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FORWORD

This is part one of a finai report on york sponsored by the Aerospace Research

Laborator ies, Office of Aerospace Research, United States Air Force, under Contract

AF 33(616)-7372, Project 7071, Task 7071-01. The technical effort, conducted at

Rocketdye in the Research Department, was monitored by Dr. H. Leon Harter of the

Aerospace Research Laboratories.

The initial motivation of the overall research program vas to develop methods

for finding optimun experimental designs, taking into account cost as well as

variac properties. Loss functions which included quadratic -t 11,-arcost terms

were used for designs based on simple regression models. Explicit minimizations of

this loss function were obtained iu certain simple cases (e .g., strictly linear

multivariate model) and acme interesting general nonoptimwlity properties of

orthogonal designs were discovered. Treatment of more general cases, however, met

with excessive coutational difficulty and for this reason the scope of the

original program was expanded to include the use of Bayesian decision theory and

finslly more recently the application of the methods of linear programming. New

tasks were subsequently added in the areas of expansible and contractible designs,

wmltivariate quantal response problems. and most recently estimation questions in

reliability g•owth models.

The research on loss functions has been described in detail in previous ARL

Technical Documentary Reports (ARL 62-373., ARL 63-107) and no further mention will

be made of it here. Results obtained in the other investigtions during the past

tWo years (ending February, 1965) are reviewed in the three parts of this report.

Part two deals with formulations of reliability growth models and statistical



estimation of parameters of the stochastic processes resulting from such models.

Part three involves the design and analysis of sensitivity expertments in which

there are one or more stimulus variables.

Portions of the york reported in part one (Appendices A, B, and E) were based

on dissertation research by the author vhile he vas a graduate student at the

University of Chicago. The author acknowledges the assistan of Mr. George

Uglean on various parts of this research.

iii



ASTPACT

This report describes results of research on factorial designs during a two-

year period ending In February, 1965. These include (a) characterizations of

orthogonal and two classes of non-orthogonal designs as solutions Lo linear ccn-

straints, (b) optinlity properties of orthogonal designs, (c) development of a

general class of non-orthogonal, sequential factorial designs, (d) results on

certain families of 2n designsj and (e) description of a special-purpose linear

programng couter routine for combinatorial problems in experimental design.
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SUMMARY

Results obtained along two lines of study are given in this report. The first

is concerned with a special class of sequential incomplete factorial designs, termed

"expansible and contractible". The study of this class vas motivated by the need

for designs which do not lose their desirable properties if they are stopped pre-

maturely or if new factors are added after the experiment has been initiated.

While any design can be ordered so that the factors are introduced sequentially,

not all designs have the contractibility property, namely that truncated designs

retain relatively high efficiency. In particular, orthogonal designs do not usually

provide convenient expansible series of designs. The class of one-at-a-time

designs is a convenient expansible series, but the variance efficiencies of such

designs are poor. The general class of permutation-invariant designs is defined

and discussed in detail, and it is shown that many expansible series can be con-

structed within this class. The variances and efficiencies for many resolution-

n
five 2 designs are given, and the best expansible series are indicated.

The second investigation involves the use of linear programing for finding

incomplete factorial designs. Details of the simplex method are reviewed, and a

special-purpose linear-programing computer routine for finding factorial designs

is described. It is shown how the special features of the problems, such as the

size and condition of the basis matrices and the degeneracy of the solution',, are

exlloited in the computer routine. It has been used successfully to derive several

known designs which involve constraint matrices of moderate size. On larger prob-

lemsn, computational difficulties and non-integral solutions have precluded obtain-

ing new designs.

Manuscript released by the author May 1965 for publication as an
ARtL Technical Report.

I1



This report has as appendices five papers which had previously been issued

only as internal reports at Rocketdyne. Appendix A deals with the formulation of

combinatorial problens in experimental design as linear programming problams.

Appendix B contains a survey of non-orthogonal designs., introduces the classes of

permutation-invariant aid clunDvise-orthogonal designs, and giver linear-

programaing characterizations of these classes. Appendix C is a paper on optimality

properties of orthogonal designs which was presented at the Chicago meeting of the

Aaerican Statistical Association in December of l964. Appendix D is an investiga-

tion of the class of one-at-a-time designs. Appendix E contains .results on incom-

plete factorial designs originally reported at the Urbana meeting of the Institute

of Mathematical Statistics In November of 1961.
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WXANIBLE AND C&COM ZBIZ I= da

If an ordinary incomlete factorial design Is halted prmeturey, most of the

informtion is lost. In indurtrial research amd development prograas, there are

many reasons why a planned experiment my be stpped,, Incluing budoetary chages,

failure of test equpment, pressure for results, or a shift In experimental

eaah&ais as it becomes obvious that a factor should be Included or excluded. The

uncertainty of the future of a program often leads an experimenter to resist the

apparent rigidity of a formal statistical test pla. 7he concept of designs which

introduce the factors sequentially, which we have chosen to call expansible and

contractible designs, has been developed to correct this deficiency In the designs

currently avalable in the literature.

A contractible design is an ordered specification of treatment combinations

at which runs are to be made vhich has the property that if the experiment is

halted prematurely, quantitative inferences about the effects of some of the

factors can still be made. Contractibility can be achieved by varying only a few

of the factors, preferably those thought beforehand to have the largest effects,

in the early part of the experiment. If the factors which ar held fed do not

interact with those which are varied, then the effects of the factors which have

been varied can be estimated without bias. The unestimated effects are, however,

aliased with the estimates of the mean.

Any design is expansible since any design can be repeated vith-a previously

fixed factor at another level. It is useful to app1y the tern, however, to series

of designs any one of which can be contracted to the next lover or expanded to the

next higher design In the series.



As an exa=3 of these ideas we consider a simple expansible and contractible

series for vV to three two-level factors. For one factor the design is s1mply

0

1,j

where 0 represents the low level and 1 the high level of the single factor.

Nov supose a second factor, Which was at its low level during the first two runs,

is varied. The design is

00

10

01 ,

of Which the first two runs have already been done. A third factor (at its low

level for the first three runs) may now be added in two additional runs, so that

the ccoqlete design is

000

100

010

001

111

In uwublished work this design has been shown by the mthods of Appendix E to be

the five-run design for which the variance of each estimate is minimized. After

the first two tests, note that the estimate of the mean is aliased with the Main

effects of the second and third factors, but the estimate of the main effect of

the first factor is not Lliased. Similarly, after three runs the main effects of

the first and second factors can be estimated while the effect of the third is



I

allased vith the mean* After four runs the effects of all three factors can be

estimated, but the addition of the fifth test iqproves the efficienqy of the esti-

mates considerably. Note that the last four tests coMprise a half-replicate of a

23. vhich is the standard design to use for three noninteractive factors* This

half-replicate is not contractible, howevere, and no estimates can be calculated

until after all four responses have been observed.

Below is described the general theory applicable to expansible and contracti-

ble designs for 2 experiments. The use of expansible series of orthogonal designs
/

is discussed as well as one-at-a-time designs. Fina3.ly, the properties of a

general class of such designs, pernutation-invariant designs of resolution 5, are

derived in detail.

EXPANSIBLE AND CCKMRACTIBLE DES•NS FOR 'WO-LEVEL FACTORS

General Theory

The treatment cawbinations of any inccs•lete 2n design can be arranged in

such an order that the factors are introduced sequentially. Here and in the

sequel, a factor is considered to be introduced at that run in Uhich the factor

first appears at its high level. If one considers the treatment combinations as n-bit

binary numbers, an arrangewet vith this property may be obtained by placing the

treatment combinations in increasing numerical order. If the factors are arranged

in order of increasing a priori iwportance (increasing masgnit•de of effect). then

the order of introduction is the inverse of the order of Inortance. A design

ordered in this way may or my not be contractible depending on Mhether or not the

siibdesigns are singular* For exa le, the subdesigns of the half-replicate of a

2'



001

010

100

111

are singular.

F=r 2n designs it on be shown that the variance of each estimate is mini-

sized if and only if the design is 92thogona3. Itis natural to inquire therefore,

whether orthasonal desis ame contractible and expansible. Since an o og-

onalincolete 2n design the hih level appears In half the tests, an orthogonal

design would necessarily be contracted to half its number of runs or expanded to

trice its number of runs by the deletion or addition of a factor. Therefore, if

there is pressure to hold the number of tests to a min'imm, It vill usually not be

useful, to restrict attention to orthogonal designs.

2re are several exceptions to the general rule that the contractibility

property is not satisfied by the orthogonal design which has the salUest number

of runs for a given experimant. The only exception for resolution 3 designs (i.e..,

those for estimating only main effects) is the trivial case of two factors, for

which the minimsl four-run design can be contracted to the m~nimal tvo-run one-

factor design. There are several exceptions for resolution 5 designs (those for

estimating main effects and two-factor interactions). These cases are: expanding

frm one il through four factors; ex In• g from five up through seven factors;

and expanding from eight to nine factors. In eal these cases the smallest orthog-

onal design containing i+l factors contains tvice a many runs as the smallest

for .

t 6
1.7



The aptimality property which loads one to select orthogonal designs is

based an variance considerations.- Such consideration amW be subordinate to

others In research and development proagram, In which it often happens that the

cost per test is ]arg and the error of an Individual observation is amiller in

iagnitude than the effects of interest. In the extreme case where the error

variance is zero, the only relevant criterion for a desIgn is its "degree-of-

freedom" efficiency, defined as the ratio of the nuber of paraemters to the

number of runs. In evaluating 2 designs one may take an intereadlate point of

view and consider the effLc 1 of designs, which Is the product of the degree-

of-freedom efficiency amd the prediction Index- defined in another report ].

The prediction index for 2 n designs reduces to the reciprocal of the product of the

niMber of runs and the average variance of an estimate. The index bas its =xi-

an value of unity for orthogonal (equal-frequency) designs.

One =xe concept which is useful in developing expnsIble series of designs

is the "guaranteed minimim". It my often be assd that the erperiment vll not

be stopped before a certain nuaber of rums bave been ade, which nmuber we refer

to as the guaranteed minit=. It is then not necessary to require that the design

be contractible beyond this minima. If a design has no guaranteed aintim asso-

ciated with It, then it is said to be fully contractible.

One-At-A-Tim Designs

A 2n design cotaining n+l runs in which the I-th factor is intrduced at

the (1+1)-st run Is called a one-at-a-tite design. Such designs are of resolution

3, axe fully contractible, and are perfectly efficient in the degree-of-freedom

sense. Their variance properties are, however, knavr, to be poor. In eqploratory

tera and the concept were sugested to the author by Cuthbert Dniel.

7



research with low error their dqree-of-freedan efficiency and contractibility may

still mke the useful dasipis. In another paper, vhich in Included as Appendix D,

It we shown that *12 Is a lover bound for the variances of the estlmtes

obtained from such deslps, and that the lower bound is attained for all the est1-

miter, pM mean and mIn effects, for one particular expansible series It has

also been demonstrated that a much vider class of o-at-a-tiie designs has the

property that the variances of the nain-effect estIuates attain the lover bound.

An awpper bound on the efficscy of such designs is 2/(2+l).

1 IHE MTS-mVARIANT I SS

ProErties of the Designs

A class of designs which often provides convenient expansible series is the

claUss of Pezmtatlm-invariant designs defined in another Mper,* which is included

as pedix B. For 2n experments such a series is characterized by a set of k

integers (=is 060 P NO) where for convenience the mi will. be arrmnged In non-"

decreasing order . For a a nk factors the design o taIns those i) treatent

canbIamtieas vith eacty a, factors at their high level, plus those (ý) com-

binatIms vith exwat n2 factors at their high level, , plus all those

~ canbnitimus vith exactly sk factors at their h1gh level.

Such designs, have the property of treating all factors alike hat is, the

varilaem of all min effects are equal, the varances of all two-factor interac-

ti•s are eqmsl, and covariances between ana-•ou pairs of estimtes are equal.

fe cross.product mtrias have a particular pattern wiflch allows general expres-

sims for the elomnts of the Inverse to be obtainiod. Consider first designs for

estImat/ only the grand mean and min effects, for which the cross-product

imtrix Is as follows:

8



N A A A A A
A N B B 2 B

AI B N D B

A B B N B B

A B B B N B
AIB B B B N

Althaa& this Is oul a five-factor exonpl, it serves to Mlustrate the gemral

cae. 2he three constants N, A, and B are respectively the nmer of rws, the

inner product of a coefficient vector for a man effect with am for the mean, nd

the inner product of coefficient vectors for two wm effects.

In designs for estimtiag the gran men, mm effects, ad two-factor Inter-

actions, the rouse-prodiact matrices have a samvhat, mae c=Wou stru&cture., vhIch

can be illustrated by a four-factor exaqil:

N! A A A A. B. B B B B B

A N B B B A A A C C C
A B I1 B B A C C A A C

A B B N B C A C A. C A

A B B B I C C A C A A

B A A C C N B B B B D

B A C A C B I B B D 3

B A C C A B B N D 3,3

B C A A C B B D I B B

B C A C A B D B B I B

B C C A A D B B B B N

Amssinair earbic numbers to the facl•re and representing Intratins by a pai of

nWhers, the rows and colvwe of thdo mtriz are oree so that they ame &&so-

clated with the tuna, factors I throto 4, and Interactlo In'the order 3.2' 13,

14., 23, 24, 3. Here N, Aj, and B ere defined "• before in the part of the matrix

9



associated vith the man and maln effects (the first five rows and colimns). Due

to the struture of 2 desIgns, they also appear elsmere In the mtrix. A

appears " the ij r product of oetfficient vectors for the mizn effect of a

factor and an Interaction contain that facor (for exa= , v- vith 12j, 3 vth

2a, etc.). B Is the imer product of coefficient vectors for an Interaction and

for the grand man, and of two coefficient vectors for interactions hoving one

factor In cm (e g., 12 with 13), as yeU . 2he constant C Is defined as the

inner product of coefficient vectors for a man effbct of one factor and for an

Inteaction involving second: and thrd factors (e -g., 2 vith 13). FiLU•Ly, D is

the Inner product of coefficient vectors for two Interactions Involving a total of

four factors (1. with 24d, etc.).

GenraL. eressions for the five constants are as folows for the a-factor

desIgn of the general series lus -Y n

elm,~ f('-2) -2 Iz L + ("2--)}

-3 (-, D +3 C -31 I-

wit the convention that when a binonla3. coefficient (j)is undefined because

q < 0 or p <q i ts vale is zero. The derivation for B will be given, the

otberi being c etwq nloos

rtou:,te .mt .,qw
L

•,.10



From an examtIat:on of the coefficient matrix X, given any two factorss,

one can see that B i. the number of occurrnce of 00 mlnus twice the number

of occurrences of 01 plus the number of occurrences of 11. Considering only

those treatmnt combinations with nt factors at their high levels, there are

OeILctl, 2 •combinations with tvo factors fixed at levels 1 and 1, because

there are ma-2 more l's to be ass'agwet to the n-2 remminng factors. Simi-

lar'ly, the number of occurrences of 0 and 1 fortwo fixed factors Is 0-2
and the number of occurrences of 0 sad C is (6.I Comb~inin these and

muning over I gives the above expression.

Covariance I~atsices of Permutation-Invariant Decigns

The covarlance matrix (the Inverse of the ctross-product matrix) for

permutation-invariant designs also ezbi ts a distinctive pattern. For main-

effect desIgns the inverse has the following form, again Illustrated by a five-

factor t,•qg3e:

a IL.LJ.B

The cocstant 0 times u2 (the emstant error-variance of the errors In the

observations) is the variance of the estimte of the msan, 702 is the variance

of an estimated mIn effect,, PU Is the covarlance between the estimmted mean and

an estimated effect, and W is the covariam between the estimates of two main

effects.



Because of the patterned structure of these matrices, a set of five distinct

equations in the four unknowns GCM, p 7, and 6 can be obtained by fornaly 3Ulti-

pying the cross-product matrix by the covariance matrix. For the general case of

n factors the equations ar as follows:

AG + [19 + (n-l)3) - 0

10+ A7p+ (a-l)AbwO

Ap +17y+ (n-l)Bm a31

A + B + [I + (n-2)B] 5 - 0

These equations are cosistent, and the explicit solutions are as follows:

a N + (z-))/A

P- A/A

7 - t(n-1)(NB.AZ) + N(1-B) ]/(N-B)A

6 - (XB-A 2 )/(N-B)A ,

whre Is given by A a n(MB-A') + N(I-B)

The covarlance matrix for the estimtion of the mnA, ain effects, and two-

factor interactions is patterned like the cross-product matrix for this case: Its

elements vIl be denoted by smaIn Latin letters. The four-factor exampU is as

follows:

12



a bb b b c cc cc c

b dcae f ff gg g

c f g gf iIh i i

Agin the matrix and its inverse my be formall.y multi~plied to obtain a set of

fourteen consistent equations in the ten unknowns. These equations are as follows:

NL+ nAb + (')Bc 3

A& + [Ni.(n-l)Blb +E(n-1)A + (11-l)Clc -0

Ba + 2A&+(u-2)C~b +EN+2(n-Z)B + (12.)D]c -0

Nb + Ad +. (n-3.)Ae +. (U-3.)nf + ( =gM0

Ab + Nd. + (n..1)Be + (n-l)*Af + (xL2l)cg a 1

Ab + Bd + [J,%(n-Z)B~e + [A+e(n.2)C~f + t(n-..)A I (n 2 )CJg = 0

bb + Ad + [M(n-z)cle + EN4.(n-z)y33f + E(n-2)B + (n-2) DJ& 02

Eb + Cd + £a.A+(n-3)Cle + [2B+(n-3)D~f +. [N+2(n.3)B + ('2ý3)D~g n 0

Nc + 2Af + (n-.2)Ag + Bli + 2(u-2)Bi + (n-I)B1 =0

IAc + (NABf + (n-Z)Bg + Ah +. (n-2)BACi + ( n2 )Dj =10

Ac + (ABcf + EA+(n-3)Clg +. Ch +. £A+2(n-2).e.n)Dji + C(n-.3)A+0.()I)DJ = 0

Bc + 2Cf + £2.A+(n-J4)C)g+ Dli + [4B42(riA)Dli + £N+2(n-4I)B+( 2- )D]3 = 0



Atto~ts have teen mude to obtain eqalicit solutions, but the algebraic cmplexity

prec'lies obtaining s1=3e eressioms for the Inverse elements. It Is fez esoler

to evluate and solve the above equations for a particular -Ase, and a slile

cowAuter routine has been vritten to do this.

WRIMC ULTS 0 (E •SGQlION-FIVIB 1B3

NUmarical results have been obtained for a large number of resolution-five

permutation-invariant designs, and these are given ln Table I. The table lists

the series (that is, the mi's); maber of factors; the constants I, A, B, C, and

D; the efficiency of the estimates of the mean, rain effects, and interactims;

the predictim index; the depree-of-freedon efficiency; and the efficacy. An

exainatiu of the table reveals that the best series in terms of efficacies of

thse tried are as follows for various values of the number of ru•s teed to

be made.

guarteed minixm best series n efficacy in

4i 10,1,21 2. 100
3 57

5 10

7 11,2,3] 3 57
4 52

5 29
6 14i

11i [z. 2,P 41 4 67
5 69
6 50
7 2.8

16 I 4I.51 5 I1
6 69
7 I5

22 (0s,2.,5) 6 89
7 58
8 35
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E'VAXilA.!IC3 07 P'A!0aE-WhVBXAIf III~

Efficiency
of of =In of lnter- d.f. effi- effi-

Series n. N A B C D me effects actimns P.1. clm c &cy

(0,1)2 40000 100 100 .00 100 100 100
3 7 -1 -1 -1 -21 57 57 57 57-14 100 57
14 2 -3 -1 13 10 18 36 2286 100 23
5216 -6 020o 2 6 25 9.63 100 10
6z22- o2 z-2 1 3 18 4.62 00 5

(0,1,31 )516 -20 -?.0 6& 145 614 56.69 100 57
6 27 -5 -1 -1 3 9 15 Jg5 25.56 81.48 21
7,43-1U -113 2 5 31 10-82 67.44 7

10.,2,23 -- 11 1 -1 -3 , 9' 65 65 67.29 100 67
5 21 -1 -3 -1 5 4&9 57 58 57-39 16.2.9 144
6 36-6 -142 4 13 27 1.6 35.60 41JJ. 22
7 67 -15 -3 5 1 38 45 69 59.32 4,3.28 2

Zs,2,3) 3 7 1 -1 1 -1 57 57 57 57.1)4 1M0 57
14 1u 0 -2 0 -2 57 93L 57 66.17 78,057 52
5 25 -3 -3 1 1 23 149 149 145.91 6h1.,00 29
6 141 -9 -3 3 1. 6 18 40 25.25 53 -66 114
7 63 -19 -1 5 -1 2 7 3 114.82 1.6.03 7

(%0s,1,16 22 0 2-4 -2 55 51e 65 61.5)4 100 62
7 143 -1 "l -5 3 62 19 52 514.69 67.1~1 37
8 79 -7 -5 -3 7 4 6 314 1.9 46.8: 5

(0,.2,p 43 5 1 6 00 00 100 100 100 100 100 100

7 57 -5 -3 -1 1 147 6z 80 73.35 50.88 37
8 85 -9-5 13 57 75 8,i 80.97 45-53 3

(00A) 5 3.6 140 -4 0 61. 28 145 38.50 100 38
6 36 14-14-1414 711 514 541 514.72 61.11 33
7 72. -1 -9 -1 7 38 56 51 51.33 1.0.85 21
8127 -15 -13 5 7 12 30 11.44 8• 9 29.13

(1,2214) 4 1U-1 -1 33 94~ 65 65 67.29 100 67?
5 20-2 0 2 -41 95 91 83 86.23 80.00 69
6 36-40 0 -4 88 86 79 81.05 61.U1 50
7 63 -9 -1 -1 -1 37 147 71 61.51 1.6.03 28
8106 -20 -2 0 2 8 20 59 37.01i 341.91 13

(4,3,41 )5 20 20-2 -4 95 91 83 86.23 80.00 69
61.1 1 -3 -31 83. 77 83 80.98 55.66 143
7 77 -5 -7 -1 5 33 52 , 62-27 37.66 23
8134 -20 -10 14 6 .0 28 57 142.22 27 61 12
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TAIRM I (Continued)

of ' "" mnJa 0o inter- d.f . effi- effi-
BerIes n N A B.C D me effects actio•.s P.. cey anLCY

(2,3,4) 4 1: 3 -1 -13 10 18 36 z2.86 100 23
7 25 3 3 -1 1 2.3 119 19 145.91 641.00 29
6 50 o0-6 o0z 23 86 419 52.63 44.00 23
791-9-933 10 45 15 42.22 32.87 1
6i154 -28 -io 8 2 14 17 110 26.19 24.03 6

10,14,51)729 3 5 -5-3 12 52 57 149.140 100 419
8 65 7 1-9 1 19 19 52 36.91 56.92 21
9136 6 -8-108 15 6 32 17.16 13.82 6

(Op,z,5)6 22 -2 21 -2 86 92 88 89.21 100 89
7 4.3-1 3-1 -5 80 97 81e 86.57 67-44 5
8 8 -1 1 -5-3 99 74 83 81.,0 3.-52 35

(0,3,5 ) 6 27• -1 -1 3 88 86 82 83.57 81.48 68
7 57 3 --3 -1 88 95 95 94.38 50.87 48

(o04,v5)6 22 8 2-4 -z 35 1U 31. 20.117 100 20
7 57 13 -3 -7 1 47 26 '45 38.45 50.87 20

(12:5) 5 136 -4 0 40 64 28 145 38.50 100 38
627-5 3,-5 58 74 72 72,11 81.48 59
7 49 -5 5 -1 -7 61. 91 714 76.76 59.18 145
8 92 -6 . 4 -6 -J 93L 65 78 75-4~4 40.21 30

(143,5) 5'16 0 0 0.0 100 100 100 100 100 100
632 0 0 0 0 100 100 100 100 68.75 69
763-1-1-1-1 99 99 99 98,77 16.03 115

(1,4,5p 627 5 3 -3-5 59 7:4. 72 72. 81.48 59
763 9 -1-7-1 81 6 85 79.09 46.03 36

(zj3pO 5)521 1 -3 15 1i9 57 58 57.29 76.19 144
6 41 -1 -3 31 81 77 83 80.92 53.65 4.3
7 77-5 -3 3-3 85 93 84 85.78 37.66 3

(2.,4,p5) 516 2 0 464 '5614 56.68 100 57
6 36 40 0 -4 88 86 79 8:L.05 61.1 50
7 77 5-3 -3-3 85 93 814 85.78 37.66 3

oo,,2,3 41z o o-4 It 100 62 6z 63.78 91.66 58
0,1,2,4 5 21-3 11 -3 90 90 90 90.30 76.19 69
0.,1j, 3A 521 11-3 -3 94i 88 88 91.39 76.19 70

0*O3 16 28 20 -2 4 97 87 8D 82.81 78.57 6
7 58 2 -2 -2 2 97 96 96 95.87 50.00 48

01,4*51 )6 28 4 4-4 -'4 57 72 72 70.97 78.57 56
02p,3.,5] 6 112 -2 -2 2 z 95 941 914 94.22 52.38 149

t0,z,11,29v5J1 5 171 1 11 97 97 97 97 15 94 .1 91
6 37 3 1. -IL -3 95 96 95 95.18 59.45 57
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The first of these resolutim-5 seriSes ,O, 1,92), Is a direct &Mio m of

the class of one-at-a-tim des4ps for the resolutlon- casee The series in fully

contractible, sa each design contains only as inny runs as there we pre amters

to be estimated. Like one-at-a-tim designs, the series becoms inefficient very

rapidly as '"b number of tactors Increases.

For my given series, the efficiencies ted to drop nonotonlclkly as the

nxuber of factors Increases, as one might expect. It is noteworthy, however, that

the efficiency of the men consistently drops nich more rapidly than the efficiency

of the ain effects, which in turn drops more rapidlay than the efficlea of the

Interactions. Thus, if interactions are of primry Interest, the series ame

particularly attractive.

Soon interesting irregularities In the inotonicity of the efficiencies as

the ntumber of factors i•creases m be noted, however. For exaule, In the series

(0,, 2,) the efficiencies of the anv ain effects, ad interactinns al decrame

regularlyas n goes from 5 to6to7 andthenJumpuas n ncmases from

7 to 8; sailarly•they•• for the series (oz,7) as n goes frao 6 to 7.

Th seems to be no consistent pattern for these irregularities, but rather they

appear to be an artifact of the 3ar.Ucular naricsl vaw m of the coanstts asso-

ciated with the desIgns. For saw of the later series in tfe tabJe, for hldch

i =- 5, there Is a tendency for the effici=ecies ameasured by the Prediction

'index to increase and then peak. When this Is observed the degree-of-freedca

efficiency is very low at the peak, so that these series do not appear to be iseful.

For saw designs it appears from the constants A throW& D that the effi-

clencies can be Imroved by appending a run at the treatimnt combinatiM vith all

factors at their lov level. Thi procedure adds 1 to , 3, and D and subtracts

17



1 fra A ea C. The last desgns In the tab ve r owstructed In this vay, and

for met of tbse selected designs the prediction lIMes did In fact Incres to

sm deg -&e value of the extra rvm, as measured by the efficaq, ms eWy

SLUt, evver, exoPt few am design. - Mw 12ok, 5) series vith •• - 5 han an

eff iaa of 57%, whil the Geries (02115 as an amaingly lhighr effloacy of

91%.
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M U INATION OF J=I.MS BY LDWR ELPRO

GEAL APPROACH

Various classes of inccqplete factorial designs can be characterized as solu-

tions to sets of linear constraints. Papers have been written giving the charac-

terizatios for orthogonal designs (Appendix A). and for the perintation-invariant

and cluawise-orthogonal classes of non-orthogonal designs (Appenix B). In the

case of orthogonal designsj the characterization is somewhat different from that

given by Addelmn (i. An investigation of the differences between the two charac-

terizations has revealed that designs enjoy two opti•ility properties if they are

orthogonal in the sense given in Mpendlx A; these results are described in

Appndix C.

Given the number of factors and the Interactions to be estJitod, the linear

constraints characterizing the class of desigps can be used to find the pLrticular

design In the class which has th smalest number of runs. It is always possible

to find a design in the class of interest, but those designs which are readily

obtainable are often too large to be practical. Starting fro the knom large

design, linear prograIng can be applied in order to obtain the smUl.est design

of the class. Mi procedure is JilI.ustrated In Apzpendix A for the fmily of

orthogomal 2 resolution 3 designs, where the half-replicate is obtained startiug

frcm the full factorial.

In order to study the line&r-progrmminzg technique for deriving designs, a

special-purpose linesr-programing coquter rout ine has been written. * t novel

features of the routine, which vere based on experience vith particular exeri-

mental-design problem, are discussed belov. UAlike the product-fos algorithm
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in genral use for solving linear programing problems, neither the baais matrix

nor its Averse, but only the triangularized basis, is available at any iteration.

Althotigh the routine has been used only for experimental-49sign problems, it can

presuimbly be used to advantage for any problem of a combinatorial nature such as

asslgmt problems, transportation problems, and scheduling problems.

]=-Ill.TO or =~ LIM=RPRGAIU COKPU1KR ROUTINE

The 8iaplex M~ethod

A brief review of the siley method will be useful in 'order to introduce

notation. The constraInt matrix VllU be denoted by A, and its number of rows

and colums by N and 1., respectively, vhere N < M. Te constraints are

represented by the matrix equation wv = b, vhere v is the M-component vector

of variables and b is the S-caqonent vector of right-hand sides. For conven-

iene and vithout loss of generality the linear form to be minimized will be taken

to be siq41 the value of the first c€olnent of v, vhich will be denoted by X.

Any basis selected fron tLe columns of A vwlL be designated by B. The cor-

responding basic solution v can be constructed from B3b U p as follows:
if column A appears in the basis as column Bt, then vi p; if column A

does not appear in the basis, then Vw - 0.

Supose the solution corresponding to a particular basis B is feasible.

Let B A,, so that • , - a' a dlet 0- =BiA. Any columz of A canbe

expressed as a linear combination of columns of B in the form Aj a gBj 1 +

6P + -'- + £Sj%. B4ose we wish to change the basis by introducing say A3

and dle tin Br. Upressing Br In terms of the new basis, ve have

Br "- " h42*B "'"(r..• "rl 8(r4.• *.r+. "'"" +rum
8r Br3 - gr3 B -* 3o
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"5tiWeng g d 0. If we substitute this value for B in the equation

ili as bj hve(p-Vr -)B + r A, = b. From this equation can

be deteruined immediately the folIovn elemnts of the solution p corresponding

to the new basis: p: PI±Prgi for g r r, and S ""

Suppose we wish to make the choice of a column A to enter,the basis in

such a vay that X does not increase. Since X is the value of the first element

Of the solution,, it chwnge from p1  to - so that it will not

increasc if g9j and gri have the sae sign. Assuming that p1 2 0 so that the

rJroriginal solution is feasilbe, si~pose we wish to choose Br in such a way that

feasibility is maintained. In order for Pr to be positive g must be positive,

and in order for the remaining p to be positive, r aust be selected so that

P m/grj " is the minima value of those p /gj for which g is positive.

Thus, if j is chosen so that g is positive, and if r in chosen so

that G is ninimized, then the solutions associated vith successive bases remin

feasible and the valu of X cannot increase. Thus, the process my be continued

iteratively until finally no column can be found to enter the basis.

Properties of EPper1imental Design Problems

The liner programing problems for finding incomplete factorial designs have

several distinctive characteristics. These are the large size of the constraint

matrices, the fact that the matrices consist primarily of O's and -l's (see

Appendix A), and the fact that the starting basic feasible solutions are often

highly degenerate., Due to the degeneracy., the course of the sipplex method is

typically as follows: man iterations are performed with no change in X because

a Pi is zero for which gij is positive, and thus * = 0; then on successive

iterations the value X decreases gradually., ith the associated solutions be.pg
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noandego" te; fin.aly a fiaI degenerate solution is obtained, but ny more

iterations ar performed before the condition that no 91_ is positive occurs.

Trismaulariat ion. In the Routine

Execution is initiated vith the matrix A stored in core e-l on auxiliary

tape, vith the firt N columns of A being the basis. The bais matiix is

triangularized by Gaussian elimination vith the elimination calculations applied

to the lag coluLms of A and to b, the vector of right-hand sides. It

vwi. be helpful in the sequel. to go through the eliaination steps for a simple

eWalse. Suffose the original matrix is denoted by

all a12 '1 '4 al5

a~l 422 '23 '4 '25

al a3, a3 4"5

vhre the fourth colmn vill represent a column of A not in the basis and the

fifth column vill represent the right-hand sides. After one step the mtrix

becmes

bl, b1 0 b14 b15

aezt stop yields the trIangularize~d systaf

CU 0 0

bU b22 0 b2 4 b25
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where c bij - baZb? /b,,, *gain assuming that division by bZ2  is possible.

In the program the divisors, or pivots, are checked to see that they are larger than

a tolerance t1 (usually 10"2 or 10"3). If not, rows are interchanged until a

large enough pivot is found. If none can be found, the matrix is considered singu-

lar. Because the mt"rices have as elements O's and -1'la, they are relatively

well conditioned. The program was written under the assumtion that the process of

pickin any pivot larger than the tolerance, rather than a time-consumin search for

i the largest pivot, would be satisfactory. Some difficulties due to roundoff have

been encountered (see belov), but they may be due to the size of the basiawtrices

: rather than an inherent weakness in this method.

Rules for Selecting a Column to Enter the Basis

After triangularization, the selection of a column to enter the basis is a

relatively simple matter, since the elments glj are Just cl /cll. Ordinarily

there will be a number of columns for which g• is positive, and three rules

have been tried for deciding amon them. These are:

Rule 1: Select the first column (starting with j w N+i) for which g
13

is positive.

Rule 2: Select the column with the largest positive gl•"

Rule 3: Select a column for which 6 > 0 if one exists, othervise use

Rule 2.

An exerimental investigation was performed in order to evaluate these rules. Two

representative problems, deriving the smallest 2a6 snd 27 resolution 3 designs,

were used for this study. The constraint matrices for these problems were of size

23X66 and 3OxlO, respectively. For each problem ten decks were constructed,

with the columns of A arranged in a different random order in each deck, and all

three rules were used with each deck. The number of iterations before the final

solution wa obtained and inuber of seconds of execution time were as follows:

23



RIJNIG TIME AND NUMER OF IrRATIONS FOR HREM SELECTION RULES

Problem 26 27

Rule 1 Rule 2 Rule 3 Rule 1 Rule 2 Rule 3
Deck see. iter. sec. iter. sec. iter. sec. iter. sec. iter. sec. iter.

1 39 50 9 26 14 49 269 1075 41 66 82 164
2 15 52 8 25 10 28 53 137 56 96 80 190
3 14 69 z8 81 17 61 74 217 69 165 136 311
4 13. 48 10 35 12 50 198 7M7 117 351 159 319
5 10 39 9 25 13. 36 69 217 290 587 99 176
6 14 71 9 32 16 77 307 44 77 86 168
7 14 68 9 33 12 43 122 399 88 176 267 752
8 24 161 8 28 11 36160 605 351* 677 125 238
9 3-1 59 18 26 12 44 325*1630172 401 44 66

1 10 .2 1 17 2 -1 81 464 ( 6o 1 -6
Averages 64. 57 7 .11W75 265.6 193 2 066.o

The number of seconds of execution is the Important variable, and these data have

been analyzed. As a check, three of the runs were duplicated, and the running time

was exactly the same twice and was one second different once. For two of the 27

runs., labeled with an asterisk in the above table, execution was stopped before a

solution had been reached, and the time at which this occurred was entered in the

table. The distribution of times is highly skewed, so an analysis of variance was

performed on the double logarithm of the times. This analysis revealed that

neither the decks nor the rules were significantly different vhen compared with

the rule by deck interaction. Therefore, for these two problems there is no clear

basis for choosing between the three rules. For a particular deck there is often

a considerable difference between the three rules, however, but this fact is of no

practical use since for an actual problem the properties of the particular arrange-

ment of the columns are unknown. For other problems than the 26 or 27 it May Some-

times be possible to make an intuitive choice based on the nature of the rules.

For example. if the number of columns not in the basis is smell coagared with the

number which are in, the amount of additional computation required for applying

Rule 2 is comparatively sza&l, and one might wish to apply that rule.
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Rules for SelectýM a Column to Leave the Basis

OnLV a column,, say the J-th, has been selected to enter the basis, a column

kust be selected to leave. Due to degeneracy, the value of 8 is usually 0,

and moreover there are typically several columns which have this value of 0.

There is nothing lost, and much coputational time saved,, by selecting the column

to leave with the lowest order number. If column r yields the value = 0,)

then the Pi and gij only need be calculated for i - 1, , r. Moreover,

when the new column A is inserted into the basis, the basis is still triangu-

larized except for the first r rows and columns, which produces a substantial

saving in computer time over triangularizing the whole basis. Since it is highly

advantageous to pick low r' s, the matrix A should be initially arranged so that

columns of B corresponding to zero elements of p are placed in the basis imme-

diately after A,, the column corresponding to X.

The column which has been selected to enter the basis is substituted for the

column to leave, and the latter is set equal to zero. In the course of applying

the simplex method it may be necessary for a column which has left the basis to

reenter at a later iteration. Because of this, in most linear programing routines

a column which has left the basis is invediately updated in such a way that it

enjoys the same computational status as if it bad never been in the basis. Because

of the size of the constraint matrices, there is usually a wealth of columns which

can enter the basis at any iteration, so that little is lost by deleting the columns

which have been removed. When it is determined that no column can enter the basis,

the original matrix is called back in from auxiliary tape storage, so that the

columns which had been deleted can become available for reentry.
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Detection of Roundoff Error

During the course of repeated retriangularizations of the basis mtrix,

roundoff error inevitably builds q. If this buildup is Ignored, singular bases

or infeasible solutions may be obtained, and much comuter tie lost in meaning-

less calculations. Supose that a system of equations has been triangularized,

and that the solutions to the system are to be obtained by back substitution. An

example of the triangularized system vac shown above to be of the form

cOl 0 0 c21 c15

b21 b2 2 0 b2 4 b2 5

a• a3 a• a• a•
a31 a32 ' 33 &3 35

where the fifth column of the original matrix is the vector of right-hand sides.

We vLsh to solve for p = (pp 2,p )' such that

"A1p 1+A÷p÷A p,-" ,

vhere the A are the original columna of the matrix. Frw the triangularized

system ve have Immediately

P1 n - /l

2 ( 25 - ,,- _ ,, •,,

p (a 5 "3- ap A 332 )1a

Note that the com~putat ion of p 3 involves all the elements vitich have previously

been computed, so that this element is the most sensitive to the accumulation of

roundoff error. Once again the degeneracy of the solutions, usually considered a

disadvantage in linear programming, can be put to good use. Due to degeneracy,

many of the pi have the value zero except for roundoff error, which can be
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expected to make these p1  smLIL positive or maUl negative nxuberg. Since it is

not possible for a P$ to have a negative value legitimately, a test Is made of

all the Pi which are calculated at a given iteration. if any is found which is

a larger negative number than a specified tolerance t' (us Y from -10"D to

-10"5)p the solution ic considered to be Infeasible, even thoug the infeaslbilit~y

my be due solely to roundoff error.

If a solution is encountered which is considered to be infeasible, or if a

I baais matrix is found which is considered singular, an attemt is made to correct

the problem automatically. This is done by going back one iteration, calling the

constraint matrix back from tape storage, and performing a new complete trimagu-

larization on it. On many occasions this procedure has successfully corrected the

ditficulty. If the matrix is found to be singular or the solution infeaIble after

gomn• back one iteration and starting with original' data, the problA Is discon-

tinued.

I CGIP9IETIONAL BOOM =a VIM M JT3VZ

Besides the 26 and Z problem mentioned earlierv attemts to determine eVli-

cit 28 29, and designs have been attemted vithout complete success. For the

28 and 5 the value of I decreased to the minimu theoretical values of 3 and 2,

respectively, but the solutiLO did not consist of Lntegerse. t cots pre-

vious experience noted In Appendix A; previousl• no non-integral solution in which

S was an integer had been obtained for an experimental-design problem.

In the class of orthogonal 28 resolution-3 designs the nallest Us knwn to be

the twelve-run Plackett-Buwmn design [2]. Attemts were made to derive this

desIgn starting from the twenty-run Plackett-Butman desJgn% for which 5. 5. The

Constraint matrix for this problem is of size 38 X 258. The basis matrix was
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called back fr= to~e and retrlavulariszed for four different reasons during the

course of this probleim tMse vore(a)an observed singular basis matrix, (b)an

observed inf Islbility, (c)no column could enter the basis, or(d)100 iterations

vere performed since the last callback. The comlete history of t•as problem,

Involving three Nspaate comuter runs, is as follows.

Callback !teration. CCment

0 24 singularit~y
1 100
2 no column can enter
3 100
41, 45 false Infeasibility (due to rouvioff)
5 100
6 51 true Infeasibility
7 1. still infeasible, A a 6.247
7 3 Initial solution reobtalned. (A. 5)
7 94 al Zse Infability
8 100
9 56 true infea ibility

10 1 still Ifeasible, a - 12.000
10 2 initial solution reobtained
10 79 singularity
.11 68 false infeauibility
12 7 first decrease in A to X a 4.578., followed by 10 cnsecutive

changes
12 17 false infeasibility, X .3.540
13 1 A. - 3.540, followed by 38 consecutive changes
13 3 false infeasibility, X - 2.881
14 1 A. w 2.876, followed by 26 consecutive chanes
14 27 false infeasibility, x = 2.576
15 0 singularity or infeasibility after callback

0 2 2.- 2580., fo~llowed by 6 consecutive changes
0 8 no. colmn can enter, X a 2.517
1 0 miwimum solution reached, X a 2.500

SW RUN, start at A a 3.027, require A k 3 .000
0 1 X - 3-000, no colmn can enter
1 0 ainimum solution reached, X = 3.000

The variables vI in the linear-programing formulation of these problems

correspond to the treatment ccambnations of the full factorial. he numerical

value of a vi is the number of times the corresponding treatment combination is
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Included in the design. The f*oowing f•nal solutin obtained afteor bouat I0

iterations, does not consist of Integers, hence is uselegp as. 0 4o .

Tmatint Combination VaLue Trftnt C a ion1 V

00000o000 1.000 10o0o100 .0453
000o 110 .10o20 10011110 .087
0o011010 .06 1o1.000001 .098
0010 1 0 1 .058 10100100 J.25
0o010110 .1172 101 00101o o 1
0,0111101 .5148 101001~1 0 06
0 0 1 1 1 11 0 .035 A 0 0 11 .11.6
0 1 000 0 1 .407 1 0 100 0 1 4047
0 1 000 0 1 0 .008 0 11 0 0 1 1
0 1 o 1 0 10 .035 1 1000000• o o
01001011 .381 1100110 -,323
016100111 .6469 -.l10 0 10 1315
0 ...1..1 0 0 10 ' ."6 :1.1 0.1,0 0.10 1 1 0.11 0 .318 - 1 0100 .000
0 .1 . 1 1 . 0 .0 1 0 1100 .100
0 1 111 0 10 .233 1 11.0 010'0 .490
0 1 1 1 1 1 1 .0145 1110 101 .551
1 0 0o0 1 0 .1s203 111,0 10,,.•16

Tbe~ ~ ~~9 swles orhgoa 1~s2t.4im-11 d";;;b xasnt y ~et bmen btLined

althOUgh three comuter runs bave bt.. att.tmted. f Comstxknt astru Is Ot

size 47 x 5•14, anz the ecouatiponU we V±b4t.ati.ed with th, Zk-jmw +R- ckt-

Burum de"s3 for uich , , 6X ft- tirt comut".e rwunnt =4 U W3 t

vith two callbecks besom stpin__ •w_ sacmd went ve 10. On ta, 1 b3 ,Q

the va"u of I ftcreased frin to 1440 m, Up, ^,tA, "'aIo~A h9

iterations brought the value dovn to X.- 3.W. In tA4 0 X Ip=Aoi•ipft r

during the nay trl arlstion built 1W to suc] a degree that ft, Jm ;t~blI1:r

vas observed Sind'ately and the p~r(*ba1.4- 'w C4LI~4.5 jaxm by

been &Ut4ted with the 2.
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TOM , 810.Ust knau Ort-m-Sma1 35 desIgn of resolution 4 is the 1/3 replicate

involViAg 83 .81 - It faIlm ft= the results of Appedix A that the amber of

runs In such a d"Isa umt be a w3ttpl of 27, ad it in knwn that 27 runs Is
IMnULaTcisat. It a.srs, theefore, that there should exist a 54-rm design.

MWe mStre•-Ix tMtr is 9fZs .xe 132 X 2x45, but due to Its size, the portion of

the trsi Ua core at &W am ti Is 132 X 189, the r•miuer being on u&XJIlrAy
tApe storq. BUx =oputer rums wm perfoad, involv~ng 381. Iterstions an 27

•tylbecksq each of VIch stpped vhen singularity or UAftesibility vas observed

i~iat,�~aft"ter a c3LLbe, In betVeen runs o vere rearsngd or the

andse t daefied above ,ere cbanged in wder that the problm voul

not hWA sst it hWd durrin the prewvios run. DurUWg the seventh c•uter rua

involvn O iteratin a 6 callbac, the value of X decreased to 2.075,

*Ad dmrn&Lthe elith zim the~ ns1m? 2 .0M irs Obta1.O for tbaM

otion to 35 Proble--Ttetment Cobmi~ntoons
Aad tAO Corraspondiag Vaims of the SolUtIOh

O0000 1.000 01112 .247 02210 .409 10221 .270 00 .521 2021 .330
000u. . 0=8 012, .469 022 .14.8 10222 .312 1102 .341 2020 .73'
00021 .637, 0120 .443 02220 .317 11001 .451 1U111 .583 2O000 .734
00022 .0145 01201, .28.3 02221 .,3314 11002 '.419 12120 .231 21010 .303,oozo .83 01202 267 10001 .413 .1010 .61.6 122 .323 21012 .230
00110 .016 O12o .258 10002 .055 11011 .084 .12201 .475 21021 .734
OO.u .. 82 01220 .146 10010 .307 .11022 .585 1220 .277• 110 .633
00320 .820 03221 .353 10011 .095 1u1100 .615 12232 .633 31.1' .633
00201' .091 01222 .351 10012 .. 545 111o .o040 12221 .308 m2.o .734
oozoz .226 o2o00 .60* 10oo02 .262 T11'.1 .548 12222 .306 912 .633
W0210 A.64 02010 .49 10021 .323 11191 .734 20001 .532 2120 .230
00211 .790 02011 .028 10100 .037 11.22 .064 20010 .431 2121 .605
00212 :230 02012 .233 10101 .114 120 .130 200.12 .303 21222 .532
00222 .499 o2022 .637 o101o .596 11z202 .3,45 20022 .73 22002 .73
01002 .396 0210r .z16 10112 .271 1•10 .176 20100 0532 22011 .73
01011 .551 02101 .389 10121 .238 11211 .731 20102 .303 22020 .532
01032 .371 021 .082 10122 .AI 112 .628 O8201 303 222.01 .532
01020 .502 02112 .601 10200 .431 12M00 .266 20112 .330 22110 .73
01021 .179 02120 .215 10201 .215 12002 .396 20121 .532 22122 .734
o01oo .079 1h21 'a 10202 '-403 12011 .507 20201 .303 22200 .7T
0.101 .6 020 .z6z o1020 .a83 32020 .704 2020 .330 22212 .532
01o10 .572 02•02 .529 1M020 .185 121 .17 20210 .303 2222 .734
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Atta~ts ver. made to obtain a solution by holiAng X. fixed and min~1aizIng

an arbItra~rilj Se)cted CON~orent, of the solution veetor, but tbaW did. wot SUcCeed

In obtainD an intogral solution. One approach, as yet =ntried., vhich my be

sefula is to inindae the sir of an aftitrary selection of the w1

*- special rzm vas conducted ca the 3s, ftrlzg whilcb nminix tiass acd

infozuation. on the progrets of ýthe routine vean prUIntd ratinr than the usual

output. The Nxi~ma nud~er of itezat ions betimen ma] backs Was set at 30. A total

of 15 callbacks vas made, vany of 'ifich ran the full 30 iterations the 4Mont of

timw rMqured. for a cslet to i u31stion of the 1.32 X U189 ffstAft P6Verm64

15 seconds.* It took sbout 3 seconds to call the matrix back frou tape. For the

first 29 iteratins, W~ till the first callbacks the coliwian nira Of the colUWAn

Uhich left the lasis vane as follow.

2 ie 21 15 5, 9
3 2 4 30 6 4
36 23 ý13 3 10

14l 6 1408:2

Potr the largest retrijiQguAjriZation# InVOlVIUS the Lirat 4O MWs QA'dcojlzs tin

tiM 1" 53/60 of ome second. * th sawlUmst retriaugula'imatios wore perfOgued

in, 1/60 of Owe second. This illuastratos the advnssof, aýloVII~q ýthe j4ieVt

possible COLIM to leave the busis It should be Uoted that Aj*I4n t ttlu

taken for all ca~utatians other than retriang lv~rIraous WAT80dse Wing i ftow

tape is negligible. Me total e~scution tim fer thi "I Q ~ 4X 7~

puter ws 6 *iuates and 40 seconds.



Alttou&h experience vith the routine has not been entirely successful, it has

desatrated the Seneral fmslbility of the techniques used. In particular, the

use of tAO ized atrix rather than the basis and its inverse appears to

be u.ntaMesouw. The Method used to ellaijte roundoff error vorks quite veil, as

Is evl ce by the number of t~urs false i•uersibilities vere detected and cor-

rMcted . fte m er of iterations after callback at vwhch false infeag b lity is

detacted varies Consideraly f"m callbac to callback. lberefore, a constant

callbck w would not appear to be effective . It is interesting to note

thatre success vas bad with the 35, vith constraint matriz of order l.U, than

vththe .z 9 hose coustrUt matrlx Is only of order 47,, at least in the sense

that more iterations per comuter run vere perfonied. It is gratifying that a

problem as large as the 35'could be hbnlad vith even partial success, but it is

dlsapointip. that the 29 turned out to be so difficult a problem.

It is unlikel that lioneer inius vill prove to be a useful technique for

"derivIg niv practical incolete factorial designs due to the sizes of the con-

sttaint matrices involved, the namber of iterations required for solutions, and the

problem of o-integra solutions. It does appear, however, that it my be possible

to use the linear constraints for these problems to direct a systematic trial-and-

error search for designs on a comuter. It is hoped that the special methods

1ncororated Into the coputer routine Vill hav more general usefulness vith other

topes of l4 r prMrsas,• problems.
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APP' D A

ia- i0 ACTOIAL MOM=

AND "MIR OOE!MATOE ISi LZNARUM ~ u

A necessary and sufficient condition is derived for an incomplete

factzfil design to be orthngonal under a very vide class of param-

ete•izations. The condition is that for every subset of t factors,

fhere t is twice the number of factors in the highest-order inter-

action to be est Imted, each combination of levels occurs Ohe same

nmber of time. This coudition is an extension of one due to

Plackett (1946). From this condition can be derived a set of linear

cantraints on the nutiber of occurrences of each treatnt combination.

The problem of finding the simalest orthogonal design to fit a g"ven

experimental situation is therefore an integer linear programing

problem.

It is shown that designs can be derived using ordinary linear

programing algorithus vith a few special devices, rather than the

more c icated Inteer linea programing'tchniques. As an

example, a one-half replicate of the 2 is derived in detail.

It is desirable to have available from an experiment an estiinte

of experimental error obtained from duplicate runs. Such an est~imte

Is unbiased by high-order interactions. It is shown how the linear

Srig'mi technique can be modified to find the sm31aest orthogonal

design containing at least one duplicated run.



1. wmODUCTUNc

In this paper ve consider the general class of orthogonal incom-

plete factorial designs. Anr design vhich does not contain the full

factorial vill be considered as an incoMlete factorial design, so

that the class includes designs having more than one run at some of

the treatment combinations. The class of orthogonal lnccmplete

factorial designs contains as a subclass the familiar fractional

factorials, for which the treatment ccmbinations at the runs to be

made form a subgroup or coset under a suitably defined group operation.

The definitions of such furdamental concepts as the parameteriza-

tion underlying the analysis of factorial designs, aliasing In incom-

plete designs, and the resolution of a design are often defined In

terms vhich apply only to fractional factorls. Since the discussio

vill not be limited to such designs, definitims vhich apply to any

incimlete ftactorial design vill be formusted.

bgr terizaton

The parameters for the model assumed in a factorial-design situ-

ation are often defined in term of their estimators in the full

factorial. For example, the main effect of a two-level factor may be

defined as one-half the difference of the average response at the high



level and the average response at the low level of the factor (see, for

examle, Yates, 1935). For our purposes it is more convenient to

define parameters directly in terms of the expected values of the

responses. For notational sioplicity we will define the parameters

for a design containing only four factors. We will use sr to desig-

nate the number of levels of the r-th factor, the integers

0, ' , - to designate the levels of each factor, and a set of

integers in Juxtaposition to designate a treatment combination. Let

the expected value of the response for runs at treatment combinstion

iJkA be denoted by •ijkA" A dot replacing a subscript will mean

that the expected value has been computed over all values for that

subscript. The grand mean is defined to be g. The main-effect

parameters for the first factor are a set of sl-1 linearly inde-

pendent contrasts (lineat combinations the sum of whose coefficients

is zero) among the •i. and main effects for the other factors

are defined analogously. The sl1 contrasts are usually taken to

be orthogonal as well as linearly independent. The two-factor

interaction parameters for the first two factors are a set of

(s8-1)(s -l) contrasts among the quantities uj.. , and these

contrasts are usually taken to be orthogonal to each other as well as

to the contrasts defining main effects. The definitions of the inter-

action parameters among other pairs of factors are analogous.



Similarly three- and four-factor interactions can be defined as cca-

trasts among certain of the ijkA" If 1 is the vector of ijkA

and if j* is the vector of tbr parameters which have been defined,

we may write 0* - j-1p, or P=Q*. The matrix Q* is in fact

nonsingular from the given definition of " in terms of •.

The effect of ignoring high-order interacctions

Experience indicates that in most factorial situations the high-

order interactions are so small that their estimates from an experiment

are not likely to be statistically significantly different froM zero.

If the high-order interactions are ignored (treated as if they were

zero) the model can be rewritten p ,w P, where A is a vector

containing those comcponents of 1* corresponding to non-ignored

parameters, and where Q contains a corresponding selection of the

columns of Q*. If may components of 13 can be ignored, it may be

advantageous to run an incomplete factorial design.

Let Y be a vector of observations from an incomplete factorial

design, and sppose EY can be expressed as EL = NA under the

assuation that ignored parameters are zero, where X contains a

selection of the rows of Q. Each column of X is casociated with

one component of •, and the column associated with a parameter will

be called the coefficient vector for that parameter.
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If the cross-product matrix XIX is nonsingular, then

-(VXX)½'XY is the least-squares estimate of IS. If XIX is

nonsingular, we vill say that A is measurable (Conwr and Zelen,

1959, p. 2). Note that ye have a"o ac1tuL asswmd that 1 is estimable.

When Iord parim ters have the value sero, measurability imm1i'ea estim-

bility. The expected value of $ is (VXO)"4 1X$* (B=o and Wilson,,

1951, Appendix D), Vere X* oisists of rows of Q*, so that the

exected value of a ca ent P0  of P is 130 plus a linear ccbt 'Ltian

of Iwnored. p.,rameters. This effect is called aliasing (not confounding)

amd P3o Is said to be aLUA.ed vith the linear cmbinatioa of Ignored

pmaters. Camfouding is a nwpeci& case of alas.la in vhich block

outrants are aliased with ipored Interaction plrameters.

The concept of the resolution of a design, introduced by Box and

Hunter (1961), will prove useful, and a slightly modified definition

is as follows. If a design is such that all parameters involving r

or fever factors are measurable ignoring all interactions of r+l or

more factors, the design is said to be of resolution Zr4-l; if all

parameters Involving r-1 or fewer factors are measurable ignoring

all interactions of r+l or more factors, the design is said to be

of resolution 2r.



Conditions for optisslity of orthogonality

It has often been stated that orthogonal designs yield the muxi-

mum possible informtioc per run for each paramter estimate. The

actual theorem vas first proved by Plackett and Burma (1946). If a

class of designs is considered for vhich the lengths of the column

vectors of the matrix X are fixed, and if there is an orthogonal

design in this class, then the variances of all estiates are indi-

vidually minimized over the class using the orthogonal design.

The condition that the lengths of the columns be fixed does more

than fix the scale of measurement. however. If the parsmeterization

is fixed it often happens that, for soe of the parameters, non-

orthogonal designs have coefficient vectors of greater length than

those for orthogonal designs with the sae number of runs. It can

also happen that non-orthogonal designs have lower variances for some

of the estimates than orthogonal designs with the sae number of runs

as in the following exaawle.

Consider an experimental situation with a single factor at three

levels. Let ,Op '_, and , be the expected value of the response at

the three levels, and let the parawters to be estimated be the prand

man, (go + 1+ P2)/3, the "linear efect'", (p. - po)/2, and th

"quadratic elfect". (Io - ? + I)/6. The design cansisting of
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seven runs at each level Is orthogonal, wa the variances of the esti-

Mtes are 2 times 1/21, 1/14,, add 7/294., respectively. The design

consisting of eiJht runs at levels 0 and 2 and five runs at level

1 is non-orthogonal and has va 'riances v2 tivas 1/20,. 1/16. aMd

7/2460. The ftCt that non-orthogonal designs may be sierior in this

sense to orthogonal ones has apparently never been utilized in the

construction of inccalete factorial designs.

Although orthogonal designs are not in general optimm in the

sense of mInImizis all the variances, experience :,dicat.* that they

are rarely far fro optimum. In the inortant case of factors at two

levels, or-thgonal. designs are optimum because all coefficient vectors

consist of plus and minus one, so that the length$ of the co1UM of

x are autoctically fixed. It has previously been shown (Webb, 1964)

that for most perameterizatis orthno-Ona designs satisfy other

criteria for optility (see Section 2 below). In addition. they

afford gret cqputational advantages. and therefore there is still

reason to be very much concerned with methods for constructing orthog-

ocal designs.

In a subsequent paper it will be shown how l1aar camstrafats oea be

used to characterize classes of non-orthogonal designs.
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2. .CI OF

Tensor product parameterizat ions

A desIgn is orthogonal. If X'X is diAgoneslp so tW,~ orbc3~ l

ity of a designi depends on the parameterization umad to descrbe the

response.* A characterizatiou of orth~gonality ViUi~ derived first

for a special cWass of parameterizations which wiii be referred to a

tensor product Parameterizations and then extCz~Ai to A 4g -

of pe~rameterizationB.

Loet U and V be an and a d~mmsional- vector spaces wVth

bases U,* ,u. amd, v 3  y. v, , respectively. Loet

an ma dimensional vector whose co~onents are the M PossIbU

product taj~eu in. a given order of a camonenat of u1 with a ca~o-

nenOf A i goes from 1 to an aa 3 goes from I. to u4

the vn e c-1ors wbhich t-ire produced in this manner are Li~ax'1y inde -

pendent. Let W be the vector space spanned by the wi. Tb*m V

is called the tsorgdu of the vector spaces U. and Vj, and the

basis IV I is called the product basis of the c~onenat bases

[u] and fv,3. If the bases '[u.) and [v 3 l aeroigzLhe

the bas is IV) is an orthiogon~al bas is for the tensor product.,

,L ,L



8•pose that In a expermewnt involving n factors the mnIa

effects of the .-th fator are defi"nod as o•on cutrasts a~ng

the empected values averaged over the levels of the other factors.

'he. edefficlexat vectors of these ag-l contrastog, together vith the

m1 -caqozoxmezt vector'ali of vhmse Maoe~ts are the constan~t 8.

famr an orthogonal bals for a vector space Vi. Let the two-ftactor

;ateractio. paramters betwe, the :L-th a•d, J-th factors be

"dOflned b~y all cosntmats (ezcotpt those which define muii effects and1

the ad meaW whose coefficient vectors are Izn the product basis of

the tenasor product of aV d Va. Te coutrots axe between the

exp~ected responses averaged over the levels of the reming n-2

factors. imilarl.y, three-factor t1rowab n-factor intemctions are

44=404 in teuas of the tensor product of sets of the Vj.

Slace the basis for each V1  is o-otbon's, the product bases

for tensor products of sets of the V1 are a"so orthogonal. mre-

fore, the rows of the mtrix Ianeartng in the reltionshp

- ~ G arutual~y orthopml. A column~ of Q*is therfore

a altie of the cooof Bi'wa. zince the comneznts

9f the roy of . f dining the gran uean are all equal to the

mtsntut l/&. a and since this -trix Is of-order If a

te ot vector for the gr*W man in ay (coq•lete or In=-

pLte) factorial desIgn hba all its Ote e¢ual to mity. Du to



the tensor product parameterization, a caGnent of the coefficient

vector for aan Interaction panatez' Is the procluct. of the cor-p139~

c~oniitgof the coefficient vectors for main efftec4 Of faCt=r

uakrins xw the interaction.

It should be noted that s~uch parameterizations are not new. In

particulAr, the eqmuivalnt of tensor product param erzations im

used by PlAckett (19416,, p. 330) 132 deriving Cotditi9nu for'ot~o1

ity, although be di.not %-Wou RrIO~q'Ut

The characterization

Plackett (19W6) was concerned with the situation iu,%&icb tbe.

min effects of a nuber of factors are to be eatizmted together with

the interaction between aay tvo of t~m. Re foua that In order ta

thbe inteanction parameters between A and B W bestImted orthog-

amall-yo92 all cbbzation of leve3s of A, ed B -Mat VPpa eqUaLUy

often with the levels of every other fact.W. In WAi CASS the inter-

a~ction betuween A and every other factor, and betwee 11 &an aW

otber factor, m ailso be estdited orbonuy. ,n- the present

POWe we are ccendwith the situatIon in Which all. inrctOUns

Of agiven order are to be estUmted. It is seeI, theef ore, that

-PUckttIS result does not appl. Our &enUa -** C teme.t i

given in Mworea J the first tumre tbeomm 6&141U 1 J4M#&Z7



MWOM 1. If In a 8iven design the ±-th factor appears at si

lAvels, the cofficient vectors for all its main-effect paramters are

orthogonalto the coefficient vector for the grand moan if and only if

evy level o the factor appears the a-ae number of tires.

PJMIO. Let the cocwcents of the a ccompent vector z be the

nuinhewn "of occurnsels of each level of the factor In the design. The

1Anar product of the coefficient vector for a ummi -effect parameter

snd the coefficient vector for the grand mean is equal to a non-zero

-. *Ca3ar times the inner product of z and the vector in V hich

Ofiwe the main effect. The vector z is orthogonal to all the

,,ictoro n VY defining main effects if and only if z is a multiple

of the baais vector, namely the vector of constants. There-

fo al cconent# of z ve Ovkal. ThscecLie tn o

"NOie nov ask hen &U the coefficient vectors for main effects of

. factor are orthoonaj.. to all the coefficient vectors for main

:t'ects of another factor. Because the tensor product paramiterim-

tion is being used. the inner product of tvo coefficient vectors, one

for aluain effect of one factor and the other for a main effect of the

qther, is numarically. the same a the Inue product of the coefficient

vectors for one of the two-factor interaction p•rameters and the grand

MAUn. We vilL nav prove that this observat ins tru more generally.



TvEOREM 2. All coefficient vectors associated with the m-factor

interactions among factors AI, """ j A, are orthogonal to those for

the n-factor interactions amon factors B1 .-. Bn if and only if

all coefficient vectors for the (m+n)-factor interactions are orthog-

cnal to the coefficient vector for the grand mean.

PROOF. Because of the vay Interactions were defined, there is an

(M+n) -factor interaction parameter whose coefficient vector ba as

components the product of coefficients for any given "A-interaction"

and any given "B-interaction". herefore. the inner product of coef-

ficient vectors for an A-interaction and a B-nteracticU is nmer-

ically eqgual to the inner product of coefficient vectorstor ep

"AB-interaction" and the grand mean.

Theorm I can =w be generalized to Includ orthogonal designs

for estimUtng all the effectea U uuU several factors.

MO3QRM . Given v factors J~ **, Av.. the coefficient

vectors for the grand "wean, main effects, and interactions of all

orders -re =utual3.y, or'thogonal it sad only if &U] possbe ±I Mo p1st4.n

of levele appear the "e number of tUnes.

PROOF. If every crpication appears the san the ofb ti

then the deaign is a replicated full factorlal2 in the v Uctors



jA.., As, so that in particular the design is orthogonal. NoW

suppose all the coefficient vectors are orthogonal. In particular,

all the coefficient vectors for main effects and interactions are

orthogonal to tbat for the mean. In the space vhich is the tensor

product of V1 through Vv,, let z be the vector vhose components

specify how many times each treatment combination appears in the design.

Any given effect or interaction parameter is defined in terms of sBo

vector, call it b, vhich is also in the tensor product. Then the

ier product of the coefficient vector for the given parameter vith

the coefficient vector for the grand mean is a scalar times z'b. The

vector z Is required to be orthbogoal to a.1 such b; therefore z

must again have all its comonents equal.* which concludes the proof.

In view of Theorems 2 and , ve have the folloving Immediate

corollary,€ hich serves to characterize orthogonal resolution t+l

des Igns.

MMCM( 4. A design of resolution t+1 is orthogonml under any

parameterization derived from a ccomlete tensor product paru•eterize-

tion by ignoring 'interactions involving j(t+l) or more factors if

and only if for every subset of t factors all possible conbinations

of levels appear the same number of times.
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PROOF. If t is even, all coefficient vectors for parameters

involving it factors are required to be orthogonal to coefficient

vectors for other parameters involving +t or fever factors. By

Theorem 2, this happens if and only if all coefficient vectors for

parameters involving t or fewer factors are orthogocnal to the coef-

ficient vector for the grand mean. By Theorem 3, this is equialeat

to the requirement that for every subset of t factors all possible

combinations of levels appear the same nuber of ties. If t is

o.i, all coefficient vectors for parameters involving ý(t-l) factors

are required to be orthogonal to coefficient vectors for other param-

eters involving j•t+l) or fever factors, which again is the case if

and only if all coefficient vectors for parameters involving t or

fever factors are orthogonal to the coefficient vector for the grand

mean. The reminder of the proof proceeds as when t is even.

Alternative Raneterizations

Theorem 4 remains true under a wide variety of paraueterizations.

In fact, we can state the following:

M[!OR 5. If 1 is a vector of parameters which are defined by

Ignoring interactions of r+l or more factors from a ccqlete tensor

product parameterization A*, if C is a linear transform of P,

say 09- C'P, and if the full factorial design is orthogonal under
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the parwaeterization C, then Theorem 4 is valid for the parsmetri-

zaticai C.

PROOF. Let Q and X be the coefficient mtatices uater the parm-

eterization P for the full factorial design and for any other orthog-

onal design with say N runs, respectively. Then the conditions of

the theorem inply that Q'Q4 X'X, and C'Q'QC are diagonal matrices.

But since X and Q represent designs orthogonal under the same

tensor product parameterization, X'X muat be equal to the constant

N/13si times Q'Q. Therefore, C'X'XC is also diagonal, as was to

be proved.

Recently, a theorem has been published by Addelman (1962) which

states that a design of resolution 3 is orthogonal if and only if for

every pair of factors the number of occurrences of the combination of

levels ij is given by nlj s n i.n.IN. Here ni. and n. are the

numbers of occurrences of level i of the first factor and level j

of the second factor, respectively. Such designs are called

proportional-frequency designs. The apparent contradiction between

Addelman's theorem and Theorem 4 above stems from a different defini-

tion of grand mean. His grand mean is the expected value of the

average of the observations made, while the one used above is the

average of the expected values at all possible treatment combinations.
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Although the first published proof of this theorem is apparently that

of Addelman (Addelman and Xnpthorne, 1961), its validity was

apparently recognized by Stevens (1948). Using the present definition

of the grand mean, but defining main effects by linear combinations of

the p i... other than orthogonal contrasts, Plackett (1946) showed

that the condition of proportional frequencies is necessary, but not

sufficient, for a design to be orthogonal.

The question vatia-ally arises as to which definition of grand

mean is preferable. If it can be supposed that the mean is only a

nuisance parameter, as for exanple in a screening experiment,

Addelman's definition would likely be the more useful. If, however,

the purpose of the experiment is to describe the response over the

points of the full factorial, then the present definition seems more

appropriate as can be seen by the following argument.

Since we are supposing that all points are of interest, the

criterion for judging designs should depend on the variances of pre-

dicted values at all treatment combinations of the full factorial.

Since these variances approach zero as the number of runs Increases,

the criterion should be adjusted in scme way for the number of runs, N.

A convenient and realistic criterion is therefore the average variance

of predicted values multiplied by N. Under this criterion the best
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main-effect designs are those which are orthogonal using the present

definition of the grand mean, as the following theorem demonstrates.

The theorem was given previously (Webb, 1964), and is reproduced here

for convenience.

MEOREM 6. In a design for estimating parameters under any main-

effect parameterization, the average variance of a predicted value

times the nimber of runs is minimized if and only if the design is an

equal-frequency design. In this case the variances of all predicted

values are equal.

PROOF. Let X be the coefficient mtrix of a design under same main-

effect parameterization. Let Z be the coefficient matrix of the full

factorial. Let X contain N rows, Z contain M rows, and let

there be p parameters. The value of the criterion being considered

is (O2 N/M)trace Z(X'X)Y'', where a2  is the error variance of an

observation.

If EY = XA under the given parameterization and A is any

nonsingular matrix, then under the parameterization a = A'• the

coariance matrix of predicted values is aZZA(AtX'XA)-LA'z', which

equals 02Z(X'X) '-'. Therefore the choice of parameterization is

arbitrary. Without loss of generality we will choose a tensor product

parameterization in which the main effects are scaled so that Z'Z is

equal to the constant M times the identity matrix.
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Now choose any factor at say s levels and consider columns of

Z corresponding to the s-i main effects of the given factor. By

rearranging the rows of Z, these columns can be expressed as an

s by s-i matrix S repeated vertically M/s times. Letting i be

a vector containing s ones, we observe now that the matrix

1//s • [iE,S is orthonormal. It follows that the sum of squares of

any row (or column) is equal to unity. Therefore the sum of squares

of any row of S is equal to s-1. This argument may be repeated for

each factor, so that the sum of squares of any row of Z is equal to

p, the number of parameters. Since the matrix X contains a selec-

tion of the rows of Z, the sum of squares of any row of X is also

P.

Returning to the average variance of a predicted value, note that

0/M tr Z(X'X)'z' = a2 /M tr (X'X)'*z'z = • tr (X'X)-I. But the last

expression is equal to * " l/)i' where the X are the eigen-

values of X'X. Howevor, the 'ium r x 1 fixed eince

E Xi = tr X'X = tr XX' = N - p (the sum of squares of any row of X

is equal to p). If the sum of p positive numbers if fixed, the sum

of the reciprocals is minimized if the numbers are all equal. The

eigenvalues of a matrix are equal if and only if the matrix is a

constant times the identity. Therefore the average variance of a pre-

dicted value is minimized if and only if XIX is equal to N times
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the identity and then the average variance is 0 2p/N. Since a tensor

product parameterization was used, Theorem 4 applies and the criterion

attains its minimu value 2p whenever for each subset of two factors

each combination of levels appears the same number of times. Further-

more this result is independent of the parameterization used and of the

number of runs. If XIX is equal to a constant times the identity

matrix it is easy to see that the diagonal elements of Z(X'X) '-' are

all equal. This cMpletes the proof of Theorem 6.

3. CONSTRUCT3NG DESIGNS BY LINEAR PROGRAMMING

Conversion to a linear programming problem

In this section a detailed method for recharacterizing an orthog-

onal design as an integer solution to a linear programing problem is

presented. First, consider the special case of symuetric designs, in

which all n factors are at s levels. Theorem 4 implies that, for

any t factors, each combination of levels occurs the same number of

times, X. This number is called the index of the design (Bose and

Bush, 1952), and the number of runs, N, in the design is given by

N = Xs Let Jo be a collection of all treatment combinations which

are identical in t components, say the first t. There will be

n-t vectors in Jo. Let w be the numbei of occurrences of
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treatment combination j in an orthogonal resolution t+l design.

Then Theorem 4 requires that Z w be equal to X. But the first
Je JO J

t
t components may be fixed at any of s sets of values, eeh of which

yields a constraintZ .• = X. This arg' mient may be repeated for all

(t) subsets of t factors, so that in all st x (X ) constraints may

be written down.

The analogous results are more complicated for asymmetric designs,

in which the n factors appear at sl, s2, ... , sn levels, respec-

tively. For convenience, we first extend the definition of index to

apply to asymmetric designs as vell.

Let I be a subset of t of the integers I through n, and

let the collection ( 17I y] contain every such subset. The index

class r will be the integers l, 2, ..- , ()). Let K be the least

common multip.-e of the numbers niel sip as - ranges over r. The

number of runs in an orthogonal resolution t+l design must be a

"."Itipl .,f K, say N = %K. This number X may be defined as the

index of the design.

Suppose J7 is one of the Difi si collections of all those

treatment combinations j which have fixed values for the set of

components whose ordinal numbers are in the set I7. Then Theorem 4

implies E36~~. Wj I K i 1 7 s As y ranges through I', a set of
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constraints is generated which must be satisfied by any orthogonal

design. This set is linearly dependent. Two methods for reducing the

complete set to an equivalent set of linearly independent constraints

are described in the Appendix. The constraint matrices given in the

examples below were constructed by using one of these methods (the

"base-set method").

Eliminating unacceptable solutions

The problem of finding the orthogonal design with the smallest

value of N for a given set of factors and given resolution is now

equivalent to finding a set of non-negative integer values for the

variables vj and X such that the set of constraints sumsa ized by

Ejej j = KX/UI 7 si is satisfied and such that X is minimized. If

the problem is stated in this form, then w = 0, X = 0 provides a

trLvial solution. To rule out this solution, the additional require-

ment that X be positive can be added. A convenient way to include

this requirement is to add a new non-negative variable X* and the

constraint X-A* n 1,

The full factorial is orthogonal and hence satisfies the con-

straints with each variable w equal to unity and the number of runs

equal to Iil. By multiplying each variable by the fraction K/fl s

another unacceptable solution is obtained with X equal to one. It
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follows from Theorem 4 that an orthogonal design remains orthogonal If

the designations of the levels of any factor are rearranged. Since a

design must have Kt least one run at some treatment combination, we

may require that an arbitrary one of the wj, say v•0...0, be greater

than or equal to one. The addition to the problem of a non-negative

variable 6 ..0 and the constraint 'k...o - W 0..0 =1 will rule

out the unacceptable solution corresponding to X L.

Non-integer solutions may still exist, but in the examples worked

to date, the use of the simplex method for linear programming tcsether

with a simple algorithmic device has led to the smallest orthogonal

designs. The device is as follows: if the minimum solution to the

problem obtafr i1 by the simplex method is such that X is not an

integer, change the problem by requiring that X be greater than or

equal to the next larger integer. This can be done by revising the

constraint X-X* = 1i rather than by adding a new constraint, so that

Eame of the previous feasible solutions may still be feasible solutions

to the revised problem. Thus, it is not necessary to start the linear

programing procedure over from the beginning.

Numerical example

The following example is intended only to illustrate the steps

involved in constructing designs by linear programing, the resulting
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design being a familiar fractional factorial. In Sectioi 4 some

designs will be derived which are not fractional factorials, but their

construction does not illustrate the general procedure. It will be

assumed that the reader is femiliar with the basic simplex method as

described in any linear programming text, for example, Hadley (1962).

We will derive the smallest design of resolution 3 for a 24 exper-

imental situation. For convenience we abandon the vector subscripts on

the v and substitute numerical subscripts. Let w be the number

of occurrences of that treatment combination which is the binary expan-

sion of the decimal number J. Thus w0  is the number of occurrences

of 0000, w, is the number of occurrences of 0001, and so forth.

The independent linear constraints (obtained by using the base-set

method described in the Appendix) are given by Aw = b, where

w = (XI, X¶ w, Wo, w),... , w1 #)', b = (1, 1,, ... , 0)', and A

is the following matrix (a dot is used for zero).

1A A* A0 A1 A2 A3 A4 A5 A6 A7. A8 A. A1 0 All.A1 2 A 1 3A 1 4A
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In order to start the simplex method, an initial basic feasible

solution is required. The solution corresponding to the full factorial

design is X = 4,, wo=0, andw = 1 for J 1, ", 15.

This solution is feasible but not basic.

Denoting the columns of the matrix A by A, A*, Ae, AO, A1 , .-

A5, and substituting the full-factorial solution into the equation

Aw = b, we obtain the equation 4A + 3A* + 1,5 A = b. An obviousJ-0o j
linear relationship among the columns of A is

A + e + A + A5 + A6 - A + A8 + A15 = 0. Subtracting this equation

from the previous one yields the equation

3A+2A*+k+AA+A 2 +A4+2A7+A9 ÷AlO+AI+AZ+A13 +A14 = b, to which corresponds

the solution X = 5, X*7 2, = 2, wJ = I for J=O, 1, 2, 4, 9, 10,

ll, 12, 13, and 14, and the remaining variables zero. It can be

verified that the columns with non-zero coefficients in the last equa-

tion are linearly independent. Moreover, there are exactly thirteen

such columns, the same as the number of rows, . thaL this solution is

basic and feasible. For other designs a set of lVnearly independent

columns of the constraint matrix can be obtained by using the solution

corresponding to a known fractional factorial. It may then be necessary

"to adjoin additional columns in order to have a full basis.

Returning to the present example, let B be the basis matrix

consisting of the chosen set of linearly independent columns, that is,
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B - [EA,, 01 A0 ,ý A1, A2j, A 4, AT, A9, Ako' All' A32' A1 , A143 In1r

applying the simplex method we first compute Gw B' A and wB = B'4b.

Those columns of G which are not colimns of the identity matrix aLd

the vector wB are as follows:

-3 1 1 1 -2 -2
-3 1 1 1 -2 -2 2
-1 0 0 0 0 0 1
-1 1 1 0 -1 -3i 1
-1 0 -1 -1 1

0G9,G,,Gs, GE , G"53 = -2 1 1 1 -1 -1 , wB , 2
-10 0 1 0 -1 1
-1 0 1 0 0 -1 1
- 1 0 -1 1
- 1 0 0 -1
-1 0 1 0 -1 0
-1 0 0 1 -1 1

Since the linear form to be minimized is just the first variable

X, a column of A should be introduced into the basis only if the

first component of the corresponding column of G is positive, for

only then could X decrease. The column A3 will be chosen to enter.

In order to maintain feasibility, the column chosen to leave the basis

must be such that for gi > 0 (gi3 is the i-th component of

column G3 ) the ratio wBi/gi3 is minimized. The smallest value is

1 vnich is attained for i - 4, 5, 10, and 11. If we allow A, to

leave the basis (for which i = 4) and recompute G and wB using

the revised basis matrix, we obtain:
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-2 -1 0 1 -1 -1 2
-2 -1 0 1 -1 -1 1
-1 0 0 0 0 0 1
-1 1 1 0 -1 -1 1
0 -1 -1 1 0 0 0

-1 0 1 1 -i -1 1[GO' ,Q, G 5, G6,9 G8,pS G =5 -1 0 0 0 0 0 ,B 1
-1 0 0 1 0 -1 1

-1 0 1 0 0 -1 1
0 -i -1 0 0 1 0
0 -1 -1 0 1 0 0

-1 0 1 0 -1 0 1
-1 0 0 1 -1 o 1l

The solution now corresponds to one of the half-replicates of a

24 design. Since G6  is the only one of these vectors whose first

component is positive, A6  is the only vector whose admission into the

basis could make X smaller. For the fifth row the ratio WBi/gi6

has the value zero, so that the corresponding column of A, namely

.2 , is the only column which can leave. Since the minimum value is

zero, the solution does not change. The basis matrix is now

B [A, A*, AO, A3, A6 , A4 , A7 , A9, A0' All, A2' A1 3, A4"

The columns of G of interest are now the following:
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-2 0 -1 1 -1 -1 2
-1 0 -1 1 -1 -1 3
-i n 0 0 0 0 1
-i 1 0 1 -1 -1 1
0 -l 1 -1 0 0 0

-1 1 -1 2 -1 -1 1
[GG, GGG 5,G8,G, 5 ],= -1 0 0 1 0 0 w = 1

-1 1 -1 1 0 -1 1
-1 0 0 1 0 -1 1
0 -1 0 -1 0 1 0
0 -1 0 -1 1 0 0

-1 0 0 1 -1 0 1
-1 1 -1 1 -10 1

The vector A5 can be introduced into the basis, and the miniimumi

value of the raUt.o VBi/gi 5  is ½, so that A4 must leave the basis.

The new solution i w (1is 1, 0, 0,o0,, 0, +,4,4,0, 0,),4,4,4,4,o .0

By reccqputation of G it may be verified that no new column can come

into the basis, so that the present solution is a minimum basic feati-

ble solution. It does not consist of integers, however, and therefore

does not correspond to an actual design. Nevertheless, we now know

that there can be ao design wit? X = 1, so the zrwllest design must

have X 2 2. We have incidently obtained a solution with X = 2,

however, so that the half-repl'cate corresponding to that solution is

one of the class of smallest orthogonal designs, as are the other

known half-replicates of a 2 4 design.
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4. AL-MR•ATIVE ORTHOGONAL DESIGNS AND PARTIAL DUPLICATION

The technique of viewing 'an experimental design as a solution to

a set of linear constraints lends itself naturally to the investigation

of possible alternative designs. Consider a simple experiment involving

two factors at two levels and one at three levels, and suppose that only

the grand mean and main effects are to be estimated. For this experi-

mental situation the constant K is equal to twelve, and therefore an

orthogonal design must contain 12X runs, where X is the index. The

full factorial is orthogonal and involves exactly twelve runs, and

therefore is a bmallest orthogonal resolution 3 design for this situa-

tion. One may ask whether there are any other orthogonal designs with

just twelve runs.

Let the third component of the treatment combination vector repre-

sent the level of the three-level factor. The linear constraints may

be written in a form expressing each w as a linear combination of

,Wo, and wl, where w0 and w1  are the numbers of occurrences of

treatment combinations 000 and 001. These linear combinations

appear in the second column of the following table.
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Treatment
Combination Variable Solutions

000 vo 1 2
001 ). 0 1

002 v2 = 3x-w 0-w1  1 2 0

010 V 3= 2x-w 01 1 0O~b 3 0•,o z

032 w4= 2''l 1 2 1
012 n5 W 0 +WO"-x 1 2

100 'r W 2%-V 1 1016 0
101 w7 w' 2x-wI 1 2 1

102 w8  0 w+wl'X 1 0 2

"110 ' = V 1 1 2

111 al0 mW1  1 0 1

112 w1 = 3.-,o-,l 1 2 0

The full factorial corresponds to taking w0 = 1, w1 = ii and

X - 1, and this is the first of the three solutions given in the

table.

If w0  and .l7 areý,assigned values it is possible to construct

a design with these values if X is chosen properly. It seems

plausible that if the value of w1  is decreased to zero, then the

value of X would not have to increase. This is indeed the case, and

the corresponding solution is the second one given in the above table.

The structure of this design is interesting. If the C level of the

third factor is ignored, the design is a half-replicate of a 23 run
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twice. Also given in the above table is a third design, which is a

repeated half-replicate of - 23 if level 1 of the third variable is

ignored.

There are several altermative designs available in many experi-

2mental situations. In the case of a 2 • 3 situation there are, in

addition to the full factorial, orthogonal resolution 3 designs with

the same number of runs in which four treatment combinations are dupli-

cated and others in which six treatment combinations are duplicated.

I
There are two basic reasons for the selection of alternative

designs. The first is that sometimes certain sets of experimental

conditions can not be attained, and there may be an alternative design

which does not include the taboo treatment combinations. The second

reason is that alternative designs often provide partial duplication,

The argument for partial duplication has been given by Daniel

(1957) and by Dykstra (1959). Briefly, it is this: if partial dupli-

cation is present, an error estimate is available which is unaffected

by the presence of high-order interactions. Dykstra gave a catalogue

of partially duplicated designs. some of which are due to Daniel. The

designs catalogued are constructed by combining pairs of fractional

factorial designs, and are all non-orthogonal.
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The linear programing procedure for orthogonal designs can be

modified to obtain a procedure for finding the smallest orthogonal

design involving partial duplication. Rather than requiring that w0

be greater than or equal to one, we require that w0 be greater than

or equal to two. Consider again a 24 experimental situation as in the

numerical example of Section 5. The constraint matrix A remains

unchanged. Since the smallest orthogonal design has I equal to 2,

we may start with the constraint X-L* = 2. The vector b has its

first two components equal to 2 and the remaining components equal to

zero. The minimum basic feasible solution to this revised problem is

twice that which was obtained in the example; that is,

(3, 1, C), 2Oi,0, 0, 1, 0, 1, 1, , 0, O, 1, 1, 1, 1, 1, O). Among

incomplete 24 designs of resolution 3, the corresponding design is

therefore the smallest which is orthogonal and involves partial dupli-

cation. A single duplicated point would ordinarily not be enough. and

since the given design is a unique minimum, a larger design is required.

In sixteen runs the half-replicate can be repeated, so that in prac-

tical situations one would either use this design or a non-orthogonal

design such as one of those given by Dykstra.



APPENDIX

In Section 3 it was noted that the set of all possible constraints

implied by Theorem 4 is linearly dependent. In this Appendix are pre-

sented two methods for arriving at equivalent sets of linearly inde-

pendent constraints for orthogonal factorial designs. These will be

called Lhe base-set method and the crossing-out method. The base-set

method consists of finding a base set of the wj and X, which is any

largest linearly independent subset of the collection of w and X.

Once a base set is found, all the constraints can be written down as

expressions for w not in the base set. The crossing-out method

involves writing down all possible constraints and then systematically

crossing out those which are linear combinations of previous ones.

This Appendix contains details of the two techniques, examples of

their use, and a proof of their validity. The proof will proceed by

showing that the constraints arrived at by using the base-set method are

linearly independent, that the constraints arrived at by using the

crossing-out method are equivalent to the set of all constraints, and

finally that the same number of constraints is obtained by using either

method.
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The base-set method

Once again let w represent the number of occurrences of that

treatment combination whose vector representation is the vector J.

That level of a factor which is designated by the largest number will

be called the "highest level" for that factor. We will see that the

set of w for which J has n-t-l or fewer components at their

highest levels is a base set for an orthogonal resolution t+l design

for n a t factors. Obviously this is but one of a large number of

base sets. If n equals t, then every w is equal to X, so that

the base set consists of just this element.

For convenience, the alleged base set will be referred to as the

base set, even though this will not be established until later. If it

can be shown that each wj not in the base set can be expressed as a

linear combination of variables in the base set, then it follows that

the set of constraints generated in this way is linearly independent,

since each involves a unique variable not appearing in any other con-

straint. It is enough to show that an expression for each wj not in

the base set can be derived in terms of X and w with fewer compo-

nents of 3 at their highest levels.

Let wj be any w3  such that J has exactly n-t+h components

at their highest levels, where h is an integer between 0 and t.

Then wj is not in the base set. For convenience, let these components
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be the last n-t+h. By Theorem 4, the number of times the first t

factors occur together at the levels appearing as the first t ccmpo-

nents of J is a known multiple M of X. (The constant M depends

on the numbers of levels of the n factors and on which are at their

highest levels in J.) Therefore, MX equals the sum of all those w

for which j is identical with J in the first t components. This

constraint can be rewritten as wj equals MX minus a sum of w for
j

which j has n-t+h-i or fewer components at their highest levels.

Therefcre, as asserted, any w not in the base set can be expressed

as a linear combination of A and w with fewer components at their

highest levels.

To illustrate we will construct a set of linearly independent

4constraints for the resolution-3, 2 design, as in the example of Section

3. A base set is f"000, Woo01, Woo 1 0 , W010, w'1 00, ]. By fixing

the first two components of j at 0 and O, we see that

Woo00 + 'owl + WOO 1 0 + 011 , which yields an expression for

W'011 in terms of elements of the base set. The following table lists

in schematic form expressions for the w not in the base set in terms

of variables whose subscripts have fewer components at their high

levels. The subscripts j are used for the variables wv. The third
J

zol=mn lists the ordinal numbers of the components which are held fixed!

'.n deriving the given expressions.
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Variable Expression Fixed Comonents

001. X - 0000 - 0001 - 0010 1 and 2

0101 X - 0000 - 0001 - 0100 1 and 3

0110 X - 0000 - 0010 - 0100 1 and 4

0111 X - 0100 - 0101 - 0110 1 and 2

1001 X - 0000 - 0001 - 1000 2 and3

1010 X - 0000 - 0010 - 1000 2 and 4

1011 X - l000 - 1001 - 1010 1 and 2

1100 X - 0000 - 0100 - 1000 3 and 4

1101 X - i000 - 1001 - 1100 1 and 3
1110 X - l000 - 1010 - 1100 1 and 4

1111 - 3i00 - 3i01 - 1110 1 and 2

This same set of constrints, written in matrix fo=4, is used in the

example.

The number of constraints using the base-set method is the same as

the number of Vi not in the base set, and this in turn is the number

of treatment combinations with n-t or more coumonents at their high-

eat levels. Let t equal 2. The number of treatment combinations

with n components at their highest levels is 1, the number with

n-i components at their highest levels is (i 5 (asi-1)' and the

number with n-2 components at their highest levels is

e. 1P.(s -1) (S -1). The total is therefore
±171 'L2 ='l+1 il i 2

1 + E(tS -i) + (S i--)(6 1-1). If t equals the total number

of constraints is l+E(sil-1)+Z(s -l)(s -1)+E(as-l)(8 2"1)(5 . 3i-),

where the range of summation in the last term is 1 t ii < 12 < 3 1 n.

68



The general expression can be written down in the form

1 + E-_ E,9 Il' (si -1), where the set e is the set of i such

that 1 ! i < i < < i : n

The crossing-out method

The crossing-out method is a technique for reducing the set of all

constraints by eliminating those which are obvious linear combinations

of others. The set of all constraints contains statements about the

number of occurrences of combinations of levels of subsets of t

factors. By adding together sets of constraints, statements can be

derived about the number of occurrences of combinations of levels of

t-i factors. Because a given subset of t-1 factors is contained in

several subsets of t factors, such statements are not unique.

Indeed, it is because of this that the set of all constraints is lin-

early dependent.

The crossing-out technique will first be described for t = 2.

Consider the first two factors, which are at s1 and s2 levels,

respe'-tively. A set of SS2 constraints can be written down from the

requirement that the number of occurrences of each of the slS2

possible combinations of levels of the first two factors must be equal

to each other and to a known multiple M, of the index X. Let the

first two components of J be represented by u and v, and suppose
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that the constraints are written down in increasing numerical order of

uv. That is, the constraint that MI4 pquals the sum of all vw for

which the first two components of j are u and v has ordinal

number s2 u+v+l in the constraint array. If the first a2 relation-

ships are added together, the result is that the number of occurrences

of level 0 of the first ftctor is equal to sNMX. By adding any of

sI sets of s? consecutive constraints, the number of occurrences of

any level of the first factor is sk4X also. Similarly) the number

of occurrences of ary level of the second factor equals sMki.

Considering now the first and third factors, we my write down

sas3 linear constrafsts. Sppose they are again arrayed in numerical

order, so that the constraint (N4X equals the sum of all wj for

which j has u and v as its first and third components) has

ordinal number s3 uv+l. By adding the first s relationships we

find that the number of occurrences of level 0 of the first factor

is s3NX. Similarly, by considering each of the sI sets of s,

consecutive relationships, we find that the number of occurrences of

any level of the first factor is s3NX. Therefore, N2 equals

(s2/s 3) •and what is more lortant, thero are obvious linear

dependencies between relationships written down by considering the

first and second factors and those written down by considering the

first sad third factors. If every s3-th relationship is removed or
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"crossed out" from the set of S S3 relationships formed by consider-

ing the first and third factors, then these obvious dependencies will

be removed.

Turning attention next to the second and third factors, one can

write down s 23 relationships. The first, second, " 2 s 3s-th

constraints are that M3X is equal to the sum of those wj for which

the second and third components of j are, respectively, 0 and 0,

0 and 1, -. , s2 and s . Again, by adding sets of relationships,

* expressions can be obtained for the number of occurrences of each of

the levels of the second factor and similarly for the third factor.

But expressions are already available for each of these numbers of

occurrences; those for each level of the second factor are obtainrble

from the first group of sis? relationships, and those for the number

of occurrences of each level of the third factor are obtainable from

the second group of sa s3 relationships. Suppose now that every

s 3-th relationship is crossed out from the set of s2 s3 relationships

formed by considering the second ard third factors, and also the last

s relationships are crossed out. Then in all s +s -1 constraints,3 25

and also all obvious dependencies, will be removed.

Thus far only three factors have been considered, but the aboveI results can easily be extended to the remaining factors. From the set

I
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of s1 8 linear relationships obtained by considering the first and

i-th factors, every s 1 -th relationship may be crossed out in order to

eliminate the obvious nc.-uniqueness of expressions for the number of

occurrences of each level of the first factor. From the set of s 4sa

relationships obtained by considering the i-th eand J-th factors

(1 < i < j), every s 1 -th relationship and the last s relationships

may be crossed out, since expressions arke already available for the

number of occurrences of each level of both the i-th and J.-th factors.

Before systematizing the crossing-out method for t ' 2, we will

show that the number of constraints remaining after using the crossing-

out procedure is the same as that obtained from the base set in the case

t = 2. There are slS2 relationships remaining in the first group,

none having been removed. In the group obtained by considering the

first and i-ti factors there are s1 i-S1 constraints remaining.

In the group obtained by considering the i-th and J-th factors there

are s s Jii-S-s+l constraints remaining. The total may be expressed

as 6l 2 + ie5 s(s-1) + ' e es )S1. We have seen that1 •i2 * =3 1•• 1 1-2 J• ÷• (i'l(j") J_•• • •

the number of constraints using the base-set method is

1. + e~ (a -1) + ei. e=~ (s -1)(s -1l)

-1+ e. (a -1) + roz e=... (a -1)(S.,-1) + (sl l) 2 (s-l

1 1 + a1-1+8 1 t- 2 (bi-l) ÷ E E (si-l)(sJ-l)

"+ 1ý 3 (s±-l) + E z (s±-l)(si-l).
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Therefore, the methods yield equivalent sets of linearly independent

constraints.

Formalization of the crossing-out method

We first formalize the procedure just described for t - 2. Con-

sider each pair of factors in the standard (alphabetic) order

BA, CA, C1 DA, DB, DC, EA, -.- , where A, B, C, -.. are the first,

second, third, - factors. We will say that a pair of factors is in

class Q if exactly C1 of the factors have occurred at least once in

a previous pair. Thus, the pair BA is the only class 0 pair, the

remaining pairs containing A are class 1 pairs, and the rest are

class 2 pairs. Given the i-th and J-th factors, consider the con-

straints in the order obtained by looking at the pairs of levels in

increasing numerical order 00, 01, " Os 10, j, 1s, - s0,

-, s s. Then if the pair is in class 0, cross out no constraints;ii

if the pair is in class 1 cross out every s J-th constraint; if the

pair is in c)ass 2 cross out every s -th constraint and the last

s constraints.

Now suppose t is equal to 3. A triple of factors is in class

a if . of the 3 pairs have occurred in a previous triple. If the

triple consisting of the i-th, J-th, and k-th factors is in class 2L

and if n ý 1, cross out every sk-th constraint. If 0L 2 2, cross
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out every s,-th group of sk constraints. If fl 1 , cross out the

last s sk constraints.

In general, a t-tuple of factors is in class a if fl of the

(t-l)-tuples have occurred in previous t-tuples when written in

standard alphabetic order. If the t-tuple consisting of the il-th

through itt-th factors is in class fl and if fl ý a4 then cross out

the last l=t- s relationships in each set of 1 t- sJ~t-oi*2 i J=t-u*l

consecutive relationships.

There are (n) t-tuples, and the number of these in class ý1 is

(n-t a1+Qj. The factors in a t-tuple in class fl are the ffrst

through (t-n)-th together with fl of the factors numbered t-W+2

through n. The number of constraints left after crossing out in a

set of constraints formed by considering the t-tuple consisting of

factors whose ordinal numbers are 1, -- , t-11, iv ,'- , i1a, is

1 t-11 si) X UP= (si -1)]. The total number of constraints for t = 2

is given by s S2 -1)= ( + E Sl((s -)(s -1),
111 2'?ol+' l 12

and for t =3 Dy

Th gen+er eressio ca + writ(t in -1)for11 l 1 . 2 1 3i

i,=2 'i 2 Wi1 +l i 3 =i 2 +1 '1 32

The general expression can be written in the form



nýls ;j..AL3. 8i E ~ i-1)1. where the set 6" is
ltt kt

the set of indices ½, - , 1  such that t-k+l < <i 2 < .

< ik : n. The general expression derived above for the base-set

method is

These two expressions will now be shown to be equivalent.

MMEOREM 7. For all t, the number of constraints using the base-

set method is equal to the number of constraints using the crossing-out

method.

PROOF. For fixed but arbitrary n and Sl, B2,1 Sn,' let

g(t) be tk-e number of constraints using the base-set method for a

design of strength t and let h(t) be the number of constraints

using the crossing-out method. We have already shown that g(2)

equals h(2). We will show that for all t, g(t) - g(t-l) equals

h(t) - h(t-1), which, by induction, will complete the proof. The
•t

difference g(t) - g(t-1) is given by Eat where

at - till J i <ih < ... < it •]". The difference h(t) - h(t-1)

is given by

t- t- k -
1 1 .J i + Ei~.,( l42.t si) (Ee tIim. (si~J -1 1i.U 5

"4i-l (iltk 4  i ý (S -i1)] The latter may be rewritten

kjt-1Jl I1

I t7
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ht -h(,., w--,t)1,
No Dkk + (_E' U (si -1)), vhere

-.k - (f 1k .. ..E (at ik -- -i)3

TetexsD eue to fl. ±(at-1). When this is added to the

first term of D, the result is

(-a. 1 s) le t (0-1")) tl a )( [ 1  • -1). Subtracting

the second term of D we have

Do + -) ( 2 s±)(at.•-l)(e, Ul¢1 (s -1)]. Adding the first ter
ofI8 t-2 1it-i 3 i

of D? , ot• , si ).,[E i (si -,f-1) from hich is

derived 4,, D 8 1 ~(s~ )(Ees 3 ,=(si -1)). Prceding
ei-l i2.,t-1 3-

analogously, the summation of the D becomes

t . .t-l t

to the final term of h(t) - h(t-l), namely {tl, -1). The
J, t J~l 6j

index sets are OGl_,t' l a -I I -< < <tand

9t, t a [1 < il < iZ < ... < it n). The result of the addition is

therefore Et•l((si -1), where et is the set

I i< i < "'" < it 9 n), which is equal to g(t) - g(t-1), as

vas to be proved.

Therefore, the base-set method and the crossing-nut method are

equivalent. Although the base-set method is used for the example in

Section 3, the methods are equally easy to apply, and either may be

used to construct a set of linearly independent constraints for the

application of linear programming to the derivation of designs.
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APPENDIX B

CHARACTERIZATION OF NON-ORTHOGONAL INCOMPLETE FACTORIAL DESIGNS

SU10IARY

Two general classes of non-orthogonal incomplete factorial designs

called cluspwise-orthogonal designs and permutation-invariant designs

are defined. The cross-product matrices of the former can be arranged

to contain blocks of non-zero elements down the main diagonal and seros

elsewhere, The latter class may be described as contain' designs in

which those factors which appear at the same number of levels are treated

alike,

A review of the existing literature on non-orthogonal designs shows

that despite the large quantity and variety in methods for construction,

the designs all fall into one or both of the classes defined above.

It is shown that both classes of designs posse*s characterizations

as integer solutions to sets of linear constraints. For a subclass

called special cluapwise-orthogonal designs, defined only when all fao-

tore are at two levels, a different characterization is derived. This

characterization involves group-theoretic considerations similar to

those uzed in the classical theory of fractional factorials.

1. INTRODUCTION

Orthogonal incomplete factorial designs have been used for mawy

years. In many experimental situations, however, the smallest orthogonal
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incomplete design may entail more rune than the experimenter is prepared

to make. Recently there has been increased interest in non-orthogonal

designs, on which there is no a priori restriction on the number of runs,

and wny methods have been not forth for constructing such designs.

Criteria for comgarina desims

Unlike orthogonal designs, which an a class enjoy certain optimality

properties, non-orthogonal designs must be Judged individually. First

of all, the design must have at least the required resoltion, which is

defined as follows (Box & Hunter, 1961)s If ' is even and a design is

of resolution t+l then all parameters involving +t or fewer factors

are estimable, ignoring parameters involving more factors. If t is

odd, parameters involving (t-l)/2 factor4 are estimable, ignoring

parameters involving (t+3)/2 or more factors. Those involving (t+l)/2

factors are neither estimable nor completely ignored.

We will suppose that a particular parameterization has been decided

upon. (See Webb (1963) for a discussion of parameterizations for fac-

torial designs.) Given two designs which have the same resolution and

number of runs, the one which permits estimation with smaller variances

will, generally speaking, be more desirable. More specifically, four

possible criteria for optimality of a design ares
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i) that all the variances are minimized,

ii) that the trace of the covariance matrix is minimized,

iii) that the determinant of the covarianoe matrix is minimized, or

iv) that the average variance of a predicted value is minimized.

The first criterion is preferable, but often it is impossible to satisfy

it with a design utilizing a given numbnr of runs and a parameterization

specified a priori. The second is equivalent to minimizing the sun of
I

the variances of the estimates, and the third in equivalent to minimizing

the volume of a confidence ellipsoid on the parameters (Mood, 1946). If

the parameterization is scaled in an appropriate way, criterion (iv) is

equivalent to (ii); more generally (iv) will reduce to a weighted average

of the variances of the estimates.

Plackett and Burman (1946) showed that, subject to the restriction

that the lengths of the columns of the design matrix be fixed, orthogonal

designs satisfy criterion (i), hence also (ii), and (iv). Without this

restriction, however, it is often possible, depending on the parameteri-

zation, to construct non-orthogonal designs which surpass orthogonal

ones with the same number of runs under any of the last three criteria.

In another paper (Webb, 1964), it was shown that, if one uses a main-effect

parameterization under which the full factorial it orthogonal, criterla

(iii) and (iv) are satisfied if and only if the design is also orthogonal.
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Whereas knowledge oi' the conditions under which orthogonal designs

are optimum is as yet incomplete, knowledge of such conditions for non-

orthogonal designs is for the most part nonexistent. The few isolated

cases in which any optimality property has been demonstrated for a non-

orthogonal design are indicated in subsequent sections.

Classification of non-orthogonal de.ians

The non-orthogonal designs in the literature fall into two over-

lapping classes wt ch I call permutation-invariant and clumpwisL-

1~k2mDAL designs. A permutation-invariant design involving factors

at the same number s of levels is one for which if abc...n is any

treatment combination appearing in the design, where the symbols

a, b, ... , n take on one of the values 0, 1, ... , s-l, then all the

treatment combinations which are permutations of the given treatment com-

bination also appear in the design. For the case in which all factors

do not appear at the same number of levels, a permutation-invariant

design is one which contains the same treatment combinations if factors

appearing at the same number of levels are permuted. Later we will con-

sider permutation-invariant desiaus of mtrength t. which are more

general designs for which the cross-product matrix is not altered if

factors appearing at the same number& of levels are permuted. The

parameter t is twice the number of factors in the highest-order inter-

action to be estimated.



A clumpwi.e-orthogonal design is one for which, by rearranging the

coluwm- of the coefficient matrix X. the coass-product matrix can be

arranged so that there are quare submatrices of non-zero elements down

the main diA~nal and zeros elsewhere. A subclave of particular interest,

defined for the case vhou all factors appear at two levels, conaiste of

the evecial clmvws.* Xthogonal designs, vhich have all non-sero off-

dirgonal elemento equal. I will restrict the definition of clumpvise-

orthogonal designs by requiring that thara be at least two clumps, since

otherwise every dosign would satlsfy the dfinition. It in convenient 9

however. not to impoue this restriction on the class of special clump-

mise-orthogonal design•.

Both the pzrmutation-invariant and cluspwise-rth~gonal clases

contain orthoornal designs. A simple example of a design which in not

orthogonal but which is still contained in both clcases is the design

for two-level faottmrs consisting of rune at treatment combinations 00,

00, 01, 10, 11, and 11.

2. 3URVXY OF NiON-0iTHOGONMA Da"IGNS

It is felt that this literature siarvey is reasonably *xhaustive

with the exception of quite recent work in the area. The non-orthogonal

desips covered Ahave been derived using many different devices and from

widely different points of viev. Still, they al may be categorized

into the permutation-invariant and olunpwipe-orthogonal claues*.



Early non-orthog2onal dggigs

Perhaps the earliest non-orthogonal designs were the optimum weigh-

ing designs proposed by Mood (1946). Suppose p objects are to be

weighed on a single-pan scale. If each object is weighed individually

the variance of each estimated weight is the error variance associated

with each weighing. By weighing the objects in appropriately chosen

groups, the variance of the estimated weights may be decreased. Using

criterion (iii) (the determinant) to judge optimality, Mood showed that

if p - 2k-i, then the design consisting of all combinations of the p

objects taken k at a time is optimum. If p = 2k, he showed that the

design which consists of all combinations taken k at a time together

with all those taken k + 1 at a time is optimum. Banerjee (1948)

pointed out that optimality is preserved if only those combinations

which comprise a balanced incomplete block design are weighed. The

designs of Mood and Banerjee are both permutation-invariant and special

clumpvise-orthogonal with one clump.

Chakravarti (1956) introduced the Opartially balanced array of

strength t which is a specialization of the permutation-invariant

design of strength t to the case where all factors are at the same num-

ber of levels. I have choseu not to adopt his nomenclature because I

believe *permutation-inviriant* is a better description of the defining

property of these designs. He gives two simple examples of such designs,
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one containing runs at treatment combinations 0000, 0111, 1011, 1101,

and 1110 for a 24 experiment, and another for a 25, containing runs

at 00000 and all treatment combinations with four factors at their high

level.

Morrison (1956) presented an interesting technique for constructing

incomplete factorial designs in the case where all factors are not at

the same number of levels. It is moot effective when all but one of

them are attwo levels. The levels for the many-level factor are grouped

into pairs (with one level left over if the number of levels is odd).

A standard fractional factorial is constructed using, in turn, each pair

with all of the two-level factors. To illustrate, consider an incom-

plots 2451 $esign, and designate the levels of the five-level factor

by the integers 0 through 4. The design may be constructed in three

stages. First, identifying levels 0 and 1 of the five-level factor

with the levels of an (inagi=ny) fifth two-level factor 3, an eight-

replicate of a 25 in constructed using as generators in the defining

contrast AB, CD, and ACE. (For definitions see Daniel (1956).)

Next, levels 2 and 3 are associated with 3 and another eighth-replicate

is constructed using -AD, -CD, and ACD to generate the defining

contrast. Finally, an eighth-replicate of the 24 Is constructed,

using AD, AC, and AD to generate the defining contrast, and level 4

of the five-level factor is used for these runs. The complete design

is as follows:
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00000
11110
00111
11001

01012
10102
01103
10013
000004
11114

Morrison's method of construction leads to olumpwpte-orthogonal designs.

Irr-eolar fractional factorials

A type of non-orthogonal design which has rec'ived a great deal of

attention in the irregular fractional factorial. The general form of

such an incomplete factorial is the k/sa fraction of the on design.

BanerJe. (1949) disoussed. (2m-1)/2* fractions of 2n designs in con-

nection with the weighin problem. Further examples were given by

Kenpthorne (1952) and by John (1961). Addelman (1961) gave a rather

detailed analysis of such designs and presented a catalogue of 3/22

replicates of 2n designs. Dykatra (1959) gave a catalogue of irregular

fractional factorials which involve partial duplication. All irregular

fractiornal factorials are clumpwise-orthogonal, and those for the 2n

"case are special cluapuise-orthogonal.

Recent methods for 2 n er teriment

Several workers have developed techniques for deriving incomplete

3' and 23' designs, all of which lead to designs which are both
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permatation-invariant and alumpwise-orthogonal. DeBaun (1959) developed

a series of response-surface designs for three independent variables which

are restricted to e levolet so that the designs are also incoaplete

factorials. The method is to combine the following subdesigns: the center
!

point (treatment ombination IU1), the octahedron (011, 211, 101, 121,

110, and 112)8 the %cuboctahedron" (all treatment combinations with one

1) and the cube (all treatment combinations with no 1). De*aun gave

analyses for designs consisting of various combination of these subdsuigns

with repetition of entire subdesigna permitted, and he compared their

efficiencies and variance contours as second-order response-surface

designs.P

Box and Behnken (1960), who, like DeBaun, were motivatad by response-

surface considerations, constructed a series of incomplete factorials

utilizing balanced incomplete block configurations. The factors are

associated with the block elements (often called Ovarieties" in the

literature on balanced incomplete blocks). For each block a subdesign

is constructed containing a two-level design using levels 0 and 2 of the

factors appearing in the block, •ith all factors not in the block being

held at level 1. After the procedure Is repeated for every block the

complete design is formed by combinin the subdesiga and then appending

several runs at the center point.
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Connor (1960) developed a technique for handling 2n designs in

which several combinations of standard fractions of the 2" and of the

n are combined in a specified manner. One of his examples is the

following Incomplete 2332 design. Let the two half-replicates of the

23 be denoted symbolically by 31 and 32 and the three third-

replicates of the 32 be denoted by T1, T2, and T3. Lot S3T 3  be

the design formed by taking all possible combinations of treatment com-

binations in with those In T Then the design s1 + s2T2 S 2T3

is a half of the full factorial.

Another method for forming incomplete factorWl designs for 3"

and 2Y3 experiments was given by Pry (1961). The e full factorial

consists of a center point (the treatment combination 11...1) surrounded

by concentric hyperspheres, the r'-th containing the (')2 treatment

combinations witL' xactly r non-I cop•nants. A design may be con-

structod by cembining fractions of the treatmont combinations on each

hyperspherwe Fry gives an example of an incomplete 4 design formed

by taking all the points in *very other hyperaphere and omitting entirely

the others (this is essentially DeBaun's method). Since the (n)2r

points in the r-tkh byporsphero may be considered formally as (n)

separate faotorirls in r factors at two levels, standazd fractions may

be taken fro& each. Also, if the design contains a factors at twvo

levels as well as the n three-level factors, fractions of the 2 r4%
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I
design may be used. Fry gives as an example a %alf-replicate' of a

2 3 32 design constructed in this vay. He points out that this method of

construction leads to designs which are quite siiar to those derived

by Connor.

It is interesting to note that DeBaul, Box and Behnken, Connor, and

fy Fused disparaste methods and were motivated by contrasting considera-

tions. Yet the designs obtained are all permutation-invariant and

oluupvise-orthogonal, and moreover usually possess a similar clump

structure.

EjZ ibl* contractible deiMp

In work which has not previously been reported, 1. V. Last1 developed

a series of permutation-invariant desigs for factors at two levels. He

was motivated by the need for designing experiments which may be pre-

maturely halted, due for example to a breakdown of the equipment. His

aim was to design the oxpeimnt to study first what are considered the

most important factors so that if the design is not completed inferences

may be made about the more interesting factors conditionally on the les

important factors being fixed. A design is specified as the set of

treatment cominations with a, b, ... , or k factors at the hJih

level. 8uppose the factors are arranged in inoreasing order of impor-

tahe and the treataent oombinations are run in increasi numarical

Fiormerly with Rocketdyne, nov with Sylvania Electric Products. Inc.,,
Nuntain View, California
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order considered as binary numbers. Then the design will have the

desired property. For example, consider three factors at two levels and

let the design be the treatment combinations with zero, one, or three of

the factors it their high level. If the combinations are run in the

order 000, 001, 010, 100, 111, then after the first two observations

the "main effect* (conditional on the other factors being fixed) of the

last and most important factor can be estimated. After the third the

conditional main effects of the latter tvo factors can be estimated,

and finally after the fourth all three main effects can be estimated.

I proposed seom specific perautation-invariant designs which are

included in the general class considered by Last (Webb, 1961). These

designs were (1) the incomplete 26 consisting of one run at each

treatment combination containing zero, two, or five factors at the high

level; (2) the incomplete 27 consisting of one run at each treatment

combination containing zero, two, or six factors at the hiAh level; and

(3) the incomplete 27 consisting of one run at each treatment oombina-

tion containing zero or two factors at the high level and two runs at

each treatment combination with six factors at the high level.

ProDort mal-f re uency desimgs

The general class of proportiordl-frequency designs has been inves-

tigated by Addelman (1962). Let n be the number of occurrences of
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the i-th level of one factor with the J-th level of another, hi. be

the number of occurrences of the i-th level of the first factor, nej

be the number of occurrences of the J-th level of the second, and

be the number of runs. A design is a proportional-frequency design if,

for every pair of factors and all levels i and a, niN equals

na. n3 .

If the grand mean is defined as the expected value of the average

of the observations made, then proportional-frequency designs are

orthogonal for estimating main effects and the grand man. If, however,

the grand mean is defined as the average of the expected values of all

treatment combinations of the full factorial, then proportional-frequency

designs are non-orthogonal. Vhile neither the class of proportional-

frequency designs nor the class of permutation-invariant designs in-

eludes the other, the designs which Addelman catalogues when considered

as non-orthogonal designs are all contained in both classes.

3. A CHARACTERZATION OF SPECIAL

CLUMP ISZ-OZHOGONAL DESIGNS

Both permutation-invariant and cluspwise-.orthogonal designs may be

characterized as integer solutions to linear programming problems.

Methods for constructing the constraint matrices for the general classes

are given in the fourth and fifth sections. In the case of special

i cluopwise-orthogonal designes defined only for the 2n experimental

!.
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situations, a characterization in possible which ic very differont from

that for the general class of olumpwise-orthogonal designs. This charao-

terization, involving groups of treatment combinations, is remniniscent

of the classical theory of fractional factorial designs.

Outline of the ch•.a.gterization

In the case of 2n experiments, if a resolution t + 1 design is

orthogonal, then for every subset of t factors every combination of

levals occurs X times (Webb, 1963). An I will show in this section,

if a resolution t + 1 design is special clumpwise-orthogonal, then

for every subset of t factors there exist constants X and X such

that *very combination of levels occurs either 1 or A2 times, and

those appearing 11 times form a group. The proof will proceed by

showing that, for each subset of t factors of a special clumpwise-

orthogonal design, either a group of treatment combinations or the

complement of a group can be added enough times to make the resulting

augmented design orthogonal. In order to pursue this method of proof

three preliminary results must be established. First we must show that

if a set of treatment combinations forms a group under an appropriately

defined operation, then it in a clumpwise-orthogonal design. Next we

will show that any special clumpvise-orthogonal design in t factors

leads to the same clump pattern as a group. Finally it must be estab-

lished that the non-zero off-diagonal entry of a special clumpwise-

orthogonal design in t factors is such that the group with the same



clump pattern or i1s complement can be added an appropriate integral

number of times with the result that the augmented design is orthogonal.

Gu•js of treatment combinations

Fisher (1942) showed that the sot of treatment combinations in a

2 experiment form a group. Any given treatment combination may be

designated as the group identity, and an such it is denoted by the

symbol (1). Fisher makes no commitment• but later authors have chosen

to let that treatment combination in which every factor appears at its

low level be the identity. It will be more convenient to break with

tradition and designate as the identity that treatment combination with

every factor at its h level.

To each factor let there be assigned a letter a. bp ... 9 and let

every treatment combination other than the identity be denoted by the

letters corresponding to the factors at their low level. The group

operation is defined as follows: the resultant of two treatment combi-

nations under the group operation is that treatment combination which

zontains all the letters from the two omitting the letters they have in

COmmO,.

Every treatment combination except the identity divides the group

into two parts, those treatment combinations having an even number of

letters in common with the given treatment combinationg and those having



an odd number in common. The *even half" contains the identity (1) and

is itself a subgroup. The set which has an even number of letters in

common with each of two given treatment combinations will again be a

subgroup, which will also have an even number of letters in common with

both the product of the two given treatment combinations and the identity.

fisher's general result is that the set of elements even for every ele-

sent of a subgroup of order 2 is a subgroup of order 2 n-p, where

n is the total number of factors. These two subgroups are said to be

orthogonal.

The tet of all possible parameters can also be considered as foia-

ing a group. The grand mean, usually denoted I in this context, is

the identity. The main effects of the factors are denoted by A, B, C,

and so on. Interactions are denoted by the appropriate coabination of

two, three, or more letters vhich belong to the factors interacting.

The product of two symbols under the group operation, called the

eneralisWi interaction of the two symbols, is that symbol which cont&ins

all the letters of the two omitting any they may have it common. the

identity I is considered as containing no letters. Thus, the gwAeral-

ised interaction of main effects A and B is A~, which is a genuine

interaction. The generalized interaction of interactions 3D and SBD

in the main effect 1. The group of parameters is iasamohic to the

group of treatment combinations, so that Fishor's result applies to

subgroups of the parameter group as veil.



If a design is constructed whose treatuant combinations form a sub-

group of order 2Por coast of a subgroup of order 2P. the design will

be a fractional factorial, that is, one block of a confounded deciga.

The paraaeters &liased with the grand mean I we. just tLose parameters

in the subgroup orthogonal to the group of treatment combinations used.

The parameters aliazed with any given parameter are the elements of a

coset of the orthogonxal s~ubgroup, where the coset is formed using the

givr~n parametert Tho skntire group of en parameters is divided into

2Palias sets, each containing 2 q a 2?OO parameters* There is irn

estimable linear combinatio n of the 2q1 paraieters i& ao, alias s.t, and

due to the particular choice of the idontitys this estimable linear oon-

bination its just t', sun of the parameters.

IThe gosa:Rxykuct matricies gf subaroun of treatpol gowbination

Consider a co.efficient matrix whose rovs correspond to n subgroup of

treatmuenit combinations and which has columns corresponding to every poo-

aible main effect and interaction. The croassproduct matrix formod from

this ooefficient natrix, whiich will be eclled the 002soroegg~

gukriji associated wit~h the subgroup# wili of coowse be singular unless

the subgroup considered is in fact the group itself,

TflEOMle 1 The, eooplete cross-product matrix of a subgroiap of

AlItreatment ooimbinationa of order 2Pin special cluapwise.'rthogo"I.,

and all non,--ero entries are 2p.
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PROOP,, Finney (1945) showed that a subgroup defines an aliased

design whose alias structure is determined by the alias subgroup (this

fact is the basis of the classical theory of fractional replication),

The coefficient vectors for aliased parameters are all equal, and co-

efficient vectors for parameters which are not aliased are orthogonal.

Therefor'e, the complete cross-product matrix cons!sts of 2 n-p clumpst

where n is the number of factors, and oach clump has all elements

equal to 2P.

THEOREM 2. The complete cross-product matrix associated with all

treatment combinations except those of a subgroup of order 2P is

special clumpwise-orthogonal, with diagonal entries 2n - 2p and non-

zero off-diagonal entries equal to -2P.

PROOP. Represent the coefficient matrix of the full factorial in the

form PX2] where X2 corresponds to the part of the design whose

treatment combinations form a group and where Xl corresponds to the

remainder. The complete cross-product matrix is X + X2X2 , ax-I we

know already that it is diagonal with diagonal entries equal to 2

The matrix X212 is known to be special clumpwise-orthogonal from

Theorem 1, so that X111 must also be special clumpwise-orthogonal with

didgonal entries 2 n - 2p and non-zero off-diagonal entries equal to

- 2p.
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Structure of sieoial clumDwise-ortho-gn•,• dea-Rne

Let X be the coef"iciant matrix of a special clumpwise-orthogonal

deaign of resolution t + 1 in n factors. All the elewints of the

cross-product matrix It X are of course inner products of pairs of

oolumns of X. Denote by x, the column of I which is the coefficient

vector for the grand mean, by X£, ApX, XCD o, the coefficient vectors

I for the main effects, by XA•t XACp *#at zC, *a, the coefficient

vectors for the two-faotor interactions, and so forth. Because of the

In
nature of coefficient vectors for the 2 n experimental situation, the

squared leingth or every column of X is N, the number of runs,

1 Because ,of the roquirement that the design be of the special clumpwise-

orthkgonal form, the inner product of a pair of distinct columns ic

either zero or a single specified non-zero number, say c, Since th*

components of coefficient vectors for interactions are products of com-

ponenti of the coefficient vectors for the main effects of the faAors

making up the interactions, many inner products must be equal, for

example, the inner product (xI, xAB) must be equal to (xA. x.) and

~ (lCD, xcD); (xA, xC) must be equal to (xn' xAC) and to

(xe. x A). In fact, the inner products of pairs of x's whose subscripts

have the same generalized interaction will be equal. In the two examples

above, the common generalized interaction are AB in the first case and

ABC in the second. Such a generalized interaction can•, t involve more

than t letters since the cross-product matrix comes from a resolution

t + 1 design.
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Since all pairs of x's whose subscripts have the same generalized

interaction have the sae inner product, ve Vill discuss clumpwise-

orthogonal designs in terms of which generalized interactions give rise

to sets of non-zero inner products. If a generalized interaction gives

rise to non-soro inner products, some clumping is induced in the cross-

product matrix. To find what effects or interactions are clumped with
I

a given effect or interaction, it is only necessary to multiply the

generalized interaotion by the letters corresponding to the given effect

or interactions For example, if the generalized interaction AB gives

rise to non-zero inner products, by multiplying AB by A we find that

XB must appear in the same clunp as xA. Continuing with our example,

if the cross-product matrix is that of a design of resolution 5 or more,

then x and 'xAB are in the same clump. If the cross-product matrix

is that of a design of resolution 7 or more, then xC and xABC xD

and :ABD, and so on would be clumped together in pairs. The reason

for the requirement that the resolution be large enough is that only

interactions involving I t or fewer factors are represented in the

cross-product matrix of a resolution t + 1 design, so that in the

second case above xAB would not appear if the design were not treated

as a design of at least resolution 5.

1, Aliasing is a limiting case of clumping in which an off-diagonl
element is equal in absolute value to the diagonal elements. It
should be noted that in the intermediate case when the off-diagonal
element is in absolute value less than the diagonal elements, the
corresponding parameters are in no sense *partially aliased* or
"partially confounded". Rather, they a" separately or jointly
estimable,
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If more than one generalized interaction gives rise to inner products

equal to , then their product must also, if this product contains t

or fever letters. For example, if the generalized interaction A and B

both give rise to inner products equal to of, then xI, ZAt and zB

are in the same clump, so that (xA, IB) must also be equal to a, which

implies that all inner products of vectors whose generalized Interaction

i AhB will also equal a. These results are proved generally in the

Appendix as Theorem 3. which states that if two generalized interactions

give rise to inner products equal to a, and if their product contains

t or fewer letters, then their product must also give rise to inns

products equal to r. The folloving theorem in an imediato corollary

of Theorem 3.

THSBOU 4. For every subset of t factors in a special cluapwise-

orthogonal design of resolution t + 1, the generalized interactions

giving rise to non-zero inner products, together with I, form a group.

It follows from Theorem 4 that for any subset of t factors the

complete cross-product matrix has the same cluap structure as the colo-

plete cross-product matrix of a group. If the order of the group of

generalized interactions mentioned in Theorem 4 is 2q, then the coo-

plete cross-product matrix consists of 2P = 2tcq lumps each containing

2 q parameters. The parameters in the clump with the grand mean are just

those generalized interactions which give rise to non-zero inner products,

99



so that the parameters in this clump form a subgroup of parameters. The

par•sators in the other clumps are cosets of this subgroup. Ve know

already that there is a subgroup of treatment combinations whose complete

cross-product matrix has exactly the same clump structure as the given

clumpvise-orthogonal design. To be specific, it is that treatment-coam-

bination subgroup Vhich is orthogonal to the subgroup of parameters in

the clump which contains the grand mean.

Yalue of non-zgro inner products

The value a of the non-zero inner products is related, to the clump

structure according to the following theorem. The proof is given in the

A4pendix.

TUKOU 5. In a special clumpvise-orthogonal design of resolution

t + 1, if for a subset of t factors the group of generalized inter-

actions giving rise to non-zero inner products in of order 2q, then

a is an integral wAltiple of 2Po

Ve are now ready to characterize special oluapwise-orthogonal

designs of resolution t + 1 containin only t factors. The general

case of n factors will be discussed after the theorem.

3 6. A resolution (t + 1) design in t factors with t

even is special cluapwine-orthogonal if and only if there exist constants
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A and s ruch that every treatment combination in a group of treat-

ment combinations appears X ' times and every other treatment combina-

tion appears X2 tmes.

PROOF. The oross-product matrix formed from a partitioned coefficient

matrix is given by [j 1  22}That the stated condition On

numbers of reatment oombinations implies clunpwise-orthogonality is

obvious from Theorems 1 and 2. Suppose a design containin I ru3m i

Oluopwise-orthogonal, that the group of generalized interactions giviw

rise to non-zero inner products is of order 2 q% and that the number of

clumps is 2P = 2 tmq. Denote the coefficient matrix of the given special

clumpwise-orthogonal design by Xl, amd amote by X2 the coefficent matrix

of that group of treatment combinations which has the same clump structure

as the given design. The group must be of order 2P. Let a - o 2P

where a is, by Theorem 5, a non-zero integer.

CASE . a < 0. Consider a new design consisting of all treatment

combinations of the original design augmented with the group of treatment

combinations replicated -a times. The cross-product matrix of the

augmented design .is Xll- c *12129 which equals (if a , 2P) times

the identity matrix of appropriate size. Tshe augmented design i•s

orthogonal, hence has every treatment combination replicated the same

number of times, namely (N - c - 2 P)/ 2 t. Therefore the original deslgn

must have beea of the specified form with X, equal to 2t + Ol
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and ) equal to t The total number of treatmnt combine-
' 2t

tioxs in the orignal dlesign In 2 P(L4- .Lg + O) + -2 P) cLtLL-2 )

2 2 t
whioh4 requir equals .

cAz SA .o > O0 If the original design is augmented by adding the

compleaent of the grogp a timese then the resulting design is an

orthogonal design with eawry treatment combination rvplicated

a + a ( 2 t - &P) times. Henon the original design was of the specified
.- 2 t . + a (2t " 2P) aN+ a ( 2 t; .A .

or swith %I + , t -c

Urtengior to n va Lab3e1

According to Theorem 6, a necessary condition that a resolution

t + I design in n variables be special cluopwi•t-orthogonal in that

every sub-design containing only t of the factors have the structure

specified in Theorem 6. It is necessary to impose sone additional con-

dition to make the converse true.

As an example of a design for which the converse does not apply,

consider the following coefficient matrix and corresponding cross-product

matrix$.
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j~*1.l 18000
1.4 1 10840

1 1-1-1 0048
1 1 1- 004

Denote the four parameters by I, A, B, and 0 as before. By oonsider-

ing the subset consisting of factors one and two, the paraeters A and

B are clumped. Saularly, consideration of the second and third factors

shows that B and C are clumped. The sub-design consisting of the

first and third factorse howvoer, is fully orthogonal, so that A and C

do not appear in the same clump. In this case the clump structures of the

three possiblo sub-desigws are not mutually consistent.

The general characterization now follows from Theorem 6.

THEORM 7. Consider a resolution t + 1 design in n factors with

t even. If

a) for *very subset of t factors there exist constants I, and

'2 satisfying the condition of Theorem 6,

b) the clump structures of the sub-designs are mutually consistent,

and

c) the structures of the sub-designs yield the same non-sero orf-

diagonal elemet,

then the design is special oluapwiso-orthogonal.
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4. THE OGuRN L CMASS OF

OLUNIUM-ORIHOGONAL DESIM

Vhile it is not as simple or attractive a characterisation as that

just discussed, general olumpnie-orthogonal designs may be characterized

as integer solutions to sets of linear constraints. Given a set of con-

straints for a fully orthogonal design, removal of one or more constraints

yields a set of constraints for olumpvise-ortbogonal designs. Alterna-

tivelys given a clump structure, a set of constraints may be written

down expressing the orthogonality remaining in the design.

Deletion of constUainte

For discussion of the way in which the removal of constraints in-

duoe clumps in the cross-product matrix,, it will be helpful to use a

2232 design as an illustrative example. As usual, lot the levels of

the two-level factors be designated by 0 and 1 and the levels of the

three-level factors by O, 1, and 2. Treatment combinations will be

written with the two-level factors appearing first. The symbol [ijki]

will be used to designate the number of times treatment combination

i31cA appears in a design; (ijkx] will denote the sum (ijkOJ + Eiikl] +

[£ijk2], and siailarly for an x substituted into other positions.

It has been previously shown (Webb, 1963). that a design is an

orthogonal design of resolution t + 1 (or strength t) if and only if

for every subset of t factors, every combination of levels appears the



same number of times. A linearly independent set of constraints for a

strength 2 design, obtained by the *base-set method" (Webb, 1963), is

given in Table I.

Ve vish to find out what clumping is induced in the cross-product

matrix if the first constraint is deleted. Since the coutraints in the

table are linearly independent, none of the remaining constraints is

affected. It can be verified that for all permissible ij combinations,

the following constraints still holdt [ixjx] - 6, [ixxj] - 6X9

[zijx] 6).. (ix]. 6k, and [xxii] - 4). Therefore, for the subset

consistin of the first two factors the condition for orthogonality no

longer holds, but for any other subset it is unaffected. It followe by

the theorem on orthogonality previously stated that the design is

orthogonal with the exception that the main effects of the two-level

factors are clumped. The effect on the clump structure of removal of

other constraints or sets of constraints can be found in an analogoug

manner*
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Table I

[0O= a 9 [Lxz2J w 61L

[OzOz] u 6). (ZzOOI a 4

(ozix] - 6X [=01 w 4).

[OuxO] a61k [xIO] = 4

[0=1i] = 6), (xxIOJ m-X

[O0=2] I 62L Lxull] = 4X

[%00z] a 6), [z12]J 4X

[%03ixJ = 6X [xz2OJ m ?-

[xOzO] a 61 Cxzznl =4;

(iou] = 6, zXX22] 4),

Constraints for orthogonal 223 dcin
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Constraints refleogting Mainiin orthogonality

The practice of removing one or more spocific constraints from those

for a fully orthogonal design cannot yield constraint, for all clumpwiss-

orthogonal designs, forl it may be that constr'aints for a particular clump

structure cau only be obtained by removing a particular linear combination

of constraints. For ezample, for the 2232 experiment considered pre-

viously, constraints tor the design with only the main effect of the

first factor cluuped with the mean cannot be constructed in the former

manner. The alternative approach is to start with a cluap structure and

write down conatraints reflecting the orthogonality remaloing in the

4 design.

To illustrate the procedure, the constraints for a particular clump

struotura for 2232 designs will be derived. Denote the grand meaL by

I, the effects of the two-level factors by A and B, and the linear

and quadratic effetts of the three-level factors by C, C2,• , D aMd D2

The oluap structure to be cons4ldered Is described by the following dia-

Sramatic representation of the cross-product matrix:

I
Al
lB

Cx
XD

C2 x
Z D2
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Here the name of a parameter (i, A, B, etc.) is used to denote the

squared length of the associated coefficient vector in the ooefi'icient

matrix. The symbol X denotes a non-zero off-diagonal element.

For this clump structure, any subdesign consisting of a two-level

and a thlnee-level factor is completely orthogonal. The corresponding

constraints are those requiring that, for every subset consisting of one

factoi &t two and one at three levels, every possible combination of

lovels occurs the same number of times X. The corresponding constraints,

rduced to a linearly independent set, are the first fifteen constraints

gieu in Table II. In addition, C is ioquired to be orthogonal to D2

and D to 2. The components of the coefficient vector for C are

-19 O) and 1 when C is at levels 0, 1, and 2 and similarly the com-

ponento of the coefficient vector for D2 are 1, -2, and 1 when D is

at levels 0, 1, and 2. Therefore, the inner product of the coefficisat

vectors for C and D2 is a[xxW] +2[xxol] - [oxO2] + C=2o1 ]2[xx2l] +

[xx22]. The final two constraints in Table II are obtained by setting

equal to zero the inner product of the coefficient vectors for C and

D2 and likewise the inner product of the coefficient vectors for D

and C2

Other clunp structvires for other designs can be handled in an ana-

logous manner. This concludes the discussion of clumpwise-orthogonal

designs.
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Table nI

(OXOiX] = [OOz]=-x [3.rt] m X

(Oxix] = x [rolx] = x [=ll

(Ox2x) m [xO2x] w [lx2x]m X

[OXX01 = x IzOzO1w (1X21 m

coma~i I I (xOX1 = x [lrxl]xmx

- xzoo] +2[xx~l] - xxO2] +. (xx2l] -24xx21] + (xz22] 1 0

-[xzOO] + (xXO2] +e[xxlo] .'2[xz12l - [xx2O] + [xx22) 0

Constraints for 22 oluiapwise-orthogonal design.
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5. THE CLAWS OF PERAUTATION-

INVARIANT DESI=NS

The construction of constraints for clumpvise-orthogonal designs

involves woakening the constraints for orthogonal designs by deleting

linear combinations of constraints, The constraints for permutation-

invariant designs# on the other hand, are obtained by introducing more

indices, Before shoving how this is accomplished, some additional general

material on this class of designs will be presented.

Pegrutation-Aivariant desia•m of strength t

The appealing property of permutation-Invariant designs is that factors

with the same number of levels are treated alike in the sense that the

estimates of corresponding main effects have the same variances and the

sane covariances with other estimates. For this to hold in a design of

resolution t + 1, it is not necessary that the design be permutation-

invariant as a whole, but only that all subdesigns containin t factors

be permutation-invariant (this follows from the fact that the cross-

product matrix contains inner products of interactions involving up to

+ t factors,, so that the largest number of factors involved in computing

any element of this matrix is t). Therefore, it is convenient to define

formally a more general class of designs, permutation-invariant designs

of strength t,
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Given n factors, select any ordered subset of -r factors and let

f(i1 V 2 9 ,-., 'T) be the number of occurrences of level ½ of the

first factor of the subset with level '2 of the second, ... , with level

iT of the i-th. Suppose t is the largest value of r such that the

function f(il, i 2 , ... , i ) depends on the number of levels of the

factors chosen to be first through T-th, but not on the particular

choice of ordered subset. Then the design is a permutation-invariant

design of strength t. It should be noted that the permutation-invariant

designs mentioned in the literature survey are all of flail strength; that

is, they are of strength n where n is the number of factors.

Several permutation-invariant designs can be shown to satisfy one

or another of the criteria for optimality given in the introduction. It

can be shown by an enumeration of all possible five-run incomplete 24

designs that the design given by Chakravarti (1956) consisting of runs

at treatment combinations 0000, 0111, 1011, 1101, and 1110 is the essen-

tiall.y unique resolution 3 design which satisfies criterion (W) (the

variances are each minimized). By wensentially unique* I mean that the

only other designs with this property are those derived from the given

design by interchanging for some of the factors the designation of which

is the high and which is the low level. The complement of this desivx

that is, the design consisting of runs at the other eleven treatment co&-

binations, is the essentially unique eleven-run resolution 5 design which
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satisfies criteria (ii), (iii),, and (iv) (the trace, determinant, and

average predicted value are Wnimized). The twelve-run design obtained

by adding a run at the treatment combination 0000 in still permutation-

invariant and also satisfies criteria (ii), (iii), and (iv) among twelve.-

run designs (webb, 1961). It is not unique in this respect, however,

there being three other twelve-run designs, not essentially equivalent,

which also satisfy these three criteria. Two of the other designs, both

irregular fractional factorials and hence special cluapwise-orthogonal,

are that obtained by omitting 0000, 0011, 1110, and 1101, and that

obtained by omitting 0000, 0110, 0101, and 0011. The third design,

neither clumpwise-orthogonal nor permutation-invariant, omits 0000, 1110,

1101, and 101l.

Linear oonstraints for De1rutation-invariant desimns

Por orthogonal designs the total number of runep in certain subsets

of treatment combinations is equal to a known multiple of the single

index 1. For permutation-invariant designa, the total number of runs

at treatment combinations in these subsets is equal to a known multiple

of one of several indices. To illustrate, constraints for a 2332

perautation-invariant design of strength 2 vill be derived.

According to the definition, the number of times a pair of two-level

factors appear at levels 0 and 0 is independent of the choice of the
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pair. Denoting this number by or2  we obtain the constraints [O~nx] -= l

[OxOxx]zz and [xOOxx] - or. Similarly, the number of times a pair

of two-level factors appear at levels 0 and 1 (or equivalently at I and

O) is a constant &2 which may differ from ay. The number of tin a

pair of two-level factors appear at levels 1 and 1 is o. By considering

the three-level factors six more indices may be defined. Let pi """ 06

be the number of occurrences of the combinations 00, 01, 02, 11, 12, and

22 respectively. Finally, consideration of one factor at two levels and

one at three levels produces the indices Y1  °.." 'Y6 corresponding to

the combinations 00, 01, 02, 10, 11, and 12 respectively. A set of linear

constraints may now be written down. As usual, the complete set Is

linearly dependent, and in Table IIl a linearly independent subset has

been extracted.

An was noted previously, an orthogonal design is a special case of

a permutation-invariant design. More specifically, an orthogonal design

of strength t is a permutation-invariant design of strength t in which

all the indices are the appropriate muleples of the single index

It may be verified that if in Table IMI or is replaced by 9?, each

S by 4X, and each Y by 6X, the constraints are thoso of a strength

2 orthogonal design.



Table M

[00=x w a~j E zoixJLl '2  La1=m1 o

Eoxozzmo u aj E o0= y1 = ,[=W1oijm

[zoo=]mO= (zozzJl =~ fuzzoa0 I =

(oxzoz = V, (zOxr2] -' [=Xx10 P;2

Eo=zmY Izoi~y =,~~ [=f]4=3

Iox=']mt -z~2]y f2z2J

Cozitrsaits for23.1 pornutation.-invariemt diwigne



APPDIX

hiAs Appendix contains proofs of two fheorem used In &ection 3.

Recall that the column of the coefficient matrix X which is the

coefficient vector for the parameter j is denoted by x* Here 3 may

be I (the grand mean)# A, Bp ... , ADO A .. , eto. Two pairs of

colui8m have the same inner pz-oduct if their subscripts have the sase

generalized interaction. Special olumpwise-orthogonal deegngs c•a there-

fore be characterized in terms of vhich o4eralized interactions give

rise to inner products equal to the noas,zaro off-diagonal element a.

For a design of resolution t + 1 okly parameters involving +t or

fever factors are involved in the ocrome-product matrix. The gex±ralised

interactions giving• rise to noa-zero inner products may contain up to t

letters. If such a generalized interaction is multiplied by L given

effect or interaction, and if the resultant contans + t or fever lettexv,

then the resultant and the given parameter appear in the same clump

MiCOR••3e If two generalisod interaotions give rse to inner prod-

ucts equal to a# and if their product contains t or fever letters,

then in order for the design to be special clumpvise-orthoaonal their

product must also give rise to inner producte equal to at

PROO. Let a be the number of letters comon to both genaralised

interactions, d be the number of unique letters in one, and e the
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number of unique letters in the other. Since generalized interactions

giving rise to non-zero inner products must contain t or fever letterso

we have o + d f-t and a + e z to Also d + e it, since by hypothesis

the product of the two generalized interactions contains no more than t

letters. Without losing generality it may be assumed that d • j t.

The theorem can now be proved by exhibiting for each of several cases a

pair of x's which must be in the sase clump, and the generalized inter-

action of whose subscripts is the product of the two original generalized

interactionsa Let v - t, so that only x's with v or fewer letters

in their subscripts can be considered. Let the two generalized inter-

actions be denoted by (ilt *e*, it Jlt' ""0 ° d )and

S*.eic k, *...,k)

CASS I. a > vs d and e unrestricted, By multiplying the two

generalized interactions by (i, *..,* iv) it is found that the three

x's with subscripts (±. .*.. lV), (1v.lo *"*'co *l g g'" gd)9

and (UV+i 1 "'" J kl, i'" k ) are all in the sae clump. Henoethe

inner product of the last two mat bo equal to *, so that all pairs of

x's whose subacripts have the generalised Interaction

(JI. *0* Jdt 'Cis geo, kc) mat have innes pr'oduct as.

CASS II. c -v, e e vp d unrestricted. By multiplying the two

generalized interactione by (ils eg.. ic) it in found that the three

x's with subscripts (I, see, ic)t (UJ1 "'" ied.) and (klM so#, k )



sust all be In the sane clump. Therefore all pairs of x's vhose sub-

scripts have generalized interaction (41# 00" Jp kld .000# k ) must

have their inner product equal to •. If a in sero, ( **t *0, 1

is taken to be the single subscript I.

CASE III. c :cv, v > v, d unrestricted. By multiplying the 'two

generalized interaotions by (1.1. 6*.. ic# kl#o.. k... ) ~iwhre ais

the larger of c and d. it is found that the x's with subscripts

(h * 4o k1, to.# k,.*.a#. (3- 9 @099 349# ooo, ... k and

(k6, ke) are in the saue cluwp. Note that the number of letters

in these three generalized interactions are v - S + a* v - C + d. and

e - v + g and these three mmbers are all le than or .qu~al to v. so

that the three x's named all appear in the X matrix.

5. In a special clumpwvs*-orthognal design of resolution

t + 1 if for a subset of t factorst bth oup of gne raled inter-

actions giving ris to nou-zero Inner products Is of order 2 q% t o

is an integral watiple of 2P, whe p a t -q.

PROOF. Given a subset of t factor•s suppos, it is possibl, to

pick two x's from the coupleto desepn matrix wbich are not In the

same clump with each other or with xzs Then the x whose subsoript is

the generalized interaction of the first two x's must be in a fourth

clump, fori f not, the firt two x's would either be In the sme oluip
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Orl one would be In the clump containing x1 . In generalj then, it in

possible to pick a set o)T 2P x's, oue frou each clump, whos& subscripts

fors a group. But this set of 2P xle itself form a design matrix of a

resolution 2p + 1 design in p factors which can be taken to be any

set of p generators of the group. Because each x comes from a sepa.

rate clump, it is an orthogonal design. By a result of Webb (1963), this

deslign mut consiat of the full factorial replicated some number, k, of

times. Therefore the coefficient matrix X of this subdesign consists

of 2Pse t of k equal row vectors.

Nov consider any vector xi vhich is in the same clump with XI.

Since z is orthogonal to each column (except x.) of the coefficient

matrix for the orhognal subdesign, the projection of Xt on the sub-

space spanned by the columns of the orthogonal subdesign munt be a con-

stant tim lie This subspace consists of all vectors whiah are constant

over each set of k consecutive component., so that the projectic of x

onto this subspace replaees each component in a met by the average of the

k uoponents in the sets Since the projection is a multiple of x1.

the sum of sets of k consecutive components of x muot be a constant

ca and iince xi consists of plus and ainums ones, a mout be integral.

But a is equal to the 'nner product of x3 and xi, which is the sun

of all the components of x which must be c times 2P.
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APPENDIX C

OPTIMALITY PROPERTIES OF ORTHOGONAL DESIGNS

SUMARY

It is well known that, subject to the restriction that the squared

lengths of the column vectors of the design matrix be fixed, the variances

of the individual parameter estimates are each minimized if and only if an

incomplete factorial design is orthogonal. Except in the case of 2n

experiments the restriction will often be artificial, and without the

restriction it is shown that this particular optimality property no longer

applies.

Two criteria for optimality will be consideredl a) minimization of

the volume, adjusted for the number of runs, of a confidence ellipsoid on

the estimated parameters, and b) minimization of the average variance of

a prediucd value adjusted for the number of runs, where the average is

taken over all points of the full factorial. Considering parameteriza-

tions for which the full factorial is orthogonal and which involve main

effects only, it is shown that criteria (a) and (b) are both satisfied

if and only if the design is orthogonal.

These criteria are also satisfied for many more complicated parameter-

izations, including main effects plus all two-factor interactions, main

effects plus all two- and three-factor interactions, etc. They also are

satisfied for any nonsingular transformation of any of these parameteriza-

tions.
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1. INTRODUCTION

This papsr is concerned with factorial designs, in which a number of

factors are each restricted a priori to a specified number of levels, in

contrast to regrersion designs, in which the factors are continuously vari-

able. Whether or not a £actorial design is orthogonal depends on the

parameterization used to describe the response. The expected values of

the response of interest will vary between the points or treatment combina-

tions of the full faotorial, and the parameters are defined in terms of these

expected responses. A canonical parameterization will be specified in the

following manner: The grand mean U is the average expected response,

averaged over every point of the full factorial. The main effects for a

factor at say a levels are defined in terms of the quantities

ýL,#i = 0, 1, ... , s - 1, which are the expected responses averaged over

all treatment combinations in which the given factor is at level i. More

specifically, there are s - 1 main-effect parameters each defined as a

linear combination of the and such that the linear combinations are

orthogonal and the sums of their coefficients are zero. It will be con-

venient for later use to let the linear combinations be scaled so that each

has squared length 1/s. Interaction parameters involving two or more factors

are similarly defined in terms of average expected values with the factors

involved at fixed levels.

Once a set of parameters is defined in terms of the expected responses

at the various treatment combinations, the process can be reversed, and the

expected responses may be expressed approximately as linear combinations

of the parameters. If there are as many parameters as points in the full

factorial (that is, if interactions of all orders are defined),
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then the expected responses can be expressed exactly. If there are fewer

parameters, then some degree of approximation is necessary. In practice,

however, the approximation is often good, relative to experimental error,

even when the number of parameters is much smaller than the number of points.

Given N observations at any set of treatment combinations, the values

of the responses can be expressed in the form Y = XP + e. Here Y is ths

N x I vector of responses, # is the p x 1 vector of parameters, X is

an N x p matrix called the coefficient matrix, and e is an N x 1 vector

of errors. If the approximation of expected values by linear combinations of

parameters is adequate, then the components of e are assumed to be indepen-

dent and identically distributed experimental errors. If the matrix X1X is

nonsingular, then the least-squares estimate of the vector B is • = (x'X)-Ix'y.

The covariance matrix of is X' rwhere 2 is the common unknown

variance of the components of e.

2. CRITERIA FOR OPTIMALITY

Consider a class of designs for which the lengths of the column vectors

of X are fixed. If there is an orthogonal design (i.e. X'X is diagonal)

in this class, then the variances of all the estimates will be smallest using

this design. This is a well known result which was proved by Plackett and

Burman[l]. The restriction that the lengths of the columns be fixed may

appear to be simply a natural way of fixing the scale of measurement, but for

factorial designs it is a very artificial restriction. If, as is more natural,

the number of runs and the parameterization are fixed, then this optimality

property of orthogonal designs no longer holds, as the example in the follow-

ing paragraph indicates.
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An experimental situation will be considered in which there is a single

factor at three levels. This example is chosen for simplicity, but it is

nontrivial in the sense that the conclusions which can be drawn from it

apply equally well to more comprehensive experimental situations. The param-

eters, defined in terms of the expected responses 1o1 0 i and 12' are the

grand mean 3= + L2)/3, the "linear effect"' = (2 -

and the "quadratic effect" p = (40 - 24i + L2)/3/•" The design containing

two runs at each treatment combination is orthogoral and the variances are

02/6 for each of the three estimates. The design containing two runs at

level 0, one run at 1, and three runs at 2 has variances l1 2/54 for %,

52/36 for and 29o2/108 for '2" Thus the variance for i is smaller

than for the orthogonal design with the same number of runs, The design with

one run at level 0, three runs at 1, and two runs at 2 yields variances of

1ia2/54 for 02/4 for and 1702/108 for A If one uses this
02

design, the variance of is smaller than for the orthogonal design.

It is apparent from this example that the given criterion for optimality

is too strong; that is, there will in general be no design for which the vari-

ance of each estimate will be minimized. It therefore seems appropriate to

search for other criteria for optimality.

The purpose of a factorial experiment is usually either to estimate param-

eters or to describe the response over the grid of possible treatment combina-

tions. Consequently, it seems natural to consider two criteria corresponding

to these two situations.

Consider designs of N runs with p factors. The first criterion is

based on the product of the determinant of the matrix (X'X)-I and Y". if
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an N-run design is replicated r times, so that the complete design contains

Nr runs, each element of the covariance matrix 02 (XX)-x of the original

design is divided by r and the determinant of (X'X)-I is divided by rp.

The purpose of multiplying the determinant by 1P is therefore to adjust for

the number of runs. The reason for using the determinant in the first place

is as follows. A confidence set for the parameters is given by the set of

points for which (-g)*(x'x)(•-•) • ps 2i, where a is the residual sum

of squares and where K is a constant depending on the confidence level

(i-e), p, N, and the distribution of the errors. If the errors are normally

distributed, K is the upper ey point of the F distribution with p and

N-p degrees of freedom. The volume of the confidence ellipsoid so determined

is given by

24P (p2K)4 P
V=pr(4 ) 4,tx

Therefore, the volume of this ellipsoid is a monotonically increasing function

'bf the determinant of (X'X)

The second criterion is appropriate when the purpose of the experiment

is to predict the response equally well at each treatment combination of the

full factorial. Such predictions can be made using the parameter estimates,

and the variances of the predictions depend on the variances and covariances

of these estimates. The criterion proposed is the average variance of a pre-

dicted value, times the number of runs. Multiplication by N again has the

effect of scaling for the number of runs.I

3. MAIN-EFFECT PARAMETERIZATIONS

In this section only main-effect parameterizations will be considered, but

the number of factors and the numbers of levels of each factor are arbitrary.
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Let Z be the coefficient matrix of the full factorial design consisting of

p factors and let M be the number of runs in this design. Due to the

particular choice of scaling used in defining the parameters, the following

theorem is true.

THEOREM 1. The squared length of every column vector of Z is M and

the squared length of every row vector is p.

PROOF. Consider an arbitrary factor at any arbitrary number a of levels.

With this factor are associated s - 1 columns of Z, the coefficient vectors

for the main effects of this factor. The components of these coefficient

vectors may be determined from the definition of the main-effect parameters.

Let 50 represent the grand mean and h, "# ' o sl-1 represent the main effects

of the given factor. These parameters are defined as linear combinations of

* 0 Lot Q = ij be the matrix of the coefficients of these

linear combinations, so that we have

Sl/s ~l/s.•..•l/s"

21 q2 2 ' q 2 s

• - . • 0

Ts0-Ij [qs q s2 '""qss _j s-I

which may be uritten in matrix notation as = QV* (by making the obvious

definitions). Note that the elements of the first row of the matrix Q are

all 1/s, and that this is consistent with the definition of the grand mean

given in the introduction. By definition the rows of Q are orthogonal and

have squared length I/s.

Consider the matrix P = . It can be verified that due to the orthogo-

nality of the columns of Q, P is as follows
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1 sq 2 1 .• • * Sqsl

1 sq 2 2 • • • sqe2

1 sq 2s . Sqss

2s5

or P sQ'. Now PP' = P'P sI, so that the sum of squares of any row

or column of P is s.

i Consider now the submatrix consisting of the columns of Z associated

) with the main effects of the factor. Any row of this submatrix h~s the

same elements as a row of P with the first element omitted. Since the

design is the full factorial, each level of the factor appears the same

number of times, and hence each row of P is repeated the same number of

times k. The constant k is the product of the number of levels of the

remaining factors. The sum of squares of each column of the submatrix is

therefore k x s, which equals M. The sum of squares of each row of the

submatrix is obviously a - 1.

Finally, consider the entire matrix Z. The squared length of columns

associated with main effects has been shown to be M and the column associ-

ated with the grand mean has 1 for all .ts components, hence also has squared

length X. It has also been shown that the squared length of the part of a

row associated with the i-th factor is si-l, so that the total squared
n

length is 1 + r (s i-1), which equals p, the number of parameters. The
i=1

proof is now complete.

Using Theorem 1 and the facts that the trace and the determinant of a

matrix are, respectively, the sum and the product of its eigenvalues, we

can prove the following theorem.
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THEOREM 2. Both criteria [(a) and (b)] are satisfied if and only if a

design is orthogonal under the canonical main-effect parameterization, in

which case they will also be satisfied under any other main-effect parameter-

ization, and the variances of all predicted values are equal.

PROOF. Consider first the average variance of a predicted value times

the number of runs. This is given by

(N/M) trace Z(X'X)-z' =a2N tace (X'x = 2 I/xi where the
i=l

are the eigenvalues of X'X. Since by Theorem 1 the sums of squares of

elements of the rows of Z are all p, the same is true of X, and we have

trace XX' = trace XIX = Np, so that YXi = trace XIX is fixed. In order to

minimize Nx2/x i with EXi fixed, the Xi must all be equal to N, which

implies that XIX is a scalar multiple of the identity matrix. In this case

the variances of all predicted values (the diagonal elements of c 2 (X'x 1)-lz')

are equal to a2 p/N, and N times the average is c 2 p/M. The chosen

determinant criterion is Npdet(X'X)-I. To minimize det (XX)-' 1  with YX

fixed, the 1i must again all be equal, and the value r'' the criterion is

unity.

Now consider any nonsingular reparameterization n = A1lB. The expression

for the first criterion takes the form (c 2 N/N) trace ZA(A'X'XA)-A'z, so

that the A's cancel and the value is the same as before. The second criterion

becomes NPdet(X'X)-I/(detA) 2 , so that under a new parameterization both

criteria are minimized if and only if the design is orthogonal under the

canonical parameterization. This completes the proof.
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4. HIGHER-ORDER PARAMETERIZATIONS

In the proof of Thaorem 2 the only reasoii for restricting the parameter-

ization to contain only main effects is so that Theorem 1 will apply. There-

fore, Theorem 2 applies to any canonical parameterization for which Theorem 1

holds. It will now be demonstrated that Theorem 1 is valid for many canonical

parameterizations involving interactions.

Let Z be the coefficient matrix of the full factoriil under a canonical

parameterization including the grand mean, main effects, and two-factor inter-

actions. Consider those columns corresponding to the main effects and the

two-factor interactions involving factors at sa and a2 levels. Treating

these factors and their interactions as a single s 1 S 2-level factor, we find

that Theorem I applies and that the squared lengths of these columns are all

equal to M and that the squared length of the rows is S 2-1. We know from

Theorem 1 that the portion of this squared length attributable to the columns

for the main effects of the two factors is (S1l-) + (s2-1). The remainder is

(S1-1)(s2-1), which is equal to the number of interaction Darameters. This

argument may be repeated for the interactions between any pair of factors, or

for that matter for interactions involving any number of factors. Therefore,

the conclusions of Theorem 1 are valid whenever parameters appear only in

complete sets, which are sets such that if any interaction parameters between

a group of factors are included, then all possible such parameters are included.

Theorem 2 may therefore be generalized as follows.

THEOREM 3. Under any canonical parameterization involving only complete

sets, or a nonsingular transformation of such a parameterization, the deter-

minant and average variance criteria are satisfied if and only if the design

is orthogonal under the canonical parameterization.
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It is of considerable interest to determine which designs satisfy the

two criteria if the pa..ameterization does not consist only of complete sets.

The simplest such situation involves two factors, one at two and tho other

at three levels. The main effects for the three-level factor are the linear

effect and the quadratic effect, as in the example discussed earlier. Simi-

larly, the interaction between the two factors may be parameterized using

linear and quadratic components. Of the two, suppose only the quadratic

component is included in the model. Then the matrix Z is as follows:

S -1 -J732 1/,•2 -1/,/

1 -1 0 -2/F 21T

,1 -. /'2 11,/2 -- 1.,F

1 1 -V312 1iV2 1 1,F2

1 1 0 -2/11 - 2i1

L 1 1 13/2l1Ir 1,F

The rows of Z correspond to treatment combinations 00, 01, 02, 10, 11, and

12, respectively. Consider designs for which the number of runs at treatment

combinations 00, 02, 10, and 12 is a constaat X and the number of runs at

combinations 01 and 11 is 4(N-40). For such designs the cross-product matrix

is of the form

[ N 0 0 I'(6x-N) 0 ,

0 N 0 0 v¶(6),-N)

XX= 0 0 6X 0 0

r2(6X-N) 0 0 2N-6X 0

0  v2 (6X-N) 0 0 2N-6X _ .
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We seek the value of J/N which will minimize N5 /det(X'X) = N5 /3 5 23 X3 (N-4X) 2 .

This value is VN = 3/20, for which the criterion has approximately the value

• 5 (the value for the orthogonal design being 1.0). The trace of the inverse

time3 N is (3N 2 -8 Xi)/6X(N-4X), for which the minimizing value is VN =

* (3-,5/8. The criterion has the value 4.98, again slightly better than the

value of 5.00 obtained with the orthogonal design.

!
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APPUDIX D

DRSIG1N FOR STUYING ONE FACTROR AT A TIME~

INTRODUCTION

It has become axiomatic in the statistical experimental design literature

to discourage the practice of varying one factor at a time. In the case

of factors each at two levels, the support for this point of viev is that

the variances of the main-effect estimates using such designs are con-

siderably larger than with orthogonal designs.

On the other hand, the experimenter often likes such designs because he

finds out more rapidly whether a new factor has azny effect. He con-

tinually receives information rather than having to wait till the entire

experiment is completed. If the magnitudes of the effects he is inter-

ested in are several times as large as experimental error, if he does

not need to describe these effects precisely, and if there are no inter-

actions, there is no particular disadvantage in experimenting in this way.

Another advantage of one-at-a-time experiments is that they are contrac-

tible or expansible without limit. Thus, no matter how many tests have

been run, the experiment may be stopped, in which case estimates of the

effects of those factors which have already been varied may be obtained,

or it may be continued by the introduction of a now two-level factor.
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An excellent exposition of the statistical arguments against such designs

was given by Fisher in The Desire of Sx~oriments. sections 37 and 38 (2].

He bases his attack on their low efficiency compared with orthogonal

designs and their lack of information about interactions.

Cuthbert Daniel [11] has presented the positive aspects of these designs.

He pointed out that they are expansible and contractible and that thesy

provide a quick look at each factor. He went on to say that they can

often be augmented to form a half replicate plus one additional run, in

which case the lost efficiency is for the most part regained.

It is the purpose of this paper to investigate the properties of one-at-

a-time designs. It is pointed out that there are many classes of such

designs. A lower bound is obtained for the variances of the estimates

using any such design, and several classes are given for which the lower

bound is obtained. The assumptions are that euch factor has only two

levels, that no interactions are present, and that there is no effect of

the order of observations on the response. The last assumption is neces-

sary because the order of the runs cannot be randomized. The number of

factors need not be specified in advance.
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BOUNDS FOR THE VARIANCOES OF THE EFFECTS

We consider factors at two levels. For convenience, the initial level

of each factor will be considered the low level and will be denoted by

O or -. The first run will have each factor at its low level. If

there are n factors the design contains n + 1 runs. The i-th factor

appears for the first time at its high level in run i + 1. After it has

been introduced it may stay at its high level, revert to its low level,

or be varied between its two levels on subsequent tests. Thus there is

a wide latitude of possible one-at-a-time designs.

Experiments for estimating the main effects of two-level factors are con-

ventionally analyzed in terms of the coefficient matrix X as follows.

The first column of X corresponds to the grand mean and has all its

components equal to 1. Each of the remaining columns corresponds to one

of the factors, and each row corresponds to a run. According to whether

a given factor is at its high or low level in a given run, the correspond-

ing element of X contains the entry +1 or -1.

Suppose a vector Y of N responses is obtained from the experiment.

Under the assumption that there are no interactions we may write

Y - Xp + e, where p is the vector of the unknown parameters and e

is a vector of independent random errors having mean zero and common

variance The least-squares estiate of p is (x'x)-WxY.
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The covariance matrix of • is a

In addition to working with the traditional coefficient matrix X. it

will be convenient to introduce a reduced matrix R. Where X has an

element 1, R also has 1; where X has a -1, R has a zero. It

may be verified that X and R are related through the triangular

transformation matrix T according to the equation X - RT, as in the

following example.

1 -1 1 0 0 0 0 0 1 -1 -f -1 -1 00

1 1 -1 -1 -i -1 I 1 0 0 0 0 0 2 0 0 0 0
1 1 1 -1 -1 -1 1 1 1 0 0 0 o 0 o 2 0 0 0

1 -1 11 -1 -1 1 0 1 1 00 0 0 0 2 0 0

1 I 1 -1 1-1 1 1 1 0 1 0 0 0 0 0 2 0

I -i -i1 1 1 1 o 1 11 0 0 0 0 0 2.

In general, ti3 is given by the following rulees

t -1

tlj - -1 (J-2, ... , n+l)

tj - 2 (J=2, ... , n+l)

tij - 0 (otherwise).

It may be verified that
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0 2 0 0 0 0 0 0 0 0 0

oT 0 o 2 0 0 0 0 0 1 0 0 01

002000o ooooo oo 00200 X ooo+oo . (2)

0 0 00 20 0 00 0 +0

L0 000 0 0000+

If X is the coefficient matrix for any one-at-a-time design, then the

corresponding R is lower triangular, and has 1's down the main diag-

onal. Therefore the determinant of R is unity. Since the elements of

R are integers any minor is integral. Since the elements of an inverse

are by definition an appropriate minor divided by the determinant of the

original matrix, R-1 also consists of integers. It follows from (2)

that each element of X71 = T-1R" 1  must be a multiple of 1.

THEOREM 1. For a one-at-a-time design containing n factors at two

levels and n + 1 runs, a lower bound for the variance of any estimate

PROOF* The variances of the estimates are a2 times the diagonal ele-

ments of (X'X)-I° Because X is square, (X'X)-' reduces to

The diagonal elements are therefore the sums of squares of the elements

in each row of X71. We know already that the elements of r" are all

multiples of +. The sum of squares of the elements in a row must therefore

136



be a positive multiple of +. If the value were 4, then all the ele-

ments would be zero except one which was equal to +. The inner product

of a row of X7I and a column of X must of course be either 0 or 1.

Since the elements of I are all either +1 or -1, the inner product

of any column of X with a row containing a single + would be _

Therefore a lower bound to the sum of squares of elements of any row of

X"1 is j, and the theorem is proved.
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CONSTRUCTION AND COMPARISON OF VARIOUS

0NE-AT-A-TIME DESIGNS

The most familiar family of one-at-a-time designs are those in which each

factor returns to its low level after it has been "studied". The general

form of the matrices R, R-1, and X-1 in this family are exemplified

by the following five-factor case:

i ooooo 100000ll ½½

110000 -110000 -04 oooo

101000 -101000 -4 00o00
S1 0 0 1 00 R-= -100 100 X71 0 0 4 000

100010 -10o0010 - ooojo

100001 -1000014 oooo1

It will be noted that the variance of each main-effect estimates is Cy

the theoretical lower bound. The variance of the grand mean is

a2(n2-3n+4)/4 for the n-factor case.

It is of interest to inquire whether or not there is a family of designs

in which the variance of the grand mean is also at the minimum level of

+2 . The family of designs in which each factor is m'intained at its

high level satisfies this requirement. Again using a five-factor example

to illustrate the general case, R, R-, and XI are as follows:
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1 10 0 0 001 1 00 0 00 +0 0001100000 -1 1 0 0 0 0 0 0 0
111 0 1 1 0 -0-110 0 0 -1 + 0 0

111110 0 00-11I0 0o00.%j-o
~1 1 1 ]o o o o-1 1 oo o 0- o- 0

l1 11111 000 -11 0 0 004

These two classes of designs are two extremes in which all factors are

either returned to their initial level or are held at their new level.

Ordinarily an experimenter would like to determine which level of each

factor is better, and conduct the remaining experiments at the more de-

sirable level. Thus, in general some factors will be held at their new

level and some will be returned to their old level. In a sense, the

experiment will be midway between the extremes already investigated. Foi*

theae extremes, the variances of the main effects attain the lower bound

Sof +a 2 The fact that the grand mean has a higher variance with the

first family considered will often make little difference in the type of

experiment in which one-at-a-time designs are often used. It seems

appropriate to ask whether or not the main-effect variances will always

be a• if factors are maintained at their more desirable level for the

duration of the experiment. The answer is yes as can be seen from the

following theorem.
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THEOREM 2. For any one-at-a-time design in which each factor is main-

tained at either the high or low level after the initial introduction of

the high level, the variances of the main-effect estimates are all +a 2

PROOF, Except for the first row, each entry in the matrix X- 1 is +

times the corresponding entry in R71 . Therefore the theorem will be

proved by showing that each row of R- 1  except the first contains

one +1, one -1, and the remaining entries are 0. The proof will be

inductive.

The theorem is obviously true for the case of one factor. Two possibili-

ties exist for n = 2:(1) 3. 0l 01 W- 00(2°°00i (2- 1 0 0
R(I 1 1 0 -1 1 0 R 1 0 ; 1 0

1 -1
1 10 -1 11 0 1 1 0 1

In either case R-1 has the required form.

Assume the theorem is true for designs involving n or fewer factors.

The reduced design matrix R2  for a design involving n + 1 factors may

be partitioned as follows:

R 0

R2= I q

i--40

Lr )4.0



Here R is the n x n reduced design matrix for a design of the re-

quired type involving n - 1 factors, and z is an n-eonmponent vector

of zeros. The vector r consists of zeros and ones, and is repeated in

the last two rows because of the restriction that a factor is held at

either its high or low level after it has initially been varied. The

single entry q will either be zero or one depending on whether the

n-th factor is to be maintained at its high or low level for the duration

of the experiment. The inverse of R2 may be partitioned in tho same

way:

FR1 z

R20
Lb Ic 11

Since R2 is a lower triangular matrix with R as a submatrix, R2

is also lover triangular with R11 (and hence also C)as a corres-

ponding submatrix. Thus, the first n rows of R71 are as indicated
2

above, where z again indicates an n-component zero vector. By the

induction hypothesis, the n-component vector a has all its entries

zero except one, which is equal to -1. Suppose the componens q in

R2 is equal to 1. Then in order for the inner products of the last
21

row of R2 and the first n + 1 columns of R2 all to have the valuet2

zero, the vector b must be an n-component zero (row) vector and o

must have the value -1. Now suppose q is equal to zero. In order

!I
!
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for the inner product of the last ror of R2 and the first n + 1 col-

umns of x2 all to have the value zero, b must equal a and c must

equal zero. In either case, the last rnw of R7 contains one 1, one

-1, and n O's. The theorem now follows by induction.

This theorem characteriLes the "optimum class" of one-at-a-time designs.

We conclude by giving an example of a very bad one-at-a-time design which

is not a member of this class. Suppose instead of returning each factor

to its initial low level immediately, it is kept at the high level for

one additional run. Intuitively it would seem that the latter series of

designs would differ little from the former, except that the high level

is "studied" a little further. In fact this minor modification seriously

degrades the qublity of the designs. A five-factor example of this series

is as followss

11 00 00 0 1 0 0 000 40 +0+

1 1 1 000 1 0 -1 1 000 04 0~ 00 0

R 1 0 1 1 Q 0 0 -1 1 -1 1 0 0; -0 -+ 0

1 0110 -1 1-1 1 0 0 4-0

1l0 0 011 -1 1 -1 1 -1 1 -4+-1+-4 1

In general the first two main-effect estimates will have variance CT 2

the next two 2, the next two 1 C,2, etc. This series of design illus-

trates the fact that apparently inconsequential modifications of designs

cn in fact have a serious effect on the variances of the estimates.
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APPENDIX X

SOWE NEW IMNCOMFLM YATORIAL YOEIG#E

SUMMARY

An exhaustive search of possible tvelve-run 24 designs has been made.

There are nineteen essentially differeut design configurations, fifteen

of which permit the estimation of the mean, main effects, and two-

factor interactions. Two have been previously discussed in the litera-

ture. Two new designs seem to be of practical value. One has variances

of (15/128)02 for main effects and (1/8)02 ..for two-factor interac-

tions; the other has variances of (7/64)0ý2 for the main effects, but

the interactions have sowewhat higher variances.

An incoplete 27 design with 29 runs has been found in which all main

effects and interactions can be estimated with variance .05002. A

modification with 36 runs allows estimates of the main effects with

variance .03902 and of two-factor interactions with variance .04802.

IN'mOIwCTION

This paper was originally given in November of 1961 at a Central Regional

Meeting of the Institute of Mthematical Statistics held in Urbana,

Illinois. The research work was done at the University of Chicago while

the author was a graduate student in the Department of Statistics. The
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paper describes two loosely associated Investigations on 2n incomplete

factorial designs which were not, however, incorporated into the

author's thesis. They are of scme general interest, and have been

referred to in a general paper on non-orthogonal designs [2] by the

author. Since the latter paper has been submitted for publication, and

with the anticipation that its publication will create some interest in

these results, this paper has been prepared at this tim.

FOUR-FACTOR 5WMLVE-MJN IDZSMS

In the case of four two-level factors, there are four main effects, six
!A

f two-factor interactions, four three-factor interactions, and one four-

factor interaction. If interactions involving more than two factors

are negligible, there are, including the mean, eleven parameters to be

estimated. Two twelve-run designs have been propoed by Peter John [1]

to handle such situations, although he has given no indication as to

whether or not his designs are in any sense optimna. In an attempt to

determine the relative merits of his designs, I have made an exhaustive

classification of all possible four-factor designs containing runs at

twelve distinct treatment combinations. It is most convenient to per-

form this classification in terms of the four treatment combinations

which are omittad.
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As usual, A, B, C, and D denote the factors. The treatment

combination with every factor at its low level will be denoted by (1),

and every other treatment combination by those (lower case) letters

corresponding to the factors at their high levels. The tr-eatment com-

binations form a group whose identity is (1). The product of two

treatment combinations is the treatment combination containing all the

letters from the original two except any they have in common. Thus,

for exappe, a Xb =ab, abc X cd. abd, and ab X ab . (1).

There are a - 1820 possible ways of choosing four treatment com-

binations to be omitted, but, many of these choices lead to equivalent

designs. Two designs will be considered equivalent if one can be

obtained from the other by a combination of one or both of the following

two operations: 1) rearranging the factors, and 2) reversing, for any

factors, the high and the low levels. It follows that we may, without

loss of generality, restrict attention to only those quadruples which

contain any given fixed treatment combination; the treatment combination

(1) will be so chosen. The 39 distinctive sets of four treatment com-

binations given in Table I all contain the identity (1) and are such

that one cannot be obtained from another by rearranging the factors.

Thus, given any set of four treatment combinations containing (1), by

relabeling the variables one of the sets in Table I will be obtained.

For exame, [(1), c, abd, ac: becomes E(i), a, ab, bcd] which is
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TABIZ I

DISTINCTIVE FOUR-POINT CONFILURATIO!5S

(1),0a.1b., c (1),aL.abc..bcd n £(l)p&atbcpabed)

(1),,a,b,,ab (1),apabcpabcd =,[(1).a,,bc,,bod]

(1),jpa$bp se (1),a~bcdabodI (1).,a, b. cd (1),sab., ac, ad.

(1),Ia,b~abc (1) , ab., acp bc

(1.),&,b,acd (3)ab.,ac, bd

(1),a,b,abcd (1)vabsaC.Qabc m E(l).a.,b.,abcJI (.)j,ai,abpac - (),b)(3.)pab,ac.abd. - C(l)..),abc.,bd)

(J.),taab~bc [ (l),*a,b.,abcJ M), ab, ac, bod

(1).,a.,ab,,cd - (),bad (1),pabbvcd, abc () a~be~bd]

(i),&..bcjbd (1), ab ac., abed - (1),ab.,&c,bd)

().),&a,ab.,abc = O.),a~b,ac] (1),v "'p dj,abod

(i)s.,sbpecd = [(l),a,b.,cd] (1),.ab.,abc,abd a [(l),a.,b..cd]

(1).a.,ab..bcd = [(l).,&,b.,abcd) (1).,ab.,abc~acd - C(l),a&.,bc,abd)

(1),a.,bc.,abc (1),&b,&cd,,bcd

(1).,a.bc,bed (1); ab'acd,,abed = f(l),&,,bc, abed)

(1),a,,ab~abcd -1(1),&,vbqacd.] (1),abc.,abd.,aad a [((1),ab.,ac,,bcd)

(l),&.,bc,abcd (1)j,abc: abd..abed - ) a~beabd]

(3.),a&,abc.,abd C (l)j,&.bc.,bd]
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the l1th entry. Te process of interchanging the levels of one or more

factors iA equivalent to multiplying each combination in the set of four

by another treatment combina&ion, namely that containing the letters for

the factors Vhose levels are changed. Since by convention each set in

required to contain the identity (1), all possible equivalent sets can

be obtained by multiplying the given set by each of its elements in turn.

Thus, starting with the set [(l),a,b,acd], three equivalent sets ar

obtained as follows:

TABL 11Z

Multiplier Derived Set Standard Form

(1) (1),a,b,acd (W), a,b,ad

a ,(1%),a b, cd (1) a, abc d

b b, ab, (1),abcd (1), a, ab, abcd

acd acdc d, ab od,( (1 L)ab, abc, abed

The final colum, labeled "Standard Form", is obtained from the second

by renmaing and reazranging the factors so that the sets are in the same

form as in Table I. In Table I those sets which are equivalent to sets

preceding then in the table have the equivalent Bet given after them in

square brackets.
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By examination of Table I it can be seen that there are exactil nineteen

i equivalence classes to vhich the possible twelve-run designs belong.

For those designs vhich are nonsingular, the variances of the estiatesI using these designs are given in Table 13I. Each variance is actually

a multiple of 02, and only the coefficients of a are given in the

table. Those designs from vhich it is Impossible to estiate a13

eleven parameters have the notation "singular" entered in the table.

The designs proposed by John are numbers 15 and 19 in Table MII. Both

have the property that the four treatmnt combinations aaitted are sub-

groups, so that these designs are fract4onal factorials. The only other

designs with this property are the four singular designs. Both of John's

designs have the variance of each estSate equal to 02/8 except for

two estimtes which have variance 2/.. These am. the grand an

and & min effect for 15 and the grand mean and an interaction for 19.

Since min effects are ordinarily of moae interest, 15 would often be

preferable to 19, as John points out.

Three other designs appear to have merit; these are numbers lA,, 16, and

17. The average variance of the estites Is as lw as possible for

designs 14., 15, 17, and 19. Design number 1 is for most purposes the

best twelve-rna design available, since it has the added sdva a that

each min effect is estimated with a variance vhidi is belw this
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TABLE InI

VARIANCES OF ESTDYTES FOR 12-RUN 2 • SIrNB

Number Combinations Variances (Times 128)
Oitted Mean A B C D. AB AC AD BC BD CD Det XX

1 (1),a,b,c 48 z8 28 28 48 16 16 28 16 28 z8 .ý4X1Ou

2 (1),a,b, ab singular 0

3 (1),a.,b,ac 32 28 28 28 32 16 16 28 16 28 28 .34X1011

4 (1),a,b,cd. 32 16 16 60 60 16 28 28 ?8 28 32 .34x10o

5 (1),a,b, abc 32 28 28 60 32 16 16 28 16 28 60 .3 4 xlO"

6 (.),a,b,acd 32 16 16 28 28 16 28 28 ,8 28 3z .302"

7 (.),a,b, abcd 48 16 16 28 28 16 28 28 z8 28 48 -34 Xl. 0

8 (1),a, bc, bd 16 14 32 24 24 14 34 14 24 32 24 .69x1011

9 (1),abc,,abc singular 0

10 (1),a,bcabd. 16 14 32 24 24 14 14 14 24 24 32 .69xi0oI

11 (l),a.,bc,bc. 32 16 28 28 16 25 28 16 32 28 28 .34KX101

12 (1),a.,bc.,abcd 32 16 28 28 16 28 28 16 32 60 60 .34xlOI

13 (1),a&,bcd,abcd singular 0

14 (l),ab,a.cad 12 15 15 15 15 16 16 16 16 16 16 .14x1O1 2

15 (1),ab,acbc 12 136 16 3.6 12 16 16 16 16 16 16 .14x.01-12

16 (3.),ab,ac,bd 16 14 14 14 14 32 24 z4 24g 4 32 .69xi013

17 (1),ab, acbcd 12 16 16 16 15 16 16 15 16 15 15 .- 4X101 2

18 (1),ab, cd,abcd singular 0

19 (1),.b,acdbcd 12 16 16 16 16 16 1 6 16 16 16 12 .1Xx3.01 2

150



average. Design 3.6 would be useful. if the interactioas were of only

incidental interest., since the main effects have the lavest average

variwA&ce vith this desiJgn.- Des ign 17 would be useful if one factor (D)

atid its interactimis were of the most interest.

It should be noted that design 1,, is equivalent to a permutation-

invariant design. The conxcept of perstutation- invariance, which I intro-

duced in another paper E2], 10lies that &ll factors are treated alike In

the sense that the cross-product matrix zremaizs unaltered If the factors

are permuted. By multi~plying each treatwent ccobination by a the

ccombinations amitted axe seen to be a, bj, c., and d., and this set can

be seen to be Perautation-invariant. Dessign 1)4 is the only design of

the nineteen vhich is equivalent to a permutation-invariant design.

MW PNPKflATION-IWVARI&N]! B~~ N-F=v DEIGNS

The class of fractiona~l factorials Is del"icient for scme experlimental

situations,, one of which is the case of the 2 7 hen interactions are of

interest. Although onl~y 29 estimates are to be obtained., the ma~mlest

fractional factorial is the half-replicate, containing 6)4 rums - Tis

fact is especially disappointing vhen one recalls that 8 factors can be

accc~cdated in the same nmber of rums. Theef ore there is cons ideal
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Interest In finding an incom(ulte factorial frm vhich all the effects

and Interactions can be estimted efficiently and vhich is considerably

ui.lUer than the E=U eat fractional factorial available. Two such

deslos, both permutation-invariant, have been found for this experi-

mental situation. They were derived by analogy with the permutation-

invariant 12-run 2 design described above.

The first of the new 27 designs we will cmnaider contains Just 29 rurs,

t i smlleat possible number. These runs are as follows: i) one run at

the treataent cobination (1); ii) one run at each of the 21 two-letter

treatnt cwmbiations (i .e., O ac, "'" , fg); and i.i) one run at

each of the 7 six-letter treatment ccmbinations (i .e., abcdef•,

bcdefg). The estimte of the grand mean is

- (1/6)y(,) + (1/24) EYb + "'" + bedefg]" ,re Y(l)' 0 "b' etc.,

denote the response at treatment combinations (1), ab, etc. Its

variance is .076ý. The estiate of the =in effect of factor A is

A - (124)Y(l.) + (1/24) :&,b+ + Y•ag - 1/48) [bc+ -+ Y f

+ (1/24) [t, f+ -.- + Yaoef - (7/48) oft. The estlmtes of

the other main effects are analogous. The variances of the main-effect

estimates axe each .05002. The e&tt1te of AB is

AB a (l/24)Y(].) + (748Y - (l/z.4) Eyac + ** + bg1

+ (1/48) [Y a + -' + Y f6) - (1/24) lyacdefg + Ybodefg]

+ (1/48) [Yabcdef + -'" + Yabdefg]" The other interactions are

defined analoyouslT. The variance of these estimates is also .05002.
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In coaring incomlete factorial designs it is useful to define the

efficiency of a design for a given estimste as the ratio of the per-run

information with the given design to the per-run infomation with the

full factorial, where the information is the reciprocal of the variance.

For this design the efficiencies are .45 for the grand mean and .68

for the miin effects and interactions.

The second of the new 27 designs contains i) one run at (1); i1) one

run at the 21 two-letter treatment combinations; and iii) two runs at

each of the 7 six-letter combinations. Thus, the second design can be

obtained from the first by duplicating each of the six-letter treatment

combinations. This 36-run design h,s an efficiency of .40 for the

mean, .81 for the main effects, and .58 for the two-factor inter-

actions. The high efficiency of the min-effect estimates and the fact

that the design contains seven duplicated points from which an estimte

of pure experimental error can be obtained, meke this a particularly

attractive design.

A six-factor design analogous to the first seven-factor design has also

been investigated. This design contains 22 runs as follows: i) one at

(1); 1i) one at each two-letter combination; and iii) one at each five-

letter combination. The efficiencies are quite high, namely .83 for

the mean and .87 for the miin effects and interactions.
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