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ADBSTRACT

The location times of thirty measurement points for a spacer
craf. in a circular, planar earth orbit are varied to minimize a
cost function, the sum of the squared components of position uncere
tainty, at a preedetermined target. In addition, the optimum sched-
ule of horizon references for the star-elevation measurement to be
used at each point is determined with respect to the same cost funce
tione A steepest~descent computer program was written to perform
the optimization in each casee It is shown that the measurement
times collect into four clusters from a nominal schedule in which
they are equally spacede A cost reduction greater than 807 is re-
alized. The horizon~selection procedure defines certain arcas along
the trajectory where one or the other horizon is preferred. When
carried out simultaneously with a time optimization, this procedure
results in only & slight improvement over the case where a single
horison is used for each measuremente
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CHAPTER 1

INTRODUZ (ION

The optimization of a celestial messurement schedule for &
matnned spece mission has become a subject of great {mportance in
the last few yearase Walter Fe. Denham and Jason L« Speyear of Raytheon

Company considered this problem in & recent report (Reference 5).

They sought to minimiza the position estimation uh‘(_:truinty at the
terminal point of a froe-fall mission by comparing various sequences
of atar and star~horizon measurements. A steepestedescent numerical
procedure was used to obtain the optimizatione The authors'! results
showed a 107 {mprovement over a schedule earlier proposed by Richard
{1« Battin, of the MIT Instrumentation Labe In this and similar
studies, the locetions in time for the variocus measurements were held
fixed and spaced at nearly squal intervalss The purpose of this the-
sis is to investigate che behavior of such a nominal time schedule
as the measurement tim2s are chenged to decrease terminal position
uncertainty. The model used is a planar, circular earth orbit vhere
the target point appears in the first revolution. Only one type of
measurerant is considered, the star-2levation angle, and use of both
horizons {s investigetede In addition, the time optimizatica probe
len ig coupled with a horizon~selection procedure, to compere with

the single-horizon modae



It {s expacted that thare are certain preferrad measurement
positions along the circular pathe If the times of the measure-
ments are free to change, they should eventually cluster about these
points in order to effect & reduction in position uncertainty. A
similar hypothesis can be stated for the horizon selection. It is
probable that there are cortain areas along the planar trajectory
wvhere it would be more beneficial to use one horizon inastead of the
othere The stespest-deacent procedure will be used to determine

the optimum achedules in both cases.



CHAPTER 2

STATRMENT OF THE PROBLEM

The odbjective of changing the mesasurement times is to decresse
%ae position uncertainty at the targete The expression for the coe

variance matrix of estimation errors ie developed in Appendix B.

N
1 T .1
-1 T °} c.h C
E. = A = (CLEC,) + Z ek’  Selic “ak (2-1)
2
kel e~
Where:

Eg = estimaiion error covarience matrix at terget
L, « initial estimation error covariance matrix
C < state transitjon matrix (Appendix C)

£ -~ measurcment vegtor (Appendix A)

0-2 e variance of measurement error

Certain assumptions are made in stating the problam which simplify
the elements of the zlove equation, making it essier to manipulatee.
As stated iz Chapter 1, a planar, circular earth orbit is
assumgd for the spacecraft. The ineplane nevigational problem can
te considered alone sincu, as is shown by Stern (Ref. 8) and others,
the in-end outeofeplare error propagations are uncoupledes The ine

hereat simplicity of the circular o-hit is especially obvious in the

reduction of Stern®s formula for the tranzition matrix (Appendix C)



to & less complicated forme As explained in Appendix C, the local
varticel co-ordinate system was chogsen to coincide with Stern's
equations.

It vas decided to select a target point in the first orbit &
that the resultant time changes would be more clearly definede The
entire trajectory is included in a central angle of 290°, and the
zeroe-angle reference {s arbitrary.

The star-elevation measurement {8 & reasonable seclection since
it has been found to be suparior in the vicinity of a planet (Chap. 8,
Refe 1)¢ Also. " hae charactsristic vector of the measurement, devele
oped in Appendix A, ¢ ns the same simple form at all points in the
trajactory, when exprassed in local~vertical co-ordinates.

As implied in cquation (2~1), the varienca of the measurement
error is essumed constant for all measursngntse This secems reasonable
enough, since the type of measurament is the same aach time and it {s
alvays taken at the scme altitude. In order to provide ample space
ing for an sdequate eumple of measurement points, th. altitude chosen
for the problem is 11,000 miless From this altitude, an optical ine
strument cen be expected to be about a mile in error in discerning
the horizen. Considering an error of about <8 miles, the angular

veriation, 83 shown in Figure 21, is given in equation (2-2).

~ o8
sin 88 ] b =
é 103 /(15)2- (4)2
§B = .58 mr (202)
Expressed in arc~secondg, this value {8 about 3.5 X 10°3 saconds.

Hence, the variance used in the problem, assuming the mean of measure-




ment errors is sero, is 12 X 10°8 gec?.

15000

4000

Figure 2.1

The quentities for the initial estimatien errors are chosen to be

five miles and ten miles ner second in position and vuloeity in each

co~ordirate directirn. These errors are ascumed unco:'related so that
the i{nitial estimation error covariance matrix is diagonale.

Since the quantity tc be optimized is the position uncertainty,



only the f£irst two diagonal eclements of the 4 X 4 E, matrix are con-
siderede A convenient way ¢, write this cost function is given in

equation (2-3).
Cost = <¢r [Q E.:}

A mors sophisticated cost function for a manned mission might be a
weighted aversge of the target position and velocity errors, such
as that used by Denham and Speyere This would fmply & different Q
than that used abova. Another possible cost function is the detere
minant of the Eq matrix, dascribing the volume of the target error
ellipsoid.

Stated briefly, the problem is to {ind the time schedule, out
of all possible schedules of thirty measurements, that minimizes the
cost functica given in equation (2«3)e The nominal schedule hae
thirty measursment points, spaced at an intexvel of about 900 sece
onds in time, batween central angles of zerc and 290°. Similarly,
the horizon-selection problem seeks to find %ine sequence of horizon
references which minimizes cost. There is & choice between two
referaences at cach pointe The nominal schedule in this cese is the
use of the "zight” hoiison, cpposite to the direction of motion, at
each point. The method of solution in each cese is the ateepest~

descent numerical procedurze, which i{s the subject of the next chape

ter.




CHAPTER 3

APPLICATION OF STEEPESTeDESCENT

The stagpest~descent, or essient, method {8 one of a nunber
of numerical techniques developed over a century ago by Cauchy and
others of that era. The advent of the high~speed computer has
brought many such procedures back to life. Laergely responsible for
the revival of atespest~dascent are Kelley and Bryson who, working
indspendently, recegnized {ts superiority in cextain classes of probe
lemss It eliminatas much of the guesswork associated with other
methods by assuming a non-optimal, nominel solution, and proceeding
to the optimun by & series of linear, incremental changes: The nome
inal solution need only be a ressonable first guess and may or may
nol satisfy the boundery conditions.

An analogy, credited to Bryson, {llustrates the method quite
walle A hiker, elimbing a mountain in a dense fog, will climb where
the slope rises the sharpest to minimize his time of ascent. Because
of the fog, he muat relocate the direction of stespest rise at regu-
lar intervals, In equation form, the direction in which he climbds

from his staxting point iss

o 02|y

I -b-’i‘ £ 4 <3 i .‘1 1 l’l i (3=1)
lrz-xl Ml
y N N



vhere z is the function describing the hill. The horizontal diee
tance moved {n = cartain direction is directly proportional to the

slope in that directicon.

Ax ® "2""1 = K"‘l
(3=2)

Ay = yyo9 = Kay

The linearizing assumption is that the total vertical distance ¢limbed
equals the sum of the computed vertical distances for the x and y

directionse

Ag = leA X + '*y,_AY (3-3)

The climbx will decide before he starts how far he vwiil climb vere
tically before re-assessing the directions Hammce, O z 1 a knowm

quantitye.
~ 3 2 o
Az S K (2 ) + (2 ) (3~6)

The congtant K, which governs the horisontal distance, can then be

determinede

Ag

- (35)
(202 + (2%

K =

The climber predicts that his new altitude, wvhen he has arrived at
point 2, will be z; + & g+ The actual altitude will normally bs less
than this s.raight iine sextrapolation of slopes After determining
the new direction of steepest ascent, the climber repests the proe
cedure until finally, the actual change in altitude is much less

than he predicted, indicating he 18 spproaching the top of the moune




taine

Two di sadvantages of the steepest-ascent technique are brought
out in the saalogy. The proper step siza, {\ g, is important because
the climber may miss a better path {f he climbs too far in any direce
tione Unfortunately, a reasonable step size can only be selected by
8 trial and error process. Also, the climber may venture onto en
isolated peak and, because of the fog, think he has reached the top.
A fresh start with new initial conditions is the ¢aly wvay to effec-
tively reduce the probstility of converging on a local meximume

In References 3 and 4, Dryson has outlined the mathematical
approach to a series of genaral problems. His formulation of a probe
len without constraints will be considered here since it is somewhat
similar to the thesis problem.

A nominal spacecraft trajectory is postiulated, vhich is dee

scribed by the following set of ordinary differential equations.

- PP | = 1,2 (36)
‘a't"" §Ys Oy 9 &9 @ v o9 N

The known quantities fl’ arcz functions of the independent variable
t, the dependent variables Yy and the driving, oxr control, function,
b(t)e The cost, a function of the depe ient variables, is increased
(or decreased) by varying b(t). Variations about this nominal trae
Jectory are considered end it 18 assumed that they can be acturately

described by firstrorder differentials in the perturbation equation.

n
of
d Z 1 1
a-t-(gyi) - = BYJ Syj*ab Sb (3=7)

The partial derivatives in (3-7) are evalugsted slong the nominal trae
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Jactorye The dependent variables are functions of time so that (3«7)
implies a set cf n linear equations with variable coefficients. The
) y, terms represent a small variastion of the dependent variables
from their nominal time historye A set of equations adjoint to (3=7)
is defined in equation (3<8).

n
dL Z Dt
—l - [

The pertial derivative in (3-8) is the negative transpose of the sime
filar quantity in equation (3~7). The reason for the adjoint equation
1s made clear in the following sequences

n

Z (L %{ (Syi) “ 5y1 dL!) Z 1,1 §b
{=] {w]
n n .
(L P_.f.l. y; = L }_Si Ye) (3-9)
Z Z i 373 S 3 J BY: 5 {

je]l el

The double summation term in (3-9) equels zero since only the indices
dfiiers The left hand s’.de of the equation is equivslent to the time

derivative cof Lg 5 yg°

n
&) 1,5y - Z L, (3+10)

i=] {=]

The expression which relates incremental changes in ths control varie
ables to the resulting changes i{n the dependent variables is obtained

by integrating equation (3-10) over the flight time.
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T T
. S df
) Ww| - > Ly S_b_{, § b(t)de (3-11)
- - i=1
%o %
- %
: J\
L (t) Z' by g
ol
T 1
n
%;; L‘ S Yy - /S, Lb(t) S b(e)de
:O to

The quantity L, (%), defined in (3-11), s the influence function as-
sociated with the control function, d(t)e. The definition of the ade
Joint variable L;, defined in equation (3=8), is justified by this
siople expression. L; is & known function of the nominal trajectory
and {ts boundary condition is a function of the cost, which is usually

determined at the terminal point of the flight.

A Cost
L (T) = S ¥y Cost Cost [y('r)] (3=12)

twT
The objective is to relate changes in cost to changes in the control
function by the use of the adjoint variable. By definition, the dif-
ferential cost change is &« sum of partial derivatives. Using equa=-

tion (3=12):
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S Cost

n o
. |5 dcost .
LSy on [xz-lx L‘sy’] v
teT

teT t=T

Substituting (J=13) into (3-11)s

1
n
Scost = | 1Ly(t) §b(t)ae o Z 8y, (3-14)
¢, tmt,

The adjoint variables Lys can be interpreted as the influencs funce
tions for the initial conditions of the dependent variables. The
§ Cost term in equation (3-14) is pre-sslected. For a given valuse
of § Cost, it 1s desirable to require the smallest possible chenges
in the driving function and initial conditions so that the linear
perturbation equation is valide Stated another way, the probdlen is
to minimize the effect of the second-order & b(t) and $y, terms for
a constant cost cheiagee The summation term in equation (3-14) can

be rewritten as a dot product to simplify the mathematicss

n
[Z L‘Sy‘] "L, Sy, (3-15)
fo)
t-to
vhera
rLlﬂ ryl-
L2 Y2
o | N
&Ln, Lyn.
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If the 1%h fnitiel condition is specified, ) Yy is s0ro and the ith
term doss not contribute to the dot product. The variational calcue

lus problem can then be stated as followss

T
minimiges J -[ le(t)lzdt + |5%|2
t
¢ (3-16)
subject tos g(:on: s A = constant

The positive constant o€ in (3=16) is chosen to make the dimensions
compatible in the J expression. The problem can be rewritten using

Lagrange multiplieras
J* w J+ T\ (§Cost = A) (3<17)

vhere J' is the quaentity to be minimized. Substituting from equa-
tions (3-14) and (3-15):
T

2
3 - [[T\ Ly(t) & b(e) + |§n(e)] 1 de

%

(3<18)
+NL,* 8z +o<|81d‘2 -Na

J* can be divided into three parts, a function of Sb(:). a function
of §y, and a constant.
T

J' = [ Fy [S b(t)] dt + l-"z(Sxo) + constant (3=19)

%

To minimize J'i
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OF

m = T\ Ly (t) +2§b(r) = 0O (3=20)
.3.:1.. Nz 2 0 (321
STE O mriten ’

The second derivatives in (3-20) and (3~21) are both positive and a
minimum for J* is assured. These equations szhow that the smallest
changes in the driving function and the initial conditions to result
in & given cost increment are changes proportional to their respece

tive influence coefficients.

N
Sb(t) = © 7 Ly(t) = K Ly(t) (322)
§1, = .,i'_f\zko M ;{%&o (323)

Tha sign of the constant K 18 chosen positive or negative for a de-
sired cost increase or decrease. Substituting equations (3-22) and

(3223) into (3=14) results in the cost expression as a function of Ko

Scost © « f T[Lb(t)] Ya o = l %'2 (3224)

%o

since § Cost {3 preeselected and Ly(t) and L, are known functious
daefined by aquations (3~11) &nd (3-15) the unknowm K is determined
by equation (3+25).

$ cost

I < : lz (3=23)

/ T[Lb(t)Izdt Wi l”

ol

%
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The influence coefficients, Lb(t) and Loo determine the nature of

the changes, and K def ~rmines the directiocn and magnitude.

b(E) gy = BlE)g p + K Ly(t) (3-26)

Loygy “ YooLp * ;"(z L (3+27)

As oentioned previously, oniy the unspecified initial conditions are
available for chenge.

The general procedure can be summarized as follows:

(1) A reasonable first estimate of b(t) is chosen, according
to the particular problem.

(11) The partial derivatives of the known functions £; with
respect to tha dependent variables and the control funce
tion are avaluzted slong the nominal trajectorye

(1i1) The adjoint varjables L; are determined from equation
(3«8), integrating backward over the nominal trajectory
with equation (3~12) as {nitiel conditions. The influ-
ence function L, (t) can then bs computed from equation
(3-11).

(iv) An arbitrary cost change is chosen, depending on the
nature of the probleme A value of S to 10% might be a
reasonable initiel value for § Cost if a aubstantial
overall cost change §a antigcipatede X is then detere
mined from equation (325).

(v) The new control fiiction is found from equation {3+26)

and the new initial conditions from (3-27)s Equations
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(3-6) are then integrated to obtain the new trajectory
and the process is repeatede

(vi) The ratio of the predicted cost change to the actual

cost changa will incresse as the optimum {s approachede.
When this ratio bacomes greater than about 5, the vslues
of § Cost and/or K should be decreased to reduce step
sizee In this way, the optimum can be apprcached as
closely as desired.

The essential part of this geaeral formulation is, of course,
relating control function changes to the resultant cost change. The
adjoint varisbles were necessary to obtain such an expression Decause
e divect relation between § Cost and § b(t) di  not exist. In the
thesis problem, the estimation error covarience wmatrices, L., are
aralogous to the f; in the general formulatioz. For the time selece
tion procedure, the times of the measurement points, G correspond
to the driving function b{t)e The ezchedule of measurement vectors,
8o is the driving function for horiien selection. The cost funce
tion, explained in Chapter 2, is the same for both cases. If it can
be expressed as an explicit functior of t, end, for the other case,
gx» the adjoint equations, defined in (3~8), will not be neededs Ine
stead, the influence functions for btoth cases would be defined by

the following equationas

N

N
§ Cost -Z %—C‘:—:-E St = Z L St (3228)

el kel
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N N
G Cost Z (-}S%E)T S & ° Z y;‘r & & (3-29)
kel kel

Equations (3~28) and (3~29) are both analogous to equations (2=14).
The initial conditione in the thesis problem are specified so that

the term corresponding to the rightmost term in (3~14) is zero.

Also, the summations are used since the driving functions, unlike
b(t), are not continuous functions. Using the cost function explained
in Chapter 2, and the E, expression daveloped in Appendix B, the ine
fluence coefficients for the two cases ere derived in Appendices D
and E.

Tine selection:

o1
& 2 T .l D (€D
e = ° =78 Cax EaQF Bd:k B (D-13)
Horigzen selection:s
.l
I = = L5 iy Cak' EaQEq(Cak) (5=17)
qa

For the time optimization problem, the N statestransition
matrices are evaluated from the nominal schedule using equation (Ce4).
Due to the symplectic properties of C, the inverse can be found ug-
ing the elements of C. Since C is & function of time, the determi-~
nation of {ts derivative is straightforward. These results are
given in equations (C~7) and (CeS). The estimation error covariance
natrix is then computed from equation (B-26). Using these quantities,

and the measurement vector determined in Appendix A, the time selec~

tion influence coefficient is obtained from equation (D~13). Sincs
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8 decrease in cost is desired, the time change at each point is ope
posite in sign from the corresponding influence coefficient. Ine
stead of specifying a specific cost change as in Brysonts formulae
tion, it is more convenjient to first specify a maximum time incre~
mente If the resultant cost changs is too small, the time increment
cen be incressed until a change greater then 5% is obtained. Of course,
as the optimum is approached, s smsller percentsge chenge is required.
The time changes are scaled according to the sise of their raspective
influence coefficients as in equation (3=22), so that the measurement
point having the greatest effect on cost is chunged the most. The
change follows the direction of steepeat descent in an Nedimensional
spaces The intricacias of this procedure are clarified by the flow
charts in the next chapter.

The horison=selection procedura i{s similar up to a point.
Since it is carried out simultancously with the tims-optimization
procedure, E‘ end cak must be reemevaluated sfter each iteratione There
is not as much control in this problem however, since there are only
two possible values for 5 g,  at each pointe The N individugl elements
cf equation (3«29, muat be cxomined to determina the incremental cost
changes. If a proposed horizon chenge resuits in a decrease in cost,
the change is made. If not, the original horizon is retained. With
80 little ;aontrol. it is possible tha’ the proposed change violates

tho assumption of lincarity utilized in the perturbation equation.

Thés problem is discunsaed in Chapter 5 The procedure for horison

selection is glso illustrated in Chapter 4.



CHAPTER &

COMPUTER SOLUTION

The specifics of the computer program used to implement the
theory developed in Chapters 2 and 3 and Appendices .\ thru E are
covered in Appendix Fo However, it will be useful to understand how
the problem esolution {s carried out: The flow charts in Figures 4.l-
5 will help in understending the methods used.

Figure 4«1 gives the flov chart for Block One (no horison
change)s Here the new measurement time schedule is computed using
the same messurement vector, either left or right horizon.

The input data nesded is covered in Appendix F. From equae

tion (A=14), the measurenent vectors can be computede

.

r -
(.2 2);

Z -ra

Z(RIGHT) = -3 (4+1)
0
0

— -

— -

g
2(zd o r 2)

E

g(LEFT) o (4=2)

© O nj-
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Using these vectors and the state transition matrix equation
(C=4) the target estimation error covariance matrix, equation (B=26)
can bs computed.

As shown in Appendix B, the symplectic property of the state
transition matrix allows one to simply compute ths matrix inverse
and matrix transpose inverse by rearranging the elements. Cquation
(Ce7) is computed in & simple subroutine.

The matrix Q 18 covered in Appendix De Now, the cost computed
will be the following:

Cost = ¢tr [QE.:I (D=2)

The cost will be designated the old cost, oc, when the computation
uscs & mgasurament time schedule which i8 either the 1n1t£a1 one or
a result of a previous iteration.

Using the present target estimation ervor covariasace matrix
and squation (D-13) the influence coefficients ara computede The
logic used will change the measurement time schedule by an amount

depending on the influenca coefficient having the largest magnitude.

Nowy, if we define a scale factor, sf, as:

8¢ = |maximum influence coefficientl
naximum time incremeat

or

ot = G (423)
A%

then the new measurement time depends on the old measurenent time

end the value of the fnfluance coefficient at the old measurement
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timae Nows
new timg o g¢gld time o wm&
scale factor
or
EC
kg, = ¢ o A (4=4)
"n 10 .:

aad this procedure is applied to all the measuremrnt times. Obviously
the time with the influence coefficient having the largest magnitude
vili have the greatest change. Also the sign of the influence coef-
ficlent will determine which way the measuresent time will move.

After all the weasurement times heve been changed, a new tare
get estimation error coveriance matrix and e new cost, nc, can be
computed. The actusl cost change, acc, 18 clearly:

&ce = o¢ » nc (4=3)
and this number ahould be positive. A predicted cost change, pcc,
can be defined as:

30 30
=} =

and then it is compered to acce The percentage cost change is thent
pc = &CC (4e7)
oc

When pe is positive, it 1s then compared to some minimum de-
sired porcent change, mpc. If pc is less than mpe, then the maximum

time fncrement is multiplied by the ratio of mpe Lo pCe

When pc iz gero, the maximum time increment is cut in halZ.
Whea pc is negative, the new maximum time increment is changed by

an amount depending on how much negative it is. The logic is then
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if pc + mpc is zero, then:
Ay, = Am (4-8)
{if pc + mpc ie greater then zaro thent
Aty = At - Ll (4=9)
and {f pc + mpc is less than zero then:

At = Aty Eﬁ (4=10)

Having changed the maximum time incremant, it may be used to
repeat the measuremdnt time change procedure showm previously. The
same influence coefficients ere used since thay were calculated bee
fore any measurscment time change was made. The same procadure of
selecting a scale factor, and of then changing each messuremgnt
time is carried out. This procedure may continue until pc is equal
to or greater then mpce Any additionsl changes made will be added
to thosa previousiy medas Since the logic dces not return to the
neasurement time schedule used to compute the influence coefficiants,
the optimum may be miesed, much @8 the hill climber in Chapter 3
missed a better path Ly climbing too far in one diractione The inie
tiel time increment mey have forced the optimium over tte top of the
hill and any further change in this time increment will marely cause

chenges that will put the optimum further ovar the tope ‘Ths program

way then run into troublee Vhen this happens, the best procedure
to follow {& to return to the measurement time scheduie computed be-

fore the troubls was cucountezed end reduce either the maximum time
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{incraement or the minimum desired percent changee
Therefore, the program control §{s either on the percent
change or the maximum time incremente Another possible progrem
control could be the ratio of pce to acce
The above procadures are shown better in Figures 4.2 and
4¢3+ Subroutine CHECX, Figure 4.2, changers only one time. This
routine {s used right after the influence coefficients are computed.
The result shows that the cost does decrease by changing the measuree
ment time, and that the influence coefficients are correct.
Subroutine LOGIC, Figure 4.3, computes the entire nevw messuree
went time schedule. Also this routine limits the new times to the
end conditions:
<

0SS

e, = ‘o (4=11)
n

vhere F, i3 the final angle of the orbdit.
This wvhole procedure can be repeatcd any number of times.
But as mentioned before, after several iterstions, it may be impose
sible to achieve a given mpce. Igcreasing the maximum time f{ncrement
mey place the optimum over the hill tope Then e new mpc must be
chosen and this can only be done in a heuristic menner. However,
the results after a st of iterations help ‘etermine what size steps
must be made to bring the measurement time schedule to an optimume.
Figure 4+4 shows the flow chart for the second blocke Here

& ney mgasurement tima schedule and a new messurement horison schedule

are computede The main difference lies in the fact that at each meas~
urement time tha messurement vector {s diffsrent, end the results of

the program are optiman measurement time and horison schedules.
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Except for using a different measurement vector at each time,
the measurement time schedule optimization is the ssme as in Block
One. Also since linearity is assumed superposition holds, and the
measurement time and horizon schedule optimization can be carried out
independently.

The measurement time schedu’e optimization is completed first
and them using equation (E-17) the horizon influence vectors are come
puted.

Using equations (E~20) the change in cost is computed. Only
1f this change in cost I8 negative, will the total cost be reduced
by changing the measuremeant vector.

To avoid going outsaide the lincar range by making the change
in cost too large, only one measurement rector will bs chenged at a
time. This will keep the change in cost small. Therefore, only
the measureaent time having the negative change in coat with the
largest magnitude will lave its measurement vector changed.

After this particular measurement vector is changed, the new
target estimation error covariance matrix and & new cost are computed.
As before:

acc = oc ~ nc (4=5)
and the predicted change in cost is defined by equation (4~12):
pcc = « § Cost (4»12)

vhere:
1

§ Cost = - a..?i. G Con EqQEq Cox ) & & (E=16)

The ratio of pcec to acc shows how the change effacted tha coste
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The new cost can be compared to the old cost to see if change did
decrease the coste
Subroutine JUMP, Figure 4.5 shows the logic used in changing

the messurement vectore.
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TABLE &4el

SYMBOLS FOR FLOW CHARTS

ratio of actual cost change to old cost

actual cost change

cost change due to change in measurament vector
estimation error covariance matrix a% target
influence coefficient for measurement time change
largest value for l’.ci
final angle of the orbit

measurement vector change from r.ght to left horizon
measurement vector change from left te right horizon
horizon flag

= 0 usging left horizon

e ] using right horizon

maxirum desired percent cost change

mean angular motion

new cost

number of iterations

old coat

parcentage cost change

predicted coat change

ratio of predicted cost change to actual cost chenge
scale factor

new measurensnt time

old measurcment time



A, maximum time increment

JAR actual time increment

A

- influence vector = L,

Subscripts:

i, k neasurement times

I one particular msasurement time

N meaguremen” time having the a - (. with the largest

magnitude



CHAPTER 3

RESULTS AND CONCL“IONS

As mentioned in Chepter 2, the hyrothesis asscciated with
the time optinization problem is that, in a schedule of thirty
equally spaced measurement points, there are a cartain number of
preferred positionse Me¢nirements made at or near these positions
should result in a lower cost, the sum of the squares of terminal
position uncertainty, then measurements made at other points along
the trajectory. If che¢ times of the various points are allowed to
change to effect a ccsi. decrease, they should cluster about the pre-
ferred, or optimum, points. The method of steepest descent is pare
ticularly appliceble to this type of problem since the relative size
of the thirty influence ccefficients indicates the sensitivity of
their corresponding pointse The time changes are proportional and
of opposite sign from their respective coefficients, so that a rele-
tively lerga value for L, indicates that a substantial time change
should be merde in a specific directione If the optimum points are
welledefined, their position on the trajectory should not change ap~
preciably as the times of the messurements are changed. Therefore,
a plot of the influence coefficients as a function of the corresponde

ing central angles for each case should serve to locate them. These

35
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influence functions are plotted in Figures S5-1 and 5=2 for the cost

values listed in Table 5-1.

NOM INAL CHANGE = 25%  CIANGE = 50%
RIGHT «6405 x 10° 4686 x 10° 3221 x 10°
LEFT 1.1628 x 10° 8632 x 10° .$732 x 10°

COST VALUES = FT2

TABLE 5el

The "RIGHT” horison is that opposite to the direction of motion, as
defined $a Appendix Ae It is evident from Table 5~1 that, for a
single torizon reference, the right horizon is preferable. The ane
gular c¢ispersion of the measurement points correeponding to the asbove
cost ‘alues are more clearly shown in the polar plots, Figures 5-3
thre.gh 5~7« The general configurecions of the influence functions
in ’igures 5-1 and 5«2 remain the ssme, even after substantial changes
in coste The increase in awlitude indicates that the ﬁimu ara
driven harder toward the optimum as the optimum is spproached. The
avro#s in both figures indicate the dirsction of time change, and
rerve to dafine the circled stable pointse It appeare that four Clus-
ters should rigult, two at the end points and two in the middle. The
cluster locations predicted from Figuree 5-1 and 5-2 are given in

Table 5=2.
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lst 2nd 3rd 4th
RIGHT o° 58.5° 170° 290°
LBFT o° 70° 176° 290°

CLUSTER PREDICTIONS

TABLE 3=2

For a total cost chsnge greater than 50%, the dispersion of the
points 1s not sufficient to asccurately identify the sero~crossings
in an influeace function plote. Subsequent iterations were carried
out, periodically decreasing the maximum time increment and required
percent chmnge, until the clusters were clearly defined. The sngular
dispersion for & cost change of about 757 is shown in Pigures S-8
and 35~9. At this point, it is obvious that thexe will be only four
clusters. The influence coefficients at this stage tend to .rive a
number of the times beyond the end pointse As noted in Chapter 4,
the measurement positions sre constrained once they reach 0° and
290”7, and the lcrho end-point influence coefficients are ignored in
computing the predicted cost change for each iteratione.

Accurate identification of the position of the clusters was
not possible until after several itsrations requiring a .17 cost
decreases or lasse The size of the clusters cannot be predicted since,
in the early itaerations, the progrem drove the time locations quite
hard until a substantial cost decrease was realized. There were
several instances of points "jumping” from one cluster to anothere
It {s reasonable to assuse that a tighter tolerance on the maximum

time increment wouid result in different cluster sizes. The loose




tolerance was used to shorten the convergence time.

When the program had changed the times as much as possgidls,
the most likely cluster positions were chosen, and all points were
sssigned one of these four time valuase The cost function values
resulting from the selected solution show only a slight decrease from

the computer solution. The results are listed in Table S5-3.

COST COST

COMPUTER SELECTED % CHANGE
RIGHT .1108 x 107 .1108 x 10° 82477
LEFT 02162 x 107 <2161 x 10° 81447

FINAL COST VALUZS

TABLE 3«3

The finel angular positions and numbers of included points for the
clusters are given in Table 5-4, along with the positions predicted

from Figures 5-1 end 5~2.

RIGHT LEFT
Included Angle Pred. Included Angle Pred.
Points Points
st 2 0° 0° 3 o° 0°
2nd 11 69.3° 58.5° 11 75.4°  70°
3rd 7 208.1°  17¢° 10 197.2° 176°
4th 10 290° 290° 6 290° 290°

FINAL CLUSTER POSITIONS

TABLE 5~4

The angular position of the clustors is more clearly shown in Figures
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510 end 5=11. The influence function plots provide a fair predice
tion of the number and position of the clusters even before any cost
reduction is obtained.

The selected cluster positions can be Justified only {f the
infiuence coefficients for these points approach zero, i{ndicating
that there are no further chaages to be madee The influence coeffi-
cients for the end points are still quite large but, as noted, they
tend to drive the times beyond the constraints. The sign of the co-
efficients is positive at 0° and negative at 290°, so that the times
are being driven in the proper direction. The values of the coeffie
cients for the middle two clusters are compared with the values for

points close to the cluster position in Table 5=S.

ON OFF ANGULAR
CLUSTER CLUSTER DIFFERENCE
RIGHT 2nd + 4440 - 680 2.5°
3rd - 6036 + 6923 3.4°
LEFT 2nd =21.32 ~1735 3.9°
3rd + 5459 - 22.0 446°

INFLUENCE COEFFICIENTS ~ FT2/SEC
TABLE S5-8

It is evident that the optimum positions have been closely approxie
mated.

The cost reductions in esch case will be more neaningful {f

compared in terms of position uncertainty in the radial and tangene

tial directions. As noted in Chapter 2, the initial estimation error
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vas chosen to be about five miles in each direction. The correspond-
ing values sfter making thirty measurements for the nominal and optie-

mum solutions are compared in Table 5«6,

NOM INAL OPTIMUM % IMPROVEMENT
RIGHT RADIAL 2.53 1.33 47.+5%
TANGENTIAL 4.08 1.49 63¢5%
LEFT RADIAL 2.98 1.50 49.6%
TANGENTIAL S5¢74 234 39.2%

POSITION UNCERTAINTY « MILES

TABLE 5-6

Changing the times of the measurement points results in a significent
cost reduction in both cases and the xight horiszon reference gives
the best results.

The purpose of the herisone~selection procedure was to inves-
tigate the possibility of a cost reduction by providing a choice of
twvo references at sach mecasurement pointe Using the measurement vec-
tors defined in Appendix A for the right and left horizons, the 6&
vectors were defined i{n equations (E-18) end (E~19). The time opti-
mization problem described in the firast psrt of this chapter was car-
ried out first. Since it was evident after the first run that the
right horizon reference would result in a lower cost value, a reason-
sbl¢ .minal scheduie for the horizon selection was to use this hori-
zon &t each pointe The idea was to switch to the left horizon where
the steepest descent procedure predicted a decrease. Since the
switching problem was paired with a timing achedule optimization, it

vas aaticipatec that the horizon schedule would not stebilize untii
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the optimum time schedule was approached. Ststed another way, the
portious of the trajectory which preferred one horizon over another
were expected to be a function of the central angle onlye

As explained in Appendix E, the horizon selection differed
from the time optimization in that there was no coatrol over the step
size. The messurement vector could not be driven in a direction to
effect a cost decrease since the two values cf 65 were pree-determined.
If the cost change predicted from a proposed horizon chenge was nega-
tive, the switch was made. If not, the original horizon was retained.
The problem does not have the continuous nature of the time optimiza-
tion and the lack of step size control caused trouble. Early results
using the schene descrioed avove did not provide accurate predictions
of cost changes When the program changed the horizon at all points
where a cost decrease was predicted, the resultant cost value was
greater than beforee The influence vectors were correct, so it
seemed best to change only one horizon at a time before re-evaluating
the vectors. The problem persisted, however, and at that point the
step size vas investigated. It was found that the right and left
horizon vectors were separated by an angle of 149° at 11,000 miles

as shown {n Figure 5-12.
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LEFT \\&&, 11,000
\ mile
\ orbit

RIGHT

LEFT \\\
Y% 100 mile ordbit
AN (not to scale)
\
N\
\
\
N
—pn
RIGHT

FIGURE 5-12
COMPARISON OF é;g_VECTOR AT DIFFERENT ALTITUDES

If the altitude was reduced to its lowest practical limit, 100
miles, :he angle is reduced to 12°; but, since the 83 vectors are
inverecly proportional to the altitude, it was felt that the step
size would 3till be too large. The alternative solution was to re~
define the "left" horizon vector, using the negative ot the g (LEFT)
defined in Appendix E. The physical meaning of this chenge is that
the star~c¢levation engle would be m2asured in a counter-clockwise,
rather than clockvuise, directian. An examination of Figure 1 ia
Appendix A shows that this is true. The time optimization procedure
is not affected by this change since, in the expressions for Ej s L
and & Cost (Equstions (D-10), (D-13), (D=1)), the measurement vee-

tors appear in the form 53?- Therefore only the aquare of the sle~
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ments is critical and changing the sign of the measurement vector
does not wesken the comparison with the straight time~optimization
problem. As shown in Figure 5-13, the step size was consideradbly de-
creased. The step size could be reduced more, if necessary, by in-

creasing the altitude.

11,000 mile RIGHT
orbit

LEFT ™ §133

REDEFINED § g VECTOR

FIGURE 5~13

As a further precaution, only one horizon change was made before
re~evaluating the influence vectors. The Sg vectors replacing

those in Appendix E are ziven in equations (5-1) and (5-2).
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3(:2 C rE

& g, (LEFT TO RIGHT) 0 (51)

S g (RIGHT TO LEFT) = 0 (5-2)

The procedure described in Chapters 3 end 4 was cerried out,
with more encouraging resultse. The predicted incremental cost changes
are plotted in Figure 5~14 as a function of the central angle. Since
the nominal schedule uges the right horizon at all points, the areas
of negative cost predict a favorable change to the left horizon. It
is evident that the points preferring one horizon or the other are
not scattered randomly over the trajectory but lie together in cer~
tain well defined areas.

Since the time and horizon gelecticn procedures are indepen~
dent, the shape of Figure 514 should not be affected by changing
measurenent times. The angular limits corresponding to either hori-
zon reference can bs predicted from the figures These predictions

are listed in Table 5-7.
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RIGHT HORILZON LEFT HORIZON
16° to 109° 0° to 16°
212° to 290° 109° to 212°

AREA PREDICTIONS

TABLE 5-7

A similar line of reasoning applies to the time-optimization
clusters. Changing the horizon from right to left should not affect
the number of clusters although their positions may be 8)ightly ale
tered. The predictions for the cluster positions are given in Table

5~8 along with the predicted horizon obtained from Table 5-7.

ANGLE HOR LZON
1ot o° LEFT
2nd 72° RIGHT
3rd 202° LEFT
4th 290° RIGHT

CLUSTER PREDICTIONS

TABLE 58

As expected, the effect of two optimication procedures is
to provide for more rapid convergence. The horizon changes made
along with the respective central angles are listed in order of
their occurrence in Table 5-9. For each {teration, the proposed
horizon change which results in the greatest cost decrecase is the

only change made. The numbers associated with the points are the

identification numberes in the program. After several iterations,
these numbers lose their meaning since the points may pass esch

other on the way tc the optimum.
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POINT NO. CHANGE ANGLE AT CHANGE
19 RIGHT TO LEFT 165.5°
18 " 157.0°
17 " 148.5°
20 " 174.0°
16 " 1460.0°
21 " 182.4°
15 " 135.6°

1 " 8.2°
14 " 122.2°
22 " 190.8°
13 " 112.1°
13 LEFT TO RIGHT 112.0°

2 RIGHT TO LEFT 17.2°
22 LEFT TO RIGHT 24049°
21 LEFT TO RIGHT 252.9°

HORIZON CHANGES

TABLE 5-9

The predictions in Table 5~7 were quite accurate for several
iterationr At one point however, while seeking an overall cost
reduction of 5% or greater, the progran made changes which were ob=
viously outside the linenr range. A number of the angles were
changed by 30° or more. A cost reduction was realized frou these
new values but the lerge changes, in effect, altered the nature of
the problems If such violations of linearity were not allowed the
new values would be arrived at from a different nominal schedulee.
This "new" noninal schedule would probably reeult in different zeroe-
crossings in Figure 5-14 and hei.ce different predictions in Table
5«7. This line of reecsoning seecks to explain the apparent discrepan~
cies in the lest two entries of Table 5-9.

As the clusters become more cleerly riefined. the horizon

selection stabilizes since there is no further movement across the
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boundaries. The result of the time optimization is given in Table

$=10.
INCLUDED ANGLE HORIZON
POINTS
1st 2 0° LEFT
2nd 1 67° RIGHT
3xd 6 2099 LEFT
4th 11 290? RIGHT

FINAL CLUSTERS
TABLE 5-10

The table shows that the horizcn selection procedure does not chenge

appreciably the strength and position of the clusters. Comparing
Tebles 5-8 and 5~10 ghows the accuracy of the predictionse The dise
persion of the points, at different stages in the optimisetion, is
shoun in the polar plots, Figures 5~15 through 518 The rominal
positions are the same as shown in Figure 5-3. Note that the ime
provement in overall percent change is % over tha “RIGHT" case

in Table 5-3, which has the sane ini:ial conditions. The sizes

of the time-~selection influence coefficients for points at end neer
the cluster positions are compared in Table 5-11, in order to justify

the final position of the clusters.

ON OFF ANGULAR
CLUSTER CLUSTER DIFFERENCE

1st 15.8 33,0 03°

2nd 92.8 872.9 ,02°

INFLUENCE COEFFICIENTS - nzlssc

TABLE 5-11




The radial and tangential components of the final position uncere
tainty are listed in Table 5-12: In these more feniliar units, the

{mprovement over the previous time optimization is more obviouse

NOM INAL OPTIMUM % DMPROVEMENT
RADIAL 2,53 1,06 58.2%
TANGENTIAL 4,08 1.6 6lis 3%

POSITION UNCERTAINTY « MILES

TABLE 5-12
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time change takas on a different meaning, dependent on where it oce
curs along the trajectory.

The time-optimization problem can be coupled to a more sophis~
ticated measurement~selection procedura as sn extension for the
second purtion of the thesis. As discussed in Chapter 5, the steep~
est~descent technique is not always a reliable maethod in this dis-
coatinuous type of prcbleme The step size from one possible measure~
ment to another must be small enough so that the linearizing assumpe
tions are valid or false predictions will result. Denham and Speyer
were conscious of these limitetions and steepestedescent worked well
in their study.

Different cost functions can be used to determi .e their effect
on the clusters. Some possible schemes are mentioned in Chapter 2,
such as a weighted average of position and velocity uncertaintye.
Instead of making many messurements in a sho-t space of time, as is
implied by the clustere of points, it might be more reasonable to
track the angular elevation of a star for a certein amount of timee.
This would elimi--ate frecouent changes of spececraft altitude and re~
sult in a significant fuel sevinge A cost function could be ccae-
trived vhich would compare the effect of trecking on terminal posi~
tion uncevtainty to the effect of making discrete measurementse

It is interesting to speculate on the physical reasons behind
the clucters. It might be argued that a series of measurements early
in the flight would tend to reduce the effec. of the initial estima~
tion error by improving the estimate before it propagates too far.

Likewise, the measurements near the terminal point would tend to
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reduce the position uncertainty of that point. The position of the
middle two clusters is somewhat of a mystery, howevere Aleo, the
strength of the clusters, measured by the number of included points,
and their convergence times are by no means identicale The values
may be random in nature, but {t is more likely that there are physi-
cal causes.

The results obtained are a etrong argument for the practicality
of changing the measurement times, in spite of the simplicity of the
problemes It is reasonable to expect that & more complicated model

would produce similar resultse



APPENDIX A

MEASUREMENT VECTOR

The measurement vectors for a variety of techniques are de~
veloped in Reference 1. For this probiem, ths atar-elavation measure-
ment was chosan because of itg superior accuracy in a planectary orbit.

The local vertical co~ordinate system i3 uvsed to coincide with the

system adopted by Stern in developing his transiticn matrix.

As shown in Battin, each type of measurement !s characterized
by a measurement vectore. The deviation in the quantity to be measured
relates to tae position deviation by the following formula, where h

is this vectore.

§q = hedr (A=1)

The procedure for dstermining h is the sams for all measure~
ments; the equation defining the queatity to be measured is developed
and, from {t, the perturbation equation. In this case, the measured
quantity is the angle from the planet horfzon to the line of sight
to a star, a¢ shown in Figure l. Lquation (A-2) defines the measured
angle 1.

n*z = 2 cos(M+B) (A~2)

where n {8 & unit vector in the direction of the star. Writing the
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perturbation equation:

B°§2z = -zsin(MB)(SM+ {B) + § 3 cos(*+B)

A vector expression for the scalar Sz will be useful.

1
$z+rz+x° §fz ~ 2682
gréz

z = bz

Substituting (A-4) irto (A=3):

%
(] k4

:—..;:..T-“ cos(M4+B) » 2 sin(M¥B) ( SM+ 3B) o n*§z

From Figure 2, it is obvious that §z = =~ §r.

SUN

in

v

i

D N
/2t

8L A %
I Nom}n{l Position

P 4
Py

\\I Actual position

FIGURE 2

Z 7 Planet

(A=3)

(A=4)

(A<5)



I = 24+ 5z by definition

Rewriting (A=5) in terms of § r:

2 ain(MB)( §M+ §B) = [2 - m cos(M+B) ] .+ Sz (Avb)

vhere m is the unit vector in the direction of planet ceanter. From

Figure 1:

cos(M#*B) = m e n the projection of n onm

Therefore, the bracketed quantity in (A=6) relates the two

legs of a right triangle. Figure 3 shows that the magnituds of the

resultant leg is sin(M+B).

=

cos(M+B)m

n2 - cosz(M+B) o x&

1 - cos?(M+B) = sin2(M+B)

FIGURE 3




Rewriting (A-6) in terms of the vector a:

SM+S§B = 8°SL (A=7)
4

An expression for $3 can be derived from Figure le.

sin B = D

= (A=8)

Writing the perturbation of (A-8):

cos B §B = ~ D

T z

(A=9)
222

Substituting (A-4) and the results of Figure 2 in (A-9):

$B = sD__ Z2°3%2
2z2¢0s B 2
§B = B .§x (A+10)
224c08 B
Substituting (A~10) into (A-~7):
S M = 9- 3 S£ " D-D- , S-E
z 2z2¢c08 B
From Figure 1:
sin B = '2%
SM}(Q_ntan&.g)ogg (A=11)

It is shown in Figure 3 that 3 {8 perpendicular to me Figure 4 shous

that th. hracketed cuantity in equation (A~11) defines the third leg
of a right triangle.



FIGURE &

t&nQ".tE;_—gomnB

« B

Q
b 1is perpendicular to d , the unit

vector in the direction of the planet

edgee

Determining the magnitude of b 1
1+ tan®8 = b2 = gec?B

Defining the unit vector p :

>
sec B

2 |~
Equation (A~l1) can be rewritten:

SM nB‘S

Z Cos

i

o)

(A-12)



Referring to equation (A=1), the vector which characterizes

the star clevation measurement is:

ho= B (A-13)

z cos B

As noted in Figure 4, p is perpendicular to the planet edge
and is therefore independent of the measured sngle M. lence, the
expression for the deviation in M does not contain M explicitlye
The h veector can be written directly from the orbital geometry.

The assumption of a circular orbit at a kncwn altitude serves
to completely determine the measurement vector. The expression is

derived in Figure 5, in the local vertical co-ordinate syetem, rsz.

FIGURE 5

LOCAL VERTICAL CO~-ORDINATE SYSTEM




p = = cos Bs + sin Br

8in B = E_E_
)

08 B = (‘2"”52)k

z

From (A=13).

o = Cos Bs + sin By

=

2 ¢co8 B

Es

- "lp_d-ltan Br
z 2

h = o _;_2 + Tg r (A=14)

If the left horizon is used, the g-component changzce sign.
In order that it be compatible with the 4 X 4 state transition
matrix, the measurement vector is modified to the 4~dimensional veco

tor g, wvhose first two elements are identical with he

g = (A=15)

Equation (A-l) then becomes:

$q9 = g+ $x (A=16)




vhere §x is the complete state deviation vector.

1%
]
i

(A=17)

1<




APPENDIX B

ERROR CORRELATION MATRIX

The error vector ¢ ma' be defined as the difference between
the estimated and true values of the state deviation vector at any

point in the trajectory.

Eﬂ - S-g-n - 5_)'(11 (B‘l)

The covariance matrix of the error vector is of interest sinca it
describes the uncertainty in the estimated position end velocity

deviation of the spacecraft.

Ehn = &8, (B«2)

Battin (Reference 2) develops & recursion formula for the error cor-
relation matrxix which will be presented in this sectiocn. It is then
shown that the recursion formula is equivalent to a more convenjient
representation using the inverse of the covariance matrix. It {is
this latter form, referred to target co-ordinates, which is utilized
in the computer progreme Definition of the symbols to be used is

necessary before proceeding. The following superscripts, applying

to the quantities 55_, gq and ¢, are defineds

~ obsarvation

17
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’ extrapoliation
A estimation

The lack of a superscript on these symbols indicates their true
valuess The extrapolated vector is that resulting from the same

vector at a previous time, if no new measurements intervena.

§ X = Canel § Xnal (B-3)

Equation (B-3) defines the state-transition matrix, C« The extrapo-

lated error matrix is encountered in the subsequent derivation and

is defined as follows:

A A
s “ ) x - 3 x " cn,nol S Zae1 cn,nol ) Zae1 :
2:1 = cn’n"l "'fl‘l
! « ate!! o T T
En Znsa cn,n-l Sa-1%n-1 cn.n-l
E' o ¢ a (B~&)
n nyn-l F‘nnl nyne~l

An equation sim!laer to (B-4) trensfers eny matrix fron its local co-

ordinate system to a reference systocm, target co-ordinates in this

case.

I =" ¢ L ¢ (8=5)
The seme relation must hold true for the extrapolated matrices.

C

x:;l‘ - ¢ _E (B~6)

i ol
en n “an

Substituting from equations (B~4) and (B-5)s

‘a T T
En cmcn,n-l En-l cn,u-l can
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" - T
En ca.n-l En-l ca.n-l

Bt B BNE)

Thus, the estimation error covariance matrix at point n, just prior
to the ntD messurement, equals the matrix just after the (n-l)"h
measurement when they are referred to the same co-ordinates. This
is @ clearer definitio: of the extrapolated covariance matrix than
that which equation (B-4) provides.

A linear estima:e of the state deviation vector X, ot time

tn is given in equation (B-8).

A A ~r A

x = §x +y(Sq -S57q) (B~8)
The best e¢stimate i) the extrapolated estimate, defined in equation
(B~3), plus the we/ghted difference between the observed and extrae-
polated measuremevt deviations. The extrapolated quantity, 6&". de~

fined as in equation (A-16}, ig what the measurement deviation is ex-

pected to be.
n A
S = g §x (B-9)
The vector ; is the 4-dimensional measurement vector defined in
Appendix A« The welghting vector, ¥ in equation (B-8), is & func-
tion of the covariance matrix. The observed measurement ceviation

differs from its true value by the measurement error a, & random

veriable assumed to have zero mean velua.

S’;n - §q,*+a (8=10)
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Equation (B~8) is substituted into (B-~l) to obtain an expression

for the errcr vector in terms of known quantities.

>

Y

6kt [mn Sx v e - a 8]
& - 51'5,:'85“*20[325z;.,¢a°&'f(85;+&',)] (B=11)

The vector Sg’, is equivalent to 55‘ since the actusl state devia-
tion at point n doeg not change when a new measurement is made.

Therefore, in equation (B-ll):

Ay A? 3 '
- 0% = 6x,-8x - g
K i e T e
B, 6% = & Sx
Rewriting equation (B-ll):
e, (I ~wgle +ua (B-12)

From equation (B~2), the covariance matrix as a function of v, 1s

given in (B~13).

E o= (- wgDE( gl + yul o (B~13)

In equation (B~13), the error vector and the measurement error are
assumed independent. Then the cross terms ;'ﬁg cqual zero since the
averase measurement arror is assumed zero. Another result of this
assumption ir the exoreszsion for the variance of the me2asurement
ArYor.

al (B=14)

Since the weighting vector, w_ , is arbitrary, it can be chosen

-
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to minimize the trace of the covariance matrix, thus minimi{zing both
.thc position and velocity errors. Writing the perturbation equation

of the trace of (B~13):

5::[2\,] - :r[S En.i ° tr E-gm‘bs;u egul) oo
+ (o wgE (g, Sul) + S 2+ u S§fr? = 0 (2a13)
Since E; is symmetric by definition, the first two terms of equation

(B=15) end the last two are the transpose of one another. The foie

loving relations hold for the trace:

tr[AT_] ® tr[A_] ‘

tefa + B] = tr[A + BTJ
Applying these relaticns to (Be15):
2 trEn 53&,&2)5,',(1 -3,‘1':) + got_e;fe'z] « 0

2 tr{ ¥, [yg e - gg E;(I - &gﬁ)]} = 0 (B=16)
Since the weighting vector is arbitrary, the portion of (B~16) mule

tiplied by 5 v, must equal zero.

(0% v gy BB = & (Be17)

4}

The quantity g’Eng 18 a quadratic form, which makes it a scalar.
Therefore the bracketed quantity in (s-17) is a scalar. The transe

pose of the optimum weighting vector then has the form:

T
3: - 2&‘ E’; (B=18)
¢ * ByElin
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Since the matrix E; is symmetrics

- i (3-19)
0" * Bnfala

¥n

The recursion formula for the covariance matrix is ottained by sube

stituting (Be18) and (B~19) back into equation (B-13).

Ergnal Tce ' T 2
£y - lr- S . L I
\ 2+ glg! (¢* + glErg)

1 . 5nanfin ¢ * 8nEnla

g, = &) - —mialln . _Enfanf ., BBt ity
el v alEe. ¢t ralEa (gl e ATEN g2

B - £ -2 [%1&1&533 -J[ <&1Bnan + e (Ergnaiy)
n

2, &I;E:\&n (gnE B * ~2)°
T
E = E} - .._"i (B=20)
“ 8aBngn

The recursion formula for the estimation error covariance
matrix is somewhat inconvenient for the stespest descent method of
solutione The influence coefficient expression obtained by using
(B~20) would be difficult to work with. A less complicated expres-
fion, involving the inverse of the En matrix, will be proved valid.
The proposed formula is given in equation (Be21).

ol ) | T
E - (E)7" + Sniz (B=21)

n
0‘2
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Lf equation (B=~2]) 1s true, then its product with (B-20) should equal

the identi:y matrix.

. A T
E PRLITS S - 3¢
i & |- -—Eﬂéngn—n-i ()" + -
R " L | R
) T T
I, i . Eﬂﬁﬂgg + + .E;ﬁn(&n 28 )8n
& Eng * 0 o 2gTe'g + 072)
A e L T L Ry
I I, +
“ 4
0 Baloy * T
14 = 14

Equation (B=2l) will be used instead of (B-20) because of its simpler
form.

The estimation error covarience matrix at the target is needed
for the cost function. Equation (B-5) i8 used to refer (B-21) to

target co-ordinates.

E® « ¢ E ¢ T (B=5)

From (Be2l):

¢,y gt c o)

e nl A T 61 L] .1 91
(£,®) c D 'y le ol .

"9

£

L g,

-1

(r:n")"l « (E'H7 + (B=22)

i

The vector gn {8 defined as the 4~dimensionsl measurement vector in

target co-ordinates. Equation (B~7) provides a further simplifica-
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tion.
gl

o)l a \l *nn
a = e o B
If there are N measurements to be made, equation (B~23) can be ap-

plied N times, where Eo is the initial covariance matrix.

1 1 & &
a\*: o a8y~ .
(EN ) (EO ) + :;:i' (B=24)
kel
From equation (B7), since the Nth messurement is the last:
T
N £ £
fa, -1 B a1 - a1 =H=l¢
(E, ) (E) (E,5) © + e ras (B=25)

Henceforth, the left hand member of (B=25) will be referred to as
1

either Ea' or A.
N g g T
nl - - ‘0”1 § .-Jls
Ea A (Co ) + & 2 (B=26)

kel




APPENDIX C

STATE TRANSITION MATRIX

In Stern's thesis (Reference 8), a general formulation of the
state transition matrix for a two-body conic was derived end is re-
printed in equation (C-l). The development was carried out in the
Pqz or flight path co-ordinate system because of the relative simplice
ity of matrix operations. The pqz system is a member of e class knoun
as refercnce trajectory co~ordinate systems, since its fundamental
plane {s the plane of the nominal orbit. The system rotates about
its z-axis, which is defined perpendicular to the fundamental plane.
The angular velocity of this rotation equals that of the vehicle's
velocity vector. The qeaxis lies parallel to the velocity vector and
the p~axis forms the right-handed triad. Since, in a circular orbit,
the velocity vector is always perpendicular to the position vector,
the peaxis lies along the position vectore Thus, it is obvious that
the flightepath co-ordinate system is identical to the more familiar
localevertical system. Thio is a fortunate result since the measure-
ment vectors developed in Appendix A are more easily defined in the

local vertical.

For the circular orbit case, e = 0 in Stern's formula and the
eccentric and true anomalies are identicsl. In addition, the third

and sixth rows and colums are eliminated since only the in=-plane

85




Symbols:

Ji

L®41

Ji

Jil

(c-1b)
(c-1c)
(c-14d)

(c-1le)

eccentricity

eccentric anomaly

b)’l_)

(EJ - E,)

(EJ 1 Ei)

of -

mean angular motion

(c.1la)
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deviations from position are to be considered. The result is the
4 X & matrix in equation (C-2), where fy = ’g(fj - £4)+ The factor
n is the mesn angular motion, defined as 2 divided by the orbital

period. Further simplification is possible since:

2 sin(f:l.:._f.i.) cos (f_J__'__f_i_) = sin(f - £) (C-3)
2 2

Also, since the matrix will be used to refer all measurements
to target co~ordinates, the j can be replaced by a. Equation (C-4)
is the resulting 4 X 4 matriy Caj °

The derivative of the state transition metrix with respect to
time is nesded in the determination of influence coeffic/ents. This
derivative will bs denoted D,; and is given in equation (C-~5). Time
is explicit in this formulation since nt = £

A useful property of the state~transition matrix will be utie
lized to simplify computational procedures. As shown by Battin
(Reference 1), the state-transition matrix is symplectic, that s,

its inverse can be computed by the simple formula:

¢l = . gcTy (C+6)
0 1
where J
«I 0

If the C matrix {8 partitioned and the rule applied, the inverse of
C is shown to ba a rearrangement of its elements.
T
G €

¢l o oy J
C3 Cl’
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b0 o\ JeT I
- . 0 or1\fef ¢\ 0 1
1 ofic cifl-r o
T _.T
“C; =C,\[0 1
ST I
. - -cg\.
™t e - t ) (C-7)
\\ oc3 c1 /

The transposs of the state-transition matrix is, of course, also
symplectice In the computation of influence coefficients, the de-
rivatives of both the inverse end the inverse transpose ara required.
The fact that C and CT are symplectic greatly simplifies these come
putations.

In the progrem, the state~transition matrix C, snd its deriva-
tive D, are computed according to equations (Ce4) and (C=5) respec~
tivelye The inverse and inverse transpose contain the same elements
as C in different positions. Therefore, thneir derivatives will con«
tain the same elements as D in these positions also. The easiest way
to form these derivativee is by applying equation (C~7) to the elee
ments of D snd D'e It is important to nota that the results ars not
0"l and (DT)hl, but rether the derivatives of C*! and (CT)“lo The
formula for the inverse of a symplectic matrix does not hold vwhen
applied to D and DT, which are not symplectic. Equation (C-7) is
merely the easiest programuing method which results in the desired

quantities: .9.(c°l) and .9_(07)'1.
dt dt




APPENDIX D

INFLUENCE COEFFICIENTS » TIME CHANGE

The relation of the cost function to the independant variable
is developed in Chapter 3. For this problem, the times of the deci~

sion pointa are varied and the relation has the following forms
o Sk >
k

The quantity L., the influence coefficient, determines the change

in cost due to a change at the kth decision point. The relation is
accurate to the first order, zssuming that the time change is smsll
enough so that linearity is guaranteed. As explained in Chapter 2,
the cost function is the mean-squared arror in positiocn estimation

at the targst.

The correlation matrix of estimation errors, Ea’ is premultiplied by
Q so that only its first two diagonal elemants are used to determine

the cost function. For a different cost, Q would have a different

96
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form, or might not be necessary. [t is used only as a convenient
means for expressing the cost function in equation form and is not
esgsential to the subsequent derivation.

From equations (D-1) and (D~2), the expression for the kth
influence coefficient is developed as follows:

v - bwfe]

Lk - tr 25%:.{§E€]
L, = tr E'%Ft: (De3)

An expression for the error correlation matrix was determined

in Appendix B.

N
o a e @YY Z -f-&c.f.szT
E‘ - o) 4 (B«24)
.y ¥

Eo ie the error matrix at target due to initial estimation errorcs,
0'2 ie the varience of the measureuwent noise &nd gk is the modified
measurement vector expressed in target co~ordinates. Lquation (De24)

{8 denoted A to simplify the mathematics.
EaA « I (D=4)

The partial derivative of C, can bs written as follows:

o Ea 9 A

A+E

% ' I%




O A E (D=5)

the last step following Lrom (D~&,.

Substituting equation (D-5) into (D~3):

L, ® wtr Ezsa 3':k E“_—_I (D=6)

An exprassion for tha partial derivative of A {3 needed to complate

the derivation. Since the measurement vectors are defined in the
local vertical co-ordinate system for each of the decision points,
the state-tranegition matrix must be used o transfer them to target
co-ordinate: This was done in Appendix B, but will be considered
here in a slightly different manner. As noted in Appendix A, the
type of measurement used dotermines a unique g vector, the measure~
ment vector in local wvertical co~ordinates with two added zeroes.
The stax elevetion angle will be used at each point, therefore the
kth mgasurement vector in the two co-ordinate systems are related by

equation (D=7).
£l «8

t-icg;fgk-_“ggk (D~7)

M is the measured angle and x is the state vector, where the super-
script a refers to the target co-ordinite systeme The state-transie

tion matrix is defined by equation (D=8).

a m
X Cakc 3 (D=8)
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Rwriting (D~7):

- g (D-9)

Each of the N identicael measurement vectors are transferred to tars
gat cor~ordinates by equation (D~9).
Referring to equation (B~5):

s T
B, €onFnCan (B=5)

Applying (B=5) to the initial error matrix, E:, equation (B=24) can

now be written as an explicit function of time.

- N T”l T‘l
Bl A = (€ B Ca ¢ 2 Cak)  SikyCak (D-10)
kel a <

The influence coefficient, equatior. (D-6), requires the partial deriv~

ative of A with respect to ke

-1 -]
J(CqR) T.-1 T,*1 T ch(:]
-é—ét: - .6._17 Qﬁk B8k Car * (Cop)  BucBy 35, (D=11)

A simplified expression for the influence coefficient can now be ob-

tained, using the following identities involving the trace.

tr[AB] = tr[sa]

tr[A + B] o tr[A + BTJ
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From (D=6)s

k tk
T,-1
2 [r 1 dee?
L, = -==tr ¢, E.QE ak ] (D=12)
¥ S “ak “a%ta 3t &

The expression in brackets i{n equation (D-12) is in the quadratic
form, hence it {8 a scalar quantity and the trace notation can be
dropped. The final expression for the kt® influence coefficlent is

given in (D~13).

2 - Tyl
S T 3 R - L1 @13
G Cy




APPENDIX E

INFLUENCE COEFFICIENTS ~ HORIZON CHANGE

The influence coefficients associated with & possible change
of horizon have the same function as those associated with the time

change and the cost relation has a eimjlar form:

Z éc“‘égk-zkk S & (E~1)

SCoat -

The vcctorg =% is defined in equation (E~2), where By is the measure-

ment vector expressed in the local vertical system at the kth pointe.

g (NEW) = g (OLD) +§ g (E-2)

The influence coefficient lik

whose scalar product with § &, 18 the cost change resulting from a

s> in equation (E~1), is a column vector

change in horizon at the ktM point. As indicated in (E~1), the sum
of tha k cost changes should result in the total cost change, {f the
assumption of linearity is valide The same cost function, position
estimation error, is used and so the Q matrix, whose purpose was

explained in Appendix D, is retained.

Cost = tr[QE.] (E=3)

K th

The expression for the cost change at the point is found by

101
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writing the permrbatlon} equai:lm o! (5635 .‘.orachango of ho?laoﬁ.
| (SCost) - Str [QEJ |
(SCoat) e tr g[qz]

(5 &:st) - tg QSBJ: o | (8-6)

Equation (D-10) provides 8n estpression {n tcru of known quantities

~ for the inverse of ubé astimation erxor eo%rﬁh_cc matrixe

Ea"uA- (c Ec"')" ZW (D=10)
_ | e 0‘7-- SRR

&0 0 a0

The perturbation of E can be \rrltten as a functlon o.‘. A. similar to

the daevelopment in Appendix De

(8-6) |

The trace o! a product of matrices can be remmsod as toums
:r[AB] - t:[m] | (E=7)

Applying (Ee'l) to (5-6), Mth "A" in (5-7) equal to l-: a0 reault.
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# mere convenlent expressions

(S Cost), = = tr [E.QE‘SI:L] (BeB)

he parturbstion of A, at the kth point, can be written directly

Crom ecuation (D=10).

or 1 Tyl. T .ol Tyl T ;]
S A = =3 [(Cak) S BBy Carr * Coie) "8 8 By Cox (8=9)
he kM coat chenge can now be written as a function of known quane

‘ities from equations (E~8) and (E=9).

© S Cot z)}’uﬂ}’%vtr EaQEa[(caE).IS&EEC 1-(c‘k) &t°ig .1
. (E-10)

Separating the traca expression in" (E=~10) i.ntc)i two parts-and applying

{E=7) with "A™ equal to E,QE,!

r :
o, - [ehofdagadf

Ty~1 -\

f&c ) 5&‘ Cote ]:saqr.m - (E~11)

tnother fdentity involving the trace is found to be usefule
te[aT] = era] L (Be12)

An exsmination of equation (E~ll) reveals tha following 1denzitys
Tyt salct e T 1~ T _1
Ecsé:> 1 © Sy Cak EaQE&] ‘ Eq (C ) 5 (Eel3)

Since the Ea and Q matrices are bethi symmetric, the "T"?s on these

motrices can be droppeds Equations (Ee12) and (E«~13) are then applied
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to (E=11) to further reduce the cost change expression.

(§ Ona!:)k - -0_-35 tr .EnQEa'[(Cdf).l j&&‘f Ca;:l] (E~14)

Tha elements of the trace can be rearranged by twice applying squa-
tion (E«7) vhere "A"” in (E«7) is first equal to E,QE, and then
€S gy o

(§ cozr), = - c‘l-'%“ g;fc‘;:lzaqza(cag)“‘ & (E+15)

Equation (E~15) cm be simplified by considoring the following groupe

ings of itz aclementss
c~lg QE,(C Tyl a 4 X 4 matrix
ek Ta‘"a‘"ak

g;f Ea!.clEaQEa(caE)d a row vector

Since § g, 18 & colum vector, the bracketed expression in (E-15)

is a scelar end the trace notation can be dropped.

(& cost), = = 0:—%- [g;f Can EqQEq (G0 ks g?] (2-16)

The influence vector may be identified by eompar!ng ‘e'ckxuacim (E-16)
with (E=2)e |

T 1T el.. ool
'I‘k - -E__—E[gk Caxc EnQEa(cak) _] (E=17)
In the time chanpe portion of the problem, the time of the
dacision points eould be changed in vhichever direction resulted in

e decraase in cost. There is no such control in changing the hori-

zon since the§ g vector is pre-determined by tha present horison.
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There are only two possible values for Sﬁk’ depending on vhether

th2 proposed change is from the left to right horizon or vice-versa.

From Appandix Ag

8, (LEFT) =

&, (RIGHT) =

o O

(A=14)

(A=14) s

The new measurement vector is related to the old by equation (B=3)

Therefore, the twy vectors have the following forms
B

S &, (LEFT T0 RIGHT) =

® 5 (RIGHT TO LEFT) =

O < u“jy o

nine ©

o o

(E-18)

(B=19)
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As explained in Chaptsr 2, equation (E-20) is applied at each point

and, 1f the resultant change in cost is negative, the proposed horie

zon change 13 made.

(Scost), = LT 5g ~ (E=20)




The Foryran program used to test the theory covered in this

APPENDIX F

COMPUTER PROGRAM

thesis s quite complex and involves many subroutinese.

progrem flow charts are shown in Chapter 4.
three subroutines {s covered in Chapter 4.

the primary ioad for computing the new measurement time schedulas,

selecting the measurement horizon schedule, and performing the optie

mirations

matxrix opaerations, croate new measurement time and horizon schedules,

The subroutines compute various matrices, porform various

and print wvarious matricese.

The input data nzeded by the main program haa tha following

saquenea and units:

by
2)
3)
4)
3)
6)
7)

Variance of the measurement (radiansz)
Altitude of spacacraft (milas)

Radius of the earth (miles)

Final angleA{dégrees)

Gravitational constant (feac3lsec2)

Number of ftarations

Initial measurement time schedule (seconds)

a» DBlock one, right then left

107

The main

Also the logic for

The main program csrries

e

e TER R

i it
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bs Block two, initial schedule
8) Initial estimation error covarisnce metrix (feet2 and
fest?/second?) |
9) Maximum time ;:imngu (seconds)
as Right then left
10} Initis] moasurement horizon schedule (Block two only,
right horizon-=flag equals one, left horizone=flag aquals
zerc) |
The standard matrix operations are neaeded in the progrsme Also
#ince soms of the veetors snd matrices depend upon the particular
mgamérmﬁnt time, special \:arutiona are neec}ed. The operations
naeded, snd the subroutines porforming them ares
1) Dot produet (MULTF and MULTG},
2) Diatic product (MULTA and MULTAA),
3) HMatrix inversion (INVERT),
&) Matrix multiplication GwL'rB;.MULTC, MULTD, and MULTE),
3) Product of row vector and matrix (MULTI),
6) Matrix sums (SUMA, SUMB, and SUMC),
7) Trace (TRACE and TRACEB).
Various matrices, vectors, and the results of several matrix
and vector equations;a_m»-needcd in the progratrio__'rheoe aras
1) State transition matrix (TRANSH),
2) Inversa of at:.ate‘crl’mls(uon matrix (TRANMI),
3) Transpose inverse of state transition matrix (TRANIT),
&) Derivative of each element of the state transition matrix

(DTRANM) o j |



5)
6)

7)

8)

N

10)

109

Matrix Q (AQM),

Initinl estimation error covariance matrix in target coe
ordinates equation( BeS5) (ERRORI),

Target estimation exrror covariance matrix, equation

( B=26) (ERRORM),

Horizon vector matrix (HOR12S),

Horizon change vector, L, (LAMDA),

Equation Fel (DERRGCR),

. (F=1)
A(Ca;r)a T =l T s T A(c )-1
TR R G Cal) Bl "—ﬁk—

) * 2

a a

Test on time change (CHECK),
New mzasurement timae schedula (LOGIC),

e measurement horiron schedule (JuMP) .

Various matrices, vectors, lists, and headings are needed in

the resultss Thesa are printed by PRINTA, PRINTB, PRINTC, PRINTD,

Pzintouts will follow: o
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1000
1

111
112

300

2G1

802
3C3

804

999

398

808

388
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MAIN BLOCK ONE

LTST

LABEL

DEFINITION OF THE VARIABLES AND CONSTANTS

W IS THE ANGU AR VELOCITY OF THE SPACECRAFT

TO IS THE TIME OF ORBIT

FA 15 THE FINAL ANGLE OR TARGET ANGLE

T{I) 1S THE INITIAL TIMING SCHEDULE

ET IS THE INITIAL ESTIMATION ERROR COVARIENCE MATRIX

DELTMR AND DELTML ARE THE MAXIMUM TIME CHANGES

SIGMAS 1S THE VARIANCE OF THE MEASUREMENT

AL IS THE ALTITUDE OF THE CRAFT

RE IS THE RADIUS OF THE EARTH

U 1S THE GRAVITATIONAL CONSTANT

HR AND HL ARE THE MEASURMENT VECTORS

EAR AND EAL ARE THE FINAL CORRELATION MATRICES

DIMENSION DR(A$6)’DL(4’4)QDELTR(BO)'DELTL(BO)'EAL(th’ﬁ
EAR(hyh)QEEL(BO,Q’Q)!EER(309494)9EI(4$4);ERRL(3094’4)’

1

Z ERRR(BOsasQ)oHHL‘#oA)oHHL(A’Q)oHL(A)oHR(Q)'Q(Aoa)o

2 RR(3094;4)955(300u94)oTAL(3O)'TALI(301'TAR(SO)’TARI(30$'
4 T(30):TRI30)»TLI(30)

COMMON FAsWsSIGMASsTHETsDELTMRsDEL TML

READ 1+SIGMASYALIRESFA

SORMAT(F20,10)

READ 112U

FORMAT(E20,10)

PRINT 8009 SIGMAS

FORMAT (1HO+10X34H THE VARIANCE OF THE MEASUREMENT =9F20,10)
PRINT 801sAL

FORMAT(1HOs10X33H THE ALTITUDE OF THE SPACECRAFT 29F20410>
i6H MILES)

PRINT 802y RE

FORMAT(1HO,10%26H THE RADIUS OF THE EARTH =3F20410s6H MILES)
PRINT 803sFA ‘ -
FORMAT(1HO»10X18H THE FINAL ANGLE xyF20.1098H DEGREES)
PRINT 804U : o
FORMAT(1HO,10X31H THE GRAVITATIONAL CONSTANT U =9E20,109
130H FEET CUBED. PER SECOND SQUARED)

READ 999 4NT

FORMAT (110)

PRINT 998,N1

FORMAT (1HO,10X28H THE NUMBER OF ITERATIONS ISs16)

READ 2+ (TR(1)s1=1930)

READ 2s(TL(1)+sI=21430)

OPRINT 808

FORMAT(1H5,10X36K THE INITIAL TIMING SCHEDULE FOR THE»

1 17H RIGHT HORIZON 1S)

CALL PRIMTA(TR)

PRINT 888

FORMAT(1H5510X36H THE INITIAL TIMING SCHEDULE FOR THE»

1 16H LEFT HORIZON 1S}
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2000

807

2100

2
4

805

80¢

6
8
o
10
11
12

809

810
880

13
14

811

812

15
16

111

CALL PRINTAI(TL)
FORMAT (F20,10)

READ 2000,((EI(J’K)’J'1’4)’K'1’4)

FORMAT (F25,8)

PRINT 807

FORMAT(1H5,10X28H THE INITIAL ERROR MATRIX 15)

CALL PRINTB (EI1)

READ 2001» DELTMRDELTML

FORMAT (F20,10)

PRINT 2100+DELTMR

FORMAT(1HO»10X29H TIME INCREMENT RIGHT HORIZONsF20.10)
PRINT 2101 sDELTML

FORMAT(1HO+10X28H TIME INCREMENT LEFT HORIZON»F20,10)
AlL=AL%x528¢C,

RE=RE*5280,

FA=FA¥3,14159/180, '
TO=2.O*3.14159*((RE+AL)**105)/SQRTF(U)

W=24%3,14159/T0

PRINT 805,70

FORMAT (1HO,10X20H THE TIME OF ORBIT =9E2041098H SECONDS)
PRINT 806+W

FORMAT(1HO»10X41H THE ANGULAR VELOCITY OF THE SPACECRAFT =,
1E20410919H RADIANS PER SECOND)
HR(I):RE/((AL+RE)*SQRTF(((AL+RE)**2)—(RE**2)))
HR(2}==14/ (AL+RE)
HR(3})=0,
HR(A):OO
HLI1)Y=+HR(1)
HL(2)Y==HR(2)
HL(3)=0,
HL(4)=0,

PRINT 80C9
FORMAT(1H5+10X28H4H THE RIGHT HORIZON VECTOR 18)

PHINT 8BOyHR

PRINT 810 e
FORMAT{1H54+10X27H THE LEFT HORIZON VECTOR IS)

PRINT 880y HL ‘

FCRMAT (1HO»4E30,10)

NI1I=0,0 : -

CALL ERRORM(EARIHRIOLCOSR»TR)

CALL ERRORM(EALsHLIOLCOSLsTL)

PRINT 811

FORMAT(1H5,10X40H FINAL CORRELATION MATRIXs RIGHT HORIZON)
CALL PRINTB (EAR)

PRINT 812 |
FORMAT(1H57,10X39H FINAL CORRELATION MATRIXs LEFT HORIZON)
TALL PRINTB (EAL)

TARIM=0,0

TALIM=0,0

DO 341 I=1,30,41

CALL AQM(Q)



N

29
211
33
30
321
34
341

261
26
262

265
263
36
362
361
35
37
38
282
381

39
40
41
%
43
L4
45

o6
47
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CALL MULTB (DRvFARQ)

CALL MULTE (DLsEAL»Q)

CALL DERROR(ERRRsHRyI,TR)

CALL DERROR(ERRLsHLsIsTL)

CALL MULTE (RRyERRRYDRyI)

CALL MULTE (SSH»ERRLsDL1I)

CALL MULTC (EERsEARIRRI)

CALL MULTC (EELsEAL#SSs1I)

CALL TRACEB (TARYEERs1)

CALL TRACEB (TALSEELsI)

TARI(I=~TAR( 1 )*W

TALI(TIY==TAL{T)*W

29 THRU 34 DETERMINE THE LARGEST INFLUENCE COEFFICIENT
FOR BOTH THE LEFT AND RIGHT HORIZON

TARIM»RIGHT AND TALIMSLEFT
IF(ABSF(TARI(I))=ABSF{TARIM))1311933,33

GO 70 30

TARIM=TARI (1) .
IF(ABSF(TALI(IY)=ABSFITALIM))I321934,34

GO0 TO 341

TALIM=TALI(1)

CONTINUE

PRINT 261

FORMAT (1+i0»10X37H RIGHT HORIZON INFLUENCE COEFFICIENTS)
DO 264 1=1,3041

PRINT 263sTARI(1)1] o T

PRINT 262

FORMAT (1HO5s10X36H LEFT HCRIZON JINFLUENCE COEFFICIENTS)
DO 265 1=1,30s1

PRINT 263sTALT(1I)s?

FORMAT (1HO»10X12H COEFFICIENT»E2041095X12H TIME NUMBER»s14)

PRINT 3862

FORMAT(1H%,10X23H DATA FOR RIGHT HORIZON}

CRUD=DELTMR

CALL CHECK(TARIMsTARI»OLCOSRsHR s TRyCRUD)

CALL LOGIC(BIGA:TAQIM'CRUDoTARX9OLCOSR9PCOSR9EAR0HR9TR)
PRINT 1382

FORMAT(1H5+10X22H DATA FOR LEFT HORIZON)

CRUD=DELTML . ‘

CALL CHECK (TALIMsTALIsOLCOSLsHU»TLsCRUD)

CALL LOGIC(BIGBoTALIMoCRUD,TALIvOLCCSLoPCOSL’EAL’HL9TL)
NIT=NIT+1

TEINTII~-NTY 42945945

PRINT 434NT11

FORMAT(1HO0,10X15H THE END OF THEs15s10H ITERATION)

GO TO 13

PRINT 46

FORMAT(1HO»10X8H THE END)

GO TO 1000

END
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MATIN BLOCK TWO

LIST
L ABEL
DEFINITION OF THE VARIABLES AND CONSTANT
TO IS THE TIME OF ORBIT '
W IS THE ANGU AR VELOCITY OF THE SPACECRAFT
FA IS THE FINAL ANGLE OR TARGET ANGLE
T(I) 1S THE INITIAL TIMING SCHEDULE
€1 IS THE INITIAL ESTIMATION ERROR COVARIENCE MATRIX
DELTMR AND DELTML ARE THE MAXIMUM TIME CHANGES
SIGMAS 1S THE VARIANCE OF THE MEASUREMENT
AL IS THE ALTITUDE OF THE CRAFT
ITHV(I) 1S THE INITIAL HORIZON SCHEDULE
RE IS THE RADIUS OF THE EARTH
U IS THE GRAVITATIONAL CONSTANT
HR AND HL ARE THE MEASUREMENT VECTORS
EA IS THE FINAL CORRELATION MATRIX
DIMENSION DELTR(30)sDHLR(4) sDHRL(4)sEA(494)sET(Lss) s
1 EER(30+494)9ERRRI309494)sHRI4) sHL(4) s THV(30),
2 HS(BOoh)vDELCOS(BO):Q!#oa)oRR(30-4’4)9TABj30)' TARI(30)
3 TLAMDA(30),T(30) ' .
COMMON FAs»WsSTIGMAS»THET+1DELTMRsDELTML
1000 READ 1»SIGMASsALIRESFA
1 FORMAT(F20,10)
111 READ 112sU
112 FORMAT{E20,10)
PRINT B00,SIGMAS
8O0 FORMAT (1HOs10X34H THE VARTIANCE OF THE MEASUREMENT =3F20419)
PRINT ARN1,A1
8U1 FORMAT(irnUs10X33H THE ALTITUDE OF THE SPACECRAFT =9F20.105
16H MILFS) _
~ PRINT 802s RE
802 FORMAT(1HOs10X26H THE RADIUS OF THE EARTH =3F2061096H MILES)
PRINT 803,74 . -
803 FORMAT(1HO»10X18H THE FINAL ANGLE =9F20.1048H DEGREES)
PRINT 804U
804 FORMAT(1HO»10X31H THE GRAVITATIONAL CONSTANT U 2320610
130H FEET CUBRED PER - SECOND SQUARED) :
READ 999,MT7
99Q FORMAT (110)
PRINT 998,NT
998 FORMAT(1HO,10X28H THE NUMBER OF ITERATIONS IS,16)
READ 2s (T(I)sI=1930)
2 FORMAT (F20,1C)
PRINT 808 : v
808 FORMAT(1H5,10X31H THE INITIAL TIMING SCHEDULE 15)
CALL PRINTA (T) -
QEAD 20009((EI(J’K)’Jﬂlvk)yK'I’A)
2000 FORMAT (F25,8)
PRINT 807



807

2001°
2100
2002

2003

3
4
805

806
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FORMAT(1H5+10X28H THE INITIAL ERROR MATRIX IS)

CALL PRINTB (EI)

READ 2001s» DELTMRsDEL TML

FORMAT (F20,10)

PRINT 2100,DELTMR

FORMAT(1HO,10X15H TIME INCREMENT»E20410)

READ 2002» (THV(1)»1=1,30)

FORMAT(15)

PRINT 2003

FORMAT(1HSs10X32H THE INITIAL HORIZON SCHEDULE 15)

CALL PRINTD(IHV)

AL=AL*5280,

RE=RE*5280,

FA=FA#3414159/180,

TO=2,0#3,16159* ((RE+AL)*#]1,5)/SQRTF(U)

W=2,%3,14159/70

PRINT 805470

FORMAT(1HOy10X20H THE TIME OF ORBIT =+E20,1098H SECONDS)
PRINT 806sW

FORMAT(1HO»10X41H THE ANGULAR VELOCITY OF THE SPACECRAFT =,

1E20,10919H RADIANS PER SECOND)

—t
OwVvwoe gyoowm

11
12
809

810

820

821

880

HRI1)=RE/((AL+REI*SORTF(((AL+RE)*%2)=(RE*#%#2)))
HR(2)==-1+/ AL+RE)

HR(3)=0,

HR(Q)SOQ

HL(1)==HR(1)

HL(2)=zHR ( 2)

HL(3,=00

HL(&4)20,

PRINT 809

FORMAT(1HS,10X28H THE RIGHT HORIZON VECTOR 1IS)
PRINT B880sHR

PRINT 810

FORMAT(1H5910X27H THE LEFT HORIZON VECTOR I5)
PRINT 880y HL

DHRL(1)=2.0%HL(1)

DHRL (2)=0,0

DHRL(3)’000

DHRL (4)=0,0

DHLRI(1)=2,0%HR( 1)

DHLR(2)=0,0

DHLR(3)=0,0

DHLR(4)=0,0

PRINT 820

FORMAT(1H5+10X40H THE DELTA VECTOR FROM R TO L HORIZON IS)
PRINT 8809sDHRL

PRINT 821

FORMAT(1H59+10X40H THE DELTA VECTOR FROM L TO R HORIZON 195)
PRINT 880yDHLR

FORMAT(1HO+4E30410)

NIT=0




19

811

15
16
17
19
21
22
23
25

29
311
-
341

263
261

35
361
37
38

462
40
41
42
43
Lo
45
46
47
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CALL HORIZS(IHVeHRsHL +HS)

CALL ERRORM(EAYHSsOLCOSR)

PRINT 811

FORMAT(1HS»10X25H FINAL CORRELATION MATRIX)
CALL PRINTB(EA)

TARIM=0,0

DO 341 1=1+30,1

CALL AOM(Q)

CALL MULTBI(DsEAsQ)

CALL DERROR(ERRRsHSy 1)

CALL MULTE(RRJERRRsD 1)

CALL MULTC(EERYEARRS 1)

CALL TRACEB (TARJEERs 1}

TARI(1)==TAR(]1)eW

TARI(1) ARE THE INFLUENCE COEFFICIENTS

29 THRU 341 DETERMINE THE LARGEST INFLUENCE COEFFICIENT
IF(ABSF(TARI(1))=ABSF(TARIM))311933,33

GO TGO 341

TARIM=TARI (1)

CONT I NUE

DO 263 1=14309]

PRINT 261+sTARTI( T )l

FORMAT(2HO,10X23H INFLUENCE COEFFICIENT +E20910,

1 5X12H TIME NUMBERsI3)

CALL CHECK (TARIMTARI sOLCOSRsHS)
CRUD=DEL TMR

CALL LOGIC (BIGAsTARIMsCRUDs TARI sOLCOSR+sPCOSR 9EAWHS)
CALL JUMP (TLAMDAsSDHLR +sDHRL sPCOSR s IHVIHR s HL)

PUNCH 4629 [HV

FORMATI(15)

NTI=NTT+1

IFINITI=NI) 42445445

PRINT 43,NI11

FORMAT(1HO,»10X15H THE END OF THE+15,10H ITERATION)
GO TO 13

PRINT 46

FORMAT(1HO410X8H THE END)

GO TO 1000

END
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SUBROUTINE INVERTI(Ny»QQ)
REFERENCE(T)

LIST

LABEL

SUBROQUTINE INVERTS MATRIX BY SIMULTANEOUS DOUBLE PRECISION
ROW REDUCTION OF THE MATRIX TO IDEM AND IDEM TO THE INVERSE
DIMENSION QQ(&494)9Q(498)

DO 10 1I=1s4

DO 5 J=194

Q(1y U)=QQ(1y J)

Q(I9J+l~)20.0

N(19J+8)=0,0

O(1eJ4+12)=0,0

Q(I.I+‘)3l.o

DO 30 1I=1s N

DO 14 J=1s N

IF(ABSF(Q(Is 1))=ABSF(Q(Jy 1))) 119 14y 14
TEST FOR LARGEST ELEMENT IN COLUMN
DO 12 ¥K=1s N

S=Q(Js K)

Q(Jsy X)=Q(Iys K)

Q(ls K)sS

SzQ(JsK+4)

QlJsK+4)=Q(19K+4)

Q(lsK+4)=S

TRANSFER ROW OF LARGEST ELEMENT TO FIRST ROW
CONTINUE

DIV=Q(1,1)

DO 15 J=1»sN

Q(I+sJ)=Q(T1+J)/D1V
Q(leJ+4)=Q(]9sJ+4)/D1V

DIVISION BY DIAGONAL ELEMENTS

DO 30 J=1»sN

IF(1=-J) 20430420

DIV=Q(Jsl)

DO 25 K=1»sN
Q(JrK)=Q(JsK)=Q(1sK)%D1IV
Q(J2K+4)=Q(JsK+4)-Q(TsK+4)%DIV
DIAGONALIZATION OF MATRIX

CONTINUE

DO 35 I=1sN

DO 35 J=1sN

Q0(1eJ)=Q(T1esJ+4)

RETURN

END
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SUBROUTINE MULTA(HHyH)

LIST
LABEL

THIS SUBROUTINE PERFORMS THE MULTIPLICATION OF A ROW

VECTOR BY A COLUMN VECTOR
DIMENSION HHI(&9 &)y HI(4)
DO 1114 =144,

DO 1114 JU=m]l4,y]
HH(T1+J)=0,0

HH(T» )=HIT)%H ()

RETURN

END

SUBROUTINE MULTAA(HMHH, 1)

LIST
LABEL

117

THIS SUBROUTINE PERFORMS THE MULTIPLICATION OF A ROW VECTNR

BY A COLUMN VECTORs EACH VECTOR DEPENDS ON THE TIME I,

DIMENSION HH(30+44+4) sH(30s4)
DO 4 JU=]l44,]

DO 4 K=ly4,]

HH(TI9sJ9K)=0,0

HH(T s oK) eH(T o J)RHI T 9K)
RETURN

END

SUBROUTINE MULTBI(XXeXYsX2Z)

LIST

LABEL

THIS SUBROUTINE MULTIPLIES TWO MATRICES

DIMENSION XX(&4o &)y XY(&s&)y X2(4&4o4)
DO 2115 JU=1l,44y1

DO 2115 K=1ly4,]

XX(JsK)=060

DO 2115 L=1ly4y]
XXCJoK)=XX(JoK)+XY(JoL)%XZ(LK)
RETURN

END
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3114
3115

4111
4112
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4114
4115

561
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563
564
565
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SUBROUTINE MULTC(WXsWYsWZs 1)

LIST

LABEL

THIS SUBROUTINE MULTIPLIES TWO MATRICES
THE RESULT AND MULTIPLICAND INVOLVE THE I TH TIME
DIMENSION WX( 300498 )oWY(L98) g WZ(309bs4;
DO 3115 JU=ly4491

DO 3115 K=ly491

WX(1+JsK)=0,0

DO 3115 L=lybrl
WXCToJoK)sWX(To o K)+WY (sl )RWZ(ToLwK)
RETURN

END

SUBROUTINE MULTDIUX»UYUZ»1)

LIST

LABEL

THIS SUBROUTINE MULTIPLIES TWO MATRICES
THE RESULTWMULTIPLIERAND MULTIPLICAND INVOLVE THE I TH TIME
DIMENSION UX(309494)9UY(309494)9UZ(3094904)
DO 4115 J=lsa

DO 4115 K=)yby]

UX(TeJsK)=20,0

DO 4115 L=14&y]
UXCToJoK)=UXIToJoK)4UY(ToJoL)*UZ(TIsL9K)
RETURN

END

SUBROUTINE MULTE (RXsRYSRZs])

THIS SUBROUTINE PERFORMS THE MULTICLICATION OF TWO MATRICES
THE RESULT AND MULTIPLIER INVOLVE THE I TH TIME
LIST

LABEL

DIMENSION RX(309494)9sRY(309494)9RZ(444)

DO 565 J=144s1

DO 565 K=194y1

RX(IsJeK)=0y

DO 565 L=1+v64»1
RX(ToJoK)=RX(ToJoK)+RY( "9 JsL)%RZ (LK)

RETURN

END
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SUBROUTINE MULTF(AsB«C)

LIST

LABEL

THIS SUBROUTINE PERFORMS THE DOT PRODUCT OF A VECTOR
DIMENSION B(&4)sC(J,

A=0.0

DO 3 1=2194,1

A=A+B(1)Y*C(1])

RETURN

E ND

SUBROUTINE MULTG(AsBsCoI)

LIST

L ABEL

THIS SUBROUTINE PERFORMS THE DOT PRODUCT OF A VECTOR
WHERE THE I TH TIME IS INCLUDED

DIMENSION A(30)sB(30+4)9Cl4)

A(l1)=0,0

DO 3 U=zlebl

A(l)=A(T1)+B(TsJ)2C(Y)

RETURN

END

SUBROUTINE MULTH(A»B»C)

LIST
L ABEL

THIS SUBROUTINE MULTIPLIES A MATRIX BY A ROW VECTOR
TO GIVE A ROW VECTOR

DO &4 | =1v4,y1]

A(1)Y=0,0

DO & J=lsb,y]

AlI)Y=A(T)+B(UIXC(Js])

RETURN

END

SUBROUTINE MULTI(ABsCHI)

LIST

L ABEL

THIS SUBROUTINE MULTIPLIES A MATRIX BY A ROW VECTOR
TO GIVE A ROW VECTOR WHERE THE I TH TIME 1S NEEDED
DIMENSION A(3094)sB(309s4)9C(300414)

DO 4 J=z1le4,yl

Alls1)=0,40

DO 4 K=194»1

AlTes)=A(T9J) 4B TsK)%C(]sKs J)

RETURN

END

119
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7111
7112
7113
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SUBROUTINE SUMA(VXsVYsV2)

LIST

L ABEL

THIS SUBROUTINE SUMS ALL OF THE MATRICES INVOLVING
THE 1 TH TIME AND DIVIDES THE RESULT BY VvZ
DIMENSION VX(49&)s VY(309444)

DO 5117 J=lsb>»]

D0 5117 K=lybsl

VX(J9sK)=040

DO 5116 1=143091

VX(JeK) =2 VX(JesK)I+VY(TsJ9K)
VX{JsK)=2VX(JsK)/VZ

RETURN

END

SUBROUTINE SUMBI(2ZX9s2Ys22)

LIST

LABEL

THIS SUBROUTINE SUMS TWO MATRICES
DIMENSION ZX(&494)92Y(4sb4)922(414)
DO 7113 J=ls4»l

DO 7113 Keslyb»l
ZX(JoK)=22ZY(JoK V422 (YsK)

RETURN

END

SUBROUTINE SUMC (SXsSYsSZsSWs 1)

LIST

LABEL

THIS SUBROUTINE SUMS TWO MATRICES INVOLVING THE
I TH TIME AND DIVIDES EACH ELEMENT BY SW
DIMENSION SX(309494)9SY(30+494)952(3094144)

DO 913 J=1ls4y1l

DO 913 K=19491
SX(ToJoK)=(SY(ToJesX)+SZ(TsJsK))/SW

RETURN

END
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SUBROUT INE TRACE(TA,TY)

LIST

LABEL

THIS SUBROUTINE TAKES THE TRACE OF A MATRIX
DIMENSION TY(&4y4)

TA'0.0

DO 6113 JU=lyb,]

TA=TA+TY (JsJ)

PRINT 6115,TA

FORMAT (1HO45X9H TRACE IS+sE20,10)
RE TURN

END

SUBROUTINE TRACEB (TA»TYs1)

LIST

LABEL

THIS SUBROUTINE TAKES THE TRACE OF A MATRIX INVOLVING THE
I TH TIME

DIMENSION TA(30)sTY(300444)

TA=0,

DO 786 J=1ls4s1l

TA(D)=TACI)I4+TY(19Je )

CONTINUE

PRINT 785y TA(I)s1

FORMAT(1HOy5X9H TRACE 1S+E20,1095X12H TIME NUMBER s 14)
RETURN

END

121




*

D OMN X %X

122
SUBROUTINE TRANSM(TMyFIs1)

LIST

LABEL

THIS SUBROUTINE SETS UP THE STATE TRANSITION MATRIX
DIMENSTION TM(309434)sT(30)sET(GLr4)
COMMON FAsWoeSIGMASHTHETI sDELTMRDEL TML
TM(T19121)31,042,0#(SINFU(FA~F])/2,0))%%2
TM({T9192)sSINF(FA=FI)
TM(T19193)=sSINF(FA-FI)/W
TM(TI9104)=(4 0% (SINFI(FA=FI)/72.0))%#%2)/W
TM(19291)2=3,0%(FA=-FT)+2,0#SINFI(FA=FI)
TMUT0292)2)60=4,0%(SINFI(FA=FI)/2,0))%%2
TM(T19293)2z=TM(19194)
TM(T10294)=2=3 0% (FA=FI)/A+4,0%(SINF(FA=F1))/W
TM(19391)23,08WR(FA=FT)-W2SINF(FA=FI)
TM(19392)82 ,OWR(SINFI(FA=F1)/2.0))%%2,0
TM(T193e3)=TM(T191091)

TM(T193s4)==TM(T9291)
TM(19bsl)2=TM(T19392)
TM(Tebe2)2=WaTM(Is]l,2)
TM(Ts493)==TM(19192)

TM(Tebeb)=TM(192+2)

RETURN

END

SUBROUTINE TRANMI(TMIsTMs 1)

LIST

LABEL

THIS SUBROUTINE SETS UP THE INVERSE OF THE STATE TRANSITION
MATRIX OR THE DERIVATIVE OF THE INVERSE CfF THE STATE
TRANSITION MATRIX

DIMENSION TM(30+494)9TMI(300404)
TMI(T9191)=TM(19393)
TMI(19102)=TM(T194+3)
TMI(I9103)==TM(141s3)
TMI(T9196)==TM(1+2+3)
TMI(19291)=TM(19394)
TMI(19292)=TM(194+4)
TMI(19293)=2=TM(19194)
TMI(19294)=2=TM(T19204)
TMI(Is391)==TM( 19391
TMI(19302)==TM(T94,y1)
TMI(19393)=TM(TI9191)
TMI(193946)=2TM(T9291)
TMI(19691)==TM(193+2)
TMI(19492)==TM(T94+2)
TMI(T194+93)=TM(19192)
TMI(T10494)=TM(19292)

RETURN

END
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SUBROUTINE TRANIT (TMIT»TMsI)

LTST

LABEL

THIS SUBROUTINE SETS Up THE TRANPOSED INVERSE OF THE STAl
TRANSITION MATRIX OR THE DERIVATIVE OF THE TRANPCSED INVE
OF THE STATE TRANSITION MATRIX
DIMENSION TM (309494 )sTMIT (3094s4)
TMIT(I9191)=2TM(TI93,+3)
TMIT(T19192)=TM(T93s4)
TMIT(Ts193)s=TM(193,1)
TMIT(TIsls4)s=TM(193,2)
TMIT(T19291)2TM(T0493)
TMIT(T1+292)=2TM(19494)
TMIT(1+293)2=TM(I94y])
TMIT(T9204)==TM(19442)
TMIT(T19391)2=TM(19193)
TMIT(19302)=2=TM(19ly4)
TMIT(19393)eTM(T919])
TMIT(T9394)=TM(T9192)
TMIT(194902)2=TM(T192+3)
TMIT(T+4s2)2=TM(Ts294)
TMIT(T9493)=TM(]9291])
TMIV(T94e4)=2TM(]9292)

RETURN

ENL

SUBRO.'TINE DTRANM (DTMsF1Is1)

LIST

LABEL

TH1S SUBROUTINE SETS UP THE DERIVATIVE OF EACH ELEMENT
OF THE STATE TRANSITION MATRIX
DIMENSION DTM(309494)9ET(G4s&)yT(30)
COMMON FAIWISIGMASITHET+DELTMRDEL TML
DTM{I4+191)==SINF(FA=FI)
DTM(14192)=~COSF(FA=FI)
DTM(19193)==(COSF(FA--F1))/W
DTM(T919b)==2,%#(SINF(FA=FI1))/W
DTM(T9291)=23,=2,COSF(FA=-FI1)
DTM(1+292)32,%#SINF(FA=-FI)
DTM(19293)==DTM(T191s4)
DTIM(19294)=23,/W=b4oe*(COSFIFA=FI1))/W
DTM(T19391)2=3,%W+W*COSF(FA=FI) I
DTM(T9392)=W*DTM(T19151)
DTM(I9393)2DTM(T9191)
DTM(TI+394)3=DTM(19291)
DTM(T194+1)=WeSINF(FA=FI)
DTM(1+492)=WRCOSF(FA=-FI)
DTM(194+3)=COSF(FA=FI)
DTM(196494)=DTM(19292)

RETURN

END




SUBROUTINE AQM(QM)

LIST

LABEL

THIS SUBROUTINE SETS UP THE Q@ MATRIX
DIMENSION QM( 4 4)

DO 3 I=1v4,l

DO 3 J=1l4,l

OM(T19J)=0,0

QM(1¢1) =140
QM(292):140
RETURN

END
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SUBROUTINE ERRORI(EIE)

LIST

LABEL

THIS SUBROUTINE TRANSFERS THE INITIAL ERROR TO THE
TARGET CO-ORDINATE FRAME
DIMENSION ETE(&494)2yTM(494) s TMT(Lr4)sAlLs4)
1E1(494)9T(30)

COMMON FA'WsSIGMASHYTHEI»DELTMRDELTML
TM(191)=216042,0(SINF(FA/2,0))%%2
TM(192)=SINF(FA)
TM(193)=SINF(FA)/W

TM(194)26oOX¥ (SINFI(FA/2,0)1%%2) /W
TM(291)==3,0%FA+2,0%SINF(FA)
TM(292)=160=4,0%(SINF(FA/2,0))%%2
TM(292)==TM(114)
TM(Z""t(-BOO*FA+4OO*SINF(FA’ ’/w
TM(39]1 )23, 0*WHFA-WXSINF(FA)
TM(392)220%WH(SINF(FA/2,0) ) %%
TM(393)=TM(1y1)

TM(394)==TM(29])
TM(491)==TM(3y2)
TM(492)==W*TM(1+2)
TM(493)==TM(192)

TM(&494)=TM(242)

TMT(191)=TM(191)
TMT(192)=TM(241)
TMT(193)=TM(391)
TMT(194)=TM(4&4s])
TMT(291)=TM(192)
TMT(2+2)=TM(242)
TMT(2+3)=TM(342)
TMT(2+4)=TM(492)
TMT(351)=TM(193)
TMT(392)=TM(2+3)
TMT(3453)=TM(343)

TMT (394 )=TM(4913)
TMT(491)=TM(194)
TMT(442)=TM(294)
TMT(4493)=TM(3y4)
TMT(494)=TM( 4y 4)

CALL MULTB(ASETI»TMT)

CALL MULTB(EIEsTMsA)

RETURN

END
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SUBROUTINE ©RRORM(EAsH»COST»TT)
BLOCK ONE

LIST
LABEL
THIS SUBROUTINE COMPUTES THE TARGET ESTIMATION
ERROR COVARIANCE MATRIX AND THE COST
DIMENSION C(309494)9CM(4s4)9E(309494)9sEA(GLL)yEACILIGL) Y
1 FAI(Go4 )9 FET (GG )9sETT(LsG)YIEIE(GLsb4)sH(L)sHH(GL 4 )y
2 TM(309494)9sTMI(30949s4)sTMIT(309494)sT(30)sTT(30)
COMMON FAsWsSIGMAS»THEIsDELTMRSDELTML
810 CALL ERRORI(EIE)
816 CALL MULTA (HHsH)
811 DO 818 1=1,30,1
812 FI=WxTT(1])
813 CALL TRANSM (TMsFIsl)
814 CALL TRANMI (TMIsTMy1)
815 CALL TRANIT (TMITsTMyI)
817 CALL MULTC (CosHH»TMI»I)
818 CALL MULTD (EsTMITsCs1)
819 CALL SUMA (EAC»Es»SIGMAS)
8191 DO 8194 I=1s4>1
8192 DO 8194 J=1s4»1
8193 EIl(IsJ) = 0,0
8194 EII(I+J)=EIE(]IsJ)
820 CALL INVERT (&4yEII)
821 CALL SUMB (EAI+EIIS»EAC,
8211 DO 8214 I=144»1
8212 DO 8214 J=144s1
8213 EA(IsJ) = 0,60
8214 EA(lsJ) = EAI(I9J)
822 CALL INVERT (4yEA)
823 CALL AQM(QM)
824 CALL MULTB(CMsQMHEA)
825 CALL TRACE(COSTsCM)
RETURN
END
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812
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814
815
816
817
818
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8191
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820
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SUBROUTINE ERRORM (EAsHsCOST)

BLOCK TwO

LIST

LABEL

THIS SUBROUTINE COMPUTES THE TARGET ESTIMATION
ERROR COVARIANCE MATRIX AND THE COST
DIMENSION C(3Cs&s4)9CM(L94)sE(309494)9EA(L94)9EAC(G494)
1 EAT(G o4 )Y9sET (494 )sETE(Ls4)Y9ETT(494)9sHI30(4)9sHHI309494)
2 TM(309s494)9sTMI(3094494)9TMIT(309494)9T(30)
COMMON FAsWsSIGMASTHEIsDELTMRSDEL TML

CALL ERRORI(EIE)

DO 818 I1=1,30,1

FI=WxT (1)

CALL TRANSM (TMsFIs1)

CALL TRANMI (TMIsTMy1)

CALL TRANIT (TMITsTMyI)

CALL MULTAA(HHIHsI)

CALL MULTDI(CsHHsTMI»I)

CALL MULTD (EosTMITsCoh 1)

CALL SUMA (EACYE»SIGMAS)

DO 8194 I=194s1

DO 8194 J=1lys491]

EII(IsJ) = 0,0

EIT(TsJ)=EIE(TI9J)

CALL INVERT (4yEI1)

CALL SUMB (EAISEII»EAC)

DO 8214 1=194»1

DO 8214 JU=1le4l

EA(TsJ) 0,0

EA(TIsJ) EAT(TI9J)

CALL INVERT (49EA)

CALL AQM(QM)

CALL MULTB(CMsQMoEA)

CALL TRACE(COSTsCM)

RETURN

END

]
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SUBROUTINE HORIZS(IHVsHRsHLIHS)

LTy
LABEL

DIMENSION T(30)9EI(494)sTHVI(30).HRI4)sHL(4)sHS(30+4)
COMMON FAIWsSIGMAS»THsEIsDELTMRDEL TML

THIS SUBROUTINE SETS UP THE HORIZON VECTOR SCHEDULE
DO 10 1=1+30,1

IF (IHV(I)=1) 3377

DO 5 JU=zleb,l

HS(19J)=20,0

HS(IsJ)=HL(J)

GO TO 10

DO 9 JU=1l94y1

HS(14sJ)=0,40

HS(T1sJ)=HR(J)

CONTINUE

RETURN

END

SUBROUTINE LAMDA(TLAMDAHSs 1)

LIST

LABEL
THIS SUBROUTINE COMPUTES THE LAMDA VECTOR WHICH IS USED T0O

COMPUTE THE INFLUENCE COEFe DUE TO A CHANGE IN HORIZON
DIMENSION TM(309494)9sTMI(309494)9TMIT(309494)9s TLAMDA(3094)
1EA(Ls4)sQM( 494 )9 T(30)9ET(494)9HS(3094)9A(309494)9B(309494)
2C(3094+4)9D(309444)

COMMON FAsWsSIGMAS, THEI+DELTMRDEL TML

CALL ERRORM(EA#HS»COST)

FI=W*T(])

CALL TRANSM(TMsFIs1)

CALL TRANMI(TMI»TMy1)

CALL TRANIT(TMIT,sTMy 1)

CALL AQM(QM)

CALL MULTC(ASEATMITH 1)

CALL MULTC(ByQMsAsI)

CALL MULTCI(CsEABs )

CALL MULTD(DsTMIsCh1)

CALL MULTI(TLAMDAYHSsDs 1)

DO 12 JU=lsbyl

TLAMDA( T 9J)m=2,0*TLAMDA(TIsJ)/SIGMAS

RETURN

END
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SUBROUTINE DERROR (ERRsH»IsTT)

BLOCK ONE

LIST
LABEL

DIMENSION Al3094964)9B(30+494)9D(309494)9DTM(309494)
1 DTMI(30’494)9DTMIT(3094’4)’EI(Q’Q)’ERR(BO’QQ)’
2 F(30’4’4)9T(30)’TM(30’4’4)’TMI(30’4’4)’TMIT(BO’QOQ)’

3 H(G)sHH(494)9TT(30)

COMMON FAs»WsSIGMAS»THETsDELTMRDEL TML

FI=W*TT(1])
CALL DTRANM(DTMyFIs1)

CALL TRANMI (DTMIsDTMsI)
CALL TRANIT (DTMITsDTMy1)

CALL TRANSM (TMsFIs1)
CALL TRANMI(TMI»TM»1)

CALL TRANIT (TMITsTMsI)

CALL MULTA (HHsH)
CALL MULTC(AYHHITMIH1)

CALL MULTC (BsHHDTMI»1)
CALL MULTD (DsDTMITyAs»I)
CALL MULTD (FsTMITsBs 1)
CALL SUMC (ERRsDsF9SIGMASHI1)

RETURN
END

129



b

981
982
983
984
985
986
987
988
989
990
991
992
999

SUBROUTINE DERROR(ERRsHs 1)

BLOCK

LIST
LABEL

DIMENSTION A(3094+4)9B(309s444)9D(309494)9sDTM(309494)
1 DTMI(30’404)9DTMIT(300404)9EI(404)9ERR(30044)’
2 F(309494)9T(30)sTM(3094s4)sTMI(309494) 9TMIT(309444)

TWO

3 H(3034)9sHH(309444)

COMMON FAsWsSIGMASsT sET»DELTMRDEL TML

FI=WxT(])

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
RETUR
END

DTRANM(DTMsFIs1)
TRANMI (DTMIsDTMsl)
TRANIT (DTMITsDTMy 1)
TRANSM (TMsFlIs1l)
TRANMI(TMI»TMs 1)
TRANIT (TMITs»TMs1)
MULTAA(HHyHs 1)
MULTD(AsHHs TMIy 1)
MULTD(BsHHsDTMTI s 1)
MULTD (DsDTMITyAsI)
MULTD (FsTMITeBs 1)
SUMC (ERRyDsFsSIGMASsT)
N

130
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SUBROUTINE CHECK (TARIMs»TARI»OLCOSRsHRs TTsCRUD)

BLOCK ONE

CHANGING ONLY ONE TIME SHOULD RESULT IA AN
ACCURATE PREDICTION OF CHANGE IN COST
WITHIN «10/0 OF ACTUAL CHANGE
LIST
LABEL
DIMENSION EAR(494)9ETI(Gs4)9F(30),
1 TARI(30)sT(30)
COMMON FAsWsSIGMASsTHETsDELTMR»DELTML
PRINT 16
FORMAT(1H5+10X14H ACCURACY TEST)
BIGA=ABSF(TARIM)/CRUD
TT(15)=TT(15)~TARI(15)/BIGA
CALL ERRORM (EARYHRyPCOSRsTT)
CALL PRINTB (EAR)
COSTR=(TART(15)#%.)/BIGA
PRINT 14+COSTR
14 FORMAT(1HO»10X28H PREDICTED COST CHANGE TEST9E20,8)
5 ACOSTR=OLCOSR-F ZOSR
PRINT 15,ACOSTR
15 FORMAT(1HO»10X25H ACTUAL COST CHANGE TEST»E20.8)
6 IF(ACOSTR) 74798
7 PRINT 71
71 FORMAT(1HO»10X38H NEW COST GREATER THAN OLD COST TEST)
GO TO 131
8 IF((COSTR-ACOSTR)/OLCOSR) 81913991
81 BUTT=(ACOSTR=COSTR)/OLCOSR
9 IF (BUTT=,001) 13513,11
91 RUTT=(COSTR-ACOSTR)/OLCOSR
10 IF (RUTT=4001) 13913412
11 PRINT 111,8UTT
111 FORMAT(1HO,410X32H TEST ACTUAL EXCEEDS PREDICTED)
1 KX9F20,1095X19H PERCENT DIFFERENCE)
GC TO 131
12 PRINT 121+RUTT
121 FORMAT(1HO+10X32H TEST PREDICTED EXCEEDS ACTUAL»
1 5X9F2041095X19H PERCENT DIFFERENCE)
13 PRINT 132
132 FORMAT(1HO»10X27H SO FAR SO GOOD TEST WORKS)
131 TT(15)=TT(15)+TARI(15)/BIGA
RETURN
END

W N = O
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SUBROUTINE CHECK (TARIMsTARI»OLCOSRIHS)
BLUCK TWO

CHANGING ONLY ONE TIME SHOULD RESULT 1A AN

ACCURATE PREDICTION OF CHANGE IN COST

WITHIN o10/0 OF ACTUAL CHANGE

LIST

LABEL

DIMENSION TARI(30)9F(30)sT(30)9EI(494)sFEA(L94)IHS(3094)
COMMON FAsW9sSIGMASsTHEIsDELTMR s DEL TML

PRINT 16

FORMAT(1H5910X14H ACCURACY TEST)
BIGA=ABSF(TARIM)/DELTMR

T(15)=T(15)-TARI(15)/B1GA

CALL ERRORM (FAsHS»PCOSR)

CALL PRINTB (EA)

COSTR=(TARI(15)%#%2)/BIGA

PRINT 144COSTR

FORMAT(1HO»10X28H PREDICTED COST CHANGE TEST,E20,.8)
ACOSTR=OLCOSR=PCOSR

PRINT 15,ACOSTR

FORMAT(1HO»10X25H ACTUAL COST CHANGE TEST#E2048)
IF(ACOSTR) 79748

PRINT 71

FORMAT(1HO»10X38H NEW COST GREATER THAN OLD COST TEST)
GO TO 131

IF((COSTR=ACOSTR)/OLCOSR) 81513591
BUTT=(ACOSTR=COSTR)/OLCOSR

IF (BUTT=,001) 134s13,11

RUTT=(COSTR=-ACOSTR)/OLCOSR

IF (RUTT=,001) 13913512

PRINT 111»BUTT

FORMAT(1HO»1CX32H TEST ACTUAL EXCEEDS PREDICTED)

2 5X9F20,105s5X19H PERCENT DIFFERENCE)

GO TO 131
PRINT 127sRUTT
FORMAT(1HO»10X32H TEST PREDICTED EXCEEDS ACTUAL>

1 5X9F20,1095X19H PERCENT DIFFERENCE)

13 PRINT 132

132
181

FORMAT(1HO»10X27H SO FAR SO GOOD TEST WORKS)
T(15)=T(15)+TARI(15)/BIGA

RETURN

END
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SUBROUTINE LOGIC(BIGA»TARIMyCRUD»TARI+»OLCOSRsPCOSRY
1 EARYHR»TT)

BLOCK ONE

DETERMINES NEW MEASUREMENT TIME SCHEDULE AND
NEW COST

LIST

L ABEL

DIMENSION F(30)9EAR(424)sET(494)yHRI4)9FRI(30)
1 DELTR(30)sT(30)sTR(30)»TT(30)

COMMON FAsWs»SIGMAS»THET»DELTMRsDELTML
BIGA=ABSF(TARIM) /CRUD

PRINT 269CRUD

FORMAT(1HO»10X19H MAX TIME INCREMENT»5X9sF20,10)
PRINT 27+»BIGA

FORMAT(1HO»10X13H SCALE FACTOR»5X»E204.8)

DO 45 1219301

DELTR(I)=TARI(I)/BIGA

TRITIY)=TT(1)=-DELTRI(T)

IF(TR(TI))42+645943

DELTR(I)=DELTR(I)+TRI(1I])

TR(I)’0.0

GO TO 45

IF(TR(I)=(FA/W)) 454945944
DELTR(I)=DELTR(I)I+(TR(I)=(FA/W))

TR(1)=FA/W

CONTINUE

DO 6 1=1»30y1

FI(I)=W*TRI(T)

F(1)=F(1)%180,4/3,14159

TT(I)=TRI(1)

CALL ERRORM (EARHRyPCOSRsTT)

COSTR=0,

DO 10 1=14930,y1

COSTR=COSTR+TARI(I)#DELTR(T)
ACOSTR=0LCOSR-PCOSR

PRINT 289COSTR

FORMAT(1HO910X22H PREDICTED COST CHANGE15X9E2048)
PRINT 29,ACOSTR

FORMAT(1HO»10X19H ACTUAL COST CHANGE»5X9E20,8)
IF (COSTR-ACOSTR) 1319159141
BOO=ACOSTR/COSTR

IF (BOO=10,) 154915519

FOO=COSTR/ACOSTR

IF (FOO-10,) 15515920

APERR=ACOSTR/0OLCOSR

PRINT 304+APERR

FORMAT(1HO»10X15H PERCENT CHANGE »5X»F20,10)
IF (APERR)11193339555

IF (,OO1+APERR) 2229333444



222 CRUD=CRUD*(,0017/ABSF(APERR))
GO T0 1
333 CRUD=CRUD/ 2,0
GO TO0 1
444 CRUD=CRUD#*(1,0-ABSF(APERR)/4001)
GO T0 1
555 1F (APERR-,001)21+18518
21 CRUD=CRUD*(,001/APERR)
IF(CRUD=10000,)22+18y18
22 GO To 1
18 PRINT 31
31 FORMAT(1HO»10X18H NEW TIME SCHEDULE)
CALL PRINTA(TT)
PUNCH 311,77
311 FORMAT(F20,10)
PRINT 32
32 FORMAT(1HO»10X19H NEW CENTRAL ANGLES)
181 CALL PRINTA (F)
PRINT 33
33 FORMAT(1HO+10X19H FINAL ERROR MATRIX)
CALL PRINTB (EAR)
182 CALL PRINTR (OLCOSRIPCOSRCDOSTR»ACOSTR)
GO TO 25
19 PRINT 191,800
191 FORMAT(1HO»10X40H ACTUAL GREATER THAN TEN TIMES PREDICTED
1 F20,10)
GO TO 25
20 PRINT 201sF0O
201 FORMAT(1HO»10X40H PREDICTED GREATER THAN TEN TIMES ACTUAL
1 F20,10)
25 CONTINUE
RETURN
END
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SUBROUT INE LOGIC(BIGA*TARIMsCRUDSTARI yOLCOSRIPCOSREA 2HS

n

BLOCK TWwO

DETERMINES NEW MEASUREMENT TIME SCHEDULE AND
NEW COST
LIST
L ABEL
DIMENSION F(30)sTR(30)sFR(30)9DELTR(30)sTARI(30))
1EA(494) 9y HS (3094)9T(30)9EJ(494)
COMMON FAsWsSIGMASsTsET sDELTMRsDELTML
1 BIGA=ABSF(TARIM)/CRUD
PRINT 269CRUD
26 FORMAT(1HOy10X19H MAX TIME INCREMENT 95X sF20610)
PRINT 27+BIGA
27 FORMAT(1HO,10X13H SCALE FACTOR5~9E20.8)
2 DO 45 1=1+30,y1
3 DELTR(I)=TARI(I)/BIGA
4 TR(I)=T(I)=DELTR(I)
41 TF(TRII))4L2945943
42 DELTR(I)=DELTR(I)+TR(I)
TR(I)=OQO
GO TO 45
43 IF(TRITIVI=(FA/W)) 45945944
ED» 44 DELTR(I)=DFLTR(I)+(TRII)=(FA/W))
TR(I)=FA/W
45 CONTINUE
5 D0 6 1=1930,1
ALy 61 F(I)=W*TR(1])
62 F(1)=F(1)%#1804/3,14159
6 T(1)=TRI(1)
7 CALL ERRORM (EAYHS»PCOSR)
8 COSTR=0,
9 DO 10 I=14930,1
10 COSTR=COSTR+TARI(I)#DELTRI(1)
11 ACOSTR=0OLCOSR-PCOSR
PRINT 289COSTR
28 FORMAT(1HO,10X22H PREDICTED COST CHANGE »5X9E2048)
PRINT 29,ACOSTR
29 FORMAT(1HO,10X19H ACTUAL COST CHANGE »5X+E20,8)
12 IF (COSTR-ACOSTR) 1313155141
131 BOO=ACOSTR/COSTR
13 IF (BOO=-104) 159+15¢19
141 FOO=COSTR/ACOSTR
14 IF (FOO-10,4) 15415920
15 APERR=ACCSTR/OLCOSR
PRINT 304APERR
30 FORMAT(1HO»10X15H PERCENT CHANGE s5XsF20,10)
IF(APERR 11143339555
111 1F(,001+APERR)222+333y444
222 CRUD=CRUD#*(,001/7ABSF(APERR))
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GO TO 1
333 CRUD=CRUD/2,0
GO TO 1
444 CRUD=CRUD*(14,0-ABSF(APZRR)/.001)
GO TO0 1
€55 IF(APERR=-4001)21+18,18
21 CRUD=CRUD*(,001/APERR)
IF(CRUD-10000,4)22+18+18
22 GO T0 1
18 PRINT 31
31 FORMAT(1HOy10X18H NEW TIME SCHEDULE)
CALL PRINTA (T)
PUNCH 3117
311 FORMAT(F20,10)
PRINT 32
32 FORMAT(1HO910X19H NEW CENTRAL ANGLES)
181 CALL FRINTA (F)
PRINT 33
33 FORMAT(1HO,»10X19H FINAL ERROR MATRIX)
CALL PRINTB (EA)
182 CALL PRINTR (OLCOSRyPCOSRsCOSTRsACOSTR)
GO TO 25
19 PRINT 191+BOO
191 FORMAT(1HO»10X40H ACTUAL GFEATER THAN TEN TIMES PREDICTED
1 F20,10)
GO TO 25
20 PRINT 2014FO0O
201 FORMAT(1HO0»10X40H PREDICTED GREATER THAN TEN TIMES ACTUAL
1 F20,10)
25 CONTINUE
RETURN
END
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SUBROUTINE JUMP (TLAMDASDHLR sDHRLsPCOSR s IHV s HR s HL )

LIST
LABEL
DIMENSTON THV(30)sDELCOS(30)sTLAMDA(3094)sEA(Gr4 )

1HS(30’4)'DHRL(Q)’DHLR(Q)9HR(4)’HL(4)’T(30)'51(4’4)

COMMON FAs»WISIGMASYT»EIsDELTMRDEL TML
PRED=0,0

SCALE=0,0

NUM=0

CALL HORIZS(IHVsHRIHL 9HS)

DO 6 1=1930y1

CALL LAMDA(TLAMDA »HSs 1)

IF(IHVITIY=1) 19292

CALL MULTG (DELCOSs»TLAMDASDHLRI)

GO T0 3

CALL MULTG (DELCOSsTLAMDASYDHRL 1)
PRINT 81y I« DELCOS(I)
FORMAT(1HO+10X20H COST CHANGE FOR THE» & s6H POINT$E20,10)
IF(DELCOS(I))4y696
IF(DELCOS(1)=-SCALE)S5 9616
SCALE=DELCOS(1)

NUM=1

CONTINUE

IF(IHVI(NU'MY)=1)7+8+8

THV(NUM)Y =1

GO TO 9

IHV(NUM)=0

PRED==DELCOS(NUM)

PRINT 100,PRED

FORMAT(1HO»10X22H PREDICTED COST CHANGE 9E20,10)
CALL PRINTD (IHV)

CALL HORIZS (IHVsHRyHLIHS)

CALL ERRORM (EAyHSHIHOR)

ACT=PCOSR-HOR

PRINT 91

FORMAT (1H5910X17H NEW ERROR MATRIX)
CALL PRINTB(EA)

IF (ACT) 10510412

PRINT 11+ACT

FORMAT(1HO,»10X20H SOMETHING IS WRONG

1 24H THE NEW COST 1S GREATER9»5X9E20.10)
1E20410)

GO T0 19

PRINT 200, ACT

FORMAT(1HO»10X19H ACTUAL COST CHANGE1E20,10)
DEL=PRED/ACT

PRINT 14+DEL

FORMAT (1HO »10X29H RATIO OF PREDICTED TO ACTUALF20,10)
CONTINUE

RETURN

END
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SUBROUTINE PRINTA(AA)
LIST
LABEL

THIS SUBROUTINE PRINTS OUT A LIST
DIMENSION AA(30)
PRINT 2yAA
2 FORMAT(4E30,10)
RETURN
END

SUBROUTINE PRINTB(BB)
LIST
LABEL
THIS SUBROUTINE PRINTS OUT A MATRIX
DIMENSION BB(4s4)
PRINT 3
3 FORMAT(1HO,410H I J 920X10H 1 J
1 20X10H 1 J 120X10H 1 J )
L=1
LL=2
LLL=3
LLLL=4
DO 5 I=194,1
PRINT 49 T9LoBBUToL)sIvLLBBITIsLL)sIsLLLIBBIIsLLL)Y
1IsLLLL,BB(TsLLLL)
4 FORMAT(1HO»4(159159F20,410))
5 CONTINUE
RETURN
END

SUBROUTINE PRINTC(BBy1)
LIST
LABEL
THIS SUBROUTINE PRINTS OUT ONE OF THE I TH MATRICES
DIMENSION BB(30s494)
PRINT 4
4 FORMAT(1HOsSH I o5H J s5H K
1 15X5H 1 95H J  95H K 915X5H 1 +5H J 95H K
2 15X5H 1 s5H J  #5H K )
L=1
LL=2
LLL=3
LLLL=4
DO 8 J=194y1
PRINT ToloJslLoBB(IsJosL)oIoJsLLsBB(TIoJsLL)sIsJslLLLY
2 BB(IsJosLLL)sIoJsLLLLIBB(TI»JseLLLL)
7 FORMAT(1HO4(3159E15,8))
8 CONTINUE
RETURN
END
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SUBROUTINE PRINTD(IHV)

LIST
LABEL
IHV(1) IS THE HORIZON VECTOR SCHEDULE
IF THV(I) =1 WE ARE USING THE RIGHT HORI1ZON
IF THV(I1) =0 WE ARE USING THE LEFT HORIZON
DIMENSION IHV(20)
DO 717 1=1,30,1]
711 IFCIHV(I)=1) T712+715+715
712 PRINT 713,y
713 FORMAT(1HO»5X7H AT THEs13925H MEASUREMENT POINT WE ARE)
1 22H USING THE LEFT HORIZON)
714 GO TO 717
715 PRINT 7161
716 FORMAT(1HO»5XT7H AT THEs»I13925H MEASUREMENT POINT WE ARE)»
1 23H USING THE RIGHT HORIZON)
717 CONTINUE
RETURN
END

SUBROUTINE PRINTR(A$BsCsD)

L18T
LABEL
PRINT 1
1 FORMAT(1HO»10X9H OLD COST»21X9H NEW COST,
1 21X12H PRED CHANGE,18X14H ACTUAL CHANGE)
PRINT 29AsBsCyD
2 FORMAT(4E30,10)
RETURN
END
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