

2

where K is the the integration constant and N'g bocomes (p-2)

wle = (1 + Do)(rn(Do 4 VP _ D, # -1
(2.13)
=[‘-nlogr-}"1 D°=-1 .
4
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Now for reel Tlows, Nzg must be > 0. From eguation (3.1) wo see that
r- i cerrespondingly restricted.

1h, >

r (2.14)

for all values of Do Since the valve of Do

in non-radial cases according to its sign, we can carry over the termin-
ology and say that for

determines the type of flow

elliptic flows, D, >0r >1

] (2.15)
hyperbolic flows, Dy < O; r <1

(DO = 0 is not considored since it implies, for ¥ = 0, that streamlines

are paraliel.)’ Thus a second departure from adiabatic flow behLavior pre-
sents itself, for now we have exhibited flows which can be wholly within
as well as wholly without the circle r = 1. Also where r =1, (N 4{) =1

and Nzg =7 !.!3 bocomes infinite for all D, (# 0) whereas in the adiabatic

case ¥ =1 on the circle limiting the fiow internally.

Vortex Flows

I
Y w=w(re) e, (2.16)

the equations now are (cf. (D-1), cquations (2.5), (3.2) with V- S =0),
in cylindrical polar coordinates,

-1 d log 'pé

. d ( ) Way (2.17)

) ;"i P ;3; l,El ~ww&] (2.18)

1 —bb'g" =g, 1+ 4 )1 - 8 ) - ), (2.19)
B=(7+V)/(7-1)

@ 2 ;oe g /" 50

These equations sh¢w that for an adiabatic vortex flow, the velocity,
stagnation pressure and stagnation temperature are independent of O,
For an irrotational adiabatic ¥ field, Py 1s everywhere the same, and Vip

= constant, thus leading to an innur limiting circle. For & rotational
adiabatic flow W= wi(r) 8 ond equation (2. l&; can be integrated,

. 19 .




' -2 2
log p, ==Ly / - (-ldffz; ) (2.21) -

The functional depond;nco of W and W , upon r is now not rosiricied so
that flows in which there are no limiting circles are easy to construct,

Yor example with (compare equation (2.7) et. seq.) ¥ = rz/(l + rz)
again

-

3
Wy = (2 + rz)/(l + rz) /2 (2.22)
L 4
and )
log (pﬁ/P,;;) =;-,.—7.:1f [log (1+2%) + rz] (2.23)

Thus a vorticity that is everywhere finite can permit adiabatic vortex
flows without limit circles.

In diabatic vortex flows of the typo described by equaticn (2.16)
¥ and Py can depend upon 6, However, wa notice that the difference be-

twoen log Py and & cortain function ot.‘ w

£, (W) =%2.;71'. W1 -8 W1 +4 ) -.u")-ld w

) 1/, -1 (2.24)
=-1n{E1+5w2] [w"-I] 7 }
mact be independent of © or
log py = fl,("!") + fz(r) . (2,25).

We can sumnarize the propertios of the rudial and vortex flows thusy

Y
(1) rotational or irrotaticnal adiabalio radial flows have limit
circlos owing to the form of tho coutinuity equation;

(11) «diabatic or diabatic irretntional ¥ vorbex flows have limit
circles owing to phe form of the irrotatiosnality conditian;

A\]

(ii1) flows without limit ﬁrolos can L@ constructed by adding
heat to radial flows or vortex flows or by changing the vorticity
pattern of vortex flows,

3o IRROTATIONAL I FLCWS TN T00-DIMENSIONS

If the vector Il = ¥ [#g(?f{) R

9

Y /0
T:(l /2 iy irrotational thon its po-
tontial ¢ p Tust satisfy cquntion

1.19) and the hecting function qy ia

given by equation (1.,15). Since these two equationz involve two arbitrary
functions, g(N) and F'(gb’ N)’ the nature of N flow patterns, even though

e
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irrotational, and the corresponding distribution of heat sources can
still be quite variecd. In order to illustrate the nature or tho flows
we shall chooso cortain functions g(N), F( ¢ N) and give approxirate

solutions of equation (1.19) with appropriate boundary or initial con-
ditions.

Elliptic Flows

Equation (1.19) is simplified if D = 1 which implies that the flow
is always elliptic (cf. D § and that

g =205 - Nz)-l (3.1)
The equations becomo, with the added assumption F(@ ) = ¢
“qy(l = ‘Vk)—-k [ (7+2) Nz/yk_]¢x+u v s/yk (3.2)
’ VZ¢N.,=-5 (1 + N )¢N._‘ (3.3)

A uniplanar elliptic flow described by these equations is the first case
of irrotational E flow we ghall troat.

The constant k/4/Z can be removed by a change of scales in the (x,y)
planc*

. ks /VT (5.4)
which also transforms N = V¢ N
N =K, k/y2 (3.5)

The oquations for g, and ¢y become
2(1 - 2 1,%) qN/kz.r.:[l ~ (V42) 12/ 7’]¢N + N3V - 527 (3.6)
and
Vigy=0rzni e, (3.7)

the subscript 1 referring to the new coordinate vector Tye
: /

Tho parameter k can be removed by & scale change in all the irrotation-

&l flows parameterized by D o

Ko

]



In crder t¢ ‘capletc the specification of cur protlea = adjoin to (3.7)
the boundary coadition-

1 )
¢H =3 ¢1 (1 + cos 0) ry Ty >1 (3.8)
A -
‘gx-_; =0 ry =1 (3.9)

-

correspending to a diabatic fiow around the circls ry =1 with pre-

scribed valuez for ¢ y Upon tho larger circls ry =ry'. Other boundary

cenditiaas and choices for the functions F( ¢“) have besn discusced

briefly olae'ahere(7), Wo believe that usofui rcsults may be obtained if

oPb ay is takesn €Yo vanish on Lo '*>>1 corresponding to & flow that is

unifornm in direction at ‘arge distances frox the sylindrical obstacle
rlé 1. Then wh.~ the extenzion to values of Do other than 1 is mndé by

sealing rules tiw flow woull remain wnifeorm in direction at large lis-
tances, Also Dr. Dimsdale of thase Lavoratories has chom that F(@ N)
in the mcra general elliptid flow equation

Vip -a+VPr(p ) (3.10)

cin be co chozon that exact linearization is possible, Thus he makes
the transformation

le.):] v
1,”:/ as exp (-/ F(o) do) (3.11)

which leads to

-~

A
2 T
v l/J = !i) (1'/) "SF(¢ Il) exp (-/ F(s) ds) (3.12)
The condition for linearity of (Y) is that
. - 2
F”(gbu) - [t (95")] = A = constant (3.13)
Xecovding to tho value of 4 there are then three pogsibilities
4 ’ -1 ] 2
(1) A =0 PPy =~{Pp+ PP 75 Y=o (P +P Y485 (3.14)
@ (u]) =« 2K

(7) B. L, Hicks, "Simple Diabatic Flows of Elliptic Type", Phys. Rev, 72,

178(A), (July 15, 1947).
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(11) A =0% F(By) = o taafor(py 4+ 20 (3.25)

Yepsm[xigy+ g+ ¥or § ) =’ Y-V

(ii1) A = -0 z; P(#y) = - coth [or (Py + ¢°ﬂ; (3.16)
V= confo By + ] + o W) = 02Y-Y

For these three cases calculation of diabatic flow fields can be based,
in principle; wholly upoa analytical computations. Rirther study of
these cases might well be rewarding since, for example, exact calculation
of transonic diatatic fields would be possible. Our furthir treatment
here will be based upon approximate linearization of equation (3.7). The
paremoter . fixes the scale of ¢by. If ¢ . is seall enough, max !1

will be small compared to one and equation (3.7) becomes

2
Y, Pn= Px (3.17)
whose solutioa, for the boundt;ry conditicns equations (3.8, 3.9) is
Pleys® =3 [k W1y + 1 )] [ 1 @ITGGey ) + 1y ety ]
+ ,}9‘:100: e{l_lo(l) - Il(lﬂ K (ry) + E«.ou) + }:1(1):11 Il'(rl)]}
{[Io(l) - 11(1)_];1‘1(”1‘) + [xﬁ(l) + xl(l)] Il(rl'ﬂwfl (3.18)
- - /

1‘ = 2 and ¢ 0.5 0.2864 which insures
that max N, = 0,203 (corresponding to max ¥ = 0,242), The eccurate

Calculations have been made for r

1
evaluation of \71 ° S in equation (3.6) requires here, as elsewhere, com-

putation, of the expression

R 2 -2
Wy o s=Nyip - P g -uPy do Bo
-4 2 =3 2
T 969 ¢00+r ¢r ¢9

(or its equivalent). v

(3.19)

It would be difficult to obtain reasonable accuracy if the calculation
of \/ o § wero based upon measurement of tho divergence of sireamlines
drawvn by graphical interpolation or if it were basad upon values of @ N

epd its derivatives determined from say elaxation -calculations that might
be required in & non=linaar preblem,
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FIG.2b. ELLIPTIC DIABATIC FLOW
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In fizures 226, b, the streamline pattern and lines of comstant M,
Ap/p, snd 2qy/x" aro shom, P, being aporoximately the value of p at

F;' =2.0, 9 =7, Oxing to the cymmstry of the flow aboct the y axis,
1%t is only nocessary to give these curves for eiiker half-plane.

Byperbolic snd Parabolic Floxs

Exazples of wholly hyperbolic or parabolic flows cin be easily cm~-
structed whers a Glavert - Prandtl type of linearized treatment is per-
missidble. In this way we shall obtain soms characteristics of diabatio
flows in curved ducts which will serve to introduce an approximate general
similerity troatrent of irgbtational disbatic flows. Lot us coansider
first a wholly hyperbolio flow mentioned in D-2 {Section 8) which has the
property that the flow welocity is everywhere sonic (M = 1) and that

QY :%!v oi (3.20)

TLis flow is derived by choosing g = 7)’2 for which D = -{(7+1).

The linearized differential equation for ¢' (in two dimensions) be-

comss, if P(ﬁl) =¢‘ (¢f. D-2, equation (8.4)),
2

(3.21)

L & z Y
{7+ 1)_‘2_’;_! + ab:;' = ,7;1 lo'z P x

X

An elemsntary sclution of this hyperbolio equation is
9‘), =U, x cosh (Y === A, v) (3.22).
satisfying the boundary conditions

. ¢'=§ox

IEN _
Y

my=0 (3.23)

Tho‘lincarization is 1;!1115. whsn l‘}¢/3y '(( ,3¢'/¢)x l ~N~ No or _
roughly in the region ![(‘/+ 1)/»’/] 1/2 Xy l<< ‘, {(’)’+ 1)/7] 1/Z!Iozxy '4‘ 1,

The expression in Cartesian coordinates that is analogous to equatiom
(3:19) is

I V-s= ¢'y2¢n_- 2¢z ¢y¢xy+ 5;5125,5“ (2.24)

which in our present .pproximation becomes

)

Ve s = (r+1)y /2 N, 11(1 - 2 tank’ yl) (3.25)

MY
L)
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¥
Lo N0

TS

Havo baen made;

Tho heating fastor qu is given by
3 M

B - wl o - .
% .—..’é. 7+ 7™ 2 ooy (1 = 2 tenk” ) £3.27)

SRR e Y e - SR

The pressure variation i35 found to be (cf« D=2 equation (8.6))

2oz (o ¥ ?’! + -}- ¢}, = constant — {3.23).

P S R e

Thersfore

~ - X 4 o ;
1oy (p/pc) = =) {zy, eesh ;y + Foy oemali” {7e22)
r.

: L '

RS =N

/

N h ]
Temm‘rature {.m plociting & 7+ EY can alz0 be computed. The results
sre itlustrated in figwws J. Tuo cepions of validity <f thiz eolution

PRSI

Lo arw m«hcslca by the sccuracy Mmit curvea sn ‘e fipure which aro locii
1 of constant valuos ¢y of : "‘L Lanh Yqe Thusz &t all points benoath tho
cy = 0l curves, tha y conponcut of ¥ is not greator than ~ 307 of the
i % component,
3
&
¥ A more general analysis of the hyerbolic egquation (3,30} cen Lo
baged .on the Rismenn function for the egquetion which leads to tho ex-
pression 1.+y1
1 A i rr! \ o’ % N1 f g : (M) I
~ e P s R ST + 1 - s — —.—-.....-...
P ylzowy ] T 7 2 SR A R T £(54) d
‘ -
;Jcl%'y3 1 yl
1 " . ¢ (3.30)
g e 1(2) a
171
i where 2 PR W4
“ / \
z correaponding to the boundary conditiony
) o= 0ln) )
i py = )
4 ‘ my, =0 (7,42}
¥ o pevnmnisens  To F U
! ¥y !

i

e g,
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Tho fwictions ;o(z) ard 11{::\ ars modifind Poszel fencstions. {If F(F‘H)
= -?H the solution may bu obisined by replaciag I.‘! {z) by [:-..Il !z)] and
Io{z) by Jo(z\ in oquation (3.30%.) Tho exprassica for ¢ y &2 bo trens-

forned to read
, 1
¢R(xl’y1) = f[r{xl + yl) + f(:l - )'1)]

Y
¥ 1 1 1,(z)
+ ‘!1‘ [f(xl 4/ ylz - 12) + f(xl - ylz.- 32)] -1-——-- dz
o |/y12 - zz

In this form it is clear how the naturs of the solution differs from

.- that for a simple wave. TIntegration of the values of ¢H = f as woll as

of ( 3¢N/ ).} y‘l) = g 8long the support curve y, = 0 are included and

tha wvalues are woighted with the greatest waighting near tho endpoints,
(xl * yl), of tho region of influwence for the poinl (:cl, ¥y)e The

solution cannot satis‘w the linearization condition for all x and y bo-
cause of the divergoncs of Io(z) and Il(z) as oxp z for lsrze z. Tho

N -
henting facter and nressure suticfy the seme equations (3.20), (3.28)
ag bsfevres 'To also notice that change of !Io can be absarbod as ¢

sceling faclor in oach of theso cases of hyperbolic flow. I% would bo
interesting to work through same case such as ( 396“/ d xYoc {1 - tanh x)

bacause, since Qyr then 13):3:1 not be negative for x € 0, a greater part of
the field would correspond to flow with (exofhermic) combustion. Asym-
wotrical flowe would ococur if ( a¢u/a y)70on y =0,

As o sccoud exwmle of duct flow consicuyr tho vholly parabolic flows
which occurs only when D= O, Unlike the special hyperbolic flow just
congidered, inr this parabolic flov the lach nusber varies. In tho
Gleuori~Prandtl approximation, btho vnartial differontial equation for ¢ N
1s in this case (of. D~2 squation (7=3) with a.r{¢,,) = ¢ ule

32¢ 1

dy*

whosd solubion i

-1
¢u = £(x) eosh (,/k N oy)=x" V-5 (3435)

=1 No¢ . . T (3031)

28,




for the boundary conditioms

¢ Xx= 1£(x)
omy=0 (30“)

ddx _
Yy =0

and is & valid sppraximation in the regions where | f(x) [~ ¥,
J£(x) yl<< o/k)l/z. The Jfecial solution equation (3.31) of the pre-

vious hyperbolic equation was of the same farm. However, the coordinmate
‘scale changes &re now different and tha soaling of the heating factar

snd the pressure are also changed, Thus corresponding to equation- ?.35)
qmd)vith the y scale change y, = (x lo)llz y we £ind (cf. equation (7-5),
p-2

9y = [P) 1(0,) £(x) + n (%) r"(x)] cosh y; (3.37)

where 1) (N ) and 1 2(10) aro detorminable functicns of N ., (If ¥ in

equation (3,37) were replaced by the value of N cal¢ulated from equation
(3.35), gy -1d p/po might be calculated with slightly greater accuracy

%n sa;o instances.) The prossure variation is given by (cf. D-2, equation
7-6)

(p/po) = (k - N ) oxp(- 3 P *) (3.38)

For this parabolic flov it would be possible to specify a function f(x) -
for which Y will genorally be positive, For a specific illustration,

hovovsr, wo will take f(x) = x. Then

N
9 =332 No”/ 21 - -751’71 ) x coshy (3.39)

where x, = (x no)"/ % X. The streamlines, region of validity of this

solution, and values of ¥, (p/po), (Tt/'r»to, and VAV o, 3re shown in
figures 4 a, b,

Similarity Rules

A general linearized treatment of irrotational diabatlc flows can
be givon which leads te similarity rules for these flows. Like most
linearization treatments, the method cannot make adequate allowance for
large perturbations of density -and temperature and thersfore is limited
in its range of usefulnesa, Our development starts from the partial
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FIG. 4b. PARABOLIG DIABATIC FLOW
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differential equation

; 2
g P ¥
5 (¥ ) ‘)a = 4 b ¢" [ ) Sl —(—)-] F(#y) (3.40)
" which follows from equation (1.18) where , ¢ ,/ P ’(( I )¢I/)x'~'~, o The
function !‘(¢‘) depends only ¢H and not on ¥, Acoa'dingly all effects
of choice of g(N) and of free stream value of N =N, osn be absorbed by
* the scale ohanges, ‘ "

=4 [’1‘52 + Erln;y] p, 2 (o, # 0¥ (3.41)
I Car -~ L (62
. giving the equation h
2 2
) Px ) Px |
il =F 3.43)
LRt Ty T (5.43)

',; in which the + sign corrssponds to the elliptic and hyperbolic cases,
D,” orD ( O. When D_ =0 (the parabelic case) the scale change

(3.42) 5ivaa

2
g o PN
5

. 0y,

-.-r(;s“) '(3.44)' -
Boundary oconditions are usually representable in the form

o (x,y)Py +8 (xy) = A (x,y) —aa-g—" + 4 (x,) -%2;! (3.45)

on curves Fi’ With the acale changes this becomes

dl(xla:‘f]"“o)ﬁu "‘/6 1(x1.y1.30) = A 1(11oylox ) =5— a¢n

(3.46)
N rt M 1(11.Y1, ) M
where now
d(x,y) = °‘1(’~‘1°71’No)‘ ,5 (x:y) ';/dl(xl’yl’uo) (3.47)

Doml/z A lx, )/ 1(=o7y) % ) [(l * Nozg(No))/ G(NO)] s
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Thus whenever one can writs duza a solution of the system eguaticns (3.46)
and (3.43) or equation (3.44) for general valves cf the functions
O‘l,o.-./lc j» ‘then solutions of the system ecuations (3.40), (3.45) can

be constructed for any value of N, and for any form of the function g(No) .
8o long as the same sign of Do is kept (or the value zero in the paraboliec

OTQ‘!O)-\: It is most 1likely that goneral solutions of ihe system

(3,46). and (3.43) or (3.44) will bs available if the system is completely
linearized. .Suppos¢ for example that F(¢N) =g yo Our previous dis-
cussion: of vi\;g;':‘i.oq‘s\ cagses shows that three basic solutions for exampls,

oquatioi. (3.18) in the elliptic case, equation (3.,30) in the kyperbolic
oadse and the expreasion

¢.,, = £(x) cosh y, + g(x) ainh y,

(3.48)

, 5 4
(P =r(x), - ;;! = g(x), an y = 0)

in the parabculic cace permit immediate calculation of the flow patternm,
oy oto. for all wvalues of Ho just by making the scale changes, equations
(3.41) and (3.42), Thus all elliptic and hyperbolic flows (with F(# N)
= ¢ H) and with the boundary conditions given in equations (3.8), (3.9j

and (3.32) raspectively csn be derived, no matter what the function
g(N_), from equations (3.18) and (3.30) in the Glauert-Prandtl approxi-
mation, The equation for Gy is

’

Iy ~ 9 {'Néoﬂ(No) }L@yl}'l + a ‘[_"No.,g\(llo)] F(¢“-)} (3.49)

in which q;, q, ére functions of N that ure determinable once g_(}{o) is
given.

Wo thus find the following similerity laws for linearized irro-
tational diabatic flow (in addition to equations (3,41, 3.42))

. - 2z 2 1/2

MM AW ) =1 x g AP ) ] (3050)
R | Jon con 7wl |
R PR g R ()
" APy ], 2ow 7 W)

| ] /S | =S (.5
p(i %, @)/ o D) = (0 )/, (0 ¢) (3053)




e g,

where (cf. D~2 equation (3-8), H.,__(’{) =oxpfg(ll) d lz/z, and

a[¥,rs €F ')]+——7/¢.

7,0 gjmvm )" T e
ql[' N Pydry /¢l)] qz[,’ (¥ )J+ ¢'/¢'

Bquation (3.53) could be used to caloulate pressure forces on bodies in
diabatic flow. The transformation of N and g would of course distort

the body being oonsidered just as in Ghuort-P: ‘andtl transformations for
adiabatio flow. We note that for all irrotatioral diabatio flows

-1 .
(1+{—)—,-u25)5- Vlog T, =2qy (3.55)
Ir ft is the free-stream value of the stagnation temperature then

log (T /rt)..y[qu d¢>nﬂ (1+-2-—l2 5)] (3.56)

where the integral is taken-along a streamline. The similarity law here,
in the Glauert-Prandtl approximation is

log rt(n ')/ 3- log T (N, )} = oN(N ...)n 1+ %-’—- 2 g(n ))/

-

aI

ay (NN +(1 + {_;_1. N2 g ")) (3.87)

Once N, p, T, are known then of course N, V, Per To and Q can be oom~
puted, We furthor note that the vorticity in M languagel VxV ’ is, in
two dimensional irrotational flow, simply equal to (- - dlog g r/a,) Ye

The aocuracy of the various approximate expressions we have given may be
expected to ba different for the different flow patterns and also far
the verious equations,

4, PERTURBATION OF UNIFORM FLOW BY A LOCAL SOURCE oF uEAr(8)

Among the. simplor rotational diabatic fiows anly one has boen
troated fully by us, that of an almost uniform flow deflected by one

18) B, Lo Hicks, "Perturbation of Steady Uniform Flow by Localized
Sources of Hoat", Phys. Wev., 73, 638 (L) (March 15, 1948).
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local heat source of the form Q OF e-a r1~,.1 fore goenoral rotational
problems can be discussed by vxaminiug perturbation due to hoat sources
in non-uniform fiows, by superposition of mors than one heat source in
almost wmifarm fiow, or by relaxation or charactoristic paramotor
mothods for high Mach numbers (cf. basic equations - -Section 1). We
hope to report some of these advanced calculations at a later time.

We had expressed a doubt in the Madison papor that & unique ele-
montary source of heat, analogous to & fluid source, oould be defined
for diabatic flow, Comparison of the,results to be discussed: in this
Seotion with the calculations of referonce {9) lead to the conclusion
that difficulties such as infinite jump in enthalpy or appearance of
vartex shests could be ignored in a first troatment if the total heat
per second added to the fluid is kept coanstant as tho spatial extent
of the heat source is reduced io make it & line or point source. (We
are indebted to Professor Tsien for sending us a prepublication copy
of his abstract.) It must be recognizod, however, that the infinite
velooities cmnected with an elementary line source make it partially
unsuitadble for & perturbation theory. We will therefore present here
the perturbation calculation for the smoothed source exp(- arlz).

The unperturbed flow is unifcrm and of velocity Vo in the direoct-
ion of the positive x axis. In the porturbed flow let

V=V, 44V = (vo-fix') i+v'j (4.1)
P %= po + _p“ o, Lo (4.2)
rP= Lot/ ! (4.3)
Ty =T v 10 (4.4)

in which the subscript zero refers to the unperturbed state and the
prime to the perturbad state,® Each of the quantities V o Por P o is

constant while, in the cause considered here, V', p' and 2 ' are¢ func-
tions of (x, y)o Tho first order perturbation equations are dorived
from equations (1.1) to (1.3). Thus

1

}I

The effects of a lins source of heat have beon deacribed further in
recent first order perturbation theory (9, 10).

s e
9y, 8. Tsien and M, Boilock, "Heat Source in a Uniform Flow", J. Aero,.
So. 16, 756, (Dec.. 1949).

(IO)B.Lo Hicka, "An Bxtension of the Theory of Diabatic Flow", Phys. Rev,
17, 286 (bS (Jan, 15, 1950).

* For this first elemontary but fundamontal computation it soumed appropri-
ato to use the V, language as boing more familiar, ¥For more complex
flows or in more accurate troatments, the conclusione in D-2 (Section 2)
suggest that the W langurgo may be more useful,
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. v ’ .‘.‘ = o‘
<, Vp l,»ov“ T U (1.5)
1 p S
VoVt av - Sl g (4.6)
o~ [e] /h‘_‘ a;
T !
% Yo %‘E" =& (4.7)

. Using equations (4.5) and (4,6), aquation (1.7) oan be re-written to
, first ordor torms us

M2 ) ut )v‘ 2 oar 2

) =(Y -1) M 4.8
Y Rt L LR A (4.8)

. It can be shown that W ! =| 7 xY' | is of second order. We oun
therefore intorduce a potential ¢ ‘v for vkich V! =V V¢' and after
making the scale changes x = xll, 1 - llozl » Y=y (M ;4 1) srrive

at the basic equations for this type of flow

2 pd

0 ¢vs . P pv'

+ s = (r-nuien’ (4.9)

2 :1t12 J"yl

® The action of the heat source as an effoctive fluid source (of, D-1) ia
- here illustratod, We note that the R.H.S. of equution (4.9) is simply
2qy, in tho notation of D-2, evaluatod in the freo stream where Lliu

velocity of sound 1s & ,

Lot us troat & subsunic case (l( < 1) and tako Q to be & function

. only of r. 12 namoly 2
Sy ud !"1
. Q=20q a0 o (410)

: 10 w OUTS
or ag usod In the Wisoconsin Synposiun papor Q = ¥ & 'R V 6 .
where o¢ is a poramoter of compactuoss and qy wiausirey L)ag iulmuuity of

4 the heat roloase.?*

[ 3 - bt

Wo oan show, if the perturbation velocity u' s amill Oumlmrud to
V how. Gy con bo culculated and given a practioal mountng. When ut s
Bma]l the ntogral in equation (4.21) can b ropluoud I;y/ (Q/V dx

which {8 onnily eviiuatod., For largor u' the snmo development al.ﬂl
givag & qualitnbive idon of the moaying of gyo

S AN L e
a gt e W

Feom oqualion (14.22), the enthulpy incrouns from x = « 02 4o
X =4 oz along the strownline y ~ 0 lu /
l

0 AT+ 6 At et e 207 =) (TR0 - u ) a (1-1)
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4
Footnots contiruud from jape 29
Ir kl = (4 Ttﬂo) is used as a rsasure of the heating value of the com—
bugtible mixturs then in terms of

q = [lo/zn'm( 7-1a - !,,2)1@1:10‘ “1/2 (s-11)

snd is thus directly proportiomal to l'1 and to the scale defined by the

compactness parameter o « The heat cutput of a combustion chamber is
usually expressed in terms of the loading factor £, the rate of energy
roloase per unit volums and pressure in the chamber. If to is the time

necessary for cambustion to be completed, then it may be shom that

g = [7'/( 7- 1)] (g/t) {4-114)
or if ﬂ ! is the loading; given in the usual practical umit
BYU/ft>-atm-hr and t, 18 in seconds.

B =344 310" (/) (4-1v)

The two measures of heat release, q, and £ » can be related if we say
that the distance A x = (V,t,) nocessary to complete combustion is
kzo( -1/2 where k, is of the order of two. We then find

_ 1/2 2,1/2
% —Ecz M2 Y@ -uf) ] (B/xv) (4-v)
For g, in f:,/za in £67%, 8¢ in the practical units and with k, ~2,
(1 - M%) " =0.130, 7=1.40, V=150 ft/sec, we obtain
Gy~ 35 x 10"8(/3 /o) (4-vi)

Therefore, for a combustion chamber for a turbo-jet engine for example
with )9": 2 x 106 BTU/fts-»atmmhr, X = 0,;14( Dx =3 ft), 9, is 0,16,
which corresponds to (1/6) of the stoichiometric value of 0,96 cal-
culated from (4~ii) for the seme values of M (1 - noz) , 7 and X o
EBquivalent results are obtained if the volume of the combustion space
rather than its longitudinal dimsnsion Ax is connected with ox .

The value X =1 is used in the plots to be discussed later, If a
different value.of ¢ is of interest, the x and y scales must be re~

placed by A 1/2 ¢ ana o 1/21!, q, by {q;0¢), T* by (YA T'), po* by
(Yox pt) and u? by (Yo ut),




The totcl heat added to the fluid per unit time snd thickness (the Q of
roference (9)) ia thus
172

1/2 oo 5
zn;/o avgl 76 = (1-:02) P “‘zn[ Q ”1"’ =2W(Q-x z) 98, ,a‘,!

—> (+.22)
=27 1..02 UNP%

Acoording to equatica (4.10), q; is & function of ry cnly and equa-
tion (4.9) reduces to

2
Or
r1 T, (r1 d-Q-—) = 2(Y-1) alo-l q, ¢ 1 (4.12)
One integration gives
4
-y
A AR D (R (4.33)

which differs from the usual (fluid) point source in two-dixensions in
that there is no singularity at r;, = 0. As a consequence it would be

possible to insure ths walidity of the perturbation treatment in all
perts of the flow for not too large walues of q;. It is importsat to

note that V¢ with respect to the r; space bas redial components only,

but that the 7 b with respect to the physical space is the porturbation
velocity vector which is not sysmetrical about the heat sourcze location
in either the physical or the r, sphce. However, for Mach numbers which

are very close ‘to zerc the perturbation velocity deviation from symmetry
in both the physical and ¥y space is very small,

Because of the irrota®onality of VY integraticn of equation (4.5)
for the perturbation pressure p' is immediate, and the vanishing of u'
at infinity ylelds

pt == oV, ut ‘ (4.14)

This simply exprosses the pressure variation needed to sffect the change
in momentum in the x direction associated with the heating, other com-
ponents of the momentum being negligible. Finally, elimination of ¥/ YJ
between equations (4.6) and (4.8) followed by integration leads to

- /’v -1,
/ao l‘o & V¥ (4.15)
-a

2
+ (Troc )1/2('/--1)(1~1102)1/2 M;l q ® N [1 + er (X 1/2 xl)]
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where /-’ '—> 0 ss x,->» -0, The expressions for the -porturved
quantities in the case of a line source are obtained by letting Ot — o0,

Ir l =0,20, O¥=1.,0, 7= 1,40, and q = 0,098, (corraspondmg
tok = (Art/‘r ) = 0.68) then max I (v i) I 0.13, und: to this extent

the linearization is justified. Sh'otnlmos for this cage (Ko neglected
oompared to umity) are shown in figure S5a together with lines of con-
stant velooity,(or of perturbed static pressure) and also lines of con-
stant perturbed temperature (either static or stagnation within the
accuracy of the perturbation treatment).

" Owing to the low Mach g;-bar the static and stagnation presauro changes
are small. In figure &b tho variation of these pressure changes, p /p
and p f/P o> 81lmg the x axis are shown. Perhaps the most interesting

aerodynsamic effect illustrated is the slowing down of the fluid upstream:
of thes heated region as though the fluid were approaching a real obstaocle.
Fo: larger values of 9 there would be a stagnation point and actual re-
versal of the :flow.

The caloulation of p* ¢ for the Madison paper was based on the simple
formula -

7"‘ T vz P
X o) = & . Q[(v;’ 1+ 7":) - ] (4.16)

and is the curve I for q, = 0,09 in figure 5b. Since recovery of stag-

nation pressure is impossible so long as no heat is abstracted from the
flow, the apparent recovery must arise from some inaccuracy in the cal-
culation. In order to check thic point a more careful calculation of
P! t was made by integration numerically equation (1.9) which, for the

" present case, reduces to

Y -y - 2
J 11“ Py _ -2/1(0 1...);02 Nald ’ 2[ (7‘-1)‘11(1-6 n )]

1
d x - y—-:-:f- Q1° (l‘wz) (““—') V]

o 1

. (4.17)
in which W and (7 o/l') can be computed from the .formulas already given
for the velocity, pressure and density variations. Values of Py obw~
tained in this way are plotted as Curve II (for qy = 0.098) in figure 5b,

Compariscn of T and II shows the large inaccuracy in equation (4.16),
which is undoubtedly due to the largs density varlation along the x axis.,
(of. figure 5e,) As & furthor check the calculations wore repeated for
q = 0:01115 which is small enough so that equation (4.16) should be

yeagenadbly accurstes The p? 4 ourves for this value of q for the two
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rethods of celculation, as seen from figure Sb, do indeed lie close to-
gother. From equation (4.16) the asymptotic expression (x —»+ 00 . is

P.t - 1/2
€9 =y (7T M-k / 9 (4.18)
o agymp

A mare accurate asymptotic expression can be derived. The definition of
pt together with the fast that p —»p, 8s X —» 0o gives

Py’ ya , 2,771 a2 77
(;;— asymp = (1 + T 00 ) "(1 4 %— ‘O ) (4.19)

Since also V -rV'o a8 X —4 20

2 2
M, =M (T /1) (4.20)
From the energy equation (1.3)
LT am e
/. (QN) ax = °p(’t o~ T) = @P(Too -1) (4.21)
Making the approximation that V ~V_ in the integral we find thet
Too - //: A 2 1 :
T;- =1+ 2(7 1)1 TE M q M F (4.22)
¢
where the denominator is [1 - ('ﬁw) ] obtainable from equation
o asymp _

(4.15). Combinstion of equationa (4.19, 20, 22) pormits calculation of
values of (pt' /po) which are in error only baecause of the small difference

between V and vo° Vihen M mz./\f{ 1, this combinetion leads to the simple
sxpression

P T '
(=L = - .27’.. “02 (1 ~52-) (4023)
pa asymp ) a0

which reduces to equation (4.18) when T“/’I‘o and P"//ﬁo << l.

The variation of temperature or density along streamlines is approxi-
mately as shown in figure Sc¢, the letters a, b, ¢, d, on the curves re-
ferring to streamlines in figure 5a. The density or temperature changes
along the axis amount to 707 of the unperturbed values and the cor espond-
ing entropy increase is about 1/2 °p° Since max Jlog Tt/)3 quwvto

the maximun fractional time rate of change of energy of & fluad particle
is (for v'to = 500 unit longths/sec) equal te about 200 per sec, Thug

mich lower burning rates than were involved in the special case of radial

flow of Section @ produce appreciable perturbations of the uniform fields
of flow. \




S e e o

In order to illustrate the effect of Yach numbsr let us take
M . 2.80 instead of 0,20, Both the heat source function and ‘the per-

turbation welocity, b&inf ctions of r,, will be distorted s.*;jx!co_; =
[ Q- lo ) x +ty _] o The magnitude of the apparent flyjd saurce.

is reduoced squation (4.12) by the factor .2 1-(.2)2/.8 1-'('.."8)2"-': 0.41
and’ the maximm velocity perturbation is increased by a faoctor of
(1-.04)/(1~.64) = 2.7 for a given total amount of heat added to the
fluid per unit time. The accuracy of the perturbation calculaiion as a
wholo is thus about the same for M = 0.8 as for M m 0,2 for small
values of q,. -

5. ON THE COMPUTATION OF GENZRAL UNIFLANAR DIABATIC FLOWS

The mathematical struoturc of the basic diabatic flow equation in:
W language, equations (1.9 - 1.11) has immediate physicel implicetiouns.
If we regard W as the quantity to be detormined, then we see that eq-

uation (1.10) looks like an equation of continuity for a medium

possessing apparent fluid source proportional to the heating factor g
The equation of motion, equation (1.9), however, shows that the only
impartant dynamical quantity is the stagnation pressure p, which acts

as a potential for the difference betwoon vorticity and heating terms,
In fact variations of Py along streamlines are associated only with

heating (between shock fronts) and variations perpendicular to stream-
lines with the distribution of the (roduced) vorticity W, = Vx¥.

The vorticity and heating effects. ars actually coupled, both because of
the continuity. equation and because P acts as a potential for them.

t is eliminated by taking the curl of

equation {(1.9). Since we shall only -eoncern ourselves here with uni-
planar flow, the curl of equation (1,9) yields the one equation (cf.

D-1)
V-1
2(1 *7%1'“2)‘*&1“" +W o (u —aix- +v—}y—)' log [ww/(l - W) :I
(5.1)

This can be seen in dotai{ after p

(1- wz) qw(u —39- -v —)};) log %

where u and v are the components of the voctor W% But g is kmown

from the equation of continuity in terms of W. Therefore wo can obtain
finally an equation in u, v and their derivatives only '

Y41 2 2 . 2 2 2, 741 2
~-v(1 7:-1' u v Ju +2u(1+ > v )uxy+ v(l4u + ;—-_ui-v ) uyy (5.2)
y41 2 2 v 2 2 _2_ Y4l 2 —
-vu(l'*‘ -5,-—:Tu +v )Vxx ZV(lf‘ 51 u )ny+ u(l u 7—:1"9’ ) V. +tee =0

»
Noto that u and v here bear no direct relation to the u', v'! of
Soction 4.
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where i:EAcontalns no seécond partials, This equation must be satisfied

by the:édmﬁonents u, v of the Crocco vecter W for all steady uniplanar
-diabatic flows. Functions u{x,y), v(x.y) which satisfy it will determine
the nature of the heat sgurco function QW(IPY) through the continuity

¥

eguifion. We can then formulate a general method of attacking diabatic
flcw problems if, as in the case of irrotational diabatic flzvs, we first
specify gArtially>tho flow pattern W and then calculate 9z ,11:12:13 bdd

It is recalled that specificstion of Gy first may lead to such undesired

complications as slip lines or discontinuous temperature jumps in the
flow but that (cf. Introduction) calculation ¢f an indirect protlem is
gonerally easior than of the direct problenm.

Lot us suppose that u is given as a function of (x,y) throughout

the region R and let us inquire what is involved in finding v(x,y).
Bquation (5-2) is then a socond ordor partial differential equation
for v that my be shown to be always hyperbolic., Consequently there
will be no difficulty with change of type of tho equation either in the
field of flow or in going frum one problem to another. Such equations
of constant type occurred as special cases in irrotational flcw (cf.
Section 3). One needs to specify v and its normal derivative along

—

curves '/ . in R in order to permit solution of the equation for v with-

in some sub-region of R that is partially bordered by ’-Lo We note that

the constant hyperbolic typa of equation (5-2) iz not an obvious advantage
in the adiabatic case (i.s., where q(x,y) is specified to be = 0), bow
cause in general it 1s there stall necessury to satisfy a second equation
in v which dces change type., Howovor, it may be that same lirwarized
adiabatic problems could best ba handled by finding a solution of a re~
lated diabatic flow problem containing parameters which are waried in
such a way that max . g, 'or,/{qwl d x dy or some other expression of the
4

heating factors® impocrvance is minimized.

Ve can examine the equation (5-2) further in. ghe limiting cases of
small W (Yincoupressible” fiow) and of the almost wiiform flow approxi-
mationa
an B.L. Hlicks, "On the Calculation of Steady Diabatic Flows", Phys. Rev,

74, 1230(2) (Nov, 1, 1948).

(12) -

V.P. Starc, A Mathematical Tneory of Convection", J. Msteor, 6,
188-192 (Juno, 1949),

G,W, Platzmann, "An Exampls of a General Integral of the llydro-
dynamical Equations", Private comaunication,

(13)

‘t * e .
Professor Starr has shown that initial specification of the mementum

distribution leads to a partiul differeantial equation for tho
specifis volume which is second-crder but always ggeprbolzc.and

linear and caleulates a upeacific examplo. Professor Pluturunn hag

roeneralized theye resulis, Ve aro indebted to these suthora for
sonding us prowpublication copies of their papors.




A «mm.&

L o T it

¢
- e S

[T U

B e v -

RIS

i

For W << 1, the equation bocumes
- vu + 2 + - + - RATA + = N
( o 2y Vuyy) ( W " Py uvyy) 0 (5.3)

Supposing again that u(x,y) is known, the characteristics of this partlal

differential equetion always exist since it is hyperbolic, _ Tfkr'tmg o T

femilies of charactoristics intersect orthogonally, Non-ifnezzity-enters

only owing to the coofficiont v of the term v 5 In our 63?1?95 fofmla= -

tion of the theory -of lew-speod uniplaner diabatic -flow (D-1; équetion '
(1. 15)) the nonlinearit 2 entered in the more complicated ooupl A, oquationr

o o4 -

2 O+ ) : -
,Wq“.o,a/s Tl _ »,«;

It might be instructive to take computed valucs of u(x,y) and v(x,0) from
the flow of Section 4 and rccalculate v, ‘q\'l; Q, psetc., throughout tho

flow field as an improvement of the lincarized treatment. In this check,
the coefficient v of vxy could bo initially asswaed to have the vulue

calculatod in Scction 4 in starting an iterative solution for v(x,y)
Loss embitiously, the terms tn equation (5.1) could be computed and their
sun compared to 2ero as & chock of the lincarized treatment of Section 4,

For flow which is almost uniform, u = u, + u', v=v' |u'| \v"«u

= const., & scals change leads to theo sxmplur equutlon

v ~ v? = e ! (5.4)
X% Vi¥Yy el
; - 1l «1
2 741 2 2 2 2 2 — !
with x, (1 + EA ) eyt = (1 u ) y°. The fanotion :::1
is a linear combination of the form
- Voot . ' v $ '
— Al(uo)u xlu v, 4 Aa(uu)u‘xlv x, + A.s(uo)u ylv ¥,
— 1 4 (5.5)
4 ] ¢
A, (uo)v x]v v,

which normally would be small .compared to individual terms in the L. H. S.
of equation (5.4), Wa note that in this Glavort-Prandtl approximation
the partial difforontial equation for v has boon wholly linearized ox-
copt for the prosence of tho (smpll) term in v v

1 N1

It appears that hore, as for irrvotational flows, tho almost uri-
form or Glauort~Prandtl type of treatment will lead nost quickly to
approximate calculations of interosting flows. Ve notu that in the




‘case of all throe oquations (5.2, 3.4) the solution noud not be ob~
tainad to as high & dogree of accuracy as muat a potontial funotion, for
the latter must be differentiated in arder to givo valuoa for u, v, p,
T, otc,, which are the primary variables of interes:.

B L Wb
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