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RAYLEIGH WAVES AT THE CONTINENTAL MARGIN 

by 

Julius  Kane 

abstract 

In this report, the first of a series on the analytic continuation 

of wave functions past discontinuities, we introduce an elementary 

procedure for the solution of problems involving the diffraction of 

vector fields.  In particular, the report discusses the propapntion 

of Rayleigh waves incident obliquely upon the continental ma'gin.  The 

crustal layering on either side of the coastline is modeled mathemati- 

cally as a two-part boundary layer in such a fashion that the 

relevant reflection and transmission coefficients emerge as 

elementary algebraic expressions.  The procedure that permits such 

a solution to be found is to introduce a diffraction analogue of 

the well-known procedure in electrical engineering:  replace a 

transmission line network by a lumped parameter equivalent in a 

specified frequency or wave number domain. 
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I.  INTRODUCTION 

From the point of view of a geophysicistt mathematical 

analysis cannot begin to acquire practical importance unless 

the solution is  in such a form that the answers to his questions 

can be promptly given.  Unfortunately, the class of elastic 

wave diffraction problems which have tractable solutions usually 

describe oversimplified geophysical structures.  On the other 

hand, when the theoretician otudies complex problems, too often 

he concentrates on the mathematical details of the solution so 

that his calculations are often more impressive than useful. 

One powerful mathematical technique, the Wiener Hopf method, 

has not had the application to geophysics that it should have. 

The difficulty in the application of this method is that it 

usually requires an Involved transcendental kernel to be "split" 

into suitable analytic factors.  In my experience with problems 

of this type. It has been my observation that very often this 

M 21 
prolix calculation is of more mathematical than physical interest1 ' , 

and that usually the interesting parts of the solution depend in a 

very minor fashion with respect to this "split" function.  Indeed, 

the necessity for this function - theoretic decomposition can 

often be dropped as a requirement from the analysis, and used as 

the basis t>£ an approximation procedure to solve problems beyond the 
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[31 
scope of the Wiener-Hopf theory   .  Other investigators such 

as Koiter  J and Carrier1 ■' have been aware of the relative 

unimportance of this complex factorization and have suggested 

the use of simpler substitute kernels which can be factored by 

inspection.  While there is much merit in this approach, I feel 

that it is a poor philosophy to tatte the solution to an idealized 

problem and then approximate the answer.  A preferable procedure 

is to formulate the problem in such a way that the mathematical 

difficulties are anticipated and avoided from the start.  That 

is, a certain amount of intuition and insight into the nature of 

the problem can be used to guarantee that the subsequent analysis 

will lead to simple representations. 

In the sequel, I should like to give an example ->f this philosophy 

by considering the propagation of oblique Raylelgh waves past a 

(Fipure 11 
crustal discontinuity such as the land-sea boundary        .  As a side 

condition, an elementary character for the solution will be required. 

Of course, there will be a need to make certain assun-ptlons con- 

cerning the fields to be calculated.  However, we shall be explicit 

about these modifications and Indicate how arbitrary improvements 

can be made In the analysis if necessary. 

A crucial phase in this study will be the need to formulate 

appropriate boundary conditions to characterize the crustal 
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layerlng of the mantle.  In the simpler problem of electro- 

f 6 1 
magnetic wa^'e propagation, Leontovich" J has introduced the 

notion of an "impedance boundary condition" to model the physics 

at an interface.  However, this idea while very useful does have 

its limitations.  For one the solution to the associated boundary 

value problem is still rather complex, second the idea is valid 

only if the surface impedance is reasonably independent of the 

nature of the excitation.  Although the impedance concept can 

f 7 8 Q 1 
be generalized to describe interfaces with more general properties  ' *  ; 

the intractable nature of the solution remains.  A feature of the 

subsequent analysis will be a derivation of an approximate boundary 

condition for elastic wave diffraction whose merit is that its 

accuracy can be arbitrarily great without sacrificing simplicity 

in the form of the solution. 
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II.  BASIC EQUATIONS 

In the absence of body forces, small displacements 5(u,v,w) 

of an elastic solid characterized by the Lame paremeters X.u. 

and density p can be derived from a  scalar potential $ and a 

vector potential ^(1^.0,^) 

(1) S = grad $ + curl * Of .u,^) 

(Three components in the vector potential are redundant for we 

can express say Y2 ■ f(Y .Y^) so that without any loss of 

generality we can set Vj  - 0.)  For monochromatic vibrations, 

we can suppress a time factor e and it can be shown that § 

and the components Y . satisfy the reduced wave equations 

(V + k^) $ = 0        kl =  U)2D/(\ + 2^) 

(2) C'     ' 

(V2 + kj) Y .- 0        k2 - u2p/ii 
8 1, $ 



7- 

Simultaneously we should 1 ike a solution for the Rayleigh 

wa\e incident from either side of the crustal discontinuity. 

For this reason let v and v be the phase velocity of the 

Rayleigh wave on the left and right sides of the boundary, and 

let kT = w/v , ar.d k ■ W/VD designate the corresponding wave L      L       K      R 

numbers.  Also, f and rD reprerent the required shear/compressional L      R 

ratios for either side.  In the notation of figure one, the variation of 

f 101 
the incident Rayleigh wave in the mantle will have the form1  ■' 

(3) 

- zkR§ + ay 
r $,  = e i inc 

[\nc  = (sin a 0, cos 6 ) CRe" ^R
5 + by 

where 

(4) § ■ xcos 8+ z sin 6, 

* 4 
(5) aK^-kc

2)      b-d^-kf) 

and for the special case of a free elastic half space the 

coefficient T    would be giveu by 
K 

r 
(6) r„ - '• 

1 - (v^)2] 

1 1 - i(vR/vs)
2 



+ ;'k z sin 9 
The z-varlation of all fields will be of the form e       K      ,  1.e, 

+ ik z sin 6 
$(x,y1'',) ■ cp(x,y) e 

(7) 
+ ik z sin 9 

Y .(x.y.z) = 1/ .(x.y) e  R     .    f « 1,3 
l      - % 

so thatcpCx.y) and the ^ .\y.,i)   satisfy the reduced two-dimensional 

wave equations 

(8) 

3x2 

d'cp 
2 

oy 
+ 2 

p cp = 0 
» 

d ^ . 

J * - 
-r q\, = o 

2 
oy 

2  ,2  .2.2 
p " kc - kR M.n  8 , 

2  ,2  .2.2,. q = k - k sxn  9 
S    K 

Note that for angles of Incidence such that sin 6 ■> v,/v 
i.    s 

2     2 
both p and q will be negative. 
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A completely general solution of equations (8) can be 

written down at once by separation of variables as 

<p(*.y) - 2^7 J 
2   2 s 

_ A(oi)  exp[ fox  - f(p - a )  y] da 

i 
(9) 

if 2   2 ^ 
* .(x,y) ■ "s—: L B(Q') exp[ fox - i(q    - a )  y] dy, i » 1,3 

where A(cy) and B(a) are kernels to be found, and the contour C 
i 

follows the real axis except for the standard pole and branch point 

deformations (figure 2). 

III.  THE BOUNDARY CONDITIONS 

Either the oceanic or the continental crustal structure can 

be considered to be a shallow transition layer that continues 

the field within the mantle to the free boundary at the earth's 

surface.  The details of the transition become more important 

for the shorter period Rayleigh waves.  However, the group 

velocity dispersion curves for Rayleigh waves traveling oceanic 

or continental paths intersect at about seventeen seconds.  This 

implies that for waves of period greater than ten seconds we 

can treat such a crustal structure as a two-part buundary layer 

whose coefficients have different values on the land and sea 
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sides of the coastline.  For this purpose, we need some way of 

relating the free surface conditions to the crust-mantle interface, 

A.  Exact Formulation 

At a free surface, the normal and tangential stresses must 

vanish or 

yy 

,2    2   ,2 

dx^  oy^  dz* dy 

(10)  a xy 
2H j. ^  -    ^ 
Oy  dx 

yz oy  dz 

which in terms of cp and %  become 
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2. 
2 di|f    O ^ -i 

„  = -\k2 cp + 2u f^ + A   sm ex^ - -^r ■ 0 
" yy     c T     L  2    R      oy   OxdyJ 

(11)     (j   =2 T-^- + *D sin QT-
1

  + 5 5-    = 0 v        "xy    oxoy    R      ox   s 2   N 2 

dCD ^3     ^ ^1 
a       ■  zK sin e [2 ^ + äkD sin 6 *, - -7—J 7- - 0 17 yz     R      L  oy    R       1  ox J  ^ 2 

By means of the Haskell^  ■' - Thomson    matrix method, these 

equations at the surface car be transformed to an equivalent set which 

refer the boundary conditions at the free surface to the crust- 

mantle interface.  In this fashion the details of the crustal 

layering on either side of the boundary will be introduced into 

the analysis.  However, the boundary conditions so obtained will 

be no simpler than the set (11), and in fact a good deal more 

complex.  Although the program we have just described would lead 

to a soluble Wiener-Hopf problem, the complexities of the 

analysis would render this procedure rather prolix for the 

information desired. 
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B.  The Simplified Formulation 

The important features of the exact formulation described 

in part A can be incorporated in a much simpler approach.  The 

conditions we need are those that characterize the boundary 

layer in such a fashion that the geometric acoustics poles 

mirror the crustal layering correctly.  We en assume that we 

„now the dispersion relations for either side of the boundary, 

this is equivalent to making use of the Haskell - Thomson matrix 

analysis in an indirect fashion. 

The dispersion relations define the v   and F   of a 
K, L      K , L 

Rayleigh wave uniquely.  If we refer to the explicit representation 

(3) we see that at any characteristic depth «-ay y >" 0 the Rayleigh 

vave will satisfy the set of equations 

^    p    * -   ^ i .   , £   _ Q 
R,L R,L    dz    dx 

(12) ^+^T1  =0 
äz      rR,L  ' 

a*    kR,L 
S+i%     "-    =0 

R,L  3 
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These equations are analogues of the telegrapher's equations in 

electromagnetic theory, and are used to describe the propagation 

characteristics of Rayleigh waves in a layered half space.  They 

describe the surface loading of the mantle in an exact fashion 

for Rayleigh wave propagation.  That is, they define the correct 

velocity v  , and the shear/compressional ratio ± f., T together 

with its proper change of sign when the direction of propagation is 

reversed.  The surface parameter rD T is depth depe.-.dent and 
K, L 

transforms according to the law 

exp   (k        -   k )  y 
(13) rrT{ = —^ S-TT^       r 

K,L]y-y°   "expTck2  -Mn   lR'L,y = o expl URjL      ks;   >oJ 

With this observation, the propagation of a Rayleigh wave past a 

step discontinuity can be dedcribed as a special case of the 

subsequent analysis if the step discontinuity is Interpreted as 

a jump in V  according to the law (13), without any discontinuity 

inv(Figure 3) 
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r, v 

Figure 3:  An elastic solid with a small step discontinuity can be 

thought of as a half space with different values of F 

on either side of the transition if the analysis is 

referred to the reference plane indicated. 
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Of course there are any number of other simplified boundary 

conditions equations that the Rayleigh wave will satisfy, but 

the equations in the set (12) have several important advantages. 

(a) They are simple and uncomplicated. 

(b) They are Isotropie in that they do not depend upon 

the Rayleigh wave's direction of propagation In the 

xz-plane. 

(c) They avoid the use of the transverse operator d/öy 

which would have the effect of introducing radicals 

in the transform plane.  This deliberate avoidance of 

the irrational factors will enormously simplify the 

subsequent function-theoretic analysis. 

(d) They characterize the crustal layering in a direct 

fashion for they introduce the parameters v   and 
Ri L 

r   defined by the relevant period equations. 
R, L " 

(e) It can be shown that they imply conservation of energy. 

That is, the rays which are reflected from a boundary 

at which these synthetic conditions are imposed will 

have the same energy as the Incident plane wave. 
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C.  Discussion 

For those familiar with electrical engineering practice, an 

analogy between fonrtulations A and B may prove to be useful.  In 

simplified terms, the Haskell matrix method is a vector analogue 

of transforming an impedance through a transmission line network 

where the details of the crustal structure characterize the 

network parameters.  In symbolic terms, the exact formulation 

can be considered to be the shunt transmission line networks of 

figure 3A which loads a transmission line representation of the 

mantle.  As is well known, the impedance characteristics of such 

networks are involved transcendental functions of frequency. 

Within any significant frequency interval however, a transmission 

line network can be replaced by an equivalent network consisting 

of lumped parameter elements.  Such networks have much simpler 

impedance functions which are rational functions of the frequency. 

In diffraction problems., wave number plays a role analagous Co 

frequency, and the substitute set of equations (12) can be 

considered to be the mathematical equivalent of a lumped circuit 

representations of the shunt transmission line networks (11) in a 

region of the wave number plane centered about the Rayleigh pole. 

From a mathematical point of view, the nature of the solution 

to a Wiener-Hopf problem is that it analytically continues a wave 

function past a discontinuity.  If two distinct but reasonably 
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equivalent sets of bounda y ^ot-1 it Ions are used to characterize 

each interface then the corresponding fields will also agree 

rather veil.  Koiter's and Carrier's justification of the use of 

substitute kernels in the transform plane has the immediate 

corollary of validating the use of simplified boundary conditions 

to describe the nhysics, since the kernel is in effect the 

transform realization of the boundary condition operators.  Our 

use of the set (12) as boundary conditions is however a preferable 

procedure for it is more direct and we can justify it on physical 

grounds by using the Haskell method backwards.  That is, we can 

transform the conditions in (12) from the crust-mantle interface 

to the free surface.  Naturally, they will not imply that the 

surface stresse? vanish except for Rayleigh waves.  However, any 

incident ray whose wave number Is close to the Rayleigh wave 

number will not induce appreciable stresses at the surface. 

Indeed, for P or SV waves striking the free surface at grazing 

apgles of incidence, the equations in (12) describe the physics 

exactly.  Essentially all the diffracted rays are tangential to 

the surface discontinuity and for waves of this type the stress 

mismatch at the surface will be small.  In any event, more 

terms can be added to the simplified boundary conditions after 

the fashion of the analysis in [7,8,9] to get any desired degree 

of surface matching. 
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IV.  SOLUTION 

In terms o2  cp(x,y) and ^ .(x,y) the synthetic boundary 

conditions (12) at the crust-mantle interface can be written 

(14) kR.LrR^-  ^1" aT  =0' y = 0 

k
*    T 

(15) f&p + Y^ t,        =0,      y - 0 

-  ^3 (16) ^_+^.) .0,      ,,., 

R.L 

where 

(17) S - 4kR sin a 

is a coefficient that always involves k owing to the suppressed 

z-variation. 

Let R(a) denote the hermitian matrix (r,.) where the 

coefficients r.. are identified as polynomial components of 

the realization of the differential operations (14) - (17) in 

the transform plane when x is positive, viz 
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/ 
'kRrR 

(18) R(ü) - 

\ 

i  S 

i a 

- i s 

0 

a 

0 

V'R 

Likewise, let L (ex) be the matrix counterpart of (19) but with 

piirameters k and T    appropriate tor the left boundary.  The 

right matrix R is singular when 

(19) a = + r = ± kRcos 8 , 

and the left matrix L is singular when 

(20) 
2   2   2      ^ 

a = ± £ = ± (kT - k., sin ' 9 ) 
L    K 

These points correspond lo the geometric acoustics poles for the 

right and left boundaries respectively.  The relationships (19) 

and (20) are seen to deline the correct angles of refraction at 

the interface. 

We introduce the unknown vector 
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/A(a) 

(21)    x ={8. (a) 

^(al 
3      i 

and a constant vector m describing the mismatched components of 

the incident wave upon the left boundary 

(22)    m 

where 

ml " kLrL " kRrR 

(23)     m2 - J(kLrR/rL - kR) sin e 

m3 = -^^R^L ■ kR) COS e 
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A.  Function - Theoretic Method 

Vajnstein^  % Karp*-      \   and Clemmovr  ■' have introduced a 

rather general method for solving dual integral equations.  The 

VKC procedure can be generalized to solve vector problems with 

either the exact or simplified boundary conditions. 

A plus (or minus) siperscript on a matrix or vector quantity 

will indicate that all ol  its components are analytic in the upper 

(or lower) a-plane above (or below) the contour of integration C. 

Unless otherwise specified, these quantities vanish uniformly at 

infinity in their relevant half-plane of regularity.  By Jordan's 

lemma, the boundary condition on the right will be satisfied 

provided that 
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(24) R(a)x = f+(a) 

where  t" (a) is unknown as yet.  On the left boundary we need 

satisfv 

(25) 1(a)  x+ ^~   = g"(a) 

The term fTl/ (a + k ) represents a collection of poles whose 

residue contributions represent the driving effect of the 

incident Rayleigh wave upon the left boundary.  In order to 

solve these equations, we substitute (24) into (25) and obtain 

(26) K(a) f+(a) + —^   - g'(a) 

where the matrix to be "split" is 

-1 
(2 7) K(a) = 1(a)    [ R(a)J 
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For the simplified boundary conditions the entries in the matrix 

kernel K(a) are to ^e rational functions of the transform variable 

a  so chat by elementary means we can split Kfa) as 

'l     + 
(28) K(a) - [N id)]     P (a) 

For the exact formulation, however, contour integration would b^ 

required to perform the factorization.  In any event, the matrix factors 

r (a) and N (ot)   are regular in their respective half planes, however un- 

like the vectorsf (a) or 9 C*) they do not vanish at infinity 

but approach a constant value. 

If we add and subtract the same term, ve  can rearrange 

equation (26) Into the form 

(29) P+(a) f+(a) + ^T1   = N" to) g' (a) + ^ [ N' (- r) -N" (a) 1 m 

Each side cf this equation is regular in a half plane and defines 

the analytic continuation of an entire function.  Owing to thu 

fa. _ 
(3) and 9 (a)   this entire function vanishes 

uniformly at infinity and must thus be the null constant.  Hence 



-26- 

we can set each side of (29) to zero and obtain 

.       [P+(a)]    N (-r)m 
a + r 

(30) 

-1 

g (a)  , - ^ + ^—  [^ (-r) -N (a)]m 

With the aid of the first of these expressions, the desired 

solution X is seen to be 

-1  +   -l 

[Rico]   [P (a)]    N (~r) m 
(31) X =  a + r 
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B.  Alfsbralc Method 

For rational kernels the general procedure described in 

Section A is rather abstruse and a more direct approach can 

yield the solution in a simple algebraic fashion; at the same 

time the transparency of the analysis will offer an insight 

into the mathematics that will suggest a generalization that 

can be used to solve more complex problems. 

The matrices L and R are such that the only singularities 

we can have in the solution X are poles in the complex plane at 

Of = ± r, ± £.  We know that the vector X must have entries which 

are rational functions of a.     The poles of X can only arise at 

a = ± r (incident and reflected waves), and at QL m -I   (transmitted 

wave) for the residue wave at a = + I  is a non-physical contri- 

bution.  Hence, X must be inversely proportional to (a - r) (a + r) 

(Ot + i) ,   and we can immediately concentrate attention on the 

numerators of its components.  That is^ X must be of the form 
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a1 + a2(a - r) 

(32)    X - -  _  r)   (al -T)   (a ; T) rR sin e [a1 + «3(a - r)(a - a^)]] 

<rR cos 6 [a1 + a5(a - r)] 

where the a are five constants to be detenained.  The order of 

the polynomial entries in X is easily established if we anticipate 

that we need t'«e Jordan's lemma after multiplication by either 

the operator R or I. .  The five unknown constants a . can and must be so 

chosen that all boundary conditions are obeyed.  For x positive, 

we need satisfy 

o» 2ni 
öx RXe "^ (t* = 0,      x > 0 

and the form of (32) is such that it automatically meets this 

constraint, jince the only residue contribution in the upper 

half plane is a reflected i,,  elgh wave. 
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For ';he boundciry condition on the left side we need satisfy 

and by Jordan's lemma this requirement will be  et if the 

residue coefficients at a - -r, -i  are null.  That is we need 

satisfy 

(35).     (a  + r) l(-r)  X(-r) + m = 0, 

and 

(36)     (a + i) l(-i) X(-i) - 0, 

Equation (36) is a homogeneous relation and can be satisfied by 

specifying two constants to make the residue contribution 

proportional to a transmitted Rayleigh wave that matches the 

left-hand conditions, viz. 

rR sin 6 Uj + a3 (i + r) (& + a^/a^)] =-TL  sin ^ [ a1 - a2(£ 4- r) ] 

(37) 

-rR cos 8 [a. - a._ U + r)] »+r cos a   [al -   ^(i + r)] 
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The three equations in (35) represent the left boundary's reaction 

that cancels the incident fields and together with the two in (37) 

we determine the five constants a . uniquely. 
i 
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V.  DISCUSSION OF THE. SOLUTION 

The elementary character of the solution (31) or (36) 

permits a ready evaluation of the scattered fields.  For 

y - 0 and x positive the entire field is a collection of 

residue contributions which can be grouped into an incident 

Rayleigh rfave, and a reflected Rayleigh wave with a relative 

amplitude 

al 
(38)     R = 

2r (r + £) 

Our convention will be to describe the coefficient of the 

compressional potential of the Rayleigh wave as its amplitude. 

Although our solution includes scattered body waves, their 

contribution is absent for y = 0 owing to our formulation. 

On the left sid*1 of the boundary, the incident Rayleigh wave 

is cancelled by pole contributions as it should.  The remaining 

residue terms are seen to represent a transmitted Rayleigh wave 

of amplitude 

a. - a„(r + I) 
(39) y   =  i *  

2r(i - r) 
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This wave travels in a direction 9 which is given by 

.in Q  ■   sin 0 , 
1 VR 

a familiar expression for the refraction of a ray at an inter- 

face.  In general both phase velocities v and v depend upon 

frequency, and as a consequence, the angle y^ is frequency 

dependent.  Thus the diffraction of a Rayleigh pulse incident 

obliquely upon a crustal interface will sort the transmitted 

spectral components into different directions after the fashion 

of an optical prism. 
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