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PREFACE

In conjunction with RAND's study of Defense Against Submarine-
Launched Ballistic Missiles for the Advanced Research Projects
Agency, background investigations of theoretical methods for calcu-
lating the performance of nondirectional passive sonobuoys are
being conducted. This particular investigation is directed toward
detecting broadband signals which might be generated by certain
types of submarines,

The author is an Associate Professor in the Department of
Engineering and Applied Science, Yale University, and is a consultant

to The RAND Corporation.



SUMMARY

This Memorandum deals with some of the problems arising in the
passive detection of submarines by single, nondirectional hydrophones.
The signal emitted by the submarine is assumed to be a broadband
noise whose charzcteristics are similar to those of the background
noise. Hence, detection is pcssible primarily because of the increase
in noise power caused by the presence of a target. The effects of the
motion of the submarine past the hydrophone and of the uncertainty in
the background noise level are analyzed. Although the observation
time for a slowly moving submarine is greater than that for a fast
submarine, it is found that if there 1s uncertainty about the back-
ground noise level, detectability is eczcucially independent of cbserva-
tion time. Hence, a faster and therefore noisier submarine is more
easily detected tlian a slower and quieter one. The major factor
limiting the detection range ie the noise uncertainty; but if the
background noise is stationary, the fact that the signal produced by
the moving target is a nonstationary noise can be used by the detector
to estimate the background noise, and therefore to increase the

detectability.
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1, INTRODUCTION

The sound emitted by a submarine is assumed to consist of a
number of line frequencies in the lower-frequency part of the signal
band and a broadband, stochastic type of signal over most of the
higher-frequency band. In this Memorandum, detection based on the
broadband component of signal is considered, For certain submarines
the amplit'de of the line components may be very low and their effect
on detectability is therefore small, Alsc, the line components and
broadband components are probably add.tive in their effect on
detectability, and '.he- :an, therefore, be considered sepurately,
Finally, by considering only the broadband spectrum, a scmewhat
pessimistic result is obtained which can be improved by processing
the iine cowponents in an optimum fashion,

This analysis is preliminary in nature and its purpose is to
provide rough order-of-magnitude estimates of detectability, It is
based, therefore, on a number of simplifying assumptions concerning
the nature of the target signal, background noise, and transmission
loss. Specifically, it is assumed that both the noise and the signal
measured at the target have a Gaussian amplitude distribution with
zero mean and known spectral shape (although not necessarily known
spectral level) and that they are stationary. For most of the
aralysis, the transmission loss is assumed to be inversely proportional
to the squarc of the distance between source and receiver; however,
other transmission-loss curves are briefly considered., Any effect of

the transmission medium on the spectral shape of the signal is ignored.




The target submarine is assumed to travel along a straight line at
constant velocity, and it . assumed that this velocity is slow
enjugh so that Doppler shifts are of negligible importance, at least
to the broadband detection system,

With these assumptions, the detection problem is the problem of

detecting a Gaussian signal in a Gaussian noise background. This

problem has been studied extensively, (Ref. 1, Chaps. 18-20, and Ref.

Chap. XI) and the pertinent results are presented in Appendix A.

2,




1. OPTIMUM DETECTOR FOR DETECTING A MOVING TARGET IN A NOISE
BACKGROUND HAVING KNOWN STATISTYCAL PROBERT]IES

The signal received by the sonobuoy is given by
x(t) = s(t) + n(t) (1)

where s{t) i3 the signal that would be observed if there were no
noise, and n(t) is the noise. In the present case, where a target
submarine is assumed to travel past the buoy, the signal is ampli-

tude modulated and is therefore in the form

s(t) = £(t) y(t) (2)

where y(t) is a stationary (i.e., unmodulated) stochastic signal and
f(t) is the deterministic dimensionless amplitude modulation resulting
from the change in transmission loss. For the geometrical situation

shown in Fig. 1, and if the signal power is inversely prcgcortional to

the square of the distance,

Soncbuoy

T

h

}a—vt _—| Target path

Fig.1—Target and sonobuoy geometry




£(t) = -—-—“—2——2 (3
h™ + {vt)
where k is a constant of proportionality, h is the minimum distance
from the target to the receiver, and v is the target velocity. The
time t = 0 is arbitrarily chosen as the time at which the target-buoy
distance is a minimum.
A nonstationary signal of the type given in Eq. (2) is most

conveniently expressed in terms of time samples. Thus, the received

signal x{t) is represented by an n-dimensional vector

X' = [x(tl), x(tz), x(:n)] (4)

where the prime indicates matrix transposition, According to the sampling
theorem,* if the signal bandwidth is W cps, samples taken at time
intervals separated by %ﬁ seconds represent the signal completely ex-
cept near the ends of the observation interval, where samplirg intro-
duces a small error. For an observation interval of T seconds the
dimension, n, of the sample vector X is therefore approximately 2 TW.
The optimum detector is known to be a likelihood-ratio detector
which decides between the presence or ahsence of the target by computing
the likelihood ratio corresponding to the received signal and compar-
ing it with a preset threshold. The decision that a target is
present is made if the threshold is exceeded. The threshold is
normally adjusted to provide a specified false-alarm rate, and it

can therefore be regarded as a function o€ the false-alarm rate.

*
See Ref. 1, Section 4.2.




In the following discussion it is assumed that the background
noise level is precisely known. It is shown in Appendix A
that for small signal-to-noise ratio the likelit.ood-ratio receiver

is equivalent to a device that computes the test statistic

u=ix'gtrox (5)

where Q and P are covariance matrices of X corresponding to noise

only present and to signal only present respectively, 1.e.

9-@3>N (6)

and

B= <?.(. §>s N

The symbol <<.> reprea:nts the statistical average of the quantity
wvithin the bracke> conditional on the hypethesis indic ted by the
subscript. The stativcic U is compared to a thresheld Uo. For low
signal-to-noise ratir, it is shown in Appendix A that the figure of

merit of the optimum detection system 1is the quantity

d= \/%—tr[(l’ Q'I)Z] (8)

where tr( ) denotes the trace of the matrix.

In order to consider the effec: of the distance meodulatiom,
suppose for the moment that both the spectra of the signal y(t)

and of the noise background are flat ("white') over the frequemcy




band 0 £ € £ W and that they vanish for other frequencies. 1In
practice it is found that both sigaal and noise spectra fall

(3)

off at approximately the second power of frequency. However, it can
be shown that the results are aot materially affected by the exact
spectral shapes as long as they are approximately the same for signal
and noise, and as long as the modulation is very slow relative to

%; , as would be the case here. I1f white noise is assumed, the

individual samples are uncorrelated, and the covariance matrix Q of

the noise background is simply

Q=NL1 (9

2
where N is the average noise power (in units such as pbar ) and 1
is the n-dimcnsional unit matrix. Similarly, the covariance matrix
of the sample vector Y corresponding to the unmodulated stochastic

signal y(t) defined in Eq. (2) has the form

<.¥..¥.> =S (10)
S

where S is the average signal power prior to modulation. As a result

of the modulation, the covariance matrix P has the fomm

fz(tz)

(kx)) =e=s ~ - (11)
S @,

(e )




g

Hence, the figure of merit d of Eq, (8) becomes

o
]
Zin

), ey (12)

which, by substitution of Eq. (3), becomes

d =

ks
N

2 zz { (13)
(=1 h + (Vti)

The summation is most easily evaiuated by converting it to an

integral, which is permissible if vz(ti - ti_l)z/h2 << 1 as would

normaily be true here.

& 9

) — |
2

(=] h™ + (v ti) J
where At = ti - ti-l

Then
T/2 T/2
-~ L dt - dt
LG 2 a2 2 2]2
h™ + (v t) J h™ + (v t) J
-T/2 -T/2

i; by using the sampling theorem, The integration

is straightforward and yields

kS
N

=

> + tan | & (14)

It is clear that d is maximized by letting T —= ®; in this case




2 2
ks /wh [T _ ks [wh
dax ANV 2 1253hzn v (15)

However, 1f T is only 2h/v, which means that the observation time is

defined for the angle g in Fig. 1 to vary from -45° to +45°, then d
has reached 98 per cent of its maximum value, Thus T = 2h/v might
be used as a practical definition of the time that the target is within
sonar range,

The implementation of the physical device that forms the statis-
tic U given by Eq. (5) fellows directly by substituting Eqs. (9) and

(11) into Eq. (5). This gives the result

n
U= %Z fz(ti) xi2
2N
1=l

1/2 2

£2(t) [x(t)] dt (16)

zl::
(817

-T/2

where ‘he conversion of the sum to the integral follows in the eame
way as in Eq. (13). This result implies that the detector consists
of a square~law device followed by a cross correlator or filter
matched to the modulation envelope as shown in Fig. 2. It is clear
that the system canrot be constructed unless f(t) is known, which
means that h, v, and the time at which the target is closest o the
buoy be known a priori, i.e.,, before the target appears. Thix {s
obviously an unreasonable requirement, and we consider, therefore,

a simpler subeptimum scheme.




Yes

—

Square-law

device

WS/N?

No

Integrater

Uo

- _ _ _ _ ] Threshold
Matched filter

Fig.2—Likelihood ratio detector
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III, SIMPLE SUBOPTIMUM DETECTOR FOR DETECTING A MOVING
TARGET IN NOISE WITH KNOWN STATISTICS

The suboptimum detector considere. here consists simply of an
integrator which integrates the squared received signal for T seconds,

i.e., 1t puts out a test signal

T/2
P E_S_ 2 -
U 7 [x(:)] dt (17)
-T/2

An optimum value of T will be derived, and the relative magnitude of the
detection index d° produced by this system will be obtained.
As shown in Appendix A, for small signal-to-nol e ratio the

detection index d can be written in the approximate fom

- (18)

where Ch and M, are respectively the mean values of U under the
hypothesis that signal is present and that it is absent, and 9, is
the rns fluctuation of U for signal absent., For the suboptimua
system we define the detection index in the same way with the p's and
o correspondiag to U .

I1f signal is present, X(t) = £f(t) y(t) + n(t), and therefore

from Eq. (17)
T/2
U’ - E% [fz(t) yz(t) + 2£(t) y(t) n(t) + nz(t)J dt  (19)
N

-T/2
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The mean value u{ is obtained by averaging each term in the integrand
separately. The cross-product term vanishes becausc y(t) and n(t)
are independent. Then, using the fact that y(t) and n(t) are
stationary and that the signal and noise powers are S and N

respectively

WSz T{z - S
-T/2

The integration of fz(t) given by Eq. (13) is straightforward and

yields
2 .2
k— WS -1 S
Bl 2B gt W T @
N

I1f signal is absent, f(t) in Eq. (19) is zero, and therefore the first temn

in Bq. (21) vanishes; hence

L4

0’ - s
o WT N (22)

Also, it is easily shown that for Gaussian noise and sample size n = 2TW

= WT = (23)

2 . o
d--—;r-—q-%%‘l'rw %tan'-vl (24)
o
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This has been plotted in Fig. 3, together with the optimum detection
index given in Eq. (14). Figu.e 3 shows that the optimum value of
T is approximately 3 % . With this value of T the suboptimum detec-
tion index reaches about 90 per cent of the absclute optimum given by
Eq. (15). Figure 2 also shows that the index is not very sensitive to
relatively large changes of 1 away from the optimum value; thus for T
between 3/4 % and 15 % the index exceeds 60 per cent of the absolute
optimum,

This result indicates that if the receiver simply integrates
the squared received signal, the integration time should be optinized
relative to the most distant target that the system can reasonably
be expected to detect. Then for a target at a smaller range, T will
be too large to be _ptimum; but since the target is closer, it will
be more easily detectable so that the small loss in optimality of T

is of no consequence.
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IV, EFFECT OF PRACTICAL SIGNAL AND NOISE SPECTRA

In Sections II and III the spectra of signals and noise were
assumed to be white in order to simplify the analysis of the problem
of motion of the target submarine past the sonobuoy. Since the
analysis indicated that the effect of the distance modulation can be
approximated quite well in the detector simply by integrating the
received signal over an appropriate length of time, it seems reason-
able to make the further approximation that the signal received from
the target has constant power during the observation interval. This
approximation makes it possib'2 to treat both signal and noise as
stationary processes, so that other than white spectra can be easily
dealt with.

When it is desired to consider the detection of stationary
signals with complicated spectral properties, it is most convenient

(4)

to expand the received signal in a Fourier series

x(t) = 2; (ak cos w, t + bk sin wkt)
k=1

where w, = buw = %E with T the obgervation interval, The ak's and bv's

are Gaussian random variables with zero mean value; and for T very much

larger than the inverse tandwidth of the received signal, they are

approximately mutually independent, i.e., akbz = 0 for all k and ¢, and

akaf = E;E; = 0 for k # ¢g. Their mean-square value is given by(a)
2 2

. (26)
= 7 6(f)
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where G (f) is the power spectral density of x(t) and f = %;. if

x{t) consists of noise only
G (f) = N N (f) (27)

where No is the low-frequency spectral level of the noise which is

assumed to be finite. Thus

Lim N(f) =1 28
P (28)

If x(t) cousists of signal and noise, then because of the independence

of signal and noise

G(£) = s S(£) + N_ N(f) (29)

where So 1s the low-frequency spectral level at the receiver (again
assumed finite) and S(f) 1s the normalized spectral density of the

signal with
Lim

g0 S =1 (30)
The reasons for nermalizing the spectral densities are discussed in
Appendix B; they simplify the discussion of signal with unknown power
level.
The standard theory of detection reviewed in Appendix A can be
applied to the formulation in this section by considering the Fourier

coefficients a and b, as the elements of the sample vector X, 1.e.,

k
X= (al, bl’ az, b2 ceey an, bn] where n 1s large enough so that all
significant frequencies are included. Considering Eas. (27) and (29),

and because of the independence of the coefficients, the matrices P

and Q become




g:Noﬂ =

[S(£,)
5(£,)
s, S(f,)
T s(f,)
O
L
i(fl)
N(E,))
N N(£,)
2 N(fz)'
@]
FE

O
(31)
"s(fn)
)
(32)
CNCE)

Then the normalized test statistic considered in Appendix B (Eq. (B-3))

becomes

Nj»-

(33)

It is easily seen that u is essentially the output of a system of the

type shown in Fig,

4, where

!H (w)\z = ML

IN () 1

(34)

is identical to an optimum filter discussed by Zadeh and Ragazzini.( )

x (t)

H (w)

Squarer

by

v(t)

]

Fig.4-—Optimum detector

This can be shown by computing the output of the squarer which is given

integrator
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v(t) = H}: a ;H(mk)\ cos (wkt + ek) + vy |H(urk)] sin (‘"kt + ek)}Jz
where ek is the phase angle of H(mk). Equation (33) then results since
for large T the integrator output is Tvdc where Vie is the dc conponent
of v(t). H(y) must be stable and physically realizable, but this re-
quirement causes no difficulty in practice.

Expressions for the false-alamm protability and the probability
of true detection huve been derived in Appendix B for the case of unknown

but small signal power and are re, roduced here for convenience

1 u -—Ntr(m)
gul. (35)

: \/tr[(p_cl 1)2]

1 -1
u =7 Ntr(pq ) S
o 2 o .1l o -1,2
2 N_ ex[ (g2 ] (36)

N "[@frﬁj

1
1‘B=-2"% ®

X 2
where © (x) =5_"ﬁ.f e Eoat
0

For the matrices p and q defined in Eqs. (31) and (32)

. S(w ) «
tr (p g 1) =% “n - I S(w) dw (37)
n

and

e ] o E P o
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where passage to the integral is, as usual, permi_.sible if T is very
large compared to the reciprocal of the bandwidth,

Example broadband spectra for submarine targets and background
noise are shown in Fig. 5. The spectra obtained from actual measure-
ments may differ considerably from these, and their exact shape
depends on a number of factors in addition to target velocity and sea

(6)

state. However, Eqs. (35) to (38) indicate that small differences
in the shapes of signal and noise spectra have negligible effect on

either the false-alamm or detection probability. The normalized

spectra can therefore be approximated by

2
w1
S{w) = 5 37 (39)
w + wl
w2 ( 2 + 2>
Nw) = 0 7% (40)

2 2
w, {0” + wg)

Both signal and noise spectra fall off with the second power of

frequencies above a frequency w, or w, respectively, and the noise

2

spectrum levels off at a high frequency w, because of the presence

2
of locally generated white noise.

The integrals of Eqs. (37) and (38), after substitution of
Eqs. \39) and (40), are in a standard form that is tabulated, for

example, in Ref. 7. The result is

o 2
._r_j. S o . T O B (0w, +w) (1)
2nJ_ N(w) T2 e e
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and

= 2 Tw, @

4
+
4w, (w1 wz)

]
e,
[

3

3 , 4 4
+
7 (0] (wy + w)

2
~
€
-

+ Awi W, wz + 2w, wg wg (wi + 2w§)
w; (wi + wi)z] (42)
Typical values for W, Wy and w, are
w, = 2m x 50
w, = 2m x 1000 (43)
wy = 2n x 20,000

Hence Wy > > w; > w,» and Eqs. (41) and (42) can be apyroximated by

T
tr (pg ') = j" _.(m). dw = —::-2- (% \f (44)
Twz wl 4
er oD’ - g [ [ a2 (G 2
o (o]

The false-zizrm and detection probabilities can now be evaluated by
substituting Eqs. (44) and (4:) .n Eq=. (35) and (36). It must be
noted, however, that the low-frequency spectral level So of the

signal refers to the level at the receiving sonobuoy, whereas the
level given in Fig. 5 is referenced to a distance of one yard from the

target.
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1f the transmission loss is inversely proportional to the

square of the distance, then by Eq. (3)

2
k S1

h2 + (vt)2

S =
(o]

where S1 is the low-frequency spectral level of the target relative
to one yard and h is the minimum range in yards. The assumption

that the target signal strength at the sonobuoy is constant during

the observation time implies that vt << h so that

S ~ S, — (46)

Thus the false-alam and detection probabilities become

1 1
1 1
1'5':5'5@(23) (48)
where
2 uo wo : 1
= — - - Tl "
Za No I‘wz wy 4 \DL (49)
2
S 2
1 1) [k !
2. = 2 ~=./ —_ = ==
£ a 4 TmZ N 2 ) (50)
(o] h UJO
and where
. 2 2
2 -t
5 () = 7= Fe” de
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The magnitude of T in the above expression has been considered
in Section II and was shown to depend on the range h, The detectable
range might be defined as the value of h that makes ZB = 0 subject
to a particular false-alarm rate. For fixed false-alam rate za
is a constant, ka; specifically for o = 10'5, ka = 3.03. Letting
T = 3h/v according to the results of Section 1I, we can solve Eq, (50)

for h , 1l.e.

max
2
\ S 2 w
o, -3 B (R
o T4 | -2 2 \ § 2 2.
v ° hmax Yo
or
N m2 2/3
hoo- |2 L (51)
_max 4k v N ‘2
k ! ou'o

For v = 20 knots, we find from Fig. 5 that S, = 27 db, Also,

1

assuming that the sea state is 1, No w -24 db. W s @y, and w, are given
in Eq. (43). Substituting all of these values into Eq. (51) with

ka = 3,03 results in hmax of about 600 mi, and T is on the order of

100 hr. These results are clearly unrealistic, and they indicate

that an important factor has been omitted from the analysis.




23

V, EFFECT OF UNKNOWN NOISE LEVEL

The unreasonable result obtained in Section IV can be shown to
result from the assumption that the noise level is known precisely.
In order to see this, consider what actually happens in the detection
system. The detcctor is shown in Fig. 4, and if noise only is present
at the input, it is clear that u wiil be a somewhat random ramp
function as shown i:.. Fig., 6. 1If signal is also present, then the
slope of the ramp is slightly greater, as shown. Thus, at any time

T it is possible to establish a threshold which will usually reject

Signal and noise7

Noise only _—
Threshold

0 time T

Fiy, 6—Detector output versus time

the signal hypothesis when it is incorrect and accept it when it is
correct {the word "usually" is used in a statistical sense). It can
be seen from Fig. 6 that as long as the input power level with signal
plus noise is even very slightly greater than it is with noise alone,
the average slopes of the two ramns are different and they continue
to separate as the observation time is increased.

This discussion is valid if one can assume that the noise power
is exactly known. Suppose, however, that there is gsome uncertainty

about the noise power level. Then, in order to achieve a specified
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false-alarm probability, the threshold would have to be set at a
high enough level s¢ that the maximum expected noise level would
yiela the specified false-alarm rate. If then the noise level is
actually less than the maximum value, u would usually be helow
the threshold for both signal present and absent unless the signal
power exceeds the uncertainty in the noise power.

In view of this discussion, one can, for a given observation

time T, define a minimax range hm as the range that causes 2
to vanish, with No taking or its smallest value, for a ZG taking
on the value correspo-ling to the specified false-alarmm probability
with the largest value of No.

Quantitatively, suppose that the noise level is somewhere

between N + AN and N - AN ., Then if the value of Z of Eq. (49)
o ) ) ) o

is fixed at K

[0 4
2uo mi 1
K = : = | — |-+ J/Tw (52)
o (No + ANO)V’IwZ wi 4 2

The veolue of Z to be used in Eq. (50, is th:on
o

1l = No + ANo 1
Za = (Ka + Z‘/TwZ) N - | & ,/Twz
o o
(53)
N + aN Tw 2 aN
- k|22 V2 >
o No - ANO 4 No - ANO

and hm is obtained from
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N + AN 3h w 2 AN 3h k2 w2 S
K o o\, 1 m 2 o o1 m 2 1 1 -
o No - ANO 4 kv No - ANO 4 kv z (N - AN)
ul o
(54)

A set of curves of hm versus ANO/No is given in Fig. 7 for various sea
states, and for a tarvget velocicty of 20 knots. The example spectra
of Fig. 5 have been used in this cc-putation. Values of W, W) and
w, are those given in Eq, (43). For these values, and for ANOINO > 01,
the first tem in Eq. (54) is negligible, and a very good approximate

solution for hm is

(55)

The optimum time of observation is given by T = -;E, which for a 20-
knot target velocity is T = ,15 hm hr if hm is expressed in n mi., Thus
the optimum time can be read from Fig. 7. According to Eq. (55) dif-
ferent target velocities affect the range only through the signal
spectral level S

According to Fig. 5, S, for a 5-knnt target is

1° 1
about 10 db below the value for a 20-knot target. Henre, hm is .316

as large for a 5-knot target as for the 2C-knot target, ~nd the optimum
value of T becomes .6hm hours.

[+ \ = - -
By setting Ao + ANO Nmax and No ANO Nmin’ Eq. (55) can be

put into the fom

ol P

ol
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Although this expression is equivalent to Eq. {55), it is more con-

venient when Nmax/N is large. It has heen used for the curves

min
shown in Fig, 8, which are also based on the example spectra of

Fig. 5 and on the values of W s Wy, and g, from Eq. (43).

2
It should be noted that if the approximate expression Eq. (55)
holds, then hm is independent of T since T enters Eq. (54) through
the square-root factors that have been cancelled out, Thus, although
it is desirable that the adjustment of T be approximately correct in
order to optimize the detection index as discussed in Section III,
the fact that different tsrget velocities require different values of
T woulid not have to be considered in the design of the detection
system, T could be determined by measurerents of the sea state (or
noise background) if the expected uncertainty in the noise measure-
ment is known,
In practice, it appears that accu.dcies of = 1 db are about the
best that can be expected.* These accuracies correspond to ANO/No = ,1,
and therefore, according to Fig, 7, for sea state 0 the minimax
detection range for a 20-knot submarine is about 25 mi, with more
normal sea states yielding ranges of about 8 mi or less.
The probability of detection as a function of range depeads on
the probability distributic~ of the actual noise level within its

permissible range. The only case considered in this section is that

this distribution is uniform, i.,2,, 1if the actual noise level is Nl

*
Private communication with J, Kingsbury, Navy Underwater Sound

Laboratories, New London, Connecticut,
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p (N)AN, = , N - N <N

ZANO < No + ANO

1
(56)

p (N,) = 0 otherwise

The computation for the detection probability is simplified by the
fact that for a given value of N, (1-8) decreases very rapidly for
small changes in h near the nominal value. I1f T is one hour and w,
is 2n x 20,000 rad/sec, Tw2 = 4,5 x 108 rad. For this value of nwz
it can be shown by direct computation of (1-B) according to Eq. (48)
that 1f (1-g) = ¥ for h = ho’ (1-8) 1 for h = ,999 ho and (1-8) oy O

for h = 1,001 ho. Hence, if we use the notation p(D/Nl) instead of

(1-8) to indicate that the detection probability is conditional on N

1’
we have approximately
p (D/Nl) = 1l -uflh-nh (Nl)] (57)
where u [ ] is the unit step function and where, by an argument
similar to that leading to Eq. (55)
i U A - (58)
k w N + AN - N,
o o o

The joint probability p (D, Nl) obtained by multiplying Eqs. (56)

and (57) may now be integrated over N, to obtain the desired marginal

1
probability density P (D). The integration is straigh.forward ard
yields

P(D) = 1 for
2 . .2 < (59)
1

wy, S, k
1 "1
P (D) = 2 2 for
20 h°AN 28N
o o

Kl:f
Ei’_.

X‘I'J'
5|H




This expression is plotted in Fig, 9. It is see: that the probability
of detection is unity for ranges less than the minimax value and that
it drops off rather rapidly for larger ranges.

The detection range h, is commonly defined as the value of the

d
range for which the detection probability p(D) = ¥, It is clear from
Eq. (59) that this is given by

w S

1 1
h, ﬁhm kwo v, (60)

This range can easily be read from Figs. 7 and 8 by a change in the
ordinate scale,

It might be noted that a change in the false-alarm rate has
esgsentially no effect whatever on the minimax or detection ranges,
or on the detection probability, A change in the false-alarm rate
results in a change in Kh, but the term in Eq. (54) cuntaining Kd
was neglected in obtaining Eq. (55), and in all subsequent equations,
Hence, the results of Figs. 7, 8, and 5 do not depend on the false-
alarm probability,

The results of this section cre easily extended to transmission-
loss curves other than the simple 6 db per distance doubled curve
considered thus far., Suppose that Eq. (46) is replaced by the more

general equation
h
S, = 5, 8() (61)

Then, 1{f in Eq. (54) the tem involving Kd is again ignored, Eq. (55)

becomes
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1 2[\No 'wo é
h = kg — ] == (62)
m 3 (“’1
Alsu, Eq. (59) becomes
2
AN w \
P(D) = 1 for gd) =22 (=2
1 1
(63}
L % - h BN, [ ;
#(D) —| 8G) for g() s2g— (=
ZANO JJO k k Sl ,Ul

Under certain conditions the transmission-loss curve appears to have
approximately an 8 db per distance doubled slope. Then g(h/k) = (h/k)-z“ﬁs.
The minimax range corresponding to this form of g(h/k) is plotted in
Figs. 10 and 11. The larger transmission loss results in a con-
slderable reduction in range, as might be expected. As before, the
detection rangc can be defined by hd a~/5nﬁ; .

As a result of multiple reflections, g(h/k) frequently has a more
complicated form, of the type shown in Fig. 12, where the peak after
the first dip typically occurs at 10 to 20 n mi, It is clear from
Eq. (€3) that under these conditions the form of the detection

probability curve will be as shown in Fig. 12 and that there may be

several widely different values of hm and hd'
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Fig. 12—Transmission-loss function ~nd resulting
detection probability
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VI. UNCERTAINTY OF NOISE LEVEL DESCRIBABLE BY A GAUSSIAN
PROBARILITY DENSITY FUNCTION

In Section V, it was assumed that definite upper and lower
bounds coula be placed on the possible value of the noise level, and
in the computation for the detection probability, it was assumed
that all noise levels inside these limits were equally likely.
Although it is conceivable that certain techniques for determining
the noise level might result in noise uncertainties of this type, it
seems more likely in general that the nvoise-level uncertainty would
be more accurately described by a probability density function such
as the Gaussian density function, for 'wshich it is impossible to define
upper and lower bounds on the noise level. Tui-refore, the ccncept
of a minimax range as defined in Section V is not applicable. However,
if the probability density function of the noisc level is known, it
is still possible to determine a threshold resulting in a specified
average false-alarm rate.

If the probability density function of the ncise level is p(Nl),

then th average false-alarm and detection probabilities are,

respectively
[+ -]
a = J a(N,) pl,) dN, (64)
-0
k- -
-B) = 1- [ B pewy) (65)
-0

where G(Nl) and B(Nl) are the conditional false-alarm and miss pro-
babiiities under the azsumption that the noise level is Nl, i.e.,

they are given by Eqs. (47) and (48) with bo replaced by Nl‘




For the large values oi Tw, that are typical in this application,

2
a(Nl) and B(Nl) can again be approximated very closely by unit step

functions, specifically

a(N)) = u(N, = N (66)

10)

where NIO is the noise level for which ZQ = 0. Thus, from Eq. (49),

with No replaced by “10 and Za =
8u0 w 2
N,.=o7— | — {(67)
10 Twz W,
co that
8uo 0 :
Q(N,.) =y Nl - ;EFZ- -q (68)

Substitution of Eq. (68) into Eq. (64 results in

a= [ eap ay (69)

Oi.e way of estimating the noise level is to make a long=-time
measurement of the received signal power and to use the average
power gs the cstimate of noise power. This is a workable procedure
because 1f a signal is present for a relatively short time comparcd
to the time taken for the noise measurement, then the short-time rise
in power due to the signal has a negligible effect on the long-time

average. If th2 noise level ie estimated in this =my, then by the
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central limit theorem the probability density p(NI) does, in fact,

approach the Gaussian, i.e.

2
R s
2 a
N
P(N,) = —_—_1——— e (70)
\/-ZTT UN

2
where No is the mean value of Nl’ and cﬁ is the variance of the measure-

*
ment. Then

- 1 1 \
a=3-38 (%5) (71)
wherc
8uo wo 2
Ta, w %
Z_= (72)
: 1o

As before, 1if ; is specified, Za = }_., 2 constant. Yence, the thres-
a

hcld u is given by

» i 2
- No + N&‘/E-UN fl s
uo" 2 8 w ( )

The conditional miss probatility B(Nl) is similarly approximated

by a unit step function.

B(N)) = u(N, - N, ) (74)
where Nll is the value of ncise level for which ZB = 0, This can be
obtained by replacing No by Nll ir Eqs. (49) and (50), and setting Z_ = 0.

B
The value of u, to be used in Eq. {(49) ic that of Eq. (73) (with No left

unchanged, since u 18 a fixed threshold). The result is

*
Note that g§ generally decresses with observation tin- , the de-

crease is, however, limited by the degree to which *he sea noise is non-
stationary,
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Slk2 wi
= — 9 - — e
Ny =N+ KOJ: oy I\ (75)
. o

Then, if p(Nl) as given by Eq. (70) is substituted in Eq. (65), the

averaze detection probability is found to be

p(D) = (1-8) =

M f—
N
’—l
(7))
x
N x
N
—
.,
~

w
9 Ks - et (76)
/oy, \"o

The detection range hH can be defined here us the value of h for

which p(ﬁ) = o this gives

2;
'k%/—i_
n w 77)
d 2 ‘/EON K

A curve of detection range versus J  for the example 20-knot target

N
used ir Section V is given in Fig. 13; the detection probability is
shown in Fig. 14. Note that in the present case both ha and p(ﬁ)
are functions of KE . However, since ever for rather large changes
in faise-alarm rate K= only changes a small amount, the effect of
change of false-alarm rate, although no longer completely negligible
as in Section V, still has only a very small effect on hg or p(B).
This is clearly shown in Figs. 13 and 14.

In comparing the detection range hE of this section with hd
of the last section, one must note that 2AN6 of Section V is the

maximum uncertainty range, while CN of this section is the standard
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deviation of the noise uncertainty. For a rectangular distribution,

the standard deviation would be

ON_
o = —2 (78)
N3

If this is used ir Eq. (77), the comparison with the detection range

of Section V (Eq. (60)) i ives

h |
- i [ 79
d

- -5
Thus, for Kg = 3.03 (@ = 107), h,/hg = 1.57.

The detection probability drops off much more rapidly for ranges
in excess of the detection range ha here than in the last section.
This is, of course, due to the fact that if the noise-level uncertainty
has a Gaussian distribution, it is much less likely that the actual
noise level differs from thc mean value than if the uncertainty has
a unifurm distribution, assuming that the variances are comparable.

The effect of transmission-loss curves other than the 6 db per
distance doubled curve considered here is essentially the same as in
Section V. The argument of & in the equation for P(B)(Eq. (76))
would be proportional to g(h/k) rather thun h-z. However, because
of the nonlinear distortion of the argument by the error function,

a g(h/k) such as that shown in Fig. 12 would result in a much more

violent fluctuation of P(E); in ract, it can be concluded from

Fig. 14 that one would have approximately
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VII, CONCLUSIO!S

Several aspects of the problem of detecting a submarine by a
single hydrophone sensor have been ccusidered. The signal emitted
by the submarine is assumed to consist of broadband noise only, and
under this condition, it is clear that the only distinguishing feature
the detector can use to decide whether a target is present or not is
the increase in noise power caused by the presence of the targe..

A simple power detector, in which the received power is integrated
over the time that the target is within range is therefore essentially
equivalent to the optimum detector.

In general, the optimum observation time for a submarine moving
past the receiving sonobuoy is inversely proportional to the velocity
of the submarine. Hence, if the noise emitted by the submarine were
not a function of the velocity, for example, if it consisted exclusively
of intermally ger-rated machiaery noise, a slow submarine would be some-
what more detectable than a fast one. However, even under the
unreasonable agsumption that the background noise level is known
precisely, the detectability index is proportional only to the
square root of the observation time, while for the more realistic
case of unknown background noise level, the detectability index is
practically independent of the observa:ion time. Thus, the increase
in detectability resulting from the increased time of observation of
the slower submarine is extremely small. On the other hand, the
detectability index is directly proportional to the power level of
the signal whether the noise level is known precisely or not,

Thus, if the noise emitted by the .ubmarine increases at all
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with velocity, the increase in signal power will, in practically all
cases, result in the faster (and noisier) submarine being more
detectable. This is especially true when the backgreund noise level
is unkncwn, in which case this statement is true without any
qualification.

The major factor limiting che maximum detectable range is the
uncertainty about the level of the background noise level. If this
uncertainty is such that the ncise level is certain to be somewhere
between an upper and a lower beund, then a signal is (u effect de-
tectable enly if the received power is larger than the maximum
conceivable background noise level. In this case, one can define a
minimax detection range such that targets at a smaller range are
essentially perfectly detectable, while the probability of detectien
decreases sharply for ranges above this value. If the transmission
loss is proportional to the square of the diitance, then the minimax
detection range is inversely preportional to the square root of the
relative noise-ievel uncertainty. It is clear that the performance
of the buey depends critically on the accurate determinatien of the
noise level.

If it can be assumed that the noise level is censtant, it can
be estimated wicthin the senebuey by making a leng-term pewer measure-
ment of the signal received by the buoy. If the time of this
measurement is leng compared to the time that target is within range,
the cverage power reading ebtained is essentially that eof the neise
only. This methed of estimating the noise level results in an un-

certainty that can be approximately described by & Gaussiarn distri-

bution whose mean is the nominal value of the noise level. There




46

are then no upper or lower limits on the possible noise level,

but detection still depends on the received signal power being
substantially greater than one would expect Zrom the noise estimate.
Quantitatively, if the transmission loss is inversely proportional
to the square of the distance, the detection range is proportional
to the square root of the signal power divided by the standard devi-
avion of the noise level.

The suggested method for internally measuring the noise level
results in a two-channel detector. One channel incorporates a long-
term integrator having a time constant To to estimate the noise.

The other one contains a short-term integrator with a time constant
T, = 3h/v, the time that the target is within range. The outputs of
the two integrators are compared in order to arrive at a decision

as to whether a target is present. This system will generally report

any rise in received power lasting for a time on the order of T, as

1
a4 target; it will tend to ignore changes in received power that are
either very much longer or very much shorter than T1 (unless the
increased signal power was quite large). The system might, therefore,
tend to reduce false alarms that are due to anomalous transmission
from very distant targets. On the other hand, short-term changes in
the background noise level would result in false alarms.

It is difficult to see how any system whose only basis for

detectior is the short-term change in noise level caused by a target

couid be made incensitive to the same sort of chauge by the back-

ground noise and still be able to detect targets.
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The proposed two-channel detector appears to have certain
desiral.le properties, and qualitatively it probably functions as
described. However, it is planned to investigate its performance

quantitatively and in more detail.
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Appendix A

THE LIKELIHOOD-RATIO DETECTOR FOR DETECTION OF A
GAUSSTAN SIGNAL IN GAUSSIAN NOISE BACKGROUND

Suppose that the received signal lLas the form

x(t) = 8(t) + n(t) (A-1)

where g(t) is the signal thet would be observed if there were no
noise, and n(t) is the noise. Both 8(t) and n(t) are assumed to be
Gaussian random processes with 2zero mean; hence x(t) is aiso Caussian
with zero mean. It is always possible to represent such a signal by
& set of samples

’ = DY -
X Cx %)%y o ] (A-2)

where the prime denotes the transpose. The kind of samples that are
used depends on the application. In some cases time samples are
convenient, i.e., X, = x(tl), x, = x(t2), etc. In other cases it is
more convenient to expand x(t) in a Fourier series over the observation
interval T. In that case the elements of X can be considered to be

the Fourier coefficients. In either case the elemente of X are Gaussian
random variables with zero mean.

In view of the equivalence between the samples and the continuous
function, one can say that the probability of a particular realization
of x(t) is the joint probability that the set of samples acquires the
particular value yielding this realization. Thus, suppose that the
received signal consists of noise only. The covariance matrix of the

elements of the sample vector X is defined by

Zxh =2 (A-3)
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where the symbol <>N represents the statistical average of the quantity
in the bracket conditional on the hypothesis indicatod by the subscript,
and where 2-1 is assumed to exist. Then the probability density of x(t),
given that signal is absent, is the probability density of X given that

signal is absent, which is

p(X) = 1 expf- sx 97 x} (A-4)
(zn)n/Z [det 911/2

The covariance matrix of X for x(t) = s(t) is defined by

(XX~ P (A-5)

Since signal and ncise are independent, the covariance matrix for X if

signal and noise are both present is

CRYFRER N

Then the probability density of x(t) given that signal and noise are

both present is

P = o exp{- 3 X'B®7 5} (a-6)

(2m™2 [det (2 + Q)12

The likelihood ratio is defined as the ratio of pl(g) to po(z). It

is therefore given by

p, (X 1/2
-t o [ detQ 1 I Y -1_ -1 .
LX) P, [ det B +9Q | e"?{ ? 2@+ -9 }3} (A-7)
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In practice it is generally reasonable to assume that the input
gignal-to-noise ratio is very small. so that the elements of the P
matrix are all very much smaller than the corresponding elements of
the Q matrix. Then the ratio of the determinants in Eq. (A-7) is

approximately unity. Also, the expcnent may be expanded as follows

-Lxferot -tk b h -1k

oo = 11X (A-8)

where I is the unit matrix.

1f the signal and noise are "white noise," (i.e., with uniform
power spectrum) then P = SI and Q = Nf, where S and N are the signal
and noise power respectively. Then g'lg_q'l = % (% >I; g-ILQ-ng—l =
.lli (% >21; etc. Hence, the magnitude of the higher-order terms in
Eq. (A-8) decreases with S/N, and for small S/N only the first term
needs to be considered. If X is not "white noise," the higher-
order terms are still negligible, but the demonstration of this fact
is somewhat more difficult.

Generally, it is more convenient to deal with the logarithm of

the likelihood ratio than with the vatio itself. This causes no




difficulty s.nce the logarithm is a monotonic function so that if the
likelihood ratio erceeds a given threshold, its logarithm exceeds a
different threshold. For small signal-to-noise ratio, the above dis~

cussion indicates that

log LX) ~U = 3 X0 207X (49)

The quantity U is the test statistic of the problem, and it is
compared to the threshold Uo to decide whether or not a signal is
present. It is essentizlly the quantity that must be computed by
the optimum receiver, Although the likelihood ratio is a ratio
of probability densities, U is obtained from X by a detemministic
transformation of the vector X representing the veceived signal. U is a
random variable _ecause the vector X is a random variable.

IfU > U° the decision is that a signal i8 present. The con-
ditional false-alarm probability a is therefore the probability that
the random variable U exceeds the threshold Uo’ given that the signal

is actually absent, i.e.

- j p(U) dU (A~10)

U
o

where po(U) is the conditional probability density of U when
there is no signal. Similarly, the conditional probability of a

correct detection, (1-B), is given by

(1-) = | 5, @ @ (As11)
U

o
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where pl(U) is the probability density of U when there is a signal pruseat.
In order to evaluate o and {1-g), pO(U) and pl(U) must be computed.
This is in general rather difficult because the transformation given in
Eg. (A-9) is nonlinear. If the matrix g'¥gg'1 equalled DI, where D is
a constant and I is the unit matrix, U would reduce to the sum of squares
of the elements of X. Then, since X is a Gaussian vector, the probability
density of U would be a chi-square density in n = 2TW degrees of freedom.
For general 9-129_1, the probability deusity of U is what Middleton**
refers to as a ''generalized chi-square'" cdensity., It can, however, be
shown (Ref, 1, Section 17,2-1, and Ref. 8, Section 20,2) that if n is
large, and if the eigenvalues of the ma:rix g'?gg'l are small (which
means, in effect, that the signal-to-noise ratio is small), both po(U)
and pl(U) approach the Gaussian form. Both of these conditions would
normally be expected to hold very well for problems of interest here,
It therefore will be assumed that po(U) and pl(U) are, in fact, Gaussian,
A Gaussian distribution is completely determined by its mean and

variance. The mean Mo of po(U) is given by
L/ n n
EALLEE YLD

of 2\-QITQIK>N 2 aij<x1xj>N (A-12)
im] jml

1j
the general element of Q, by definition, Also, it can be shown

where a is the general element of 9-129-1. However, <§ixi>N = qij’
\

(9)
that the double sum & T b,, ¢,,
{ § Mo

of the two matrices B and C is equal to the sum of the diagonal temms,

of the product of all the elements

or ti-ce, of the product matrix BC, written tr(BC). Hence

*
See Ref, 8, Section 18.1.
Yok
See Ref., 1, Section 17.2-1,




1l 1 -1 -1
o = 22 13“11 2“(9-519)
1=1 3-1
(A-13)

-7 er@'p =1 erce™

Sinilarly, one finds that the variance of U, given that ncise only

is present

ol -2 <<x'9'1m"x>2 >N -3 (xo'w’k >:

2
Z 2 2 1jak.¢ X% %% >N - 21: [“(LQ.I) :] (A-14)

1-1 j=1 k=1 :,-1

vhere the a,, and a,, are again general elements of Qflzg-l. Since

i3
the x, are Gaussian variables, one can expand the quadruple average

1
into products of covariances.( 0) Therefore

i i i iaij akz<‘1"j"kxz >N

iml jul kel f=l

- i i i iaijau[<‘1‘j>u<‘k‘z>u

iml juml kel t=l

RSRYACARICNICT BN
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Thus

Z E Z Zaij “kz<“1"'j’ﬁ:xz>

{=1 j=1 k=l el bl

) [? ia“(\xixj N]z

fml jml

+2i i i i“ijau<x1xk>N<xsz>N

im] j=1 kel gul

2 L2
- [ tr PQ 1] + 2 c{(m 1, J (A-15)

Finally

2
-1
o: - % trf(m ) ] (A-16)
Similarly, it can be shown that the mean By of pl(U) is given by

2
by =3 <5’9 'po”'x > =ref@™ |+ g @)

S+N

and

2 [ -1 2 -1 21
A7) @+ |

Y

2 (A-18)
~ytr[ @ | - o2

where the approximation implies, as before, that the signal-to~noise
ratio is small so that the elements of gg'l are all very much less

than unity.
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From Eqs. (A-10), (A-13), and (A-16), the false-alarm probability
is found to be

). -1
1 1 Uo "2 tr(2Q )
a = 3°5 © (A-19)

ufm'l)z]

where
2

2 .2 -t
® (z) = ;Zﬁ I e dt
o

3imilarly, from Eqs. (A-11), (A-17), and (A-18), the probability of

a correct detection is

1 -1
U - tr(PQ )
) = 3 -1 ¢ [ 2=2 -

/trgp_qq)z]

Comparison of the arguments of the ® functions in the two cases

Jeday']
te(PQ™ ) (A-20)

N

indicates that the difference is the quantity d//2, where

/ 2
d = %u{m’l)] (A-21)

d is referred to as the "detection index" and may be considered as the
figure of merit of the detection system., For a given false-alam
probability which fixes [Uo - % tr(gg-lﬂ tr[(gg-l)zj, the larger

d is, the greater is the probabiiity of true detection. Inspection of

Eqs. (A-13), (A-16), and (A-17) indicates that

By - b
d = L_° (A-22)

o
<)

The optimum receiver forms U from x(t) according to Eq. (A-9).

One can think of i, and W, as the "dc' component of the output under
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the hypothesis that the signal is present or absent respectively, and
o, ™ 0y is the mms fluctuation of U, Then d is the raiio of the
difference of useful output from the detectnr to the output fluctu-
ation, i.e., it is like an output signal-to-noise ratio. This

suggests that this same figure of merit be used in evaluating sub-

optimum systems,
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Appendix B

DETECTION WHEN SIGNAL OR NOISE POWER IS UNKNOWN

In the previous discussion it has been tacitly assumed tha: the
signal power and noise power are known; otherwise the matrices P and
Q, which are proportional to signal and noise power respectively,
could not be completely determined. In practice neither of these
power levels would be known exactly,

Consider first the problem of unknown signal power. It seems
clear on heuristic grounds that the false-alarm probability ¢ should
not be a function of the signal power, and this is corroborated by
statements in the literature.* However, it appears from Eq. (A-19)
that ¢ does depend on both P and Q and, therefore, on both signal
and noise power, In order to resolve this apparert discrepancy, we
note that the test statistic U defined in Eq. (A-9) is generated from
the receivad signal by means of a processor which in some way realizes
the matrix operation g'lgg'l. Since the elements of P are proportional
to the signal power S, the '"gain' of the processor is proportional to
S. This is the only reason why U is proportional to S; the reccived
signal x(t) (consisting of noise onlv) has nothing to do with it. The
threshold Uo for a desired false-alarm probability therefore also
depends on S only because the gain of the processor does., If the
processor gain is arbitrarily changed, the false-alarm probability o
will remain unchanged if the threshold Uo is changed in the same
vroportion as the processor gain., Thus, it is possible to base both

the processor gain and the threshold on a nomalized P matrix, i.e.,

*
See Ref., 2, pp. 133-134,
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to set
P = Sp
a4 (B-1)
U = S U’/
[0} o]

Substitution of Eq, (B-1) into Eq. (A-19) then indicates that ( is
independent of S,
This same argument dces not hold for unknown noise level. 1In

order to show this, suppose that the matrix Q is also normalized, i.e.
Q = Ng (B-2)

and that a test statistic u is formed by a nommalized processor

3-123-1 which is now inderendent 5f both signal and nnise power, i.e.

u = ‘;'_X_'S-lm-ll(. (B-3)

It is easily seen that for x(t) consisting of noise only, both the
mean and standard deviation of u are proportioral to N through the
received signal vector X. If u is compared to the threshold u s

the false-alarm probability is given by

1 . |
1 g Y g N )
« 3778 — (B-4)

N tf[(pq-l)zl

This is clearly dependent on N, The noise level <an.ot be normalized

out tecauss it depends on the received signal rather than being simply

a gain adjustmer?! in clie processor as is the signal level,
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Suppose now that the received signal x(t) consists of noise
with a known powex level N, and signal with an unkrown power level
S, and that this signal is processed through a normalized processor
as in Eq. (B-3). For small signal-to-noise ratic (which can be
assumed to exist even though thz exact signal power is not known),
the var.ance of u is the same as with noise only present. However,

the change in the mean due to the presence of the signal is now

1 -1.2
<u>s+N = <u >- 2 S tr(pq ) (B-5)
N

Therefore, tliec detection index d now takes the forz

7
a=32 A tr(pq 1) (B-6)

and Eq. (A-20) for the probability of correct detection is changed

to
1.1 1s -1,2
(1-F° ~3-2 8 |k -355 /tr@® ) (8-7)
where
u_ - % N tr(m-l)

k(a) = — (B-8)
N :;tr(gg-l)

is the argument the error function dvfiainy a.

It should be noted that although in this discussion the matri-zes
P and Q were normalized with respect to total signal and noise power.,
any other normalization preportional to sigmal and noise power would

yleld identicai results.
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