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FOREWORD

This is part one of s final report on work sponsored by the Aerospace Research
Laboratories, Office of Aerospace Resee.rch, United States Air Force, under Contract
AF 3_5(616) ~T372, Project 7071, Task T071-Ol. The technical effort, conducted at
Rocketdyne in the Research Department, was monitored by Dr. H. Leon Harter of the
Aerospace Research Laboratories.

The initial motivation of the overall research program was to develop methods
for finding optimum experimental designs, taking into account cost as well as
variance properties. Loss functions which included quadratic andXIimear cost terms
were ugsed for designs based on simple regression models. Explicit minimizations of
this loss function were cbtained in certain simple cases (e.g., strictly linear
multivariate model) and some interesting general nonoptimelity properties of
orthogonal designs were discovered. Treatment of more general cases, however, met
vith excessive camputational difficulty and for this reason the scope of the
original program wvas expanded to include the use of Bayesian decision theory and
finslly more recently the application of the methods of linear programing. New
tasks vere gubsequently added in the areas cf expansible and contractible designs,
multivariate quantal response problems, and most recently estimation questions in
reliability growth models.

The research on loss functions has been described in detail in previous ARL
Technical Documentary Reports (ARL 62-373, ARL 63-107) and no further mention will
be made of it here. Results obtained in the other investigations during the past
two years (ending February, 1965) are reviewed in the three parts of this report.
Part two deals with formulations of reliability growth models and statistical
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estimation of parameters of the stochastic processes resulting from such models.
Part three involves the design and analysis of sensitivity experiments in vhich

there are one or more stimulus veariables.

Portions of the work reported in part one (Appendices A, B, and E) were based
on dissertation research by the author vhile he was a graduate student at the
University of Chicago. The author acknowledges the assistance ol Mr. George

Uglean on various parts of this research.




ABSTRACT

This report describes results of research on factorial designs during a two-
year period ending in February, 1965. These include (a) characterizations of
orthogonal and two classes of non-orthogonal designs as solutions to linear ccn-
straints, (b) optimality properties of orthogcnal designs, (c) development of a
geueral class of non-orthogonal sequential factorial designs, (d) results on

certain families of 2 designs, and (e) description of a special-purpose linear

programuing computer routine for combinatorial problems in experimental design.
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SUMMARY

Results obtained along two lines of study are given in this report. The first
is concerned with a special class of sequential incomplete factorial designs, termed
"expansible and contractible". The study of this class was motivated by the need
for designs which do not lose their desirable properties if they are stopped pre-
maturely or if new factors are added after the experiment has been initiated.

While any design can be ordered so that the factors are introduced sequentially,

not all designs h::e the contractibility propertj, namely that truncated designs
retain relatively high efficiency. In particular, orthogonal designs do not usually
provide convenient expansible series of designs. The class of vnz-at-a~time

designs is a convenient expansible series, but the variance efficiencies of such
designs are poor. The general class of permutation-invuriant designs is defined

and discussed in detail, and it is shown that many expansible series can be con-
structed within this class. The variances end efficiencies for many resolution-

five 22 designs are given, and the best expansible series are indicated.

The second investigation involves the use of linear programming for finding
incomplete factorial designs. Details of the simplex method are reviewed, and a
special-purpose linear-programmning computer routine for finding factorial designs
is described. It is shown how the special features of the problems, such as the
size and condition of the basis matrices and the degeneracy of the soluticw., are
exrloited in the camputer routine. It has been used succeasfully to derive several
known designs which involve constraint matrices of moderate size. On larger prob-
lems, camputational difficulties and non-integral solutions have precluded obtain-

ing new d«signs.

Manuscript released by the author May 1965 for publication as an
ARL Technrical Report,



This report has as appendices five papers which had previously been issued
only as internal reports at Rocketdyne. Appendix A deals with the formuwlation of
cambinatorial problems in experimental design az linear programming problzms.
Appendix B contains a survey of non-orthogonal designs, introduces the claasses of
permutation-invariant and clumpwvise-orthogonal designs, and gives linear-
programming characterizations of these clasgses. Appendiix C is a paper on optimality
properties of orthogonal designs which was presented at the Chicago meeting of the
American Statistical Association in December of 1964. Appendix D is an investiga-
tién of the clasg of one-at-a-time designe. Appendix E contains results on incom-
plete factorial designs originally reported at the Urbana meeting of the Institute
of Mathematical Statistics ir Novewber of 1961.



EXPANSIBLE AND CONTRACTIBLE DESIGNS

INTRODUCTION

If an ordinary incomplete factorial design is halted prematurely, most of the
information is lost. In industrial research and development programs, there are
many reasons vhy a planned experiment may be stopped, including dbudgetary changes,
| failure of test equipment, pressure for results, or a shift in experimental
emphasis as it becames obvious that a factor should be included or excluded. The
uncertainty of the future of a program often leads an experimenter to resist the
| apparent rigidity of a formal statistical test plun. The concept of designs vwhich
. introduce the factors sequentially, which ve have chosen to call expansible and
contractible designs, has been developed to correct this deficiency in the designs
currently available in the literature.

A contractible design is an ordered specification of trestment cambinetions
at vhich runs are to be made vhich has the property that if the experiment is
halted prematurely, quantitative inferences about the effects of same of the
factors can still be made. Contractibility can be achieved by varying only a few
of the factors, prefersbly those thought beforehand to have the largest effects,
in the early pert of the experiment. If the factors which are held fiied do not
interact with those which are varied, then the effects of the factors wvhich have
been varied can be estimated without bias. The unestimated effects are, however,
aliased with the estimates of the mean.

Any design is expansible since any design can be repected with a previously -
§ fixed factor at andother level. It is useful to spply the term, however, to series
of designs any one of which can be contracted to the next lower or expanded to the
“‘:if next higher design in the series.




As ap example of these ideas we consider & simple expansible and contractible
series for wp to three two-level factors. For one factor the design is simply

0
i,

vhere O represents the low level and 1 the high level of the single factor.
Nov suypose o second factor, vhich was at its low level during the first two runs,
is varied. The design is

00
10
o1 ,

of vhich the first two runs have already been done. A third factor (at its low
level for the first three runs) may now be added in two additional runs, so that
the complete design is

00
100
010
001
11l1l

In unpublished work this design has been shown by the methods of Appendix E to be
the five-run design for which the variance of each estimate is minimized. After
the first two tests, note that the estimate of the mean is aliased with the main
effects of the second and third factors, but the estimate of the main effect of

the first factor is not cliased. Similarly, after three runs the main effects of

the first and second factors can be estimated vhile the effect of the third is



&liaged with the mean. After four runs the effects of all three factors can be
estimated, but the addition of the fifth test improves the efficiency of the esti-
mates considerably. Note that the last four tests comprise a half-replicate of a
27, vhich is the standard design to use for three noninteractive factors. This
half-replicate is not contractible, however, and no estimates can be calculated

untll after all four responses have been cbserved.

Below is described the general theory applicable to expensible and contracti-
ble designs for 22 experiment;. The use of expansible series of orthogonal designa/_
is discussed as well as one-at-a-time designs. Finally, the properties of a
general class of such designs, permutation-invariant designs of resolution 5, are
derived in detail. |

EXPANSIBLE AND CONTRACTIBLE DESIGNS FOR TWO-LEVEL FACTORS
General Theory

The treatment combinations of any incomplete 22 design can be arranged in
such an order that the factors are introduced sequentially. Here and in the
sequel, a factor is considered to be introduced at that run in which the factor
first appears at its high level. If cne considers the treatment combinations as n-bit
binary numbers, an arrangement with this property may be obtained by placing the
treatment combinations in increasing numerical order. If the factors are sarranged
in order of increasing & priori importance (increasing magnitude of effect), then
the order of introduction is the inverse of the order of importance. A design
ordered in this way may or may not be contractible depending on vhether or not the

swwdesigns are singular. For example, the subdesigns of the half-replicate of a
3
2
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001
010
100
111

are singular. -

Yor 2" designs it can be shown that the variance of each estimate is mini-
mized if and ocaly if the design is prf;hbgonél. It is natural to inquire therefore,
vhether orthogonal designs e.re contractible and expansible. Since in an orthog-
onal incomplete 2" design the high level appears in half the tests, an orthogonal
design would necessarily be contracted to half its number of runs or expanded to
twice its number of runs by the deletion or addition of a factor. Therefore, if
there is pressure to hald the number of tests to a minimum, it will usually not be
useful to restrict attention to orthogonal designs.

There are sevgml exceptions to the general rule that the contractibility
property is not satisfied by the orthogonal design vhich has the smalleat number
of runs for a given experiment. The only exception for resolution 3 designs (i.e.,
those for estimating only main effects) is the trivial case of two factors, for
vhich the minimal four-run design can be contracted to the minimal two-run one-
factor design. There are several exceptions for resclution 5 designs (those for
estimating mein effects and two-factor interactions). These cases are: expanding
from one yp through four factors; expanding from five up through seven factors;
and expanding from eight to nine factors. In all these cases the smallest orthog-

onal design containing i+l factors contains twice as many runs as the smallest
for 1.



The optimality property which leads one to select orthogonal designs is
based on variance considerations. Such considerations may be subordinate to
others in research and development progreams, in which it orten happens that the
cost per test is Jarge and the error of an individual observation is smaller in
magnitude than the effects of interest. In the extreme case vhere the error
variance is zero, the only relevant criterion for a design is its “degree-of-
freedonm” efficiency, defined as the ratic of the number of parameters to the
number of runs. In evaluating 2° designs one msy take an intermediate point of
viev and consider the efficacy’ of designs, vhich 1s the product of the degree-
of-freedom efficiency and the prediction index, defined in another report [ 5].
The prediction index for 2" designs reduces to the reciprocal of the product of the
oumber of runs and the average variance of an estimate. The index has its maxi-
mm value of unity for orthogonal (equal-freguency) designs.

One more concept vhich is useful in developing expansible series of designs
is the “guaranteed minimum". It may often be assumed that the experiment will not
be stopped before a certain number of runs have been made, vhich number we refer
to as the guaranteed minimum. It is then not necessary to require that the design
be contractible beyond this minimmm. If & design has no guarantesd minimm asgo-
ciated with it, then it is said tobenm&cmmctm.

One-At-A-Time Designs

A 2° design containing n+l runs in vhich the i-th factor is introduced at
the (1i+l)-st run is called a cne-at-a-time design. Such designs are of resolution
3, are fully contractible, and are perfectly efficient in the degree-of-freedom
sense. Thelir varisnce properties are, however, known to be poor. In exploratory

inus tera and the concept were suggested to the author by Cuthbert Daniel.



research with lov error their degree-of-freedom efficiency and contractibility mey
still make them useful designs. In another paper, vhich is included as Appendix D,
1t ves sbown that $9° is & lower bound for the variances of the estimates
cbtained from such designs, and that the lower bound is attained for all the esti-
mtes, grand mean and main effects, for one particular expensible series. It has
also been demonstrated that a much wider class of coe-at-a-time designs has the
property that the variances of the main-effect estimates attain the lower bound.
An upper bound on the efficacy of such designs is 2/(n+l).

PERMUTATION-INVARIANT DESIGHNS

Properties of the Designs
A class of designs vhich often provides convenient expansible series is the

'2aal

class of permutation-invariant designs defined in another paper, which is included
as Appendix B. For 20 experiments such a series is characterized by a set of k

integers (l_‘_, **y -k}’ vhere for convenience the vill be arranged in non-"

-3
i |
decreasing order. For nam factors the design contains those Q} treataent
combinations with exactly n factors at their high level, plus those (:2> com-
binations wvith exactly n, factors at their high lewvel, °*-* , plus all those

(:.) combinations vith exactly m  factars at their high level.

Such designs have the property of treating all factors alike. That is, the
variances of all main eﬁecta are equal, the v&imees of all two-factor intsrac-
tions are equal, anl covariances between analogous pairs of estimstes are equal.
The cross-product matrices have a particular pattern vhich allows general expres-
sions for the elements of the inverse to be cbtained. Comsider first designs for
estimating only the grand mean and main effects, for wvhich the cross-product
matrix is as follows:



NIA A A A A
Alm 3B BB
AlB X B B B
AlB B XBB
AlB B B N B
A{B B B B X

A 4KS

Although this is culy a five-factor example, it serves to illustrate the gensrsl

oase. The three constants N, A, and B are respectively the mumber of runs, the
" inner product of a coefficient vector for a main effect with one for the mean, and
the inner product of coefficient wvectors for tvo main effects.

In designs for estimating the grand meen, main effects, and two-factor inter-
actions, the cross-product matrices have a somevhat more complex structure, vhich
can be illustrated by & four-factor exsmple:

I
coaa>»>rlvwwul
arProadlvwemwp
>»aorad>olpwmw wl
> > a>aalue wuowl
" E IR
o ewmMwlo>» e >|w
P oumww|>raao>|w

¥ w B o s> > o
U Mo o Ei>0 PO
S W w o>

Assigning arabic numbers to the factors and represexnting ifatersctions by a pnir of
mmvers, the rovs end colums of this matrix are ardcred so that thay are ssso-

cisted with the mean, factors 1 through 4, and intersctions in the oxder 12, 13,
14, 23, 24, 34. Here K, A, and B md@ﬁmdmbefmintheﬁrtafthemtrn
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associated with the mean and main effects (the first five rovs and columns). Due
to the structure of 2" designs, they also appear elsevhere in the matrix. A
appoars as the inner product of coefficient vectors for the main effect of a
fector and an interaction containing that factor (for exsmple, 1 with 12, 3 with
23, etc.). B is the iuner product of coefficient vectors for an interaction and
for the grand mean, and of tvo coefficient vectors for interactions baving one
factor in common (e.g., 12 with 13), as well. The constent C is defined as the
ianer product of coefficient vectors for a main effect of one factor and for an
interaction involving seconé and third factors (e.g., 2 with 13). Pinally, D is
the inner product of coefficient vectors for two interactions involving a total of
four n.ctors (13 vith 24, etc.).

Generl expressions for the five constants ere as follows for the m-~factor
design of the general series "‘1’ cee, nk}:

e, )

senp, {E0-C

3 =25, (G2 = G2+ C7)

-2, (G2 CD» CD- )

pagp, (G4 Qe QD+ G+ G

with the convention that when a binomial coefficient @ is undefined because

(¢

Q<0 or p<gq, its value ie zero. The derivation for B will be given, the
others being completely analogous .



From an examination of the coefficient matrix X, given any two factors,
obe can see that B is the number of occurrences of 00 minus twice the number
of occurrences of Ol plus the number of occurrences of 1ll. Considering only
those trestment cambinations with m

1
exactly (:;fz) combinations with tvo factors fixed at levels 1 and 1, because

factors at their high levels, there are

there are ‘.1'2 more l's +o be assigned to the n-2 remsining factors. Simi-
larly, the number of occurrences of O and 1 for two fixed factors is n-z.]) ;
i
and the number of occurrences of O and C is n-a} Combining these and
i

suming over 1 gives the above expression.

Covariance Matrices of Permutation-Invariant Decigns
The covariance matrix (the inverse of the cross-product matrix) for

permutation-invarisnt designs also exhibits a distinctive pattern. For main-
effect designs the inverse has the following form, again illustrated by a five-
factor cxample:

e p B BB
B{y 8 5 8 3
pljs y 8 88
Bid 3 » 8 8
Bid 8 8 7 &
ples 2 8 & 7

The constant ¢ times 0° (the constant error-varisnce of the errors in the
observations) is the varisnce of the estimate of the mean, 7¢° 1is the variance
b of an estimated main effect, Po°is the covariance between the estimated mean and
_‘-'ﬁf an estimated effect, and %0°is the covariance betveen the estimates of tvo main
effects.



Because of the patterned structure of these matrices, a set of five distinct
equations in the four unknowms &, , 7, and 8 can be obtained by formally multi-
Plying the cross-product matrix by the covariance matrix. JYor the general case of
n factors the equaticns are as follows:

Ke+engsl

A + (8 + (n-1)B]B =0

B +Ay + (n-1)A8 = O

A+ % + (0-1)B3 = 1

A +By + [+ (n-2)B]8 =0 .

These equations are consistent, and the explicit solutions are as follows:

Q= N+ (n-1)B)/A

B = -A/A

7 = [(0-1)(xB-A°) + M(N-B))/(N-B)A
8 = - (uB-A%)/(n-B)A ,

wvhere A 1is given by A = n(MB-A®) + N(N-B) .

The covariance matrix for the estimation of the mean, main effects, and two-
factor interactions is patterned like the cross-product matrix for this case. Its
elements will be denocted by small Latin letters. The four-factor example is as
follows:



® = o
w & =~ jo

> o PO R R K0

0O o0 060 0 6 0| o U o|e
R R » H i » 6 A
B H = B & wjo 0 A o|O
R R R A& 060 01
w R N R & o 0 oo
P e R ® |6
=P . RO RO
N A L )

LV B o o O
H G e e P

Again the matrix and its inverse may be formally multiplied to obtain a set of

fourteen consistent equations in the ten unknowns. These equations are as follows:

Na + nAb + (;)Bc =1
Aa + [#+(n-1)BJo +[(n-1)A + (n;l)c]c =0
Ba + [2A+(n-2)CTo +[M2(n-2)B + (*;%)D]e = ©

b ¢ Ad + (n-1)Ae + (n-1)nf + (n;l)ng =0
Ab + ¥4 + (n-1)Be + (n-1)Af + (% Mg -1
b + B + [We(n-2)BJe + [Aw(n-2)c)t + [(m-2)A + (%P)clg =0
Bb + Ad + [Mn-2)Cle + [Bs(n-2)B)t + [(n-2)B + (*%)D)g =0
Bb + Cd + [2A+(n-3)Cle + [2B+(n-3)D)f + [We2(n-3)B + (n?)D]g =0

Ne + 2Af  + (n-2)Ag + Bh + 2(n-2)Bi + (n'z'z)B,j =0
Ac + (B4B)f + (n-2)Bg  + Ab + (n-2)(A+C)1 + (™) = 0
Ac + 282 + [M(n-3)Blg + & [2m2(n-3)c]s  + [(n-3)A(®)cly = 0O
Bc + 2Af  + (n-2)Cg + Nh + 2(a-2)Bi + (néz)DJ =1
Be + (A#0)2 + [A+(n-3)Clg + Bh + [M#(n-2)B+(n-3)D]t + [(n-3)B+(*°)D)s = ©
Bc + 2¢f  + [2A+(n-k)Clg+ Db + [4B+2(n-4)DJ4 + [mz(n-u)a-a-(n;‘)n],j =0

15



Attempts bave Leer mede 1o obtain explicit sclutioms; but the algebraic complexity
precludes ocbtaining sixple expressions for the inverse elements. It is far easier
te evaluate and solve the above equations for a particular case, and a simple
camputer routine has been written to do this.

WOMERICAL RESULTS ON BESOLUTION-FIVE IESIGNS

ENumerical results have been obtained for a large number of resolution-five
permutation-invariant designs, and these are given in Table 1. The table lists
the series (that is, the ni's); nuaber of factors; the camstants N, A, B, C, and
D; the efficiency of the estimates of the mean, main effects, and interactions;
the prediction index; the degree-of-freedom efficiency; and the efficacy. An
examiration of the table reveals that the best series in terms of efficacles of

thnee tried are as follows for various values of the number of runs guaranteed to
be made.

guaranteed minimm best series n efficacy in ﬁ

4 {0,1,2} 100
57
23
10

7 {1,2,3) 57
52
29
1k

67
69

50
28

1l {1: 2 k}

16 {1,3,5) 100
69

45

89
58

35

22 {o,2,5]
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TABLE I

EVALUATION OF PERMUTATION-INVARIANT DESIGHS

Efficien

of of mmin of inter- 4.f. effi- effi-

Series n N A B _C D wean effects actioms P.I. clency cacy
{0,1,2] 2 % 0 0 0 O 100 100 100 100 100 100
3 7 =1 =1 -1 -1 57 57 57 57.1k 100 ST

b 11 -3 -1 1 3 10 18 36 22 .86 100 23

5 16 -6 0 2 O 2 6 25 9.63 100 10

6 22 =10 2 2 -2 1l 3 i8 4 .62 100 5
{0,1,5} 5 16 2 0 -2 © 64 45 64 56 .69 100 57
6 27 -5 <1 -1 3 9 15 ks 25.56 81 .48 2l

T &3 =11 -1 1 3 2 5 3 10.82 67 .4k ¥ {
{0,2,3}) ¥ 11 1 -1 -3 3 o 65 65  67.29 200 67
5 2L <1 -3 <1 5 kg 57 58 57.39 16.19 ik

6 36 6 -k 2 L 13 27 46 35.60 6141 22

7 67T ~-15-3 5 1 38 ks 69 59.32 lm 28 26

{,2,3}) 3 7 1 2 1 57 57 57 57.1k 100 57
b Mk 0 -2 0 -2 57 9l 57 66.17 78.57 52

5 8 <3 -3 1 1 23 ko ) 4s .91 6l ,00 29

6 4l <9 -3 3 1 6 18 40 25 .25 55466 1k

7 63 =19 -1 5 =1 2 7 33 14.82 h6.t?5 T
{0,1,4] 6 22 0 2 <4 -2 55 5k 65  61.5k 100 62
7 43 <1 -4 -5 3 62 19 52 54 .69 67 .4k 37

8 19 =T <5 3 7 k 6 3k 11.29 %.q; 5
{0,2,6} 5 6 0 0 0 © 100 100 100 100 100 100
6 31 -1 -1 -1 -1 ol ol 9 93 .84 .97 67

T 57T =5 =3 =1 1 b7 62 80 1535 50 .68 37

8 8 9 -5 1 3 57 » 8 80 .97 ‘*5-55 395
{o,3,} 5 16 & 0 <& O 64 28 kS 38.50 100 38
€ 36 & <4 <4 L Th 5k S5k Sk . T2 €. 33

T 7% =2 =9 -1 7 38 56 51 51 .33 40.85 21

8127 -5 -13 5 7 12 30 ub 48.39 29.13 S
{L,2,4) ¥ 11 -1 -1 3 3 9k 65 65 67.29 100 61
5 20 -2 0 2 -k 95 9l 83 86.23 80.00 69

6 3% -4 0 0 -k 88 86 9 81.05 61.11 50

T 63 -9 -1 -1 -1 37 47 T 61.51 5 .0% 28

8106 -20-2 0 2 8 20 59 37.04 3% .91 13
(1,3, 5 20 2 © -2 -k 95 91 83 86.23 80.00 69
6 W 1 -3 -3 1 81 T 83 80.98 53 .66 43

T -7 =1 5 33 52 7 62.27 37.66 23

8 134 -ao <10 & 6 10 28 57 b2 .22 27.61 12
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The first of these resolution-5 series, ,{0,1,2}, is a direct amalogue of
the clags of one-at-a-time designs for the resalution-3 case. The series is fully
coatractible, and each design contains only as many runs as there are paramcters
to be estimated. Like cne-at-a-time designs, the series becumes inefficient very

rapidly as ‘22 number of factors increases.

For any given series, the efficiencies tend to drop nonotcnie-.uy_ as the
mumber of factors increases, as one might expect. It is noteworthy, however, that
the efficiency of the mean consistently drops much more rapidly than the efficlency
of the mzin effects, which in turn drops more rapidly than the efficiency of the
interactions. Thus, if interactions m of primary interest, the series are
particularly attractive.

Som interesting irregularities in the munotonicity of the efficiencies as
the number of factors increases may be noted, however. For example, mthe series
{0,2,4] the efficiencies of the mean, main effects, and mterlct:lnu all d.ec;iue
regularly as n goes from 5 to 6 to 7, and then jump up &8 = :lncmrrm
T to §; similarly they jump for the series {0,2,3} as n goes fram 6 to 7.
There seems (0 be no consistent pa.ttem for thue mmit:les, but rather they
.ppurtobemmmtormmmmncnm of the constsnts ssso-
ciated vith the designs. For scme of the later series in the table, for vhich
= = 5, there is a tendency for the efficisncies as messured by the predicticn
index to increase and then peak. When this is cbserved the degree-of-freedom
| efficiency 1s very lov at the peak, so that these series do not appear to be useful.

‘ For some designs it appears from the constants A through D that the effi-
ciencies can be m:mv‘ed'hy appending a run at the treatment combination with all
factors at their low lsvel. Thie procedure adds 1 to N, B, mdn and sixbtructs.
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1 from A end C. The last designs in the tsble were constructed in this vey, and
for most of these selected designs the prediction indices did in fact increase to
scms degree. The valus of the extra rum, ﬁmured.bythecfﬁmq, vas only
slight, howvever, except for one design. The ({2,4,5] series vith n= 5 has an
efficacy of 57%, vhile the series {0,2,4,5] has an smezingly higher efficacy of
9s%.



THE DERIVATION OF EXPERIKENTAL DESIGNS BY LINEAR PROGRAMMING

GENERAL APFROACH

Various classes of ;ncmplete fact;r:ln.l designs can be characterized as solu-
tions to sets of linear constraints. Papers have been written giving the charac-
terizations for orthogonal designs (Appendix A), and for the permutation-invariant
and cluspwise-orthogonal classes of non-orthogonal designs (Appendix B). In the
case of orthogonal designs, the characterization is somewhat different from that
given by Addelman [1]. An investigation of the differences between the two charac-
terizations has revealed that designs enjoy two optimality properties if they are
orthogqnal in the sense given in Appendix A; these results are ‘descr:i.bed in
Appendix C,

Given the number of factors and the interactioms to be estimated, the linear
constraints characterizing the class of designs can be used to find the particular
design in the class vhich has th¢ smallest number of runs. It is alvays possible
to £ind a design in the class of interest, but those designs vhich are readily
cbtainable are often too large to be practical. Starting from the inovn large
design, linear programming can be applied 'n; order to obtain the smallest design
of the class. This procedure is illustrated in Appendix A for the family of
orthogonal 2" resolution 3 designs, vhere the half-replicate is cbtained starting
fram thev full factorial. ”

In order to study the linear-programming technique for deriving designs, &
special-purpose linear-programming computer routine has been wvritten. The novel
features of the routine, vhich were ﬁuad on experience with particuhr experi-~
mental-design problems, are discussed beiw. Unlike the product-form algorithms
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in general use for solving linear programming problems, neither the basis matrix
nor its :Lﬁverae, \'fti:t only the triangularized basis, is available at any iteration.
Although the routine has been used only for experimental-design problems, it can
pPresumably be used to advagtlge for any problem of a conbinatcgrul nature such as
assigmment problems, transportation problems, and scheduling problems.

DESCRIPTION OF THE LINEAR PROGRAMMING COMPUTER ROUTINE
The 8 Method
A brief reviev of the simplex method will be useful in <order to introduce

notation. The constraint matrix vill be denoted by A, and its number of rows
and columns by N and M, respectively, vhere N < N. The coustraints are
represented by the matrix equation Av=Db, vhere w is the M-component vector
~of variables and b is the N-camponent vector of right-band sides. For conven-
ience and without ioas of generality the linear form to be minimized will be taken
to be simply the value of the first component of v, which will be denoted by A.
A\m{ basis selected from the calumms of A will be designated by B. The cor-
responding basic solution w can be constructed from B b B P as follows:

if colummn AJ appears in the basis as column B:I.’ then wJ-pi; if column AJ

does notappearinthe bagis, then vJ-o.

8uppose the solution corresponding to a particular basis B is feasible.
Let By =A, #0 that P, = v,, andlet G=BA. Any columnof A can be

'expressed as a linear combination of columns of B in the form AJ - 31,131 +
32.132 + ¢+ 5.33' Suppose we wish to change the bisis by introducing say AJ

l.nd.dehtim B,, . Expressing B in terms of the nev besis, we have

& & r.1 ‘ 1) By 1
3 .--—1 P €. B B .-...-—13 ¢ ——
Ca B By T gy el &y N By Ry



sssuning g rs ¥ 0. If we gubstitute this value for B, 1o the equation

g |

ot

t" iml piai = b, Wve have BI fr(pi rg J)Bi + —;AJ =b. Fros this equation can
be der.emined impediately the following eluments of the solution p corresponding

g
to the nev basis: 3!; = Py-P, E% 3, for i §r, and Pr = Pr/gr,j'
“ X : '

<

Suppose ve vish to make the choice of & cqlumn AJ to eater the basis in
such & way that A does pot increase. Since A is the value of the first element
of the soiﬁt:l.on, 11; changes from p, to p§ = P8 Jpr/gr y ®° that it will not
increase if gl.j a.nd 8, r 3 bave the same sign. Assuming -thst Py 20‘ 80 that the
original solution is feasible, suppose we wish to choose B in such & vay that
feasibility is maintained. In order for pr t0 be positive &, rj nust be poutive,
and in order for the remaining p: t0 be positive, r must be seleqted 80 that

Pl./sl.‘1 % 6 is the minimum value of those pi/g“ for which 51‘) is positive.

Thus, 1f J 4is chosen so thatA 51.,1 is positive, and if r is chosen so
that 6 1s minimized, then the solutions associated with successive bases remain
feasible and the value of A cannot increase. Tbus, the process may be continued
iteratively until finally no column can be found to enter the basis.

Properties of Experimental Design Problems

The linear programming problems for finding incamleté factorial designs have
several distinctive characteristics. These are the large size of the constraint
| matrices, the fact that the matrices consist primarily of 0's and -1's (see
f Appendix A), and the fact that the starting basic feasible solutiuns are often
:_’: highly degenerate. Due to the degeneracy, the course of the simplex method is
typically as follows: many iterations are performed with no change in A because
& py is zero for which 813 is positive, and thus € = O0; then on successive

j iterations the value A decreases gradually, with the associated solutions being
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nondegencrate; finally a fiual degenerate solution is obtained, but many more
iteretions are performed before the condition that no & 3 is positive occurs.

- Triangularizetion in the Routine

Execution is initiated vith the matrix A stored in ctre end on auxiliary
tape, with the first N columns of A being the basis. The basis matrix is
trungul&rized by Gaussian elimination with the elinin;.tian calcu}l.ations applied
to the rcnin:l.na colums of A a.nd to b, the vector of right-hand sides. It
vill be hel.pml in the sequel to go through the e¢limination steps for a simple
e:q.plg . Suppose the original matirix is denoted by

1 8 B3 8y 8y
21 %2 %23 g 8
S5 %52 855 %3 %55
vhere the fourth column will represent a ‘column of A not in the basis and the

fifth column will represent the right-hand sides. After one step the matrix

becomes

bu blz 0 bl‘& blS

Py Bz O By, by

2 %52 %33 %3 %3
vhere b:I.J -8, - tﬂ&ﬁ/s)}, assuming that division by s is possibls. The
asxt step yields the triangularized system

¢y 9 0 o, &5

b B 0 By, by

3 %32 %33 %3 %3
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Where i, = by, - by;b, /b, again assuming that division by by, 1s possible.
In the program the divisors, or pivots, are checked to see that they are larger than
& tolerance t, (ususlly 1072 or 1079). 1t not, rows are interchanged until a
large enough pivot is found. If none can be found, the matrix is considered singu-
lar. Because the matrices have as elements O's‘ and -1l's, they are relatively
well conditioned. The program was written under the assumption that the process of
picking any pivot larger than the tolerance, rather than a time-consuming search for
. the largest pivot, would be satisfactory. Some difficulties due to roundoff have
been encountered (see below), but they may be due to the size of the basis.matrices
rather than an inherent weakness in this method.

Rules for Selecting & Column to Enter the Basis

After triangularization, the selection of a column to enter the basis is a
relatively simple matter, since the elements gy are just cu/cn. Ordinarily
there will be a number of columns for waich ElJ is positive, and three rules
have been tried for deciding among them. These are:
Rule 1: Select the first column (starting with J = N+l) for which gm
is positive.

Rule 2: S8elect the column with the largest positive 81.1'

Rule 3: Select a column for which 6 > 0 1if one exists, otherwise use
Rule 2.

An experimental investigation was performed in oider to eva.luaté these rules. Two
representative problems, deriving the smallest 26 and 27 resolution 3 designs,
vere used for this study. The constraint matrices for these problems were of size
23%66 and 30x130, respectively. For each problem ten decks were constructed,
vith the columns of A arranged in a different random order in each deck, and all
three rules vere used with each deck. The number of iterations before the final

solution was obtained and number of seconds of execution time were as followa:

23



"

RUMNING TIME AXD NUMBER OF ITERATIONS FOR THREE SELECTION RULES

Problem 26 21
Rule 1 Rule 2 Rule 3 Rule 1 Rule 2 Rule 3
Deck gsec. iter. {sec. iter. |sec. iter. |sec. iter. |sec. iter. |sec. iter.

1 39 50 9 26 i1 49 1269 1075 IS § 66 82 164
2 15 52 8 25 10 28 | 53 137 56 9% | 80 190
3 b1 69 28 81 17 61 T4 217 69 165 |136 311
4 8§ W |10 35 12 50 {198 12T (17 351 159 319
5 10 39 9 25 1 36 69 217 |290 587 | 99 176
6 % ol 9 32 16 & T 307 Lh T¢ | 86 168
7 14 68 9 33 |12 43 |122 399 | 88 176 |267 752
8 2k  16) 8 28 |11 36 {160 605 }351*% 677 |i25 238
9 :% 29 18 26 | 12 Lk 555* 16%52 112 4oL | 44 66
10 1 2 17 23 2 11 1 1 00" {159 26
Averages o2 Hf 12.5 . 5

i

1%2.8 577.8|127.5 265.6|121.5 266.0

The nusber of seconds of execution is the important variable, and these data have
been analyzed. As & check, three of the runs were duplicated, and the running time
vag exactly the same twice and was one second different once. For two of the 27
runs, labeled with an asterisk in the above table, execution was stopped before &
solution had been reached, and the time at which this occurred was entered in the
table. The distribution of times is highly skewed; so an analysis of variance was
performed on the double logarithm of the times. This analysis revealed that
neither the decks nor the rules were significantly different when compared with
the rule by deck intersction. Therefore, for these twc problems there is no clear
basis for choosing between the three rules. Yor a particular deck there is often
a considerable difference between the three rules, however, but this fact is of no
practical use since for an actual problem the properties of the particular arrange-

& or 27 it may some-

ment of the columns are unknown. For other problems than the 2
times be possible to make an intuitive choice based on the nature of the rules.
For example, if the number of columns not in the basis is small compared with the
number vhich are in, the amount of additional coamputation required for applying

Rule 2 is cooparatively small, and one might wish to apply that rule.

2k
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Rules for Selecting a Column to Leave the Basis

Once a column, say the j-th, has been selected to enter the basis, a column
must be selected to leave. Due to degeneracy, the value of & 1is usually O,
a.hd moreover there are typically several columns which have this value of 6.
There is nothing lost, and much computational time saved, by selecting the column
to leave with the lowest order number. If column r yields the value 6 = O,
then the p1 and gid only need be calculated for i =1, °*°*, r. Moreover,

vhen the new colunmn A, is inserted into the basis, the basis is still triangu-

J
larized except for the first r rows and columns, which produces a substantial

saving in computer time over triangularizing the whole basis. Since it is highly
advantageous to pick low r's, the matrix A should be initially arranged so that
columns of B corresponding to zero elements of p &are placed in the basis imme-

diately after Al, the column corresponding to A.

The column which has been selected to enter the basis 1is substituted for the
column to leave, and the latter is set equal to zero. In the course of applying
the simplex method it may be necessary for a column which has left the basis to
reenter at & later iteration. Because of this, in most linear programming routines
& column which has left the basis is immediately updated in such a way that it
enjoys the same camputational status as i:r it had never been in the basis. Because
of the size of the constraint matrices, there is usually é. vealth of columns which
can enter the basis at any iteration, so that little is lost by deleting the columns
vhich have been removed. When it is determined that no column can enter the basis,
the original matrix is called back in from auxiliary tape storage, so that the

columns which had been deleted can become available for reentry.
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Detection of Roundoff Error

During tbe course of repeated retriangularizations of the basis matrix,
roundoff exror inevitebly builds up . It this buildup is ignored, singular bases
or infeasible solutions may be obtained, and much computer time lost in meaning-
less calculations. Suppose that a system of equations has been triangularized,
and that the solutions to the system are to be obtained by back substitution. An

exanple of the triangularized system wac shown above toc be of the form

o 0

‘1 Sy S5

b b 0

21 P22 bau Pes

%31 %2 %33 % %5 o
vhere the fifth column of the original matrix is the vector of right-hand sides.
We vish to solve for p = (pl,pa,pj)' such that

APy ¢ AP + APy = As

vhere the A 3 are the original columis of the matrix. From the triangularxized
syster ve have immediately

P = as/en

By = (byg = VP ifoy,

Pj = (855 - anP) - aypylfey;
Note that the computation of p5 involves all the elements wvhich have previously
been computed, so that this element is the most sensitive to the accumulation of
roundoff error. O{nce again the degeneracy of the solutions, uzually considered a

disadvantage in linear programming, can be put to gnod usa. Due to degeneracy,

many of the Py have the value zero except for roundoff error, vwhich can be
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expected to make these Py small positive or m.].l negative nui)ers Since it is
not possible for & p, to have a negative value legitimately, a test is made of
all the p, which are calculated at a given iteration. If any is found which is
a larger negative maber than a specified tolerance t, (usually from <1072 to
-10™°), the salution ic considered to be infeasible, even though the infessibility
may be due solely to roundoff error.

If a sclution is encountered wvhich is considered to be infeasible, or if a
basis matrix is found vhich is considered singular, an attempt is made to correct
the problem antamatically. This is done by going back one iteration, calling the
constraint matrix back from tape storage, and performing a nev camplete triangu-
larization on it. On many occasions this procedure has successfully corrected tae
difficulty. If the matrix is found to be singular or the solution infeasible after
going back one iteration and starting vith original data, the problem is discon-
tinued .

COMPUTATIONAL EXFERIENCE WITH THE ROUTINE

Besides the 26 and 2'7 problems mentioned earlier, attempts to determine expli-

cit 28, 29, and 55 designs have been attempted without camplete succesa. For the

?.atxnd.jlj the value of A decreased to the minimum theoretical values of 3 and 2,
respectively, but the solution did not consist of integers. This contradicts pre-
vious experience noted in Appendix A; previously no non-integral solution in which

A was an integer had been obtained for an experimental-design problem.

In the class of crthogonal 28 resolution-3 designs the smallest is known to be
. the twelve-run Plackett-Burman design [2]. Attempts were made to derive this
 ’ design starting from the tweanty-run Plackett-Burmen design, for which A = 5. The
. constraint matrix for this problem is of size 38 X 258 The basis matrix was
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called back from tape end retriangularized for four different reasons during the
course of this problem; these were(a)an observed sinéular basis matrix,(b)an

 observed infessibility,(c)no column could enter the basis, or(d)100 iterations
vere performed since the last callback. The complete history of tuis problem,
mvolving three separate cauputer runs, is es fallows. |

Callback _It‘gntion ‘ ‘ , Comment

0 2k singuwlarity
1 00
2 9k no column can enter
b 100
'S 45  falge infeasibility (due to roundoff)
5 _
6 true infeagibility
T still inféasible, A = 6.21t7
7 ~ initial solution recbtained (M w 5)
g ‘false mreasibility |
9 true infeasibility
10 still infeasible, A = 12.000
, 10 initial solution reobtained
10 singularity
g 11 falge infeasidbility o
r 2 first decreage in A to A = 4,578, followed by 10 consecutive

changes

or oon oNwdrh 4$3~p$§£up%§

] 12 m.se infeasibility, M = 3.540
13 = 3.540, followed by 38 consecutive changes
b 13 | fl.'l.se infeagibility, A = 2.881 | |
' 1 A = 2.876, followed by 26 consecutive chnnges |
: 1k false infessibility, A = 2.576 - : |
¢ 15 singularity or infeasibility after callback
: : ¥EWN RUK
g 0 A = 2.580, followed by 6 consecutive changes
; 0] no column can enter, A = 2.517
: 1 minimum solution reached, A = 2.500
i MEW RUN, start at A = 3.027, require A & 3.000
(o] A = 3.000, no column can enter
i ainimum solution reached, A = 3.000

P -

The variables vy in the linear-programming formulation of these problems
correspond 1o the trestment combinations o.t the full factorial. The numerical
value of a vi is the number of times the correspondiing treatment coumbination is
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included in the design. The following final salution, cbtained after about 1000
iterations, does not cousist of integers, hence is useless O-SQ

Treatment Combination Value ' 'rrpltmnt cwmum !nlne
00000000 1.000 10010010 ,,g.ksj
00011110 ,720 120011110 087
00101001 o 10100001 4098
00101101 r.osa 101002200 4,125
00110110 AT 10100101 =108
00111101 548 0100110 4060
00111110 035 “10101100 36
01000011 407 010110001 WO
01000110 008 10110011 .93
0L001010 .03 11000000 . ,058
01001011 381 ¢ 721001110 -.,32%
01010101 .uk9 . ...A1200112121 - ,050
01100111 . 6Ub L 110101000 T LR5
01110110 318 . . 7i@a1010101 309
01111000 L479 .110121001 .666

01111010 233 121200100  Mg90 -
01111111 045 11101010 =555
10001101 - .203 121011021 466
100011112 -555\ bbb, ,

Tue smallest orthmnl.l K mcmm-s d«mm 20t as yet — qbum,
l.'l.thoush three canputer Tuns nu nqm. attempted. m mm.m umx 48 of |
size 47 X 5, and the cmuuom vere initialized vith the au-mmwg o
Bummdea:.gn, for which 1..6. mtmt muurrmmtonlyﬁ muom |

- with two m.ubscks batorg ntoppina "r_bc aeemdmtmlym- mmmm,
‘the value of A dccraueamm 6 "B L709 mthp?kthmm. Anm:hars

| iterstions brought the value down to = 3.460. In this case Toupdoff exvar

| during the new triangularizaticn built wp to such a degree that fales. mmmv
vas obnervad uutelar and the problen m dhcmﬂm ,lg
been attempted with the 22, | o
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mm;mtm orthogonal 3° design of resolution 4 is the 1/3 replicate
involving 81 runs. It follows fram the results of Appendix A that the number of
runs. inmnhlduipmtbcsmluple of 27, and it is known that 27 runs is
. inlutticmn. It qppqm, thgrcfore, that there should exist a 5h-nm design.
The mtmint mtrix :I.l of size 152 X 245, but due to its size, the portion of
thcntrnmmutammtmn 132 x189, tbere-indcrbcingonmﬂury
tape sw a:l.x eqputcr runs vere performed, involving 381 iterations and 27
-callbacks, eo.ch of vhich stopped vhen s:.nguh.rity or :I.ntm:l.bmty vas ocbserved
‘mmm;mm Inbemnmnleolmveremedorthc
N tolersnces t; and 5 mmwonmmdmomrmtmpmuumm
not m#n :l.thiddurinstbcpreviousrun mx':l.ngtha seventh muurrm,
mmuns J.ao u::-.tm and 6 eu.lb-.ch, the value of A accmed to 2.0,
| ‘mmmme@mmmvgm z.-zmommmmmtmm
" golution to 3° Problen--Treatment Combinations

e "‘mmcomnpommvumorﬂmsolutm | |
00000 1ooo 012 .247 02210 409 10221 .270 12100 .521 20211 .330
000l2 .318 Oll2z .469 Ozell .48 10222 .312 12102 .341 20220 .T34
o0z Gly 0101 28 oo by Lo A1 Lo Ln Ame By

00102 683 01202 .167 10001 .k13 11010  .k61 12122 .325 21012 .230
00110 ,016 01210 .258 10002 .055 11011 .084k 12201 .4k75 21021 .34

00120  .820 ‘0l221 .353 10011 .095 11100 .615 12212 .633 21111 .635
0020), .091 0222 .351 10012 .545 11102 .OMO 12221 .308 21120 .73k
00202 .226 02001 .604 210020 .262 11112 .548 12222 .306 21201 .633
00210 - A6k 02010 .498 10021 .323 1ll2l .751; 20001 .532 21210 .230
00211 .790 02011 .028 10100 .037 122 20010 .k31 21212 .605
00212 .230 02012 .233 10101 .Wké6 11.200‘ 30 20012 .303 21222 .532
00222 499 02022 .637 10110 .596 11202 .345 20022 .734 22002 .73k
OJ.WZ ‘ 03% 0210- 0216 101.12 027]" 11210 cl'ﬁ 201«) 9552 22011 075“'
01011 551 02101 389 10121 .238 11211 .731 20102 .303 22020 .532
01012 371 02110 .082 10122 .410 11220 .618 20111 .303 22101 .532
01020 .502 O2112 .601L 10200 .431 12000 .266 20112 .330 22100 .75k
01021 179 02120 .215 10201 .215 212002 .366 20121 .532 22122 .34k
01100 .079 02121 496 10202 403 12011 .507 20201 .303 22200 .73
01101 ' 633 02200 .262 10201 .183 12020 .70k 20202 .330 22212 .532
0110 5T O2202 .529 10220 .185 12021 .127 20210 .303 22221 .T3%

»




Attempts were msde to obtain a solution by holding A fixed and minimizing
an arbitrarily selected component of the solution vector, bul they did not succeed
in obtaining an integral sclution. One approach, as yet untried, vhich mey be

mnﬂ.istoﬂnﬂuzetheqmdmubitnryulgctimq;tbg v, .

One special run was conducted on the 3, during vhich rumning times aod
infomtionmthcp’rogreu of the routine were printed rather thmthc usual
output . mmnuberofmntmummcnuautnso. A total
orlsuuucumnde,mnyormchmmmusoiuntm m-ummtotﬂ
tmuqumaroramuutrmummmum 132*189 mtqanmea
15 seconds. Ittooksbont)secocdstoullmmtrnhlckfmm !'o;‘the»
first 29 1tent.im-, wp till the first en.u.hsck, the colmnm of the columns

2 b 20 15 5 9
'3 2 4 P 6
53 6 23 13 310
W 6 w 8 2

l'ox the J.argest mtrhng\ﬂariut:l.m, mvolvins the ﬁrst %0 rm and eo].m,
| t:l-e ws 53/60 of age second. The smallest ntrmmmtm were performed

:ln 1/60 orone:ecmd This ﬂ.lunmmtheadmwe ornlwingthamuqt
possible colum to leave the basis. nmmx»enomtpnmmmm:m

puter vas 6 n.inutu snd ltO seconds .




.Although expefience vith the routine has not been entirely successful, it has
demons trated thegenerl.l feasibility of the techuiques used. In particular, the
use of the trisungularized matrix rather than the bagis and its inverse appears to
be nd.mtnaem. ' The uthnd used to elininste" roundoff error works quite well, as
is evidenced by the numiber of times false infeasibilities were detected and cor-
mctcd ‘BIB aumber of iterstions after callback at which false infeasibility is
'dntccm miel mmubly from callback to callback. Therefore, & constant
. uJ.J.hl.ck :rcquenw vcmld not appear to be effective. It is interesting to note
M more nucceu vas had vit.h the 55 vith constraint metrix of oxrder 132, ‘than
vith the 27, vhose comstraint matrix is only of order 47, 8t least in the semse
- that more ‘itera.tinm per coqputer run vere perfomd It is gratifying that a
problem as large as the 3 could be bandled with even pertial success, but it is
. dimointina that the 29 ‘turned out to be s0 difficult a problem. ‘

It isunlikel.ythntline‘rrrosrminswﬂlprove to be & ueeful technique for
‘."derivins nev pr&ctica.l muwlete factorial designn due to the aizes of the con-

: atrl.int. utricen mvolvad, the nuﬂaer of iterations required for solutions, and the |
probm of nm-intesnl solntions It does a.ppea.r, hovever, that it my be possib]e

| to uge thc linaa.r camtrn.inta tor theae problm to direct a systmtic trm-a.nd

| error nenrch for denisns op & canputer. It 1s hoped that the special methods

| mcon:or:ted into the cmputer routine vill bave more genera.l. uaemlness with other

‘W' of linear pmsru-unz problm
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ORTHOGORAL IWCOMPLETE FACTORIAL DESIGNS
AND THEIR CONSTRUCTION USING LINEAR PROGRAMMING

A pecessary and sufficient condition is derived for an incomplete
factorial design to be orthngonal under & very wide class of param-
eterizations. The condition is that for every subset of t factors,
vhere t is twice the number of factors in the highest-order inter-
action to be estimated, each cambination of levels occurs ii"‘l'.he same
number of times. This condition is an extension of one due to
Plackett (1946). From this condition can be derived a set of linear
constraints oo the number of occurrences of each treatmenf cambination.
The problem of finding the smellest orthogonal design to fit a given
experimental éimtian is therefore an integer linear programming
| problenm.

It is shown that designs can be derived using ordinary linear
programming a.lgorithls vith a fev apecia.l devices, rether than the

more complicated :I.nteger lmea.r programming techniques. As an
exaxple, a one~-half replicg.te of the Zu is derived in detail.

It is desirable to have available from an experiment an estimate
of experimntal error obtained from dupl:l.cate runs. s{mh an estimate
. is unbmed by high-order mtersctions It is shown hﬁw the linear

. progro.ming technique can be modified to find the smallest orthogonal
design containing at least one duplicated run.

< .




1. INTRODUCTION

In this paper we consider the general class of orthogonal incom-
plete factorial designs. Any design whick does not comtain the full
factorial will be considered as an incamplete factcerial design, so
that the class includes designs having more than one run at some of
the treatment cambinations. The class of corthogonal incomplete
factorial designs contains as a subclass the famiiiar fractional
factorials, for which the treatment combinations at the runs to be

made form a subgroup or coset under a suitably defined group operation.

The definitions of such furdamental concepts as the parameteriza-
tion underlying the analysis of factorial designs, aliasing in incom-
Plete designs, and the resolution of a design are often defined in
terms vhich apply only to fractional factorisis. Since the discussion
vill not be limited to such designs, definitions which apply to any
:i.ncénplete factorial design vill be formulated.

_wl terizé.tion

- The perameters for the model assumed in a factorial-design situ-
ation are often def@d in terms of their estimmtors ir the full
factorial. For example, the main effect of a two~level factor may be

defined as one-half the difference of the average response at the high




level and the average response at the low level of the factor (see, for
exsmple, Yates, 1935). For oﬁr purposes it is more convenient to
define parameters directly in terms of the expected values of the
responses. For notationsl simplicity we will define the parameters
for a design containing omly four factors. We will use 8, to desig-
nate the gumber of levels of the r-th factor, the integers

G, ***, Br°l to designate the levels of each factor, and a set of
integers in juxtaposition to designate a treatment combination. Let
the expected value of the response for runs at treatment combination
i3kt be denoted by “ijkﬁ' A dot replacing a subscript will mean
that the expected value has been computed over all values for that

subscript. The grand mean is defined to be u . The main-effect

e e se

parameters for the first factor are a set of sl-l linearly inde-
pendent. contrasts (linear combinations the sum of whose coefficients
ié zero) among the Wy . and main effects for the other factors
are defined analogously. The al-l contrasts are usually taken to

be orthogonal as well as linearly independent. The two-factor

interactinn parameters for the first two factors are a set of

(s,-1)(s,-1) contrasts among the quantities u ani these
1 2

3.4
contrasts are usually taken to be orthogonal to each other ag well as
to the contrasts defining main effects. The definitions of the inter~

action parameters among other pairs of factors ere analogous.



Similarly three- and four-factor interactions can be defined as con-

<%
trasts among certain of the “L)kl' If u 1is the vector of “1Jk£
and if B¥ is the vector of I, parameters vwhich have been defined,
ve may write p¥ a Q*-lp, or M= Q%¥*., The matrix Q¥ is in fact

nonsingular from the given definition of f* 1in temms of u.

The effect of iggorﬁhigp-order interactions

Experience indicates that in most factorial situations the high-
order interactions are so small that their estimates from an experiment
are not likely to be statistically significantly different from zero.
If the high-order interactions are ignored (treated as if they were
zero) the model can be rewritten p = @8, wvhere { is a vector
containing those compcnents of B¥* corresponding to non-ignored
parameters, and vhere Q contains a corresponding selection of the
colums of Q%. If many components of P¥ can be ignored, it may be

advantageous to run an incamplete factorial design.

Let Y be a vector of observations from an incomplete factorial
design, and s@fose EY can be expressed as EY = Xp under the
assunption that ignored parameters are zero, where X -contaims a
gselection of the rows of Q. Each column of X is c3sociated with
one component of B, and the column aseoclated with a parameter will

be called the coefficient vector for that parameter.
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If the cross-product matrix X'X is nonsingular, then
B = (x'x)"XX'Y 1s the least-squares estimate of B. If X'X is
nonsingular, we will say that B is measurable (Conncr and Zelen,
1959, p. 2). Note that we have mot aclually assumed that P 1is estimable.
When ignored perameters have the value zero, measurability implies estimm-
bility. The expected value of £ s (X'X) " x'x%* (Box amd Wilson,
1951, Appendix B), vhere X* consists of rows of Q¥, so that the
expected value of & camponent S, of f§ is B, plus & linear ccabi ition
of jguorad paremeters. This effect is called aliasing (not comfounding)
and po is said to be alisrsed with the linear cambinatiom of ignored
persaoters. Confounding is a special case of aliasing im vhich block
contrasts are aliased with ignored intersctiom parameters.

The concept of the resolution of a design, introduced by Box and

Hunter (1961), will prove useful, and & slightly modified definition
is as follows. If a design is such that all parameters involving r
or fever factors are measurable ignoring all interactions of r+l or
more factors, the design is said to be of resolution 2r+l; if all
parameters Janvelving r-1 or fewer factors are measurable ignoring
all intersctions of r+l or more factors, the decign is said to be

of resolution 2r.



Conditions for optimality of orthogonality
It has often been stated that orthogonal designs yield the mexi-

mum possible information per run for each parsmeter estimate. The
actual theorem was first proved by Plackett and Burman (1946). If a
class of designs is considered for which the lengths of the column
veétors of the matrix X are fixed, and if there is an orthogonal
design in thig class, then the variances of all estimates are indi-
vidually minimized over the class using the orthogonal design.

The condition that the lengths of the columis be fixed does more
than fix the scale of measurewment, however. If the parameterization
is fixed it often hsppens that, for some of the parameters, non-
orthogonal designs have coefficient vectors of greater lepgth than
those for orthogonal designs with the same number of runs. It can
also happen that non-orthogonal designs have lower variances for some
of the estimates than orthogonal designs with the same mmber of runs
as in the following example.

Consider an experimental situation with a single factor at three
levels. Let By s and K, be the expected value of the response &t
the three levels, and let the parsmeters to be estimated beé the grand
mean, (i, + iy + uz)/_’;, the "linear effect", (u2 - uo)/"z, and the

“"quadratic eTfect”, (i, - 2y + 512)/6. The design consisting of



seven runs at each level is orthogonal, and the variances of the esti-
mates are O times 1/21, 1/14, amd 7/29%, respectively. The design
consisting of eight runs at levels O and 2 and five runs at level
1 dis non-orthogonal and has variances o> times 1/20, 1/16, and
7/21@. The fact that Bon-orthogonal designs may be superior in this
sense to orthogonal ones has apparently never been utilized in the
constructipn of mcmxplete factorial deugns . .

s
~ Although orthogona.l desisna are not in general optimum in the

]sense cf minimizing all the variances, experience indicates that they
are ra.raly far from optimm. In the inportant case of factors at two
levels, orthogonal designs are optimum becquae all coefficient vectors
‘cansist of plus and minus cnes, so that the lengths of the columns of
X are automatically fixed. It has previously been shown (Webb, 1964)
that for most parameterizatioas, orthogaual designs satisfy other |
criteria for optimality (see Section 2 below). In additiom, they
afford great coamputationsl advantages, and therérore there is still

~ reason t0 be very much concerned with methods for canstructing orthog-

- In a subsequent paper it will be shown how limear mmuu oan be
used to characterize clasges of non~-orthogonal designs.



2. THE CHARACTERIZATION OF ORTHOGQNALITY

Tensor product perameterizations | H
A design is orthogomal if X'X 1s mgaml, 80 tha* ‘ormgmm- 7‘
" ity of a design depends on the pe.rameterizatim um to describe the
| response. A characterization of orthqgona.lity wi.u .ae dex:l.ved ﬁ.rst
for a special dass oi’ parameterizations vhich vﬂ.‘l. be raterred to as

ta A ngr m

tensor product mterizations and then ex%

let U and V be m and n dinensimalvectorspacesnth

{

bases ul, um and vl see 4,V o’ NSPQCtvively Ilct VU b/ﬁ

an mn dimensional vector vhose coqponent.a are the = poaaibls
products taken in a given order of a ccwoment of “1 vith & cqpo-

" nent of \r‘j As ‘1 5oesfrom 1 to m a.nd. - goesrrcm 1 to n,,h
the mn veclors which are produced in vhis manner are unea.rly :Lnde- ,
pend.ent. Let W be the vectar space spanned by the viye ng v

© is called the temsor groduct of the vector spaces J and V,- andtbe
basis {wm} 15 called the praduct vasis of the cqmoncnt bases |
{u;} and {v,}. If the vases {ui} and {v;} ere orthoganal, then
the basis {v ] is an orthqgoml basis for the tensor product. :




 constant 1/

Suppose thnt :l.n an exper:lmnt involving n factors the main
etfccts of the :l.-th factor are definad as orthogoml contrasts amoag
the axpected values avera.ged over the levels of the other factors.
‘Ihe cgefficient vectors of thue 8 i'l ccntraats, together with the
8- cmom_nt vector all of vhose cawponents are the constant 1/s,,
| “'fom an arthogonal baais for a vectnr space V;. Let the two-factor
',,mumction parameters betveen the i-th apd J-th factors be
o vdgﬁnad by all contmsta (except those which define main effects and
 the grand mean) whose coefficient vectors are in the product basis of
the tcmgrpram:t of V, axi V,. The contrasts are between the
caq»ected respomes averaged over the levels of the rensining n-2
- factars. smm:.y, three-factor through n-factor interactions are

"3detinﬁd:lntems of the tsnsnrproduct of sets of the Vi

~ 8ince the basis for each V, is orthogonal, th#:prdduct bases
for tensar products of sets of the V, mmoorthogoml ‘There-
.rore,tnerowsorthemtrn @*" appearing in the relstionship
v e vl are mutually orthogonal.. A colwm of Q* 1s therefore
© a multiple of the carreaponding rov of Q1. Since the couponents
 of the rov of Q¥ defining the grand mean are all equal to the
1,'masmeathumtmmoromr s,
the coefficient vector for the grand mean in any (cosplets or incom-
»mu)ﬁmmmmmmmmue@mmmty Dus to



: o~ the tensor product parameterization, & caponent of the coefficient

vector for an interaction parameter is the product of the corresponding
components of the coefficient vectors for main effects of factors
making up the interscticm. |

It should be noted that such paramterizationa a.re not new. In
particuhr, the equivalent of tensor product parmterizatims vas
used by Plackett (1946, p. 330) in deriving conditions tor ortmg |

\ :u'.y, althoush he m not use Qur present t&, R

The cha.racterization -

Phc.kett (19&6) vas coacerned with the situation in vhich the
‘main. etfect.s of a mnber of factors are to be eatimi’.ad tqgether with “
the intcra.ction betueen any two of tha He found tha.t in order that

thc intaractionparameters betwm A and B hee:timtedoxfhag
onsu.y allambmtimoflevehor A and B mttppeareqmlly
ortcnwiththalevelspreveryothermctor Inthismethemter
actions bemen A a.ndevery other twtcr, ‘a‘.nd between B &nd.m
othar factor, MY algo be estimated orthogomuy In the pment |
paper we are canoerned with t.he eitustian in vh:l.ch all intemtm

of a given order are to be estimt.ed It is seep, therefore, that
Pl.sckett's mult does not apply Our gen Al chamcterizatim is

‘,\,\:

g:lven in Tueores i, the first thres thew sivw :?. 1 igdnary
results.

-




‘ mm 1. If in a given design the i-th factor appears at 8y
levels, the cogffi,cient ‘vectors for all its main-effect parsameters are
orthogonal to the coefficient vector for the grand mean if and ocaly if

,,}J;ggvgl.,a:r the factor appears the s@e nunber of times.

rmw Let the cmponbhts of the s -conmdneht irector z be the

mmhe.m of occurrences of each level of the factor i the design. The |
| ’.?W? product of the coerficien?i vector for a main-effect parameter
a.nd the c:dgfficient vector for the grand mean is equal te & mn-éero

}am times the :erer product of z and the vector in Vi Vhiﬁh “

| ‘;Qcﬁnes the main errect. The vector z is orthogonal to all the |

vcctora vy defining maln effects 1f and anly 1f z is & miltiple
af t.he remini.ng basis vector, namely the vector of ccustants. There- |

| fv\,"‘.,tm, all cmcnsntg ot z &;e gg.u&i M mc-kml m J‘« |

D ““5% now ask vhen &l the coefficient vectm for wain effecta of

oo Qne factor &re orthogonal to all the coefficient vectors for main
ii"cﬁccta of auother factor. Because the tensor product paramterua- |

tinn is beins used, the inner product of two coefficient vectora, one’ :

- for & ma.:m effect of one factar and the other for a main eftect of the o
‘."athar, is nwricauy the seme as th.e ixner prod.uct of the coefficient

vecmrs for one of the two-mctar interaction p&rametera and the grand, |

. mean. Ve vill nov prove that this cbservation is true mare generally.



THEOREM 2. All coefficient vectors associated with the m-factor
interactions among factors Al, see , Am are orthogonal to those for

the n-factor interactions among factors B,, **+, Bn if and only if

l’
all coefficient vectors for the (m+n)-factor interactions are orthog-

onal to the ccefficlent vector for the grand mean.

FPROQF . Because of the way interactions were deﬁned, | there is an

| (mn) -fa.ctor interaction parameter whose coefﬁciant vector has as
‘cmponents the product of coefficients for an;,' given "A-interaction”‘
‘and any given "B-interaction”. mrefore, the inner product of coef-
 ficient vectors for an A-interaction amd & B-interactian is numer-
| ically equal to the mner prod.uct of cocfficient vectom i:gr m |

"AB-interaction" and tb.e g;fand mean .

Theorem 1 ca.n now be generalized to includ.e orthagmal des:lgns |

- for estimting all tb.e effects and Mm%tm amng several fact__w. ..

THEQREM 3. Given v factors Al, ., A 'the coefficient

e 124

~ vectors for the grand mean, | madn effects, and intera.ctionn of all

axﬁmaremtmnyorthogomlifandoulyirmpmsiblc cqhmtima

. of levels appear the same number of t:hnes.

PROCP. If-evexjy cm;bination appears the same nugber of tms

“thgn the degign is a replicated full factorial in the v factors

5



51, “e+ 5 A, 80 that in particular the design is orthogonal. KNow
suppose all the coefficient vectors are orthogonal. In particular,
all the coefficient vectors for main effecta and interactions are
orthogonal to that for the mean. In the space which is the temsor
product of Vl through Vv, let z be the vector whose components
specify hov many times each treatment combination a.ppea.rs in the design.
Any given effect or interaction parameter is defined in tems of some
vector, call it b, which is algo in the tensor product. Then the
inner product‘ of the coefficient vector for the given parameter with
the coefficient vector for the grand mean is a scalar times 2'b. The
vector z 18 required to be orthogonal to a&ll such b; thgrefore z

must again have all its components equal, vhich concludes the proof.

In viev of Theorems 2 and 3, we have the following immediate
carollary, which serves to charecterize orthogonal resolution 4+l
designs.

THEOREM 4. A design of resolution t+l is orthogonal under any
parameterization derived from & complete tensor product parameteriza-
tion by ignoring interactions involving #(t+l) or more factors if
and only if for every subset of t factors all possible combinations

of levels appear the same number of times.



PROOF. If t 18 even, all coefficient vectors for parameters
involving #t factors are required to be orthogonal to coefficient
vectors for other parameters involving #t or fewer factors. By
Theorem 2, this happens if and only if all coefficient vectors for
parameters involving t or fever factors are orthogonal to the coef-
ficient vector for the grand mean. By Theorem 3, this is equi'm.l.eﬁt
to the requirement that for every subset of t factors all possible
cambinations of levels appear the same number of times. If t is
odd, all coefficient vectors for parameters involving ®(t-1) factors
are required to be orthogonal to coefficient vectors for other param-
eters involving #(t+l) or fewer factors, vwhich again is the case if
and only if all coefficient vectors for parameters involving t or
fever factors are orthogonal to the coefficient vector for the grand

mean. The remainder of the proof proceeds as vken t 15 even.

Alternative parameterizations

Theorem 4 remains true under & wide variety of parameterizations.
In fact, we cen state the following:

THEOREM 5. If 8 is a vector of parameters which are defined by
ignoring interactions of r+l or more factors from a complete tensor
product paramnterization p%, if & is & linear trensform of B,
68y O = CB, and if the full factorial design is orthogonal under

W



the parameterization ¢, then Theorem 4 is valid for the parameteri-

zation O.

PROOF. fet Q and X be the coefficisnt matrices unier the param-
eterization 8 for the full factorial design ani for any other orthog-
onil design with say N runs, respectively. Then the conditions of
the thecorem imply that Q'Q, X'X, and C'Q'QC are diagonal matrices.

But since X and Q represent designs orthogonal under the same
tensor product parsmeterization, X'X must be equal to the constant
n/nis 4 times Q'Q. Therefore, C'X'XC is also diagonal, as was to
be proved.

Recently, & theorem has been published by Addelman (1962) which
states that a design of resolution J is orthogounal if and only if for
every pair of factors the number of occurrences of the combination of
levels iJ is given by ni‘1 = ni.n'J/N. Here n,, and n.J are the
uumbers of occurrerces of level 1 of the first factor and level
of the second factor, respectively. Such designs are called
proportiocnal-frequency designs. The apparent contradiction between
Addelman's theorem and Theorem 4 above stems from a different defini-
tion of grand mean. His grand mean is the expected value of the
| average of the obgervations made, while the one used above is the

average of the expected values at sll possible treatment combinations.




Although the first published proof of this theorem is apparently that
of Addelman (Addelman and Kempthorne, 1961), its validity was
apparently recognized by Stevens (1948). Using the present definition
of the grand mean, but defining main effects by linear combinations of
the p, = other than orthogonal contrasts, Plackett (1946) showed
that the condition of proportional frequencies is necessary, but not

sufficient, for a design to be orthogonal.

The question maturally arises as to which definition of grand
mean ls preferable. If it can be supposed that the mean is only =a
nuisance parameter, as for example in a screening experiment,
Addelman's definition would likely be the more useful. If, however,
the purpose of the experiment is to describe the response over the
points of the full factorial, then the present definition seems more

appropriate as can be seen by the following argument.

Since we are supposing that all points are of interest, the
criterion for judging designs should depend on the variances of pre-
dicted values at all treatment combinations of the full factorial.
Since these variances approach zero as the number of runs increases,
the criterion should be adjusted in same way for the number of runms, N.
A convenient and realistic criterion is therefore the average variance

of predicted values multiplied by N. Under this criterion the best

k9



main-effect designe are those which are orthogonal using the present
definition of the grand mean, as the following theorem demcnstrates .
The theorem was given previously (Webb, 196L4), and is reproduced here

for convenience.

THECREM 6. In a design for estimating parameters under any main-
effect parameterization, the average variance of a predicted value
times the nwmber of runs is minimized if and only if the design is an
equal-frequency design. In this case the variances of all predicted

values are equal.

PROOF. Let X be the coefficlient matrix of a design under some main-
effect parameterization. Let Z be the coefficient matrix of the full
factorial. lLet X contain N rows, Z contain M rows, and let
there be p parameters. The value of the criterion being considered
is  (o°N/M)trace Z(X'X) "lZ', where o° ig the error variance of an

observation.

If EY = Xp under the given parameterization and A is any
nonsingular matrix, then under the parameterization a = A']'B the
covariance matrix of predicted values is 02ZA(A'X'XA)'1A'Z', vhich
equals UZZ(X‘X)_]'Z' . Therefore the choilce of parameterization is
arbitrary. Withoui loss of generality we will chouse a tensor product
parameterization in which the main effects are scaled so that Z'Z is

equal to the constant M times the identity matrix.
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Now choose any factor at say s levels and consider columns of
Z corresponding to the s-1 main effects of the given factor. By
rearranging the rows of Z, these columns can be expressed as an
8 by s~1 matrix S repeated vertically M/s times. Letting 1 be
& vector containing s ones, we oi:serve now that the matrix
1//s « [1,8] is orthonormal. It follows that the sum of squares of
any row (or colum) is equal to unity. Therefore the sum of squares
of any row of S 1is equal to s-1. This argument msy be repeated for
each factor, so that the sum of squares of any row of Z 1is equal to
P, the number of parameters. Since the matrix X contains a selec-
“ion of the rows of 2Z, the sum of squares of any row of X 1s also

P.

Returning to the average variance of a predicted value, note that
/M tr 2(X'K) 12" = /M tr (X'X)712'2 = @ tr (X'X)". But the last
expression is equal to o . Igsl l/ki, vhere the Xi are the eigen-

values of X'X. However, the um ¥ X, d4e fixed since

i
p> Ai=trX'X=trXX'=N-p (the sum of squares of any row of X
is equal to p). If the sum of p positive numbers if fixed, the sum
of the reciprocals is minimized if the numbers are all equal. The
eigenvelues of a matrix are equal if and only if the matrix is a
constant times the ldentity. Thereiore the average variance of a pre-

dicted value is minimized if and cnly if X'X is equal to N times
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the identity and then the average variance is Ozp/N. Since a tensor
product parameterization was used, Theorem 4 applies and the criterion
attains its minimum value ozp vhenever for each subset of two factors
each combination of levels appears the same number of times. Further-
more this result is independent of the parameterization used and of the
number of runs. If X'X is equal to a constant times the identity
matrix it is easy to see that the diagonal elements of z(x'x)'lz' are

all equal. This completes the prbof of Theorem 6.
3. CONSTRUCTING DESIGNS BY LINEAR PROGRAMMING

Conversion to a linear programming problem

In this section & detailed method for recharacterizing an orthog-
onal design as an integer solution to a linear programming problem is
presented. First, consider the special case of symuetric designs, in
which all n factors are at s levels. Theorem 4 implies that, for
any t factors, each combination of levels occurs the same number of
times, A. This number is called the index of the design (Bose and
Bush, 1952), and the number of runs, N, in the design ie given by
N =X Let J, bea collection of all treatment combinations which
are identical in t components, say the first t. There will be

n-t

8 vectors in Jb. Let w, be the numbe:r of occurrences of

J
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treatment combination J in an orthogonal resolution t+1 design.
Then Theorem 4 requires that z.jeJOw.j be equal to A. But the first
t components may be fixed at any of st sets of values, ezt of which
yields a constraint Z:J eJ¥ 3= A. This arg'ment may be repeated for all

(fcl) subsets of t factors, so that in all 8° x (g) constraints may

be written down.

The analogous results are more complicated for asymmetric designs,
in which the n factors appear at 81y Bgs ", By levels, respec-
tively. For convenience, we first extend the definition of index to

apply to asymmetric designs as wvell.

Let I7 be a subset of t of the integers 1 through n, and
let the collection {I,iyel'} contain every such subset. The index
class ' will be the integers 1, 2, ++-, (2) Let K be the least
common multip.e of the numbers 11161751, as y ranges over [I'. The
number of runs in an orthogonal resolution t+1 design must be a
avltiple o K, say N = AMK. This number A may be defined as the

index of the design.

Suppose J7 is one of the nislys "
treatment combinations J§ which have fixed values for the set of

collections of all those

components whose ordinal numbers are in the set I,' Then Theorem U4

implies z,jeJ i m/nml sy. As ¥ ranges through T, a set of
7° 7
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constraints is generated which must be satisfled by any orthogonal
design. This set i3 linearly dependent. Two methods for reducing the
complete set to an equivalent set of linearly independent constraints
are described in the Appendix. The constraint matrices given in the

exanples below were constructed by using one of these methods (the
"base~set method") .

Eliminating unacceptable solutions

The problem of finding the orthogonal design with the smallest
value of N for a given set of factors and given resolution is now
equivalent to finding a set of non-negative integer values for the
variables w 3 and A such that the set of constraints summerized by
z:.16 er 5= m/nid?ai is satisfied and such that A 1is minimized. If
the problem is stated in this form, then w 3= O, A= 0 provides a
travial solution. To rule out this salution, the additional require-
ment that A Dbe positive can be added. A convenient way to include
this requirement is to add a new non-negative variable 'X* and the

constraint A-A%® = 1,

The fuil factoriasl is orthogonal and hence satisfies the con-
straints with each variable w 3 equal to unity and the number of runs
equal to ﬂ?_ls 4+ By multiplying each varisble by the fraction K/l s {

another unacceptable sclution is obtained with A equal to one. It

5k
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follows from Theorem 4 that an orthogonal design remeins orthogonal if
the designations of the levels of any factor are rearranged. Since a
design must have .t least one run at some treatment cambination, we

may require that an arbitrary one of the w say ¥y, ..o be greater

J’
than or equal to one. The addition to the problem of a non-negative

variable "’3...0 and the constraint =1 will rule

*
¥0...0 ~ ¥0...0
out the unacceptable solution corresponding to A = 1.

Non-integer solutions may still exist, but in the examples worked
to date, the use of the simplex method for linear programming to:ether
with & simple algorithmic device has led to the smallest orthogonal
designe. The device 1s as follows: if the minimum solution to the
prcblem obtaired by the simplex method is such that A is not an
integer, change the problem by requiring that A be greater than or
equal to the next larger integer. This can be done by revising the
constraint A-A¥ = 1, rather than by adding a new constraint, so that
some of the previous feasible solutions may still be feasible solutions
to the revised problem. Thus, it is not necessary to start the linear

programming procedure over from the beginning.

Numerical example

The fcllowing example is intended only to 1llustrate the steps

involved in constructing designs by linear programming, the resulting
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design being a familiar fractional factorial. In Sectionu 4 some
designs will be derived which are not fractional factorials, but their
construction does not illustrate the general procedure. It will be
assunmed that the reader is femiliar with the basic simplex method as

described in any linear programming text, for example, Hadley (1962).

We will derive the smallest design of resolution 3 for a zu exper-
imental situation. FPFor convenience we abandon the vector subscripts on
the wJ snd substitute numerical subscripts. Let w'j be the number
of occurrences of that treatment combination which is the binary expan-
sion of the decimal number J. Thus Yo is the number of occurrences
of 0000, W, 1s the number of occurreaces of 0001, and so forth.
The independent linesr constraints (obtained by using the base-set
method described in the Appendix) are given by Aw = b, where

vo= (A, A% ¥ Vs Wys vt wl5)', b=(1, 1, 0, ---, 0)', and A

0)
is the following matrix (a dot is used for zero).
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1 -1 L. : .
T T .. ...
Y L L
S T N R
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T S W S S
1 . ..o s .
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In order to start the simplex method, an initial basic feasible
solution is required. The sclution corresponding to the full factorial
design is * = 4, ¥ = 3, wg = O, and v,
This solution is feasible but not basic.

=1for =0, 1, +-+, 15,

Denoting the columns of the matrix A by A, A%, A%, Ay, A, -+,
Ali’ and substituting the full-factorial solution into the equation
Av = b, we obtain the equation LA + BA* + 2;20 AJ = b, An obvious
linear relationship among the columns of A is

*
A+ A" + A5 + A5 + Ag - A7 + Ag + A15 = 0. Subtracting this equation
from the previous one yields the equation

*
3M-2A +A0+A1+A2+Au+2A7+A9+A10+All+A12+A15+Alh = b, to which ccrresponds

the solution A = 3, A\¥ = 2, vy y= 1 for §=0,1, 2, 4 9, 10,

11, 12, 13, and 14, and the remaining variables zero. It can be

=2, W

verified that the columns with non-zero coefficients in the last equa-
tion are linearly independent. Moreover, there are exactly thirteen
such columns, the same as the number of rows, w»c thai this solution is
basic and feasible. For other designs a set of linearly independent
columns of the constraint matrix can be obtained by using the solution
corresponding to a known fractional factorial. It may then be necessary

to adjoin additional columns in order to have a full basis.

Returning to the present example, let B be the basis matrix

consisting of the chosen set of linearly independent columns, that is,
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B= [N A%, Ag Ay Ay Ay Ay Ay Aygy Apps Ay, Ay AT In

applying the simplex method we first compute G = B-lA and w_ = Bd'b.

B
Those columns of G which are not columns of the identity matrix aud

the vector wB are as follows:

~— . =~
3 1 1 1 -2 -2 3
= 1 1 1 -2 -2 2
1 0 0 0 o0 O 1
-1 1 1 0 -1 -1 1
-1 1 1 o0 -1 -1 i
[o¥ ] -1 0 1 1 -1 -1 1
6¥,G,Ge,00y00,0,c] = |=2 1 1 1 -1 -1], w, = 2| .
0’73 752 H67 Y8 Y15 .1 0 ¢ 1 0 -1 B 1
-1 0 1 0 O -1 1
-1 1 O O -1 O 1
<L 1 0 O O -1 1
-1 0 1 0 -1 O 1
-1 0 0 1 -1 O 1l
SN e o -

Since the linear form to be minimized is Jjust the first variable
A, a columm of A should be introduced into the basis only if the
first component of the corresponding column of G is positive, for
only then could A decrease. The column A3 will be chosen to enter.
In order to maintain feasibility, the column chosen to leave the basis
must be such that for 83 > 0 (g15 is the i-th component of
column GB) the ratio wm/._n;13 is minimized. The smallest value is
1 vhich is attained for i =4, 5, 10, and 11. If we allow A, to
leave the basis (for which 1 = 4) and recampute G and w_, using

B
the revised basis matrix, we obtain:
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~2 =1 0 1 -1 -1 2

2 -1 0 1 -1 -1 1

.1 0 0 O 0o o© 1

11 1 0 -1 -1 1

0 -1 -1 1 0 © o)

o : -1 0 1 1 -1 -1 1
G¥,G,,6.,G.,G5,G..] = -1 0 0 0 0 O ,w,= |1
02712 Y52 Y62 M8 Y15 1 0 0 1 0 -1 B 1
-1 0 1 0 o -1 1

0 -1 -1 0 0 1 0

0O -1 -1 0 1 © 0

-1 0 1 0 -1 o0 1

<1 0 0 1 -1 © 1

[ - L]

The solution now corresponde to one of the half-replicates of a
Zh design. Since Gg is the only one of these vectors whose first
component is positive, A6 is the only vector whose admission into the
basis could make A smaller. For the fifth row the ratio wBi/g16
hes the value zero, so that the corresponding column of A, nsmely
Az, is the only column which can leave. Since the minimum value is

zero, the golution does not change. The basis matrix is now
*
B = [A: A ) AOJ A 2 A6) A)_‘_: A7: A97 A]_O) All’ Alz: AJ_}) Al)i-J.

The columns of G of interest are now the following:
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2 0 -1 1 -1 -1 2
1 0 -1 1 -1 -1 1
1 A 0 0 0 O 1
<1 1 0 1 -1 -1 1
0 -1 1 -1 0 O 0
o : a1 % 2 -1 -1 1
G%,G,,6.,0.,600..]= |1 © 1 0 o] ,w = |1
0201902 G5,Ggy Gy 5 2 1 a2 1 o 4 B™ |3
1 0 0 1 0 -1 1
0 -1 0 -1 0 1 0
0 -1 0 -1 1 O 0
1 0 0 1 -1 0 1
1 1 -1 1 -1 ¢ 1
- d b

The vector As can be introduced into the basis, and the minimum
value of the ratio wBi/g15 is #, 8o that A, must ieave the basis.
The new solution is w = (1%,3,1,0,0,0,%,0,% % %,0,% % % % % %,0) .

By recomputation of G 1t may be verified that no new column can cone
into the basis, so that the present solution is a minimum basic feagi-
ble solution. It Goes not consist of integers, however, and therefore
does not correspond to an actual design. Nevertheless, we now know
that there can be no design witkr A = 1, 80 the smllest design must
have A 2 2. We have incidently obtained a solution with A = 2,
however, so that the half-replicate corresponding to that solution is
one of the class of smallest orthogonal designs, as are the other

known half-replicates of a 2“ design.
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L. ALTERNATIVE OQRTHOGONAL DESIGNS AND PARTIAL DUPLICATION

The technique of viewing an experimental design as a gsolution to

a set of linear constraints lends it;elf naturally to the investigation
of possible alternative designs. Consider a simple experiment involving
two factors at two levels and one at three levels, and suppose that only
the grand mean and main effects are to be estimated. For this experi-
mental situation the constant K .is equal to twelve, and therefcre an
orthogonal design must contain 122 runs, where A is the index. The
full factorial is orthogonal and involves exactly twelve runs, and
therefore is a smallest orthogonal resolution 3 design for this situa-

tion. One may ask whether there are any other orthogonal designs with

Just twelve runs.

Let the third component of the treatment combination vector repre-
sent the level of the three-level factor. The linear constraints may
be written in & form expressing each W 3 86 & linear combination of
A, Vo and v, vhere Y and w, are the numbers of occurrences of

treatment combinations 000 and COl. These linear combinations

appear in the second column of the following table.



Trestment

Combinetion Variable Solutions
000 Vo 1 2
001 vy i 0 1
002 v, = 5k-wo-wl 1 2 0O
010 w5 = 2\- o i1 1 O
011 v, = oA~ 1 1 2 1
012 ws = wb+wl-k 1 0 2
100 | Vg = ZA-wb 1 1 ¢
101 v7 a 2k-wl 1 2 1
102 wg = wb+wi-k 1 0 2
110 wg = Wy l1 1 2
111 Vip = ¥, 1 O 1
112 W)y = 3X-wb-wi 1 2 O

A 1 1 1

The full factorial corresponds to taking Vg = 1, vy = 1, and
A =1, and this is the first of the three soclutions given in the

table.

If Yo “94 qvi:‘grg;assigned values it is possible to comnstruct
a design with these values if A is chosen properly. It seems
plausible that if the value of vy is decreased to zero, then the
value of A would not have to increase. This is indeed the case, and
the corresponding solution is the second one given in the above table.
The structure of this design is interesting. If the C 1level of the

third factor is ignored, the design is a half-replicate of a 25 run
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twice. Also gilven in the above table is a third design, which is a
repeated half-replicate of - 23 if level 1 of the third variable is

ignored.

There are several alternative designs available in many experi-

e ¢ e e ke e .o

mental situations. In the case of a 2 - ’52 situation there are, in
! addition to the full factorial, orthogonal resolution 5 designs with
the same number of runs in which four treatment combinations are dupli-

cated and others in which six treatment combinations are duplicated.

There are two basic reasons for the selection of alternative
designs. The first is that sometimes certain sets of experimental
conditions can not be attained, and there may be an alternative design
which does not include the taboo treatment combinations. The second

reascn is that alternative designs often provide partial duplication.

! The argument for partial duplication has been given by Daniel
(1957) and by Dykstra (1959). Briefly, it is this: if partial dupli-
cation is present, an error estimate is available which is unaffected
by the presence of high-order interactions. Dykstra gave a catalogue
of partially duplicated designs, some of which are due to Daniel. The

| designs catalogued are constructed by combining pairs of fractional

factorial designo, and are all non-orthogonal.
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The linear programming procedure for orthogonal designes can be
modified to obtain a procedure for finding the smallest orthogonal
design involving partial duplication. Rather than requiring that w

o
be greater than or equal to one, we require that w. be greater than

o
orveqnal to two. Consider again a 2h experimental situation as in the
numerical example of Section 5. The constraint matrix A remains
unchanged. Since the smallest orthogonal design has A equal to 2,
we may start with the constraint A-A¥ = 2. The vector b has its
first two components equal to 2 and the remaining components equal to
zero. The minimum basic feasible sclution to this revised problem is
twice that which was obtained in the example; that is,
we (3 1,0 2,0 0,1, 0,1, 1,1, 0,1, 1,1, 1, 1, 1, 0) . Anong
incomplete 2)+ designs of resolution 3, the corresponding design is
therefore the smallest which is orthogonal and involves partial dupli-
cation. A single duplicuted point would ordinarily not be enough, and
since the given design is & unique minimum, a larger design is required.
In sixteen runs the half-replicate can be repeated, so that in prac-
tical situations one would eilther use this design or a non-orthogonal

design such as one of those given by Dykstra.
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APPENDIX

In Section 3 it was noted that the set of all possible constraints
implied by Theorem 4 is linearly dependent. In this Appendix are pre-
sented two methods for arriving at equivalent sets of linearly inde-~
pendent constraints for orthogonal factorial designs. These will be

called the base-set method and the crossing-out method. The base~-set

method consists of finding & base set of the w, and A, vwhich is any

J

largest linearly independent subset of the collection of w, and A.

J
Once a base set is found, all the constraints can be written down as
expressions for wJ not in the base‘set. The crossing-out method
involves writing down all possible'coﬁstraints and then systematically

crossing out those which are 1inear combinations of previous ones.

This A@pendix contains details of the two techniques, examples of
their use, and a proof of their validity. The proof will proceed by
showing that the constraints arrived at by using the base~set method are
linearly independent, that the constraints arrived at by using the
crossing-out method are equivalent to the set of all constraints, and
finally that the same number of constraints is obtained by using either

method .
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The base-gset method

Once agaln let wJ represent the number of occurrences of that
treatment cambination whose vector representation is the vector .
That level of a factor which is designated by the largest number will
be called the "highest level" for that factor. We will see that the

set of wJ for which J has n-t-1 or fewer components at their

highest levels is a base set for an orthogonal resoluvtion t+l1 design

for n 2t factors. Obviously this is but one of a large number of

base sets. If n equals t, then every w, is equal to A, so that

J
the base set consists of Jjust this element.
For convenience, the alleged base set will be referred to as the
base set, even though this will not be established until later. If it
can be shown that each wj not in the base set can be expressed as a
linear combination of variables in the base set, then it follows that
the set of comstraints generated in this way is linearly independent,
since each involves a unique variable not appearing in any other con-

straint. It is enough to show that an expression for each w, not in

J

the base set can be derived in terms of A and wJ with fewer compo-

nents of J at their highest levels.

Let vy be any wJ such that J has exactly n-£+h components
at their highest levels, vhere h 1is an integer between O and t.

Then Wy is not in the base set. For convenience, let these components
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be the last n-t4+b. By Theorem 4, the number of times the first t
factors occur together at the levels appearing as the first t campo-
nents of J 4is a known multiple M of M. (The constant M depends
on the numbers of levels of the n facters and on vwhich are at their
highest levels in J.) Therefore, M\ equals the sum of all those w 3
for which J 1is identical with J 1in the first t components. This
constraint can be rewritten as w

J
vhich J has n-t+h-1l or fewer components at their highest levels.

equals MA minus a sum of w j for

Therefcre, as asserted, any W 3 not in the base set can be expressed

as a linear combination of A &and w, with fewer components at their

J
highest levels.

To illustrate we will construct a set of linearly independent

constraints for the resolution-3, 21‘L desgign, as in the example of Section

3. A base set is {VOOOO’ Voool' Yoor0’ Vo100 ¥1000° A}. By fixing
the first two components of J at O and O, we see that

¥oooo ¥ Yooor * Yoo10 * Yoo11

Yoo1l in terms of elements of the base set. The following table lists

in schematic form expressions for the w 3 not in the base set in terms

of variables whose subscripts have fewer componentis at their high

= A, which yields an expression for

levels. The subscripts J are used for the variables w The third

j L]
xolumn lists the ordinal numbers of the components which are held fixed

n deriving the given expressions.




Variable Expression Fixed Components

00l A - 0000 - 0001 - 0010 l and 2
0101 A - 0000 - 0001 ~ 0100 land 3
0110 A - 0000 - 0010 - 0100 land i
o111 A - 0100 - 0101 - 0110 1l and 2
1001 A - 0000 - 0001 -~ 1000 2 and 3
1010 A - 0000 - 000 - 1000 2 apd 4
1011 A - 1000 - 1001 - 1010 1l and 2
1100 A - 0000 - 0100 - 1000 3 and k4 -
101 A - 1000 - 1001 ~ 1100 land 3
1110 A - 1000 - 1010 - 1100 1l and 4
11 A - 1100 - 1101 - 1110 land 2

This same set of constraints, written in matrix form, is used in the

example.

The number of constraints using the bage-get method is the same as
the number of w 3 not in the base set, and this in turn is the mmbgr
of treatment combirnations with n-t or more components at their high-
egt levels. Let t equal 2. The number of treatment combinations
vith n coamponents at their highest levels is 1, the number with

h

number with n-2 camponents at their highest levels is

n-l components at their highest levels is 821.1 (s, -1), and the

2“11 ol I.‘;a_11+l (sjl-l)(s 12-1) . 'The total is therefore
1+ 2(511-1) + 2(811-1)(812-1). If t equals 3, the total number

11-1) ( siz-l)+2( 311-1) ( sia-l) ( 313

where the range of summation in the last term is 1 < 11 < 12 < :L3 < n,

of constraints is 1+Z(s N -1)+Z(s -1),
1



The general expression can be writter down in the form

t
1+ 2%=1 Ebk n§=l (s1 -1), where the set 6, 1s the set of iJ such

J

that 1 < il < 12 < . .0 L ik <n.

The crossing-out method

The crossing~-out method is a technique for reducing the set of all
constraints by elimlnating those which are obvious linear combinations
of others. The set of all constraints contains statements about the
number of occurrences of coambinations of levels of subsets of t
factors. By adding together sets of constraints, statements can be
derived about the number of occurrences of combinations of levels of
t-1 factors. Because a given subget of t-1 factors is contained in
several subsets of t factors, sﬁch statements are not unique.

Indeed, it is because of this that the set of all constraints is lin-

early dependent.

The crossing-out technique will first be desciribed for t = 2.
Consider the first two factors, which are at 54 and 5, levels,
respe~tively. A set of slsz constraints can be written down from the
requirement that the number of occurrences of each cf the 8,8,
possible combinations of levels of the first two factors must be equal
to each other and to a known multiple Mi of the index A. Let the

first two camponents of J be represented by u and v, and suppose
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that the constraints are written down in increasing numerical order of
uve That is, the constraint that Mlk equals the sum of all w j for
vhich the first two componeunts of J are u and v has ordinal

number s,u+v4l in the constraint array. If the first s, relation-
ships are added together, the result is that the number of occurrences
of level O of the first fector is equal to sznl)\.. By adding any of
8y sets of s, consecutive constraints, the number of occurrences of
any level of the first factor is szull also. Similarly, the number

of occurrences of any level of the second factor equals slMlA..

Considering now the first and third factors, wve may write down
3155 linear constra‘its. Suppose they are again arrayed in numerical
order, so that the constraint {Mzh equals the sum of all vy for
wvhich J has u and v as its first and third components} has
ordinal number s, uw+v+l. By adding the first s

3 P
find that the number of occurren.es of level O of the first factor

relationships we

is 83142)«. Similarly, by considering each of the 8y sets of B
consecutive relationships, we find that the number of occurrences of
any level of the first factor is BBM.ZX. Therefore, Mz equals
(32/35)141, ani what is more important, ther: are obvious linear
dependencies between relstionships written down by considermg the
first and second factors and those written down by considering the

first and third factors. If every 53-w relationship is removed or
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"erossed out" from the set of 8.8, relationships formed by consider-

173
ing the first and third factors, then these obvious dependencies will

be removed.,

Turning attention next to the second and third factors, one can

write down s_.8

o relationships. The first, second, -.-- , s_8_ -th

23
for which

3

constraints are that MBX is equal to the sum of those wJ

the second and third components of J are, respectively, O and O,

C and 1, ---, 5, and s Again, by adding sets of relationships,

ne

3"
expressions can be obtained for the number of occurrences of each of
the levels of the second factor and similarly for the third factor.
But expressions are already available for each of these numbers of
occurrences; those for each level of the second factor are obtaineble

from the first group of s relationships, and those for the number

152
of occurrences of each level of the third factcor are obtainable from
the second group of 5155 relationships. Suppose now that every

SB-th relationship is crossed out frum the set of s reletionships

253
formed by coneidering the second and third factors, and also the last
53 relationships are crosgsed out. Then in all sz+s5-l constraints,

and also all obvious dependencies, will be removed.

Thus far only three factors have been considered, btut the above

results can easily be extended to the remaining factors. From the set



of s linear relationships obtained by considering the first and

184

i-th factors, every s,-th reiationship may be crossed out in order to

i
eliminate the obvious ncn-uniqueness of expressions for the number of

occurrences of each level of the first factor. From tie set of Sisj

relationships obtained by considering the 3i-th and j-th factors

(L <1<J), every s,-th relationship and the last s, relationships

J J

may be crossed out, since expressions are already available for the

number of occurrences of each level of both the i-th and Jj-th factors.

Before systematizing the crossing-out method for t 22, we will
show that the number of constraints remaining after using the crossing-
out procedure is the same as that obtained from the base set in the case

t = 2. There are relationships remaining in the first group,

8,8,
none having been removed. In the group obtained by considering the

first and i-thk factors there are 8,64~y constraints remaining.

in the group obtained by considering the 1-th and Jj-th factors there

are +1 constraints remsining. The total may be expressed

BisJ-si-sj
88 58, + Iy 5 8)(5;-1) + I}, 1 (8y

the number of constraints using the base-set method is

24T (a-0) + Ty By, (eg-1)(sy01)

-1+ 22;1 (8,-1) + 22;2 z§;1+1 (si-l)(sj-l) + (s-1) finz (s;-1)

-l)(sd-l). We have seen that

= 1+ 8,-1+5; 2232 (81-1) +T L (si~l)(sj-1)

= 8,8, + 8, Z&;S (si-l) + T T (si-l)(sd-l).



Therefore, the methods yleld equivalent sets of linearly independent

constraints.

Formalization of the crossing-out method

We first formalize the procedure Jjust described for ¢t = 2. Con-
sider each pair of factors in the standard (alphabetic) order
BA, CA, C1_ DA, DB, DC, BA, -+--, where A, B, C, ¢-- are the first,
second, third, -<- factors. We will say that a pair of factors is in
class Q if exactly Q of the factors have occurred at least once in

a previous pair. Thus, the pair BA 1s the only class O pair, the

W i A g1, M i

i remaining pairs containing A are class 1 pairs, and the rest are

a i

class 2 pairs. Given the i-th and J-th factors, comsider the con-

straints in the order obtained by looking at the pairs of levels in

increasing numerical order 00, 01, <-- , OsJ, 10, .-, 155, cee, sio,

"+, 848 3 Then if the pair is in class O, cross out no constraints;

e e v o $

if the pair is in class 1 crose out every e,-th constraint; if the

J

pair is in class 2 cross out every s,-th constraint and the last

J

s constraints.

J

Now suppose t is equal to 3. A triple of factors is in class
Q if Q@ of the 3 pairs have occurred in a previous triple. If the
triple consisting of the i-th, J-th, and k-th factore is in class

and if Q =1, cross out every s,~-th constraint. If 8 22, cross

k

LR e



out every sj-th group of s, constraints. If { a 3, cross out the

k
last stk constraints.

In general, & t-tuple of factors is 1n class Q if @ of the
(t-l) -tuples have occurred in previocus t-tuples when written in

standard alphabetic order. If the t-tuple consisting of the il-th

through 1 _-th factors is in class Q and if O 2w, then cross out

t

t
the last n.j-t-w+2 ij relationships in each set of l'IJ teootl 1

consecutive relationships.

J

There are (}) t-tuples, and the number of these in class i is

(n-tal+ﬂ) . The factors in a t-tuple in class § are the first

through (t-0)-th together with Q of the factors numbered t-Q+2
through n. The number of constraints left after crossing out in a
set of constraints formed by considering the t-tuple consisting of

factors whose ordinal numbers are 1, °°° , t-fi, il’ i is

{IILl si} X {l'ln .1 (s -1)}. The total number of constraints for t = 2

J
is given by &8, + Z?fj sl(s -1) + 8?1 Zn 1l_’_l(s,j_l--l)(:a;iz-l),

and for t =3 oy

R

E?fz 2’22-114,1 2‘113-1?»1 (511‘1)(312'1) (813'1) :

The general expression can dbe written in the form

5,85 + L?f“* slsz(s l)(s -1)

818,
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14 t t-k '
M, 8y + 5 (05 81) {291.i . l'l;‘l(si‘3 1)}, vhere the set ek’t is
¢

the set of indices 11, coe :I.k such that t-k+l < il < 12 < oo
< :LK £ n. The general expression derived above for the base-set
method is

A
L+ 5, ”ek “5.1 (’3‘1\1

These two expressions will now be shown to be equivalent.

-1), vhere 6 = {1J|1 <4 <4, <<y <nal.

THEOREM 7. For all t, the number of constraints using the base-
set method is equal to the number of constraints using the crossing-out

method .

PROOF. For fixed but arbitrary n and 815 Bgs ' 5 By let
g(t) be tre number of constraints using the base-set method for a
design of strength t and let h(t) be the number of constraints
using the crossing-out method. We have already shown that g(2)
equals h{2). We will show that for all t, g(t) - g(t-1) equals
b(t) - h(t-1), which, by induction, will camplete the proof. The
difference g(t) - g(t-l) is given by Z’.at n;_l(s N -1), vhere
6, = {idll $1, <4, < ... <4 S n}. The difference h(t) - h(t-1)

is given by
t t otek -1
Uy 8+ Ty (Mg 8y) (B tu§-1 (313"1” - Ty e
?
- t—}_ (nf;i'l si) {Eeu ﬂ§ 1 (sli <1)}. The latter may be rewritten
k, t-1 3
D



h(t) - h(t-1) = z;;g; D+ {ze;; tng_l ('1.1-1) ), vhere

The term D, redu::es to !Ithi' 8 i(st-l) « When this,is added to the
first termm of Dl the result is

(577 s,) {z?_l,t(ejl-l)} = (157 &) {zei’ t-lﬁ;;l(s iJ-l) . Subtracting
the second term of Dl we have

Dy + Dy = (T2 8,)(e, ,-1) {5, ﬂ;’_l(si -1)}. Adding the first tem

1, t-1
of D, ve obtain (I ‘1){29: 323.1(31 -1)}, from vhich is
- 2, t-1 3
derived 2‘.‘2‘_0 D, = (I!Li 81)(°t-;'1) {Ee. Ilzjﬂl(s % -1)}. Proceeding

2, t-l
analogously, the summation of the Dk becomes
Ilt-l(s N -1)}. We will now add this

2;25 D, = (no:b-l 84)(s;-1) {zo;d, s

to the final term of h(t) - h(t-1), namely {%,, I (s, -1)}. The
et & J=1 iJ
b

] R
index sets are et_l,t_l-{1<11<1z< <i _, <n} amd

] e e
et’t.{1<:1<12< <1t$n}. The result of the addition is

J

17
therefore zetnj_l(si -1), wvhere 6, is the get

t
J
{ls:i1<12<"°<1t5n}, vhich is equal to g(t) - g(t-1), as

vas to be proved.

Therefore, the base-set method and the crossing-out method are
equivalent. Although the base-set method is used for the example in
S8ection 3, the methods are equally easy to apply, and either may be
used to construct & set of linearly independent constraints for the

application of linear programming to the derivation of designs.
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APPENDIX B

CHARACTERIZATION OF NON~ORTHOGONAL INCOMPLETE PACTORIAL DESIGES

SUMMARY

Two general classes of non-orthogonal incomplete factorial designs
called clumpwise-orthogonal designs and permutation-invariant designs
are defined. The cross-product matrices of the former can be arranged
to contain blocks of non—zbro elenents down the main diagonal and zeros
elsevhere. The latter class may be described as containing designs in
which those factors which appear at the game number of levels are treated

alike.

A reoview of the existing literature on non-orthogonal designs shows
that despite the large quantity and variety in methods for conmatruction,
the designs all fall into one or both of the classes defined above.

It is shown that both classes of designs possess characterizations
as integer solutions to sets of linear constraints. For a subclass
calied special clumpwise-orthogonal designs, defined only when all fao-
tors are at two levels, a different characterization is derived. This
characterization involves group~theoretic considerations similar to

those wsed in the clasaical theory of fractional factorials.

l. IKTRODUCTION
Orthogonal incomplete factorial designs have been used for many

years. In many experimental situstions, hovever, the smallest orthogonal

B R e



incomplete design may enteil more runs than the experimenter is prepared
to make. Recently there has been increased interest in non-orthogonal
designs, on which there is no a priori restriction on the number of runs,

and many methods have been set forth for constructing such designsa.

t f om de
Unlike orthogonal deeigns, which as a class enjoy certain optimality

properties, non-orthogonal designs must be judged individuslly. First

of all, the design must have at least the required resol.tion, which is
defined as follows (Box & Hunter, 1961): If . is even and a design is
of resolution t+1 then all parameters involving *t or fewer factors
are estimable, ignoring parameters involving more factors. If t is
odd, parameters involving (t-1)/2 factors are estimable, ignoring
parameters involving (t+3)/2 or more factors. Those involving (t+1)/2

factors are neither estimable nor completely ignored.

We will suppoee that a particular parameterization has been decided
upon. {See Webb (1963) for a discussion of parameterizations for fac-
torial designs.) Given two designs which have the same resolution and
number of rune, the ore which permits estimation with smaller variances
will, generally speaking, be more desirable. More specifically, four

possible criteria for optimality of a design are:



i) that all the variances are minimized,
ii) that the trace of the covariance matrix is minimized,

i 1ii) that the determinant of the covariance matrix is minimized, or

f iv) taat the average variance of a predicted value is minimized.

The first oriterion is preferable, but often it is impossible to satisfy
it with a design utilizing a given numbar of runs and a parameterization
i specified a priori. The second is equivalent to minimizing the sum of
the variances of the estimates, and the third is equivalent to minimizing
the volume of a confidence ellipsoid on the paramesters (Mood, 1946). If
the parameterization is scaled in ar appropriate way, criterion (iv) is
equivalent to (1i); more generally (iv) will reduce to a weighted aversge

of the variances of the estimates.

Plackett and Burman (1946) showed that, subject to the reatriction

that the lengths of the columns of the design matrix be fixed, orthogonal
| designs satisfy criterion (i), hence also (ii), and (iv). Without this
restriction, however, it is ofter possible, depending on the paramateri-
zation, to construct non-orthogonal designs which surpass orthogonal
ones with the same number of runs under any of the last three oriteria.

In another paper (Webb, 1964), it was shown that, if one uses a main-effect

parameterization under which the full factorial is orthogonal, criteria
(111) and (iv) are satisfied if and only if the design is also orthogonal.




Whereas knowledge of the conditions under which orthogonal designs
are optimum is a3 yet incomplete, knowledge of such conditions for non~
orthogonal designs is for the most part nonexistent. The few isolated
casss in which any optimality property has been demonstrated for a non-

orthogonal deaign are indicated in subsequent sections.

c ifigation of non-orthogonal desi

The non-orthogonal designs in the literature fall into two over-
lapping c¢lasses wh ch I call permutation-invariant and clumpwise-
orthogons] designs. A permutation-invariant design involving factors
at the same number s o¢f levels is one for which if abe...n is any
treatment combination appearing in the design, where the symbols
a, b, «.., n take on one of the values O, 1, ..., 8=1, then all the
treatment combinations which are permutations of the given treatment com-
bination also appear in the design. For the case in which all factors
do not appear at the same number of lavels, a permutation-invariant
design 1s one which contains the same treatment combinations if factors
appearing at the same number of levels are permuted. Later we will con-
sider permutation-invariant designs of strength ¢, which are more
general designs for which the cross-product matrix is not altered if
factors appearing at the same numbers of levels are permuted. The
parameter ¢ is twice the number of factors in the highest-order inter-

action to be ectimated.
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A clumpwise-crthogonal design is one for which, by rearranging the
coluwanz of the coefficient matriz X, the cross~product matrix can be
erranged s0 that there are sguare submatrices of ron-zero elsments down
the main diagunal and zeros elsewhere. 4 subclass of particular interest,
defined for the case when all factors appear at two levele, coansiste of
the special clumvwisé~.srthogonel designs, which have 21l non-gzero off-
diegonal eolements equal. I will restrict the definition of clumpwise—
orthogoral desigus by requiring that there be at least two clusps, siace
othervwise every design would satisfy the definitiom. It is convenient,

however. not to impoue this restriction on the class of special clump-
wise-orthogonal design.. |

Both the permutaticu-invariant and clumpwiae%orthogonal classes
contain orthogonal designs. A simple exeaple 0F a design which is net
orthogonal vut which is still contained in both clogses ie the design

for two-level fauturs ccusisting of runs et treatment combinations OO0,
00, 01, 10, 11, aund 11. |

2. SURVEY OF HUN-ORTHOGONAL DESIGHS
It is felt that this literature survey is reusonably exhaustive
with the exception of gquite recsnt work in the arsa. The non-orthogonal
dosigns covered huve been derived using many different devices snd from
widely different points of view., 8till, they &ll mey be categorized

into the permutation-invarient snd clumpwise-crthogonal clusuves.
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Egrly non-orthogonal degieng
Perhaps the earliest non-orthogonal designs were the optimum weigh-

ing designs proposel by Mood (1946). Suppose p objects are to be
weighed on a single-pan scales. If each object is weighed individually
the variance of each estimated weight is the error variance associated
with each weighing. By weighing the objects in appropriately chosen
groups, the variance of the estimated weights may be decreased. Using
criterion (i1i) (the determinant) to judge optimality, Mood showed that
if p = 2k-l, then the design consisting of all combinations of the p
objects taken k at a time is optimum., If p = 2k, he showed that the
design which consists of all combinations taken k at a time together
with all those taken k + 1 at a time is optimum. Banerjee (1948)
pointed out that optimality is preserved if only those combinations
vhich comprise a balanced incomplete block design are weighed. The
designs of Mood and Banerjee are both permutation~invariant and special

clumpwise-orthogonal with one cluap,

Chakravarti (1956) introduced the “partially balanced array of
strength t" vhich is a specialization of the permutation-invariant
design of strength t to the casc where all factors are at the same num-
ber of levels. I have chosen not to adopt his nomenclature because 1
believe "permutation-invariant® is a better description of the defining

property of these designs. He gives two simple examples of such designs,



one containing runs at treatment combinations 0000, 0111, 1011, 1101,

and 1110 for a 27

experiment, and another for a 25. containing runs
at 0000G and all treatment combinations with four factors at their high

level.

Morrison (1956) presented an interesting technique for constructing
incomplete factorial designs in the case vhere all factors are not at
the same number of levels. It is mout effectivs when all but one of
them are attwo levels. The levels for the many-level factor are grouped
into pairs (with one level left over if the number of levels is odd).

A standard fractional factorial is constructed using, in turn, each pair
with all of the two-level factors. To illustrate, consider an incom-
plete 2%51 design, and designate the levels of the five-level factor
by the integers O through 4. The design may be constructed in three
stages, First, identifying levels O and 1 of the five-level factor
with the levels of en (imsginary) fifth two-level factor E, an eight-
replicate of a 25 is constructed using as generators in the defining
contrast AB, €D, and ACE. (Por definitiona see Daniel (1956).)

Hext, levels 2 and 3 are associated with X and another eighth-replicate
is constructed using -AB, -CD, and ACE to generate the defining
contrast. Pinally, an eighth-replicate of the 2' is constructed,
using AB, AC, &nd AD to generate the defining contrast, and level 4
of the five-level factor is used for these runs. The complete design

is as follows:
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HOHOKFOKOKO
HOOHMFOOMMO

g. HOFHFOOKFROKFKFO

0 0
1 0
0 1l
1 1l
1 2
o 2
1 3
o) 3
0 4
1 4
1 t

Morrison's method of conastruction lea o clumpwise-orthogonal desigus.

ar fracti factorial
A type of non-orthogonal design which has recnived a great deal of

attention is the irregular fractional factorial. The general form of
such an incomplete factorial is the k/s"™ fraction of the s° design.
Banerjee (1949) discussed (2™-1)/2" fractions of 2% designs in con-
nection wvith the weighing problem. Further examples were given by
Keapthorne (1952) and by John (1961). Addelman (1961) gave a rather
detailed analysis of such designs and presented a catalogue of 3/2"
replicates of 28 designs. Dyketra (1959) gave a catalogue of irregular
fractional factorials which involve partial duplication. All irregular
fractioral factorials are clumpwise-erthogonal, and those for the 2

case are special clumpwise-orthogonal.

econt methods for 2"3" experiment
Several workers have developed techniques for deriving incomplete
3% and 2™3% designs, 211 of which lead to designs which are both



permutation-invariant and clumpvise-orthogonal. DeBaun (1959) developed
a series of response-surface desigus for three independent variablea which
| are restricted to <»o levels, so that the designs are also incomplete
factorials. éhs method is to combine the following subdesigns: the center
| point (treatment combination 111), ths octshedron (011, 211, 101, 121,

1 110, and 112), the "cuboctahedron” (&1l treatment combinations with one

1) and the cube (all treatment combinations with nmo 1). DeBaun gave
anslyses for designs consisting of warious combination of these subdesigns
with repstition of entire subdesigns permitted, and he compared their
efficioncies and variance coatours as sscond-order response-gurface

designs,

Box and Behnken (1960), who, like DeBaun, were motivated by response—
surface considerations, constructed a series of incomplete factorials
utilizing balanced incompleteo block configurations. The factors are
associated with the btlock elements (often called “"varieties" in the
literature on balanced incomplete bloocks)., For each block a subdesign
is constructed containing a two-level deasign using levels O and 2 of the
factors appearing in the block, with all feotors not in the block being

held at level 1. After the procedure is repesated for every bdblock the
conplote design is formed by combining the subdesigne and then appending
several rung at the ceater point,
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Connor (1960) developed a technique for handling 230 designs in
which several combinations of standard fractions of the 2™ and of the
3° are combined in a specified manner., One of his examples is the

following incomplete 2°3° design. Let the two half-replicates of the

23 be denoted symbolically by 81 and 82 and the three third-

replicates of the 3° be denoted by ¥, T,, and T,. let ST, be

the design formed by taking all pcasible combinations of treatment com-

binations in 8, with those in T.. Then the design slrl + 38

3 Tz + 82T

i 2

i3 a half of the full facterial.

3

Another method for forming incomplete factorial designs for 3“
and 2"5" experiments was given by Fry (1961). The 3" full factorial
consiste of a center point (the treatuent combination 11...1) surrounded
by concentric hyperspheres, the r~th containing the (3)2°  treatment
combinations witl!: sxactiy »r nonfl components, A design may be con~
structed by conbiniﬁg fractions of‘tha traafnent cosbinations on each
hypersphere. PFry gives an example of an incomplete 3‘ d‘aign formed
by taking all ths points in every other hypersphere and omitting entirely
the others (this is essentially DeBaun's method). Since the (:)2r
pointe in the r-th hypersphere may be considered formally as (:)

separate factorizls in »r fectors at two levels, standaid fractions nay
be taken from each. 4lso, if the design contains & factors at two
levels as vell as the n three-level factors, fractions of the Pl



design may be used. Fry gives as an example & "half-replicate” of &
2332 deaign comatructed in this way. He points out that this method of
construction leads to designs which are quite similar to those derived

by Counor.

It is interesting to note that DeBaun, Box and Behnken, Connor, and
Fry used disparate methods and were motivated by contrasting considers-
tions. Yet the designs obtained are all persutation~invariant and

clumpwise-orthogonal, and moreover usually possess & similar clump
structure.

Expangible contractible designs
In work which has not previously been reported, K. W. Last' developed

& series of permutation-invariant designs for factors at two levels. He
vas motivated by the need for designing experiments which may be pre-
maturely halted, due for example t0 a breakdown of the equipment. His
aim vas to design the experiment to study first what are considered the
most important factors so that if the design is not completed inferecces
pay be made about the more interesting factors conditionally on the lezs
important factors being fixed. A design is specified as the set of
treatuent combinations with &, b, ..., or k factors at the high
level, Suppose the factors are arranged in inoreasing order of impor-
| tance and the treatment combinations are run in increasing numerical

S T
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order considered as binary numbers. Then the design will have the
desired property. For example, consider three factors at two levels and
let the design be the treatment combinations with zero, one, or three of
the fadstors at their high level. If the combinatiors are run in the
order 000, 001, 010, 100, 111, then after the first two observations
the "main effect” (conditional on the other factors being fixed) of the
last and most important factor can be eastimated. After the third the
conditional main effects of the latter two factors can be estimated,

and finally after the fourth all three main sffects can be estimated.

I proposed some specific permutation-invarignt deasigns which are
included in the general class considered by Last (Webb, 1961). These
designs were (1) the incomplete 25 consisting of one run at each
treatnent combination containing zero, two, or five factors at the high

7

level; (2) the incomplete 2' consisting of one run at each treatment

combination containing zero, two, or six factors at the high level; and

(3) the incomplete 27

consisting of one run at each treatment combina-
tion containing 2zero or twoe factors at the high level and two runs at

each treataent combination with six factors at the high level.

t - requ
The general class of proportioral-frequency designs has been inves-

tigated by Addelman (1962)., Let =n be the number of occurrences of

i
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the i-th level of one factor with the Jj=th level of another, be

n
io
the number of occurrences of the i-th level of the first factor, n:n..1
be the number of occurrences of the j-th level of the second, and =
be the number of runs. A design is a proportional-frequency design if,

for every pair of factors and all levels i and J, nijl equals

If the grand mean is defined as the expected value of the average
of the observations made, then proportionsl-frequency designs are
orthogonal for estimating main effecte and the grand mean. If, however,
the grand mean is defined as the average cf the expected values of all
treatment combinations of the full factorial, then preportional-frequency
designs are non-orthogonal. While neither the class of proportional-
frequency designa nor the class of psrmutation-invariant designs in-
ciudoa the other, the designs which Addelman catalogues when considered

a8 non=orthogonal desigus are all contained in both classes,

3¢ ‘A CHARACTERIZATION OF SPECIAL
CLUMPWISE~ORTHOGONAL DESIGNS

Both permutation-invariant and clumpwise-orthogonal designs may be
characterized as integer solutions to linear programming probleas.
Methods for constructing the constraint matrices for the goneral classes
are giver in the fourth and fifth sections. In the case of special

clumpwise-orthogonal designe, defined only for the 22 sxperimental



situations, a characterization is possible vwhich is very different from
that for the gensersal class of clumpwise-orthogonal designs. This charao~-
terization, involving groups of treatment combinations, is reminiscent

of the classical theory of fractional factorial designs.

Qutline of the characterization
In the case of 2" experiments, if a resolution ¢t + 1 design is

orthogonal, then for every subset of t factors every combination of
levels occurs ) times (Webb, 1963). As I will show in this section,
if a resolution t + 1 design is special clumpwise-orthogonal, then
for every subset of t factors there exist constants 11 and 12 such
that every combination of levels occurs either Al or 12 times, and
those'ippéaring xl times form a group. The proof will proceed by
showing that, for each subset of t factors of a special clumpwise-
orthogonal design, either s group of treatment combinations or the
complement of a group can be added enough times to make the resulting
augmented design orthogonal. In order to pursue this method of proof
three preliminary results must be established. First we must show that
if a set of treatment combinations forms a group under an appropriately
defined operation, then it iz a clumpwise—orthogonal design. Next we
will show that any special clumpwise=orthogonal design in ¢ factors
leads to the same clump pattern as a group. Pinslly it must be estab-
lished that the ron~zero off-diagonal entry of a special clumpwise~

orthogonal design in t factors is such that the group with the same
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clump pattern or i‘s complement can be added an appropriate integral

number of times with the result that the augmented design is orthogonsl.

Grouns of treatment combinationg
i Fisher (1942) ehowed that the set of treatmont combinations in a

2" experiment form a group. Any given treatment combination may be
designated as the group identity, end as such it is denoted by the
symbol (1), Misher makes no commitment, but later authors have chusen
to let that treatment combination in which every factor appears at its
low level be the identity. It will be more convenient to break with
tradition and designate as the identity that treatment combination with

every factor at its high level.

To each factor let there be assigned a letter By Dy eeey a&nd let
every treatment combination other than the identity be denoted by the

letters corresponding to the factors at their low level. The group

operation is defined as followss: the resultant of two treatment combi-

eations under the group operation is that treatmeant combination vhich

e et e s

contains all the letters from the two cmitting the letters they have in

comnih .

Every treatment combination except the identity dividea the group
into two parts, those treatment combinations having an ¢ven number of
letters in common with the given treatment combination, and those having
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an odd number in common. The ®even helf" contains the identity (1) and
ie itaelf a subgroup. The set which has an even number of lettera in
common with each of two given treatment combinations will again be a
subgroup, which will also have an even nuﬁber of ietters in common with
both the product of the two given treatment combinations and the identity.
Fisher's gensral result is that the set of elements even for svery ele-
nent of & subgroup of order 2P isa subgroup of order Zn”p, where

n is the total numdber of factors. These two subgroups are said to be
orthogonal,

The s0t of all possible parameters can also be considored as form-
ing a group. The grand mean, usually denoted I in thias context, is
the identity. The main effects of the factors are denoted by A, B, C,
and 0 on. Interactions are denoted by the appropriate combination of
two, three, or more letters which bglong to the factors interacting,

The product of two symbols under the group operation, csllied the
generalired interaction of the two symbols, is that symbol which conteins
all the letters of the two omitting any they xay hawve iz commen., The
ideantity 1 is considered as containing no lettesrs. Thus, the geusral-
ized interaction of main effects A and B is 4R, which is a genuine
iuvteraction. The generalized interaction of interactions BD and BDE
ie the main effect E. The group of parameters is isgmorphic to ihe
group of treatunsnt combinations, so that Fisher's result zpplies to

subgroups of the paraseter group as well,
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1f & design is constructed whose treatment combinations form & sub-
group of order 2P or coset of a subgroup of order 2p. the design will
bve a fractional factorial, that is, one block of a confounded deecign,
The parameters sliased with the grand mean I are just tLose parameters
in the subgroup orthogonal to the group of treatment combinations used.
The parameters aliased with any given parameter are the elements of a
coset of the orthogonal subgroup, where the coset is formed using the
glven paramster. The entire group of 2° parameters is divided into
2P galias sets, each containing 2% » 2P psrameters. There is an
estimable linear combination of the 29 parameters ir an alias set, sud
due t¢ the particular choice of the ideniity, this eatimable linear com-

bination is juat ¢ ¢ sum of the parameters.

The orosg-nroduct

Consider a cvefficient matrix whcae'rowe ccrreapond to & subgroup of
treatment combinations and which has columns corresponding to every pus-
sible main effect and interaction, The cross—product matrix forwsd from

this sosfficient matrix, which will be cclled the

Batyix essociated with the subgroup, will of course be singular unless
the asubgroup considered is in fact the group itsolf.

THECREM 1, 7The complete cross-product matrix of a subgroup of
treatment combinations of order 2F is special clumpwias«orthogonal,,

and all non-zero entrier are 2p.



PROOF. Finney (1945) showed that & subgroup defines an aliased
design whose alias structure is determined by the alias subgroup (this
fact is the basis of ths classical theory of fractional replication).
The coeffizient vectors for aliased parameters are all equal, and co-
officient vectors for parametere which are not aliased are orthogonal.
Therefore, the complete cross-product matrix consists of 2P clumps,
where n is the number of factors, and oach clump has all elements

equal to 2P,

THEOREM 2, The complete cross-product matrix associated with all
treatuent combinations except those of a subgroup of order 2P ig
special clumpwise-orthogonal, with diagonal entries 2% . 2P and non-

goro off-diagonal entries equal to -2P,

PROOF, Represent the coefficient matrix of the full factorial in the
form x2 » Where 12 corresponds to the part of the design whose
treatment combinations form a group and where xl corresponds to the
remainder. The complete cross~-product matrix is xixl + x;xz. ard we
know already that it is diagonal with diagonal entries equal to 27,

The matrix x;xz is known to be special clumpwise-orthogonal from
Theorem 1, so that x;xl must also be specisl clumpwise-~orthogonal with
diagonal entries 2% - 2P and non-zero off-diagonal entries equal to

2P
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. Structure of special clumpwise-ortho ) de

Let X bve the coefficiont matrix of = special clumpwise-crthogoral
design of resolution t + 1 in n factors. 4ll the elemsnts of the
cross-product matrix xfx are of course inner products of pairs of
columns of X, lenote by Xy the columm of X which is the coefficient
| vector for the grand mean, by X,0 Xgs Xgo eoe the coefficient veotors
for the main effects, by X,.» Xapr sevr Ipay coe the coefficient
vectora for the two-factor interactions, and s0 forth. Because of the
nature of coefficient vectors for the 2° otﬁorimental situation, the
squared length of every columm of X 4is N, the number ¢f runs,
Because »f the rsquirement that the desigp’be of the special ciumpwise-
ortksgonal form, the inner product of a ﬁair of distinct coluuns ic
either zero or & single specified noanQro number, say c¢. Since the
components of coefficient vectors for interactions are products of com-
ponente of the cosfficient vectors for the main effects of the feitors
making up the interactions, many inner products must be equal. For
example, the inner product (xI, IAB) must be equal to (x,, xb) and
to (xcn, IABCD); (x,, ch) zust be equal to (xB. x‘c) and to
(x N xAB)’ In fact, the inner products of pairs of x's whose subsoripts
have the same generalized interaction will be equal, In the two examples
above, the common generalized interaction are AB 4in the first case and
ABC in the second. Such a generalized interaction canici involve more
than t letters since the cross~-product matrix comes from a resolution

t+1 design,
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Since all pairs of x's whose subscripis have the same generalized
interaction kave the ssme inner product, we will discuss clumpwise-
orthogonal designe in terms of which generalized interactions give rise
to sets of non-zero inner products. If a generalized interaction gives
rise to non-gero inner products, some clumping is induced in the cross-
product matrix, 7To find what effects or interactions are clumped with
& given offect or 1ntoraction,1 it is only necessery to multiply the
generalized interaction by the letters corresponding to the given effect
or interaction, For example, if the generalized interaction AB gives
rige to non-zerv inner products, by multiplying AB by A we find that
x.B must appear in the same cluap as X,e Continuing with our example,
if the cross-product matrix is that of a design of resolution 5 or more,
then ¥ and X,p are in the same clump. If the croas~-product matrix

To and Ipe Xp
and Z)Rp’ and so on would be clumped together in pairs. The reason

is that of a design of resolution 7 or more, then

for the requirement that the resolution be large enough is that only
interactions involving %t or fewer factors are represented in the
oross~product matrix of a resolution t + 1 design, so that in the
second case above I8 would not appear if the design were not treated

as a dosign of at least resolution S,

1. 4liaging is a limiting case of clumping in which an off-diagonel
element 1s equal in absolute value to the diagonal elewents. It
should be noted that in the intermediate case when the off-diagonal
eleumsnt 1s in absolute value less than the diagonal elements, the
corresponding parameters are in no sense “partially aliessed™ or
"partially confounded®. Rather, they are separately or jointly
estirable.

B N



If more than one generalized interaction gives rise to inner products
equal £o &. then their product must also, if this product containa t
or fewer letters. For example, if the generalized interaction A and B
both give rise to inmner products equal to ¢, then Xgo Xp0 and Xy
are in the same clump, so that (x‘. xB) must also be equal to a, which
implies that all inner products of vectors whosc generalized interaction
is AB will also equal o, These results are proved generally in the
Appendix as Theorem 3, which states that if two generalized interactions
give rise to inner products equal to @, and if their product contains
t or fewer letters, then their product must alsc give rise to inner
products equal to o« The following theorem is an immediate corollary

of Theorem 3.

THEOREM 4. For every subset ¢f t factors in a special clumpwise-
orthogonal design of resolution t + 1, the generalived interactions
giving rise to non~gerc inmer products, together with I, form a group.

It follows from Theorem 4 that for any subszet of t factors the
conplete cross—product matrix has the same clump structure as the com-
plete cross-~product matrix of a group. If the order of the group of
generalized interactions mentioned in Theorea 4 is 2q, then the cow-
plete cross-product matrix voneists of 2P = 29 olumps each containing
A parameters. The parameters in the clump with the grand mean are just

those generalized interactions which give rise to non-zerc inner products,



80 that the parameters in this clump form a subgroup of parameters. The
parameters in the other clumps are cosets of this subgroup. We kmow
alioady that there is a subgroup of treatiment comwbinations whose complete
cross-product matrix has exactly the same clump structure as the given
clumpwise-orthogonal design. To be specific, it is that treatment-com-
bination subgroup which is orthogonal to the subgroup of parameters in
the clump which contains the grand mean.

f non-g r uct
The velue o of the non-zero inmer products is related to the clump
structure according to the following theorem. The proof is given in the
Appendix,

THECREN 5. In a special clumpwise-=orthogonsl design of resolution
t+1, if for a subset of t factors the group of generaliéed inter-
actions giving rise to non-zero inner products is of order Zq. then
@ 1is an integral multiple of 2P,

Ve are now ready to characterize special clumpwise-orthogonal
designs of resolution t + 1 containing only t <factors., The general
cage of n <factors will be discussed after the theorem.

PHEOREY 6. A resolution (t + 1) design in t factors with ¢
even is special clumpwise-orthogongl if and only if thers exist constants



?..1 and }\2 such that every treatment combination in a group of trest-
sent combinations appears 11 ' times and every other treatment combina-

tion appears 12 tius.\

PROOF, The cross-product matrix formed from a partitioned coefficient

5

X,

nunbers of treatment combinations implies clumpwise-orthogonality is

satrix is given by (X)X + x;xz]. That the stated condition on
obvious from Theorems 1 and 2, Suppose a design containing ¥ runs is
clunjwise-orthogonal, that the group of generalized interactions giving
rise to nom-zero inner products is of order Zq, and that the number of
clumps is 2P = 2%, Danote the coefficient matrix of the given special
clumpwise-orthogonal design by 11. and denote by 12 the coefficient matrix
of that group of ireatment combinations which has the sanme c;unp structure
as the given design. The group must be of order 2P, Let a=C ° 2’,

vhere ¢ is, by Theorem 5, & non-zerc integer,

CASE 1., o <0, Consider s new design consisting of all treatment
combinations of the original design augmented with the group of treatment
combinations replicated -c¢ times. The oross-product matrix of the
auguented design is XX - o ¢ X,X,, which equals (N - c « 2P) times
the identity matrix of appropriate size., %The augmented design is
orthogonal, hence has every treatment combination replicated the same
number of times, namely (N - ¢ » 2P)/2%. Therefore the original desigm

‘must have beea of the specified form with 1, equal to E=c .2 + ¢,

zt



and xz equal to t‘ » The total number of treatment combinaw

| 2
tions in the origimal design is 2’(”—-:-9?‘—2’; + o) +(2*-2P)(!—"—¢+t-‘—3£).

2 2
which, us required, equals K,

CiSE II., o > 0. If the original design is augmented by adding the
compleasnt of the group ¢ times, then the resulting design is an
orthogonal design with every treatment combination replicated

t _op
B+ mt ;L) times. Hence the original deaign was of the specified

fonviih H.L"’ﬂ—‘i{'@ and ‘2.!"’9_(.2:‘;2_{)_0.

RBriension to n variables

Accordiné to Thoorea 6, a necessary condition that a resolutica
t+1 design in n wvariables be special clumpwisc~orthogonal is that
every sub—-design containing only t of the factors have ths structure
specified in Theorem 6. It is necessary to impose some additional con-

dition to make the converse true.

As an example of & design for which the converse does not apply,
- consider the following coefficient matrix and corresponding cross-product
matrixs



1-1-1)
-1 -1 -1 -
“1 -k 1
“1 11
1-1-1
1 1-1 H

1 11 -
11 l;j =

Denote the four para;itera by I, A, B, and C as before, By consider-

(') =

coom
OC+®O
r Y Y-
®sa00

2]
X
B b e Rt

ing the subset coansisting of faotors one and two, the parameters A and

e e e = e =

B are clumped. Siailarly, consideration of the second and third factors
shows that B and C are clumped. The sub-design consisting of the
first and third factors, hovever, is fully orthogonal, so that A and C
do not appear in the same clump. In this case the clump structures of the
three posziblo sub=desigus are not mutually consistent.

The gemeral characterization now follows from Theorem 6.

THEOREM 7, Consider a resolution t + 1 desige in un factors with
t even, If
a) for every subset of t faotors there exist constants ), and
12 satisfying the condition of Theorenm 6,

b) the clump structures of the sub-designs are umutually consisteat,
and

c) the structures of the sub-designs yield the same non-tero off-
diagonsl element,

then the design is special clumpwise-orthogonal.
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4, THE GENERAL CLASS QFr
CLUMPWISE-ORTHOGONAL DESIGNS

While it is not as simple or atiractive a characterization as that
Just discuseod, general clumpwise-orthogonal designs may be characterised
as integer sclutions to sets of linear constraints. QGiven a set of con-
straints for a fully orthogonzl design, removal of one or more constraints
yields a set of constrainta for clumpwise-orthogonal designs. Alterna-
tively, given a clump structure, a set of constraints may be written

down oxpressing the corthogonality remaining in the design.

Deletion of constraintg
For discussion of the way in which the reimoval of constraints in-

duces clumps in the cross—produot matrix, it will be helpful to use &
2252 design as an illustrative example. As usual, let the levels of

the two-level factors be designated by O and 1 and the levels of the
three-level factora by O, 1, and 2. Treatment combinstions will bve
written with the two-level factors appearing first. The symbol [ijkt]
will be used to designate the number of times treatment combination

1jké appears in a dewign; [ijkx] will denote the sum [1jk0] + [ijk1] +
[1jx2], and similarly for amn x substituted into other positions.

It has been previously shown (Webb, 1963), that a design is an
orthogonal design of resolution t + 1 (or strength t) if and only if

for every subaset of t factors, every combination of levels appears the
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sane number of times. A linearly independent set of constraints for a
strength 2 design, obtained by the "base-set method® {Wsbb, 1963), is
given in Table I,

Ve vwish to find out what clumping is induced in the cross-product
matrix if the first constraint is deleted. Since the constraints in the
table are linearly independent, none of the remaining constraints is
affected. It can be verified that for all permissible ij combinations,
the following constraints still hold: [ixjx] = 61, [ixxj] = 61,

[xijx] = 6Ac [xix3] = 62, and [xxij] = 4\. Therefore, for the subsat
consisting of the first two factors the condition for orthogonality no
longer holds, but for aay other subset it is unaffected. It follows by
the theorem on orthogonality previously stated that the design is
orthogonal with the exception that the main effecta of the two-level
factors are clumped. The effect on the clump structure of removal of
other constraints or ssts of conmstraints can be found in an analogous

Ranner,



[00zz] = 92
[0x0z] = 6)
[oxiz] = 62
[0xx0] = 6X
[oxx1] = 62
[0xx2] = 6)
[x00x] = 62
[x01x] = 62
[x0x0] = 6)
[x0x1] = 6A

Pable 1

(x0x2] = 62
[xx00] = 42
[zx01] = 42
{xx02] = 42
[x210] = 42
[xx11] = 42
{xx12] = 42
[xx20] = 42
[xx21] = 42
[xx22] = 42

Constraints for orthogonal 232 dosign.
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The practice of rewoving oxe or more spoeclific constrsiuts from those
for a fully orthogonal design cannot yield constraints for all clumpwige-
orthogonal desiyns, for it may be that constrainte for a particuler clump

structure can only be obvtained by removing a particular lirear combination

of constraints. For erample, for the 2232 experiment considered pre-
viously, constraints for the design with only the main effect of the
firat factor cluuped with the mean cannct be consiructed in the former
wanner. The alternative approach is to start with & clump atructuro.and

write down conntraints reflecting the orthogonality remaiaing in the
deaign.

To illustrate the procedure, the comstraints for & particular Qluup
struoturs for 2232 designe will be derived. Denote the grand meaw by
L, ‘the effocts of the two~level factors by A and B, and the linear
and quadravic effszc¢ts of the three-levsl factors by C, 02. D, aad _Dz.

The clump structure to bhe considered is described by the following dia-

| gramaatic representation of the cross-product n&trixz

q

1

A X
XB
cXx
XD
c2
X

p
»°
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Here the name of a parameter (I, 4, B, etc.) is used to denote the
squared length of the associated coefficient vector in the coef icient .

matrix. The symbol X denotes a non-zero off-diagonal element.

For this clump structure, any subdesign consisting of a two-level
and a three-level factor is completely orthogonal. The corresponding
constraints are those requiring that, for every subset consisting of wane
factor &t two and one at three levels, every possible combination of
 levels occurs the same number of times A. The corresponding constraints,
reduced to a linearly independent set, are the first fifteen constraints
given in Table II. In sddition, C is required to be orthogonal to D
aﬁ& b to ¢®. Tre components of the coefficient vector for € are
-1, 0, and 1 wvhen C 1is at levels 0, 1, and 2 and similarly the com-
ponsnia of the coefficient vector for D2 are 1, -2, and 1 when D is
at levels O, 1, and 2, Therefore, the inner product of the coefficisnt
vectors for C and D> is ~[xx00] +2[xx01] - [xx02] + [xx20] -2[xx21] +
[2122]. The final two constraints in Table Il are obtained by setting
equal to zero the inner product of the coefficient vectors for € and

Dz and likewise the inner product of the coefficient vecto.s for D

and 02.

Other clump structuvres for other designs can bas handled in &an ana-
logous mamner. This concludes the digcussion of clumpwise-orthogonal

designs,



fable 1l

[0x0x] = A {x00x] = A [1x0x] = 2
[ox1x] = A [201x] = & [1xlx] = 2
[oxex] = A [x02x] = A [1x2x] = A
[0xx0] = 2 [x0x0] = A [1xx0] = A
[oxxi] = a (x0x1] = A (1xx1] = &

T T gt S D Rt | TN My R 1D S

- [xx00] +2[xx01] = [xx02] + [xx21] ~2[xx21] + [xx22] = O
~ [xx00] + [xx02] +2[xx10] «~2[xx12] = [xx20] + [xx22] = ©

Constraints for 2232 clumpwvise-orthogonal design.
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5. THE CLASS OF PERMUTATION-
INVARIANT DESIGHS

The construction of constraints for clumpwise—orthogonal designs
involvas weakening the comstraints for orthogonal designs by deleting
linear combinations of constraints. The constraints for permutation-
invariant designs, on the sther hand, are obtained by introducing more
indicoa.- Before showing hov this is accomplished, some additional genoral

material on this class of designs will be presented.

tion-inveriant desi f st h ¢

The appealing property of permutation-invariant designs is that factors
vith the same number of levels are treated alike in the sense that the
estimates of corresponding main effects have the same variances and the
same covariances with cther estimates., For this to hold in a design of
resolution t + 1, it is not necessary that the design be permutation-
invariant as a whole, but only that all subdesigns containing t fsotors
be pernutation-invariant (thia follows from the fact that the cross-
product matrix contains inner products of interactions involving up to
-l- t factors, so that the largest number of factors involved in computing
any element of this matrix is t)., Therefore, it is convenient to define
fornaliy & more general class of designs, permutation-invariant deaigns
of strength ¢,
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Given n factors, select any ordered subset of «+ factors and let
f(il, 10 coes 17) be the number of oocurrences of level i, of the
first factor of the subget with level 12 of the second, ..., vith level
iT of the +o=th, Suppose t is the largest value of ¢ such that the
function f(il. 10 sees 17) depends on the nusber of levels of the
factors chosen to be first through <o=th, bDut not on the particular
choice of ordered subset, Then the design is a permutation-invariant
design of strength t. It should be noted that the permutation-invariant
designs mentioned in the literature survey are all of full strength; that

is, they are of strength n where n is the number of factors,

Several permutation-invariant designs can be shown to satisfy one
or another of the criteria for optimslity given in the introduction. It
can be shown by an onumeration of all possibdble five-run incomplete 24
designe that the design given by Chakravarti (1956) consisting of runs
at treatment combinations 0000, 0111, 1011, 1101, and 1110 is the essen-
tially unique resolution 3 design which satisfies eriterion (i) (the
variances ere each minimized)., By “essentially unique® I mean that the
only other designs with this property are those derived from the given
design by interchanging for some of the factors the designation of whigh
is the high and waich is the low level. The compleuont of this design.
that is, the design consisting of runs at the cther eleven treatment com-

binations, is the essentially unique eleven-run resolution 5 design which



sstisfiee oriteria (4i), (iii), and (iv) (the trace, determinant, and
average predicted value are minimized). The twelve-run design obtained
by adding a run at the treatment combination 0000 is still permutation-
invariant and also satisfies criteria (ii), (iii), and (iv) among twelve-
run designs (Vebd, 1961). It is not unique in this respect, however,
there being three other twelve-run designs, not essentially equivalent,
which also satisfy these three criteria. f%wo of the other designs, both
irrsgular fractional factorials and hence special clumpwiase-orthogonal,
are that obtained by omitting 0000, 0011, 1110, and 1101, and that
obtained by omitting 0000, 0110, 0101, and 001ll, The third design,
neither clumpwise-orthogoral nor permutation-invariant, omits 0000, 1110,

1101, and 1011,

Por orthogonal designs the total number of runs in certain subsets
of treatment combinations is equal to & known multiple of the single
index A. PFor permutation-invariant desigus, the total number of runs
at trestment combinations in these subsetis is equal to a known muitiple
o; ons of several indices. To illustrate, constraints for a 2332

persutation-invariant design of strength 2 will be derived.

According to the definition, the number of times a pair of two-level

fuctors appear &t levels O and O is indepondent of the choice of the



pair. Demoting this number by y, We obtain the constraints [00xxx] = o
{oxoxx] = @, and [x00xx] = e Similarly, the nuaber of times & pair
of two-level factors appear at levels O and 1 (or equivalently at 1 and

0) 1is a constant a, vhich mey differ from oo The mumber of times a
pair of two=level factors appear at levels 1 and 1 is Oise By cecnsidering
the three-level factors six more indices may be defined, Let ql, ooy &6
be the number of occurrences of the combinations 00, 01, 02, 11, 12, and
22 respesctively. Finally, consideration of one factor at tvo levels and
ong at three levels produces the indices \i. coey \% corresponding to
the combinations 00, 01, 02, 10, 11, and 12 respectively. 4 set of linear
constraints may now be written down, As usual, the complete set is
linearly dependent, and in Table IlI a linearly independent subset has

been extracted.,

As was noted previously, an orthogonal design is a special case of
& permutation-invariant design. Hore specifically, an orthogonal design
of strength t 1is a permutation-invariant design of strength ¢ 1¥Lvhich
a1l the indices are the appropriate multiples of the single index i.
It may be verified that if in Table IIIl oy is replaced by 9A, each
g by 4\, and each Y by §A. the constraints are those of a strength
2 orthogonsl design,
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[001!1]-01

lozoxx] = o

[x00xx] = o
[oxx0z] =
[oxxiz] = ¥,
[0xx10] = v
foxxn1) = ¢,
[ozxx2] = ¥,

[x0x02] =

Table II1

[x0x1x] = ¥,
[x02x0] = v
[20xx1] = v,
[z0xx2] = ¥,
[zx00x] = v,
[xx01x] = ¥,
[xx00] = y
[zxox1] = v,
[xx0x2] =

[xxx00] = 8,
[zxx0z] = 8,
[xxx02] = 8,
{xxx10] = p,
(wxax1] = g,
[ox12] = g,
[xxx20] = g,
[xex21] = B

[xxx22] = g

Constraints for 2°%° permutation-invariant design.



APPENDIX
This Appendixz contains proofs of two Theoresms used im Section 3.

Recull that the coluan of the coefficient matrix X which is the

coefticient vectur for the parameter J is denoted by xj. Hore J may

te I (the grand man)‘, Ay By eoop AB, AC, cesy @tc. Two pairs of
columns have the suws imw# product if their subacripts have the sane
geueralized interaction. Special clumpwise-orthogonsl designs can there-
fors be characterized in terms of which 'mmnlizod interactiona give
rise to inner products equal to the 'mmsymro off~diagonal elszent ¢,

For a design of resolution % + 1 only parameters involving ¥t or
fewer factors are involved in the ‘croqa-pi-oduct matrix, The geraralized

interactions giving rise £0 none-zero inner products may contair up to ¢
letters. If such a generalized interaction is muitiplied by a given
effect or interaction, and if the resultant contains +t or fewer letters,
then the resultant and the given peremeter appéar in the sans clump.

THEOREM 3, If two generalized interactions give rise to inner prod-
ucts equal to ¢, and if their product containsg ¢ or fewer letters,

then in order for the design to be special clumpwise-orthogonal their
product must slso give rise to inner products equal to e

PROOF. Let ¢ be the number of letters comsion to both gensrslized
intersotions, 4 Dbe ths number of unique letters in ocnme, and e the



nuabar of unique letters in the other. Since generalized interactions
glving rise to non-gero inner products must contain ¢t or fewer letters,
weo have c +d <t and c+e<ts Alsc d + @ £ t, since by hypotheais
the product of the two generalized interactions contains no more than ¢
letters. Vithout losing generality it may be assumed that d < ¥ t.

The theores can now be proved by exhibiting for each of several cases a
pair of x's vwhich must be in the same clump, and the gemeralized inter-
action of whose subscripts is the product of the two originsl generalized
interactions. Let v =% t, s0 that only =x°s with v or fewer letters
in their subscripts can be considered., lLet the two gensralized inter-
actions be denoted by (11. sees 10 dp0 eoes jd) and

(11. ST SPR RTTT x.).

CASE I, ¢>v,d and e unrestricted, By multiplying the two
generalized intersctions by (i,, «.e; 4 ) it is found that the three
x's with subscripts (11, cess 1), (1400 ooos 250 330 eoer 3300
and (4 .y eeoe 150 Ky eeup k) are all in the same clump, Hence the
ianer product of the lsst two must be equal to ¢, %0 that all pairs of
x's whose subscoripts have the generalised interaction
(330 eees Jg0 Kys ooey k) wust nave inner produst o

CASE II, ¢ gv, o's v, 4 unrestricted, By multiplying the two
genoralized interactions by (ily coesy ic) it is found that the three
x's with llubucrip‘i:a (11. eceyp ic)g (31. se ey Jd). and (kl. 'XXT) k‘)



sust all be in the sawe clump. Therefore &ll pairs of x's whose sub-
scripts have generalized intersction (Jl' cons Jgo K30 eeey k.) aust
have their inner product equal to ¢ If ¢ is zero, (11. voes 10)
is taken to be the single subaeript I,

CASE IIl, ¢ v, ¢ >v, 4 unrestricted. By multiplying the two
gensralized intersstions by (11@ seey ic' kl' esey kv—g)' vhare g is
the larger of ¢ and 4, 41t is found that the x's with subscripts
(11n ooy .ico kll ssey kv—g)’ (31. so0ep Jao kl' evey kv + ond

(ko
in these¢ three gensralized irnteractions are v-g+ ¢, ve-g+d, and

3¢ *cos k.) are in the same clump, Note that the nuwber of letters

¢~ v+ g and theae thrse nuabers are all less than or equal to v, 8o
that the three x°s named all appear in the X matrix.

THECREM S5, In & epecial clumpwiss~orthogonsl design of resolution
t ¢+ 1, 4f for a subget of t <factors ths group of generaliszed inter-
actions giving rise to non-zero imner producte is of order 2%, then o
is en integral wultiple of 2¥, uhere p= t - q.

PROOF, Given a subset of ¢ Cfactors, suppose it is possible to
pick two x%s {from the complete design matrix wvhich are not in the
saue clump with each other or with x;. Then the x whose subsoript is
the genoralized iunteraction of the first two x's must be in & fourth
clump, for if not, the first two x's would either be in the same clump

7



or one would be in the clump containing Tye In general, then, it is
poseibie to pick a set of 2P x's, one frou each clump, vhoze subsceripts
fors a group. But this set of 2P x°e itself forms a design matrix of a
resolution 2p + 1 design in p factors which cun bo taken to be any
set of p generators of the group. Becausy each x comes from a BEPe~
rete clump, it 1s an orthogonal design. By & result of Webd (1963), this
design must consist of the full factorial replicated some number, &, of
times. Therefore the coofficient matrix X of tkhis subdesign consistse

of 2P sets of k squal row vectors.

How consideér any vector x

i
Since 1z, is orthogonal to esch column (except xI) of the coefficient

which is in the same c¢lump with Xre

matrix for the orthogonal subdesign, the projection of x, on the subw
space spaaned by the columns of the orthogonal subdesign must Yo a con-
stant timeece Xye This subspace consists of all vectors vhich are constant
over each set of k consecutive components, so that the projecticn of x,
onto this subspace replaces each cosponent in a set by the average of the
k oomponents in the set, Since the projection is a multiple of Xrs

ths sum of sets of k oconsecutive coumponents of Xy sust be a constant
c, and aince x, consista of plus and uinus ones, ¢ must be integral.
But o is equal to the imner product of x; end x,, which is the sus

i
of all the components of x., which must be ¢ times 2F,
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APPENDIX C

OPTIMALITY PROPERTIES OF ORTHOGONAL DESIGNS

SUMMARY
It is well known that, subject to the restriction that the squared
lengths of the column vectors of the design matrix be fixed, the variances
of the individual parameter estimates are each minimized if and ouly if an
incomplete factorial design is orthogonal. Except in the case of 2"
experiments the restriction will often be artificial, and without the

restriction it is shown that this particular optimality property no longer

applies.

Two criteria for optimality will be considered: a) minimizetion of
the volume, adjusted for the number of runs, of a confidence ellipsocid on
the estimated parameters, and b) minimization of the average variance of
& predicinad value adjusted for the number of runs, where the average is
taken over all points of the full factorial. Considering parameteriza-
tions for which the full factorial is orthogonal and which involve main
effects only, it is shown that criteria (a) and (b) are both satisfied

if and only if the design is orthogonal,

These criteria are also sgatisfied for many more complicated parameter-
izations, including main effects plus all two-factor interactions, main
effects plus all two- and three~factor interactions, etc. They also are

satisfied for any nonsingular transformation of any of these parameteriza-

tiouns,



1. INTRODUCTION

This paper is concerned with factorial designs, in which a number of
factors are each restricted a priori to a specified number of levels, in
contrast to regrersion designs, in which the factors are continuously vari-
able. Whether or not a factorial design is orthogonal depends on the
parameterization used to describe the response. The expected values of
the response of interest will vary between the points or treatment combina-
tions of the full fac%ovial, and the parameters are defined in terms of these
expected responses. A canonicul parameterization will be specified in the
following manner: The grand mean . is the average expected response,
averaged over every point of the full factorial. The main effects for a
factor at say & 1levels are defined in terms of the quantities
Ei' i=0,1, «¢oey 8 -1, which are the expected responses averaged over
all treatment combinations in which the given factor is at level i. More
specifically, there are s - 1 main-effect parameters each defined as a
linear combination of the .., and such that the linear combinations are
orthogonal and the sums of their coefficients are zero. It will be con-
venient for later use to let the linear combinations be scaled so that each
has squared length 1/s. Interaction parameters involving two or more factors
are similarly defined in terms of average expected values with the factors

involved at fixed levels.

Once & set of parameters is defined in terms of the expected responses
at the various treatment combinations, the process can be reversed, and the
expected responses may be expressed approximately as linear combinations
of the parameters. If there are as many parameters as points in the full

factorial (that is, if interactions of all orders are defined),
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then the expected responses can be expressed exactly. I1If there are fewer
parameters, then some degree of approximation is necessary. In practice,
however, the approximation is often good, relative *to experimzental error,

even when the number of parameters is much smaller than the number of points.

Given N observations at any set of treatment combinations, the values
of the responses can be expressed in the form Y = X + @¢. Here Y is the
N x 1 vector of responses, P is the p x 1 vector of parameters, X is
an N x p matrix called the coefficient matrix, and e is an N x 1 vector
of errors. If the approximation of expected values by linear combinations of
parameters is adequate, then the components of e are assumed to be indepen-
dent and identically distributed experimental errors. If the matrix X'X is
nonsingular, then the least-squares estimate of the vector § is 8 = (x'x)'lx'r.
The covariance matrix of £ is (X'X)-loz, where o° is the common unknown

variance of the components of e.

2, CRITERIA FOR OPTIMALITY

Consider & class of designs for which the lengths of the column vectors
of X are fixed. If there is an orthogonal design (i.e. X'X is diagonsal)
in this class, then the variances of all the estimates will be smallest using
this design. This is a well known result vhich was proved by Plackett and
Burman[1l]. The restriction that the lengths of the columns be fixed may
appear to be simply a natural way of fixing the scele of measurement, but for
factorigl designs it is a very artificial reetriction. 1If, as is more natural,
the number of runs and the parameterization are fixed, then this optimality
property of orthogonal designs no longer holds, as the exumple in the follow-

ing paragraph indicates.
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An experimental situation willi be considered in which there is a single
factor at three levels. This example is chosen for simplicity, but it is
nontrivial in the sense that the conclusions which can be drawn from it
apply equally well to more comprehensive experimental situations. The param-
eters, defined in terms of the expected responses oo Hyo and o2 are the
grand mean ﬂo = (po + o + “2)/3’ the "linear effect® 51 = (uz - po)//g,
and the “quadratic effect” 62 = (“o - 2“1 + u2)/3/§; The design containing
two runs at each treatment combinaticon is orthogonrsl and the variances are
02/6 for each of the three estimates. The design containing two runs at
level O, one run &8t 1, and three runs at 2 has variances 1102/54 for ﬁo,
502/36 for 61, and 2902/108 for €5. Thus the variance for @1 is smaller
than for the orthogonal design with the same number of runs. The design with
one run at level O, three runs at 1, and two runs at 2 yields variances of

116°/54 for ﬁo. o°/4 for él, and 17¢6°/108 for 62. If one uses this

design, the variance of 92 is smaller than for the orthcgonal desigm.

It is apparent from this example that the given criterion for optimality
is too strong; that is, there will in general be no design for which the vari-
ance of each estimate will be minimized. It therefore seems appropriate to

search for other criteria for optimality.

The purpose of & factorial experiment is usually either to estimate param-
¥
eters or to describe the response over the grid of possible treatment combina-

tions. Consequently, it seems natursl to consider two criteria corresponding

to these two situations.

Congider designs of N runs with p factors. The first criterion is

' -
based on the product of the determinant of the matrix (X X)™* and NF. 1f
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an N-run design is replicated r times, 8o that the complete design contains
Nr runs, each element of the covariance matrix csz(ll'x)-1 of the original
design is divided by r and the determinant of (X'X)-l is divided by rp.
The purpoae of multiplying the determinant by ¥? 4is therefore to adjust for
the number of runs. The reason for using the determinant in the firast place
is as follows. A confidence set for the parameters is given by the set of
points for whick (g=B)'(X'X)(p~B) < psaK, where 82 is the residual sum

of squares and where K is a constant depending on the confidencc level
(1~o), p» N, and the distribution of the errors. If the errors are normally
distributed, K is the upper ~ point of the F distribution with p and

N-p degrees of freedom. The volume of the confidence ellipsoid so determined

is given by

v = Zr%p (DQ?K)%p .
pI'(3p) et (x'x)

Therefore, the volume of this ellipsoid is a monotonically increasing function

of the determinant of (X'X)~L.

The second criterion is appropriate when the purpose of the experiment
is to predict the reaponse equally well at each treatment combination of the
full factorial. Such predictions can be made using the parameter estimates,
and the variances of the predictions depend on the variances and covariances
of these estimates. The criterion proposed is the average variance of a pre-
dicted value, times the number of runs. Multiplication by N &gain has the

effect of scaling for the number of runs.

5« MAIN=-EFFECT PARAMETERIZATIONS
In this section only main-effect puarameterizations will be considered, but

the number of factors and the numbers of levels of each factor are arbitrary.
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let Z be the coefficient matrix of the full factorial design consisting of
p factors and let M be the number of runs in this design. Due to the

particular choice of scaling used in defining the puarazmeters, the following

theorem is true.

THEOREM 1, The squared length of every column vector of Z is M and

the squared length of every row vector is p.

PROOF, Consider an arbitrary factor at any arbitrary number s of levels,
With this factor are associated s - 1 columns of Z, the coef{icient vectors
for the main effects of this factor. The components of these coefficient

vectors may be determined from the definition of the main-effect parameters.

Let 8

s represent the grand mean and Bl’ ceoy Bs-l represent the main effects

of the given factor. These parameters are defined as linear combinutions of

Ugr *oes ;s_l. Let Q = {qij} be the matrix of the coefficients of these

linear combinations, so that we have

o 1 [ws 1s...1/s

) ¥o
By 95y Aoy + » « Qpg My

Las-xd LSSl Ggp ¢ = qssJ L_as-l

which may be uwritten in matrix notation as pg* = Qu¥* (by making the obvious
definitions)., Note thst the elements of the first row of the matrix Q are
all l/a, and that this is consistent with the definition of the grand mean
given in the introduction. By definition the rows ¢f Q are orthogonal and

have squared length 1/s.
Consider the matrix P = Q Y. It can be verified that due to the orthogo-

nality of the columns of Q, P is as follows
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1 80,y + + + BQy

1 8G,, « ¢ o 8Qg,

P = . . .
1l Bq28 2 o o qus

L -

or P =8Q'. Now PP' = P'P = s8I, 80 that the sum of squares of any row

or column of P is s.

Consider now the subnatrix consisting of the columns of 2 associated
with the main effects of the factor. Any row of this submatrix has the
same elements as a row of P with the first element omitted. Since the
design is the full factorial, each level of %he factor appears the same
number of times, and hence each row of P 1is repeated the same number of
times k. The constant k 1is the product of the number of levels of the
remaining fectors, The sum of squares of each column of the submatrix is
therefore k x s, which equaels M, The sum of squares of each row of the

submatrix is obviously = - 1.

Firally, consider the entire matrix Z. The squared length of columns
agssociated with main effects has been shown to be M and the column associ-
ated with the grand mean has 1 for all “ts components, hence also has squared
length M. It has also been shown that the squared length of the part of a
row associated with the i-th factor is s8,-1, 80 that the totel squared

i
n
length is 1 + T (si-l), which equals p, <the number of parameters, The

i=1
proof is now complete.,
Using Theorem 1 and the facts that the trace and the determinant of a

matrix are, respectively, the sum and the product of its eigenvalues, we

can prove the following theorem.
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THEOREM 2. Both criteria [(a) and (b)] are satiasfied if and only if a
design is orthogonal under the canonical main-effect parameterization, in
which case they will also be satiufied under any other main-effect parameter-

ization, and the variances of all predicted values are equal.

PROOF, Consider first the average variance of a predicted value times
the number of runs., This is given by
(Pn/u) trace 2(x'X)"1z" = o toace (x'X)™L = A ¥ 1/7;, where the X\
are the eigenvalues of X'X, Since by Theorem 1 thi=:ums of squares of
elements ¢f the rows of Z are all p, the same is true of X, and we have
trace XX' = trace X'X = Np, so that Zli = trace X'X is fixed. 1In order to

ninimize Nzn/xi with FTA, fixed, the 1, must all be equal to N, which

i
implies that X'X 18 a scalar multiple of the identity matrix. In this case
the variances of all predicted values (the diagonal elements of cZZ(X'X)'lZ')
are equal to o?p/N, and N times the average is ozp/M. The chosen
determinant criterion is N'aet(X'X)™. To minimize det (X'X)™* with TN

fixed, the Ai must again all be equal, and the value ¢¢ the criterion is

unity.

Now consider any nonsingular reparameterization ¢ = A-ls. The expression
for the first criterion takes the form (azN/M) trace ZA(A'X‘XA)-IA'Z', 80
that the A's cancel and the value is the same as before. The second criterion
becomes diet(X'X)"lf(detA)z, so that under a new parameterization both
criteria are minimized if and only if the design is orthogonal under the

canonical parameterization. This completes the proof.
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4, HIGHER-ORDER PARAMETERIZATIONS

In the proof of Thoorem 2 the only reasou for restricting the parameter-
ization to contain only main effects is so that Theorem 1 will apply. There-
fore, Theorem 2 applies to any canonical parameterization for which Theorem 1
holds, It will now be demonstrated that Theorem 1 is vualid for many canonical

parameterizations involving interactions,

Let 2 ©be the coefficient matrix of the full factorinl under a canonical
parameterization including the grand mean, main effects, and two~factor inter-
actions, Cconsider those columns correaponding to the main effects ard the
two-factor interactions involving fuctors at s, and 8., levels. Treating

1 2

these factors and their interactions us a single 8,8 -level factor, we find

1%2
that Theorem 1 applies and that the squared lengths of these columns are all
equal to M and that the squared length of the rows is 8182-1. We know from
Theorem 1 that the portion of this squared length attributable to the columns
for the main effects of the two factors is (31-1) + (52-1). The remainder is
(31'1)(82'1)' which is equal to the number of interaction varameters. This
argument may be repeated for the interactions between any pair of factors, or
for that matter for interactions involving any number of factors. Therefore,
the conclusions of Theorem 1 are valid whenever parameters appear only in
complete gets, which are sets such that if any interaction parameters between

a group of factors are included, then all possible such parameters are included.

Theorem 2 may therefore be generalized as follows.

THEOREM 3., Under any canonical parumeterization involving only complete
gsets, or a nonsingular transformation of such a parameterization, the deter-
minant and average variance criteria are satisfied if and only if the design

is orthogonal under the canonical parameterization,
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It is of considerable interest to determine which designs satisfy the
two criteria if the pa.cameterization does not consist only of complete sets.
The simplest such situation involves two factors, one at two and the other
at three levels. The main effects for the ithree-level factor are the linear
effect and the quadratic effect, as in the example discussed earlier. Simi-
larly, the interaction between the two factors way be parasmeterized using
linear and quadratic components. Of the two, suppose only the quadratic

component is included in the model. Then the matrix 2 is as follows:

1 -1 =S/ /2 -7 |
1 -1 0 -2//[2 2//2
1 1S3 W2 -
-v3/2 14/2 14/2
1 1 0 -2/f2 -24f2
1 1 3/2 12 WAZ)

. —

N
h

[ ad

| aad

The rows of 2 corresnond to treatment combinations 00, 01, 02, 10, 11, and
12, respectively. Consider designs for which the number of runs at treatment
combinations 00, 02, 10, and 12 is a constaat ) and the number of runs at

combinations 01 and 11 is +(N-41). For such designs the cross-proi.ct matrix

is of the fora

~ N 0 0 VZ(6r-N) o
0 N 0 0 V2(6)-N) *
X'X = | 0 0 6) 0 o
V2(6)-N) 0 0 2N-6) o
.0 V2(6)-N) 0 0 2N-6) _ .
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We seek the value of /N which will minimize N°/det(X'X) = N°/372°37(N-41)°.
This value is M/N = 3/20, for which the criterion Las approximately the value
.75 (the vulue for the orthogonul design being 1.0). The trace of the inverse
times N is (3N°-8Mi)/6A(l-4)), for which the minimizing velue is MW =
(3-/3)/8. The criterion has the value 4.98, again slightly better than the

value of 5.00 obtained with the orthogonal design.

REFERENCE
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APPENDIX D

DESIGN3 FOR STUDYING ONE FACTOR AT A TIME

INTRCDUCTION

It has become axiomatic in the statistical experimental design literaturs
to discourage the practice of varying ons factor at a time. In the case
of factors each at two levels, the support for this point of view is that
the vnriaﬁcca of the main-effect estimates using such designs are con-

siderably larger than with orthogonal dssigns.

On the other hand,; the experimenter often likes such decigns because he
finds out more rapidiy whether a new factor has ;ny effect. He con-
tinually receives information rather than having to wait till the entire
experiment is completed. If the megnitudes of the effects he is inter-
ested in are several times as large as experimental error, if he does
not need to describe these offects precisely, and if there are no inter-

actions, there is no particular disadvantage in experimenting in this way.

Another advantage of one-at-a-~time experiments ias that they are contrac-
tible or expansible without limit. Thus, no matter how many tests have
been run, the experiment may be stopped, in which case estimates of the
effecte of those factors which have already been varied may be obtained,

or it may be continued by the introduction of a new two-level factor.
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An excellent exposition of the statistical arguments against such designs
was given by Pisher in The Depisn of Experiments, sections 37 and 38 [2].
He bases his attack on their low efficiency compared with orthcgonal
designs and their lack of information about interactions.

Cuthbert Daniel [1] has presented the positive aspects of these designs.
He pointed out that they earé expansible and contractible and that they
provide a quick look at each factor. He went on to say that they can
often be augmented to form ; half replicate plus one additicnal rua, in
which case the lost efficiency is for the most part regained.

It is the purpose of this paper to investigate the properties of one-at-

ETTS

a-time designs. It is pointed cut that there are many classes of such
designs. A lower bound is obtained for the variances of the estimates

using any such design, and several classes are given for which the lower

R s R R

bound is obtained. The assumptions a:u_fhp}ﬂeaeh factor has only two
levels, that no interactions are present, and that there is no effect of
the order of observations on the response. The last assumption is necez-
sary becauss the order of the runs cannot be randomized. The number of

factors need not be specified in advance.
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BOUND3 FOR THE VARIANCES OF THE EFFECTS

We consider factors at two levels., For convenience, the initial level
of each factor will be considered the low level and wiil be denoted by

O or =. The firat run will have each factor at its low level. If
there are n factors the design contains n + 1 runs. The i-th factor
appears for the first time at its high level in run 1 + 1. After it has
been introduced it may stay at its high level, revert tc its low level,
or be varied between its two levels on subsequent tests. Thus there is

& wide latitude of possible one-at-a-time designs.

Experiments for eatimating the main effects of twe-level factors are con-
ventionally analyzed in terms of the coefficient matrix X as follows.
The first column of X corresponds to the grand mean and has all its
components equal to 1. Bach of the remaining columns corresponds to one
of the factors, and each row corresponds to a run. According to whetkher
a given factor is at its high or low level in a given run, the correspond-

ing element of X contains the entry +1 or -1,

Suppose a vector Y of N responses is obtained from the experiment.
Under the assumption that there are no interactions we may write
Y=Xg+ e, where B is the vector of the unknown parameters and e
is 2 vector of independent random errors having mean zero and common

variance o°. The least-squares ostimate B of p is B = (x'x)‘lx'r.
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The covariance matrix of § is oZ(X'X)'l.

In addition to working with the traditional coefficient matrix X, it
vill be convenient to introduce a reduced matrix R. Where X has an
element 1, R also has 1; where X has a =1, R has a zero. It
may be verified that X and R are related through the triangular

transformation matrix T according to the equation X = RT, as in the

following example.

1 1 -1 -1 -1 -1] 100000 1 -1 -2 a4 2 a1
1 1 =1 =1 -1 -1 110000 0o 2 0 0 0 0
1 1 =1 -1 =1 111000 o 0 2 0 0 0
1 -1 1 1 -2 -1 “"li1o1100 *lo 0o 0o 2 o o
1 1 1 -1 -1 111010 0O 0 0 0 2 0
[p 22 1 11 100111 0 0 0 0 o 2

In general, tiJ is given by the following rules:
ty =1

t = -1.(3’2’ seey n‘.'l)

1)

t53

=2 (3=2, ove, n+l)
tij = 0 (otherwise).

It may be verified that
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If X 1is the coefficient matrix for any one-at-a-time design, then the
corresponding R is lower triangular, and has 1l's down the main diag-
onal. Therefore the determinant of R is unity. Since the elements of
R are integers anry minor is integral. Since the elements of an inverse
are by definition an appropriate minor divided by the determinant of the
original matrix, R} aleo consists of integers. It follows from (2)

that each element of X > = T R™L nust be a multiple of 3.

THEOREM 1., For a one-at-a~time design containing n factors at two

levels and n + 1 runs, a lower bound for the variance of any estimate

1s $o°.

PROOF, The variances of the estimates are ¢-.v'2 times the diagonal ele-
ments of (x'x)'l. Because X 1is square, (x*x)"! reduces to (x‘l)(x‘l)'.
The diagonal elements are therefore the sums of squares of the elements
in each row of X Y. We know already that the elements of 1 are al1

multiples of +. The sum of squares of the elements in a row must therefore
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be a positive multiple of 3. If the value were <+, then all the sle-
ments would be zero except one which was equal to :%. The inner product

1 and a column of X must of course be either O or 1.

of a row of X~
Since the elements of X are all either +1 or =1, the inner product
of eny column of X with & row containing a single 3+ would be +%.

Therefore a lower bound to the sum of squares of elements of any row of

x1 is ¥, and the theorem is proved.

137

RanEILE

T T T 3 I e ) A AR AP TR R B e, g

R N SRR o B e T2 gy




CONSTRUCTION AND COMPARISON OF VARIOQUS
ONE~AT-A-TIME DESIGNS

The nost familiar family of one-at~a-time designs are those in which each
factor returns to its low level after it has been "studied”. The general
form of the mutrices R, R-l. and X—1 in this femily are exemplified

by the following five~factor case:

100000 100000] Mt 3+ %4 4]

110000 110000 -+ +0000

101000 -101000 -+ 03000
E= . R-l= . x-l::

100100{ ° -100100} ° -+ 00x00| °

100010 -100010 - 000%0

_];0000_1_ _-10000}_ _-J,r oooot

It will be noted that the variance of each main-e¢ffect estimates is %o?.
the theoretical lower bound. The variance of tho grand mean is

02(n2-3n+4)/4 for the n-factor case.

It is of interest to ingquire whether or not *there ie a family of designs
in which the variance of the grané mean is also at the minimum level of
%o?. The family of designs in which each factor is waintained at its
high level satisfies this requirement. Again using a five-factor example

to illustrate the general case, R, R‘l, and X' are as follows:
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100000 1 0 0 0 0 O "} 00 0 0
] 110000 -1 1000 0 -+ ¥ 000
'; 111000 L |oer 1000 e N
\ B=li312100 ' B =]loo-1100 % X =loo-%+o0
111110 0 0 0-110 0O 0 04 %
| 111111 (0 0 0 0-1 1 0 0 0 04

These two classes of designs are two extremes in which all factors are
either returned to their initisl level or are held at their new level.
Ordinarily an experimenter would like to determine which level of each
factor is better, and conduct the remaining experiments at the more de-
sirable level, Thus, in general some factors will be held at their new

{ level and some will be returned to their old level. In a sense, the
experiment will be midway between the extremes already investigated. Fo:
these extremes, the variances of the main effects attain the lower bound
of icg. The fact that the grend mean has a higher variance with the
first family considered will often make littie difference in the type of
1 experiment in which one-at-a-time designs are often used. It seems
appropriate to ask whether or not the main-effect variances will always

e %u? if factors are maintained at their more desirable level for the

duration of the experiment. The answer is yes as can be seen from the

following theorenm.
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THEOREM 2, For any one~at-a-time design in which each factor is main-
tained at either the high or low level after the initial introduction of

the high level, the variances of the main-effect estimates are all ioz.

PROOF, Except for the first row, each entry in the matrix X > is +
times the corresponding entry in R"1, fTherefore the theorem will be
proved by showing that each row of R-l except the firet contains

one +1, one -1, and the remaining entries are O. The proof will be

inductive.

The theorem is obviously true for the case of one factor. Two possibili-

ties oxist for n = 2¢

-~ 7
100] 1 0 0 100 100
B0 shiol; R0 20ar 1 0l R o]110]; rR1| 10l
111 0-1 1 101 -101

In either case R T has the required form.

Assume the theorem is true for designs involving n or fewer factors.
The reduced deeign matrix RZ for a design involving n + 1 factors may

be partitioned as follows:

o - -

=
]
it |
[
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Here Ro is the n x n reduced design matrix for a design of the re-
quired type involving n - 1 factors, and 2z is an n-conponent vector
of zeros, The vector r consists of zeros and ones, and is repeated in
the last two rows because of the restriction that a factor is held at
either its high or iow level after it has initislly been varied. The
single entry q will either be zero or one depending on whether the
n-th factor is to be maintained at its high or low level for the duration

of the experiment. The inverse of Rz may be partitioned in theo same

vay:
P 1 { ¢~
- 1 gl »
r_RO_ _ ;z_l_z__
-1 (I
Rz = L.B - }‘ |_0_1 e
b :c: 1l

Since R2 is a lower triangulsr matrix with Rl as a submatrix, Rzl
is also lower triangular with R{l (and hence also Rzl) as a corres-
ponding submatrix. Thus, the first n rows of Rgl are as indicated
above, where 2z again indicates an n-component zero vector. By the
induction hypothesis, the n-compornent vector a has all its entries
zero except one, which is equal to <l. Suppose the component q in
Rz is equal to 1. Then in order for the inner products of the last
rov of R, and the firat n + 1 columns of B= all to have the value

zero, the vector b must be an n-component zero (row) vector and o

must have the value -1, Now suppose q is equal to zero. Ia order
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for the inner product of the last rov of R, and the first n + 1 col-

2

umns of all to have the value zero, b npust equal a and ¢ must

%2
equal zero. In either case, the last ruw of R;

-1, and n O's, The theorem now follows by induction.

contains one 1, one

This theorem characteri.es the "optimum class® of one-at-a-time designs.
We conclude by giving an example of a very bad one-at-a-time design which
is not a member of this class. Suppose instead of returning each factor
to its initial low level immediately, it is kept at the high level for
one additional run. 1Intuitively it would seem that the latter series of
designs would differ little from the former, except that the high level
is "studied" a little further. 1In fact this minor modification seriously
degrades the quslity of the designs. A five-factor example of this series

is as follows:

10000 O 1 0 0 0 0 O .+ + 0 % o ¥
110000 -1 1 00 00O -+ + 0 0 0 ©
111000 1 0-1 1000 3 o-% ¥ 0 0 O
R = s R~ = i X = 101 1 1 °
101100 <1 1-1 1 0 ol -+ 3 - ¥ 0 0
100110 0-1 1-=1 0 0-% ¥+ %+ 0O
10001 1 -1 1-1 1-1 1 A e A e 4

In general the first two main-effect estimates will have variance %og.
the next two nz. the next two 1%n2, ete. This series of design illus-
trates the fact that apparently inconsequential modifications.of designs

can in fact have a serivus effect on the variances of the estimates.

§
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AYPENDIX E

SOME NEW INCOMPLETE FACTORIAL DESIONS

SUMMARY

An exhaustive search of possible twelve-run 21" designs has been mede.
There are nineteen essentially differeut design configurations, fifteen
of vhich permit the estimation of the mean, main effects, and two-
factor interactions. 7Two have been previously discussed in the litera-
ture. 1Two new designs seem to be of practical vaelue. One has varlances
of (15/128)02 for main effects and (1/8)02 for two-factor interac-
tions; the other has variances of (7/64)02 for the main effects, but

the interactions have samewhat higher variances.

An incomplete 2! design with 29 runs has been found in which all main
effects and interactions can be estimated with variance .0500%. A
modification with 36 runs allows estimates of the main effects with

variance .03902 and of two-factor interactions with variance 0480° .

INTRODUCTION

This paper was originally given in November of 1961 at a Central Regional
Meeting of the Institute of Mathematical Statistics held in Urbana,
I1linois. The research vork was done at the University of Chicago while

the author was a graduate student in the Department of Statistics. The
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paper describes two loosely sssociated investigations on 28 incamplete
factorial designs vhich were not, however, incorporated into the
author's thesis. They are of same general interest, and have heen
referred to in a general paper on non-orthogonal designs [2] by the

author. Since the latter paper has been submitted for publication, and

~with the anticipation that its publication will create some interest in

these results, this paper has been prepared at this time.

FOUR-FACTOR TWELVE-RUN DESIGHS

In the case of four two-level factors, there are four main effects, six
two-factor 1nteraction§, four three-factor interactions, and ocne four-
factor interaction. If interactions involving more than two factors
are negligible, there are, including the mean, eleven parameters to be
estimated. Two twelve-run designs have been proposed by Peter John [1]
to handle such situations, although he has given no indication as to
vwhether or not his designs are in any sense optimum. In an attempt to
determine the reilative merits of his designs, I have made en exheaustive
classification of all poseible four-factor designs containing runs at
tvelve distinct treatment combinations. It is most convenient to per-
form this classification in terms of the four treatment combinations
vhich are omitted.
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As usual, A, B, C, and D denote the factors. The treatment
canbination with every factor at its low level will be denoted by (1),
and every other treatment combination by those (lower case) letters
corresponding to the factors at their high levels. The treatment com-
binations form a group whose identity is (1). The product of two
treatment combinstions is the treatment combination containing all the
letters fram the original two except any they have in common. Thus,

for example, & Xb = ab, abc X ci = abd, and ab X ab = {1).

There are G ,f) = 1820 possible ways of choosing four treatment com-
binations to be omitted, but many of these choices lead to equivalent
designs. Tvo designs will be considered equivalent if one can be
obtained from the other by a combination of one or both of the following
tvo operations: 1) rearranging the factors, and 2) reversing, for any
factors, the high and the low levels. It follows that wve may, without
loss of generality, restrict attention to only those quadruples vhich
contaln any given fixed treatment combination; the treatment combination
(1) will be so chosen. The 39 distinctive sets of four treatment com-
binations given in Table I all contain the identity (1) and are such
that one cannot be obtained from another by rearranging the factors.
Thus, given any set of four treatment combinations containing (1), by
relasbeling the variables one of the sets in Table I will be obtained.

For example, [(1), c, abd, ac] becomes [(1), a, ab, bcd] which is
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TABLE I
DISTINCTIVE FOUR-POINT CONFIGURATIONS

(1),a,b,c (1),a,abc,bed = [(1),8,be,abed]
(1),8,b,ab (1),a,abc,abed = [(1),8,be,bed]
(1),a,b,ac (1),a,bcd,abed

(1),a,b,cd (1),ab,ac,ad

(1),a,b,abe (1), ab,ac,be

(1),a,b,acd (1), ab,ac,bd

(1),a,b,abcd (1),ab,ac,abe = {(1),a,b,abc]
(1),a,8b,ac = [(1),8,b,c] (1), ab,ac,abd = [(1),a,bc,bd]
(1),a,ab,vec = [(1),a,b,abc] (1),ab,ac,bcd

(1),a,ab,cd = [(1),a,b,acd] (1),ab,cd,abe = [(1),8,bc,abcd]
(1),a,bc,bd (1),ab,ac,abcd = [(1),ab,ac,bd)
(1),a,ab,ebc = [(1),8,b,ac] (1),ab, cd,abed

(1),s,ab,acd = [(1),a,b,cd] (1),8b,abc,abd = [(1),a,b,cd]
(1),a,ab,bcd = [(1),a,b,abcd] (1),ab,abe,acd = [(1),8,bc,abd]
(1),a,bc,abe (1),8b,acd,bed

(1),a,bc,abd (1),ab,abe,abcd = [(1),a,b,acd]
(1),a,bc,bcd (1), ab,acd,abed = [(1),8,bc,abecd]
(1),a,8b,abed = [(1),a,b,acd] (1),abc,abd,acd = [(1),ab,ac,bed]
(1),8,bc,abed (1),abc,abd,abecd = [(1),8,b,abcd]

(1),a,abc,abd = {(1),a,bc,bd]

7
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the 14th entry. The process of interchanging the levels of one or more
factors is equivalent to multiplying each coubination in the set of four
by another treatment combina. ion, namely that containing the letiers for
the factors vhose levels are changed. 8Since by convention esch set is
required to comtain the identity (1), all possible equivalent sets can
be obtained by multiplying the given set by each of its elements in turm.
Thus, starting with the set [(1),8,b,acd], three equivalent sets are
cbtained as follows:

TABLE II
Multiplier Derived Set Standard Form
(1) (1),a,b,acd (1),8,b,acd
a a,(1),ab,cd (1),a,ab, cd
b b,ab, (1),abed (1),a,ab,abcd
acd acd, cd,abed, (1)  (1),ab,abc,abed

The final colusn, labeled "Standard Form”, is obtained from the second

by rensming and rearranging the factors eo that the sets are in the game
form a8 ir Table I. In Table X those sets vhich are equivalent to sets
preceding them in the table have the equivalent set given after them in

square brackets.
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By exanipation of Table I it can be seen that there are exactly nineteen
equivalence classes to vhich the poesible twelve-run designs belong.

For those designs vhich are nomsingular, the variances of the estimates
using these designs are given in Table IITI. Each variance is wctually
a multiple of 0°, and only the cosfficients of u° are given in the
teble. Those designs from vhich it is impossible to estimate all

eleven parameters have the notation "3ingular” entered in the table.

The designs proposed by John are numbers 15 and 19 in Table III. Both
have the property that the four treatment combinations cmitted are sub-
groups, 80 that thesc designs are fractional factorials. The cnly other
designs with this property are the four singular designn. Both of John's
designs have the variance of each estimate equal to o? /8 except for
tvo estimates vhich have variance 30°/32. These are the grand mean

and & main effect for 15 and the grand mean and an interection for 19.
Cince mein effects are ordinarily of more interest, 15 would oftean be
preferable to 19, as John points out.

Three other designs appear to have merit; these are nusbers 14, 16, and
17. The average variamnce of the estimates is as lov as possible for
designs 14, 15, 17, and 19. Design number 14 is for most purposes the
best tvelve-run design aveilable, since it has the added udvankage that
esch main effect is estimated with a variance vwhich is below this
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TABLE III

iy

VARIANCES OF ESTIMATES FOR 12-RUN 2 DESIGNS

Variances (Times 128)

Number Combinations
Omitted Mean A B _C D AB AC _AD BC BD CD Det X'X
1l (1),a,v,c 48 28 28 28 48 16 16 28 16 28 =28 .3hx10u'
2 (1),a,b,ab singular 0
3 (1),a,b,ac 32 28 28 28 32 16 16 28 16 28 28 .skxaolt
b (1),e,b, cd 32 16 16 60 60 16 28 28 28 28 32 .3hx10-t
5 (1),2,0b,abc 32 28 28 60 32 16 16 28 16 28 60 .3hxao™t
6 (1},a,b,8cd 32 16 16 28 28 16 28 28 28 28 32 .3hxao™t
1 (1),a,b,sbcd 48 16 16 28 28 16 28 28 28 28 48 30"t
8 (1),a,bc,bd 16 1% 32 2k 2% 14 14 14 2% 32 24 .69)(1.01'1
9 (1),a,bc,abc singular 0
10 (1),a,bc,abd 16 1b 32 24 2% 1h 14 14 24 24 32 .69x0T
n (1),8,bc,bed 32 16 28 28 16 28 28 16 32 28 28 .3wao0mt
12 (1),a,bc,abcd 32 16 28 28 16 28 28 16 32 60 60 .ymlon
13 (1),8,bcd,abed singular 0
1k (1),ab,ac,ed 12 15 15 15 15 16 16 16 16 16 16 .1Lhxio™2
15 (1),eb,ac,bc 12 16 16 16 12 16 16 16 16 16 16 .Lhx0%2
16 (1),ab,ac,bd 16 1% 1% 14 1k 32 2k 24 2b 24 32 .69xi0F
17 (1),ab,ac,bcd 12 16 16 16 15 16 16 15 16 15 15 .1axaoW®
18 (1),ab,cd,abed  singular 0
19  (1),ab,acd,bed 12 16 16 16 16 16 16 16 16 16 12 .1hao‘2
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average. Design 16 would be useful if the intersctions were of oaly
incidental interest, since the main effects have the lowest average
variauce with this design. Design 17 would be useful if one factor (D)
ard its interactiocns were of the most interest.

It should be noted that design 1« is equivalent to & permutation-
invariant design. The concept of permutation-invariaance, vhich I intro-
duced in another paper [2], implies that all factors are treated alike in
the sense that the c¢ross-product matrix remsins unaltered if the factors
are permuted. By multiplying each treatment combination by a the
cambinations omitted axe seen to be &, b, ¢, and d, and this set can
be seen to be permutation-invarisnt. Design 14 is the only design of
the nineteen vhich is equivalent to a permutation-invarisnt design.

HEW PERMUTATION-INVARIART RESOLUTION-FIVE DESICHS

The class of fractional factorials is delicient for some experimental
situations, one of which is the case of the 27 when interactions are of
interest. Although only 29 estimates are to be cbtained, the smmllsst
fractional factorial is the half-replicate, containing 6k runs. This
fact is especially disappointing vhen one recalls that 8 factors can be
accanmodated in the ssme number of runs. Therefore there is considersble
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interest in finding an incomplecve factorial from which all the effects
and interactions canp be estimated efficiently and vhich is comsiderably
sEaller than the smallest fractional factorisl available. Two such
designs, both permutation-invariant, have been found for this experi-
mental situation. They vere derived by analogy with the permutation-

inveriant 12-run z“ design described above.

The first of the new 27 designs we will comsider contains just 29 rurs,
t = smallest poesible number. These runs are as follows: 1) one run at
the treatment cambination (1); 1i) one run at each of the 21 two-letter
treatment combinations (i.e., &b, ac, °** , f£g); and iii) one run at
oach of the 7 six-letter treatment cambinations (i.e., abedef, -°* ,
bedefg) . The estimate of the grand mean is
- (1/6)x(l) + (1/24) [!ab + e d xbcdefg]' Here Y(,), Y, etc.,
denote the response at treatment combirations (1), ab, etc. 1Its
variance is .07602. The estimate of the main effect of factor A is
Aom o= (L/20)Y(p) + (1/20) Dege oo+ Y] - (L/48) g+ - + X, ]
+ (1/24) [!‘bmfy cer # Ya.cdefg] - (7/48) Yyodetg® The estimates of
the other main effects are analogous. The variances of the main-effect
estimates are each .0500°. The estimate of AB is
AB = (1/28)1(y) + (1/40)Y,, - (1/2k) [Y, + - + Y]

+ (1/48) [ch + co0 & stj - (1/2k) Eracdefg + xbcderg]

+ (1/48) (Y, gqep+ =" + Yabdefg}' The other interactions are
defined anslogously. The variance of these estimates is also .05002.

152




In comparing incomplete factorial designs it is useful to define the
efficiency of a design for a given egtimt.e as the ratio of the per-run
information with the given design to the per-run informationm with the
full factorlal, where the information is the reciprocal of the variance.
For this design the efficlencies are .45 for the grand mean and .68

for the main effects and interactions.

The second of the new 2! designs contains 1) one run at (1); 1ii) one
ruc at the 21 two-letter treatment combinations; and 1ii) two rumns at
each of the 7 six-lettexi cambinations. Thug, the second design can be
obtained fram the first by duplicating each of the six-letter treatment
combinations. This 36-run design ks an efficiency of .40 for the
mean, .81 for the main effects, and .58 for the two-factor inter-
actions. The high efficiency of the main-effect estimates and the fact
that the design contains seven duplicated points from which an estimate
of pure experimentﬁl error can be obtained, meke this a particularly

attractive design.

A six-factor design analogous to the first seven-factor design has &also
besn investigated. This design contains 22 runs as follows: 1) one at
(1) ;‘ ii) one at each two-letter combination; and iii) one at each five-
letter cambination. The efficiencies are quite high, namely .83 for

the mean and .87 for the main effects and interactions.
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