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ABSTRACT

This study deals with several two-dimensional scattering and diffraction
problems in anisotropic media. The intent is twofold: First, to generalize
mathematical methods applicable in isotropic regions to a certain class of aniso-
tropic problems; and Second, to study the solutions of the anisotropic problems in
such a manner as to highlight certain common properties which point the way toward
the construction of approximate solutions for configurations with more general
structural shape or anisotropy. In the low-frequency range, the method of multipole
expansion is used. It is demonstrated that the rigorous solution for the problem
cf scattering of a plane or cylindrical wavé by an obstacle which is small compared
to the wavelength may be expanded in a series whose terms correspond to multipole
radiation in the anisotropic medium. As an illustration, the excitation coefficients
of the first few terms arising from scattering by a narrow conducting ribhon are
calculated. In the high frequency range, geometrical optics, the first-order
asymptotic solution of Maxwell's equations is considered first, The ray refractive
index is calculated, and the laws of propagation and reflection of rays, which define
the trajectories of energy transport, are derived from Fermat's principle. To
obtain an insight into diffraction phenomena, two types of representative problems --
-- diffraction by a2 straight edge, and ditfraction by a smoothly curved object - - are
discussed. Rigorous solutions are found which are then expanded asymptotically
for high frequencies. The diffracted field contributions are phrased in a manner
which emphasizes the local character of the diffraction process by exhibiting an
explicit dependence on the local properties of the scattering object and on the adjacent
medium, The asymptotic expressions may be put in a form which constitutes a
generalization of Keller's geometrical theory of diffraction, thereby providing a
method for constructing high frequency solutions for a rather general class of

diffraction problems in anisotropic regions.

Special attention is paid to the case for which the medium parameters are
complex or negative real, so that the resuits appiy to a certain class of plasmas

with losses or with "hyperbolic" refractive index characteristics.
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CHAPTER I

INTRODUCTION AND SUMMARY

To gain an understanding of the phenomena of sca‘tering and diffraction
of electromagneti~ waves by objects embedded in anisctropic dielectric media
has been the goal of many investigators in recent years. The general problem
is rather complex, but various special problems have been solved, both for
their own sake and for the sake of extrapolating th: obtained results to other,
more difficult configurations. In the foilowing inv.:stigation, the same course
has been chosen. Severzl special problems have been treated, and an attempt
has been made to find the limits of validity of the methods used.

Throughout this work we a2ssume that the surrounding medium is aniso-
tropic and can be characterized by a dielectric tensor _'c: the elements of
which are known functions of frequency and other parameters(l). Thus, at a
fixed frequency (steady state). the tensor elements a2re regarded as constant,
independent of the fields under investigation. The limitations of this approach
have to be kept in mind. However, results obt:ined from such an idealized
model for the medium are known to furnish workable approximations in such
studies as communicztion through the icnosphere, radic wave propagation
around the earth etc.. where the propagating fielcs are not very intense. Of the
mathematical methods used in this work, two shoild be specifically mentioned:
L.B. Felsen(z)

arise from a certain class of electromagnetic wave problems in uniaxially

devised 2 method of reducing boundary value problems which

anisotropic media to other boundary value protlems, corresponding to wave
propagation in isotropic media. This is accomrpiished by means of a simple
transformation of variables. The transformed problems may chen be treated by
known methoas, and the solutions transformed back to the original variables.
Although this methoc is applicable only for a rather restricted class of probieme,
its value lies in enabling one to find rigorous solutions. These solutions may

then be evaluated approximately by asymptotic methods in the various wave-




length ranges. The asymptotic results may be interpreted in physical terms,
and their forms indicate how solutions of more complicated problems (to which
it might be impossible to find rigorous solutions) should appear. This, in
effect, is the main goal of this investigation.

In finding asymptotic solutions in the short wavelength {''quasi optic'')
range, use has been made of the method formulated by J. B, Keller 3 for iso-
tropic electromagnetic problems. With the help of his technique, one may
construct asymptotic solutions to a rather broad class of wave problems. It
is important to nnte that this theory has not yet been shown to hold generally.
Instead, many specific problems which can be solved rigorously have been
shown to agree with this theory., In order to extend the applicability of Keller's
theory to anisotropic media, it is therefore necessary to find rigorous solutions
of various prototype problems, (with the help of Felsen's method, or otherwise),
and to deduce from their asymptotic behavior the extension of Keller's method
to a class of electromagnetic wave problems in anisotropic media. It has been
mentioned that the elements of the dielectric tensor g are regarded as con-
stants at any given frequency. These constants may be complex numbers and,
for example, in 2 magnetoplasma, may lie on the negative real axis of the com-
plex plane. Under these conditions, the wave equation for some of the field
components becomes a hyperbolic rather than an elliptic equation. Although
Felsen's method may be applied formally even if the elements of § are not
real and positive, the solutions have to be carefully examined to find whether
they are still physically meaningful. The solutions of several problems have
been investigated as functions of the complex elements of é and the regions of
their validity has been determined.

In Chapter II the class of physical problems which is considered in this
work is described, the corresponding boundary value problem formulated, and
Felsen's method of solution is outlined, In Chapter III, this method is used for
finding an exact solution to the problem of diffraction by an elliptic cylinder.
This solution is then expanded asymptotically in the long wave range (''multipole
expansion'), and the special case of a narrow conducting ribbon is worked out in
some detail. Chapter IV covers several aspects of the short wave diffraction

problem. First, in order to utilize ray concepts, geometrical optics is dis-
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cussed and some general properties of the geometric optical field are derived
for our class of problems. Next, diffraction effects are investigated, from

the point of view of Keller's geometrical theory of diffraction. A representative
problem for the treatment of edge diffracted rays is the diffraction by a con-
ducting half-plane, which is solved rigorously by means of the Wiener-Hopf
technique(4). The asymptotic expansion of the rigorous solution is interpreted
in terms of gecmetric optical and diffracted rays. For the treatment of surface
diffracted rays, two problems are solved: diffraction by a parabolic and by an
elliptic cylinder. Rigorous solutions are found by Felsen's method, and again
the asymptotic expansions interpreted in ray-optical terms. The diffraction
coefficients and decay exponents found in that way may be used to construct
solutions to more general diffraction problems of the same class, exact solu-
tions of which are unavailable., It is demonstrated that these diffraction co-
efficients and decay exponents are functions of the ray refractive index in the
medium. A ray refractive index may be found for more general anisotropic
media than those considered in this investigation. Thus, the formulation used
in this study indicates the possibility of applying Keller's theory to more general

problems, of which those considered here are special examples,

R T e man s




CHAPTER II

FORMULATION OF THE PROBLEM

We consider two-dimensional electromagnetic problems, in which the
fields are generated by z-directed line currents of constant strength and the
scattering obstacles are perfectly conducting cylindrical objects whose axis is
parallel to z (Fig. 1)

y4

I~

1~

Fig. i1 The geometry of the two-dimensional
diffraction problem.
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The surrounding anisotropic medium is assumed to be described by a dielectric

tensor having the form

€ =¢t 2,2,€, (2-1a)
c=¢ [ i8 (2-1b)
~ o\ .

-i8 ¢

Initially a,8 and € are assumed to be real and positive constants., Later on,
analytic continuation into the complex plane will be investigated for some of
these elements. In this class of problems, Maxwell's equations have E-mode
solutions (Hx = H = 0) which are excited by magnetic line currents, and
H-mode solutions (Ex = Ey = 0) which are excited by electric line currents. (14)
The fields in the latter category behave essentially as in an isotropic medium

and will not be considered further.

For an implied e Mt time dependence, the pertinent field equations
are
Vx H=-isc-E (2-2a)
VxE =jeu H-M (2-2b)
— o—— —

With the excitation in the form of a magnetic line current of unit strength

M =z B{x-x") 6(y~-y") (2-3a)
the magnetic field has the simple form

H = z H(x,y) {2-3b)

where H(x,y) satisfies the wave equation

O— + ¢ 5 + ROZA) H(x, y) = ~i£eoA 6(x—x')6(y-y') (2-4)




with
I L
ko = X = W (2-4a)
2 o iB
6 = ae-8"=) o (2-4b)

The field components Ex and EY can be derived from H(x,y) through Eq.
(2-2a):

_ oH . oH .

P T\ Y T [ivey s (2-52)
_ . aH dH

EY = |-i8 -ry +aQ ‘5';') /iweo h (Z'Sb)

The boundary conditions to be satisfied by H(x,y) are a radiaticn condition*
at r—« and the vanishing of the tangential component of the electric field
on the surface of the perfectly conducting scatterer., If the object has sharp

edges as in Fig, 1 the field must also satisfy an edge condition,

The dielectric tensor defined by Eqs. (2-1a, b) represents two cases of
particular interest: when @ =< in Eq.(2-I), the tensor represents a gyrotropic
medium. It will be shown in Chapter IV that the ray refractive index for such a
medium does not depend on direction (for the two-dimensional class of problems
considered here). The only difference between this case and the isotropic case

is in the boundary conditions at an interface, as can be seen from Eqs. (2-5a, b).

* Since the medium is anisotropic, the radiation condition requiring the out-
ward flow of energy cannot be phrased simply as the ""outgoing wave'' condition
familiar from isotropic problems. This aspect has received detailed attention
elsewhere(5),




e -

PN

s e A g«

i 1 e bt A a5

When B8 =0 in Eg. (2-1b), the tensor represents a uniaxial medium. Ionized
gases subject to a very strong constant magnetic field in the y-direction may
be represented (approximately) by such a texsor. The frequency dependence of
€ in E. (2-1b) for such media indicates the possibility that € beccines negative
in a certain range of frequencies. If losses due to collisions and other effects
are considered, ¢ will be a complex number with Im ¢> 0 for the implied
time dependence. * Further discussion will be limited mostly to this latter
case (8 = 0) as it is the simplest case which displays the anisotropy both in the
ray refractive index and the boundary conditions.

It is the object of this study to find solutions of 1. (2-4) subject to the
said boundary conditions for a variety of configuratio;ns, to evaluate asymptotic
expansions of the solutions at low and high frequencies, and to interpret these
in physical terms. Further, the dependence of the solutions on the j;arameter ¢
(as it is allowed to take on complex values) will be investigated to assure that
they remain valid throughout the region of interest, namely Ime¢>0,

Felsen's method of solving Eq. (2-4) in the case B = 0 is as follows.

Define a change of variables

EL

which transforms Eq. (2-4) into

az 32 2 ~ 7 I
S+ =5 + k9 Hluv)=-ige JA& bu-u’) §(v-v) (2-7)
u v

where

k = k_qae (2-7a)

¥ In reference (1) the reader may find a detailed discussion of the properties of
the dielectric tensor of ionized gases under various conditions.




(=]

ds

S A
S
X v
(a) (b}
Fig. 2 (a) The real space (x,y).
(b) The transformed space (u,v).
On the surface of a perfect conductor, Et = 0, which can be expressed in
terms of H via Fgs. (2-5)
_ . _ 1 OH sin6 H cosdf _
l_nXEI—Eysma-Excose-iweo [bx < + 3 o ]— 0 onS
(2-8)

where n is a unit vector normal to S, One notes the relations
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3H _ 1 3H

rx = JE F\; (2“93)

dH 1 B8H

WOF W (2-9b)

sinf = _g% - Js dv - € 8in§ (2-9¢)
Jaduzﬂ:dvz acos“8+¢ 8in“H

cos b = _g_xg - Ja du - Q cos @ (2-94)
Ja du2+€dvz a coslB +¢ sin? '

with the quantities sin@ and cosd defined as

sind = —9¥ (2-Ge)

du“+dv

]

du (2-99

CO88 = oS _
Jdu2+ dvz :
Substitution of Eqs. (2-9 a-d) into Ej. (2-8) yields the condition,

3H . 2, dH s M _ & (2-10)

S is given by a function f{u,v,€,a) = 0. It is obtained from the expression of

S by means of Eq. (2-6). If a,¢ are not real and positive g does not have the
geometrical meaning of a surface in the u-v space. Itis seen that the oblique
derivative boundary condition in Eq. (2-8) becomes a conventional Neumann
type condition in the u-v space (Eq. (2-10)). If arbitrary complex values of

a and ¢ are allowed, the cerivation of Eqs. (2-7) from (2-4) and BEq. (2-10)
from (2-8) does not change. In this case, S cannot be drawn as in Fig. 2 (b)

~

because u and v are complex. Also £ as defined by Eqs. (2-9 e, f) becomes
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complex. Nevertheless, if a solution is found which satisfies Zq. (2-7) and

the boundary condition {2-10) on § (which is given ncw by a function of the com-
plex variables u,v), it will be a solution of Eq.(2-4) with the boundary condition
{(2-8) on S {which is a real surface) in the =, y space. If such a solution is in
the form of an integral or an infinite series, with Q,¢ appearing as parameters,
it will be meaningful only in those regions of @ and € where it is convergent
and satisfies the radiation condition. The radiation condition requires radial
outflow of energy from the source at distances very large compared to the
wavelength. In an anisotropic medium, the wavelength is a function of direction,

and the expression kr =2n —f— >>1 should be replaced by ko N(6) r>1, where

A
N(8) = 733 =oa cos? @ + esin 3 (2-11)

» \ °
(6)\13', and A(5) is the wavelength along

is defined as the ray refractive index
a radial line from the source, which makes an angle 8§ with the y axis.
Proof of the right hand part of eq. (2-11) will be given in Chapter IV, section B.
Using Eq. (2-11) it is easy to show that k, N(5) r>>1 expressed in the
u-v coordinates becomes kJu& +vz >>1, which is just the usual requirement
in an isotropic medium. Thus the transformed problem comprises Eq. (2-71,
subject to a Neumann type boundary condition on S and a radiation conditicn
of the usual type. This is a conventional diffraction problem in an isotropic
medium characterized by a wavenumber k. If its solution can be found, one
-may use the inverse transformation of Eq. (2-6) and thus obtain a solutiox for
the original problem in the x-y space. Aslong as a and ¢ are real and
positive, the physical nature of the origin . and transformed configurations is
retained, and a solution which is physical in the u-v space will be physical in
the x-y space as well, because Eq. (2-6) introduces a change of scale only.
If however these parameters are complex or if one is negative real, it has to be
shown that solutions obtained in a formal manner via Eq. (2-6) still solve the
original physical problem, by checking their convergence and the satisfying of
the radiation condition. In the absence of physical boundaries (radiation in

infinite space) or in the presence of a perfectly conducting plane boundary, it
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has been shown that Felsen's method yields physically meaningful solutions

. . . . 2
if a,e¢ are restricted to certain regions in the complex plane( )

*
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CHAPTER 1II

SCATTERING IN THE LONG WAVE RANGE

A, FORMULATION OF THE PROBLEM OF SCATTERING BY AN
ELLIPTIC CYLINDER

In this chapter we solve the problem of scattering by a perfectly con-
ducting elliptic cylinder embedded in a uniaxial medium. The rigorous expres-
sion for the Green's function is found by utilizing Felsen's method. An
asymptotic expansion is obtained which is useful when the dimensions of the
cylinder are small compared to lo. For the special case of a narrow ribbon,
the terms in the asymptotic solution are identified as multipole radiations in

the uniaxial medium.

Fig. 3 The geometry of the elliptic cylinder.
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It has been shown in Chapter II that all the field components are derivable from

a Green's function G which satisfies the equation

2 2
(:7 + :? + kZ)G = - 8{u-u’) 8(v-v’) (3-1)
N |

subject to the conditions

ﬁ = 0 on § (3-1a)
ah
Radiation condition at J uz+ vz -® {3-1b)

The equation for the given surface S in the anisoiropic x-y space is

2

4 fz_ =1 {3-za)

o

which may be expressed in terms of u,v by transforming first to the x,y
coordinates, and then using Eq. (2-6). The resulting equation for S in the

u-v space is:

’

2 - 2 Q - -
A(Go)u -l-B(..o)v +ZC(.,o)uv =1 (3-2b)
where (sinzeo cosZGA (3-2¢)
A2 ) =a + 3-2c¢
o aZ bZ 7

(3-24)

C(‘:?o) = J2< sin 50 cos 90 (—lf - -—lz) (3-2¢)
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"~
In order to have the equation for S in a convenient form, one may perform a

rotation through an angle § in the u-v space

u cosb -sin 8\ (U
v]  \sins coss)\V/] "’ (3-3)
so th.t the equation for S inthe U-V space may he written as

2 . 2 . 2
[A(eo) cos 6+ B(Go) sin 6 + ZC(GO) sin b cos 6] U® +

+ [A(E‘o) sin26+ B(Bo) coszé -ZC(GO) sin é§ cos 6] VZ +

+2¥[B(60) - A(eo)] sinb cos § + C(QO) (coszb - sinzé) ;UV =1 (3-4)

If one sets the coefficient of UV equal to zero, the angle § is determined in

terms of quantities a,b, 60, Q, €,

. A 1
2J0€ singc <':os€3c> —— - 1

[} 2 b
. 2 a < 2, [a € (3-5)
sin § - - + cos™8 pb— -
o 2 o\. 2 2
a b D a

and the equation for S now has the canonical form of an ellipse in the U-V

tan 28§ =

frame;

2 2

._‘_"__Z_ + .YT = | (3"6)
m n

With the help of Eq.{3-5), m and n may be expressed in terms of A, B and C
which are defined by Eq. (3-2c¢,d, e). The results are

3

o] -1/2
(A+B) + V(A -B)" + 4c2]§ (3-7a)

12
(A + B) -4 (A -B) +ac? ]z (3-7b)

=]
]}

|
b



Some algebraic manipulation shows that for real and positive a and ¢, m

and n {the semi-axes of the ellipse in the U - V space) are real and positive

quantities. For complex or negative real values of a and(or) ¢, U, V become

complex variables, and Eq. (3-6) is no longer the equation of a real ellipse,

The boundary value problem is now

2 2
G _ U Voo
" = O on -—7 + -—z— = l
on m n
Radiation condition at k ‘JUZ +V - 00

B,

(3-8a)

(3-8b)

(3-8¢)

SOLUTION IN ELLIPTIC CYLINDER COORDINATES

The boundary condition (3-8b) suggests solution of the problem in

elliptical cylinder coordinates.
v

2.0 "‘
LIRS RN
' '?.;3\‘ 4{53%23‘3\
“”Z’ ‘O’QI'
&> X
X

§ € = &)

Fig. 4 Elliptical cylinder coordinates,
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We introduce the usual coordinates

U =dcosh § cos q {3-9a)

V = d sinh & sin g (3-9b)

d =m (3-9c¢)
whence

0<§< (3-94)

0<n<2r (3-9e)

It follows that for § > 1 ,

R = +V ~ d cosh § (3-9§)
-1V

P = tan U ~nN (3-9g)

the differential operator in Eq. (3-8a) then becomes:

22 9? 2 8% . a? 2
+ + k™= + + 2h” (cosh 2§ - cos 2 q) (3-10)
U ave 5€2  op’
where
2 1,2.2 1,2 2 2
h™ = -4-k d” = Kk (m -n") (3-10a)

and the boundary condition (Eq. {3-8b))is

9G (*)

3T =0 on £ = go (3-10b)

The solution to Eg. (3-8a) is well known and found in terms of Mathieu

(8)(11).

It has to be periodic in the n variable, which calls for

(9)

functions

Mathieu functions of the first kind and integral order cem(n ; b.z),

*) From Eq.(2-9e, f) and (3-9a, b) it is easy to show that the condition given by
Eq. (3-10b) is identical with condition {(2-10) even for complex a,ce.
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sem(n;hz),or their linear combination mem('ﬂ;hz). The ''radial’' Mathieu func-

tions(m)

M(;Z(g;h) are so defined as to behave like outgoing or incoming waves
(or their linear combinations) as §~, In terms of these functions the solution
to Eqgs. (3-8) is

GEmE™) =g ) men’) me_ () MO, ).

(1) M) )
m(§<)"';'{-,—(3')-(—=— Mm (§<) :Gd+Gs (3-11)
m %o
where
€ when € >E’
& = (3-11a)
E'’when £'>€E
€ when § < €’
g, = (3-11b)
€ ‘when §'< £
and
(1 5
eM "7 (€; h)
MY (g s —2 (3-11¢)
§ =8,
the derivation of Eq.(3-11)} is given in appendix A.
The first part of Eq, (3-11)
) e
Gy = x 2 me_ (n')me_ (-n) Mg ) Mg, ) (3-12)
m=-o0

is a representation of the primary field, for which a closed form expression
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is known(l 1)*:

Gy =+ 1 (e R-R/D =4 B [ifumuh T+ (v-vh?] -

U S VI A [CT5"30 I ' a0 i PR SR 8V

4 ull fleex by by VL L w0 N Iz - 1 1] (3-13)
with R,R".® and@ ' defined in Figure 4, r,r’ and 6 defined in Figure 3 and
N(8) defined by Eq. (2-11). Egq. (3-13) may of course be derived directly by
appiying Felsen's method to Eq. (2-4) in an unbounded space. Thig will be done
in Chapter IV, section B. The second part G of Eq. (3-11) is a representa-

tion of the scattered field. It is knocwn (9-12)

that this representation may be
expanded as a power series in hz. If h<<l and §0<<1. i.e. wher. the dimen-
sions of the scattering obstacle are small comparec to wavelength, this scries

is rapidly convergent(l 1-12),

The form of the scattered field Gs becomes
quite simple in the "far field"” region, i.e. when both source and observation

points are located at large distances (compared to wavelength) from the obstacle.

Then h<<l and cosh §>>1, in which case(lo)
MY €)1 (xR) (>-14a)
m m
(3) ey~ gf1)
M_ " (E)"H_'(kR) (3-14b)

Because of the rapid convergence of the series expansion of G s’ only a finite
number of terms contribute effectively, and it is permissible to replace Hg)(kR)
by its large argument asymptotic approximation Hg)(kR) eqmﬂ/z. Thus G’ is

written as

o [rsiloa] Bria] 4.0 -

; il k. N(e)rm— gl fi M@ x ]2{;(6, 8 (3-15)

% There are differences between the dafinition and notation of Mathieu functions
in references (8) and {(11). In this study, the notation of reference (8) is used.
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where it is understond that the large argument approximations of the Hanke.l
functions are implied (i.e., the result is good to O{LAkR) and O(1/JkK7)),and

where

2 M (e )
S(CP:CP’) = -3:.1:2_'“ (-l)m '{nem(n ") nxem("n) ﬁy{g—e—)- . (3-15a)
m 70

g may be expanded as a power series in hz which, due to the condition h<<l,
will be rapidly convergent. According to Eq. (3-9g), n and n’ in this expan-
sion may be replaced by ® and ¢’. All pertinent formulas for this expansion
are given in references (9) an /10), and the calculation has been carried out in
detail in reference (12). The zcattered field, given by Eq. (3-15), has the form
of a cylindrical wave radiated from the obstacle, with an amplitude proportional
to the incident field at the location of the obstacle and to a "scattering coefficient"
gle.®’), which is a function of the geometry of the scatterer and the properties

of the medium. The identification of g{®,9’) as a superposition of multipole
radiations in the given medium will be carried out in the next section for the

special case of §o= 0, i.e. where the elliptic cylinder reduces to a strip.

C. SCATTERING BY A NARROW STRIP

If the ellipse in Fig. 3 reduces to a strip, then b=0, and a=c is its
half-width. To find the half-width m of the transformed strip (n=0 in this
case), one may use Egs. {3-2) and (3-7). The calculation is rather involved
since one has to determine Ll-.nd m(a,b) in Eq. (3-7a) in order to obtain the
desired result. A more straight-forward approach may be used in this special
case. It cons:sts of transforming the end points of the strip, which are
P1 = (co sin 90, c

o €08 90) and PZE(-c0 sin 80, -ccos 60) in the xy space,

into the uv space via Eq. (2-6). The result will be

aN(Bo)

m =-7E-a—— (3-16)
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where N(Go) is defined by Eq. (2-11). Eqgs. (3-10a) and (3-9a, b) then yield

koa
== N(eo)’ (3-17a)
50 =0, (3-17b)
and the expansion of g(®,%?’) is performed as follows. Using the relations(‘)'m)
me (:"hz) =42 ce (Z‘hz) =0,1,2 (3-18a)
m £} m » m = » N o o 0 -
me (Z'hz) =iJZ se (Z'hz) m=1,2.3 (3-18b)
<m y m » » , oo
Mgnl) (z:h) = Mc(;)) (z:h) m=0,1,2 ... (3-18c)
MY (zh) = ()™ M) (zim) m=1,23 ... (3-184)
one may write
- Z - Ml (o) )
go,9’)=) g (@®’')=-4i ) {-1)" se_(n')se_(-n) —r = (3-19
m2=‘1 “‘ m=1 R ' A ()
because
Me!) ()20 for m=0,1,2--. (3-19a)
Furthermore
i
Ms (0) . 1
1 in . 2 2 .
= h™ 11+0(h™) (3-20a)
MO 2 L
1
M3, ) 20b
T " _lTh ~1+0(h )‘ (3' )

M&Z (0)
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2
sel(n;hz) = gin® -%—— sin3p + 0(h4) (3-20c)
2 h2 4
sez(n;h ) = sinlcp--i—z sind9 + O0(h") . {3-2064d)

With Eqs. (3-19),(3-20) and similar expressions for m>2 it czn be shown that
oo rkay™"
The leading term has the form

g,®.9) = 4nh% sin sino’ + 0(n?) . (3-21)

The quantities ©,9’ and h2 may be expressed in terms of 8,8 a, etc.

~ Rather than using the general Eqs. (2-6), (3-3), (3-5), {3-7) and (3-10a), one
may obtain the result by inspection for the special case under discussion (see
Fig. (5) ):

Fig. 5 The conducting strip in the real (x,y)
and the transformed (u,v) space.
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-7z
_ 2 _f.2,..2 x .. r N{6)
R-JU +V2-Ju tv =J—?—+-Y—~-—-—— (3-22a)
€ Jic
v, _ J(f‘yo =JE cos 90 (3-22b)

®
-
=]
[+
]}
oﬁ
-+
<
¢

rNE) N )

u sin 6
0 _ ‘ngo JE:- o

cos § = = = (3-22¢)
&zo + Voz roN(Bo) N(eo)
; _ V _ -usin} +vcosé_'xc°se°+ysin9° )
sin¢@ = g = R = T NET NG ) Ee =
-sinf COsao + cosf siné sm(e -6)
) N N6} ae =fae —N'(grmﬂ (3-224)

Thus, Eqs. (3-173a), (3-21) and (3-22d) yield

sm(e ~8’) sin(8 -9) .
ll(m @ ) -31(‘1 9 ) = r(k a) ae -—-N-(G-vr -—N'('ET—+0(k a) (3-23)

One may verify that Eq. (3-23) represents the radiation from an electric dipoie

line source and find therefrom the polarizability of the strip.

D. ELECTRIC DIPOLE LINE RADIATION, AND THE POLARIZABILITY
CF A STRIP

Consider Maxwell's equations

<4
"
]
"

1wu°§ {3-24a)

YxH = iwe- E+J (3-24b)

with ¢ given by Eq. (2-1a). H given by Eq. (2-3b) because there is no variation
in the z-direction ?

57 - 0) and the source term given by

" p g™ s

Ve ey

"

T A e XY
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p 8(x)

P (_:_cosin9°+locoseo)p

(3-24c)

(3-244)

This excitation describes a uniform line distribution of electric dipoles oriented

perpendicular to the line axis. From Eqs. {3-24), one may derive the wave

equation

aZ "l 2 3Jx oJ
[a—z-+e—z+k]ﬂ=e—&—-a—&%= Ab(_t_),

- . A O 3
where A = p[e sin 5 3y -a cos 80 -&}

If we define H=- AG, then the equation for G reduces to

2 2
a%c
a2+ g‘_ucc--a(r)

ax dy

{3-25)

(3-25a)

(3-26)

whose solution, subject to a radiation condition at infinity, has already been

given by Gd(_g, 0) in Eq. (3-14). Thus, the solution of Eq. (3-25) is

H(r) = p[a ces 90 Béi -¢ sin 80 %] H‘;) [koJay + cxz] =
Hu) k ay +cx]

4pl»: ae cose - 8in8

lv-

’ y+cx ,Juy +cx

. sin(§-98 )
=4 1) [ Jay? Z]
-4 P kO ae -—N(e-r- H( k ay +ex
For kOJay +ex = korN(O)» } one may write

H(:) [korN(G)] - - H(:,) [kom(e)]
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so that

H(_x_‘_)~pk°ae o o

sin (0 - 90) ’

i (1)
Sl L § ¥ [k rN(eH , (3-27)
comparison of Egs.(3-15), (3-27) and (3-23) yieles

2 ’
(k,a)°  sin(6,-0") 4
pP= Ao [n o N7 + O(kaa) :] (3-28)

where Ao is the intensity of the incident field at the location of the obstacle.
Eq. (3-27) shows the leading term in the expansion of the scattered field as an
electric dipole term, and Eq. (3-28) gives the intensity of the dipole induced
in the strip by the incident field. The first order approximation of the scat-
tering pattern as given by Eq. (3-23) is shown in Fig. 6. A calculation simi-
lar to the above for the det ermination of the quadrupole radiation is given in

appendix B.

N

Fig. 6 Dipole radiation: first order approximations of
the scattered field.

R e 2ps T T
> e

AT S e

D Y

ARt Ak eit e

aama sy ®omn s - e

A i




PV Y

25

E. CONCLUDING REMARKS ON LONG-WAVE SCATTERING

The expansion of Eq. (3-19) can be carried out to higher powers of
ka (or h). In the same manner as in the preceding section, one may show
that the leading term in gz(q::,cp') is O(k°3)4 and its angular-pattern is that
of a linear electric quadrupole.

If one considers the problem of ar elliptic cylindrical scatterer {b£0},
the leading term in the exapnsion of the scattered field is from the m = ¢
term in Eq. (3-15a). This respresents an inducsd "monopole®, i, e., an
equivalent line source. There will also be twe indicid dipole terms, one along
the major axis and one along the minor axis of the =lliptic scatterer , and Eq.

(3-28) will e written in dyadic form

gz:P.E

where E is the incident electric field. The expansion has been performed 12)
up to O(h6). By properly transforming sin m@ and cos m ¢ (as has been done
with sin ¢ in Eqs. {3-22)), one may find the scattering pattern in the anistropic
medium,

For the case where the uniaxial medium represents a plasma in a strong
constant magnetic field, a is real and positive, but ¢ 1nay be positive or
negative (in the lossless case) or complex with positive imaginary and positive
or negative real part (in the lossy case). In the former instance, it is seen
from Eq. (2-11) that if ¢ < O, N{8) will be imaginary in that part of space for
which

a

tang > tan 8 _ = l—-! (3-29
C el

Felsen (7 has shown that if m N{@) _>_O (for the e ot time dependence), the
expression given by Eq. (313) for the field radiated by a line source in an
infinite medium (which is identical with Gd of Eq. (3-11) ) still satisfies the

radiation condition. We may define the square root in Eq. (2-11) to be positive
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when real and have a positive imaginary part when complex. This restricts the

quotient % to have a positive imaginary part,

Im(&)> O (3-30)

It is nnaeihla to show that the same condition on % is necessary for the
scattered part C}s of Eq. {3-11) to be convergent and to*satisfy the radiation
condition. From theorem 1 in section 1.3 of reference (8) one may deduce that
the various Mathieu functions and their derivatives, which appear in Eq. (3-11)},
are analytic functions of h for fixed (possibly complex) arguments. Thus, for
fixed '5,5' and §o, Gs is an analytic function of h. It follows, that if the
power series expansion of G converges within a certain real interval
-h0_<_ h< ho, it will converge within the circle lh|_<_ Iho! for complex values of
h*. Also (according to reference (8) p. 98) the various formul: s for the Mathieu
functions of which we make use in this chapter, are valid for arbitrary complex
arguments and parameters. Thus Eq. {3-15) is valid even if R, R’,o and 9’
are complex. However, in order to satisfy the radiation conditicn, the inequality
(3-30) has to be satisfied, because in {3-15) Gs is seen to be asymptotically
proportional to G P (multiplied by the scattering pattern). The same singulari-
ties which appear along the direction Bc (Eq. {3-29) ) in the dirsct field will
appear in the scattered field for negative real g— . Eq. (3-28) algo gshows that the
induced dipole (and higher multipoles) would be infiu‘te if 6'=9c, because of the
singularity of the incident field aleng that direction,

The scattering pattern function g (Eq. (3-15) ) in isotropic media is a
function of the geometry of the scatterer, and its orientation with respect to the
directions of incidence 8, and observation 6. Eq. (3-23) shows, that the
orientation with respect to the optic axis 90 is an additional parameter in aniso-
tropic media. Also the ray refractive index in the directions 8 and 8’ enters
explicitly into the expansion of g. The ray refractive index is a property of the

(13)

well. Therefore the results nbtained indicate what properties of the medium enter

anisotropic medium , and may be found in more general anisotropic media as

the expression of the scattering pattern g or the scattering cross-section which

is related thereto when the scatterer is embedded in an anisotropic medium.

*See for example chapter 9 in "Acdvanced Calculus' by W. Kaplan (Addison-
Wesley, 1952) for proofs of these statements.
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CHAPTER 1V

DIFFRACTION IN THE SHORT WAVE RANGE

A, INTRODUCTION

Diffraction by objects of relatively arbitrary shape is known to arisc
from certain localized regions on the scatterer surface when the obstacle
dimensions are large compared to the wave length of the incident radiation.
The resulting phenomena are described conveniently in terms of rays which
account for diffraction effects in addition to those of reflection and refraction
in geometrical optics. For electromagnetic wave propagation in isotropic
regions, Keller(3) has presented a ray theory for the construction of the geo-~
metric-optical as well as the diffracted field., The theory is based on certain
postulates which have been verified in special but representative cases by com-
parison with the asymptotic representation of rigorous solutions, The purpose
of the present investigation is to furnish a similar interpretation when the
medium surrounding the obstacle is anisotropic.

A significant difference between propagation in isotropic and anisotropic
regions is the distinction in the latter between the directiorns of propagation of
the phase fronts (wave normal direction) and of the energy (ray direction) in a
plane wave, Since the fields along a ray are locally those of a plane wave, the
laws of reflection of a ray may be deduced from a solution of the corresponding
plane wave boundary value problem, Alternatively, these laws may be deriveu
by applying Fermat's principle in a form suited to propagation in anisotropic
regions, and this approach is adopted here. The field amplitudes along a
reflected ray may be determined from the principle of conservation of energy
in a ray tube, thereby permitting the construction of the reflected field by
arguments of geometrical optics. Diffraction effects may arise from surface
singularities or from the vicinity of the shadow boundary on the obstacle. Two

types of representative problems are investigated in this connection: diffraction
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by a perfectly conductir.g half plane, and diffraction by smoothly curved sur-
faces, In each case, the solution is obtained from the asymptotic evaluatior of
a rigorous formula and its subsequent interpretation in general ray-optical
terms, thereby permitting a generalization to anisotropic regions of the geo-
metrical theory of diffraction(s). The formulation exhibits explicitly the depen-
dence on the local properties of the medium and the scatterer surface.

As meniioned in Chapter 1i, the present investigation is restricted to
perfectly conducting cylindrical structures excited by axially independent inci-
dent fields, and most of the phenomena described pertain to uniaxial anisotropy,
with the optic axis of the medium perpendicular to that of the scatterer. The
diffraction problem may be reduced by Felsen's method of scaling te an equiva-
lent one in an isotropic region( 2), thereby permitting the direct construction of
rigorous asymptotic solutions and their ray-optical interpretation. The analytic
continuation of the solution from arge =0 to 0< arg ¢ < 1 is given specific
attention. The continuation is justified in detail for the half plane problem and
the parabolic cylinder problem, thereby lending an extended range of validity
to the results derived by the scaling technique.

B, GEOMETRICAL OPTICS

It is well known that geometrical optics predicts correctly the dominant
effects of the electromagnetic field when the wave length tends to zero. The
geometric optical field is comprised of the incident (direct), reflected and
refracted constituents and its propertiee are described conveniently in terms of
rays. Since the geometric optical field is locally a plane wave field, the
reflection and refraction properties of the rays are deducible from those of
the corresponding plane waves, Moreover, the local reflection and refraction
characteristics of slowly curved interfaces arg in the geometric-optical
approximation, the szme as for a plane interface tangent at the point of i npact
of the ray, so that the information extracted from the analysis of plane wave
reflection and refraction by a plane interface separating two media suffices for

a determination of the initial direction and amplitude along a reflected or
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refracted ray., It must be kept in mind that in an anisctropic medium, the ray
direction (direction of local energy transport) differs from that of the wave
normal (direction of progressing phase fronts), with the relative orientation of
the ray and wave normal vectors determined by the medium constants, The
utility of the refractive index surfaces for the anisotropic ,r’r;edium in predicting
the plane wave {and therefore the ray) propagation, reflection and refraction
characteristics has been emphasized elsewherefz)(sxé). in the present analysis,
the ray trajectories are derived from purely ray-optical considerations via
Fermat’s principle of stationary propagation time, and it is shown that the
results so obtained agree with those derived from the previously mentioned
plane wave considerations, Since only perfectly conducting surfaces are con-
sidered, the analysis involves the direct and reflected rays only,

The partinent form of Fermat's principle for propagation along a ray

path s in an anisotropic redium is (reference 6, p. 289),

5j Ndl = O (4-1)
8

where N, the ray refractive index, is related to the ordinary refractive index
nvia N =ncos Y, with Y denoting the angle between the ray and the wave
normal. Since the ray refractive index determines the propagation speed of the
phase front along the direction of the ray, the ''stationary time'' in Fermat's
principle refers to the latter and not to the time of energy transport. The

dependence of N on n may also be expressed as (reference 6, p. 253)

N = ncosy , (4-2a)
_ 1 3 n () -

tan vy = m _Wi N (4 2b)

P = 9 - Y » (4-ZC)

where the presence of a variation of n with direction is indicative of the
medium anisotropy. The angles 8 and ¢ measured from the y-axis identify

the directions of the ray and wave normal, respectively, (Fig. 7)
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For the class of problems considered here the refractive index may be
calculated by assuming a ;. \ne wave solution of the form

A
. . ik nk.r
H(x,y) = Aell6X T2y} peiker o ="= (4-3)

substituting into the homogeneous Eq, (2-4), and determining thereby the plane
wave dispersion relation which connects the wave numbers { and x:

2 = Lala-ach (4-4)

with A defined by Eq, (2-4b), In Eq. (4-3),

k = Eoc'*'lou = konﬁ (4-5)

is the wave normal vector defining the direction of propagation of the phase
fronts, _IE = k/k is a unit vector in the directionof k, and r = x, x+z°y
is the position vector. As noted previously, the energy flux vector S (which,
in a lossless medium, is the time-averaged Poynting vector Re E x 1¥) is
inclined with respect to k by the angle Yy, and the various angles employed

subsequently are schematized in Fig. 7, From Eqgs.(4-4) and (4-5),

n(p) = L (4-6)

€ cosZCp +a sinch

and the above-mentioned refractive index diagram is obtained by plotting
n{p) vs. @. If the ray progresses along the 8- direction, with tan8 = x/y,
then (Cx + ny) = ko n@k.r = korN(G), and it is not difficult to show from

these considerations or from Eqs. (4-2) that

N() ='\IA (% cos®s 4 ésinze\ (4-7)

which reduces to the expression given by Eq, (2-11) when 8=0 in Eq. (2-1b),
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Fig. 7: Plane wave propagation in an anisotropic medium.

It has been mentioned in Chapter II that two special cases arise which
are of interest in connection with plasma media subjected to an external steady
magnetic field. If the magnetic field is parallel tc the z-axis, thena = e(l)
so that both n{(®) and N(5) are constant and equal to A. The wave equaticn
(2-4) then reduces to the one for an isotropic medium, and the anisotropy
manifests itself only through *he relations (2-5 a, b) which differ from the
isotropic case in view of the non-vanishing 2. Sirnce the anisotropic features
are caused in this instance primarily by the presence of boundaries rather
than by the medium itself, this case is not considered further. Instead, we
specialize to the uniaxial situation 8 = 0, a =1, ¢ = 1 - {w 1:,/w)?', which
arises when the external magnetic field is very strong and is oriented along
one of the coordinate axes perpendicular to 2z, say y (u)p denotes the plasma
frequency based on the motion of electrons only, and w is the frequency of

the electromagnetic field), Eq. (4-7) then reduces to
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N(6) = Vcos?h + csin®d , 8 =0, a=1 . (4-8)

With the ray refractive index specified, the ray trajectories may be

calculated from Eq. (4-1). Since the medium is assumed to be homogeneous,

s
— Ab e Al wrm s

. . sq =
ha wavvae nrarasad alAans atwaivhe nAas and ié -— -
the rave n sad ol tmal lines and it 11343€ wat waacTlb

path from the source to the observation point. If a plane reflecting surface is
present as in Fig, 8 inclined at an angle 60 to the ''optic axis'" y, then the
optical path from point P(x,y,;) to point Q(x,, ¥o)
Q
L = [Na =ly;-p7 + doy-x1% + V(y-y,)? + elx-xp)® (4-9)
P

must be extremized subject to the constraint that point C on the trajectory

lies on the plane.

y
Iy

Fig. 8: Reflection of a ray from a perfectly conducting plane
in an anisotropic medium.
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The details of the calculation are given in Appendix C and the result furnishes
a relation between the reflected ray direction Gr, the incident ray direction
Gi, and the angle 90, all angles being measured in the clockwise sense¢ from

the y-axis:

-{l-¢ tanz 66) tarxei-!~2t:arxe0
(1 -ctan Gc.)-i'Ze:t:a.neotanei ‘

This foimula may be shown to agree with Eq. (10) of reference 15 which was
obtained from a solution of the boundary value problem. If all angles are

measured from the normal to the plane, the formula becomes instead

2A3( 90)

tan ar = tan G.i +—A;(ec—)— . (4-103)

where A3(60) and AZ(eo) are defined by Eqs. (4-24), 80 being the angle
between the conducting surface and the optic axis, measured clockwise from
this axis. In the isotropic limit ¢ =1, this expression yields correctly the
specular conditiou tan a_=tana.. The preceding results may also be applied
to a smoothly curved surface since reflection takes place locally as on an
infinite tangent plane. With the ray trajectories known, it follows from the
definition of the ray refractive index that the phase change over a distance d
along a ray directed at an angle 3 with the y-axis is kodN(G). Referring to
Fig. 8, for example, the phase increment along the incident ray over the dis-
tance PC between points P and C is kOPC N(Sl), while t} : corresponding
quantity along the reflected ray between pcints C and Q is k, [o{e] N(BZ).
Attention may now be given to the field amplitudes along the direct and
reflected rays. If the excitation is in the form of a line source of magnetic
current located at the point (x’,y’), the magnetic ficld H(x,y) is given by the
solution of FEq.(2-4) subject to a radiation condition at infirity. The solution may

be constructed by Felsen's method which reduces the differential operator :in
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Eq. (2-4) to the ordinary Laplacian in the u-v space. The corresponding
Green's function is known and may then be transformed back into the x-y frame,
with the result (reference 2, Eq, {28):

we o r 72 12
H(x,y) = - Ha".e. Ho“’;kg\/;[(x-;) s (z-sy)] §=

we 4
- o (l) ’
== H_ [koN(e) lz-zl] (4-11)

which agrees with Eq. (3-13). The energy flux S = Re(E x H*) is calculated
from Egs. (2-5) and (4-11) and yields the asymptotic result (when
k  N(6) lr-x'|>>1),

’U
§ —'0 W IH(X'Y)I ’ ﬂo= —6—2 ’ (4-12)

thereby confirming the straight-line character of the rays, and showing, in
addition, that the rays emanate radially from the source.

While Eqs. (4-11) and (4-12) have been derived here on the assumption
that & and ¢ are positive, it has been shown(z) (for the uniaxial case 8=0,a=l,)
that Eq. (4-11) remains valid also for 0_<_arge_<_w provided that the resulting
N(6) is defined to have a positive imaginary part. The latter requirement is in
accord with the radiation condition and assures the {iecay of the fields at infinity,
either due to the presence of dissipation when ¢ is complex or due to shadow
effects when ¢ is negative real. When ¢<0, (for the uniaxial plasma, this
occurs when w<.up) S in Eq. (4 12) dxffers from zero only in those angular
regions wherein N(€) (cos 3 + ¢sin 6) 1/2 is real. Illumination is there-
fore confined to a wedge-shaped region centered at the source and surrounding
the optic axis, A simple ray-optical description obtains when the Hankel func-
tion in Eq. (4-11) can be replaced by its asymptotic form, i.e., when
ko N{6) lx'- r'l >>1. While this condition can always be realized for sufficiently
large k when N{6) # 0, it fails on the ahadow boundary (N(e ) = ) In the
transition region surrounding Oc = tan” (l/J__), one must empioy the exact
formula (4-11).
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Away from the transition region surrounding ac' the asymptotic form of
Eq. (4-11) may be eraployed to furnish the magnitude of H at a distance R,
from the source, and the corresponding flux density §1 at (xl. yl) is then
obtained from Eq. {4-12). One may now apply the principle of conservation of
energy to a narrow tube of rays to deduce that §1 dAl = §Z dAz, where dA1 is
the cross-sectional area of the iube &f Rl, and 352 i» ile anaiogous quantiiy at
a distance R2> R1 along the ray. For this two-dimensional configuration,

dA, = Rl d6, d.A2 = dee, so that

|Hix,, y )| = IH(xl.y,)l.JRé : (4-13)

1

When an incident ray strikes a smoothly curved surface as in Fig. 9, it
gives rise to a reflected ray whose direction may be inferred from the reflection
law in Eq. {4-10), with 90 representing the angle between the optic (y) axis

and the tangent to the surface at the peoint of reflection.

Fig. 9: Geumetric-optical construction of the field
due to a ling source in the presence of a smoothly curved
perfectly conducting cylinder.
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To determine the reflected ray amplitude, the conservation of energy argument
is applicd to a narrow tube of reflected rays which appears tc emanate from a
focus F located at a distance ''a'" behind the reflecting surface. Upon
applying the sine law to the three triangles SAC, FAC and RAC in Fig. 9

ore cbtains the relations

1 {4-14a)
(o]
ds 4’
= s (4-14b)
CEN sm(@l-ecp
ds _ ds - a i .
dez md§l+ ndso sin(eTo - @zy (4-14c!

where we have utilized

dBZ = mdel + ndeo , (4-144)

and the partial derivatives m= (392/381) and n=(382/3 90) can be evaluated

from Eq. (4-10); b is the radius of curvature of the cylinder at the reflection

point; ''a" can now be found as follows:

sin(8,-8 )
1. -7 1 o ;1 1 (4-15)
a d sintﬁ.-o- 525 b sinwo- 52; .

For the special case of an isotropic medium, 82 = 260- 91 and Eq. (4-15)

reduces tc the known formula (of reference 16, Eq. {3))

1 2

1l _
a d * b cosa - (4-152)
(see Fig. 9)
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The required geometrical quantities are now determined and we may
proceed to the consideration of the power fiow in the incident and reflected ray
tubes. If

~we _J< .
2 -in/4
H, = —5— Al =E Ny e in/ (4-16)

denotes the incident field at unit distance from the source (see Eq. (4-11), then
the incident field Hi' at the reflection point B in Fig. 9 is given via Eq. (4-13)
-1/2
and the inclusion of the phase change 2as Hx' = H (d') 1/2 exp (ikod' N(Bl));
the associated energy flux in the incident ray tube is
- ' 2 Y ]—l ’

S, dA, = n_ iH| [d N(el)J d’de,

(see Eq. (4-12)). Similarly, if H; denotes the reflected magnetic field at

B, then the flux in the reflected ray tube at the surface is
s aa_ = r |H % [n(E,) |t add
r r o' r 2 2 -
By conservation of power, Sr dAr = Si dAi' thereby permitting the determina-

tion of lH;I in terms of |Hxll and the derivative (dBI/dBZ) in Eqs. (4-14 b, c).
!H_| at the observation point P in Fig. 8 is then given by
T

lHr‘ = lH;Ha :d

and the phase of Hr differs from that of H;_ by kodN(Bz). Since the plane
wave reflection coefficient for the magnetic field is easily shown to be equal to
(1), no phase change occurs upon reflection, and one finds by combining the
various expressions that the reflected field Hr at P due to excitation by a
line source at S is given by:

’
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b= w eog N’(E)Z) sin(el-eo) ‘
r 2
2den N(8,) sin(6_-6,)

e‘iko [di N(Ol) + d N(GZ)]-irr/4

J:[d,+dmsi“\51’go5 d’dn 1]
o]

- + -
sin( 60 - 92) b sm(eo- 92”

(4-17)

The incident field Hi over the direct path D from S to P is found from Eqgs.
‘4-16) and {4-13) as:

- € c . .
H - od® Lik, DN(6,) - in/4
2y2n N(8 )k D

. (4-18)

The geometric-optical field H = Hi+ Hr may be expected to furnisbh good
approximation to the actual high-frequency field in the illuminated region of the
smoothly curved scatterer. This statement is verified subsequently from a
study of the asymptotic field solution for the special case of a parabolic cylinder.
It may also be shown that the geometrical optics formula in Eq. (4-17)
yields the correct result when the medium is taken as isotropic (N(o) = 1), or
when the reflecting surface is planar (b=,. In the former case, the relation
between 92, 91 and eo simplifies to 82 = 280-81. Upon introducing t%- angle

a = (n/2) - (91 - 80) between the incident ray and the surface normal (see Fig.

9) one may reduce Eq. (4-17) to the known formula (16), (17)

5 ik (d"+d)-in/4

H, = - o £ , (4-19)
24d2n '\Ik [d+d,+2dd ]
o bcosa

Alternatively, when b =®, Eq. (4-17) agrees withthe expression for reflection

of a cylindrical wave from an infinite plane, which was obtained from a solution
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of the wave equation(ls). This statement is verified in Appendix D, Since the
latter result was shown to apply as well when 0< arg ¢ < 7, the same range of
applicability may be expected from Eq. (4-17) provided that the imaginary part
of N(6) is restricted to be positive. If ¢< 0, the radiation emanating from the
line source is confined to a w«uge shaped region | tan 6] | <|tan Bcl and the
simple ray-optical ¢escription fails at the shadow bourdaries |tan Gll = tan ec,
thereby necessitating use of the exact formula (4-11). Anaiogous considerations
are val r for the reflected field which is also confined to the angular interval
| taa 6,] < | tan 6c|; since the reflected field appears to come from an image
source, it is to be expected that its value near the shadow boundary
[tan 6, =tan 6 may be obtained by retention of the Hankel function in (4-11)
with the appropriate argument.

C. DIFFRACTION BY A STRAIGHT EDGE

The geometric-optical solution constructed in the preceding section may
be expected to yicld the dominant contribution in the illuminated region of the
obstacle, but it yields no information about diffraction effects which modify the
field in this region and :lso account for field penetration into the szadow zone.
Diffraction phenomena arise when the surface contains singularities such as
edges or corners, and also from the vicinity of the shadow boundary on a
smoothly curved object. A prototype structure for the study of edge effects, a
perfectly conducting half plane, is investigated in this Section. When the medium
is uniaxial (B = 0, a =1 in Eq. (2-1b)), the previously mentioned method of
scaling may be ermnployed to reduce the problem of scattering by perfectly con-
ducting cylindrical surfaces in the anisotropic medium to equivalent conventional

(2)

problems in an isotropic region. The latter configuration is a real one when
€ is positive real, but loses its physical significance for other values of €. In
utilizing the auxiliary isotropic space, it is therefore necessary to construct the
solution for ¢>0 ard to seek an extended range of validity by analytic con-
tinuation.

The problem of diffraction by a perfectly conducting half plane in a
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uniaxially anisotropic region has already been treated from this viewpoint(z)
and the solution has been given in a form analogous to that derived first by
MacDonald. (18) In this representation, it is convenient to employ angles
which delimit the various ray-optical domains; while the interpretation is
unambiguous when € > 0, it is not clear how to effect the continuation into the
range of complex or negative real € since the angles then become complex.
To clarify the picture, an alternative analysis has been carried out
wherein distances rather than angles are employed throughout. The problem
has been solved directly by the Wiener-Hopf technique without the intervention
of the scaling argument, and the solution cast into a form which facilitates the
analytic continuation. The same basic representation may also ke obtained when
Felsen's method is applied judiciously to the Wiener-Hopf solution in an iso-

(4) (19)

tropic medium' "', This approach has been adopted elsewhere , and serves as
a check on the correctness of the direct approach.
The physical configuration is shown in Fig, 10, with the half plane

occupying the negative X axis, and the optic axis in the medium oriented along y.

CCNDUCTING
HALF PLANE

Fig. 10: Coordinate designation for the
half-plane diffraction problem.
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Since a=1, 8 =0, Eq. (2-4) reduces to

2% 3% | 2 ' ,
N 5 + € 5 ko e |H(x,y) = - iwe e b (x-x") 8(y-y’) (4-20a)
x oy

The boundary conditions are:

_?H d3H _ . . _

IE x _I?_i = 3% cos 60 -3y A mneo =0 on S (4-20b)
Radiation condition at r - o (4-20¢)
Edge condition* at r -0 (4-204d)

The physical configuration indicates that a transformation to the X-Y coordinate

system will simplify the task of solving Eqs. (4-20). Applying the transformation

x sint -cos 9
o (o)
=< (4-21)
y cos ¢ sin 6 Y
o o

to Eqs. (4-20 a, b) yields:

2 2 2
.y 3 d 2 - 1(2)
A(8)-25 + A(6)—s + 2A.(5) + k| HIX,Y)=L'" H =
Mol 32 205y 3o axay
= -ive ¢ 8(X-X") 6(Y-Y") (4-22a)

*The edge condition, which is necessury for making the solutivn unique, is a

limit on the allowable singularities of the field components near the edge. The
singularities must be such that the average stored electromagnetic energy in a
finite volume surrounding the edge will be finite. In our case, the energy den-

e s e ® 3, 2 .
sity is w -4[§_ . 5,—”(\03). E + My [H| ] 'I;:'e Pc\omponent:sx of E are derivable

from H via Eqs. (2-5), thus the condition 4 [W(r, fdrd 6<® sets an upper
)

limit on the growth of H as » 0. In the process of solving the problem
(Appendix E) this is a crucial point.
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Y

-®

0
X<

Al

[pateg) 3 + Axteg e]rxn = L m=0 on |

(4-22b)

The radiation and edge conditions remain unchanged, because

r =4t +y2 = VX + YZ . (4-23)

In Eqs. (4-22)

Al(w) = sinzw + ecoszw (4-24a)
AZ(W) = coszw + e sin w = [N(w)]Z (4-24b)
A3(w) = (¢ - 1) sinw cosw (4-24c)
k* =i ¢ (4-24d)

The solution of Eqs. (4-22) proceeds in two steps. First, plane wave
excitation is considered, i.e. X'~®, Y'=® and X'/Y' = tan6’., From the
solution of that problem, the solution for line source excitation (finite X' and Y
may be synthesized. In both cases the total field H is decomposed into incident

and scattered parts (Hi and Hs respectively)

H =H + H (4-25a)
1 S
or
© =B =g 4 ¥ (4-25b)
iw soe 1 “s

In the case of line source excitation, Cpi is a cylindrical wave (Eqs.
(3-13) and (4-11)). By letting r'~= along a direction 9’, while normalizing the
amplitude to unity, the cylindrical wave becomes a plane wave whose ray (energy

transport) direction is along 5"

o)

“® here denotes a wave function and should not be confused with the
same symbol employed for angles in other Chapters.
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. 1
®, = exp [-1ko(BZX + B3Y)| (4-26)
with
B2 = T\IE(G'T [s sinGO sin8’ + cos 60 cos 8'] {4-263)
B3 ='N_(l§')' [sinfi0 cos 8’ - ¢ cos 80 gin 6'] . {4-26Db)

In this case, @ must satisfy Eq. (4-22a) with the inhomogeneous term set equal
to zero, and the boundary conditions Eqs. (4-22b) and (4-20 ¢, d). From Eqgs.
(4-22) and (4-25) one may formulate the boundary value problem for the scattered
part of the field Cps:

L2 o, = 0 (4-27a)
L“)cps=- AR » on S (4-27b)

By using Eqs. (4-24) and (4-26), Eq. (4-27b) may be written explicitly as:

(1) ; a a ; =
L o 1ko[A3(.,o)B2+AZ(VO)B:&]exp [-1 kB, X] =
ik ¢ sin(9 -6)
- o] () . Y=20 -
= S exp [-1k052 x] on , eax<o (4270)

The following Fourier transforms are now defined:

30, ¥) = &, (0, ¥) + ¢ (o, Y) = -2 I¢(x, el®X ax  (4-28a)
27 o

@®

f(@, Vs == [ ox,v) ® X ax (4-28b)
[0}

where

{27
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o
1 iaX
& (0,Y) = 9(X, Y) e X (4-28c¢)
- 2 —L ¢
o(X, ¥} = — fé(a, Y) e 1%Xgq (4-284)

E

Application of Eq, (4-28a) to Eq. {4-27a) yields*
2
a¢ d$
A, —5 - 2id A, —& + (K - A) 3 =0 (4-29)
2 de 3 ~ay 1) s '

After assuming
¢ (e, Y) = Ka) elaY | (4-30)

substitution into Eq. (4-29) leads to the quadratic equat’on
2 A3 o.ZAl - k2
q -2a -‘—A—-q+—-—-—§ = 0, (4-31)
2

2
b

the solutions of which yield the dispersion relation

(@) = a 3 +,\l—€— K% a® (4-32)
9,2\ = A -NE, % " &K

The function < kz - & is double valued. We choose that value for which the
AZ o 7\_2_

square root is positive when real, and has a positive imaginary part when com-

plex.

%*In the following discussion Kl(eo), Az(eo) and A3(6°) will be written simply
as Al' AZ and A3
when it is different from 60.

respectively. The argument will be written explicitly only

LSt A Bt o e m S it T A s PP s S 10

2 EayT—
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The corresponding choice of GH {upper sign) or q, (lower sign) is discussed
in reference (15)*, In order that Cps satisfy the radiation condition, it is

shown that one has to choose

iql Y
Il(a)e

*t‘s(o., Y) for Y>0 ., (4-33a)

iq&Y
Iz(a)e

§s(a, Y) for Y<0 {4-33b)

t

the relaticn between Il(a) and Iz(a) is determined from the fact that along
Y =0, the tangential component of the electric field is continuous: i.e. bo‘h
L(l)cp and L“)ipi are continuous at Y =0, which implies that L“)ip‘ is con-
tinuous along Y=0. Thus, from Eqs. (4-33) and (4-28d) one gets

¢
[Aqu(u) - A3a] Il(a) = lAqu(a) - Asu.] Iz(a.)
which, upon use of Eq. (4-32), yields the relation

Il(a) = - I?_(a) .

Therefore iql, Z(a) Y

-7 3(a,Y) = & la)e for YS 0 (4-34)

The determination of I{(a) by means of the Wiener-Hop{ technique pro-

ceeds as in reference (4). (Details are given in Appendix E). The result is

k| B, ) ‘
la) =4 5= llm (4-35)
° (a'koBZ).JFI%_E—Y - kg
[0

* The reader is cautioned to note the slightly different definitions of Al' AZ’ A3
and q, , in reference (15).
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from which, via Eq. (4-28d),

Y20 . (4-36)

+
q}s(x. Y) = ?n'

1 . {_ BZ * daexp[- ia z(+1q1,2(0.)‘1]
o &

A T ey iy

Eq. (4-36) is an exact sclution to our diffraction problem. It should be noted
that it has been derived by assuming ¢ to be real and positive. Next, we
investigate the behavior of the integral in Eq. (4-36) when € is complex.

The integrand in Eq.(4-36) has branch points at a = + koN(Bo) which,
for real and positive ¢, lie on the real axis of the complex a plane. The

branch cuts are chosen in g at on the entire upper Riemann sheet of

the double valued function ., the imaginary part of the square root is

positive. The integration path shown in Fig. 11 lies entirely on the upper

Riemann sheet.

a - PLANE

\
(N (6, \‘ kgN (8,)

7\ ~@ —
¥
-k.N(8,)
0"'% -koN(6,)
Ime=0 Ime >0
W R+ ¢ >0

Fig. 11: The path of integration in the complex a plane

a) € real and positive
b) ¢ complex, Im €>0
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When ¢ is complex, N(*o) will be complex. In Chapter III, it was shown that
in order to satisfy the radiation condition, N has to be positive when real and

ImN positive when N is complex. This condition is satisfied when

0<arge<m (4-37)

(see Eq. (3-30)). The branch points then move into the first and third quadrant
as in Fig. 11(b), and will not interfere with the integration path. Uniform con-~

v:rgence of the integral in Eq. (4-36} is assured if as a-1«,

Re[iql,l(a)Y] <0, vZo . (4-38)

which condition is seen to be equivalent to

i“’g + A3("o)

Im - >0 (4-392)
AZ("O) - ”
With
e = leled (4-40)

and using Eqs. (4-24), condition (4-39) becomes
~ S. 2 .. -~ 1 2; = 3 H g <
2! cos Z(t:os ‘o+ |<]sin -oil'll-:‘_cosaosmeo siny >0 14-41)

which inequality is satisfied for any '2'0 and ¢ satisfying Eq. (4-37). One may
check independently that the irdividual plane waves, and therefore the total
solution. satisfy the power radiation condition when €< 0 (see reference 15).
Since the other characteristics of the solution are not affected by letting € take
on the range of values menti~ .ed above, Eq. (4-36) remains valid when €< 0.
The ray-optical feature of this result may now be determined from an
asymptotic evaluation, the details of which are given in Appendix F, for positive
or negative real z. The method of steepest descent is used, and it is shown
that there are two contributions to the asymptotic result, one from a saddle point

vhich we denote by @ and one from a pole which we denote by tog:



48

=@ +
CPCPC"P

. (4-42)

g

It is also shown that 9 exists only in certain regions of space which are
determined by the relative position of the pole and the saddle point. One finds
that <pg is that part of the solution which could have been found by geometrical
optics; it consists of the geometrically reflected field (obeying the reflection
law in Eq. (4-10)) and another parc which cancels the incident field in the region

of the geometrical shadow. P exists throughout space, and is given by

> i%rMQd%
‘~'Pc ~ f(WS)JW e (4-43a)

where
csint sind +cosd cosS | esinb sinf+ cost cosb
I- o o i o o
, N5 Y N(57 N(8) MO
f(Ws) -2 .=;sinso sind’ + cosGocosE" esineo sinG+ coseo cosb
o +
N{E_T (@ NG} NG
(4-43b)
For ¢ =1 (isotropic medium) this formula reduces to that of
Sommer{eliuo)
3 -8’ 5 -5
. "o . o
2 sin 3 sin—
f(Ws) =1 = COS(eo‘ 5.)+ COS(EO‘Q) . (4-43\.)

Eq. (4-43a) is not valid in the rneighborhood of the poles of f(ws). Phys-
ically these poles correspond to observation point locations on a boundary
between geometrically illuminated and shadow regions (see Fig. 12). For
evaluating the field in these transition zones, a more elaborate calculation of

(20)

(4-36) is necessary which yields a result in terms of Fresnel integrals. It

is found that the denominatex of flw ), Eq. (4-43b), vanishes at two angles:

el = 8’4+ m (4-44a)
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[ -(1-ctan )tans’ +2tang_
l {1-ctan eo)+ Zstaneotane

A comparison cf Eqs. (4-44b) and (4-10) discloses that 82 is preciseiy the
angle of the limiting reflected ray corresponding to rays incident from the
direction 9’ (Fig. 12), while 91 describes the geometrical shadow boundary.
It has therefore been confirmed that the asymptotic field solution in the exterior
of transition regions may be represented in simple ray-optical terms. The geo-
metrical optics field is constructed in accord with the discussion in Section B
of this chapter, whereas the edge gives rise to a diffracted field which may be
interpreted in terms of diffracted rays (cf. reference 3). The diffracted rays
progress radially outward from the edge and therefore have a radial dependence
as given by the factors multiplying f(ws) in Eq. (4-43a)(see also Eq. (4-16) et.
seq. ), while f(ws) represents the ''diffraction coefficient” which yields the

starting amplitude of the ray.

Fig. 12: The field constituents in the half-piane
diffraction problem.
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The plots of f(ws) in Figs. 13a,b, ¢, d show the influence of the aniso-
tropic medium on the diffraction coefficient. Whereas the diffraction pattern is
symmetrical in the :{sotropic medium (Fig. 13a), the presence of anisotropy
may introduce substantial distortion. When ¢ is chosen negative, propa-
gating fields are confined to certain angular directions so that the diffracted
ficld emanating from the edge creates its own region of illumination; the
pattern function in the shadow zone describes the angular dependence oi the
evanescent diffracted fields ("'evanescent rays'). (It is to be kept in mind that
the last mentioned regions of illumination and shadow are consequences sf the
medium properties when ¢ < 0 and should not be confused with illumination or
shadow zones caused by the obstacle). In Fig. 13d, the incident field is itself
evanescent but gives rise to a propagating diffracted field. This aspect is of
importance in connection with excitation by a line source, to be considered next.

In view of the local nature of high-frequency (or far field) diffraction, it
is to be expected that the amplitude of the difiracted field is proportional to that
of the incident field at the edge. Since the incident radiation is locally that of a
plane wave, it should be possible to construct the diffraction field due tc arbi-
trary excitation from the canonical solution (4-43a) for a plane wave. This

(3)

argument has been employed in the geometrical theory of diffraction’™ for
electromagnetic wave propagation in isotropic regions, and we show that it
remains valid also in the anisotropic case. To demonstrate this fact, we con-
sider the case of a cylindrical wave incident on the half-plane, the rigorous
solution for which can be derived from that of plane wave diffraction. The
details of the calculation are given in appendix G. We assume that x’ and y’
in Eg. (4-20a) are finite and (x'/y') = tan®’. The incident field P is now in
the form of a cylindrical wave as in Eq. (4-11), and the rigorous solution for

the secondary field ®_ is shown to be {see Appendix G):

il CF _exp [--lg xl+1q1 (§)Y'] @ exp [-10.X'+ IQ;(Q}Y]
p = dg—— | Tda A
s gn? 4 JE NG S JENE)-a (a+§)

(4-45)
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for Y'>0 and YzO. After carrying out an asymptotic evaluation of Eq. (4-45)
for korN(e) >>1 (Appendix F), one finds again that the solution is in'the form
of Eq. (4-42), with (pg representing a part which can be derived by geometrical
optics (see Appendix C), while ®. - the diffracted part- is given by

I
4

ikorN(B)-i

> ikor'N(G')-i% >
cpc~£(ws) nkor’NIG’S e "["—N'(ankor e (4-46)

Since f(ws) is the same coefficient as in Eq. (4-43b), and the factor distin-
guishing Eq. (4-46) from Eq. (4-43a) is precisely the incident ray amplitude at
the edge (see Eq. (4-16)), this result confirms the local character of the diffrac-
tion process and the validity of the geometrical theory of diffraction. The
preceding solution, valid for positive or negative ¢, has also shown that the
boundary of the geometrical shadow (i. e., the boundary of the domain of exist-
ence of the incident wave) is given by the ray from the source which grazes the
edge, regardless of whether this ray is propagating or evanescent. Similarly,
the reflected ray boundary is the one predicted from geometric opiical con-
siderations since the reflection law in Eq. (4-10) remains valid even when both
the incident and reflected rays are non-propagating (see reference 15); in the
latter case, the field is obtained by analytic continuation of the real ray solution
{0 imaginary values of N(6). The Wiener-Hopf representation has therefore
furnished a simple interpretation of the '"geometric-optical" (better, the direct
and reflected) field when €<0, and it has shown that this part of the solution
(and its spatial domain of existence) may be determined from direct ray-optical
considerations. This clarification did not emerge as easily from the alternative
representation mentioned at the beginning of this section. The diffraction field
in Eq. (4-46) is aiso gseen to be in a form which is readily interpretable for
pesitive, negative, or even complex #. It is therefore to be expected that the
direct and reflected field contributions in the presence of obstazles of more
general shape may be constructed by the techniques of geometrical optics even
when ¢ is non-positive., The diffraction field for a variety of structures may

be determined from known isotropic results by Felsen's method(z) when ¢ is
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positive, and analytic continuation should then provide the correct behavior
when O0<arge<mn. These conclusions, valid for the half plane, remain to be
confirmed for other configurations.

Depending on the location of the half plane with respect to the line source,
a number of interesting situations may arise when ¢ < 0 so that ray propaga-
tion is limited to angles 6 such that | tanb | < tanec = 1/4f|lel. Various cases
are depicted in Figs. 14 (a-d). In Fig. 14 (a), the half plane is in the shadow
of the source and the incident field near the surface is evanescent. As men-
tioned in connection with Fig. 13, the edge nevertheless creates its zone of
illumination so that the diffracted field in this case dominates the evanescent
reflected field. In Fig. 14 (b), a portion of the plane is illuminated a.nd the
edge is in the shadow. The reflected field is now the same as from an infinite
plane and the diffraction effect is small since it is caused by an evanescent
incident wave. When the edge is in the illuminated region of the source but the
plane is mostly confined to the shadow (Fig. 14 (c)), both the reflected and
diffracted fields may be significant, with special importance assigned to the
diffracted wave in that region of space wherein the incident and reflected waves
are evanescent. Analogous considerations apply to the final case wherein the

entire plane is illuminated (Fig. 14 (d)).

D. DIFFRACTION BY A SMOOTH CONVEX CYLINDER: POSTULATIVE
APPROACH

The present section deals with diffraction phenomena caused by surface
curvature. It is known from studies in isotropic media, .hat such effects arise °
from the vicinity of the shadow boundary on the scatterer, and the diffracted
fields may be associated with waves which are launched at the shadow boundary,
travel along the surface into the shadow region, and leak energy continuously

during their progress (''creeping waves")(21)°(24).

From a ray-optical view-
point, the creeping waves are interpretable in terms of diffracted rays which
are excited by an incident ray tangent to the obstacle. These creeping rays

aiso satisfy a generalized form of Fermat's principle, and the mechanism of

—— W 1 i . ok g B o X R,
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Fig. 14: Diffraction of a cylindrical wave by a half-plane.

#) half-plane totally in shadow region
b} edge in shadow region, but portion of half-plane illuminated
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: Diffraction of a cylindrical wave by a half-plane.

c) edge in illuminated region, but most of the half-plane in
shadow region
d) half-plane entirely in illuminated region
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energy transport from a source point Q to a point P in the shadcw region may
be understood from the ray trajectories .ketched in Figure 15. For a ray path
QQ1 P1 P, QQl is meas-wred along the incident tangent ray, while Q1 P1 is the
distance traveled by the diifracted ray along the surface (with an associated
leakage of energy). Since the leakage may be represented by rays which leave
the surface tangentially, the path segment P1 P is the associated trajectory.
1f the sca‘terer is a closed cylindrical structure as in Fig. 15(b), analogous
considerations apply to the alternate path QQ2 P2 P. In that case there are
additional field constituents at P, arising from rays which have encircled the
cylinder one or more times before shedding. In view of the exponential decay of
a diffracted ray during its travel along the surface, these latter contributions are
frequently negligible. ’
The preceding features have been incorporated by Keller(l6) into a pres-
criptior. which allows the quantitative construction of the diffracted field in iso-
tropic regions. While the validity of these postulates has not yet been eatabhahed
in general, the successful verification for various special cases(l )25) lerds
strong support for their applicability to smocth convex surfaces of relatively
arbitrary shape. We shall therefore follow similar arguments to obtain repre-
sentations for the diffracted field when the scatterer is embeddsd in an aniso-
tropic medium. Referring agaia to Fig. 15, the incident field at Q1 caused by
a line source at Q is given by:
A’
AlQ)) = = (4-47)

'

where A(’) is the reference amplitude

-21

‘= -47

Ag ,\[ TR N (4-47a)
G 1

We denote the field amplitude associated with the diffracted ray near the cylinder

surface by Ad(f), where ! is the arc length measured from QI' To relate

A, to A, assume
d i
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where D(Ol) is a diffraction coeff:cient which is a function of the properties of
the surface and the medium at Ql' Because of the continuous leakage of energy
from the surface, it will be further assumed that

1 )
Ad({,) = Ad(O) exp[—j &le , (4-49)

(o]

where G is a decay coefficient which also is a function of the local properties
of the surface and the medium. If A(d) denotes the field amplitude along the
ray which leaves the surface tangentiziiy at Pl' then we assume that
Pl
A(0) = D(P,) A {0) exp[-j au]. (4-50)
Ql
where D(Pl) is again a diffractior coefficient. As long as the field satisfies
conventional reciprocity conditions (which is true for the uniaxial case), we may
assume that D(Ql) and D(Pl) have the same dependence on the surface and
medium properties at Ql and Pl' respectively. In cases of more general
anisotropy, this point has to be reexamined, and more general assumptions have
to be made in accord with the reciprocity relations satisfied by the medium.
Also,

A
A(P) = A{d) = A(0) —2 (4-51)
1"‘1 °
where
- -2
Ay Al TN (4-51a)
o) 1

The field at P due to one ray is therefore given by

‘ P
A A 1 .
A(P) = °_o D(Ql) D(Pl) 2xp [-r adi ¢ Y(P)] . (4-52)
.Jd 4/ v
171 Ql
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where Y(P) is the phase change along the trajectory:

Pl
o s ' ]
Y(P) = 1ko le(Gl) + le(el) + I N[B({}] dL; (4-52a)

Ql

By analogy to the isotropic case, we may expect the possible existence of

different "modes" having different decay exponents G_ and diffraction coeffi-

cient Dp’ p=1,2, ... . The total field at the point P in Fig. 15(a) is there-

fore assumed to be given by a sum of all of these modes,

wege 2 [ -z . o
Hd(P) =— 'JnkodiN(Gl nkole 1 exp 1k°3le(el)+d1N(91)+J N[a{-nd{f

9

z ®
x 2, D (R,) D (P)) exp [I apd{] . (4-53)
p=1 Ql

If the scatterer has a closed cross section (Fig. 15(b)), one has to add the con-
tributions from rays which have encircled the cylinder m-times, m=1,2,...
The formulas for tl:ge corresponding rays differ from that in Eqs. (4-52) in that
the integration interval extends from Ql to (Pl + mL) and from QZ to

.

(PZ+ m L), where L is the circumference of the cylinder. Using the formula

for summation of an infinite geometric progression, we can write the sum of all
these rays in closed form:

P P+L
exp I [i koN-c'ip] dl + exp f [i kon-&p] ar ...
Q Q
P+ML expcg [ikoN-&p] v
cot exp | [ikoN-&]dL+... - - 2 (4-54)
a l -exp 1})[1 kON - ap:[d{.
L

Thus, the formula analogous to Eq. (4-53), which gives the total diffracted

field in the shadow region of a closed cylinder, is:

.o R T
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H.(P) = i‘”eoe'\[ _2i [z
d 4 Tk d/N(B} 11k d N(8)) P

1
D (Q D (P))e a_de
P . 1 ( xp f p
. explik [d N(6;) + d, N(8 )+f NdlL }J — +
Ql b=1 1- exp§[1koN-adeL

iwe € n n
+ o J '?;1 -2i
T TN A TN ]
2
D_(R,)D (P,) exp [ j apdl,]
Q,

- i -G 2
1 1 exp§[1koN ap]du
L

o~ 8

P n
. exp iko[dz’w(e;_) +dN(g)+ [ N ch (4-55)

Q2 P

In these detailed formulas (Eqs. (4-53) and (4-55)), it is often sufficient
to retain only the p=1 mode (having the lowest decay exponent ul) and to
1gnore the denominator term in the summand (i. e. to negiect the rays which
have encircled the cylinder completely one or more times). This results in an
expression comprising one diffracted ray for the field in the shadow of an open
cylinder (as in Eq. (4-52)), and two diffracted rays for the field in the shadow
of a closed cylinder.

While the preceding discussion constitutes in effect an application of the

geometrical theory of diffraction(3)(16)

to an anisotropic medium, and is thLzre-
fore based on a series of postulates similar to those in the isotropic case, con-
firmation of its validity may be obtained directly for special configurations, when
the medium’is uniaxial. When 8 =0, with a and € real and positive, the scat-
tering problem in the uniaxially anisotropic region is reducible to an equ{valent
isotropic problem by the previously described method of coordinate scaling

(Eq. (2-6)). Since the isotropic analogue of Eq. (4-53) and (4-55) has been con-
firmed for such obstacles as circular, elliptic and parabolic cylinclers(l6)(25),
an application of the scale transformation yields a corresponding asymptotic
solution for the uniaxial case. It rnay be verified that the result derived in this
manner furnishes not only the general form given in Eqs. (4-53) and (4-55) but

also yields specific expressions for the coefficients Dp and &p.
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To illustrate these remarks. consider the equation for a single ray {Eq.

(4-52)) in an isotropic medium (uv - coordinate space) with wave number

k:kofzi = kOJae :
- -21 -
ﬁd' nkd'\fer_f (G)D(p)
‘p -
— — 1—-—
ik[d'+ d+I d{J-

9

. exp

P

f & I (4-56)
p )

9

with the quantities d,d’ and dl defined in Fig. 16.

Fig. 16: The uv- coordinate space.
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5p and O in the isotropic medium have been calculated by Keller(lé):
in/lZ 1/6 1/6
_ e k, {B(u, v} (4-56a)
p 2 M\U12,174 1767 - ' =oba
[op4iay)]
~ - . 1/3 1/6 - -2/3
& =-ik, e .pﬁ;(u. v , {4-56b)
where blu,v) is the local radius of curvature of the perfectly conducting
scatterer, and the numbers Tp are defined by
/3
i -1/3
io= 6 4-56
p = 9 ( c)
with the numbers qp denoting the roots of the equation
-]
d ary. d 3 ]
S A@=L [ costw?-quiw=0 . (4-564)
o

By applying the transformation x=y[g, y=vfE, the resulting solution in the
x-y space is known to satisfy Eq. (2-4), the boundary condition Etanzo on

the trasformed obstacle, and the radiation conditon at infinity. Since

o & o s

where ¢ is measured from the positive y-axis, one obtains for the transfcrmed

’l 2 1,2
v de +Edy

d1 (u, v) =AJduZ+ dvz =.de2+ dy oe———— = 1
VIR 1

length element

N(6) di(x, y)

(4-57a)
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where N(6) is the ray refractive index (see Eq. (4-8)) and A= det|§|= ae

(since B=0). In the same way one can show that
kd(u, v) = koN(S) d(x, y) (4-57b)
kd 1y, v)= k, N(8%(x, y) . (4-57c¢)
The phase function in Eq. (4-56) is seen to transform into the one given in Eq.

(4-53), with due cognizance taken of the fact the N(S) varies over the part of

the trajectory on the obstacle surface. Similarly,

[g(u, v)] -2/3

bix y] % (4-58)

where b(x,y) is the radius of curvature of the obstacle in the x-y space. The
decay exponent in Eq. (4-56) is then converted into:
pl pl
1/3 A1/3 r J‘ , dai
p 23 . 1-
g, bro]® nlasy

apd:,= - ik
z51

from which one rﬁay identify

o V313
~ [o]

a = -
P Ib(ulz3 NIE(L)I

The diffraction coefficient Dp is obtained from 'D'p in Eq. {4-56a) upcn

(4-59)

inserting from Eq. (4-58).
Thus it has been shown that the field postulated in Eqs. (4-53) or (4-55),

together with the results for &p and Dp from above, describes correctly the
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diffracted rays on simple convex surfaces embedded in a uniaxially anisotropic
medium characterized by real and positive @ and €. In the derivation of the
result, it was assumed that the asymptotic field representation in the aniso-
tropic medium may be derived by applying the scale transformation to the
asymptotic field solution in the equivalent isotropic configuration. The validity
of this procedure, not really in question when €>0, >0, is confirmed for two
special cases treated in the next sections.

The series in Eqs. (4-53) and (4-55) remain convergent when
0<arg€<m, as may be verified by examining the exponents in Eqs. (4-53) and
(4-55), which retain a negative real part that increases with p for
0<argN(6)<m/2 (corresponding to 0<arg€<T}). It is plausible, therefore, to
expect the preceding formulas to hold in this extended parameter range. A con-
firmation of this statement does not follow immediately from the previously
utilized scaling technique since the scaled coordinates are non-real when € is
non-positive. By examining the problem of diffraction by a parabolic cylinder,
however, the solution may be phrased in a form which validates the analytic
continuation of the asymptotic formulas to non-real €& The analysis, which
establishes the validity of Eqs. {4-53) and (4-55) for 0<arge<T, is presented
in the next Section.

E. DIFFRACTION BY A PARABOLIC CYLINDER: RIGOROUS ANALYSIS

In order to confirm the general results which were derived in the
previous section in a postulative way, the rigorous solution to a special case
is worked out in this section. Felsen's method(z) is used to obtain the expres-
sion for the field in presence of a perfectly conducting parabolic cylinder
embedded in a uniaxially anisotropic medium (8=0, a=1 in Eqs. (2-1)). The

parabolic cylinder surface S(x,y} is given by the equation
Yy = - 35 (4-60)

with the optic axis parallel to the y axis. This obstacle has a varying radius
of curvature, with the smallest radius of curvature b at x=0. Also, the ang\le

¥ between the surface normal and the optic axis varies continuously. A mag-
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Fig. 17 Diffraction by a parabolic cylinder: The xy-space.

netic line current is located at the point Q to the left of the obstacle (x<0).
As shown in Chapter II, Section A, the magnetic field has only a z-component
H(x, y} from which the two electric field components Ex and Ey may be

derived. H(x,y) is defined uniquely by the equations

a2 2 2 . , ,
—+¢€ —--Z+k Hix,y) = -iwe € 8(x-x) 8(y-y') , (4-61a)
dx oy

dH . dH _

= smw+3—y €cosy =0 on § , (4-61b)
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Radiation condition at r—~ > (4-61c)

with k=k°{5. and ¢=tan ) g—% denoting the angle between the normal n and

the optic axis.
It is convenient to define

¥ = y+a , (4-62a)

where a is an arbitrary (possibly complex) finite constant. The equation of

the surface S({x, §‘) becomes

2
~ - -.x__ -
y = a-3x . (4-62b)

It is seen that the change of variable (4-62a) does not affect the quantities

2
;— , o S (y-y) and t=tan'1 dy so that in Eqs. {4-61a) and (4-61b), y can
y ayz dx
be replacedby y and S by S. The radiation condition requires outward flow

of energy as r=.‘Jx +ty — ., As "a" is a finite quantity, the radiation condi-
tion Eq. (4-61c) also remains unchanged.

If we chogse

a = ¢/ b , (4-63)
then upon introducticn of the transformation
x=u, y= de v (4-64a)

the equation for & becomes

2
v = Jib - l“rb . (4-64b)
24de

which is the equation of a constant coordinate surface in a parabolic coordinate
system. Via Eq. (4-64a} the boundary value problem in the u-v coordinate

system reads

2
(-a—z+-§2—2+ kz) G(R,R’} = -8{u-u’) 8(v-v) , (4-65a)
du  3u -

T L e W N i P v 1 e e g - e
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2
3G _ 3G ~ 3G - b u
— = siny -—x—cos¥y=0onv = - 4-65
YU T i T Z " 3len (4-65b)
Radiation condition at R =‘J;' tve —e (4-65c¢)
where H
G(R,R) = ——— |, -
(R,R) et (4-654d)
and
& o ldv _ ., .1 1l d
¥ = tan ga - tan -J.? E&Y . (4-65e)
A set of parabolic cylinder coordinates is now introduced via
u = T]§ . (40668)
v = m?s? (4-66b)
the range of variation of 1 and § being
o<n<+® (4-66¢)
oIt @ (4-664d)

We assume € to be real and positive at this stage. Thus ;', u,v,n and § are
all real. Later on we will let € be complex and investigate analytic continua-

tion of G in the complex € plane. Inthe n-% space,Eqs. (4-65) become

2 2
2o+ 21 k%58 G = -bin-n")6(E-EY (4-67a)
on g
2
3%= 6 on n=no=JJe'b , (4-67b)
Radiation condition at R=% (B4 %) = . (4-67¢)

The surface n=no is real only when € is real and positive. For complex or
negative real € it cannot be drawn as in Fig. 18, but Egs. {4-67) remain valid.
The surface has a large radius of curvature if b is large with respect to wave-

length. M, is related to b via Eq. (4-67b), so we will assume
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n>-§ >0 n>£>0

s
'y
&

R’
7=,
-£>7>0
§>n>0
Fig. 18 Parabolic cylinder coordinates.
len 21>>1 (4-68)

with the absolute value sign in Eq. (4-68) applying when € is not real and
positive. A representation of the Green's function G in terms of parabolic
cylinder functions will now be found by means of the characteristic Green's

function method‘26). According to that method G is given by

=1

G(R.RY = 57 $ g1 s M gz6,3750) dA (4-69)

where A is the separation constant of the partial differential operator in Eq.

(4-67a), and the functions g and g: are solutions of the one-dimensional
i >

e i ST, e

fowpeds A ¢ R S b L

Tgam ¥
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equations 2

<4 +k2n2-xJ gy(m.1 1)

]

-6(n-n" , (4-70a)

dn

b

2
(3—2+k2§2+ﬂ 85,850 = -6(5-8) . (4-70b)
ds

e

The contour of integration in Eq. (4-69) closes at infinity and surrounds all of
the singularities of either 8. O g in the complex A plane. The boundary
conditions or: g, and g: are identical with those satisfied by G in the 7 and
§ domains, respectively. Two linearly independent solutions of the homogeneous

equation (4-70a) are given by (27)(28)

[0:0) =D | 3R (4-71a)
"Z "%k

f,0:0) = D | (ndTTR) (4-71b)
"2 "%k

with §T = o 174

where the parabolic cylinder function Dv(z) satisfies the differential equation

d2 1 z2
[;z—z- +(V+-2- --71'-) D\)(Z) = O . (4-7-3‘:)

To avoid ambiguity in the asymptotic expressions of fl and f2 for IAI-“' ,

it is necessary to define the relations between arg v and argl

argv = argl-% when Ivl-o“’ and arg v<0
(4-714)

arg v argl+§-22 when |v|-= and arg v>0
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Also, the Wronskian is given by

_ 2d-ink
Wfl,le f,-ff) = —% . _ (4-71e)

Ty +9y)

Only the function f, satisfies the radiation condition at 1 —=®. This may be

seen from the asymptotic formulas for large values of lzl which are

2
Dy(z)~ 2" /* [1+00=3)] (4-72a)

in
4 »

zl>>|v| andlarg(z)|<
v -22/4 -2 2n -v-1 iTTv+ z2/4 -2
D (2)~2"e [1+ 0tz ) T [1+0(z )]

[zi>®|v] and %ri>arg(Z)>-;l . (4-72b)

Since 1 is real and positive, one finds from Eq. (4-72a)

1 _ix
D, ., mdTR-mdzm 2 * ik /2 (4-72¢)
2 "%k
sy - . ikR .
which is proportional to e as 1n—= . Inview of Eq. (4-72b), the same

relation is-not obtained for fz. A linear c:ombination of fl and fz which

satisfies condition (4-67b) is given by

] _~ D_l 1)\ (—n ;\
f£.(=:\) =|D (-n_hi+D (1 _h) 2tk (4-73)
3\ 1 ix‘t e 1 AWM BT (7B
"Z "7k "2 "7k L _i)
"2 2k
with
h = m (4’733)
and

D\;(a x )= Dv(a x) ‘ xox (4-73bj




It can be shown that the Wronskian of fl and f3 is also given by Eq. (4-71e).

The solution of Eq. {4-70a) subject to the proper boundary conditions at n=n

o
and M~%® is now constructed from f1 and 1'3 is the usual way(zg):
NUNININUPY
! 17>V
(n.nA) = (4-74)
& W[, 15]
where
N, whenn >n'
n> = (4“743)
7', when n’) n
’ /
', when n<n
ne = (4-74b)
n, when n<n’

Next we investigate the behavior of g, as I)\l"“’ . By expressing the
solution of the homogeneous equation (4-70a) in terms of a uniform asymptotic
approximation one finds

£in\v/2 _. e
§ (Z)~—L(XE ) e 1V [up>]2l?, ] e (4-75a)
v 2 \e

. . 3n
with the upper sign for 0>arg v> - =5

. 3
and the lower sign for O<arg v< > -

Also,

21 v -y
f(v)~ ‘-\-,—V e

(4-75b)
for |v|"°° and iargv|<ﬂ

According to the definitions (4-71d), we have »-321'—T {arg v<0, in the range
-m<arg A\ <g~. and the upper sign in Eq. (4-75a) is chosen. In the range

B i T L Ly e e e 3
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3m
2
chosen. In this way Eqs. (4-74a, b) yield:

<arg A<-T we have O<arg V"% , and the lower sign in Eq. (4-754) is

g,](n.n':ﬂ"ﬁy[e'ﬁh'n | -4\ (40 -Zno)]'-n<arg A< g (4-76a)

gn(n,n';k)~ﬁ[e i in-n | 4% tn+n 'Zno)] ,-%E<arg A< (4-76b)

which, in view of the fact that n+7 '>2n°, is exponentially small throughout the

i
indicated region. Special care is needed in the interval -T<arg i<- 3 which
corresponds to -%n_ <arg v< -T, In that range Eq. (4-75b) cannot be used

directly. Nevertheless one can defino v’ = |v'] ei(‘l/-?.ﬂ) , where y=argVv and
(30)

find the asymptotic behavior of I'(v) from the definition of that function .

By doing so, Eq. (4-76a) is shown to hold over the whole region of

-T<arg A< ; . Similarly, two independent solutions of the homogeneous equation
(4-70b) are given by
h(A) =D | 4, 6 d-2in (4-77a)
"2tk
hz(i;)\) =D, .)\(-g 4-2ik) (4-77b)
AR

with '
_ ' r _24-inTk ) -
W[hl,hz] = hyh; - hyhy "J__‘TTI(L_L) ’ (4-77¢)
Z " 2k

From Eq. (4-72a) it is easy to see that h, is proportional to elkR as
S—+*, and h, is proportional to elkR as 5—~-@, thus(zq)
h (3; Wh, (5 _;A)
Lo 2< (4-774)

gg(g.i';X) = w[hl'hZJ ’

with § and §_ defined as in Eqgs. (4-74). The expenential decay of g as

& e i L
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|)\l-‘°° can be shown in a way similar to the one used for

The singularities of & in the complex A plane arise {rom the poles
of the I' function. g has a series of poles at

Xn = 'ik(2n+l), n=0,1,2...

g, does not have poles at ')‘n =ik(2n+1), because at these points

D'y 4y (-n,h)
"7’ﬁ€ -
Dy anlnm+D (k) e
"7 2 T2k R
2 "7k A=)

This can be shown by using the relations (11)

D(Z) "-ZD(Z) v+l() .

valid for any complex v and 2z, and
— V -
D,(-2) ={1)"Dfz), v =0.1,2...

Nevertheless, has poles in the complex A plane at those points where
8,.3 P P

D ip_(noh) =0 {4-78a)
2k

Nl--

The values J\p have been calculated by Keller and Levy(3z) Their asymp-

.

totic values for kn§>>l are
Akl [sz (kn2) =%/ 3] (4-78b)

where Tp is defined by Eqs. (4-56c¢, d). The path of integration runs along the
real axis from X =-%®+is to A =+®+is with -k<s$<0, and closes by a semi-
circie on either the left or the right. Due to the exponentiat decay of gﬂ and

g- as [A] ==, the semicircle does not contribute to the iritegral. Defining
>
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= LA (4-79a)
M= -3tk
and using the relation
-n
-\ T T e ——— -
C(-vIT(1+\) Ry (4-79b)
Eq. (4-69) yiclds explicitly
G = GI+GZ=
--;:+i°° '
=1 98 _p E RD(-E WD, .(m.n|D, (-n_h+D . h)—,—(—r'“"( o
-2 J‘ sind 0 > TN TR g a1ty w-1""g TP L P D-u-l noh
-l-iw
2 (4-80)

Eq. (4-80) is a rigorous solution of the problem formulated in Eqs. (4-65)%.
The solutionof the original anisotropic problem stated in Eqs. (4-61) is obtained
by expressing the 7,3 variables in terms of x and y. From Eqgs. (4-66),

{4-64), (4-63) and (4-62) one finds

rndk = Jk(R+v) ='\/k4x2+ §r2;e+§r/e =

,\[ 3 2By, & e |
=k [Vy“rextsX gty —-ZbJ (4-8la)
,\[r 2 2 c €
24k = JK(R-v) =Nk Jy rex 8L B Ly = (4-81b)
o b 4b2 2b

If the square roots are defined as positive when real and having positive imagi-

nary parts, then it can be shown that for O<arge<~™

-%_<_ arg (nJ-Z ik) 5% (4-82a)
-glarg(G{-2in < (4-82b)
*RiceBn and Joncs(a.ﬂ have discussed the diffraction of plane waves by a

parabolic cylinder. Eq. (4-80) can be shown to agree with their expressions
when |R |-'°°. They did not use the characteristic Green's function method

for deriving their results,
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It can be verified by inspection that Eq. (4-82a) follows from Eq. (4-8la). The
derivation of Eq. (4-82b) from Eq. (4-81b) is less obvious. One has to show

that ImJyz+ €x2+ eX.+_‘a_Ez Im '?f:—b . This can be done by observing the fact the
x and y are confined to the region exterior to the parabolic cylinder,

" Up to this point £ has been taken as positive real, thereby implying
positive real n,n’ and upe For a source location as in Fig. 18, § ’ is negative
real, whereas § may be positive or negative real. Also arg ('ﬂm = - % '
arg (-n{-Z_il; =%'-1 , and similarly for the & variable. For bounded
v and |x|-=, Dv(x) is exponentially small in |arg(x)|<% and exponentially
large in |arg(-x)|<z. Itis seen from Eqs. (4-82) that if ¢ is complex and
Im €>0, the asymptotic behavior of Dv(x) does not change, and the considera-
tions concerning the radiation condition, which lead to the solution in
Eq. (4-80), remain valid. The convergence of the integral (4-80) can also be
shown, by using Eqs. (4-82) and (4-75) Thus, since the solution (4-80) of Egs.
(4-67) remains equivalent to that of Eqs. (4-61) when ¢ is complex, use of
Eqgs. (4-62), (4-03) and (4-64) permits the construction of the solution in the
anisotropic medium for Im €2>0.

The asymptotic expansion of Eq. (4-80) is different in the various phys-
ical regions of figure 19. If the observation point lies in the illuminated region,
a direct ray fromn the source as well as a ray reflected from the obstacle
according to the laws of geometrical optics contribute to the field. The direct
ray is given by Gl in Eq. (4-80). The reflected ray may be derived by
applying the sadd_le point method of evaluation to the integral GZ in Eq. (4-80).
If the observation point lies in the shadow region, the first order asymptotic
evaluation of GZ yields an expression similar to the asymptotic expression of
Gl’ but with an opposite algebraic sign. This indicates the cancellation of the
field to the first order. A more detailed calculation of G in terms of the
residues in the complex U (or A) plane lends itself to an interpretation in terms
of diffracted rays. If the observation point lies in the transition region near the
boundary between the illuminated and the shadow zones, both methods fail.
Actually, in this region, the field cannot be expressed in simple ray terms. A

numerical evaluation of the integrals yields a smooth transition function which

- . [P — s

e e e
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Fig. 19 Diffraction by a parabolic cylinder:
The illuminated, transition and shadow zones.

connects the different asymptotic forms on both sides of the transition zoue
because the shadow boundary does not introduce any physical discontinuity into
the fields. ’

The asymptotic expression for the diffracted field in the shadow zone is

calculated as follows:

The only poles of G to the left of the path of integration in the complex U plane
are given by Eq. (4-78). The path can be closed by an infinite semicircle en-
closing the left half plane, and the integral is given exactly by the sum of resi-

dues:
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@«

G=in) smhpn (P05, (B0 a0, ‘h’k’w—“—rry (4-83)
p.=o

If the source point is removed to infinity and the result is normalized in such

a way that

1 H(i)(klg_-_gll)-‘exp [- ik(using’ +vcosy ')] , then by using Eqs. (4-66) and

4
(4-72) it can be shown that

(-1(tan® /2 _ , u’

; tan @ =—-
i24j21 cosw'ﬁ v’

The resulting Eq. (4-83) agrees with the expression derived by Rice(sl) for the

case of plane wave diffraction.
Keller(‘m) has shown that the exact expression given by Eq. (4-83) can

be written asymptotically as
pl
G~ ’;}(“%TJ% exp [ik(i'«"chj~ 'd'l.)]
zs1

Q
BB, (@ exp [i7 13 [[50)) 2/ ] (4-84)
o P

[\/JG

P

with b denoting the radius of curvature along the diffracted ray path, and D .
the diffraction coefficient given by Eq. (4-56a) (see Eq. (4-56) and Fig. 16).

It is noted that for complex values of €, these quantities {(as well as n,n g
and §’ which are related to them) no longer remain real. Nevertheless, the
calculation leading from Eq. (4-83) to Eq. (4-84) remains valid, because (as
shown in the discussion following Eq. (4-81ﬁ the same asymptotic forms of the
parabolic cylinder functions may still be used when their arguments become
complex as loné as Im €>0. One may now write the asymptotic expression

for G, Eq. (4-84), in terms of the original x-y coordinates by changing back
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via Eqs. (4-81). The expression so obtained is exactly the one predicted in the
preceding section (Eq. (4-53), and therefore justifies use of the formula for
complex €. It is also shown in reference (16) that the series in Eq. (4-84) is
equivalent to that in Eq. (4-83) only if the observation point lies in the shadow
region. In the illuminated region, one performs a first order saddle point
evaluation of the field using directly the integral representation of Eq. (4-80).
For finding the saddle point locations, it is most convenient to substitute into
Eq. (4-80) the asymptotic forms of the parabolic cylinder functions which are
obtainable by applying the WKBJ method to Eqs. (4-70). The results are:

D (nJ-Zx ~ 1/4exp[1k I‘Jx -l/k dx] (4-85a)

. '%‘ﬁ [ -ak ] A/k

C
D X(EJ-szr 1/4 exp [1ijx +l; k ] . (4-85b)

2 2k +k/k

These solutions reduce to Eq. (4-72) if 'n2>>l/k2 and 52»1/1(2, respectively,
and must therefore have at least the same region of validity in the complex planes
of(nd-2ik) and (S Jd-2iK). This assures us that the asymptotic evaluation of
the field can be performed in the u-v space, and the result then expressed in
terms of x;y. The calculation has been carried out by Jones( )for the case

of plane wave diffraction. Our case differs only in a few details, which.are

discussed in Appendix H.

F. RIGOROUS ANALYSIS FOR ANOTHER SPECIAL CASE: A CLOSED
CYLINDER

Diffraction by a large elliptic cylinder is considered in this section,

as a special case of a closed cylinder (Eq. (4-55)). In order to make use of

the extensive literature on diffraction by a circular cylinder(zz)(24)(33).
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elliptic cylinder has been chosen whose principal axes are parallel and per-

pendicular to the optic axis respectively, and related to each other as follows:

b=4Jca a=1, €0, (4-86)

where a and b are the half axes of the ellipse in the x and y directions,
respectively, Such an elliptic cylinder transforms into a circular cylinder of
radius a in the u-v space if we let x=u, y=ﬁv (Fig. 20). While the con-
figuration in Fig, 20 is convenient for the relatively simple confirmation of
the assumptions and results of Section D leading to Eq. {4-55), it lacks in
generality since the obstacle dimensions depend on the medium parameter €.
This modd therefore does not permit the independent investigation of the solu-
tion as ¢ takes on complex values, as was possible in previous sections.
However, this model is employed to test in detail another aspect of the pro-
cedure: the ability to apply the scale transformation to the asymptotic expres-
sions in the isotropic region, and to recover therefrom the asymptotic result
for the anisotropic case. The boundary value problem to be solved is the same

as in Eqs. (4-61) with S given by the equation

2 2
"EZ"—Z?: 1. (2 .87)
a” ea

Transformed into the u-v space, the boundary value problem to be solved is

2
_af'z +2 z”‘z G(R,R") = -8(u-u’) 8(v-v’), (4-88a)
du_  dv
8% .0 on uitv =a%, (4-88b)
dn
Radiation condition at R =‘Ju?‘+v2 - (4-88¢)

G is defined by Eq. (4-65d), and kzkoﬁ. The rigorous solution to Eqs. (4-88)
is well known, and various representations are available which have different

convergence prcperties. The represcntation best suited to our purpose is given
pyt33)
y




81

{a) (b)

e QG

|
x (c)
i
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Fig. 20 Diffraction by an elliptic cylinder:

The xy and uv spaces for obgervation point in the shadow
region (&, b) and in the illuminated region (c, &).




82

GIR,R") = 15 [Gle.p 1) G .0 1) yay (4-89)
c

p = ‘Jn +v (4-89a)

p'=Aulsy’ (4-89b)
® = tan’! 3 (4-89c)
® = tan”} %L (4-894)
(2)
. H {ka)
’ HIBY (1) (2) 3 (1
G,.0m) = 2 Y oy 1 Do) 2— wlilog|  4-89e)
~ 4 133 >) 133 < HL; 1 (ka) M <
G,lz.= ) = Y e Jgulo -2y Imu >0 (4-891)
t=-=

(1} (1)

Hu’l(z’(z) = % H‘j’(z) : (4-89g)

Eq. (4-89) may alternatively be written in terms of a series of residues arising

from the poles of the integrand. which are located at the points ',J.==up , where

A1)

H ' (ka) =0 . (4-90a)
P
. . - (16)(22)
These points have been calculated by several investigators and for
ka >> 1, they are given asymptotically by
1
3
M ~ka+-_(ka) " , (4-90b)
P P

where -p are defined by Eq. (4-56c), and for the Neumann type boundary

conditions
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wie
~
wi 2

1 1
szi [3"(P+74‘)] e . p=l,2... . (4-90¢)

In view of Eq. (4-89f}), Glp, p ) can be interpreted as the field #hich results
from an infinite number of lirie sources located in an angular space of infinite
extent (-®<®<*) and separated from one another by a distance of 27. Evi-
dently, only one line source lies in the physical region 0<9<2m, and this
source alone zccounts for the geometric optical parts of the total field. The
sourcee outside the physical region of the angular space contribute only to the
diffraction effects.

Eq. {4-89) may now be transformed back to the x-y space, (where it
is a solution of Eqs. (4-61) and {4-87), and evaluated asymptotically. The
details of this calculation are given in appendix I. It should be noted that the
solution as given by Eq. (4-89) has different convergence properties, according
to whether the cbservation point is located in a geometrically illuminated, or
in a shadow region. Thus, the asymptotic evaluation and physical interpretation
of the results are different from one another in those regions, If the observa-

tion point lies in the shadow region, then the total field is equal to the diffracted

field. In that case it can be shown that Eq. (4-89) becomes(33),
-’ (Z) ®
LAY (ka) 3} % . ~n 7 [
G(R,R) = 5 Z ,(1) H‘y)(ki‘-)ﬂin(ks ‘ z exupl‘,-(cp ran)il .,
-v.—- Hu {ka) | p =
P f=-
P (4-91)

whose asymptotic evaluation for ka>>1 (after transforming back to the x-y

space) is carried out in appendix I and yields:

: o= ci:g(ka)% expiik ’d N(3 )+ d’ N(E)+ip —ﬂf
Gzy 242 i BT A NS S i pall

L 3

p=l

- 2 : ’ ’ i2my
6> [qu(qp)] kod) N2 )k ¢ N(B ) [1 -c P]
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S
exp ;iko [dZN(BH dé N(8,)+ iup%‘] f
+

: T izmu
ﬁodZN(BZ)JkOdZN(eZ) [.1 -e p]

(4-92)

where S1 and SZ are the arc lengths lel and QZPZ (Fig. 20a ), respec-
tively, and A(qp) is the Airy function of argument q_ defined in Eq. (4-56d).
Eq. (4-92) should be compared with Eq. (4-55).

To show that Eqs. (4-92) and (4-55) are identical, one notes first from
Eq, (4-57a)

P2 P2
) " f Jduz+ dvz = TLP— f Nls(e)lae (4-93)
QI,Z Ql,Z
Thus, from Egs. (4-90), (4-92) and (4-93)
S P2 11 P2 e
upfal'—_z_-lk f N[a(l,).sdH lkc3>e 'rp J NG(L) di (4-94)
Ql.?. 1,2 € a3
From
3
[1+( )JZ
= b(4) , (4-95)
i——?l
dx”

(where b(L) is the radius of curvature of the cylinder at 4}, and the equation

of the cylinder,
I 2 RN (4-96)

it is not difficult to verify via Eq. (4-57a) that

.
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Nle(e)] - it
5" ar = d 2 , (4-97)
e a3 N(B(4)] b3(2)

thereby confirming the structure of the exponent in Eq. {4-55) with Eq. (4-59).
Moreover, from Eqgs. (4-96) and (4-57a), it is noted that

Ndit = 4¢ a f" 5 (4-98a)
a =-X
so that i
EjSN at = 2naqe (4-98bj §
¥

where the § is taken around the circumference of the cylinder. Thus, using

Eqs. (4-59), (4-90b) and (4-98),
iz gi{ikow Lo (2)] -OL(L)} aL (4-99)

thereby making the denominators in Eqs. (4-55) and (4-92) equal. In a similar
manner, the amplitude factor in Eq. (4-92) may be identified as the diffraction :
coefficient D _, It has therefore been verified in this special case that the
asymptotic evaluation of the scaled exact solutior agrees with the result obtained
when the scale transformation is applied directly te the asymptotic formula in
the isotropic region.

If the observation point lies in the illuminated regioa, the field consists
of a geometric optical part due to the { =0 term in Eq. (4-89) and a diffracted
part due to the {#0 terms. Thus one may write in this region

GR,R) = & [ G (p.c 1) G, e, imIudn +
i o
-

, %(Z) (ka) 2 iu [0 - (p'+2m )
+3 ) = 0w 0en | ) P (4-1000
. 50 H“ (ka)l?‘p P P =@
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!

where Z stands for a summation over all integers { excluding £=0, and

, Linle-o’]
ch (.0 ;1) = B T

o

(4-100a)

The series part of Eq. (4-100) is treated exactly as in Eq. {4-91) and leads to
Eq. (4-92), excepi that the quantities dl.d', d,. Sl' SZ' etc. have to be taken
now from Figs. (20c¢) and (20d). The integral in Eq. (4-100) furnishes the
geometric-optical field.

It has therefore been verified that Eq. (4-92), which was obtained by
performing the asymptotic evaluation in the anisotropic region, agrees with the
previously derived Eq. (4-55} wherein the asymptotic result was obtained in the

isotropic {scaled) system, with the scale transformation applied subsequently.
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CHAPTER V

CONCGLUDING REMARKS

The object of this study hae been to gain an understanding of electro-
magnetic radiation and diffraction in anisotropic dielectric media. Emphasis
has heen placed not only on formal mathematical solutions but on approximate
methods for the evaluation of explicit results as well as on a physical inter-
pretation of relevant phenomena.

To achieve these aims, a special class of problems has been investi-
gated in detail: two-dimensional problems: of diffraction by variously shaped
objects in a uniaxially anisotropic dielectric. By choosing the optic axis in
the medium at right angles with respect to the axis of the cylindrical
scatterers, one finds that the electromagnetic fields may be determined from a
single scalar function, thereby reducing substantially the mathematical com-
plexity and facilitating a thorough study of the resulting formal solutions. Two
parameter ranges have received special consideration, corresponding, res-
pectively, to '"'small" and ''large' obstacle dimensions. In the first, the scat-
tering properties are described essentially by multipoles of appropriate
strength and orientation, while in the second, the radiation characteristics are
specified conveniently in ray-optical terms. In each category, various repre-
sentative problems, for which exact s>lutions may be constructed, have been
analyzed in detail, and the results have been phrased in such a manner as to
lend support to the above-mentioned physical mechanisms which are operative
in establishing the radiation field. '

d(a) may be employed to relate solutions for the present

A scaling metho
ciass of scattering problems in the ani.sotropic medium to equivalent, known
solutions in an isotropic region when the dielectric tensor elements are posi-
tive real. Therefore, for this parameter range, the construction of solutions
is elementary, and the remaining task has been an "invariant' phrasing of the
results so as to include quantities which depend only and explicitly on the

medium parameters, and on such structural features as the radius of curvature
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of the obstacle surface and its orientation with respect to the optic axis.
Further and non-trivial effort has been required to extend the range of validity
of the results to complex values of the tensor elements, thereby providing
solutions for a broad range of medium constants, including the '"hyperbolic"
range where one of the tensor elements is negative real and infinite values of
refractive index may occur,

The results for various large obstacle problems have been compared
with predictions made by generalizing Keller's geometrical theory of diffraction
to anisotropic media. Since that theory proceeds on a ray-optical basis which
retains its validity under quite general conditions, its confirmation for several
special structures admitting of an exact analysis provides a basis of support
similar to that achieved for the isotropic case. It may therefore be concluded
that the present study has provided a gencral mechanism for the analysis of
two-dimensional diffraction problems in uniaxially anisotropic media having the
afore-mentioned orientation of the optic axis, and that the insight gained thereby

may serve as a basis for the investigation of more complicated situations.
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APPENDIX A

Derivation of the Green's function representation in elliptical coor-
dinates (Eq. (3-11)).

The boundary value problem stated in Egs. {3-8) is transformed via
Eqs. (3-9a,b) into

2 2
—éz+ iz+ th(cosh 28 -cos 2n) G(g,g') =-6(5-§')86(n-n"), (A-12a)
3"
%g- =0 on $=5_, (A-1b)
Radiation condition at 2hcosh§—® , (A-1c)

where h is defined by Eq. (3-10a) and Fig. 4. The homogeneous equation
(A-1a) can be separated, yielding

dzul 2
- +(A-2h“cosh2%)u, = 0 (A-2a)
22 1
ds
dzu2 2
) +{(\-2h"cos Zn)uZ =0 (A-2b)
dn

with A denoting a separation constant. Uz(n) has to be periodic in 11 with a
pericd of 27 . This is one of the properties of the Mathieu functions of the first

(9)

. . "2 2 NN
kind and integral order'’’, cem(n,h ), sem(n.h ), and mem('ﬂ,h ) which is

related to the former via Egs. (3-18a,b). We note the completeness relation

of these Mathieu functions,

6{n-n’) = -Zl; }: me_(n') me (-n) (A-3)
m=<®

We may assume an eigenfunction expansion

B T T ——
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G(R;R) = Gl5,m;8".n") = 2 gy (6.8°) me_(-n) . (A-4)

m=-®

Substituting Eq. (A-4) in Eq. (A-13) and using Eqs. (A-2b) and (A-3) we get

d2 2 ‘ ’
Y -\ zh_ cosh 2%) gm(%.§ )=-6(8-8") (A-5)
where
g (8,87 = - L 08,8 (A-5a)
m memln’) m

The boundary conditions on gm(§.~§ ) are

dgm ;
-—a-sr— =0 at ;'—"Do ’ (A-Sb)
Radiation condition at &-= | (A-5c)

(10)

Solutions of the homogeneous equation (A-5) are the “radial' Mathieu functions

-jwt

MS«,)(%; h). In particular, for our implied time dependence of e , the pair

of suitable functions is ng)(%) and MS)(:), which has the asymptotic behavior

for E—= |

M(r;)@;h)".]m(.thoshi) =J_(kR) (A-6a)

Mfi)(i;hrﬂf)”(zrlwsh;): Hgl)(kR) , (A-6b)

Their Wronskian is given by

wiDizm, MPgm] = & (A-6c)
If we define .
(@ = M3 n (A-7a)

A1)s
M (: Zh)
- (1) o (3)
£,(§) = M _;h)- MTHE s h) (A-7b)
2% m < Mlni(;o.'h) m "<
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it is easy to show that

Wt = w[mg), Mg)l =4 (A-7c)

where §_ and §_ are defined by Eqs. (3-1l1a,b).

The solution of Eq. (A-5) subject to conditions (A-5b, c) is synthesized

from /‘l and fz in the usual way(zg):

£,(8,)1,(8)
g, (8.3 = 5 51,22“ ; (A-8)

(T3]

thus, from Egs. (A-4), (A-5a) and (A-8), we get Eq. (3-11).
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APPENDIX B

The quadrupole radiation in the field scattered by a narrow strip.

From Eqs. (3-19), (3-20b) and (3-20d) we see that

ﬂh4 ’
g,{0.9) = - —— sin20 sin29 '+ O(h

also, using Eqs. (3-22), we have

5 ; (B-1)

X = .
U _ucosd+vsind _ :EF sxn9°+ 7%5 coseo JE;
R~ R - T N(@;YN(G)

cosQ

¢ sin§ sin80+0. cos§ cos 90

= Nz _N(B) (B-2)

sin(Bo-B)(e sinJ sin 6°+0, cos9 cos 0 )
sinZ2p = Zsin® cos® = 240€ °

.

[n(e) N3 )1°

(B-3)

An expression similar to (B-3), with 9’ instead of §, is obtained for sin2p’.
Using Eqs. (3-17a), {B-1) and (B-3) we get

Tae 4 sin(eo-e)sin(so-el)

827 - oz (ko3

(€ sin¢@ sin 90+a cosd cos 60) .

[N(E) N(§')1¢
Y / 6
(€ sin8’ sin 60+a cos 8 cos eG)+ O(koa) {B-4)

To verify that Eq. (B-4) represents the radiation from an electric
quadrupole line source, and to find the quadrupole radiation intensity in the

scattered field (Eqs. {3-15)), consider Eqs. (3-24a, b) with the source term
J = p(cos3 ==+sind_ <) b(r) (B-5)
- R o -Sy_r o dx' ‘= ¢

Comparison of Eqs. (B-5) and (3-24c) shows that the source given by Eq. (B-5)

corresponds to a linear quadrupole as shown in Fig. B-1.
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1o

Fig. B-1 A linear quadrupole as a superposition of two dipoles.

Substituting Eq. (B-5) into Eqs. {3-24a, b) yields the following equation for H:

2 2
d d
[a7+e 2+k2 H=-B6(r) (B.6a)
3x dy

where
2
. £ 2 2 2.\ ¥
- e 2 e — g - -
B=p sm.,ocos..o((xa 5 -€—5 ]+{ 2 cos R € sin 90 m {B-6b}

x L%

If we consider H=BG, then the equation for G reduces to Eq. (3-8), whose

solution, subject to a radiation condition at infinity, has already been given by

Gd(_r., o) in Eqs. (3-13). Thus, the solution of Eq. (B-6a) is

H(x) = 34- B H(i) [koJay2+ c xz] (B-7a)

For kor N(£)>>1 one may write

i
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2
3 1)y 1)y L D)
'BTZ'HO(A) Hl(z) -HO(Z)

The derivation of Eq. (B-7b) from Eq. (B-7a) is analogous to the derivation of
3.29
Eq. (3-29), sin(¢_-©)

H(x) -k pac -_Z"(-— (¢ sin3 sin3_+a cos8cos 8 ) {LHl} [x_rn(e)]}
N (&)
(B-Tb)

Comparison of Eqs. (B-7b) and (B-4) vields

4 - ~ o~ - - ~ & - ?
i (koa) sm(.,o-a e sind sin 80+a cos 8 cosf)

pz-AoTE kZ
o

+ O(koa)6.

NZ(B 2
(B-8)
where Ao is the intensity of the incident field at the location of the obstacle,
Eq. (B-7b) shows that the leading term of g, in Eq. (B-4) is a linear quad-
rupole term, and Eq. {B-8) gives the intensity of the quadrupole induced in the
strip by the incident field. It is easy to see from Eq. (B-7b) that the axes of
zero radiation 1n the quadrupole radiation pattern are no longer perpendicular
to each other. While one zero occurs at 3=3° , the other zero occurs at
~ - r’ L4
tan 8 = - % cot 2 ., which reduces to =2 =5 only when Z- (isotropic
< o - o 2 €
case), or when -Eo'-' 0, 5 (special orientation of the strip).

-
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APRPENDIX C

Reflection by a perfectly conducting plane in a homogeneous uniaxial

medium.

To derive Eq. (4-10) from Eq. (4-1), consider Fig. 8. A ray passes
through the point P(0, 0), is reflected at the point C(x, y) and then passes
through the point Q(d, 0). Then,

C Q C

2
_ z 2 dy —7 7 d
J‘Ndl., +INdL —IJcos 91+€ sin 81 2-53151—4}"[4(.08 ez+csm 62 ;ﬁ;
C

P C p

=Jy2+ex2 + Jy2‘+ e:(x-d)Z = L(x, y) (C-1)

The variables x,y are subject to the constraint of lying on the con-

ducting plawe, i.e.,
f{x,y) = Bx+ Ay-AB =0 (C-2)

The equation which gives the extremum of {C-1) with the constraint ( C2) is

) dL
¥x 3y
= A €x + €({x-d) _
Jyznx" Jyz-l» (:(x-d)Z
af of d
dx dy
S W ewec B wawerd B (c-3)
y t€x y +€x
Substituting
X = tan8 x-d-tane -é-tane ang 8.=6_+7; 6 =8
cranvy . T 2’ "B T o i—t1 P et Y2
one gets from Eq. (C-3),
(tanﬁi - tan 'Sr) [(e mnz-%o- l)(tan8i+tan6r) ‘Ztant’io(e tanGi tan8r+ i =0,

(C-4)
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which, upon exclusion of the case tan., =tan":r, yields Eq. (4-10). In this
derivation no restriction has been imposed on & , sc that the result is valid
also for negative € . While real rays propagate in this instance only when

_ 1

: 3 2 e -
Itanvl.f_tanbc ./-_e' {C-5)

Eq. (4-10) yields a real ¢_ for any 5. .

o ¢ ).y. : r et o (2)1s) .
This ie in accord with an image technique' ''" 7’ by which the reflected
field can be constructed as shown in Fig. C-1. A ray emanating from a source
S gives rise to a reflected ray which appears to originate at an image source

I. If €<0, incident rays can propagate only within the wedge ASB.

s
Q Gc |&
S

3
B
>

B N N N . O, . N, N, W
PN N N N . W . O W

7,

7
&
H

Fig. C-1 Reflection by a perfectly conducting plane.
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The image source is then located at the head of the inverted wedge AIB, where
the triangles ASB and AIB are congruent (or ASBI is a parallelogram, with
the conducting planc as one of its diagonals). DBy using the sine law iun triangle
ASB, one gets L
SB SA
-] S 7 S— (C-6)
sin {0 o 90) sm(Go GCT

and since AR is common to triangles ASR and AIR,

. sin(ac-sz) . sin(6C+91)
AR = Al Sin("-eo'l’ez) = ASW . (C-7)

Upon combining Eqs. {C-7) and (C-0), one may derive an expression connecting
91, 52, Go’ and c?c . If -3C is eliminated by using Eq. (C-5), one gets precisely
Eq. (4-10) relating 3-2 to 81, '30 and €. This confirms that the reflection
law derived by Fermat's principle agrees with the one obtained from a solution
of the boundary value problem.

The field above the conducting surface is given exactly by the sum of the
contributions from the real and image sources, regardless of whether 91> SC
(2) ¢ 5,>"_ . Eq. (4-10) still yields a real 8, ,

sarily |€2|> I':‘CI . because an evanescent incident ray giving rise to a propa-

or % 1 < ec but then neces-
gating reflected ray would violate the principle of conservation of energy. If
the incident ray coincides with SB, i.e. ::i =—3C+ 7, then the reflected ray
coincides with IB, i.e. Or = -Sc. All of this information can be deduced either
from the analytic reflection formula in Eq. (4-10) or from the geometric image
construction. In dealing with the conducting half-plane problem (sec. C) rather
than with an infinite conducting plane, the geometric optical direct and reflected
parts of the field can be constructed in the same way. If we assume in Fig. C-1
that the half—plzme(a)
to the left of the point R (i.e., the edge of the half plane is at R), then the

coincides with that portion of the infinite plane which lies

reflected ray RQ now constitutes the boundary between the region where both
direct and reflected rays exist (to the left of RQ) and the region where only the
direct rays exist (to the right of RQ). As has been shown in Eqs. (4-44), the
location of this boundary may also be deduced from the rigorous solution of the

problem. The solution for diffraction of a cylindrical wave by a hzalf-plane shows
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that the boundary between said regions has to be real even when the edge of the
half plane is in the shadow of the source (point R’ in Fig. C-1, for example).
Eq. (4-10) confirms that this is so, and that the pole contributions to the fields
given by Eqs. (4-36) and (4-45) (see appendix E) yield exactly the geometric
optical parts of the field.
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APPENDIX D

By solving the boundary value problem of reflection of a ¢ylindrical

wave from a perfectly conducting plane (b—~%®) :in a uniaxially anisoctropic

{15)

medium, Felsen showed that the reflected field is given asymptotically by

H0 N(Gl)

DN{E}) G+ Nigard

|1 )] = , (D-1)

with 91. 8,, d and d’' defined in Fig. D-1, and Ho defined by Eq. (4-16).

{

2)

r
L

A
Fig. D-1 Reflection by a perfectly conducting plane.

(The choice of source Q and observation point P in Fig, {D-1) in a way such

that -d’ cosel =d cos 9 facilitates some of the following calculations with-

2 ’

N s b sy e o amaa e e st on

out loss of generality).
i We want to show that Eq. (4-17), which has been derived by employing
geometric optical principles, reduces to Eq. (D-1), whichk has been derived

from a rigorous solution. As in Appendix C, we write the equation of the plane

FETTRN
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f{x,y) =x-y tan -30= 0 (D-2a)
and the optical path from Q to P
L(x,y) = 4 (B-y)°+ex® + f(B-y)ote(a-x)° (D-2b)
It is also shown there that Fermat's principle implies
of oL df 3L _ _
Sx 3y " %y 3x - 88 €,)=0 (D-2¢)
Using the relations
sin?, = —E (D-3a)
,‘} - 2, 2
{(B-y}“+x
cos;:l = _...-_.(.I}'_x}___ (D-3b)
J(B-y)z+ x2
sin%Z = F (A-x) , {D-3c)
V(B-y)%+ (A-x)2
€osS, = — B-y . (D-34)
NB-y)24 (5-x)2
one can show from Eg. (D-2c) that
N(- )} N(5,)
(6,,5,) = = ! 0
E¥yr72 coséD cos=,+ 7 sin?o sin-‘-)_ cos‘f0 cos‘31+e sineosiné1
(D-4)
Also
a % sin(=z -cl)
55 =- : (D-5a)
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€ sin(6,-8 )
°f - , ¢ o | (D-5b)
2 N°(8,)

Thus, for the case b~® in Eq. (4-17)

as, | sin(0_-0,) N°(6,)

t = (D-SC)
do, @ . 3

1ig = const sm(ez-eo) N (61)
o
From Eqs. (4-14) one finds (for general b)
dez . _(_li sin (60-62) (D-b)
dt’il a sinwl-ao;

{see Fig. 9). But it is shown in Ref. (15) that for b~=
d'N(3,)=a N(5,) ; (D-7)

thus, from Eqs. (D-5c), (D-6) and (D-7)
N(BZ) ) sin(62~90)
NIHI; sin -9,

o

(D-8)

and

N, a6, [N
N(E,7d5, ~VNGE,)

for 8°= constant or b—®, From Eqgs. (4-12), {4-13) and Fig. 9 one can deduce

Ho N?.dl
R

(D-9)

directly
(D-10)

|H (P)| =

which, upon using Eqs. (D-7) and (D-9), reduces to Eq. (D-1),

RN i
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APPENDIX E

Rigorous solution of the half-plane diffraction problem.

The method by which I{a) in Eq. (4-35) :s found, is described n detail
in Ref. (4) chapters I, II for a half-plane in an isotropic medium. Though the
following derivation is in princ¢iple identical with the one in the above mentioned
reference, it differs in enough details to justify its presentation here.

Consider Eqs. (4-22) for the case of plane wave excitation,
L(Z)cp = 0 (E-13)

Ly 20 on Y=0: -®<X<0 (E -1b)

with @ defined by Eq. (4-25b). Since @, in Eq. (4-25b) satisfies

ALY (E-2)

1

the equation for Cps become

L3 < o { E-3a)
S

(0, _ (1), _. _ . -
L'Ve = -L ,i-ako(A3BZ§AZB3)exp[-1koB2X] =

ik ¢ sin(2 -%2")

- 0 O . Y=0
= NGZT) exp [_-1koBZX] on -°°<Xf_0
(E-3b)
Radiation condition at r—~o« (E-3c)
Edge condition at r—0 (E-~3d)

§+ (@) and # (a) defined by Eqgs. (4-28) are regular functions of a in the upper
and lower halves of the complex a plane, respectively. (The analytic properties
of functions defined by integrals are discussed in detail in detail in Ref. (4),

Chap. I). In subsequent discussion, all functions with a subscript + (plus) or

- {minus) will be regular in the upper or lower halves of the complex « plane.
Also, we will denote b, {X,0+), v(a,0+}) the value of ¥(X,Y) or %(a,Y) on
the upper side of the half plane (and its extension at X>0), and by ®(X,0-),
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$(a, 0-) the same values on the lower side of the half-plane (and its extension).

P is continuous on the surface Y =0, 0< X<®; therefore

b, (@, 04) = v (@ 0-) =2 (0) . (E-4a)

s+

The tangential component of E_s is continuous on the whole plane Y=0; there-

fore
L(l)§s+(a, 04) = L(”¢S+(Q, 0-) = L“)é8+(0) (E-4b)

LW (a,0n = LM (@00 = s (o) (E-4c)

Using Zqs. (E-4) and (4-30) one finds

és(a, 0+) Ka) (E-5a)

)
éa(a.o )

L‘”¢S+(0)+L“):s_(0) = (iaA,-iA,q )0) =i A—”F:-uz/Az o)  (E-5c)

L)y (0) is a known function* : via Eq. (E-3b)
s

%s+(u. 0) + és_(a,o-) = .I{a) (E-5b)

(l) . (] (@ x (” koc sin(eo-el) .
L (0) = = .L dx e’ “ ¥ LMy (x,0) = NG ) ] @-koBy) (E-6)

Noting that

,\fki-az/AZ = ,\Iko«l» o./N(Eo),\ﬁco- a/Ne) (E-7)
We get from Eqs. (E-5) and (E-6)

L“)§s+(0) k_¢ sin(9_-2')

+
Jkoi—u/N(ao) N(8 ) Janfk + a/N(5 }(a-k B,)
= ‘i’aEN(eo)Jko“YN(eo) (¢, (0H)-¢_ (0-)]=K-(a) (E-8)

¥It is assumed that for the class of functions under consideration here, the

ia
operators L“) and dee * commute.




104

koe sin(ee-e ) kOCSin(SO-B )

N(6 ') JZT it N Jla-k B,)  N(3')JZfk K B, /N(@_j(a-k B,)

+

ko € sin(eo—e ) 1 1

+ -
N(6 ')Jz?(a-kogz) Nk a/NE ) Nkt k B,[N(8 )

= F_(a}+F (a)

{E-9)
K_(a) and F_(o.) are regular in the lower half, while F+(a) is regular in the
upper half, of the complex a plane. Using Eq. (E-9) in (E-8) we get

(1)
L' . (0)

Jko‘*a/N(Bo)

" The position of the branch points is shown in Fig. 11. In Eq. (E-10) the left-

+ F (a)= K_(a) - F_{a) (E-10)

side is regular in the upper half, and the right-hand side in the lower half, of
the complex a plane, having as a common region of regularity the real axis.
Thus each side can be equated to a polynomial P(®), the degree of wiich must
be determined by the edge condition as follows:

We may assume that near the edge {i.e. for r<<1) ®, can be repre-

sented by a series of the form o

9, = H) 00" (E-11)

n=o

-~

the totz! cnergy E stored in the scattered electromagnetic field in a small
cylindrical volume element surrounding the edge will be given by an expression

of the form¥*

2t R 2 2
- e [ Bws) 20 |[ acp) 13“’5) , )
=] | [311‘9’(“3—; +a 00 33 )ie 37/ t 222000 |7 55/ *BlBlog [xdrdd

=0 r=o (E-12)

~

In order for E to be finite for any finite R, it is seen that 4 in Eq. (E-11)

must be an arbitrary positive quantity. From this result, the asymptotic

*See footnote on p. 41 for elaboration.
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. ~ J s 3 | . . . .
behavior of §s+ and s?s_ for |a!-° may be derived, by using the identity

n
izle+1) |
2 a'rl-l

:t“
J.)J'Leiaxdx = £T(+1) e (E-13)
"0

It foliows from Eqs, {E-8), (E-9) and (E-10) that for lal~=, P(a) =0, and thus

K(a}-F (a) = 0 (E-14)

One may find I{a) from Egs, (E-5)(E-6} and (E-14), the result being Eq.(4-35).

-——d
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Asymptotic evaluation of the integrals in Eqs. (4-36) and (4-45).

Equation (4-36) is the exact expression for the scattered part of the

ficie cue to 2 prane wave which fatis upon 2 conouching haif-piane in a uniaxiaily

anisotropic medium. It is valid for all complex ¢ with Ime>C. If the
incident wave is cylindrical {i. e. excited by a line source at finite distance
from the edge), the appropriate expression for the scattered part of the field is
given by Eq. (4-45). Both integrands have a pole, which for certain ranges of
the observation point contributes a residue term to the solution. The other
term of the solution arises from the integration over the given path. For

ko r>>1, i.e. for high frequencies and/or observation points far from the edge,
this term can be calculated asymptotically by means of the saddle point method,
and given in closed form. This com entional method fails and must be modified
when the saddle point lies near the pole.

Via the transformation
- NS s -
x = ko.\(.o) sin (F-1)

the scattered part! in Eq. (4-36) becomes

RS e e ]
.ozl . P’A . di cos: e.\pl-lkorl\( Ycos (s J's) (F-2)
s A N(‘o; » [ BZ ]
P l-sini |sing - =
N( os
where the saddle point . 5 is defined by

"\SY—AZX 1+~ tanﬁotan:

tan. = —— = (F-3)

Y : 4~ (tan- -tan "0)

with the = sign applying for Y 0 respecuively. For ©=1, Eq. (F-3)'becomes

=+ tan. (F-3a)

tan sl-‘=l

where . (Fig. 10) is the observation angle in the X-Y coordinate system.

The pole of the integrand 1n Eq. (F-2) 15 located at

A Lo e bweas S e dams

vt o

—nb b e

A

ks et b v A Rt A S B Trieb S Ko




gyt U e e ot 50 -

[TV —

[P T

e g, o

. ! v A WAL VR Sk AN

107

sinw, = [y (F-4a)

which expression can be rearranged by using Eq. (4-2%a) to read

1+e¢ tanao tand’

tanw = . {F-4b)
P Je(tan® -tand’)

By equating Eqs. (F-4b)} and (F-3), one finds that when u.'p =w

-{1 -¢€ tanzao) tan3 '+ Ztan?zo
tand = > , for Y>>0 (F-5a)
(1 -¢ tan eo)+ 2¢€ tanao tan &

tang = tan8®’ for Y<0 (F-5b)

which limiting angles have alrcady been noted in Eqs. (4-44). The path of
integration and the locations of %_ and I in the complex & plane are shown
in Fig. F-1(a), for ¢ real and positive. For other values of €, the mapping

from the a-plane to the i-plane will be different. For exaiaple, if €<0 and

tand > ! R

the picture in the t-plane will be given by Fig. F-1(b). For €<0 2nd

the picture again looks different, but as the associated calculations are analo-
gous to the former, this casc will not be discussed separately.“S)

It is evident that if the origina) path p is deformed into the steepest
descent path SDP through the saddle point v the pole at w_ will be inter-
cepted by the steepest descent path whenever ws>-c ; this corresponds to
observation points lying in region A of Fig. 12 if Y>>0, wherein a geometrically
reflected part of the field exists. When & =C. then the observation point lies
on the boundary between regions A and B. The angle of this boundary i3 given

by Eq. (F-5a) and is recognized as the angle of the limiting ray which is
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w = FLANE
€
7
|
0 |
o |
L////,p "///;/,
o
/ <
A= -7/ / 0 P w2 LA 1-F
% j &7 e
/ ////7/
2 o 7

Fig. ¥-1
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—

N
\

// € €0

_

S

Y °"/
|

1
3
~
N

=

-

N

b)

The original and the steepest descent paths of integration for € >0 (a)

reflected geometrically "at" the edge ..f the half-plane.

and € < 0 (b)

The pole contribution

to @ is found by calcuiating the residue of Eq. (F-2) at w= wp ,

N . . e V] f >
Py £ exp [ilkorN( )coz,(ip \lS)J for YO0

Upon substitution of the correct v

(F-6)

for Y20, respectively, it can be

shown that Eq. (F-6) gives exactly the geometrically reflected plane wave in

region A and that it just cancels the incident wave in region C cf Fig. 12.

For

calculating the saddle point contribution to the field, we use the formula

" Cgiv),, ’ -2n Ggle) o
J)‘\L) C d¥ W e S f(..l)s)

P

(F-7a)
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where in our case (Eq. F-2)

¢o= korN({,‘) (F-7b)

This yields the expressions g'.en by Eqs. (4-43).

Eq. (4-45) can be derived from Eq. (4-36) as shown in Appendix G. The
pole contribution to Eq. (4-45) in the region Y<0 w'll be calculated as an
illustra’ a. In that region, \':S in Eq. (4-45) is

® exp fxgx tia, (§)Y J‘ @ exp r-lax*qu(a)Y]

s g7l 2 % W Jda .Jk N(e o)-a (a+8)
(F-8)

The pole occurs at &= -§, and by the residue method, the pole contribution to

5
T
Q.
Y

the second integral in Eq. (F-8) is found to be
e\o[x,n 4 1q7( >)Y]

,[k NG5 )+ 5

Upon noting that qz(—i) = °ql(;) (see Eq. (4-32), one >btains for the pole con-

PAH (F-%a)

tribution to "‘s’

y f _exp [i3(X-X") - iq) (%)(Y-Y"a
B = - = ds
S pole g 4 E -0 JngZ(G ))__ ;2.
.@ exp[iB(X-X")-iq BNY-Y)
= - 142 ;
T Ala)-q,;

W e NGy el (F-9)

i.e., that part of . 5 which cancels the incident cylindrical wave in the geo-
metrical shadow #ore {(for verificat.on of the last step in Eq. (F-9), see Eq. (16)
in Ref. 15; attention should be called to the different definition of 9 2 and
Al, A&' A3 in that reference).

The asymptotic evaluation of Eq. (4-43)bymeans of the saddle point tech-

nique is very similar to the evaluation of Eq., (4-36), because the equations
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which define the saddle points in the complex o and & planes are independent
of onc another. Defining

~
11

ko N(Go) sin (F-10a}

)
i

ko N(oo) sin z (F-10b)

and substituting Eqs. (F-10) into Eq. {F-8),

o - -1 dzcoszexp[xkor.N(e)cos(z-zs)] .

. L . Y
y J d&cost,exp[ukorN(,)cos(w ws)J

. (F-11)
.ll -sinw {sin® + sin z)

@ is defined by Eq. (F-3), and Zg is given analogously by

p{x)

A3Y'-AZX' 1+% tan? tan@’
tan 2 T - —mme——— = - 2 - (F-12)
S F Y’ F(tanv - tané )

which is identical with Eq. (F-4b). The simple saddle point integration breaks
down when

-y o~ 7 , (F-13)
s s

corresponding to observation points near the shadow boundary (see discussion
of Eqs. {F-3), (F-4) and (F-5)). For all other observation points, Eq. (F-7a)
can be used separately for the two integrals in Eq. (F-11), yielding the expres-
sion given in Eq. (4-46).
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APPENDIX G

Derivation of Eq. (4-45) from Eq. (4-36).

The synthesis of the line source result (Eq. {(4-45)) from the plane wave
result (Eq. (4-36)) may be carried out as follows: If the source term in Eqs.

(2-2) is of the form

] LY
M = M = Z 5 Y‘Y )———,—_—_— G"l
M M{3) z { It ( }
the differential equation for P(§) becomes
2 2 ~2 i2 X
Q a Q 2 (t:) ry, €
A ——+ A, —+2A, o= +tk|2(3)=L""0(8)=-8{Y-Y") = {G-2)
1352 T2 5y2 4N Iy r
(Al, AZ’ A3 are defined by Eqs. (4-24)). One assumes for ®{%),
. =y _ i< X
2(X,Y;3) = h(Y) e . {G-3)
which implies that
) 2 .2
2 A k -37 A ’
et g & —x—tun = 2L rzli) (G-4)
adyY 2 2 2 "

As (%) is continuous acress the plane Y=Y, h(Y) must aiso be, and from

Eqg. (G-4) we get by integration between the limits Y’'-» and ¥'+n

[ A Y4,
. dh "3 -1 =
iim + 215 = h T m—— (G- 5)
:n,—~G[dY AZ ]Y,_' A, 2"

g

The solution to Eq. {(G-4} is constructed from the homogegbecus solutions, which

are given for YS Y’ by .
iql,z(-s’)(Y-Y') -iq“(s)(Y-Y')
h(Y) = Ce = Ce (G-6)

with q, Z(%) defined by Eq. (4-32), and C being a constant. Imposition of con-
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dition (G-5) on Eq. (G-6) leads to the solution of Ey. (G-2).

-1q, 1(Y-Y’)+i§x
c ’

p(E)

2n Az(qz'ql)
. iqz.lY‘ -iq2,1Y+i§X
= 1e ‘3 - (G-7)
2427 & Jk MN(8)-8 ke JN(8)+5
It can be shown that (see Eqs. (4-26))
r. . _ . R T
exp lxg X- 1qlY] = exp [u)koBZX- xkoB3Y] (G-8)
if we define
£ = -koBZ . (G-9)

Then fi.r Y’ > 0, a plane wave falling onto the half plane at Y=0 is given by
Eq. {(G-4), which is proportional to 2(3) in this region. The scattered field
cosp(i) due to .such a plane wave is given by Eq. (4-36), which, uron use of
Eqs. (G-9), reads

,koN(Go)+§ j’? da exi[-ic. X+iq, ,la) Y] (G-10)

sp 2n A Jo-Tk N(3)) {a+3)

This solution remains valid for -® <3 <® g0 that the scattered field due to the

source in Eq. {(G-1) is given for Y ' > 0 by

iq )Yy’ o cn fos
e 1 I dae.\p[xax*aqllz(a) Y]

an J2= aJkoN(Go)-fls - "a-koN(Go) (2+8)

By applying the inverse Fourier transform

T (E) = & (G-11)

-~ @®
»

‘ 1 -iE X! =
(X'} = = | d3 : F(3 (G-12)
( ; JF Jw > € ( )




[N

13
to Eq. {G-2), we get
/A 2, A _az_* 2A 2 KO o(X, Y; X' YY) = -6(X-XI8(Y-Y) {G-12)
\13}(2 . 3 3X9Y LR, X5 A = -OlA-A - -
/

which is the desired form for line source excitation. The scattered part of ©®
will therefore be the inverse Fourier transform of Cps(g) {Eq. (G-11)), which

is given by Eq. (4-45).
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APPENDIX H

Asymptotic evaluation of Eq. (4-80) in the illuminated region.

The Weber functions D i (.34-2ik) and D 1, i) (tnqd-2ik)
"2 Zk 2 2k
which appear in the integral representation of the field (Eq. (4-80)), satisfy the
equations - 2
-=—2—+k(s+/K)D 1\(é.l-“z'x‘)zo (H-1a)
ds J "zt
& +k2(r~2-)/kz; D (=n 4-2ik) = 0 (H-1b)

For high frequencies (large k) one may construct agymptotic forms of these
functions by the WKBJ method as follows

D-l+")‘ s J-2ik) - -—————n—-exp

3
ik J4x2+ Wk dx (H-2a)
2 2k + Y /k o

n
ik sz- Mk% dx (H-2b)
v

B
1 i) y (n J-Zx k) ~ [ 74 &XP
277k 20

D )\ J-Zxk)*———-————/-‘iexp 1kJ“Jx -Mk© dx |+
E'E r -)\/k r/k

+ —————[—exp -ik J"JX -r/k t {(H-2c)
[ ->/k] Uk

Aszuming that 5,v are real, Eq. (H-2a) is valid for M2 > .g? , while Egs.

(H-2b, c) are vahd for >/k2 T|2 . Outside these regions the exponentials become
2
real, For Ik/k i >>r‘a

I~ Egs. (H-2) reduce to Eq. (4-75a), and the exponents




become proportional to JA 3 and X 1, respectively,

The coefficients A,B,C and D in Eqs. (H- 2) may be evaluated by com-
paring Eqs. (H-2) in the region where r’,z
given by Eqgs. (4-72).

R |)\/k | with the asymptotic forms

It is useful to note that

g
ik ‘Jx +A/k” dx

"~
>

NI'

-
- 4
- +4 +
5‘45 +i/k +—-'\Z In2=32 70K S+ Mk

(H-3a)
JVk ]

ik sz-x/k“ ax = ikl Z T * o a ’”'/k (H-3b)
>

Ak A SR

If we substitute the asymptotic forms (H-2a-c¢) into Eq. (4-80) we get

[~ 3
H Iy A - -
G, =L | d D, ., (E4-2i0D , ., (-84-210) =x
1odky 2 i% I) 1,13 Ly
o Sinlzp-s 277K Z 2k

"x D ) (-4-2iK) D .)(-t’«l-?.ik) ~

1 A 1 i
"2 2%
- 11 .
= |a%sC ——(—A——I—f( +—)(:‘2+i)(r -—7)( “"-—%) * exp [Z a,M) +
- Sin -Z- L ]
- 3.1 :
+ a%8p | ,i“ ; "[3,2 ESRTAT ‘Z)( “"-—"z) 4 exp[% 2,0
o sm( E) ' & k J

where

qy, () = {:"‘L +"2’ + "I"é‘*;):g RN E +;7 + n'J:.'—z-—k—gJ +
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Eqs. (H-4) are really valid only in the region

-min’iz.g'z <-)\7<min37}2,7‘,'2$ {H-5}
k )

where min {a. b} stands for 'the smaller of a and b". Thus, if there is a
real saddle pcint in that interval cne may obtain a closed asymptotic form for
G1 from Eq. (H-4a), which will represent a propagating wave. If no saddle
point is found in the interval {H-5}, the asymptotic form in Eq. (H-4a) becomes
useless. Eq. {4-75a) indicates that in this case the integral has no real saddle
points at all, and does not represent a propagating wave. Next it will be shown
that the first part of Eq. (h-4a) has one real saddle point in the region (H-5),
whereas the second part has none. Thus G1 is given asymptotically by the
first integral alone.

One may easily verify that

x+‘Jx iA—Z x+4x2i—-2—'
X \
SET A

‘ kK© S /x

Thus

- :Z =17 :IZ }s
SRR e R
= 1ln (H-7a)
dx . > '
ST LI LA
kZ kZ

z Z
k k=) (H-7b)
2 s ’ -12 s
- +4-c. ~' a3 S
K2 K2

This condition has a simple geometrical interpretation as shown in Fig. H-1.

From Egs. (4-66), it follows that
~ = {R¥v JR(1+c0s9) = 42R ces‘iz’- (H-8a)

r' = JR%v = JR (1 +cosp )= Jza'cosi'z‘- (H-8b)
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uh
"

JRv = {Ril-cos ) = 42R sin%"-

{H-8¢)
g’ = R .v' = JR(1 -cos®’) = JZR' sin% (H-84d)
Also
P = y-Q
@' = y+a'+nm (H-8f)
t = Rsinasiny = R’sina’ sinv . (H-8g)
u
Q
It is seen that if we identify
Vo= o2k (H-9)

S

then by using Eqs. {K-8), we can show that




18

2 A
£+4f8 +—% sin YO, o Yia
k \/l-cosq) ++/1 - cos® + 2siny sina - m = sin — - tanY
2 )‘s 1/1+cosCP +/1+cos9 - 2siny sinQ cos Y2a+ <:os-Y—‘+3--S e
;‘l" > -F
(H-10a)
and similarly, Y
’ - 2 8
|§I +a4f5’ +:Z
= cot% , (H-10b)
] X

which satisfies the saddle point condition Eq.(H - 7b). Now it is seen from Eq.

{H-4b) that ) T
q, (A ) =[J§ +7+ B IJ"2+-+an -5 'Jn'z-—-sz ] (H-11a)
k

k
But

X
2. s 2
§§+7+rz$~- =
k ) K’ -

I >
©

VR(1-cosP})V/R(1 -cos®)+2t + /R{1+cos® +/R(l+tcosP)-2t =

= R[Jl -cos(Y-a) /1 -cos(vy+a) + /1 +cos(v-a) /1 +cos(v+ 0.)] = 2R cosa
(H-11%)
and similarly

=17 ze2,'§ wr for 2 )‘s . ’
1§54 + 27’ "5 = 2R'cosa’ . (H-1lc)
k

Thus: r
exp[z ql(k )] cxp[ik(Rco:;a+R'coso.')] = explik|§-5'l] (H-12)

which is exactly the phase term at the point P of a wave emanating at Q (Fig.

H-1). The saddle point condition for qZ(\) in Eq. (H-4b) would be

r2 +7 ] +1’T‘ --—Z

vy
'y

151+

VAl

1 (H~-13)

Vg ool reosmrtine e N
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Egs. (H-8a-d) show that a condition like Eq. (H-9), i.e.; a )\3 which is
independe..t of ® and @', cannot be found here.

The second part of Eq. (4-80) yields

D7) g (mpvn2ik)

- 4
G, = LI dx "2 2k D (=/-Z_'—];
2 4k ._il_-[. D, . » li)\”l)x
- SIn(Zk 2) L _%-%(nOV’ZIk) -*z'*‘-z—‘-(-
2
x D, o {-8W2ikD | ;'V-zik -
A "2

=

—~ i 2 dX -2 )\ 12 :'\ 2 )\ IZ )u ‘k

- —E{A BC J‘ —-._?A_—-I—[(s +-—i-)(§ +—2)(n -7)(2“, '—Z)] exp[l—z-ql().)] +
- Sln(-ZTc -i)n k k k k

o 1
. \ 4
2 dA 2 A ,-,2, X, 2 A 2 A ik
+ A°BD j ——7— [T+ T+ - m -l expy q5{}) s
e sm(—z-—ﬁ-—z-)ﬂ k k k k
(H-14a)
where 1»’o
q3(X) = ql()\) -2 J x -;'2' dx =
Sl
2 A
n +.‘"1 -
) zn,lv-% NS SR (H-14b)
- q \ - - o— — ) ——e—— -
1 oY o k2 k2 J)s-lk

q,(}) is given by Eq. (H-4b).
It is seen that the first part of Cv2 cancels {asymptotically} the first
part of Gi’ It must be noted, though, that Eq. {H-14a) is valid only in the region

. ’2 = IZ )t 2
-min (87,5 )<;2< S (H-15)
This implies that the geometrical interpretation of Fig. H-1 and Eq. (H-9) for
the first part of GZ is valid only when the observation point lies in the shedow

region, where t< 'OIZ . In the illuminated region (t> no/Z). the interpretation

still holds for Gl' but the first part of GZ has no saddle point when l/kz >nc2)
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and is therefore of a smaller order of magnitude than G1 .
The asymptotic evaluation of the second part of Cv2 is done as follows:

From Eqs. (H-14) and (H-6) it is seen that the saddle point condition is

given by
(H-16)
[+] L\z
v 8 cisnme e S—
2
21;0
e l":
Q a
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It can be shown that Eq. (H-16) is satisfied if As is given by Eq. (H-9). QCP
is the path of a ray which emanates at Q and reaches P after being reflected
at the surface according to the laws of geometrical optics. OA and OB are
perpendicular lines to QC and CP respectively whose projections on the v
axis are equal and denoted by t in Eq. (H-9) and Fig. H-2. To show that these
projections are wqual, one has to utilize the fact that the reflecting surface is a

parabolic cylinder which implies that

0= (@ - (H-172)
and
= ‘. i~ -
a = Y'; ao Y (H-17b)

(6 is the angle between the tangent to the parabola at C and the v axis).
Using Eqs. (H-8a-d), (H-17) and the additional relations

Y
= - = - = in -2 -134

Ty = ./Ro v, JRO(I coscpo) JZRO sin (H-13a)

o = a'ty’+m (H-18b)

P = y-a (H-18c)

- —ql 4 _

@, = aFY4T = a4y 4T (H-~184d)
_ R sina siny (H-18e)
t = R’ sina’ siny’ (H-18f)

. . - . 4 . ’ -
Ro sina_siny = Ro sina_ siny (H-18g)

Eqs. (H-16) and (H-9) can be shown to be compatible by a calculation similar to
that in Eqs. (H-10). A calculation similar to that is ian Eqs. (H-11) shows also
tha 1 -
ik - ' ’ ' . 2
— = - _ P— + 'p
exp[z q3(f\s)] expEk (Rrosa+R'cosa’' + Ro cosa Ro'c:osa.o).l exp ik (QC+C )J
(H-19)

which is the phase of a wave emanating from Q and reaching P by being

PR

< e e o Adass N
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reflected from the parabolic cylinder. 2 "
From Fig. H-2 it can be seen that t——=- or 5 - nz when the observa-
- 2 ;Z o

tion point P nears the shadow boundary. The geometrical interpretation of the
second part of GZ is valid only in the illuminated region. Thus it is seen that
the exact solution, Eq. (4-80), yields correctly the terms expected from geo-
metrical optics as a first order asymptotic result at high frequencies. It would
be satisfying if we could show that the asymptotic evaluation of the exact solu-
tion in the illuminated region yields also the amplitude factor which Las been

(24)

indeed be shown for the case of a plane wave diffracted by a conducting parabolic

predicted by geometrical optics (Eq. (4-17), Jones claims that it can
cylinder in an isotropic region, but no detailed calculation is given in this
reference. At the time of writing, this correspondence has not been obtained in
the present study although there is reason to believe that the calculation can be
performed.

When € is complex or negative real, the parameters $,8 ',Tl.n' and Mo
become complex according to Eqs. (4-81). If these expressions are substituted
into Eqs. (H-7b) and (H-16), one obtains complex expressions of )\s as functions
of the complex parameter €. The resulting equations for the loci of )‘s in the
complex XA-plane, as functions of €, are extremely complicated, and their
detailed study (for some fixed r aru _1_") is probably done best by computing

machine.

e i T A N T PR YO,
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APPENDIX I

Asympiotic #:.» :;on of Equation (4-89).

According to whether the observation point lies in the illuminated cr the
shadow region, there will be two slightly different treatments ~f Eq. {4-89). In
the shadow region, we follow Figs. 20{a) and 20 {b), assigning coordinates to

the following points:

Q= (x',y'), Q = (x,y)) P =(xy), Py =(x;,y,), O = (0,0 ,
2 2 2 2 2 2
Q= (u,v') Q) = (u,v)), P=(uv), P =(u,v)), O = (0,0 ,
2 2 2 2 2 2
The distance between two points A and B will be denoted by (AB); thus
l
—— N 2 A 4
o - (BD) - ,\!(PPI) +(P16) -—J(u-ul) +(v-v1) +ul+v1
AP+ (B0 = aftu-uy)iiv-v,)? v +v2 t-h
2 2 = u—u2 v-vz + uz VZ
p— N@ P4 @D = A’ - PP - viruliE
p’ = = : (1-2)
P s ’
N@T)5 B = Afta’-u )% (v v waTeesE
a = (661) = ((—)GZ) = (6?1; = (6152) =
= uf-{- vi‘ =ﬁ§+ vg = uiz-l»vl'Z:JuéZi-véz . (I-3)
S
a = 27- fo-w']-3-v = 2n-|eo’ -cos'lﬂi-cos-l ';;. = ;l (I-4)
I ‘ _ ‘ -1 a -l a _ .2
a, = lew’l -8-v = |o-v’]| -cos 2 ~cos” == ¢ (1-5)

By using the relations

RSV
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Xx=u , y=—v—-, (I-6)

one finds from Eqs. (I-1), (I-2), and (I-3),

kp = ko,J(yqu, 2)24» € (x-xl’ 2)24- yf' o€ x?, 2 (I-7a)
kp'= ko‘J(y'-yll’ 2)2-{» e(x’fxi’ 2) + y{z,+ € XIZZ (I-7b)
ka = k_ \;‘;‘+e xf = ko‘\!y; +€ xl' = kon’y2+€ x,

= ko y;,' +€xé (I-7¢)

In the shadow region, from Eg. {4-91)
«© ‘{ - [+ -4
2 exuplw-(cuz%)l Z . Z.

Jnlo-to’v2my)| _
. -

=(l-e

S,-8 S,-S

. . 2 1 . 2 1

i2ou -1 ; id ﬁ-..-————) iM ﬁ+-—-——$
=(1-e  F) le p( 2 /re p( Za) (1-9)

with the last step obtained by subtracting Eq. (I-4) from Eq. (I-5), and sub-

i2nug, -1 {emp (zr-kear'1T any lc.o-cplé

stituting for |o-0’] . S, and S, are the arcs connecting Gl to 151 and
GZ

Xl’2 and XII,Z (see Eq. (4-94)).

to 152 in Fig. (20b) respectively, and may be expressed in terms of

The asymptotic form of the Harkel function,

>3 M
H“). (z) -~ —_— ex iz -1 -ipl2 cos'l_B ) (I-10)
M p p P z
P /\ . 2 2
17 Jz -

is valid for source and observation points which do not lie cn or very near the
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cylinder surface. Eq. (4-90b) is used for HW_ in Eq. (I-10)

p
2
W a ]
S -0 + Olk a) ~ cosY,as ka>1 (I-11)
.2
T(l}_, a—,+ Ofk a) ¥ s cosB,as ka>1 (1-12)
By adding Eqs. (I-4) and (I-5) we get
M M S +S
-1 " p -1 _ S _
°s T4 +cos Té:)" B+y =™ >3 {I-13)

and with the relations derived above (Eqs. (I-7), (I-9), (I-10), and (I-13)),

%H(l)up(kp) H(l)up(ko ) ) eMp lo-(@'+ 274)]

S
- p Z - ’ Z ’ [ » 1

exp [1koJ(y-yl)°+e(x-xl) + 1koJ(y -y'l) te(x; - x;) ik, — ] .
2my

2 2 714’[ izm ]
[(y'-yi) +€(x'-xi)'] l-e F,

B

k;[(y—}'l)a+ e(x-xl)z]

S
. 2 2 . ﬁ 2. ’ Z 2
exp [1koﬁy-y2) + e(x-xz) +ik )"-YIZ) = €(x -Xé) +H —-—]

+ p 2 =
2 213 2 2 %[ iz“”,%
- ’ ' r '
k°[€y-_y2) +€(x-x,) } [(y -y,) T ElxT-x5) ] l-e
; S
: - - ' ! . —
) expi)‘:cdl N(c )+1k d N (& )+uip s
= VRN
~l p
1,I lN(...l, Jk, 3, N6 )[1 -e
[ S2
etp(xk a N(& )+1k d N(E )+xu —
+ p_3a (I-14)

12~up
‘ﬁc d, N(8,) Jk N(a
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The coefficient which appears in Eq. (4-91)

1{2)
H“p (k a)
'g%'HﬁTi)“‘a) M

p

is identical with the one appearing in the corresponding Isotropic problem
(diffraction by a circular cylinder in an isotropic medium), and has been evalu-
ated asymptotically for large ka by various authors“m(l?)‘

For the illuminated region, we follow Figs. (20c} and (20d) for various
definitions and note that S, and S, are now the arcs connecting Gl to 151
and 62 to '152, respectively (Fig. (20d)). They are interpretable as paths of
creeping rays which shed from the surface toward the observation point P
located in the illuminated region. Thus the arc SZ i3 now the long arc con-
necting the points -(32 and -152 in Fig. (20d). From the same figure one notes

that Eqs. (i-4) and (I-5) have to be replaced by:

2]

2n-lo-o’[-3-v = 25-|p-v’] -c<>s-1—:§l--c.os'l -?- = ?1 (I-15)
: o
' -1 a -1 a SZ
27 + Is--‘.fl'l-S-‘\' = 27+ |"-)-~'P'l - Ccos —p— - COs 157-7 = (I-16)

Proceeding as above, one may then derive a result like Eq. (I-14), except that
the £=0 term is not included in the summation. Thus the expression given by
Eq. (4-92) (or equivalently Eq. 4-55) is valid both in the shadow and the illumi-
nated regions, but in the illuminated region one has as well the integral in Eq.

(4-100).
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