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ABSTRACT

This study deals with several two-dimensional scattering and diffraction

problems in anisotropic media. The intent is twofold: First, to generalize

mathematical methods applicable in isotropic regions to a certain class of aniso-

tropic problems; and Second, to study the solutions of the anisotropic problems in

such a manner as to highlight certain common properties which point the way toward

the construction of approximate solutions for configurations with more general

structural shape or anisotropy. In the low-frequency range, the method of multipole

expansion is used. It is demonstrated that the rigorous solution for the problem

of scattering of a plane or cylindrical wavd by an obstacle which is small compared

to the wavelength may be expanded in a series whose terms correspond to multipole

radiation in the anisotropic medium. As an illustration, the excitation coefficients

of the first few terms arising from scattering by a narrow conducting ribbon are

calculated. In the high frequency range, geometrical optics, the first-order

asymptotic solution of Maxwell's equations is considered first. The ray refractive

index is calculated, and the laws of propagation and reflection of rays, which define

the trajectories of energy transport, are derived from Fermat's principle. To

obtain an insight into diffraction phenomena, two types of representative problems --

- - diffraction by a straight edge, and diifraction by a smoothly curved object - - are

discussed. Rigorous solutions are found which are then expanded asymptotically

for high frequencies. The diffracted field contributions are phrased in a manner

which emphasizes the local character of the diffraction process by exhibiting an

explicit dependence on the local properties of the scattering object and on the adjacent

medium. The asymptotic expressions may be put in a form which constitutes a

generalization of Keller's geometrical theory of diffraction, thereby providing a

method for constructing high frequency solutions for a rather general class of

diffraction problems in anisotropic regions.

Special attention is paid to the case for which the medium parameters are

complex or negative real, so that the results apply to a certain class of plasmas

with losses or with "hyperbolic" refractive index characteristics.
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CHAPTER I

INTRODUCTION AND SUMMARY

To gain an understanding of the phenomena of sca'tering and diffraction

of electromagneti" waves by objects embedded in anisotropic dielectric media

has been the goal of many investigators in recent years. The general problem

is rather complex, but various special problems have been solved, both for

their own sake and for the sake of extrapolating th.; obtained results to other,

more difficult configurations. In the foilowing inv,-stigation, the same course

has been chosen. Several special problems have been treated, and an attempt

has been made to find the limits of validity of the methods used.

Throughout this work we assume that the su'rrounding medium is aniso.-

tropic and can be characterized by a dielectric tensor £ the elements of

which are known functions of frequency and other parameters Thus, at a

fixed frequency (steady state). the tensor elements are regarded as constant,

independent of the fields under investigation. The limitations of this approach

have to be kept in rnij. However, results obt -ined from such an idealized

model for the medium are known to furnish workable approximations in such

studies as communicz.tion through the icvnosphere, radio wave propagation

around the earth etc.. where the propagating fieles are not very intense. Of the

mathematical methods used in this work, two shou.ld be specifically mentioned:

L. B. Felsen( 2 ) devised a method of reducing bounidary value problems which

arise from a certain class of electromagnetic rave problems in uniaxially

anisotropic media to other boundary value prollems, corresponding to wave

propagation in isotropic media. This is accompished by means of a simple

transformation of variables. The transformed problems may Chen be treated by

known methoos, and the solutions transformed back to the original variables.

Although this method is applicable only for a rather restricted class of probierne,

its value lies in enabling one to find rigorous solutions. These solutions may

then be evaluated approximately by asymptotic methods in the various wave-
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length ranges. The asymptotic results may be interpreted in physical terms,

and their forms indicate how solutions of more complicated problems (to which

it might be impossible to find rigorous solutions) should appear. This, in

effect, is the main goal of this investigation.

In finding asymptotic solutions in the short wavelength ("quasi optic")

range, use has been made of the method formulateJ by J. B. Keller ( 3 ) for iso-

tropic electromagnetic problems. With the help of his technique, one may

construct asymptotic solutions to a rather broad class of wave problems. It

is important to nnte that this theory has not yet been shown to hold generally.

Instead, many specific problems which can be solved rigorously have been

shown to agree with this theory. In order to extend the applicability of Keller's

theory to anisotropic media, it is therefore necessary to find rigorous solutions

of various prototype problems, (with the help of Felsen's method, or otherwise),

and to deduce from their asymptotic behavior the extension of Keller's method

to a class of electromagnetic wave problems in anisotropic media. It has been

mentioned that the elements of the dielectric tensor ; are regarded as con-

stants at any given frequency. These constants may be complex numbers and,

for example, in a magnetoplasma, may lie on the negative real axis of the com-

plex plane. Under these conditions, the wave equation for some of the field

components becomes a hyperbolic rather than an elliptic equation. Although

Felsen's method may be applied formally even if the elements of ^ are not

real and positive, the solutions have to be carefully examined to find whether

they are still physically meaningful. The solutions of several problems have

been investigated as functions of the complex elements of e and the regions of

their validity has been determined.

In Chapter II the class of physical problems which is considered in this

work is described, the corresponding boundary value problem formulated, and

Felsen's method of solution is outlined. In Chapter III, this method is used for

finding an exact solution to the problem of diffraction by an elliptic cylinder.

This solution is then expanded asymptotically in the long wave range ("multipole

expansion"), and the special case of a narrow conducting ribbon is worked out in

some detail. Chapter IV covers several aspects of the short wave diffraction

problem. First, in order to utilize ray concepts, geometrical optics is dis-



3

cussed and some general properties of the geometric optical field are derived

for our class of problems. Next, diffraction effects are investigated, from

the point of view of Keller's geometrical theory of diffraction. A representative

problem for the treatment of edge diffracted rays is the diffraction by a con-

ducting half-plane, which is solved rigorously by means of the Wiener-Hopf
(4)technique The asymptotic expansion of the rigorous solution is interpreted

in terms of geometric optical and diffracted rays. For the treatment of surface

diffracted rays, two problems are solved: diffraction by a parabolic and by an

I elliptic cylinder. Rigorous solutions are found by Felsen's method, and again

the asymptotic expansions interpreted in ray-optical terms. The diffraction

coefficients and decay exponents found in that way may be used to construct

solutions to more general diffraction problems of the same class, exact solu-

tions of which are unavailable. It is demonstrated that these diffraction co-

efficients and decay exponents are functions of the ray refractive index in the

medium. A ray refractive index may be found for more general anisotropic

media than those considered in this investigation. Thus, the formulation used

in this study indicates the possibility of applying Keller's theory to more general

problems, of which those considered here are special examples.

t
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CHAPTER II

FORMULATION OF THE PROBLEM

We consider two-dimensional electromagnetic problems, in which the

fields are generated by z-directed line currents of constant strength and the

scattering obstacles are perfectly conducting cylindrical objects whose axis is

parallel to z (Fig. 1)

y

Fig. I The geometry of the two-dimensional
diffraction problem.
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The surrounding anisotropic medium is assumed to be described by a dielectric

tensor having the form

C C + zoz C (Z-la)

C- (2-1b)

! ~ o (-i8 :6.

Initially a, 1 and e are assumed to be real and positive constants. Later on,

azialytic continuation into the complex plane will be investigated for some of

these elements. In this class of problems, Maxwell's equations have E-mode

solutions (Hx = Hy = 0) which are excited by magnetic line currents, and

H-mode solutions (E = E = 0) which are excited by electric line currents.x =y
The fields in the latter category behave essentially as in an isotropic medium(1 4 )

and will not be considered further.

For an implied e time dependence, the pertinent field equations

are

v x H = -iJ e- E (2-2a)

V x E = ij; H- M (2-2b)

With the excitation in the form of a magnetic line current of unit strength

M = z 06(x-x') 6(y-y') (Z-3a)
-- O

the magnetic field has the simple form

H = z H(x,y) (Z-3b)
-- O

where H(x, y) satisfies the wave equation

S+ 2 + ) A 6(x-X') 6 (y-y') (2-4)C .'-.+ k Hx~)=-y~
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with 2rt

ko = -X- =  (2-4a)

a = c- 2 = 4io (2-4b)

The field components E and E can be derived from H(x, y) through Eq.x y

(2-2a):

r = ;y + is z) /iwC A (2-5a)

/i sBH+ Hwe 6 (2-5b)

The boundary conditions to be satisfied by H(x, y) are a radiation condition*

at r-- and the vanishing of the tangential component of the electric field

on the surface of the perfectly conducting scatterer. If the object has sharp

edges as in Fig. 1 the field must also satisfy an edge condition.

The dielectric tensor defined by Eqs. (2-1a, b) represents two cases of

particular interest: when CL = c in Eq.(2-), the tensor represents a gyrotropic

medium. It will be shown in Chapter IV that the ray refractive index for such a

medium does not depend on direction (for the two-dimensional class of problems

considered here). The only difference between this case and the isotropic case

is in the boundary conditions at an interface, as can be seen from Eqs. (2-5a, b).

* Since the medium is anisotropic, the radiation condition requiring the out-
ward flow of energy cannot be phrased simply as the "outgoing wave" condition
familiar from isotropic problems. This aspect has received detailed attention
elsewhere(5).
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When = 0 in Eq. (2-1b), the tensor represents a uniaxial medium. Ionized

gases subject to a very strong constant magnetic field in the y-direction may

be represented (approximately) by such a tensor. The frequency dependence of

e in Fq. (2-1b) for such media indicates the possibility that e becoines negative

in a certain range of frequencies. If losses due to collisions and other effects

are considered, e will be a complex number with I m e> 0 for the implied

time dependence. * Further discussion will be limited mostly to this latter

case (8 = 0) as it is the simplest case which displays the anisotropy both in the

ray refractive index and the boundary conditions.

It is the object of this study to find solutions of A. (2-4) subject to the

said boundary conditions for a variety of configurations, to evaluate asymptotic

expansions of the solutions at low and high frequencies, and to interpret these

in physical terms. Further, the dependence of the solutions on the Tarameter e

(as it is allowed; to take on complex values) will be investigated to ?.ssure that

they remain valid throughout the region of interest, namely I me > 0.

Felsen's method of solving Eq. (2-4) in the case B = 0 is as follows.

Define a change of variables

U, (2-6)

which transforms Eq. (2-4) into

+ k H (u.v) -itCJc 6(u-u') 6(v-v') (2-7)av 2

where

k k (2-7a)

2 In reference (I) the reader may find a detailed discussion of the properties of
the dielectric tensor of ionized gases under various conditiorns.
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6H 1 TH (2-9a)

BH 1 6H
- (2-9b)

sine = 4e dv _s (Z-9c)
ds 4 du 2+dv 2  4cLos20 + sin'

ox4su (2-9d)
cosO - du?-+ edv2  4i cs- +sin2§T

with the quantities sin 0 and cos e defined as

s dv (2-9e)
dur+ dv2

Cos= du (z-9f)
duZ + dvZ

Substitution of Fqs. (2-9 a-d) into Eq. (2-8) yields the condition,

aH sn aH H =0 . (2-10)T-- " 6c s ='' 0 on •Z10
b-sin^ + Cose ~w n

is given by a function f(u, v, e,c1) = 0. It is obtained from the expression of

S by means of Eq. (2-61. If a, r are not real and positive S does not have the

geometrical meaning of a surface in the u-v space. It is seen that the oblique

derivative boundary condition in Eq. (2-8) becomes a conventional Neumann

type condition in the u-v space (Eq. (2-10)). If arbitrary complex values of

a and c are allowed, the oerivation of Eqs. (2-7) from (2-4) and Eq. (2-10)

from (2-8) does not change. In this case, S cannot be drawn as in Fig. 2 (b)

because u and v are complex. Also as defined by Eqs. (Z-9 e, f) becomes
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complex. Nevertheless, if a solution is found which satisfies Mq. (2-7) and

the boundary condition (2-10) on S (which is given now by a function of the com-

plex variables u, v), it will be a solution of Eq. (2-4) with the boundary condition

(2-8) on S (vhich is a real surface) in the :, y space. If such a solution is in

the form of an integral or an infinite series, with a, e appearing as parameters,

it will be meaningful only in those regions of a and e where it is convergent

and satisfies the radiation condition. The radiation condition requires radial

outflow of energy from the source at distances very large compared to the

wavelength. In an anisotropic medium, the wavelength is a function of direction,

and the expression kr = 2n r >>I should be replaced by ko N(0) r>> I, where

N(8) = o + sin2 a (2-11)

is defined as the ray refractive index and k(^) is the wavelength along

a radial line from the source, which makes an angle 0 with the y axis.

Proof of the right hand part of eq. (2-11) will be given in Chapter IV, section B.

Using Eq. (2-11) it is easy to show that ko N() r>> I expressed in the

u-v coordinates becomes k~u2 +v >> 1, which is just the usual requirement

in an isotropic medium. Thus the transformed problem comprises Eq. (2-71,

subject to a Neumann type boundary condition on S and a radiation conditicn

of the usual type. This is a conventional diffraction problem in an isotropic

medium characterized by a wavenumber k. If its solution can be found, one

-may use the inverse transformation of Eq. (2-6) and thus obtain a solution for

the original problem in the x-y space. As long as a and e are real and

positive, the physical nature of the origin - and transformed configurations is

retainied, and a solution which is physical in the u-v space will be physical in

the x-y space as well, because Eq. (2-6) introduces a change of scale only.

If however these parameters are complex or if one is negative real, it has to be

shown that solutions obtained in a formal manner via Eq. (2-6) still solve the

original physical problem, by checking their convergence and the satisfying of

the radiation condition. In the absence of physical boundaries (radiation in

infinite space) or in the presence of a perfectly conducting plane boundary, it
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has been shown that Felsen's method yields physically meaningful solutions
plane(2).

if ci, £ are restricted to certain regions in the complexpln

21

I
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i
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I
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CHAPTER III

SCATTERING IN THE LONG WAVE RANGE

A. FORMULATION OF THE PROBLEM OF SCATTERING BY AN

ELLIPTIC CYLINDER

In this chapter we solve the problem of scattering by a perfectly con-

ducting elliptic cylinder embedded in a uniaxial medium. The rigorous expres -

sion for the Green's function is found by utilizing Felsen's method. An

asymptotic expansion is obtained which is useful when the dimensions of the

cylinder are small compared to ko. For the special case of a narrow ribbon,

the terms in the asymptotic solution are identified as multipole radiations in

the uniaxial medium.

co I

Fig. 3 The geometry of the elliptic cylinder.
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It has been shown in Chapter HI that all the field components are derivable fromn

a Green's function G which satisfies the equation

+ +kG 6(u-u') 6(v-v') (3-1)

subject to the conditions

o on S.(3-1a

Radiation condition at 'u + V (3-1ib)

The equation for the given surface S in. the anisotropic x-y space is

2 (-3 - a)
a b

which may be expressed in terms of u, v by transforming- first to the x, y

coordinates, and then using Eq. (Z-6). The resulting equation for Sin the

u-v space is:

2 2A(G )u2 B(e )v + 2C(9 ) uv I (3-2b)
0 0 0

where Co .22 3-c

B(:-- 0 4 1~- (3-ad)

C(s) 4-F- sin;: cos 8 (3-Ze)

0
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In order to have the equation for S in a convenient form, one may perform a

rotation through an angle 6 in the u-v space

/u (osb - sin
~v~h Ksin 6 cos (3-3)

so th .t the equation for S in the U- V space may he written as

[A(e 0 ) cos 2 6 + B(e 0 ) sin 26 + 2C( o0) sin6 cos6] U2 +

+ [A(e o ) sin 2 F+ B(O) coss26 -2C(O) sin 6 cosS] V2 +

+ 2 1[B(a 0) - A(e 0)] sin 6 cos 6 + G(O 0) (cos 26 -sin 2'6) I UV = 1 (3-4)

If one sets the coefficient of UV equal to zero, the angle 6 is determined in

terms of quantities a, b, e, a, E,

tan 25 -L C (3-5)sinZ~ a""b + C°o 0 2a

and the equation for S now has the canonical form of an ellipse in the U-V

frame;

U2 V2 (3-6)"''"+ -''- = i(3 6
nm n

With the help of Eq. (3-5), m and n may be expressed in terms of A, B and C

which are defined by Eq. (3-2c, d, e). The results are

m [ [(A + B) + 4 (A-B)I + 47 (3-7a)

- ll/o,

~ (A+B)-(A B)2+4C] (3-7b)
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Some algebraic manipulation shows that for real and positive a and , mn

and n (the semi-axes of the ellipse in the U - V space) are real and positive

quantities. For complex or negative real values of a and(or) C, U, V become

complex variables, and Eq. (3-6) is no longer the equation of a real ellipse.

The boundary value problem is now

+ .-- + k G - (U- U') (v-v' (3 -8a)

U2 V2=0G Uon -7- = (3-8b)

im n

Radiation condition at k 4U 2 + V -. o0 (3-8c)

B. SOLUTION IN ELLIPTIC CYLINDER COORDINATES

The boundary condition (3-8b) suggests solution of the problem in

elliptical cylinder coordinates.

FR - R

-, R

?R

Fig. 4 Elliptical cylinder coordinates.
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We introduce the usual coordinates

U = d cosh cos 9 (3-9a)

V = d sinh sin r (3-9b)

d =4m-n (3-9c)

whence

0 < § < 00 (3-9d)

0 <r < 2 r (3-9e)

It follows that for § >> 1

R = 47 d cosh (3-9f)

) = t a 
- I V

CP = t1 ta( 3 -9g)

the differential operator in Eq. (3-8a) then becomes:

a2 2 2 82

+ + +k2-a +a + 2h 2 (cosh 2- cos 2 1) (3-10)
au av a

where
h2 1 k2d2 12 (2 2

h z kzd =1k (m -n) (3-10a)

and the boundary condition (Eq. (3-8b))is

-0 on (3-10b)

The solution to Eq. (3-8a) is well known and found in terms of Mathieu

functions (8)(ll). It has to be periodic in the n variable, which calls for

Mathieu functions of the first kind and integral order (9) Ce( n ; h2 ),

5) From Eq. (Z-9e, f) and (3-9a, b) it is easy to show that the condition given by
Eq. (3-10b) is identical with condition (2-10) evert for complex a,e.
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se (I;h 2 ),or their linear combination me m(;h z). The "radial" Mathieu func-

tions ( 10 ) Mtm h) are so defined as to behave like outgoing or incoming waves
(or their linear combinations) as §-. In terms of these functions the solution
to Eqs. (3-8) is i - ,) (3)

G(, 1r; n') mem (7') mer)(-O m(>

wherem 0 -°) M(3) = Gd + Gs  (3-11)

where

I when g>g=> (3-11a)

'when '>

( when <
< = (3-11b)

' 'when '<

and

(1)

m M( 3 )  h)M A 3 )  m (3 -Iic)m (0) ag 9 go

the derivation of Eq. (3-1) is given in appendix A.
The first part of Eq. (3-11)

)me me (- 3n)M 1 )  M() ) (3-12)d I m m " m
m= 00

is a representation of the primary field, for which a closed form expression
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is known ( 1 l):

G-d H o (ki R -R'j) H(o)r4U + (V-V9] =

HO) [k ')2 + (Y-y) ] H(l)[k.N() Ir r'] (3-13)

with R, R',cp and0CP' defined in Figure 4, r, r' and 6 defined in Figure 3 and

N(G) defined by Eq. (2-11). Eq. (3-13) may of course be derived directly by

applying Felsen's method to Eq. (2-4) in an unbounded space. This will be done

in Chapter IV, section B . The second part G of Eq. (3-11) is a representa-

tion of the scattered field. It is known (9-12)that this representation may be

expanded as a power series in h 2 . If h<<l and § 1<<, i.e. when the dirnen-

sions of the scattering obstacle are small compared to wavelength, this stries

is rapidly convergent( I I .Z) The form of the scattered field G s becomes

quite simple in the "far field" region, i. e. when both source and observation

points are located at large distances (compared to wavelength) from the obstacle.

Then h<<l and cosh >>l, in which case (10 )

M(G1) (9) ~ J (kR) (3-14a)

m m

M(3) (9 )-H(lI ) (k R )  (3-14b)

Because of the rapid convergence of the series expansion of Ga, only a finite

number of terms contribute effectively, and it is permissible to replace HQ)(kR)

by its large argument asymptotic approximation HI)(kR) eimn/ Z . Thus G is
05

written as

G [~H'1)(kR)] i H 1) (kRj ' pc'

=I4LH(o) oN(6)r* H M [koN(')r'J+(e 8) (3-15)

There are differences between the definition and notation of Mathieu functions
in references (8) and (11). In this study, the notation of reference (8) is used.
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where it is urnderstood that the large argument approximations of the Hankel

functions are implied (i. e., the result is good to 01,14kR) and 0(l/M'T)),and

where

g(ep,cp') = 4i) (-)m ne () nie(-r) M' a (3-15a)
mm M'( 3 ) 0)

m

g may be expanded as a power series in h which, due to the condition h<<l,

will be rapidly convergent. According to Eq. (3-9g), 'l and Tj' in this expan-

sion may be replaced by ep and rp'. All pertinent formulas for this expansion

are given in references (9) an; ! 10), and the calculation has been carriedt out in

detail in reference (12). The .icattered field, given by Eq. (3-15), has the form

of a cylindrical wave radiated from the obstacle, with an amplitude proportional

to the incident field at the location of the obstacle and to a "scattering coefficient"

g(c,cp'), which is a function of the geometry of the scatterer and the properties

of the medium. The identification of g(cP,cP') as a superposition of multipole

radiations in the given medium will be carried out in the next section for the

special case of o= 0, i.e. where the elliptic cylinder reduces to a atrip.

C. SCATTERING BY A NARROW STRIP

If the ellipse in Fig. 3 reduces to a strip, then b=0, and a=c ° is its

* half-width. To find the half-width m of the transformed strip (nzO in this

case), one nay use Eqs. (3-2) and (3-7). The calculation is rather irnvolved

since one has to determine im m(a, b) in Eq. (3-7a) in order to obtain the

desired result. A more straight-forward approach may be used in this special

case. It con6%sts of transforming the end points of the strip, which are

S=i-(co0sin 8o , c0 cos eo) and P 2 -(-c 0 sin 0o, -Cocos 0 in the xy space,

into the uv space via Eq. (2-6). The result will be

*a N() (6M 0 (3-16),4C a
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where N(O ) is defined by Eq. (2-11). Eqs. (3-10a) and (3-9a, b) then yield

k a
h =- oN(O) (3-17a)

§o = 0 (3-17b)

and the expansion of g(CP,(P') is performed as follows. Using the relatiorns ( 9 1 0 )

mem (2;h 2 ) =j'z Cem(z;h 2 ) m = 0, 1, 2 ... (3-18a)

me m(z;h2) =iJ e m(z;h ) m = 1,2, 3 (3-18b)

MMi (z;h) =MP~) (-z;h) m = 0, 1, 2 . (3-18c)
m m

M( i ) (z;h) ( 1 )mal) (z;h) m = 1, 2, 3 (3-18d)-m m

one may write
* 0 M 's(1)(O)

gmT ,) 9. ,CC, -4 m B ) B -I m (3.19)g(cP)cp'~ g(ePc') =-4i (- 1 ) mn Sem(n')em(-) in (3)1O)
m= m=l 3

because

M* ( 1 ) (0)- 0 for m =0,1,2-. (3-19a)m

Furthermore
(G)

Ms (0) 2r i
=- i--h2 [l4~o(h)j (3- 20a)

M (1)

M'2 (0) -i 4 2
Ms3 1 +O(h )I (3-ZOb)

M S 2 '(0)



I

12s1 ( ; 2 )  h2 4
se(jh)= sincp --a- sin 3p + O(h4 ) (3-Z0c)

sez(r h 2 ) = h2-h sin-IT + O(h 4 )  (3-20d)

With Eqs. (3-19).(3-20) and similar expressions for m>2 it can be shown that

C,, =0ka mgm,

The leading term has the form

g l (CP,CP ' ) = 4nh 2 sinp sin(P' + O(h 4 (3-21)

The quantities ,cpq"' and h2 may be expressed in terms of e, 8 a, etc.

Rather than using the general Eqs. (2-6), (3-3), (3-5), (3-7) and (3-10a), one

may obtain the result by inspection for the special case under discussion (see

Fig. (5)):

r _4 (u°v

(XoYo) USO

U
X

Fig. 5 The conducting strip in the real (x, y)
and the transformed (u, v) space.

fI
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R =U- V,-4--+-? -c +zj>p~ 4 Y = IN8 (3-22a)

*sin6 0 0 (3-22b)

roN(80) N(e)

u°  -x°  4e sin e°
Cos 6 4 0 (3-22c)cs 6+v roN(e) N(6)

-000 + ysine

V -usinb +vcos6 0 0_+xcioosin =O r--R r N(9) NR(Oo)

-sine cos + cos8 sine sin( 0-6)= o =J 7= J " ( N0o) (3-ZZd)
N(%} N(6o )

Thus, Eqs. (3-17a), (3-Z1) and (3-22d) yield

sin(eo -') sin(O -8)

gl(c,cP') =(q, e) ,(koa) C N(G' )  N18) + 0(koa) (3-23)

One may verify that Eq. (3-23) represents the radiation from an electric dipole

line source and find therefrom the polarizability of the strip.

D. ELECTRIC DIPOLE LINE RADIATION, AND THE POLARIZABILITY

OF A STRIP

Consider Maxwell's equations

1 x E = iw H (3-24a)

V x H = iw e. E+ J (3-24b)

with e given by E. (2-la). H given by Eq. (2-3b) because there is no variation

in the z-direction 1-4--- = O) and the source term given by
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J p 6 (r)(3-24c)

p = (x sineo+ cosOo)p (3-24d)

This excitation describes a uniform line distribution of electric dipoles oriented

perpendicular to the line axis. From Eqs. (3-24), one may derive the wave

equation

[ 2 2Hz - -CL A6 (r), (3-25)
8x- 3-' xk Y3

where A = p sin6 -aCos e (3-25a)

If we define H=- AG, then the equation for G reduces to

_2G + 2G + k2G =-6(r) (3-26)

whose solution, subject to a radiation condition at infinity, has already been

given by Gd(r, 0) in Eq. (3-14). Thus, the solution of Eq. (3-25) is

H(r) = pa cos a °  b sin I H l [k 0 4 +CXJ =

x y +

sin(9- )=-p k ° Oae N--qp( ) 1 o~a y + ex 2

For k=o;ay+ CX k rN(O) >> I one may write

H(l) [korN()]~ -i H(l) [korN(8)
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so that

(r)pk e - e0) iH.(l) [krN(eO) (3-27)
_ N (0) 1 o

comparison of Eqs. (3-15), (3-27) and (3-13) yielr-
r (k a) sin (8o e ) 4

p= Ao koN + O(k a)] (3-28)

where A is the intensity of the incident field at the location of the obstacle.0

Eq. (3-27) shows the leading term in the expansion of the scattered field as an

electric dipole term, and Eq. (3-28) gives the intensity of the dipole induced

in the strip by the incident field. The first order approximation of the scat-

tering pattern as given by Eq. (3-23) is shown in Fig. 6. A calculation simi-

lar to the above for the determination of the quadrupole radiation is given in

appendix B.

Fig. 6 Dipole radiation: first order approximations of
the scattered field.
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E. CONCLUDING REMARKS ON LONG-WAVE SCATTERING

The expansion of Eq. (3-19) can be carried out to higher powers of

ka (or h). In the same manner as in the preceding section, one may show

that the leading term in g2 (cp,cp') is 0(k a)4 and its angular-pattern is that
0oi a linear electric quadrupole.

If one considers the problem of an elliptic cylindrical scatterer (b#o),

the leading term in the exapnsion of the scattered field is from the m = 0

term in Eq. (3-15a). This respresents an induco.d "monopole", i. e., an

equivalent line source. There will also be two indiiced dipole terms, one along

the major axis and one along the minor axis of tht elliptic scatterer , and Eq.

(3-28) will e written in dyadic form

p=P. E

where E is the incident electric field. The expansion has been performed (12)

up to O(h ). By properly transforming sin np and cos m cp (as has been done

with sin cp in Eqs. (3-22)), one may find the scattering pattern in the anistropic

medium.

For the case where the uniaxial medium represents a plasma in a strong

constant magnetic field, a is real and positive, but c may be positive or

negative (in the lossless case) or complex with positive imaginary and positive

or negative real part (in the lossy case). In the former instance, it is seen

from Eq. (2-11) that if € < 0, N(O) will be imaginary in that part of space for

which

tan 0 > tan 0 =[ (3-Z21

4 Felsen (7) has shown that if im N(8) > 0 (for the T ot time dependence), the

expression given by Eq. (343) for the field radiated by a line source in an

infinite medium (which is identical with Gd of Eq. (3-11) ) still satisfies the

radiation condition. We may define the square root in Eq. (2-11) to be positive
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when real and have a positive imaginary part when complex. This restricts the

quotient i to have a positive imaginary part,

Im( )> 0 (3-30)

o r.ena_;hoio tn hw that the same condition on . is necessary for the

scattered part G of Eq. (3-11) to be convergent and to satisfy the radiations

condition. From theorem 1 in section 1. 3 of reference (8) one may deduce that

the vario-us Mathieu functions and their derivatives, which appear in Eq. (3-11),

are analytic functions of h for fixed (possibly complex) arguments. Thus, for

fixed r, r' and o* G is an analytic function of h. It follows, that if the

power series expansion of G converges within a certain real interval

-h 0 < h< h0 , it will converge within the circle Ihj:< Ih01 for complex values vi

h*. Also (according to reference (8) p. 98) the various formu cs for the Mathieu

functions of which we make use in this chapter, are valid for arbitrary complex

arguments and parameters. Thus Eq. (3-15) is valid even if R, R',CP and cp'

are complex. However, in order to satisfy the radiation condition, the inequality

(3-30) has to be satisfied, because in (3-15) G is seen to be asymptoticallys

proportional to Gd (multiplied by the scattering pattern). The same singulari-

ties which appear along the direction 8 (Eq. (3-29) ) in the direct field will

appear in the scattered field for negative real f . Eq. (3-28) also shows that the

induced dipole (and higher multipoles) would be infilwte if e'=8 , because of the

singularity of the incident field along that direction.

The scattering pattern function g (Eq. (3-15) ) in isotropic media is a

function of the geometry of the scatterer, and its orientation with respect to the

directions of incidence 0', and observation 0. Eq. (3-23) shows, that the

orientation with respect to the optic axis 0 is an additional parameter in aniso-

tropic media. Also the ray refractive index in the directions 8 and 0' enters

explicitly into the expansion of g. The ray refractive index is a property of the
(13)anisotropic medium , and may be found in more general anisotropic media as

well. Therefore the results obtained indicate what properties of the medium enter

the expreasion of the scattering pattern g or the scattering cross-section which

is related thereto when the scatterer is embedded in an anisotropic medium.

*See for example chapter 9 in "Advanced Calculus" by W. Kaplan (Addison-
Wesley, 1952) for proofs of these statements.
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CHAPTER IV

DIFFRACTION IN THE SHORT WAVE RANGE

A. INTRODUCTION

Diffraction by objects of relatively arbitrary shape is known to arise

from certain localized regions on the scatterer surface when the obstacle

dimensions are large compared to the wave length of the incident radiation.

The resulting phenomena are described conveniently in terms of rays which

account for diffraction effects in addition to those of reflection and refraction

in geometrical optics. For electromagnetic wave propagation in isotropic

regions, Keller ( 3 ) has presented a ray theory for the construction of the geo-

metric-optical as well as the diffracted field. The theory is based on certain

postulates which have been verified in special but representative cases by com-

parison with the asymptotic representation of rigorous solutions. The purpose

of the present investigation is to furnish a similar interpretation when the

medium surrounding the obstacle is anrsotropic.

A significant difference between propagation in isotropic and anisotropic

regions is the distinction in the latter between the directions of propagation of

the phase fronts (wave normal direction) and of the energy (ray direction) in a

plane wave. Since the fields along a ray are locally those of a plane wave, the

laws of reflection of a ray may be deduced from a solution of the corresponding

plane wave boundary value problem. Alternatively, these laws may be deriveu

by applying Fermat' s principle in a form suited to propagation in anisotropic

regions, and this approach is adopted here. The field amplitudes along a

reflected ray may be determined from the principle of conservation of energy

in a ray tube, thereby permitting the construction of the reflected field by

arguments of geometrical optics. Diffraction effects may arise from surface

singularities or from the vicinity of the shadow boundary on the obstacle. Two

types of representative problems are investigated in this connection: diffraction
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by a perfectly conducting half plane, and diffraction by smoothly curved sur-

faces. In each case, the solution is obtained from the asymptotic evaluatior of

a rigorous formula and its subsequent interpretation in general ray-optical

terms, thereby permitting a generalization to anisotropic regions of the geo-
(3)metrical theory of diffraction . The formulation exhibits explicitly the depen-

dence on the local properties of the medium and the scatterer surface.

At in azz ied in Chapter Ii, the present investigation is restricted to

perfectly conducting cylindrical structures excited by axially independent inci-

dent fields, and most of the phenomena described pertain to uniaxial anisotropy,

with the optic axis of the medium perpendicular to that of the scatterer. The

diffraction problem may be reduced by Felsen's method of scaling to an equiva-

lent one in an isotropic region , thereby permitting the direct construction of

rigorous asymptotic solutions and their ray-optical interpretation. The analytic

continuation of the solution from arg e = 0 to 0 < arg e < T is given specific

attention. The continuation is justified in detail for the half plane problem and

the parabolic cylinder problem, thereby lending an extended range of validity

to the results derived by the :scaling technique.

B. GEOMETRICAL OPTICS

It is well known that geometrical optics predicts correctly the dominant

effects of the electromagnetic field when the wave length tends to zero. The

geometric optical field is comprised of the incident (direct), reflected and

refracted constituents and its properties are described conveniently in terms of

rays. Since the geometric optical field is locally a plane wave field, the

reflection and refraction properties of the rays are deducible from those of

the corresponding plane waves. Moreover, the local reflection and refraction

characteristics of s!owly curved interfaces are, in the geometric-optical

approximation, the same as for a plane interface tangent at the point of i npact

of the ray, so that the information extracted from the analysis of plane wave

refl.ection and refraction by a plane interface separating two media suffices for

a determination of the initial direction and amplitude along a reflected or
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refracted ray. It must be kept in mind tat in an anisotropic medium, the ray

direction (direction of local energy transport) differs from that of the wave

normal (direction of progressing phase fronts), with the relative orientation of

the ray and wave normal vectors determined by the medium constants. The

utility of the refractive index surfaces for the anisotropic medium in predicting

the plane wave (and therefore the ray) propagation, reflection and refraction

characteristics has been emphasized elsewhere'- ... '. In the present analysis,

the ray trajectories are derived from purely ray-optical considerations via

Fermat's principle of stationary propagation time, and it is shown that the

results so obtained agree with those derived from the previously mentioned

plane wave considerations. Since only perfectly conducting surfaces are con-

sidered, the analysis involves the direct and reflected rays only.

The pertinent form of Fermat's principle for propagation along a ray

path s in an anisotropic medium is (reference 6, p. 289),

6f Ndl = (4-1)
s

where N, the ray refractive index, is related to the ordinary refractive index

n via N = n cos y, with Y denoting the angle between the ray and the wave

normal. Since the ray refractive index determines the propagation speed of the

phase front along the direction of the ray, the "stationary time" in Fermat's

principle refers to the latter and not to the time of energy transport. The

dependence of N on n may also be expressed as (reference 6, p. 253)

N = ncosy , (4-Za)

I a n ( 4- )
tan Y = (4-2b)

S= 8-y , (4-2c)

where the presence of a variation of n with direction it; indicative of the

medium anisotropy. The angles 8 and CP measured from the y-axis identify

the directions of the ray and wave normal, respectively. (Fig. 7)



30

For the class of problems considered here the refractive index may be

calculated by assuming a t, ine wave solution of the form
A

~ + K~ kik nk.r
H(x,y) = Ae i ( C X + ) Ae i k r = Ae 0 (4- 3)

substituting into the homogeneous Eq. (2-4), and determining thereby the plane

wave dispersion relation which connects the wavc numbers . and x:

K2 = (k 2 A-C ) (4-4)

with A defined by Eq. (2-4b). In Eq. (4-3),

k= xoC + y = k_ n_ (4-5)

is the wave normal vector defining the direction of propagation of the phase

fronts, k = k/k is a unit vector in the direction of k, and r = xoax+oy

is the position vector. As noted previously, the energy flux vector S (which,

in a lossless medium, is the time-averaged Poynting vector Re E x w*) is

inclined with respect to k by the angle y, and the various angles employed

subsequently are schematized in Fig. 7. From Eqs. (4-4) and (4-5),

n(cp) = A (4-6)

and the above-mentioned refractive index diagram is obtained by plotting

n( p) vs. Cp. If the ray progresses along the e- direction, with tane = x/y,A

then (Cx + hy) = k n(4)k.r = k rN(8), and it is not difficult to show from
these considerations or from Eqs. (4-2) that

N(e) co to (he cxpr ssion 4 bys in2 . =) (4-7)

which reduces to the expression given by Eq. (2-.11) when 6=0 in Eq. (2- lb).
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y

k

WAVE FRONT

I',

Fig. 7: Plane wave propagation in an anisotropic medium.

It has been mentioned in Chapter II that two special cases arise which

are of interest in connection with plasma media subjected to an external steady

magnetic field. If the magnetic field is parallel to the z-ais, then a = -M

so that both n(z) and N() are constant and equal to A. The wave equation

(2-4) then reduces to the one for an isotropic medium, and the anisotropy

manifests itself only through "he relations (2-5 a, b) which differ from the

isotropic case in view of the non-vanishing 9. Since the anisotropic features

are caused in this instance primarily by the presence of boundaries rather

than by the medium itself, this case is not considered further. Instead, we

specialize to the uniaxial situation 'i = 0, cL = 1, e = 1 - (w p/W) 2 , which

arises when the external magnetic field is very strong and is oriented along

one of the coordinate axes perpendicular to z, say y (wp denotes the plasma

frequency based on the motion of electrons only, and w is the frequency of

the electromagnetic field). Eq. (4-7) then reduces to
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N(6) 8 = 0, L=l . (4-8)

With the ray refractive index specified, the ray trajectories may be

calculated from Eq. (4-1). Since the medium is assumed to be homogeneous,

path from the source to the observation point. If a plane reflecting surface is

present as in Fig. 8 inclined at an angle 0 0 to the "optic axis" y, then the

optical path from point P(x 1 , yl) to point Q(x 2 , y2 ).

Q

L = fNdl = J(y 1 -y) + e(Xl-X)z + J(yoy 2 )2 + e(x-x 2 )2 (4-9)

P

must be extremized subject to the constraint Jhat point C on the trajectory

lies on the plane.

Y

dI

Fig. 8: Reflection of a ray from a perfectly conducting plane
in an anisotropic medium.
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The details of the calculation are given in Appendix C and the result furnishes

a relation between the reflected ray direction 8r, the incident ray direction

e i , and the angle e o , all angles being measured in the clockwise sense from

the y-axis:

-(I -e tan2 8o) tan . +Ztane
tan8 - 2 (4-10)

( - etan2 8 )+ Z etan6 tan .

This foimula may be shown to agree with Eq. (10) of reference 15 which was

obtained from a solution of the boundary value problem. If all angles are

measured from the normal to the plane, the formula becomes instead

tan a r  tan a' + 2A3(e o )  (4-10a)r i2A Z(90)

where A3 (8) and A2 (8) are defined by Eqs. (4-24), 8 being the angle

between the conducting surface and the optic axis, measured clockwise from

this axis. In the isotropic limit e = 1, this expression yields correctly the

specular condition tan . r =tan ai. The preceding results may also be applied

to a smoothly curved surface since reflection takes place locally as on an

infinite tangent plane. With the ray trajectories known, it follows from the

definition of the ray refractive index that the phase change over a distance d

along a ray directed at an angle 8 with the y-axis is k dN(O). Referring to0

Fig. 8, for example, the phase increment along the incident ray over the dis-

tance P between points P and C is k 0 N( 1 ), while t - corresponding

quantity along the reflected ray between points C and Q is k0 M N(eZ).

Attention may now be given to the field amplitudes along the direct and

reflected rays. If the excitation is in the form of a line source of magnetic

current located at the point (x", y'), the magnetic field H(x, y) is given by the

solution of Eq. (2-4) 3ubject to a radiation condition at infinity. The solution may

be constructed by Felsen's method which reduces the differential operator in
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Eq. (2-4) to the ordinary Laplacian in the u-v space. The corresponding

Green's function is known and may then be transformed back into the x-y frame,

with the result (reference 2, Eq. (28):

H(x, y) 4 _ H kN - +

0-A0 H (I) k N(O) Ir-r'l (4-i)
4 j(x- o -0-

which agrees with Eq. (3-13). The energy flux S = Re(E x H*) is calculated

from Eqs. (2-5) and (4-i1) and yields the asymptotic result (when

k N(G) Ir -r'l >> ),
Iuo fi710 2 U~ 0

S~r IH(xy)I 2 ° (4-12)

thereby confirming the straight-line character of the rays, and showing, in

addition, that the rays emanate radially from the source.

While Eqs. (4-i1) and (4-12) have been derived here on the assumption

that a and : are positive, it has been shown ( 2 ) (for the uniaxial case 8=0, a =l,)

that Eq. (4-11) remains valid also for 0<argc<r provided that the resulting

N(S) is defined to have a positive imaginary part. The latter requirement is in

accord with the radiation condition and assures the aecay of the fields at infinity,

either due to the presence of dissipation when e is complex or due to shadow

effects when , is negative real. When £<O, (for the uniaxial plasma, this

occurs when w<jp ) S in Eq. (4-12) differs from zero only in those angular
p 2 2 1/2.regions wherein N(e) = (cos 9 + esin 9) is real. Illumination is there-

fore confined to a wedge-shaped region centered at the source and surrounding

the optic axis. A simple ray-optical description obtains when the Hankel func-

tion in Eq. (4-11) can be replaced by its asymptotic form, i. e., when

k° N(S) I r - r' I >> 1. While this condition can always be realized for sufficiently r
large k when N(G) # 0, it fails on the shadow boundary (N(e c) = 0). In the

transition region surrounding 0 = tan (IJe), one must empioy the exactc
formula (4-11).
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Away from the transition region surrounding 0c , the asymptotic form of

Eq. (4-11) may be employed to furnish the magnitude of H at a distance R I

from the source, and the corresponding flux density S1 at (x 1 , yl) is then

obtained from Eq. (4-12). One may now apply the principle of conservation of

energy to a narrow tube of rays to deduce that S I dA l = 2 , wheredAI is

the cross-sectional area oi the iube 0 , RIud wic analogous quantity at

a distance R2 > R along the ray. For this two-dimensional configuration,

dA 1 = I d, dA 2 = Rz dO, so that

IH(x 2 ,Y2 ) = IH(xjYj)I i (4-13)

When an incident ray strikes a smoothly curved surface as in Fig. 9, it

gives rise to a reflected ray whose direction may be inferred from the reflection

law in Eq. (4-10), with e representing the angle between the optic (y) axisO0

and the tangent to the surface at the point of reflection.

b Rodius of curvoture

2R

Fig. 9: Geumetric -optical construction of the field
due to a hnic source in t~ne presence of a smoothly curved

perfectly conducting cylinder.
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To determine the reflected ray amplitude, the conservation of energy argument

is appliod to a narrow tube of reflected rays which appears to emanate from a

focus F located at a distance "a" behind the reflecting surface. Upon

applying the sine law to the three triangles SAC, FAC and RAC in Fig. 9

one obtains the relations

dsd b (4-1 4a)
0

ds d' (4-14b)
1 o

ds ds

ds ds a (4-14c,Z mdl+ nd0 sin(o -

where we have utilized

d82 = md81 + nd8o (4-14d)

and the -partial derivatives m= (30 2 / 8
1 ) and n=09 zI/B8 0 ) can be evaluated

from Eq. (4-10); b is the radius of curvature of the cylinder at the reflection

point; "a" can now be found as follows:

m sin(O -1a0 n)
7 Sin(1O2 ) " sin(o (2) 4-15)

For the special case of an isotropic medium, eZ = 200- e1 and Eq. (4-15)

reduces tc the known formula (of reference 16, Eq. (3))

1 I 2
a d b cosa(

(see Fig. 9)
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The required geometrical quantities are now determined and we may

proceed to the consideration of the power flow in the incident and reflected ray

tubes. If

_WC ° 4e i 2 ir/4

H - 4 ,J-7 I7!7 e (4-16)

denotes the incident field at unit distance from the source (see Eq. (4-11), then

the incident field H" at the reflection point B in Fig. 9 is given via Eq. (4-13)

and the inclusion of the phase change as H' = H (d') 1 / 2 exp (ik d'N(O1 ));
1 00

the associated energy flux in the incident ray tube is

S. dA. = -1 H12 d'N(1 d'd
I 1 0 0 LII

(see Eq. (4-12)). Similarly, if H' denotes the reflected magnetic field atr
B, then the flux in the reflected ray tube at the surface is

Sr dA r = r0 IHrI[( 2[()]-1 ad92
"

By conservation of power, S dA = S. dA i , thereby permitting the determina-r r 1

tion of I Hr'l in terms of I H'I and the derivative (dGl/d8 2 ) in Eqs. (4-14 b. c).

' HrI at the observation point P in Fig. 8 is then given by

1HI = jHrlj a+d

rH= r 47 =+

and the phase of H differs from that of H by k dN(O8) Since the plane
r r 0

wave reflection coefficient for the magnetic field is easily shown to be equal to

(+1), no phase change occurs upon reflection, and one finds by combining the

various expressions that the reflected field H at P due to excitation by ar
line source at S is given by:
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r -. Z - NJ(eI) sin(8o-0 2)

iko[d' N(8 1 ) + dN(02 )j-iTT/4

jk d'+ dmsin(61-6)+ d'dn i (417)a sin(O b sin

The incident field H. over the direct path D from S to P is found from Eqs.1

'4-16) and (4-13) as:

"HJ = 94S ik DN( ) - in/4 (4-18)
. = e o 3 4-8

1 2- ,JN(e 3 )k 0 D

The geometric-optical field H = H. + H may be expected to furnish good1 r

approximation to the actual high-frequency field in the illuminated region of the

smoothly curved scatterer. This statement is verified subsequently from a

study of the asymptotic field solution for the special case of a parabolic cylinder.

It may also be shown that the geometrical optics formula in Eq. (4-17)

yields the correct result when the medium is taken as isotropic (N(O) = I), or

when the reflecting surface is planar (b =-, In the former case, the relation

between 9., aI and 9°0 simplifies to 9 = Zo-9 1 . Upon introducing tk. angle

0. = (T/2) - (e1 - 0o ) between the incident ray and the surface normal (see Fig.

9) one may reduce Eq. (4-17) to the known formula (16), (17)

LU , i k (d'+ d) - i n/4
= r 0 e d (4-19)

~401d' b cosd

Alternatively, when b ; ' Eq. (4-17) agrees with the expression for reflection

of a cylindrical wave from an infinite plane, which was obtained from a solution
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of the wave equation ( 15) This statement is verified in Appendix D. Since the

latter result was shown to apply as well when 0< arg c < n, the same range of

applicability may be expected from Eq. (4-17) provided that the imaginary part

of N(G) is restricted to be positive. If c < 0, the radiation emanating from the

line source is confined to a w,:-Jge shaped region I tan 0] 1< I tan 9 cI and the

simple ray-optical cdescription fails at the shadow bounrlaries I 01 1 = tan 0c

thereby ne<cessitating use of the exact formula (4-11). Anaiogous considerations

are val - for the reflected field which is also confined to the angulat interval

I tan 031 < I tan ae1; since the reflected field appears to come from an image

source, it is to be expected that its value near the shadow boundary

Itan 0.1 = tan 9 may be obtained by retention of the Hankel function in (4-11)c
with the appropriate argument.

C. DIFFRACTION BY A STRAIGHT EDGE

The geometric-optical solution constructed in the preceding section may

be expected to yicld the dominant contribution in the illuminated region of the

obstacle, but it yields no information about diffraction effects which modify the

field in this region and ,.so account for field penetration into the shadow zone.

Diffraction phenomena arise when the surfac.e contains singularities such as

edges or corners, and also from the vicinity of the shadow boundary on a

smoothly curved object. A prototype structure for the study of edge effects, a

perfectly conducting half plane, is investigated in this Section. When the medium

is uniaxial (6 = 0, C = 1 in Eq. (2-1b)), the previously mentioned method of

scaling may be employed to reduce the problem of scattering by perfectly con-

ducting cylindrical surfaces in the anisotropic medium to equivalent conventional
(2)problems in an isotropic region. The latter configuration is a real one when

c is positive real, but loses its physical significance for other values of c. In

utilizing the auxiliary isotropic space, it is therefore necessary to construct the

solution for e > 0 arJ to seek an extended range of validity by analytic con-

tinuation.

The problem of diffraction by a perfectly conducting half plane in a
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uniaxially anisotropic region has already been treated from this viewpoint (2 )

and the solution has been given in a form analogous to that derived first by

MacDonald. (18) In this representation, it is convenient to employ angles

which delimit the various ray-optical domains; while the interpretation is

unambiguous when E > 0, it is not clear how to effect the continuation into the

range of complex or negative real e since the angles then become complex.

To clarify the picture, an alternative analysis has been carried out

wherein distances rather than angles are employed throughout. The problem

has been solved directly by the Wiener-Hopf technique without the intervention

of the scaling argument, and the solution cast into a form which facilitates the

analytic continuation. The same basic representation may also be obtained when

Felsen's method is applied judiciously to the Wiener-Hopf solution in an iso-
(4) (19)

tropic medium . This approach has been adopted elsewhere 1 , and serves as

a check on the correctness of the direct approach.

The physical configuration is shown in Fig. 10, with the half plane

occupying the negative X axis, and the optic axis in the medium oriented along y.

A r SOURCE

8e X

TCONDUCTING
HALF PLANE

Fig. 10: Coordinate designation for the
half-plane diffraction problem.
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Since a=l, 8=0, Eq. (2-4) reduces to

22
Z C ' , k ?  H(x, y) =- iw oe 6 (x-x') 6(y-y') (4-20a)

The boundary conditions are:

In x E= 4 c T SH = 0 on S (4-ZOb)

Radiation condition at r - D (4-Z0c)

Edge condition* at r - 0 (4-20d)

The physical configuration indicates that a transformation to the X-Y coordinate

system will simplify the task of solving Eqs. (4-20). Applying the transformation

Y) (4-Zl)
y os C? sin

to Eqs. (4- 20 a, b) yields:

Al )-- + A()--- + 2A 3(6) + k H(X, Y)- L (2 ) H=

= - i.e 6(X-X) 6(Y-Y') (4-22a)

*The edge condition, which is necess.,ry for making the olutio:n unique, is a
limit on the allowable singularities of the field components near the edge. The
singularities must be such that the average stored electromagnetic energy in a
finite volume surrounding the edge will be finite. In our case, the energy den-

sity is W =[ . o. E + P. IlI Z1. The components of E are derivable

*from H via Eqs. (2-5), thus the condition ~ w(r, Gdrde0<, sets an upper

limit on the growth of H as r -. 0. In the process of solving the problem
(Appendix E) this is a crucial point.
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A(0 + A( 0  ']H(XY) = LJ' ) H= 0 on Y 0

(4-22b)

The radiation and edge conditions remain unchanged, because

r =T+ -y Z. (4-23)

In Eqs. (4..22)

A 1IW = sin2 w + e cos w (4-24a)

A2 (w) = cos2 w + sin 2 w = [N(wj (4-24b)

A 3 (w) = (c - 1 sin w cosw (4-24c)

2Z  2
k = o E (4-24d)

0

The solution of Eqs. (4-22) proceeds in two steps. First, plane wave

excitation is considered, i.e. X'--, Y'-- and X'/Y' = tan 0'. From the

solution of that problem, the solution for line source excitation (finite X' and Y')

may be synthesized. In both cases the total field H is decomposed into incident

and scattered parts (H. and H respectively)
1 s

H = H. + H (4-Z5a)

or

H H +  (4-ZMb)
iL1 S0CS

In the case of line source excitation, qPi is a cylindrical wave (Eqs.

(3-13) and (4-11)). By letting r'-- along a direction 0', while normalizing the

amplitude to unity, the cylindrical wave becomes a plane wave whose ray (energy

transport) direction is along e':

CD here denotes a wave function and should not be confused with the
same symbol employed for angles in other Chapters.
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CP = exp [-iko(B X + B 3 Y)] (4-26)

with

B 1 e sin6° sine' + cose9 cose'] (4-Z6a)
2 [e 0]060

B3 =1- sin 8 cose' - ecos 0 sin0' (4-Z6b)

In this case, cp must satisfy Eq. (4-22a) with the inhomogeneous term set equal

to zero, and the boundary conditions Eqs. (4-22b) and (4-20 c, d). From Eqs.

(4-ZZ) and (4-25) one may formulate the boundary value problem for the scattered

part of the field cps:

L ( 2 ) qCs = 0 (4-27a)

01) cps= - LM P on S (4-27b)

By using Eqs. (4-24) and (4-26), Eq. (4-27b) may be written explicitly as:

L = ik [A3 (o)B 2 + A2 (O )B]exp [ - i koB? x]=

' i k E: sin(9oO ' Y =)
, o k B0 X ] on , (4-27c)N(6") 0x -ik -<X< 0

The following Fourier transforms are now defined:

(a,Y) +(a. Y) + (a, Y) ) iXY) eX dX (4-28a)

where

+(, Y) f fCP(XY) eiX dX (4-28b)
? T 0
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0YY)o(X, Y) eia X dX (4-28c)

1(: Y) (a, Y) e-jaX Xda (4-28d)

Application of Eq. (4-28a) to Eq. (4-27a) *yields*

s s

A . 2ictA d + (k - AL A) 0 (4-29)

After assuming

s (,Y) = I(ct) eiqY (4-30)S,

iubstitution into Eq. (4-29) leads to the quadratic equation

2 2
q2. Za q + A - 0, (4-31)

A1

the solutions oi which yield the dispersion relation

q1 a -)+A3  (4-32)

The function - is double vaued. We choose that value for which the

square root is positive when real, and has a positive imaginary part when com-

plex.

'In the following discussion A 1 (eo)0 A2 (e0 ) and A 3(e ) will be written simply

as Al, A2 and A 3 respectively. The argument will be written explicitly only

when it is different from 6
0
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The corresponding choice of q, (upper sign) or q. (lower sign) is discussed

in reference (15) . In order that qs satisfy the radiation condition, it is

shown that one has to choose

iq I Y
s (cr, Y) = If(c.) e for Y> 0 (4-33a)

iq 2 Y
(cL, Y) = IZ(C)e for Y<O (4-33b)

the relation between 11(a) and I.(a) is determined from the fact that along

Y = 0, the tangential component of the electric field is continuous: i. e. bollh

L(1 )cp and L(l), are continuous at Y=0, which implies that L") is con-

tinuous along Y =0. Thus, from Eqs. (4-33) and (4-28d) one gets

[A q I(a) A Acx.] I, (a.) r [A'~Z(a) -A 3 J a](ayo

which, upon use of Eq. (4-32), yields the relation

11 (a) = - 2() Y

Therefore i (, Y) = + I(a) e , for Y5 0 (4-34)

The determination of I(OL) by means of the Wiener-Hopf technique pro-

ceeds as in reference (4). (Details are given in Appendix E). The result is

I(C) ( k - r B4-35)

L 0 J (L - k o B) Z -- -a
0

* The reader is cautioned to note the slightly different definitions of A1 , AV, A3
and ql, in reference (15).
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from which, via Eq. (4-28d),

+I B  " daexp[-ia X+iql' 2 (c)Y] . (4-36)
IM(XY)= 2  k (-63 Z I 0 a<BJOT

Eq. (4-36) is an exact solution to our diffraction problem. It should be noted

that it has been derived by assuming £ to be real and positive. Next, we
investigate the behavior of the integral in Eq. (4-36) when £ is complex.

The integrand in Eq. (4- 36) has branch points at 0. = + koN(8) which,

00

for real and positive e, lie on the real axis of the complex a plane. The

branch cuts are chosen in -, b . at on the entire upper Riemann sheet of

the double valued functionqA(k1: Z )' the imaginary part of the square root is

positive. The integration path shown in Fig. 11 lies entirely on the upper

Piemann sheet.

a - PLANE

K
ko N (80) kON (80)

k ON (8 ) O  ) -k NC9>
Im =O0 Imi >0

R, i >0

Fig. 11: The path of integration in the complex a plane

a) C real and positive
b) t' complex, im C>0
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When e is complex, N(- o ) will be complex. in Chapter III, it was shown that

in order to satisfy the radiation condition, N has to be positive when real and

ImN positive when N is complex. This condition is satisfied when

0 < arg E < - (4-37)

(see Eq. (3-30)). The branch points then move into the first and third quadrant

Ps in Fig. 11(b), and will not interfere with the integration path. Uniform con-

v.rgence of the integral in Eq. (4-361 is assured if as OL-+=,

Re[iql, 2 (CrY] <0, (4-38)

which condition is seen to be equivalent to

ij + A3 (, o) 0 0Im - ,A( )  > 0 (,4-39)

With

:MI i (4-40)

and using Eqs. (4-24), condition (4-3?) becomes

(c os- +I-dsin 04 cos sine sin )>0 4-41)

which inequality is satisfied for any u and e satisfying Eq. (4-37). One may

check independently that the individual plane waves, and therefore the total

solution. satisfy the power radiation condition when c< 0 (see reference 15).

Since the other characteristics of the solution are not affected by letting e take

on the range of values menti .ed above, Eq. (4-36) remains valid when C < 0.

The ray-optical feature of this result may now be determined from an

asymptotic evaluation, the details of which are given in Appendix F, for positive

or negative real -. The method of steepest descent is used, and it is shown

that there are two contributions to the asymptotic result, one from a saddle point

which we denote by -,o and one from a pole which we denote by c :c g
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ps = c + P (4-42)

It is also shown that ' exists only in certain regions of space which areg

determined by the relative position of the pole and the saddle point. One finds

that CP is that part of the solution which could have been found by geometrical

optics; it consists of the geometrically reflected field (obeying the reflection

law in Eq. (4-10)) and another parc which cancels the incident field in the region

of the geometrical shadow. q) c exists throughout space, and is given by

2. i ko r N(q)-il'

f w (W)_VF kN( e 0(4-43a)
c 5 TkrNMe

where

e siniS sine '+ cos ° cose e sineo sine + coso cos6

I N( 0 )N~ejN(G61) (s

Ws 2) =sinO sing' + cose cosO esinO sin6+cos8 cosE
0 0 0 0)N I-N(G ) Nle(+ Neo'N)

(4-43b)

For c = I (isotropic medium) this formula reduces to that of"

Sommerfel {(Z0)

0 0
Aw sin sin- 44c_ Z cse-) co2e' (4-43c)5ls CO ," = cOo- '1 + cos('o "

Eq. (4-43a) is not valid in the neighborhood of the poles of f(w s). Phys-

ically these poles corresportd to observation point locations on a boundary

between geometrically illuminated and shadow regions (see Fig. 12). T or

evaluating the field in these transition zones, a more elaborate calculation of

(4-36) is necessary 2( 0 ) which yields a result in terms of Fresnel integrals. It

is found that the denominat(,.: of f(w s), Eq. (4-43b), vanishes at two angles:

e =' +TT (4-44a)I "
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= [ - - e tanZe)tane ' +Z tan 0  (4-44b)"

S= tan-[ (1 -etan 2 )+ Ze tanO tanO J

A comparison cf Eqs. (4-44b) and (4-10) discloses that 0 is preciseiy the

angle of the limiting reflected ray corresponding to rays incident from the

direction 0' (Fig. 12), while 91 describes the geometrical shadow boundary.

It has therefore been confirmed that the asymptotic field solution in the exterior

of transition regions may be represented in simple ray-optical terms. The geo-

metrical optics field is constructed in accord with the discussion in Section B

of this chapter, whereas the edge gives rise to a diffracted field which may be

interpreted in terms of diffracted rays (cf. reference 3). The diffracted rays

progress radially outward from the edge and therefore have a radial dependence

as given by the factors multiplying f(w ) in Eq. (4-43a)(see also Eq. (4-16) et.

seq.), while f(w s ) represents the "diffraction coefficient" which yields the

starting amplitude of the ray.

V /

/all

Fig. 12: The field constituents in the half-plane
diffraction problem.



50

The plots of f(w ) in Figs. 13a, b, c, d show the influence of the aniso-

tropic medium on the diffraction coefficient. Whereas the diffraction pattern is

symmetrical in the "sotropic medium (Fig. 13a), the presence of anisotropy

may introduce substantial distortion. When . is chosen negative, propa-

gating fields are confined to certain angular directions so that the diffracted

field emanating from the edge creates its own region of illumination; the

pattern function in the shadow zone describes the angular dependence oi the

evanescent diffracted fields ("evanescent rays"). (It is to be kept in mind that

the last mentioned regions of illumination and shadow are consequences of the

mediun properties when e < 0 and should not be confused with illumination or

shadow zones caused by the obstacle). In Fig. 13d, the incident field is itself

evanescent but gives rise to a propagating diffracted field. This aspect is of

importance in connection with excitation by a line source, to be considered next.

In view of the local nature of high-frequency (or far field) diffraction, it

is to be expected that the amplitude of the diffracted field is proportional to that

of the incident field at the edge. Since the incident radiation is locally that of a

plane wave, it should be possible to construct the diffraction field due to arbi-

trary excitation from the canonical solution (4-43a) for a plane wave. This

argument has been employed in the geometrical theory of diffraction( 3 ) for

electromagnetic wave propagation in isotropic reg'ons, and we show that it

remains valid also in t.e anisotropic case. To demonstrate this fact, we con-

sider the case of a cylindrical wave incident on the half-plane, the rigorous

solution for which can be derived from that of plane wave diffraction. The

details of the calculation are given in appendix G. We assume that x' and y"

in Eq. (4-20a) are finite and (x'/y') = tan@'. The incident field 'Pi is now in

the form of a cylindrical wave as in Eq. (4-11), and the rigorous solution for

the secondary field cps is shown to be (see Appendix G):

+ +_1 exp iX iqlxp[iX+ iq

o (0)- _6 fk N4-4

(4-45)
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for Y'>O and Y<O. After carrying out an asymptotic evaluation of Eq. (4-45)

for k r N() >> 1 (Appendix F), one finds again that the solution is inthe form

of Eq. (4-42), with CP representing a part which can be derived by geometricalg
optics (see Appendix C), while Cpc - the diffracted part- is given by

TT
2 ik r'N(O') -i ik rN(G)-i 4

CP T kk r N(8) e (4-4 o o

Since f(w s ) is the same coefficient as in Eq. (4-43b), and the factor distin-

guishing Eq. (4-46) from Eq. (4-43a) is precisely the incident ray amplitude at

the edge (see Eq. (4-16)), this result confirms the local character of the diffrac-

tion process and the validity of the geometrical theory of diffraction. The

preceding solution, valid for positive or negative e, has also shown that the

boundary of the geometrical shadow (i. e., the boundary of the domain of exist-

ence of the incident wave) is given by the ray from the source which grazes the

edge, regardless of whether this ray is propagating or evanescent. Similarly,

the reflected ray boundary is the one predicted from geometric optical con-

siderations since the reflection law in Eq. (4-10) remains valid even when both

the incident and reflected rays are non-propagating (see reference 15); in the

latter case, the field is obtained by analytic continuation of the real ray solution

t o imaginary values of N(e). The Wiener-Hopf representation has therefore

furnished a simple interpretation of the "geometric-optical" (better, the direct

and reflected) field when e< 0, and it has shown that this part of the solution

* (and its spatial domain of existence) may be determined from direct ray-optical

considerations. This clarification did not emerge as easily from the alternative

$ representation mentioned at the beginning of this section. The diffraction field

in Eq. (4-46) is also Geen to be in a form which is readily interpretable for

positive, negative, or even complex #. It is therefore to be expected that the

, direct and reflected field contributions in the presence of obtazles of more

general shape may be constructed by the techniques of geometrical optics even

when e is non-positive. The diffraction field for a variety of structures may

be determined from known isotropic results by Felsen's method( 2 ) when P is
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positive, and analytic continuation should then provide the correct behavior

when 0< arg e < 7T. These conclusions, valid for the half plane, remain to be

confirmed for other configurations.

Depending on the location of the half plane with respect't, the .lne source,

a number of interesting situations may arise when e < 0 so that ray propaga-

tion is limited to angles 8 such that ItaneI< tanOc = 1IN F-. Various cases

are depicted in Figs. 14 (a-d). In Fig. 14 (a), the half plane is in the shadow

of the source and the incident field near the surface is evanescent. As men-

tioned in connection with Fig. 13, the edge nevertheless creates its zone of

illumination so that the diffracted field in this case dominates the evanescent

reflected field. In Fig. 14 (b), a portion of the plane is illuminated and the

edge is in the shadow. The reflected field is now the same as from an infinite

plane and the diffraction effect is small since it is caused by an evanescent

incident wave. When the edge is in the illuminated region of the source but the

plane is mostly confined to the shadow (Fig. 14 (c)), both the reflected and

diffracted fields may be significant, with special importance assigned to the

diffracted wave in that region of space wherein the incident and reflected waves

are evanescent. Analogous considerations apply to the final case wherein the

entire plane is illuminated (F.g. 14 (d)).

D. DIFFRACTION BY A SMOOTH CONVEX CYLINDER: POSTULATIVE

APPROACH

The present section deals with diffraction phenomena caused by surface

curvature. It is known from studies in isotropic media, hat such effects arise

from the vicinity of the shadow boundary on the scatterer, and the diffracted

fields may be associated with waves which are launched at the shadow boundary,

travel along the surface into the shadow region, and leak energy continuously

during their progress ("creeping waves")(zl)(24). From a ray-optical view-

point, the creeping waves are interpretable in terms of diffracted rays which

are excited by an incident ray tangent to the obstacle. These creeping rays

aiso satisfy a generalized form of Fermat's principle, and the mechanism of
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N<

Fig. 13: The diffraction coefficient f(w)

a) c I (isotropic medium) 8 =-75O e9I450
0

b) =0. 3 33 80=-75 0 8=-45 0'
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Fig. 14: Diffraction of a cylindrical wave by a half-plane.

.4half-plane totally in shadow regionIb) edge in shadow region. but portion of half-plane ilfluminated

I
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Ii  (c)
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ONLY THE
DIFFRACTED
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RAY -

SI

Fig. 14: Diffraction of a cylindrical wave by a half-plane.

c) edge in illuminated region, but most of the half-plane in
shadow region

d) half-plane enlirely in illuminated region
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energy transport from a source point Q to a point P in the shadcw region may

be understood from the ray trajectories Aketched in Figure i5. For a ray path

QQ1 P 1 P, QQ 1 is meas-ired along the incident tangent ray, while QIP 1 is the

distance tra'-eled by the difiracted ray along the surface (with an associated

leakage of energy). Since the leakage may be represented by rays which leave

the surface tangentially, the path segment P 1 P is the associated trajectory.

If the sca:terer is a closed cylindrical structure as in Fig. 15(b), analogous

considerations apply to the alternate path QQ2 P 2 P. In that case there are

additional field constituents at P, arising from rays which have encircled the

cylinder one or more times before shedding. In view of the exponential decay of

a diffracted ray during its travel along the surface, these latter contributions are

frequently negligible.
(16)

The preceding features have been incorporated by Keller into a pres-

cription which allows the quantitative construction of the diffracted field in iso-

tropic regions. While the validity of these postulates has not yet been established

in general, the successful verification for various special cases(16 )(Z 5) lends

strong support for their applicability to smooth convex surfaces of relatively

arbitrary shape. We shall therefore follow similar arguments to obtain repre-

sentations for the diffracted field when the scatterer is embedded in an aniso-

tropic medium. Referring again to Fig. 15, the incident field at Q, caused by

a line source at Q is given by:

A'
A;(Q) 0 (4-47)

where A' is the reference amplitude
0

A' -2i (4-47a)

We denote the field amplitude associated with the diffracted ray near the cylinder

surface by Ad(f), where I is the arc length measured from QI" To relate

A d to A, assume

:1:
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Ad(0) = D(Q) l } , (4-48)

where D(O) is a diffraction coeff.cient which is a function of the properties of

the surface and the medium at Q Because of the continuous leakage of energy

from the surface, it will be furthcr assumed that

Ad(t) = Ad(O) exp[-_ ad J (4-49)

where & is a decay coefficient which also is a function of the local properties

of the surface and the medium. If A(d) denotes the field amplitude along the

ray which leaves the surface tangentially at Pl. then we assume that

A(0) = D(P )Ad(0) exp[l d (4-50)

I

where D(P 1 ) is again a diffraction coefficient. As long as the field satisfies

conventional reciprocity conditions (which is true for the uniaxial case), we may

assume that D(Q1 ) and D(P1 ) have the same dependence on the surface and

medium properties at Q and PIP respectively. In cases of more general

anisotropy, this point has to be reexamined, and more general assumptions have

to be made in accord with the reciprocity relations satisfied by the medium.

Also,

A
A(P) = A(d)= A(0) 0 (4-51)

where

A°  7 (4-51a)

The field at P due to one ray is therefore given by
--A A' [. I )

A(P) = ° D( ) D(P I exp E dQ t Y(P j (4-52)

I

I
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where '(P) is the phase change along the trajectory:

P1
Y(P) = ik. d'N(6) + diN(81 ) + fN [(t) di (4-5Za)

QP

By analogy to the isotropic case, we may expect the possible existence of

different "modes" having different decay exponents . and diffraction coeffi-P
cient D p, p = 1, 2 ..... The total field at the point P in Fig. 15(a) is there-

fore assumed to be given by a sum of all of these modes,

iwe C e P
Hd(P)- 4 4LLTkodL. exP ik° diN 'e0+d1N l)+f

I ~Q1

x D Dpl ) Dp ( P 1) exp [f 6L dt] (4-53)

p=l 1

If the scatterer has a closed cross section (Fig. 15(b)), one has to add the con-

tributions from rays which have encircled the cylinder m-times, m= 1, 2 ......

The formulas for the corresponding rays differ from that in Eqs. (4-52) in that

the integration interval extends from Q to (P 1 + mL) and from Q to

(P 24 m L), where L is the circumference of the cylinder. Using the formula

for summation of an infinite geometric progression, we can write the sum of all

these rays in closed form:

P P+ L

exp f~k N -adt + exp f [ik N -&]dt+..
Q Q

P
P+ML exp [ikoNtp dN (

.. expf[kN&d+.. epik. . d
Q o

L

Thus, the formula analogous to Eq. (4-53), which gives the total diffracted

field in the shadow region of a closed cylinder, is:

. oo -- ,
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iwe e -zi --0 -i __ __ __ _

Hdtp) 4 nkdAN( ) 4kodlN(el)

Dp(Qi)DpP 1 ) exp [ L pd]

1 Q 1P[ko-p~.

L

jW C C ______________i do -2i 4 -2i
-4-i

4 o nkodN(

P p p
D(Q 2 )Dp(P.) exp

exp ik °  N(8 + dzN(e)+J Ndj, 14[55)0Q2 l=l1 -.exp ,[ikoN.-j6 - _4-55)

L

In these detailed formulas (Eqs. (4-53) and (4-55)), it is often sufficient

to retain only the p=l mode (having the lowest decay exponent &) and to

ignore the denominator term in the summand (i. e. to neglect the rays which

have encircled the cylinder completely one or more times). This results in an

expression comprising one diffracted ray for the field in the shadow of an open

cylinder (as in Eq. (4-52)), and two diffracted rays for the field in the shadow

of a closed cylinder.

While the preceding discussion constitutes in effect an application of the

geometrical theory of diffraction( 3 )(16 ) to an anisotropic medium, and is there-

fore based on a series of postulates similar to those in the isotropic case, con-

firmation of its validity may be obtained directly for special configurations, when

the medium'is uniaxial. When 8 =0, with a and C real and positive, the scat-

tering problem in the uniaxially anisotropic region is reducible to an equivalent

isotropic problem by the previously described method of coordinate scaling

(Eq. (2-6)). Since the isotropic analogue of Eq. (4-53) and (4-55) has been con-

firmed for such obstacles as circular, elliptic and parabolic cylinders(l 6 )(Z 5),

an application of the scale transformation yields a corresponding asymptotic

solution for the uniaxial case. It may be verified that the result derived in this

manner furnishes not only the general form given in Eqs. (4-53) and (4-55) but

also yields specific expressions for the coefficients D and a^
p p
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To illustrate these remarks. consider the equation for a single ray (Eq.

(4-5Z)) in an isotropic medium (uv - coordinate space) with wave number

k=ko4A_ = ko, :

i we

id 4 jnk4 nkd P( P

exp ik[ 4+ d+ f - f 1L d (4-56)

with the quantities d, d' and d. defined in Fig. 16,

vUdid

Fig. 16: The uv-coordinate space.

I

- .- • ~ - - ~z--
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and & in the isotropic medium have been calculated by Keller ( 1 6 ):
p

. n/l2 1/6 1/6
kt 0~ uv) (4-56 a)

p A A1I/ 2 1 61 /6 [qpA(q)]

1/3 1/6 (u,v)]-= /3
& -ik AL buv), (4-56b)p 0 p

where b(u, v) is the local radius of curvature of the perfectly conducting

scatterer, and the numbers -r are defined by
p

Tp= qp e 6 (4-56c)

with the numbers q denoting the roots of the equation
p

A(q)- d cos(w 3 -q w d w =O (4-56d)

0

By applying the transformation x=t4U, y=v-E:, the resulting solution in the

x-y space is known to satisfy Eq. (Z-4), the boundary condition E 0 on
tan

the trasformed obstacle, and the radiation conditon at infinity. Since

dv dv I
d"u =  dx = C cot 6,

where 6 is measured from the positive y-axis, one obtains for the transformed

length element

v) Zdy = ___ N() dt(x, y)

(4-57a)
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where N(O) is the ray refractive index (see Eq. (4-8)) and A=detICL=e

(since 0=0). In the same way one can show that

kd(u, v) = k N(O) d(x, y) (4-57b)
0

Skd '(u,v)= k N(B')d'(x, y) . (4-57c)

The phase function in Eq. (4-56) is seen to transform into the one given in Eq.

(4-53), with due cognizance taken of the fact the N(G) varies over the part of

the trajectory on the obstacle su face. Similarly,
2 Z/3 dy2/3

d (t2)1I I/ d 1I d

! 2/3 
- [b(x y)-? 3  (4-58)

N(62

where b(x, y) is the radius of curvature of the obstacle in the x-y space. The

decay exponent in Eq. (4-56) is then converted into:

P

O1

from which one may identify

ik 1/3 :11/3
PL b ) - (4-59)

The diffraction coefficient D is obtained from " in Eq. (4-56a) upc n
p p

inserting from Eq. (4-58).

Thus it has been shown that the field postulated in Eqs. (4-53) or (4-55),

together with the results for a and D from above, describes correctly the
P P
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diffracted rays on simple convex surfaces embedded in a uniaxially anisotropic

medium characterized by real and positive O. and C. In the derivation of the

S result, it was assumed that the asymptotic field representation in the aniso-

tropic medium may be derived by applying the scale transformation to the

asymptotic field solution in the equivalent isotropic configuration. The validity

Iof this procedure, not really in question when e>0, a>0, is confirmed for two

special cases treated in the next sections.

The series in Eqs. (4-53) and (4-55) remain convergent when

0 <arge <n, as may be verified by examining the exponents in Eqs. (4-53) and

(4-55), which retain a negative real part that increases with p for

0<argN(6)< '/2 (corresponding to 0<arge<TT). It is plausible, therefore, to

expect the preceding formulas to hold in this extended parameter range. A con-

firmation of this statement does not follow immediately from the previously

utilized scaling technique since the scaled coordinates are non-real when C is

non-positive. By examining the problem of diffraction by a parabolic cylinder,

however, the solution may be phrased in a form which validates the analytic

continuation of the asymptotic formulas to non-real C The analysis, which

establishes the validity of Eqs. (4-53) and (4-55) for O<arge<n, is presented

in the next Section.

E. DIFFRACTION BY A PARABOLIC CYLINDER: RIGOROUS ANALYSIS

In order to confirm the general results which were derived in the

previous section in a postulative way, the rigorous solution to a special case

is worked out in this section. Felsen's method ( 2 ) is used to obtain the expres-

sion for the field in presence of a perfectly conducting parabolic cylinder

embedded in a uniaxially anisotropic medium (8=0, a=l in Eqs. (2-l)). The

parabolic cylinder surface S(x. y) is given by the equation

2
y 2L (4-60)

with the optic axis parallel to the y axis. This obstacle has a varying radius

of curvature, with the smallest radius of curvature b at x=0. Also, the angle

' between the surface normal and the optic axis varies continuously. A mag-

r7
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Fig. 17 Diffraction by a parabolic cylinder: The xy-space.

netic line current is located at the point Q to the left of the obstacle (x< 0).

As shown in Chapter II, Section A, the magnetic field has only a z-component

H(x, y) from which the two electric field components E and E may bex y
-derived. H(x, y) is defined uniquely by the equations

(~+ + .... k) H(x,y) =-ituec C (x-x') 6(y-y') ,(4-61 a)

byb

aH sin+~~ ~= on S ,(4-61b)

x y
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Radiation condition at r-  (4- 6 1c)

with k=ko4_, and =tan -1 dy denoting the angle between the normal n and

the optic axis.

It is convenient to define

y= ya (4-62a)

where a is an arbitrary (possibly complex) finite constant. The equation of

the surface S(x, y) becomes

2x
a-- .(4-62b)

It is seen that the change of variable (4-62a) does not affect the quantities

21S ,6(-y') and =tan' x so that in Eqs. '4-61a) and (4-61b), y can
ay. an 6 dx

ayA

be replaced by y and S by S. The radiation condition requires outward flow

of energy as r=4  y -" + As "a" is a finite quantity, the radiation condi-

tion Eq. (4-61c) also remains unchanged.

If we choqse

a = /Zb , (4-63)

then upon introduction of the transformation

x=u, i= 4c v (4-64a)

the equation for S becomes

eb u 2
V u (4-64b)

which is the equation of a constant coordinate surface in a parabolic coordinate

system. Via Eq. (4-64a) the boundary value problem in the u-v coordinate

system reads

+ + k G(R,R') = -6(u-u') 6(v-v') (4-6 5a)

iau

I
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SCos =onv f (4-65b)sin au ub

Radiation condition at R =Zv (4-65c)

where HG(R, R') = H 
(4-65d)

and
-tan- = tand l 1du e dx" (4-65e)

A set of parabolic cylinder coordinates is now introduced via

u =(4-66a)

V 1 .2) (4-66b)

the range of variation of il and being

0<1<+ (4-66c)

(4-66d)

We assume C to be real and positive at this stage. Thus 9,u, vl and g are

all real. Later on we will let e be complex and investigate analytic continua-

tion of G in the complex C plane. In the 71- space,Eqs. (4-65) become

[ + + k-(n2+§ 2  G =-6(r-n'16lg-g') (4-67a)

6G

0 orn Tj=?I° 0 - " b ,(4-67b)

Radiation condition at R =) . (4-67c)

The surface 7=?o is real only when C is real and positive. For complex or

negative real C it cannot be drawn as in Fig. 18, but Eqs. (4-67) remain valid.
The surface has a large radius of curvature if b is large with respect to wave-

length. 710 is related to b via Eq. (4-67b), so we will assume



69

U

• />- >o C>n>0

Fig. 18 Parabolic cylinder coordinates.

k r.Z>>l ,(4-68)

with the absolute value sign in Eq. (4-68) applying when C is not real and
positive. A representation of the Green's function G in terms of parabolic

cylinder functions will now be found by means of the characteristic Green's

function method (2 ) . According to that method G is given by

G(R,R') -I X) g(,- ';X) d X (4-69)

where X is the separation constant of the partial differential operator in Eq.
(4-67a), and the functions g and g= are solutions of the one-dimensional

ri
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equations + k 2  X (T I 1 ) X -5( - TI (4-70a)

~+k212+ jg (11,n'. ) =-6(rj-r'),(-Oa

+ • (4-70b)

The contour of integration in Eq. (4-69) closes at infinity and surrounds all of
the singularities of either or g, in the complex X plane. The boundary
conditions ort g9, and g are identical with those satisfied by G in the il and

domains, respectively. Two linearly independent solutions of the homogeneous
equation (4-70a) are given by (27)(28)

f = D 1 i (r.4:ik) , (4-71a)
2 2k

f2 (r,;X) = D I il(- 'TI k-[2) , (4-71b)

2 2k

with ri = e-i 1r/4

where the parabolic cylinder function D V(z) satisfies the differential equation

d 2  v _ -0 (4-71c)

To avoid ambiguity in the asymptotic expressions of f and f for IAI-
it is necessary to define the relations between arg v and arg X

argv = arg -X. when IvI-.c and arg v<01rg = r 31' (4-71d)
arg v = arg X + when Iv I-- and arg v>0
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Also, the Wronskian is given by

ff'f 1  2 - (4-7e)wflf4 = f, f -fztfl - l +ix(47e

Only the function fl satisfies the radiation condition at r1 -i. This may be

seen from the asymptotic formulas-for large values of IzI which are

-" "/4 [r zl--](4q.
DV(z) ~+W z (4-7a)

I { i ->>IlVl and{ arg(z) 1< - ,T

i4

J Sine D~z.zV /4[ 2-)] 2fl-V-1 einv+ z /4f+ z)3 47:!

Dr(z)- z e- z 11 O(zZ " F--- z-I ei [14 +O(z-,)

wzhi ioal i and 1->.vrg(z)> 4  t 4-72b

Since r is real and positive, one finds from Eq. (4-7a)

wtix

D J-, _Z ikT- -2- ) Z 2keik /2 (4-72c)

which is proportional to e i k R as Ti--- . In view of Eq. (4-72b), the same

relation is-not obtained for f 2" A linear combination of f I and fz which

satisfies condition (4-67b) is given by

f 7x)[ i),(_r{<l [ h Z Zk ](4-73)

_Z 2-k -I "

with
hi =7 -2 (4-73a)

and

DD(ax ~ a x)j (4-73b)DV( 0 -- xxx=x
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It can be shown that the Wronskian of fI and f3 is also given by Eq. (4-71e).

The solution of Eq. (4-70a) subject to the proper boundary conditions at 1---rlo

ar). Tl-O is now constructed from fI and f 3 is the usual way(29):

f (ii> ;))f3 (ry<;)

g9(', W-W[fI-f 3] (4-74)

where

whenn> ii

Tl> = I (4-74a)
II

when /< i

sri', when n<r

< = (4- 74b)

when n < n

Next we investigate the behavior of g0 as X By expressing the

solution of the homogeneous equation (4-70a) in terms of a uniform asyrrptotic

approximation one finds

(z '4iv/  i v z  >> lI (4-75a)
DV( e e , >I i - '

3nT
with the upper sign for O>arg v> ,

2'
and the lower sign for O<arg v< 3r"

2

Also,

V) 4I Ivv eV (4-75b)

for IVl'- and Iarg vI<T

317
According to the definitions (4-71d), we have -7 (arg v < 0 , in the range

-rT<arg X < and the upper sign in Eq. (4-75a) is chosen. In the range
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S 3TT

-<argX<-T we have O<arg v<7 and the lower sign in Eq. (4-7&4j is

chosen. In this way Eqs. (4-74a, b) yield:

g~(rnr ';X) .[e X ' -en (T+n '-2ro ) , -TT<arg X < (4-76a)
i7

1'q T 1-e,---- --<arg X<-TT (4-76b)
a) T 2V

which, in view of the fact that n+Tl'>2n , is exponentially small throughout the
0

indicated region. Special care is needed in the interval -TT<arg X< - - which

corresponds to --3" <arg V< -TT. In that range Eq. (4-75b) cannot be used

directly. Nevertheless one can definc, v' = I v' e, where * -arg V and

find the asymptotic behavior of £(v) from the definition of that function( 3 0 )

By doing so, Eq. (4-76a) is shown to hold over the whole region of
TT

-TT<arg X< Similarly, two independent solutions of the homogeneous equation

(4-70b) are given by

h (;X) D 1 iX (4!-2i k) (4-77a)

h (71;X ) =D__+_k
( g - (4-77b)

2 1 +i X

2 2k

with

Wrhh 2] = hlh 2 - h2h Z (4-77c)

kk)

From Eq. (4-72a) it is easy to see that h1 is proportional to e asi kR tu(2-9)
-'+ , and h2 is proportional to e as thus

Xh1(>; \)h2 ( <;X)
' )')W hI h2-

with g> and defined as in Eqs. (4-74). The exponential decay of g§ as
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I X j- can be shown in a way similar to the one used for g.
The singularities of g in the complex X plane arise :rom the poles

of the F function. k has a series of p6les at

X = -ik(2n4 l) , n=0,1,2...n

does not have poles at ?.n= ik(2n +1), because at these points

I iX o

D i X 2k oh)D (T)h)+ 1 ~(r)h) rkj77T01
2 k X=X

n

This can be shown by using the relations 1 1 )

Dv(z) = zDv~ } D +(Z)

valid for any complex v and z, and

D (- z) (1)D (z), v 0. 1,...
V V

Nevertheless, gr has poles in the complex X plane at those points where

D iX (1 h) = 0 (4-78a)

(32)The values Xp have been calculated by Keller and Levy( . Their asymp-

totic values for kr2 >> I are
0

2 zr223I k -1 [1+2 Tp(krlo)I "  (4-78b)
p 0 po

where 'r is defined by Eqs. (4-5 6 c, d). The path of integration runs along the
p

real axis from X = -00+is to X =++ is with -k< s<0, and closes by a semi-

circle on either the left or the right. Due to the exponential decay of g and

g: as IX]- * , the semicircle does not contribute to the irtegral. Defining

l .- ~ .-



75

= .i.k (4-79a)

and using the relation
-TT

i~~ sinn T-TFl V (4-79b)

Eq. (4-69) yic. ds explicitly
G = GI+G =

1 2

14-80)

Eq. (4-80) is a rigorous solution of the problem formulated in Eqs. (4-65)*.

The solution of the origina'l anisotropic problem stated in Eqs. (4-61) is obtained

by expressing the . variables in terms of x and y. From Eqs. (4-66),

(4-64), (4-63) and (4-62) one finds

r4k 4k(R~v) L 7 77J 'Io
I .

k° jy +Cx? +- Itb (4-81a)
4b

=*k(R-v) =kot:1 x 4  bx+ ~ 2 ~ y;] (4-81b)

If the square roots are defined as positive when real and having positive imagi-

nary parts, then it can be shown that for 0<arg <7

TT
- <arg(1 2ik)< (4-82a)

-< a-rg (-zik) <2  (4-8Zb)

Rice ( 3 1 ) and Jones (24) have discussed the diffraction of plane waves by a

parabolic cylinder. Eq. (4-80) can be shown to agee with their expressions
wheii I 'R . They did not use the characteristic Green's function method
lor deriving their results.
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It can be verified by inspection that Eq. (4-82a) follows from Eq. (4-81a). The

derivation of Eq. (4-8Zb) from Eq. (4-81b) is less obvious. One has to show
2y " 2 £

that I 2+ Yx2+ E.-2> Im -. This can be done by observing the fact the
mlyb 4b- Zb

x and y are confined to the region exterior to the parabolic cylinder.
Up to this point C has been taken as positive real, thereby implying

positive real ',i' and -n " For a source location as in Fig. 18, 9' is negativeIT

real, whereas 9 may be positive or negative real. Also arg (j !-Z i k)= - 2
ag( -2' ) 3n4

arg (-I 42 ik) , and similarly for the variable. For bounded

V and I xl -- , D (x) is exponentially small in I arg(x)l< -4 and exponentially

large in iorg(-x)1< . It is seen from Eqs. (4-82) that if C is complex and
Im C> 0, the asymptotic behavior of D (x) does not change, and the considera-

tions concerning the radiation condition, which lead to the solution in

Eq. (4-80), remain valid. The convergence of the integral (4-80) can also be

shown, by using Eqs. (4-82) and (4-75 Thus, since the solution (4-80) of Eqs.

(4-67) remains equivalent to that of Eqs. (4-61) when e is complex, use of

Eqs. (4-62), (4-63) and (4-64) permits the construction of the solution in the

anisotropic medium for Im £>0.
The asymptotic expansion of Eq. (4-80) is different in the various phys-

ical regions of figure 19. If the observation point lies in the illuminated region,

a direct ray from the source as well as a ray reflected from the obstacle

according to the laws of geometrical optics contribute to the field. The direct

ray is given by G1 in Eq. (4-80). The reflected ray may be derived by

applying the saddle point method of evaluation to the integral G2 in Eq. (4-80).

If the observation point lies in the shadow region, the first order asymptotic

evaluation of G2 yields an expression similar to the asymptotic expression of

G1. but with an opposite algebraic sign. This indicates the cancellation of the

field to the first order. A more detailed calculation of G in terms of the

residues in the complex .L (or X) plane lends itself to an interpretation in terms

of diffracted rays. If the observation point lies in the transition region near the

boundary between the illuminated and the shadow zones, both methods fail.

Actually, in this region, the field cannot be expressed in simple ray terms. A

numerical evaluation of the integrals yields a smooth transition function which
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Fig. 19 Diffraction by a parabolic cylinder:
The illuminated, transition and shadow zones.

connects the different asymptotic forms on both sides of the transition zanie

because the shadow boundary does not introduce any physical discontinuity into

the fields.

The asymptotic expression for the diffracted field in the shadow zone is

calculated as follows:

The only poles of G to the left of the path of integration in the complex p plane

are given by Fq. (4-78). The path can be closed by an infinite semicircle en-

closing the left half plane, and the integral is given exactly by the sum of resi -

dues:

'I
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G D 3 si ~ (h .) D (-- - h )
1 (h)DW l(h-) (4-83)

p' p p p -1.-1 o)P.:o p

If the source point is removed to infinity and the result is normalized in such
a way that

4 (klRR0)_exp (-ik(usinp' +vcoscp)] then by using Eqs. (4-66) and

(4-72) it can be shown that
. _h,) _lh,( -lP(tan'P/P ta, 'a

D (-h§ ') (b - Iftnjc
i z42cos~'f' v

The resulting Eq. (4-83) agrees with the expression derived by Rice for the

case of plane wave diffraction.

Keller ( 16 ) has shown that the exact expression given by Eq. (4-83) can

be written asymptotically as

Y1

G-i - e [ik(d'+d+ f )
+V Tkd'+ Trkdex

Q
• (P) (Q) exp [i pk l ,  f[ -() - 3 2 ,1( -4

p=o P

with b denoting the radius of curvature along the diffracted ray path, and 15

the diffraction coefficient given by Eq. (4-56a) (see Eq. (4-56) and Fig. 16).

It is noted that for complex values of C. thtace quantities (as well as r ,§

and V ' which are related to them) no longer remain real. Nevertheless, the

calculation leading from Eq. (4-83) to Eq. (4-84) remains valid, because (as

shown in the discussion following Eq. (4-814 the same asymptotic forms of the

parabolic cylinder functions may still be used when their arguments become

complex as long as Im e > 0, One may now write the asymptotic expression

for G, Eq. (4-84), in terms of the original x-y coordinates by changing back

-6r
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via Eqs. (4-81). The expression so obtained is exactly the one predicted in the

preceding section (Eq. (4-53J, and therefore justifies use of the formula for

complex C. It is also shown in reference (16) that the series in Eq. (4-84) is

equivalent to that in Eq. (4-83) only if the observation point lies in the 9hadow

region. In the illuminated region, one performs a first order saddle point

evaluation of the field using directly the integral representation of Eq. (4-80).

For finding the saddle point locations, it is most convenient to substitute into

Eq, (4-80) the asymptotic forms of the parabolic cylinder functions which are

obtainable by applying the WKBJ method to Eqs. (4-70). The results are:

C T

f, [ 1 2 / k-d] (48a
D Iix (TI -F? k)- 1/4exp ikf 4x-lk2 dx (4-85)

,, -z ( 8
D_.+ 1 4+2/i k) 1/4 exp 1i k14-85X6k1d

These solutions reduce to Eq. (4-72) if TI2 >>)/kZ and §2->X/kZ, respectively,

and must therefore have at least the same region of validity in the complex planes

of(T4--2ik) and (4-2-2ik). This assures us that the asymptotic evaluation of

the field can be performed in the u-v space, and the result then expressed in

terms of x; y. The calculation has been carried out by Jones (24)for the case

of plane wave diffraction. Our case differs only in a few details, which. are

discussed in Appendix H.

F. RIGOROUS ANALYSIS FOR ANOTHER SPECIAL CASE: A CLOSED

CYLINDER

Diffraction by a large elliptic cylinder is considered in this section,
as a special case of a closed cylinder (Eq. (4-55)). In order to make use of

extesive(22)(24)(33)
the extensive literature on diffraction by a circular cylinder 2 , an
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elliptic cylinder has been chosen whose principal axes are parallel and per-

pendicular to the optic axis respectiveiy, and related to each other as follows:

b = a L = 1, >0 , (4-86)

where a and b are the half axes of the ellipse in the x and y directions,

respectively. Such an elliptic cylinder transforms into a circular cylinder of

radius a in the u-v space if we let x=u, y=4-v (Fig. 20). While the con-

figuration in Fig. 20 is convenient for the relatively simple confirmation of

the assumptions and results of Section D leading to Eq. (4-55), it lacks in

generality since the obstacle dimensions depend on the medium parameter C.

This model therefore does not permit the independent investigation of the solu-

tion as C takes on complex values, as was possible in previous sections.

However, this model is employed to test in detail another aspect of the pro-

cedure: the ability to apply the scale transformation to the asymptotic expres-

sions in the isotropic region, and to recover therefrom the asymptotic result

for the anisotropic case. The boundary value problem to be solved is the same

as in Eqs. (4-61) with S given by the equation

2 2xI. (+87)
a C a

Transformed into the u-v space, the boundary value problem to be solved is

+ a+k) G(R, P') = -6(u-u') 6(v-v'). (4-88a)
2v 2

-.3 -0 on uZ +v =a (4-88b)

Radiation condition at R =- u +vz  . (4-88c)

G is defined by Eq. (4-65d), and k =k 0 J. The rigorous solution to Eqs. (4-88)

is well known, and various representations are available which have different

convergence properties. The representation best suited to our purpose is given
by (33)
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G(R,R') G_(^, PGCP((P, cp P) pd p (4-89)

c

P - (4-89a)

P u + v,7 (4-89b)

(p = tan- u (4-89c)v

cp= tan- (4-89d)

n 2) H (2(ka) l€

P, P ;P) H H (k> (4-89e)

Z.:) e " ; Imp<O (4-89f)

(1) (1)
"(2)(Z) .) H(2)(7) (4-89g)

1.1 z U

Eq. (4-89) may alternatively be written in terms of a series of residues arising

from the poles of the integrand. wvhich are located at the points 4= p , whereP

H (1)(ka) = 0 . (4-90a)p

These points have been calculated by several investigators(1 6 )(Z2) and for

ka>> 1, they are given asymptotically by
1

p ;,-ka + - (ka) (4-90b)
p p

where - are defined by Eq. (4-56c), and for the Neumann type boundary
p

conditions
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2 .rT

S[3n(p+ ,2 (4-90c)
p 4.

In view of Eq. (4-89f), G(p , p ) can be interpreted as the field .hich results

from an infinite number of lire sources located in an angular space of infinite

extent (_-< <') and separated from one another by a distance of Zn. Evi-

dently, only one line source lies in the physical region 0<q< Zn, and this

source alone accounts for the geometric optical parts of the total field. The

sources outside the physical region of the angular space contribute only to the

diffraction effects.

Eq. (4-89) may now be transformed back to the x-y space, (where it

is a solution of Eqs. (4-61) and (4-87), and evaluated asymptotically. The

details of this calculation are given in appendix I. It should be noted that the

solution as given by Eq. (4-89) has different convergence properties, according

to whether the observation point is located in a geometrically illuminated, or

in a shadow region. Thus, the asymptotic evaluation and physical interpretation

of the results are different from one another in those regions. If the observa-

tion point lies in the shadow region, then the total field is equal to the diffracted

field. In that case it can be shown that Eq. (4-89) becomes (3 3 )

- (ka) (I ) _-

H ~(ka) (k3)

p (4-91)

whose asymptotic evaluation for ka>> I (after transforming back to the x-y

space) is carried out in appendix I and yields:

1S
=2'e 31(ka) 3 exp ik° rdlNlzl+dlNlaW)+igP +

5~ r P'd N(at Ijk d'N(8 eiZT6 I 1i ,
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exp 'ik d N(O+d~ N( 2 + ip~% 2 42+ 0 , , S 1( -2

Jkd N(G2 )*4k-d N(O ') 11 -e i2fl P P]j

where S and S2 are the arc lengths QI P and Q2 P 2 (Fig. 20Oa), respec-

tively, and A(q p) is the Airy function of argument qp defined in Eq. (4-56d).

Eq. (4-92) should be compared with Eq. (4-55).

To show that Eqs. (4-92) and (4-55) are identical, one notes first from

Eq. (4-57a)
1,2 P,2

=I Z Jf' d 47 d=v : Net (-93)

Ql, 2  Q 1 ,,2

Thus, from Eqs. (4-9U), (4-92) and (4-93)

S PI,2 1 1 P,

i --:'--S' =ik 0  S N ~[(,t)]d.4-ik 3 e3 r f N ( (494)

Q. Q Q1,2 e3 a 3

From

+(.dx J -b(4) (4-95)

dx"

(where b(t) is the radius of curvature of the cylinder at t), and the equation

of the cylinder,

y -x (4-96)

it is not difficult to verify via Eq. (4-57a) that
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N:u]d d _____
N Z d. , (4-97)

C' Y a _ N[ 8(Z)]IJ~'

thereby confirming the structure of the exponent in Eq. (4-55) with Eq. (4-59).

Moreover, from Eqs. (4-96) and (4-57a), it is noted that

Nd = 4a ( 14-98a)
a -x

so that

N d z. 2 TIa (4-98b)

where the is taken around the circumference of the cylinder. Thus, using

Eqs. (4-59), (4-90b) and (4-98),

i 2 TTI P = i keN L()I - () dt, (4-99)

thereby making the denominators in Eqs. (4-55) and (4-92) equal. In a similar

manner, the amplitude factor in Eq. (4-92) may be identified as the diffraction

coefficient D . It has therciore been verified in this special case that the
p

asymptotic evaluation of the scaled exact solution agrees with the result obtained

when the scafe transformation is applied directly to the asymptotic formula in

the isotropic region.

If the observation point lies in the illuminated region, the field consists

of a geometric optical part due to the t, =0 term in Eq. (4-89) and a diffracted

part due to the tA0 terms. Thus one may write in this region

G(R,R') G i , c P) G. (?p, P';) .hdPI +%j

2 L (1) l- H(k )(k'] (4-100)(kH' a) p

p
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where stands for a summation over all integers t excluding t 0, and

G (CPPI;1A) - - (4-100a)CPO -2 ip0

The series part of Eq. (4-100) is treated exactly as in Eq. (4-91) and leads to

Eq. (4-92), except that the quantities did' , d2 , S 1 , S 2 , etc. have to be taken

now from Figs. (Z0c) and (20d). The integral in Eq. (4-100) furnishes the

geometric-optical field.

It has therefore been verified that Eq. (4-92), which was obtained by

performing the asymptotic evaiuation in the anisotropic region, agrees with the

previously derived Eq. (4-55) wherein the asymptotic result was obtained in the

isotropic (scaled) system, with the scale transformation applied subsequently.

- -- --(- '
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CHAPTER V

CONCLUDING REMARKS

The object of this study has beea to gain an understanding of electro-

magnetic radiation and diffraction in anisotropic dielectric media. Emphasis

has been placed not only on forr.al mathematical solutions but on approximate

methods for the evaluation of explicit results as well as on a physical inter-

pretation of relevant phenomena.

To achieve these aims, a special class of problems has been investi-

gated in detail: two-dimensional problems of diffraction by variously shaped

objects in a uniaxially anisotropic dielectric. By choosing the optic axis in

the medium at right angles with respect to the axis of the cylindrical

scatterers, one finds that the electromagnetic fields may be determined from a

single scalar function, thereby reducing substantially the mathematical com-

plexity and facilitating a thorough study of the resulting formal solutions. Two

parameter ranges have received special consideration, corresponding, res-

pectively, to "small" and "large" obstacle dimensions. In the first, the scat-

tering properties are described essentially by multipoles of appropriate

strength and orientation, while in the second, the radiation characteristics are

specified conveniently in ray-optical terms. In each category, various repre-

sentative problems, for which exact s-AuLions may be constructed, have been

analyzed in detail, -and the results have been phrased in such a manner as to

lend support to the above-mentioned physical mechanisms which are operative

in establishing the radiation field.

A scaling method (2 ) may be employed to relate solutions for the present

class of scattering problems in the an.sotropic medium to equivalent, known

solutions in an isotropic region when the dielectric tensor elements are posi-

tive real. Therefore, for this parameter range, the construction of solutions

is elementary, and the remaining task has been an "invariant" phrasing of the

* results so as to include quantities which depend only and explicitly on the

medium parameters, and on such structural features as the radius of curvature
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of the obstacle surface and its orientation with respect to the optic axis.

Further and non-trivial effort has been required to extend the range of validity

of the results to complex values of the tensor elements, thereby providing

solutions for a broad range of medium constants, including the "hyperbolic"

range where one of the tensor elements is negative real and infinite values of

refractive index may occur.

The results for various large obstacle problems have been compared

with predictions made by generalizing Keller's geometrical theory of diffraction

to anisotropic media. Since that theory proceeds on a ray-optical basis which

retains its validity under quite general conditions, its confirmation for several

special structures admitting of an exact analysis provides a basis of support

similar to that achieved for the isotropic case. It may therefore be concluded

that the present study has provided a general mechanism for the analysis of

two-dimensional diffraction problems in uniaxially anisotropic media having the

afore-mentioned orientation of the optic axis, and that the insight gained thereby

may serve as a basis for the investigation of more complicated situations.
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APPENDIX A

Derivation of the Green's function representation in elliptical coor-

dinates (Eq. (3-11)).

The boundary value problem stated in Eqs. (3-8) is transformed via

Eqs. (3-9a, b) into

+ --- +2h Z(coshZ-cos n G(R, R')=-5(6..I')S( -) , (A-la)

G 0 on 0 (A-lb)

Radiation condition at 2hcosh' -, (A-Ic)

where h is defined by Eq. (3-10a) and Fig. 4. The homogeneous equation

(A-la) can be separated. yielding

2

+(X-Zh cosh2 )u I = 0 (A-Za)
d2

dZu2

2 +(X-Zh 2 cos 2l) u 2  0 (A-2b)

with X denoting a separation constant. U2 (ri) has to be periodic in nl with a

period of 27 . This is one of the properties of the Mathieu functions of the first
kind and integral order ) , ce m(n; h ), se (n; h ), and mem (i; h ) which is

related to the former via Eqs. (3-18a, b). We note the completeness relation

of these Mathieu functions,

= 1 rnem(') mem(-7i) (A-3)

m =.

We may assume an eigenfunction expansion
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G(R; R') = G(I,r 1 ;Y W "j go(,') mem(-r) (A-4)
rme- M

Substituting Eq. (A-4) in Eq. (A-la) and using Eqs. (A-2b) and (A-3) we get

- X + Zh 2 cosh 2 gm-, 0 1 = 1-' (A-..5)

where
mem: ") g) 2 r, 9 (A-5a)

gmme F7 m

The boundary conditions on gm(,- are

dgm = 0 (A-5b)
--- 0 at o

Radiation condition at -*= (A-5c)

Solutions of the homogeneous equation (A-5) are the "radial" Mathieu functions(10)

M()(; •P h). In particular, for our implied time dependence of e - iwt , the pairm-(1

of suitable functions is M(l)()) and M(3) (), which has the asymptotic behavior
m m

for -

M m (S ; (h ) - J m ( 2hcosh') = J m(kR) , (A-6a)

M(3)( ;h)~ H° )(2hcoshD) = H~l)(kR) (A-6b)

Their Wronskian is given by
W M ) ( ; h), Mm (i ; h ) -r

If we define

(3)7

fl ) = Mi(m > ;h) (A-Ta)

f M ;h) Mm3) h), (A-7b)
2, M M <; 3)(17; h)m
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it is easy to show that

W Jf1 ~ = w[(1). M(3I - (A-7c)

where t>and t. are defined by Eqs. (3-1lla, b).

The solution of Eq. (A-5) subject to conditions (A-5b, c) is synthesized
(29)from 11and f 2in the usual way

f ()f2(
1 > I? (A-8)

thus, from Eqs. (A-4), (A-5a) and (A-8), we get Eq. (3-11).
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APPENDIX B

The quadrupole radiation in the field scattered by a narrow strip.

From Eqs. (3-19), (3-20b) and (3-20d) we see that

g2 (pCP') = -h4 sin2cp sin2cp'+O(h6 ) ; (B-I)4

also, using Eqs. (3-22), we haveoX sin nos+
U u cos 6+v sin 6 T sin 4a cos8 eCos C -= - R - r 0N() N(8)

e sinS sine +aMcosG cosO0 o0 (B-Z)
N(9) N(9)

sin~p = Zsincp coscp = 2 4" sin(8 -8)(O sin' sin +cL cosS cos eO)

[N(G) N(80 )]?-

An expression similar to (B-3), with 6' instead of 9, is obtained for sin 2)'.

Using Eqs. (3-17a), (B-1) and (B-3) we get

- . sin(o-8)sin(So e')
2 -;--- (koa) (N(O) N(9')] (c sin 6sino +0i cos8 cos )

SsinS' sin5 +a Cose' cose) + O(k a) 6  (B-4)
0 0 0

To verify that Eq. (B-4) represents the radiation from an electric

quadrupole line source, and to find the quadrupole radiation intensity in the

scattered field (Eqs. (3-15)), consider Eqs. (3-24a, b) with the source term

_ p (cosa o-+ sin 9 6(r) (B-5)

Comparison of Eqs. (B-5) and (3-24c) shows that the source given by Eq. (B-5)

corresponds to a linear quadrupole as shown in Fig. B-i.
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Fig. B-i A linear quadrupole as a superposition of two dipoles.
t

Substituting Eq. (B-5) into Eqs. (3-Z4a, b) yields the following equation for H:

+-- +k H=-B6(r) (B-6a)

where

aincos2(a 2 cos U-C sin e (B-6b)

If we consider H=BG, then the equation for G reduces to Eq. (3- 8), whose

solution, subject to a radiation condition at infinity, has already been given by

Gd(r, o) in Eqs. (3-13). Thus, the solution of Eq. (B-6a) is

H(r) = L H(1)[kI cLyI4CX-] (B-7a)

For k rN()>> I one may write
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?"H(lo(Z - (1)( ~  H( l )( z

z 0

The derivation of Eq. (B-7b) from Eq. (B-7a) is analogous to the derivation of
Eq. (3-29), sin(& -) r

H(r) - k~ a e~.--( sin 9 sin 0 + a cos e cos 0 Hl kr(~

(B-7b)

Comparison of Eqs. (B-7b) and (B-4) yields

(k sin(C -6)(C sine sine +CL cos 0' cos 6
P = -A N(') + O(k a)

o(B-8)

where A is the intensity of the incident field at the location of the obstacle.
0

Eq. (B-7b) shows that the leading term of g2 in Eq. (B-4) is a linear quad-

rupole term, and Eq. (B-8) gives the intensity of the quadrupole induced in the

strip by the incident field. It is easy to see from Eq. (B-7b) that the axes of

zero radiation in the quadrupole radiation pattern are no longer perpendicular

to each other. While one zero occurs at S=e , the other zero occurs at

tan e =- - cot o which reduces to u . only when - = I (isotropic
case), or when o, . (special orientation of the strip).
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APPENDIX C

Reflection by a perfectly conducting plane in a homogeneous uniaxial

medium.

To derive Eq. (4-10) from Eq. (4-1). consider Fig. 8. A ray passes

through the point P(O, 0), is reflected at the point C(x, y) and then passes

through the point Q(d, 0). Then,

C Q C Q d.r,,<,, + .r,,<,, =.f <'sq i ;C 0 i
A f f .y-p c P C

=4y + C<7 + 4y;+ C(x-d) = L(x, y) (C-1)

The variables x, y are subject to the constraint of lying on the con-

ducting plat.e. i. e.,

f(x,y) = Bx+Ay-AB = 0 (C-2)

The equation which gives the extremum of (C-i) with the constraint (C2) is

FL 6L I

_A ,+ , (x-d) i
;'y - C(x-d)7Iaf af -5

B + = 0 (C-3)

Substituting

xtan - tan8 A- B tanU and 8i =01I ; e= zI}y y Z' B o i1 r 2
#y

one gets from Eq. (C-3).

(tan 6 i - tan 6 r [(C tan 2 e - 1)(tan8.+tan6 ) 2tanO3 (Ctane. tan6 + 1)] = 0

(C-4)
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which, upon exclusion of the case tan :. =tan , yields Eq. (4-10). In this1r

derivation no restriction has been imposed on F , so that the result is valid

also for negative e . While real rays propagate in this instance only when

tan tdI 1< tanUc  (C-5

Eq. (4-10) yields a real e for any 9.r -- 1 z(
This iS in accord with an image tcchnique''--' by which the reflected

field can be constructed as shown in Fig. C-i. A ray emanating from a source

S gives rise to a reflected ray which appears to originate at an image source

I. If e< 0 , incident rays can propagate only within the wedge ASB.

Fig. 0-1 Reflection by a perfectly conducting plane.
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The image source is then located at the head of the inverted wedge AIB, where

the triangles ASB and AIB are congruent (or ASBI is a parallelogram, with

the conducting plane as one of its diagonals). By using the sine law in triangle

ASB, one gets
SB SA(C6

sin (n- e )  sin( 0-9 c (c-6)

and since AR is common to triangles ASR and AIR,

sin ( c-6 ) sin (0e + 9 1)
AR=AI sin(=- _A1 = AS sn(o.(C-7)

Upon combining Eqs. (C-7) and (C-6), one may derive an expression connecting
• - , 0 , and 0 . If 9 is eliminated by using Eq. (C-5), one gets precisely1 20 c c
Eq. (4-10) relating '2 to , "t 0 and e . This confirms that the reflection

law derived by Fermat's principle agrees with the one obtained from a solution

of the boundary value problem.

The field above the conducting surface is given exactly by the sum of the

contributions from the real and image sources, regardless of whether 81 > c
or :: < ( ) If C > c . Eq. (4-10) still yields a real 8 , but then neces-

sarily e>2 I > Z. because an evanescent incident ray giving rise to a propa-

gating reflected ray would violate the principle of conservation of energy. If

the incident ray coincides with 9'B, i.e. z. = +7-, then the reflected rayi c

coincides with IB, i.e. 0r =-9 . All of this information can be deduced either

from the analytic reflection formula in Eq. (4-10) or from the geometric image

construction. In dealing with the conducting half-plane problem (sec. C) rather

than with an infinite conducting plane, the geometric optical direct and reflected

parts of the field can be constructed in the same way. If we assume in Fig. C-1

that the half-plane ( 2 ) coincides with that portion of the infinite plane which lies

to the left of the point R (i. e. , the edge of the half plane is at R), then the

reflected ray RQ now constitutes the boundary between the region where both

direct and reflected rays exist (to the left of RQ) and the region where only the

direct rays exist (to the right of R). As has been shown in Eqs. (4-44), the

location of this boundary may also be deduced from the rigorous solution of the

problem. The solution for diffraction of a cylindrical wave by a half-plane shows
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that the boundary between said regions has to be real even when the edge of the

half plane is in the shadow of the source (point R' in Fig. C-1, for example).

Eq. (4-10) confirms that this is so, and that the pole contributions to the fields

given by Eqs. (4-36) and (4-45) (see appendix E) yield exactly the geometric

optical parts of the field.
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APPENDIX D

By solving the boundary value problem of reflection of a cylindrical

wave from a perfectly conducting plane (b - -) in a uniaxially anisotropic

medium, Felsen( 15 ) showed that the reflected field is giver, asymptotically by

jHrP)I = (D- 1)

with 0I , 0 , d and d' defined in Fig. D--l, and H° defined by Eq. (4-16).
Y0

kA

Fig. D-1 Reflection by a perfectly conducting plane.

(The choice of source Q and observation point P in Fig. (D-1) in a way such
that -d' cos e 1 = d cos 8? , facilitates some of the following calculations with-

out loss of generality).

We want to show that Eq. (4-17), which has been derived by employing

geometric optical principles, reduces to Eq. (D-1), which has been derived

from a rigorous solution. As in Appendix C, we write the equation of the plane

/
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f(x, y) x-y tan ^ 0 0 (D-Za)

and the optical path from Q to P

L(x, y) = 4(B'-y) 1c x2 + 4B-y)T+,(A-x)7 (D-2b)

It is also shown there that Fermat's principle implies

6f -= g(91, ?)=O (D-Zc)

Using the relations

si x (D-3a)
I (B -y)2+ x

= -(B-yX (D- 3b)

(A- x) (D-3c)SillZ (D--3c)

_os__ _- (D-3d)
4(3-y)+ (A-x) 2

one can show from Eq. (D-2c) that

N ( --" + N (AS )g(0 1 ,e 2 ) cosC cosT- , sin- sin- cos cose +E sin9 sin

0 2o 01 o 1

(D- 4)
Also

N3(9 °-D ,(D-5a)
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= e sin(8
2 - a )

- N3(8)

Thus, for the case b-- in Eq. (4-17)

d8O I sin( 8o- 0  ) N3 (82 )
d= (0-3(e
!8=const sin (eZ-o) N3 lel)

From Eqs. (4-14) one finds (for general b)

dO 0 sin (a -z)2 d 0 (D2i -7 d 7 _d sin (0ez (D-6)
d 1  a i( 1  0

(see Fig. 9). But it is shown in Ref. (15) that for b- 01

d'N(0) a N(0) • (D-7)

thus, from Eqs. (D-5c), (D-6) and (D-7)

N(O ) sin (ez-e o)
- (D-S8)N() sin( 8 o-9)

and
VN 1z d  1 N1 I (D-9)

for e = constant or b-o. From Eqs. (4-1Z), (4-13) and Fig. 9 one can deduce

directly

IHr(P)I = V N_'_1) d 8z D

which, upon using Eqs. (D-7) and (D-9), reduces to Eq. (D-l).

It

I.
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APPENDIX E

Rigorous solution of the half-plane diffraction problem.

The method by which I(a) in Eq. (4-35) is found, is described n detail

in Ref. (4) chapters I, I for a half-plane in an isotropic medium. Though the

following derivation is in principle identical with the one in the above mentioned

reference, it differs in enough details to justify its presentation here.

Consider Eqs. (4-22) for the case of plane wave excitation,

L()C = 0 (E-la)

L(I)a = 0 on Y=0; -- <X<0 (E-lb)

with ep defined by Eq. (4-25b). Since "4'1 in Eq. (4-25b) satisfies

L ( ) = 0 , (E-Z)

the equation for p become

L(2):b = 0 (E- 3a)

L (1)~s= -- L(1 'i=iko(A 3B2 - AZB 3 )exp[-ikoB2 X] =

0sin( 0 exp on Y =
N(6') 0xpXik B0 [<<

(E-3b)
Radiation condition at r-- (E-3c)

Edge condition at r- 0 (E-3d)

+ (a) and (0.) defined by Eqs. (4-28) are regular functions of a in the upper

and lower halves of the complex a plane, respectively. (The analytic properties

of functions defined by integrals are discussed in detail in detail in Ref. (4),

Chap. I). In subsequent discussion, all functions with a subscript + (plus) or

- (minus) will be regular in the upper or lower halves of the complex a plane.

Also, we will denote b, .,(X,0+), 1(a. 0+) the value of 4 (X.Y) or '(a. Y) on

the upper side of the half plane (and its extension at X> 0), and by 41(X,0-),
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f(la, 0-) the same values on the lower side of the half-plane (and its extension).

0s is continuous on the surface Y-0, 0<X<®; therefore

S(,o +) = S+ (a, 0-) = s+(O) (E-4a)

The tangential component of E is continuous on the whole plane Y=0; there--S

fore
L 1)4+(,0+) = (a, 0-) = L(1 (0) (E-4b)

J L14 S(a, 0+) = 014 (a, 0-) = L (0) (E-4c)

5- S- S-

Using Eqs. (E-4) and (4-30) one finds

s (a, 0+) = , (.,0)+} (a,04) = I(a) (E-5a)5 s+ S-

a (a, 0-) = Ys+l (a,0-) = -1(a) (E-5b)S 5-

L (0)+ (0) = (ia A3 -i A2q1 )I(a.) = iIcA- .,A/ I(a) (E-5c)

014 (0) is a known function*: via Eq. (E-3b)
s-

o i k 0 sin(e O _-0')
L( )  5(0) = I N (aXL(l r)(X, ko -0-)4 - _ x 0 N(S')42(0a-koBz) E)

Noting that

=Al CL -'-/A, k- CL/N(O 0 ) (E-7)

We get from Eqs. (E-5) and (E-6)

L (0) k C sin(G -0')
S. + 0 0

jk + a/LN(G ) N(a ')4Tnik + aNe)(-B)0i ' IN(O (LkoB?)

I .i = '---- N(6oi)4koaiN(0o)[ s_ (0+i- s_(0-)] =K-(a) (E-8)

*It is assumed that for the class of functions under consideration here, the

operators L( I ) and fdx elax commute.



104

k C sin(eo-O') k C sin (6 0- ')

0 0 0 0sinleo'e') lo

+ k 0sin (e 0/- 1 = F (L)+F+(L)N(e') 2n(aL-ko B 4ko+  N(8 o) - o

(E-9)

K_(a) and F_(a) are regular in the lower half, while F+(a) is regular in the

upper half, of the complex a plane. Using Eq. (E-9) in (E-8) we get

, + (0)

k+ a/N(5) -

The position of the branch points is shown in Fig. II. In Eq. (E-10) the left-

side is regular in the upper half, and the right-hand side in the lower half, of

the complex a plane, having as a common region of regularity the real axis.

Thus each side car be equated to a polynomial P(a), the degree of which must

be determined by the edge condition as follows:

We may assume that near the edge (i. e. for r<< 1) cps can be repre-

sented by a series of the form

= r" an ( 6) r n  (E-l)

n=o

the total energy E stored in the scattered electromagnetic field in a small

cylindrical volume element surrounding the edge will be given by an expression

of the form*

E = r ) +at-+- -0) +  + B(O)c]rdrd6

E -a J0 j';-s 1 1 SIsl si s
= r=(E-I)

In order for E to be finite for any finite R, it is seen that pi in Eq. (E-l1)

must be an arbitrary positive quantity. From this result, the asymptotic

*See footnote on p. 41 for elaboration.
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behavior of 'P and i for iaI-*0 may be derived, by using the identitys+ s-

fx'e dx ±E(j+1) e 2 1- (E-13)

"0

ti follows from Eqs. (E-8), (E-9) and (E-10) that for Ia-LI, P(aO =0, and thus

K (a)-F () = 0 (E-14)

One may find l(a) from Eqs. (E-5)(E-6) and (E- 14), the result being Eq. (4-35).

I
,4

$2
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Ait1PE NDIX r

Asymptotic evaluation of the integrals in Eqs. (4-36) and (4-45).

Equation (4-36) is the exact expression for the scattered part of the

.ci-a auc to a p.anc w-e v.-',cn iais upon a conaucting !iait-piane ii i n;_-XiiiY

anisotropic medium. It is valid for all complex e with Ime>0. If the

incident wave is cylindrical (i. e. excited by a line source at finite distance

from the edge), the appropriate expression for the scattered part of the field is

given by Eq. (4-45). Both integrands have a pole, which for certain ranges of

the observation point contributes a residue term to the solution. The other

term of the solution arises from the integration over the given path. For

ko z- >> I. i. e. for high frequencies and/or observation points far from the edge.
0

this term can be calculated asymptotically by means of the saddle point method,

and given in closed form. This con- entional method fails and must be modified

when the saddle point lies near the pole.

Via the transformation

a k N(- ) sin: (F-I)
0 0

the scattered part in Eq. H,- 36) becomes

d. cos: expr ik rN(-)cos(J-xs

0p s d-eiindi [sby- ]

where the saddle point S is defined by

-\3Y-A X I *- tan 6 tan,
tan 0 (F-3)

S - Y (tan" -tan ')

with the sign applying for Y '0 respectively. For 1 1. Eq. (F-3)becomes

tan s l =I tan. (F-3a)

where (Fig. 10) is the observation angle in the X-Y coordinate system.

The pole of the integrand in Eq. (F-Z) is located at
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:B z

sinv = (F-4a)
P

which expression can be rearranged by using Eq. (4-ZSa) to read

1+e tanO tan8'
tanw (F-4b)

4-(tan e.-tan e

j0
By equating Eqs. (F-4b) and (F-3), one finds that when ( Li

-(- tan a ) tane'+ 2tan °
0 0tanO - , for Y>O (F-5a)(1 - e tan Z eo + 2 C tano tane

tane = tanO' for Y<0 (F-5b)

which limiting angles have already been noted in Eqs. (4-44). The path of

integration and the locations of xI and v in the complex tv plane are shown
Ip s

in Fig. F-l(a), for C real and positive. For other values of C. the mapping

from the C-plane to the .- plane will be different. For example, if C<O and

tanC >Io4['

the picture in the x-plane will be given by Fig. F-l(b), For C<0 and

1
tan9 < 4ofT

the picture again looks different, but as the associated calculations are analo-

gous to the former, this case will not be discussed separately,

It is evident that if the original path p is deformed into the steepest

1' descent path SDP through the saddle point x , the pole at w will be inter-"s p
cepted by the steepest descent path whenever x S >', ; this corresponds tos p
observation points lying in region A of Fig. 12 if Y>0, wherein a geometrically

reflected part of the field exists. When x =x , then the observation point lies
p s

on the boundary between regions A and B. The angle of this boundary is given

by Eq. (F-5a) and is recognized as the angle of the limiting ray which is
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w - PL.ANE - PLANE

0/ r27 7/ 0 /2

I /
/ ,

/> / / ig.//- I
The oiginl andthe teepst decentpath of itegrtinfoe>0(a

an) (b)0(b

reflected geomnetrically "at" the edge ..f the half-plane. The pole contribution

to IT is found by calculating the residue of Eq. (F-2) at .u = p

IT ± e x p[i r N(- cos (x P-,e ))J for Y<>Q (F-6)

Upon substitution of the correct x, for Y< 0 , respectively, it can be

shown that Eq. (F-6) gives exactly the geometrically reflected plane wave in

region A and that it just cancels the incident wave in region C rf Fig. 1l.. For

calcuiating the saddle point contribution to the field, we use the formula

gp dX F ,g( ")f()F -7a
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where in our case (Eq. F-2)

k r N() (F-7b)
0

This yields the expressions g,,en by Eqs. (4-43).

Eq. (4-45) can be derived from Eq. (4-36) as shown in Appendix G. The

pole contribution to Eq. (4-45) in the region Y<0 wll be calculated as an

illustrp" ,i. In that region, ' in Eq. (4-45) is
S

cc exn [-i X' + io.ig) Y'I T ex. r-iCX -L ia JaY1c -i J d-S , 4oNo. -j da Lr0 " -iL " Jdl "L -L J
s 8i2 !.(e 0 ) . lk-N(eo0)- (c+ )

(F-8)

The pole occurs at a= -;, and by the residue method, the pole contribution to

the second integral in Eq. (F-8) is found to be

epiX 4 i q2(-4)Y

2 ,i 4k 0oN(j o) + (-a

Upon noting that q(-) = -q 1 () (see Eq. (4-32), one ibtains for the pole con-

tribution to .,?

~I r _ 4- [i(X - iql (t)(Y-Y'
Spole g 4"'" kZN (6 2- 4koN-(e )-2

i = exp i(X- X')- iq I ( )(Y - Y'

,4:"-d A (ql-q 2 )

= LH ( ' ) Ik N('-)lr-r'l] (F-9)

o o

_.e., that part of s which cancels the incident cylindrical wave in the geo-

metrical shadow zore (for verificaton of the last step in Eq. (F-9), see Eq. (16)

in Ref. 15; attention should be called to the different definition of ql, 2 and

A1, AZ, A 3 in that reference).

The asymptotic evaluation of Eq. (4-45)by means of the saddle point tech-

nique is very similar to the evaluation of Eq. (4-36), because the equations



which define the saddle points in the complex a and g planes are independent

of one another. Defining

'. 0 N(Oo) sinm (F- I0a)

k 0 N(o )sin z (F-1Ob)

and substituting Eqs. (F-10) into Eq. (F-8),

f - s dz cos z exptik r'.N(e)cos(z-zs)j x
8r74T p(Z) 41 - sin

dt cosL exp Vik rN() cos(w-(F-il)

p() 41- sinus (sina: - sin z)

w is defined by Eq. (F-3), and z is given analogously by

A3Y'-A 2X' I+ tan 9 tane'
tan z - - -- (F-1Z)

s 4" y' F(tan 6-tanco)

which is identical with Eq. (F-4b). The simple saddle point integration breaks

down when
-. S ~z , (F-13)

corresponding to observation points near the shadow boundary (see discussion

of Eqs. (F-3), (F-4) and (F-5)). For all other observation points, Eq. (F-7a)

can be used separately for the two integrals in Eq. (F-I1), yielding the expres-

sion given in Eq. (4-46).
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APPENDIX G

Derivation of Eq. (4-45) from Eq. (4-36).

The synthesis of the line source result (Eq. (4-45)) from the plane wave

result (Eq. (4-36)) may be carried out as follows: If the source term in Eqs.

(2-2) is of the form igx

M =M ) = z 6(Y-Y')

the differential equation for 0(9) becomes

2 2 ()e
(A1  A 2 +A +k () =L o(') = -6(Y-Y') -- (G-- +AZ - Z3 ZX Y G ).18X 2  2 Y1-4' T

(A 1 , A2 , A 3 are defined by Eqs. (4-24)). One assumes for cp(),

: (X, Y; )=h(Y) e i x, (G-3)

which implies that

2_=2d2  A3 d k A -5 (Y-Y')

\ A d Y A / A 2 47-

As () is continuous across the plane Y = Y'. h(Y) must also be, and from

Eq. (G-4) we get by integration between the limits Y'-" and Y'+rT

I" A y$+,
d hli4a !dh - " = - -1

l .- h] (G. A
d Y A Y/' A2 Z '

The solution to Eq. (G-4) is constructed from the homogeneous solutions, which

are given for Y Y' by

h(Y) = Ce Ce (G-6)

with q,2 ' defined by Eq. (4- 32), and C being a constant. Imposition of con-
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dition (G-5) on Eq. (G--6) leads to the solution of Eq. (G-2).

C , 2 (Y- Y,)+ i 7x

Zn A2 (q?- q I)

iq 2 , Y'e -iq 2 , 1 Y+ i X
ie e(G-7)

z 4koN(8o)-: JkoN, O)+

It can be shown that (see Eqs. (4-26))

exp [i X-iqY] = exp [-ikoB X-ikoB3 Y] (G-8)

if we define

= -k B (G-9)

Then f,.r Y' > 0, a plane wave falling onto the half plane at Y= 0 is given by

Eq. (G-'), which is proportional to Z.0(2) in this region. The scattered field

Psp( ) due to such a plane wave is given by Eq. (4-36), which, uon use of

Eqs. (G-9), reads

__oN(Vo)+ da exp -iOL X+ iq (a.) Y¢sp (  2 a -- _k o'E t'- "R1 )(G-LO+
0

This solution remains valid for - < <c so that the scattered field due to the

source in Eq. (G-l) is given for Y' > 0 by

i qI(Y' W da expr-i.X+iq,. (a) Y1
i s M =hs- fe (G-ll)

4 r4 kN(O 4a - - -koN(0o) (a +)

By applying the inverse Fourier transform

d'x e : ! X F(s) (G-12)
'47~9
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to Eq. (G-2), we get

(A + A2' 4 2A 3  - +kjeP(XY; X.Y') = -6(X-X")6(Y-Y) (G-12)

which is the desired form for line source excitation. The scattered part of CP

will therefore be the inverse Fourier transform of ePs(g) (Eq. (G-11)), which

is given by Eq. (4-45).
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APPENDIX H

Asymptotic evaluation of Eq. (4-80) in the illuminated region.

The Weber functions D I iX (;-2ik) and D I + 2. k

7 - A

which appear in the integral representation of the field (Eq. (4-90)), satisfy the

equations d 2 1
T + k 2+ %,/k2  D_ 4" ( zik) = 0 (H-la)

" + -

--.,E + k2(r_ D r:i, 1-2ik) = 0 (H-lb)
d I -k

For high frequencies (large k) one may construct asymptotic forms of these

functions by the WKBJ method as follows

D 2 47k ( 2 k - A 4 exp ik J4x 7 xk z dx (H-2a)+i 2 2]
D7 (fl Ti) ~ IS- +k 0 2

Dr-2-2i/k-Bl/4kex p  ik f4 k2 dx (H-Zb)

7 -W. -X/k2J P3Qk4ri

D (- -k) C k f4x- /k +

7 -2k [r k] 0( 4k/k

+ -- 1 exp )-ikJ<47 /k2 dx1  (H- 2c)
[,,2 Xk J k

2 >-z
Ab,-uming that >. are real, Eq. (H-2a) is valid for X/k2 > .;2, while Eqs.

2 2
(H-2b, c) are valid for X /k -" Outside these regions the exponentials become
real. For >2/ki >r, E2real ForX/ Eqs. (H-2) reduce to Eq. (4-75a), and the exponents
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become proportional to 4x and J r, respectively.

The coefficients A, B, C and D in Eqs. (H-2) may be evaluated by con-
paring Eqs. (H-2) in the region where ,, 2 2> I X/k2I with the asymptotic forms

given by Eqs. (4-72).

It is useful to note that

ik dx -X + -In + (H-3a)

7_7 (H-3ba)

2 2
0 k

rJ 2~ -1,7k -LIn 11+4r k (H- 3b)

If we substitute the asymptotic forms (H-Za-c) into Eq. (4-80) we get

4 k = i__ " D i A ( = q - -i k )D I X (G 1 4= I I -r_. I ,E-,4- 2k)x4kO sin( ' + _
2k2 2k 2 2k

x D T1 i -i) 1 i (-7' -2i-k)

1 =, d'X 2 2

-k ~ sn(~~r k k k kjJ[2(T -L J

A2B dk 2+ x ,2 z 2 ik
BDf + - + (r- (r 2 ) exp q21X

~~2 s7(k. ) '2 2 -l- sin(-2 kk k k)J

(H-4a)
whe re

-Y-7\ 2+47~ T

_ k kk - _

4 " In -In k In
4 7 "/k 4T -k 4x-/k2  4IrX/k

(H-4b)
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Eqs. (H-4) are really valid only in the region

-rain =>2, =j 12 < kX < rain jr,2, r 21 -5

where min a, bi stands for "the smaller of a and b". Thus, if there is a

real saddle pcint in that interval cne may obtain a closed asymptotic form for

G 1 from Eq. (H-4a), which will represent a propagating wave. If no saddle

point is found in the interval (H-5), the asymptotic form in Eq. (H-4a) becomes

useless. Eq. (4-75a) indicates that in this case the integral has no real saddle

points at all, and does not represent a propagating wave. Next it will be shown

that the first part of Eq. (h-4a) has one real saddle point in the region (H-5),

whereas the second part has none. Thus G is given asymptotically by the

first integral alone.

One may easily verify that

I-I k j 4.

Thus
dql(%) I ++2 12 -+,

i n = In__ _*_J(H-7a)d, +€ 2 _'

and the saddle point condition for the first part of G becomes

k k = (H-7b)

k k2

This condition has a simple geometrical interpretation as shown in Fig. H-1.

From Eqs. (4-66), it follows that

= i v = 4R(l + -.oscp) 42 R cosE (H-8a)

_R+ v' = 4'iR (i +co')= v?-R cos T (--8b)
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4R-v - 4R(-cos,) T sin-T (H-8c)2
t,= IR. = 4R'(1-cosq)) = 4 2 sin . (H-8d)

Also

Co = y+a. n+T (H-8f)

t R sin a sin = R'sinO.' sin v (H-8g)

,. S v

SS

0a' R

It is seen that if we identify

\ = Z k t ,(H 

-9 )

then by using Eqs. (H-8), we can show that

4



k - os + -/I -coscP + Z siny sin - s in 2 y/- - co Y- a Vo +O

+ cos( + !+cosP - Z siny sin cos-+ cos

k (H-lOa)

and similarly,

=_ cot Y (H-lOb)

+ I .L s

~* k

which satisfies the saddle point condition Eq.(H - 7b). Now it is seen from Eq.

(H-4b) that ~F T r
ql(ks)= Z + I' + (H "" I rl 2k H a)

k k -

But

k s 
k

- */R(l-coseP)R(l-cosP)+Zt + -VR(l +cosq) /R(l+cosq)-Zt 

~R [-l - co0 s(Y-o /) -co S(Y+G.) + V!l+ co s(.v- CL) 'fl + C S(v + CL)I ZR co s Q

(8- b)
and similarly "

=-. .2 s + . 1 s 2O (H-c)- k 2 ZR'cosa'.(Hle

Thus, r

exp[ql(As)] exp[ik(Rcos C+R'cosC')J exp LkIR-R'J (H-12)

which is exactly the phase term at the point P of a wave emanating at Q (Fig.

H-1). The saddle point condition for q 2 (.X) in Eq. (H-4b) would be

k _____ ;_2_+_________-

+ s 'k7

+_ _ =Z- - : 1 (H-13)
+ S S

k
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Eqn. (H-8a-d) show that a condition like Eq. (H-9), i. e.; a X which is8

independe..t of cP and CP', cannot be found here.

The second part of Eq. (4-80) yields

dD'1 iX (-o/Zi)

2 sin(U 1. D X 2 I. ix

-k 0

x D ~ ix(4'i k) D 1 x(P'-VCTik)-
- - i

T" - -Tk-

1

d-, , x 2 ;L-,- 4 ik x
2 dC [' -) exp q3 () +

sin(~ k k) ky) k
-C Z I(H- 14a)

where 10

q3(X) = ql(X) Z 2 xFdx
Jik V

- q( ol) '0 0 k- (H- 14b)

q l (X) is given by Eq. (H-4b).

It is seen that the first part of G2 cancels (asymptotically) the first

part of G i. It must be noted, though, that Eq. (H-14a) is valid only in the region

-2 ='2 2-min .- ,2 C r, (H- 15)

k

This implies that the geometrical interpretation of Fig. H-I and Eq. (H-9) for

the first part of C is valid only when the observation point lies in the sh..dow

region, where t < " /2 . In the illuminated region (t > ro/2), the interpretation0 2

still holds for G but the first part of G has no saddle point when X/k > z

1' 2
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and is therefore of a smaller order of magnitude than G1

The asymptotic evaluation of the second part of G 2is done as follows:

From Eqs. (H-14) and (H-6) it is seen that the saddle point condition is

given by

kZ kZ J

'n +,$77i '+477 k AS 1 (H- 16)

k k kp

V

R

LV
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i
It can be shown that Eq. (H-16) is satisfied if X is given by Eq. (H-9). QCP

S
is the path of a ray which emanates at Q and reaches P after being reflected

at the surface according to the laws of geometrical optics. and " are

perpendicular lines to T and T respectively whose projections on the v

axis are equal and denoted by t in Eq. (H-9) and Fig. H-2. To show that these

projections are .:qual, one has to utilize the fact that the reflecting surface is a

parabolic cylinder which implies that

-= 1 (0 -TT) (H-17a)

and

(a y'; = Yy (H-17b)
0 oo 0

(8 is the angle between the tangent to the parabola at C and the v axis).

Using Eqs. (H-8a-d), (H-17) and the additional relations

'x, = o R(1 "-cos ) ./ o sin- 2 - (H- la)

S' = ' +y'+n (H-18b)

cp =y-L (H-18c)

po =C +y+TT= a' +y+n (H-18d)
!o0 0

fR sina siny (H-18e)

t R sina' sinY' (H-18f)

R sin a sin Y R sina' siny' (H-18g)0 0 0 0

Eqs. (H-16) and (H-9) can be shown to-be compatible by a calculation similar to

that in Eqs. (H-10). A calculation similar to that is in Eqs. (H-Il) shows also

tha j. .I
e x p[t!-q 3 (X) expt k (R os CL+ Rcoso CL' cos a -R -cos C). = exp rk(~C

S 3 e(H- 19)

which is the phase of a wave emanating from Q and reaching P by being

1- -
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reflected from the parabolic cylinder. 2

From Fig. 1-2 it can be seen that t- -2 or T- ) -. 10 when the observa-

tion point P nears the shadow boundary. The geometrical interpretation of the

second part of G2 is valid only in the illuminated region. Thus it is seen that

the exact solution, Eq. (4-80), yields correctly the terms expected from geo-

metrical optics as a first order asymptotic result at high frequencies. It would

be satisfying if we could show that the asymptotic evaluation of the exact solu-

tion in the illuminated region yields also the amplitude factor which has been

predicted by geometrical optics (Eq. (4-17) . Jones ( 2 4 ) claims that it can

indeed be shown for the case of a plane wave diffracted by a conducting parabolic

cylinder in an isotropic region, but no detailed calculation is given in this

reference. At the time of writing, this correspondence has not been obtained in

the present study although there is reason to believe that the calculation can be

performed.

When e is complex or negative real, the parameters g, ,r and lo

become complex according to Eqs. (4-81). If these expressions are substituted

into Eqs. (H-7b) and (H-16), one obtains complex expressions of X as functionss

of the complex parameter C. The resulting equations for the loci of X in thes
complex X-plane, as functions of e, are extremely complicated, and their

detailed study (for some fixed r arn r ° ) is probably done best by computing

machine.
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APPENDIX I

.Asymptotic 7 . on of Equation (4-89).

According to whether the observation point lies in lkhc illuminated or the

shadow region, there will be two slightly different treatments ," Eq. (4-89). In

*, the shadow region, we follow Figs. Z0Ja) and 20 (b), assigning coordinates to

the following points:

Q (x',y'), QI- (xl' y), P (x,y), P1  (x l y), 0 0 (0,0)

2 22 2 2 2

(u',v'), -a, (ul'vl)' (u,v), NI (Uv 1 ), (0, 0)

2 2 2 2 2 2

The distance between two points A and B will be denoted by (AB); thus1(I) ( i)2 4(UUl)2 (v 1 2 2 2

++(P2 j 4(u-u 2 ) (V-vl) + u 2 +v2

I = , , I e+v

a = ,) = (9o = 4ull = ( v=

4u+v U=Uz+ u ( v+=u +Vz7 (U-3)

a1 = 2, I 0 ' - -Y. = -k-I). I SI -a _ co-la = -a1 1-4)

4( - a 2
, = 2. - y = - COP-Ic 1  a o - a a2z  -- - -cosP - (1-5)

By using the relations
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= - - (1-6)

one finds f'om Eqs. (I-1), (1-2), and (1-3),

kp: koyyl 2)Ze(-× 2 )2 + yl, 2 + e xl, 2  (1-7a)

,2+y, 2 + X, 2  (I-7b)

,p .-V y ,, o, , 2 1 1y.
ka = k4 + e x = kk + 7X 2

k y z7+c x (I-7c)

In the shadow region, from Eq. (4-91)

ei V p -- '+ l2":')- 7" t+ i heol] -00,4'+?n'

L Z' ee P

It== -I_ t=O

=l-ei2 n.p -1 I"1-p S) T + eilp , .-q')i

h e e to (1-9)

with the last step obtained by subtracting Eq. (1-4) from Eq. (1-5), and sub-

stituting for ICP-Cp'1 • S and S are the arcs connecting to and

2 to T2 in Fig. (2Ob) respectively, and may be expressed in terms of

X,2 and X,2 (see Eq. (4-94)).

The asymptotic form of the Hankel function,

(z) -U ex [$ ipi Cos PEJ (1-10)

H (Z) exp f 
a

IF P, 717; 2P

is valid for source and observation points which do not lie on or very near the
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cylinder surface. Eq. (4-90b) is used for Pin Eq. (I-10)

zp
a 3 ~a (-l+ O~ cosy,as ka 1l

-j- *-4 O(k a) 3~-. cosB,as ka 1l (1-12)
k p

By adding Eqs. (1-4) and (1-5) we get

cos- L+ cos- A -+ Y~ l+Sz(1-13)ko kp 2a

and with the relations derived above (Eqs. (1-7), (1-9), (1-10), and (1-13)),

2 (k p) H 1 ~(ko' e, e 1p k-c,+Z~j

exp ik, yyYC(x-x1 )' +jik Z+e(x x) I a I
0 1 - I+7 1 p a

+xpi 0 yy 2 + C (x-x 2 +k y I- Y 2 .C(x'.x') + p j~ -

exp i k ) i
+ d 2  2 2--d p a+iL-4

1k d (ey)7 ~-1k [iI-2ep](114

012
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The coefficient which appears in Eq. (4-91)

H' 2) (k a)
.P
',(1)ka4 P

is identical with the one appearing in the corresponding isotropic problem

(diffraction by a circular cylinder in an isotropic medium), and has been evalu-

ated asymptotically for large ka by various authors ( 1 6 )( 1 7) ,

For the illuminated region, we follow Figs. (20c) and (20d) for various

definitions and note that S and S2 are now the arcs connecting - to 71

and 2 to P., respectively (Fig. (ZOd)). They are interpretable as paths of

creeping rays which shed from the surface toward the observation point P

located in the illuminated region. Thus the arc S2 is now the long arc con-

necting the points Q2 and P2 in Fig. (20d). From the same figure one notes

that Eqs. (i-4) and (1-5) have to be replaced by:

S 1

z - zn+.-.-9P' -I - -o -C a - -- (1-15)
p p a

z+ v !3 - = -.+ i:.- 'l -Cos -  --Cos - a _ (1-16)
P p' a

Proceeding as above, one may then derive a result like Eq. (1-14), except that

the L= 0 term is not included in the summation. Thus the expression given by

Eq. (4-92) (or equivalently Eq. 4-55) is valid both in the shadow and the illumi-

nated regions, but in the illuminated region one has as well the integral in Eq.

(4-100).
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