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PfcSFACE 

In conjunction with RAND's study of Defense Against Submarine- 

Launched Ballistic Missiles for the Advanced Research Projects 

Agency, background investigations of theoretical methods for calcu- 

lating the performance of nondirectlonal passive sonobuoys are 

being conducted. This particular investigation is directed toward 

detecting broadband signals which might be generated by certain 

types of submarines. 

The author is an Associate Professor In the Department of 

Engineering and Applied Science, Yale University, and is a consultant 

to The RAND Corporation. 



SUMMARY 

This Memorandum deals with some of the problems arising in the 

passive detection of submarines by single, nondirectional hydrophones. 

The signal emitted by the submarine is assumed to be a broadband 

noise whose characteristics are similar to those of the background 

noise.  Hence, detection is possible primarily because of the increase 

in noise power caused by the presence of a target.  The effects of the 

motion of the submarine past the hydrophone and of the uncertainty in 

the background noise level are analyzed.  Although the observation 

time for a slowly moving submarine is greater than that for a fast 

submarine, it is found that if there is uncertainty about the back- 

ground noise level, detf.ctability is ^Ctucially independent of observa- 

tion time.  Hence, a faster and therefore noisier submarine is more 

easily detected than a slower and quieter one.  The major factor 

limiting the detection range is the noise uncertainty; but if the 

background noise is stationary, the fact that the signal produced by 

the moving target is a nonstationary noise can be used by the detector 

to estimate the background noiss, and therefore to increase the 

detectabllity. 
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I.  INTRODUCTION 

The sound emitted by a submarine Is assumed to consist of a 

number of line frequencies in the lower-frequency part of the signal 

band and a broadband, stochastic type of signal over most of the 

higher-frequency band.  In this Memorandum, detection based on the 

broadband component of signal Is considered.  For certain submarines 

the amplitude of the line components may be very low and their effect 

on detectabillty Is therefore small. Alsc, the line components and 

broadband components are probably additive in their effect on 

detectabillty, and .he/ jan, therefore, be considered separately. 

Finally, by considering only the broadband spectrum, a somewhat 

pessimistic result is obtained which can be Improved by processing 

the line components in an optimum fashion. 

This analysis is preliminary in nature and Its purpose is to 

provide rough order-of-magnltude estimates of detectabillty. It is 

based, therefore, on a number of simplifying assumptions concerning 

the nature of the target signal, background noise, and transmission 

loss.  Specifically, it is assumed that both the noise and the signal 

measured at the target have a Gaussian amplitude distribution with 

zero mean and known spectral shape (although not necessarily known 

spectral level) and that they are stationary. For most of the 

analysis, the transmission loss is assumed to be Inversely proportional 

to the square of the distance between source and receiver; however, 

other transmission-loss curves are briefly considered. Any effect of 

the transmission medium on the spectral shape of the signal is ignored. 



The target submarine is assumed to travel along a straight line at 

constant velocity, and it ^ assumed that this velocity is slow 

eniugh so that Doppler shifts are of negligible importance, at least 

to the broadband detection system. 

With these assumptions, the detection problem is the problem of 

detecting a Gaussian signal in a Gaussian noise background. This 

problem has been studied extensively, (Ref. 1, Chaps. 18-20, and Ref. 2, 

Chap. XI) and the pertinent results are presented in Appendix A. 



II.  OPTIMUM DETECTOR FOR DETECTING A MOVING TARGET IN A NOISE 
BACKGROUND HAVING KNOWN STATISTICAL PROBERTIES 

The signal received by the sonobuoy Is given by 

x(t) - s(t) + n(t) (1) 

where s(t) is the signal that would be observed if there were no 

noise, and n(t) is the noise. In the present case, where a target 

submarine is assumed to travel past the buoy, the signal Is ampli- 

tude modulated and is therefore in the form 

s(t) - f(t) y(t) (2) 

where y(t) is a stationary (i.e., unmodulated) stochastic signal and 

f(t) is the deterministic dimensionless amplitude modulation resulting 

from the change in transmission loss.  For the geometrical situation 

shown in Fig. 1, and if the signal power is inversely proportional to 

the square of the distance. 

Sonobuoy 

Target path 

Fig. 1—Target and sonobuoy geometry 
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2        k2 
fZ(t) - -r—* r (3) 

h4 + (vt) 

where k Is a constant of proportionality, h is the minimum distance 

from the target to the receiver, and v is the target velocity.  The 

time t ■ 0 is arbitrarily chosen as the time at which the target-buoy 

distance is a minimum. 

A nonstatlonary signal of the type given in Eq, (2) is most 

conveniently expressed in terms of time samples. Thus, the received 

signal x(t) is represented by an n-dimensional vector 

X> [xCtp, x(t2), .... x(tn)] (4) 

where the prime indicates matrix transposition. According to the sampling 

if 
theorem,  if the signal bandwidth is W cps, samples taken ac time 

intervals separated by ^rj seconds represent the signal completely ex- 

cept near the ends of the observation interval, where sampling intro- 

duces a small error. For an observation interval of T seconds the 

dimension, n, of the sample vector X is therefore approximately 2 TW. 

The optimum detector is known to be a likelihood-ratio detector 

which decides between the presence or absence of the target by computing 

the likelihood ratio corresponding to the received signal and compar- 

ing it with a preset threshold. The decision that a target is 

present is made if the threshold is exceeded. The threshold is 

normally adjusted to provide a specified false-alarm rate, and it 

can therefore be regarded as a function o* the false-alarm rate. 

* 
See Ref. 1, Section 4.2. 



In the following discussion it is assumed that the background 

noise level is precisely known.  It is shown in Appendix A 

that for small signal-to-noise ratio the likelihood-ratio receiver 

is equivalent to a device that computes the test statistic 

ü.±!L'a-lza"1* <5> 

where £ and P are covariance matrices of X corresponding to noise 

only present and to signal only present respectively, i.e. 

H. (6) 

and 

i - (s s)g o 

The symbol / > represents the statistical average of the quantity 

within the bracket conditional on the hypothesis indie ted by the 

subscript. The statistic U is compared to a threshold U . For low 

signal-to-noise ratir, it is shown in Appendix A that the figure of 

merit of the optimum detection system is the quantity 

a  ._L i tr[(P Q-1)2] <«> 

where tr( ) denotes the trace of the matrix. 

In order to consider the effec: of the distance modulation, 

suppose for the moment that both the spectra of the signal y(t) 

and of the noise background are flat ("idilte") over the frequency 



band 0 s: f ^ W and that they vanish for other frequencies.  In 

practice it is found that both signal and noise spectra fall 

(3) off at approximately the second power of frequency.    However, it can 

be shown that the results are not materially affected by the exact 

spectral shapes as long as they are approximately the same for signal 

and noise, and as long as the modulation is very slow relative to 

rn j as would be the case here. If white noise is assumed, the 

individual samples are uncorrelated, and the covarlance matrix (J of 

the noise background is simply 

a- HI (9) 

where N is the average noise power (in units such as fxbar ) and ,1 

is the n-dimcnsional unit matrix.  Similarly, the covarlance matrix 

of the sample vector Y corresponding to the unmodulated stochastic 

signal y(t) defined In Eq. (2) has the form 

M. S I (10) 

where S is the average signal power prior to modulation. As a result 

of the modulation, the covarlance matrix P has the form 

<-')< 
P - S 

f2^) 

f2(t2) 

O 

o 
■f2(tn) 

(11) 



Hence, the figure of merit d of Eq. (8) becomes 

d a — 
N (12) 

which, by substitution of Eq. (3), becomes 

k!s     Uy 
N   J 2 L 

l«l 

1 2 

2      2 
hZ + (vtt)^ 

(13) 

The summation is most easily evaluated by converting it to an 

integral, which is permissible if v (t - t  ) /h2 « 1 as would 

normally be true here. Then 

n 

I 
i-1 

"1 

2       2 
h + (v t.) 

T/2 

-T/2 

T/2 

dt 

2      2 h^ + (v ty 

- 2W dt 

-T/2 

2      2 
h^ + (v ty 

12 

where At ■ t^^ - ti_1 = — by using the 3ampling theorem. The integration 

is straightforward and yields 

d = s    /wj 
N V v 

Wh 
vT 
2h 

LA+ 2h J 

_ ^ ^a -1 vT 
F. + tan  2h (14) 

It is clear that d is maximized by letting T - »; in this case 



^•iiMji-^i*^     <i5) 

However, if T is only Zh/v, wlilch means that the observation time is 

defined for the angle 9 in Fig. 1 to vary from -45 to +45°, then d 

has reached 98 per cent of its maximum value. Thus T « 2h/v might 

be used as a practical definition of the time that the target Is within 

sonar range. 

The implementation of the physical device that forms the statis- 

tic U given by Eq. (5) follows directly by substituting Eqs. (9) and 

(11) into Eq. (5). This gives the result 

0 ■ i i f2<'i> 'i' 
wt.i 

1/2 , 
ws      f     A      ' 
N2 

(t)   [x(t)]     dt (16) 

-T/2 

where .he conversion of the sum to the Integral follows In the same 

way as In Eq. (13). This result Implies that the detector consists 

of a square-law device followed by a cross correlator or filter 

matched to the modulation envelope as shown in Fig. 2. It Is clear 

that the system cannot be constructed unless f(t) Is known, which 

means that h, v, and the time at which the target is closest to the 

buoy be known a priori. I.e., before the target appears. Thi* 1« 

obviously an unreasonable requirement, and we consider, therefore, 

a simpler suboptimum scheme. 



r 
x(t) — V J x2(t) | 

/<: >\ 

1 
1 
-^v^ 

j 1 

Square-law 1 
device 

1 f2(0 

I 1 
Matched filter 

Yes 

Threshold 

Fig. 2—Likelihood ratio detector 
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III.  SIMPLE SUBOPTIMUM DETECTOR FOR DETECTING A MOVING 
' TARGET IN NOISE WITH KNOWN STATISTICS 

The suboptimum detector considtre : here consists simply of an 

Integrator which integrates the squared received signal for T seconds, 

i.e., it puts out a test signal 

(17) 

An optimum value of T will be derived, and the relative magnitude of the 

detection index d produced by this system will be obtained. 

As shown in Appendix A, for small signal-to-noi q ratio the 

detection index d can be written in the approximate form 

o 

where p. and ^ are respectively the mean values of U under the 

hypothesis that signal is present and that it is absent, and a    is 

the nns fluctuacion of U for signal absent.  For the suboptimum 

system we define the detection index in the same way with the M-'S and 

a corresponding to U . 

If signal is present, X(t) = f(t) y(t) + n(t), and therefore 

from Eq. (1") 

T/2 

ü'. w|   I    rf2(t) y2(t) + 2f(t) y(t) n(t) + n2(t)-j dt  (19) 

^-T/2 
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The mean value n' is obtained by averaging each term In the integrand 

separately. The cross-product term vanishes because y(t) and n(t) 

are independent. Then, using the fact that y(t) and n(t) are 

stationary and that the signal and noise powers are S and N 

respectively 

T/2 

*£   (    ^(t) WS 

N2 
dt 

-T/2 

WT| (20) 

The integration of f^(t) given by Eq. (13) is straightforward and 

yields 

' Ikiwsi  -i v3:4 WT s 
^1  hv M2 

tan  2h ^ W i N 
N 

(21) 

If signal is absent, f(t) in Eq. (19) is zero, and therefore the first ten 

in Bq. (21) vanishes; hence 

^ - W T | (22) 

Also, it is easily shown that for Gaussian noise and sample size n • 21V 

la 1 - W T •s7 
I 0)      N2 

(23) 

Thus, the suboptimum detection index d is 

/ '        9 

„*     ^1 " ^o     kZ s   KnrZ   2h..    -i vT 
d   - "T^" - "2 N   VT W   *F tan      2h o h 

(24) 
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This has been plotted in Fig. 3, together with the optimum detection 

index given in Eq, (14).  Figure 3 shows that the optimum value of 

T is approximately 3 ~ . With this value of T the suboptimum detec- 

tion index reaches about 90 per cent of the absolute optimum given by 

Eq. (15). Figure 3 also shows that the index is not very sensitive to 

relatively large changes of T away from the optimum value; thus for T 

Vi Vi 
between 3/4 — and 15 — the index exceeds 60 per cent of the absolute 

v      v r 

optimum. 

This result indicates that if the receiver simply integrates 

the squared received signal, the integration time should be optimized 

relative to the most distant target that the system can reasonably 

be expected to detect. Then for a target at a smaller range, T will 

be too large to be jptimum; but since the target is closer, it will 

be more easily detectable so that the small loss in optimality of T 

is of no consequence. 
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IV.  EFFECT OF PRACTICAL SIGNAL AND NOISE SPECTRA 

In Sections II and III the spectra of signals and noise were 

assumed to be white in order to simplify the analysis of the problem 

of motion of the target submarine past the sonobuoy.  Since the 

analysis indicated that the effect of the distance modulation can be 

approximated quite well in the detector simply by integrating the 

received signal over an appropriate length of time, it seems reason- 

able to make the further approximation that the signal received from 

the target has constant power during the observation interval.  This 

approximation makes it possib':» to treat both signal and noise as 

stationary processes, so that other than white spectra can be easily 

dealt with. 

When it is desired to consider the detection of stationary 

signals with complicated spectral properties, it is most convenient 

(4) 
to expand the received signal in a Fourier series ' 

£(t) = 2, ^ak C08 u,kt + bk Stn UJkt^ 
feel 

2rr 
where UK » äUJ » "r- with T the observation interval.  The a 's and b 's 

1        x k       K 

are Gaussian random variables with zero mean value; and for T very much 

larger than the inverse 1 andwidth of the received signal, they are 

approximately mutually independent, i.e., a, b «0 for all k and I,  and 

(4) 
a. a K b.b ■ 0 for k ^ /.  Their mean-square value is given by 
k 0   k £ 

ak2 ' bk2 " G<fk) Af 

(26) 

- I  GCf,) T v k' 
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where G (f) is the power spectral density of x(t) and f ■ —,  If 
Zn 

x(t) consists of noise only 

G (f) « N N (f) (27) 
o 

where N is the low-frequency spectral level of the noise which is 

assumed to be finite.  Thus 

Lim    N (f) - 1 (28) 
f-0 

If x(t) consists of signal and noise, then because of the independence 

of signal and noise 

G(f) - So S(f) + flo N(f) (29) 

where S is the low-frequency spectral level at the receiver (again 
o 

assumed finite) and S(f) is the normalized spectral density of the 

signal with 

f-0 S(f) " l (30) 

The reasons for normalizing the spectral densities are discussed in 

Appendix B; they simplify the discussion of signal with unknown power 

level. 

The standard theory of detection reviewed in Appendix A can be 

applied to the formulation in this section by considering the Fourier 

coefficients 4L and b as the elements of the sample vector X, I.e. , 

X - fa,, b,, a0. b. ..., a , b 1 where n is large enough so that all 
—      *  I      1      I      I nn 

significant frequencies are included.  Considering Eqs. (27) and (29), 

and because of the independence of the coefficients, the matrices P 

and ^ become 
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sCf,) 
sCfp 0 

s s(f2) 
^ s(f2) 

• 

0 ••s(fn) 

NC^) 
—j 

HCfp 0 
N N(f2) 

i = No*   =   1° N(f2) 
• 

■ 

0 
F 

'•My 

(31) 

(32) 

Then the nomalized test statistic considered in Appendix B (Eq.   (B-3)) 

becomes 

u-h'^Ei'^-l I(\ + bk> 
k=l 

s<fk> 

[N(fk)f 
(33) 

It is easily seen that u is essentially the output of a system of the 

type shown in Fig, 4, where 

|H (a)) 
[N (u)) ]J 

(34) 

is identical to an optimum filter discussed by Zadeh and Ilagazzini. 

x (0 - 

Fig.4—Optimum detector 
This can be shown by computing the output of the squarer which is given 

by 
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v(t) «   JE ak  |H(«)k)|   cos  (u^t + 9k) + ^^  |H(u;k)|   sin (^t + ek)}|2 

where 0.   is the phasft angle of H((i). ) .    Equation (33)  then results  since 

for large T the integrator output is Tv      where v      is th* d    couponent 

of v(t).    H((u) must be stable and physically realizable, but this re- 

quirement causes no difficulty  in practice. 

Expressions for the false-alarm probability and the probability 

of true detection have been derived In Appendix B for the case of unknown 

but small signal power and are ve^ roduced here for convenience 

0 
uo - | N^trCpä"1) 

2    o 

N tr^"1)2^ 

(35) 

l-ß-|-i   B o 
N_     \/tT 

L    O (£3.   ) 

(36) 

where    ©    (x) 
2   rx   -t2 

*r       e C    dt 

For the matrices £ and q defined in Eqs.   (31) and (32) 

-1 
SK> 

tr (£ a    ) - S    w^j 
T_ 
2TT _    N(W) 

(37) 

and 

tr f/    -1x21 (£1    ) 
n 

T_ 
211 L IS T   *" (38) 
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where passage to the integral is, as usual, permi.sible if T is very 

large compared to the reciprocal of the bandwidth. 

Example broadband spectra for submarine targets and bacKground 

noise are shown in Fig. 5.  The spectra obtained from actual measure- 

ments may differ considerably from these, and their exact shape 

depends on a number of factors in addition to target velocity and sea 

state.^ '  However, Eqs. (35) to (38) indicate that small differences 

in the shapes of signal and noise spectra have negligible effect on 

either the false-alarm or detection probability.  The normalized 

spectra can therefore be approximated by 

2 

SCuO = -2 2 (39) 
ÜU  + UK 

HC«) = ^0 (uj2 + ^ (40) 
2  2   2 ,JJ2 ^ + V 

Both signal and noise spectra fall off with the second power of 

frequencies above a frequency tu or Uü« respectively, and the noise 

spectrum levels off at a high frequency m because of the presence 

of locally generated white noise. 

The integrals of Eqs. (37) and (38), after substitution of 

Eqs. v^9) and (40), are in a standard form that is tabulated, for 

example, in Ref. 7.  The result is 

2TT J N(W) *   4    2 ,  x  . 
u)0 (f^ + tt2) 
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and 

f00    r  c/   \     2 Tu),   UJ. 1_ 
2TT 

o       1 Z 

u A 
2 4x9        2    2.  2.   „2. 

+ 4U), au- tu   + 2(1), (iJ0 u>rt (w-, + 2u) ; l    Z    o 1     z    o       1 o 

+ ml iml + u)^)2] (42) 

Typical values for u) , u), r an<1 U»» are 

cü   ■ 2TT x 50 
o 

m   - 2TT x 1000 (43) 
1 

tu   ■ 2n x 20,000 

Hence nu >>«),> 0) , and Eqs. (41) and (42) can be approximated by 
«2     1   o 

tr ^^I.S-^Qt 

V  T  rrWd_^^^ (45) "^■v-^i [is] a««-^^; 

The false-alarm and detection probabilities can now be evaluated by 

substituting Eqs. (44) and (4i;  n Eq-, (35) and (36). It must be 

noted, however, that the low-trequency spectral level So of the 

signal refers to the level at the receiving sonobuoy, whereas the 

level given in Fig, 5 is referenced to a distance of one yard from the 

target. 
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If the transmission loss is inversely proportional to the 

square of the distance, then by Eq. (3) 

k2S 1 
o    ,2  /  x 2 

h + (vt) 

where S. is the low-frequency spectral level of the target relative 

to one yard and h is the minimum range in yards.  The assumption 

that the target signal strength at the sonobuoy is constant during 

the observation time implies that vt « h so that 

S  «a S,  - 
o     1.2 

n 
(46) 

Thus  the  false-alarm and detection probabilities become 

a 

1 - ß 

I 
2 

1 
2 

- 0  (Z ) 

i9 (V 

(47) 

(48) 

where 

7 u 

N   ruD0 o       2 
(49) 

and where 

Z      -   T-v/Toi- a      4 2 

U) 

'Jj, 

(50) 

2 Z     -t2 

S  (2)    .    ^    r    e        dt 
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Ihe magnitude of T in the above expression has been considered 

in Section II and was shown to depend on the range h. The detectable 

range might be defined as the value of h that makes Z ■ 0 subject 

to a particular false-alarm rate. For fixed false-alarm rate Z 
a 

.-5 
is a constant, k ; specifically for a - 10 , k - 3.03. Letting 

T - 3h/v according to the results of Section II, we can solve Eq. (50) 

for h  , i.e. 
max 

n  i    - , 3h   V 
0 - k - r /  max 

0    h „    «)„ max 

or 

max 
1 

4k -N 
a 

m 

h sl»
2
l 

2 
N   m o    o 

2/3 

(51) 

For v « 20 knots, we find from Fig. 5 that S^^ - 27 db.  Also, 

assuming that the sea state is 1, N - -24 db.  u)o, u^, and isi^  are given 

in Eq. (43).  Substituting all of these values into Eq. (51) with 

k - 3.03 results in h   of about 600 mi, and T is on the order of 
a max 

100 hr.  These results are clearly unrealistic, and they indicate 

that an important factor has been omitted from the analysis. 
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V.  EFFECT OF UNKNOWN NOISE LEVEL 

The unreasonable result obtained in Section IV can be shown to 

result from the assumption that the noise level is known precisely. 

In order to see this, consider what actually happens in the detection 

system.  The detector is shown in Fig, 4, and if noise only is present 

at the input, it is clear that u will be a somewhat random ramp 

function as shown it. Fig. 6.  If signal is also present, then the 

slope of the ramp is slightly greater, as shown.  Thus, at any time 

T it is possible to establish a threshold which will usually reject 

Signal and noise 

Noise only 

^—ThresSold 

0 time T 

Fiy, 6—Detector output versus time 

the signal hypothesis when it is incorrect and accept it when it  is 

correct (the word "usually" is used in a statistical sense).  It can 

be seen from Fig. 6 that as long as the input power level with signal 

plus noise is even wry  slightly greater than it is wich noise alone, 

the average slopes of the two ram^s are different and they continue 

to separate as the observation time is increased. 

This discussion is valid if one can assume that the noise power 

Is exactly known.  Suppose, however, that there is some uncertainty 

about the noise power level.  Then, in order to achieve a specified 
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faise-alann probability, the threshold would have to be set at a 

high enough level so that the maximum expected noise level would 

yield the specified false-alarm rate.  If then the noise level is 

actually less than the maximum value, u would usually be below 

the threshold for both signal present and abyent unless the signal 

power exceeds the uncertainty in the noise power. 

In view of this discussion, one can, for a given observation 

time T, define a minimax range h as the range that causes Z„ » 0- m 0 g 

to vanish, with N taking on its smallest value, for a Z  taking 
O Qf 

on the value correspo • ling  to  the specified false-alarm probability 

with the  largest value of N  . 
o 

Quantitatively,   suppose  that  the noise  level  is  somewhere 

between N   + AN    and N    - AN  .     Then if  the value of    Z      of Eq.   (49) 
oooo a 

is f5.xed at    K 
Of 

2Uo K-.    "     /-H    1   AM  r75iF= I   "7 I" f  V^TCM,, 02) Q- (N, + ANJV/Tü) 

The v;>lue of    Z      to be used in Eq.   (50^  is  tbrn 

j     _      /  N    4   AN    . 

K   
No + ANo] +^2 / 2 ANo 

(53) 

aI N    - AN    / 4     I N    - AN 1    0 o I \   o o 

and h    is obtained  from 
m 
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2    2 
/N    + AN   \          ,   /3h OJ. / 2 AN       \        ,     /3h~Z             kZ u,;  S. 

„    / _o o   \ I   /    m  2 / o       )        1   / m_2 1     I , 
a\N    - AN    / +    4V   kv      IN    - AN    /   " 4 V    kv v.2     2 /K ÄKJ x  " 

\  o o / \ o o / hni ^o  (  o  "'  A o^ 

(54) 

A set of curves of h versus AN /N is given in Fig. 7 for various sea 
m        o o 

Ttates, and for a target velocity of 20 knots. The example spectra 

of Fig. 5 have been used in this cc-«putation.  Values of at -0),, and 
o   X 

u) are these givon in Eq. (43). For these values, and for AN /N > .01, 

the first term in Eq. (54) is negligible, and a very good approximate 

solution for h is 
m 

h     uj, / S. 
m    _i /  1 
k  " m V 2AN 

Sl 
(55) 

(u V 2AN 
o     o 

3h 
The optimum time of observation is given by T «  , which for a 20- 

knot target velocity is T = ,15 h hr if h is expressed in n mi.  Thus 
m      m 

the optimum time can be read from Fig. 7.  According to Eq. (55) dif- 

ferent target velocities affect the range only through the signal 

spectral level S . According to Fig. 5, S.   for a 5-knot target IP 

about 10 db below the value for a 20-knot target. Henr«;, h is ,316 
m 

as   large  for a 5-knot target as  for the 20-knot  target,  c.nd the optimum 

value of T becomes   .6h    hours. 
m 

By setting N + AN » N   and N - AN - N . , Eq. (55) can be J 0 o    o   max     o    o   mm*  -» v / 

put into the form 

h 
m 
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Although this expression is equivalent to Eq. (55), it is more con- 

venient when N  /N .  is large.  It has been used for the curves 
max min 

shown in Fig. 8, which are also based on the example spectra of 

Fig. 5 and on the values of Uü , UJ, , and u;„ from Eq. (43). 

It should be noted that if the approximate expression Eq. (55) 

holds, then h is independent of T since T enters Eq. (54) through 
m 

the square-root factors that have been cancelled out.  Thus, although 

it is desirable that the adjustment of T be approximately correct in 

order to optimize the detection index as discussed in Section III, 

the fact that different trrget velocities require different values of 

T would not have to be considered in the design of the detection 

system.  T could be determined by measurements of the sea state (or 

noise background) if the expected uncertainty in the noise measure- 

ment is known. 

In practice, it appears that accuracies of ^ 1 db are about the 

* 
best that can be expected.  These accuracies correspond to ^N /N = .1, 

and therefore, according to Fig. 7, for sea state 0 the miuimax 

detection range for a 20-knot submarine is about 25 mi, with more 

normal sea states yielding ranges of about 8 mi or less. 

The probability of detection as a function of range depends on 

the probability distributic-» of the actual noise level within its 

permissible range. The only case considered in this section is that 

this distribution is uniform, i.e., if the actual noise level is N 

Private communication with J. Kingsbury, Navy Underwater Sound 
Laboratories, New London, Connecticut. 
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Actual zero frequency 
Noise spectral  level  is between 

N0 + AN0 end N0 - AN0 

Target velocity: 20 kt 
Transmission loss: 6 db per distance 

doubled 

0.01 0.02 0.05 0.1 0.2 0.4 
ANQ/NO 

Fig.?—Minimax range versus uncertainty in noise level 
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Fig.8—Minimax range versus noise uncertainty 
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dN 

P  (Nl)dNl    "     2ZN-   '     No  " ANo < Nl < No + ANo 
(56) 

p  (N,)    ■    0    otherwise 

The computation  for the detection probability  is  simplified by  the 

fact  that  for a given value of N.,   (1-6)  decreases very  rapidly  for 

small changes  in h near  the nominal value.     If T  is one hour and u)? 

is 2TT x 20,000  rad/sec,  Tuu? - 4.5 x  10     rad.     For this value of un- 

it can be  shown by direct computation of (1-0)  according to Eq.   (48) 

that  if (1-ß) = ^ for h = h  ,  (l-g) « 1  for h -   .999 h    and (1-ß) ^ 0 

for h =  1.001 h  .    Hence,  if we use the notation p(D/N.)  Instead of 

(1-0)   to  indicate  that  the detection probability  is conditional on N., 

we have approximately 

p  (D/N^    =     1  - u [h - h (N,)] (57) 

where u [ ] is the unit step function and where, by an argument 

similar to that leading to Eq. (55) 

h (N^      w1       ys^ 
~~k    " ~ /N -I- AM - H, (58) 

o v o    o   1 

The joint probability p  (D,  N )  obtained by multiplying Eqs.   (56) 

and  (57) may now be  integrated over N.   to obtain the desired marginal 

probability density P (D).     The  integration is  straightforward ar.d 

yields 

P  (D)    -    1 for    ? s Uil     ^ ^ 

2 2 

P  (D)    -    -V^  for    K    l     '    l 
o V    u o (59) 

7  0 tor    T- 2 —     /-  
2(/hZAN k      W.  72AN. 

o        o O   V O 
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This expression is plotted in Fig.  9.     It  is see j  that  the probability 

of detection is unity for ranges  less  than the minimax value and that 

it drops off rather rapidly for larger ranges. 

The detection range h    is ccnmonly defined as the value of the 

range for which tha detection probability p(D) ■ if.     It is clear from 

Eq.  (59)  that  this is given by 

h.    . V2h     -    k —   /-—i (60) 
d^m U)/AN ' o v " o 

This range can easily be read from Figs. 7 and 8 by a change in the 

ordinate scale. 

It might be noted that a change in the false-alarm rate has 

essentially no effect whatever on the minimax or detection ranges, 

or on the detection probability. A change in the false-alarm rate 

results in a change in K , but the term in Eq. (54) containing K 
o 01 

was neglected in obtaining Eq. (55), and in all subsequent equations. 

Hence, the results of Figs. 7,8, and 9 do not depend on the false- 

alarm probability. 

The results of this section ere easily extended to transmission- 

loss curves other than the simple 6 db per distance doubled curve 

considered thus far.  Suppose that Eq. (46) is replaced by the more 

general equation 

S0 - S^) (61) 

Then, if in Eq. (54) the term involving K is again ignored, Eq. (55) 

becomes 
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m kg 
-1 2AN 

(62) 

Also,  Eq.   (59)  becomes 

P(D) 

PCD) 

. AN 
for g(-)   ^ 2 — 

. AN 
for    8(^.2^ 

UJ 

x. 

(63) 

Under certain conditions the transmission-loss curve appears to have 

approximately an 8 db per distance doubled slope.  Then g(h/k) ■ (h/k) 

The minimax range corresponding to this form of g(h/k) is plotted in 

Figs. 10 and 11. The larger transmission loss results in a con- 

siderable reduction in range, as might be expected.  As before, the 

detection range can be defined by h. ty/l  h . 
d  v   m 

As a result of multiple reflections, g(h/k) frequently has a more 

complicated form, of the type shown in Fig. 12, where the peak after 

the first dip typically occurs at 10 to 20 n mi. It is clear from 

Eq. (63) that under these conditions the form of the detection 

probability curve will be as shown in Fig, 12 and that there may be 

several widely different values of h and h.. 
m     d 
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Fig. 11 
8 
—Minimax range versus noise uncertainty for 
db per distance doubled transmission loss 
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Fig. 12—Transmission-loss function 3nd resulting 
detection probability 



36 

VI.  UNCERTAINTY OF NOISE LEVEL DESCRIBABLE BY A GAUSSIAN 
PROBABILITY DENSITY FUNCTION 

In Section V, it was assumed that definite upper and lower 

bounds coula be placed on the possible value of the noise level, and 

in the computation for the detection probability, It was assumed 

that all noise levels inside these limits were equally likely. 

Although it is conceivable thpt  certain techniques for determining 

the noise level might result in noise uncertainties of this type, it 

seems more likely in general that the noise-level uncertainty would 

be more accurately described by a probability density function such 

as the Gaussian density function, for .;hich it is impossible to define 

upper and low*r bounds on the noise level. Therefore, the concept 

of a minimax range as defined in Section V Is not applicable. However, 

if the probability density function of the noise level is known, it 

is still possible to determine a threshold resulting in a specified 

average false-alarm rate. 

If the probability density function of the noise level is p(N ), 

then th average false-alarm and detection probabilities are, 

respectively 

« - j cKNj) PvN^ dN1 (64) 

-00 

(1-ß) - 1 - J  ß(N1) pCN^ dNj (65) 

where »(N ) and ß(N1) are the conditional false-alarm and miss pro- 

babilities under the assumption that the noise level is N., i.e., 

they are given by Eqs. (47) and (48) with ^ replaced by N . 
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For the large values ot  Tu), that are typical In this application, 

»(N.) and ßCN,) can again be approximated very closely by unit step 

functions, specifically 

aWJ  - u(N1 - N10) (66) 

where N-n is the noise level for which Z ■ 0. Thus, from Eq. (49), 

with N replaced by II,.. and Z » 0 
o  r      -^  10     a 

N 
8u fv 

10 " Ta)2 i'^ (67) 

so that 

a(N,) 
8u 

1 Tu, 

(U 

a). 

Substitution of Eq. (68) into Eq. (64) results in 

(68) 

f   POO dN 
"10 

(69) 

Cue way of estimating the noise level is to make a long-time 

measurement of the received signal power and to use the average 

power as the estimate of noise power. This is a workable procedure 

because if a signal is present for a relatively short time compared 

to the time taken for the noise measurement, then the short-time rise 

in power due to the signal hf.s a negligible effect on the long-time 

average. If thi noise level is estimated in thij '«y, then by the 
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central limit theorem the probability density p(N.) does, in fact 

approach the Gaussian, i.e. 

2 

PCN,) 

1 fNl "No 
1  aN 

/2n a. 
(70) 

N 

where N    is the mean value of N,, and a« is the variance of the measure- 
O in 

raent.      Then 

wher J 

a » j - ^ e (z^ 
.) 

(71) 

Z_ » 
a 

8u      a) 
-^   -£     _ N 
Tujj    ou, o 

Si    a 
(72) 

N 

As before,  if a is specified, Z^- ■ K„, a constant.    Hence,  the thres- 
Qi a 

hold u    is given by 

uo-1b2 

N    + Iw VT o\ /JO, 
o        »v       N   /    1 

8 (JU 
(73) 

The conditional miss probability ß(N1) is similarly approximated 

by a unit stsp function. 

B(N]L) - u(N1 - N1]L) (74) 

where N,. is the value of noise level for which Z ■ 0. This can be 

obtained by replacing No by N^ in Eqs. (49) and (50), and setting Z - 0 

The value of u to be used in Eq. (49) is that of Eq. (73) (with N left 

unchanged, since u is a fixed threshold). The  result is 

*        2 
Note that ^ generally decreases with observation tin, , the de- 

crease is, however, limited by the degree to which *:he sea noise is non- 
stationary. 
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Slk2 (*\   . Nii-No + %^aN-TrlT) (75> 

Then, if p(N ) as given by Eq. (70) is substituted in Eq. (65), the 

average detection probability is found to be 

p(D) = (1-9) - | - -I e 1  VL/V v    . 

.J 

(76) 

Th e detection range h-r can be defined here u«? the value of h for 

which p(D)  ■ —;   this gives 

07) "*   w^% % 
A curve of detection range versus a    for the example 20-knot target 

used in Section V is given in Fig.   13;  the detection probability is 

shown in Fig.   14.    Note that in the present case both Iw and p(D) 

are functions of K- .    However,  since even for rather large changes 
Of 

in false-alarm rate K— only changes a small amount,  the effect of 

change of false-alarm rate,  although no  longer completely negligible 

as in Section V,  still has only a very small effect on h-r or p(D). 

This  is clearly shown in Figs.   13 and 14. 

In comparing the detection range h— of this section with h, 

of the  last section, one must note that 2AN   of Section V is the 
• o 

maximum uncertainty range, while a of this section is the standard 
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100 i-xmn .iiA-^-U lU !   FPT 
False-alarm probability  is .001 

——-——False-alarm  probability   is  .0001 
 False-alarm probability  is  .00001 
Target velocity:  20 kt 
Transmission loss:  6 db per distance doubled 

Fig. 13—Detection range versus N 
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Fig. 14 -Average detection probability versus range 
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deviation of the noise uncertainty.  For a rectangular distribution, 

the standard deviation would be 

AN 

If this is used in Eq. (77), the comparison with the detection range 

of Section V (Eq. (60/) > i.ves 

hd 
%yi t79' 

Thus,  for K- = 3.03 (a = 10"5) , h^Dx- = 1.57. ' ot d    d 

The detection probability drops off much more rapidly for ranges 

in excess of the detection range h— here than in the last section. 

This is, of course, due to the fact that if the noise-level uncertainty 

has a Gaussian distribution, it is much less likely that the actual 

noise level differs from the mean value than if the uncertainty has 

a uniform distribution, assuming that the variances are comparable. 

The effect of transmission-loss curves other than the 6 db per 

distance doubled curve considered here is essentially the same as in 

Section V. The argument of 9 in the equation for P(D)(Eq. (76)) 

_2 
would be proportional to g(h/k) rather thun h . However, because 

of the nonlinear distortion of the argument by the error function, 

a g(h/k) such as that shown in Fig. 12 would result in a much more 

violent fluctuation of P(D); in fact, it can be concluded from 

Fig. 1^ that one would have approximately 
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P(D) 

P(D) « 0      gfc) < 
h,     ^'„S, uu 

k' -        S1      y^ 

This is illustrated in Fig.   15. 

0.5- 

^N^H/"!^ 

Fig. 15—Average detection probability versus range 
for arbitrary transmission-loss function g(h/ki 

and Gaussian noise-level uncertainty 
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VXI.  CONCLUSION 

Several aspects of the problem of detecting a submarine by a 

single hydrophone sensor have been coupiidered. The signal emitted 

by the submarine Is assumed to consist of broadband noise only, and 

under this condition, it is clear that the only distinguishing feature 

the detector can use to decide whether a target is present or not is 

the Increase in noise power caused by the presence of the targe_. 

A simple power detector, in which the received power is integrated 

over the time that the target is within range is therefore essentially 

equivalent to the optimum detector. 

In general, the optimum observation time for a submarine moving 

past the receiving sonobuoy is inversely proportional to the velocity 

of the submarine. Hence, if the noise emitted by the submarine were 

not a function of the velocity, for example, if it consisted exclusively 

of internally ge^-rated machinery noise, a slow submarine would be some- 

what more detectable than a fast one. However, even under the 

unreasonable assumption that the background noise level is known 

precisely, the detectability index is proportional only to the 

square root of the observation time, while for the more realistic 

case of unknown background noise level, the detectability index is 

practically independent of the observation time. Thus, the increase 

in detectability resulting from the increased time of observation of 

the slower submarine is extremely small. On the other hand, the 

detectability index is directly proportional to the power level of 

the signal whether the noise level is known precisely or not. 

Thus, if the noise emitted by the submarine increases at all 
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with velocity, the incre«*« in signal power will, in practically all 

cases, result in the faster (and noisier) submarine being more 

detectable. This is especially true when the backgreund noise level 

is unknown, in which case this statement is true without any 

qualification. 

The major factor limiting ehe maximum detectable range is the 

uncertainty about the level of the background noise level. If this 

uncertainty is such that the noise level is certain to be somewhere 

between an upper and a lower bound, then a signal is in effect de- 

tectable only if the received power is larger than the maximum 

conceivable background noise level. In this case, one can define a 

minimax detection range such that targets at a smaller range are 

essentially perfectly detectable, while the probability of detection 

decreases sharply for ranges above this value. If the transmission 

loss is proportional to the square of the distance, then the minimax 

detection range is inversely proportional to the square root of the 

relative noise-level uncertainty. It is clear that the performance 

of the buoy depends critically on the accurate determination of the 

noise level. 

If it can be assumed that the noise level is constant, it can 

be estimated wichin the senobuoy by making a long-term power measure- 

ment of the signal received by the buoy. If the time of this 

measurement is long compared to the time that target is within range, 

the overage power reading obtained is essentially that of the noise 

only. This method of estimating the noise level results in an un- 

certainty that can be approximately described by & Gaussiar. distri- 

bution whose mean is the nominal value of the noise level. There 
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are then no upper or lower limits on the possible noise level, 

but detection still depends on the received signal power being 

substantially greater than one would expect from the noise estimate. 

Quantitatively, if the transmission loss is inversely proportional 

to the square of the distance, the detection range is proportional 

to the square root of the signal power divided by the standard devi- 

ation of the noise level. 

The suggested method for internally measuring the noise level 

results in a two-channel detector. One channel incorporates a long- 

term integrator having a time constant T to estimate the noise. 

The other one contains a short-term Integrator with a time constant 

T, ■ 3h/v, the time that the target is within range. The outputs of 

the two integrators are compared in order to arrive at a decision 

as to whether a target is present. This system will generally report 

any rise in received power lasting for a time on the order of T. as 

a target; It will tend to ignore changes in received power that are 

either very much longer or very much shorter than T. (unless the 

Increased signal power was quite large). The system might, therefore, 

tend to reduce false alarms that are due to anomalous transmission 

from very distant targets. On the other hand, short-term changes in 

the background noise level would result in false alarms. 

It is difficult to see how any system whose only basis for 

detecttor is the short-term change in noise level caused by a target 

could be made Insensitive to the same sort of change by the back- 

ground noise and still be able to detect targets. 
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The proposed two-channel detector appears to have certain 

desirable properties, and qualitatively it probably functions as 

described.  However, it is planned to investigate its performance 

quantitatively and in more detail. 
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Appendix A 

THE LIKELIHOOD-RATIO DETECTOR FOR HETECTION OF A 
GAUSSIAN SIGNAL IN GAUSSIAN NOISE BACKGROUND 

Suppose that the received signal has the form 

x(t) - 8(t) + n(t) (A-l) 

where s(t) is the signal that would be observed if there were no 

noise, and n(t) is the noise.  Both 8(t) and n(t) are assumed to be 

Gaussian random processes with zero mean; hence x(t) is also Gaussian 

with sero mean.  It is always possible to represent such a signal by 

a set of samples 

X' - [x1x2x3..xn] (A-2) 

where the prime denotes the transpose. The kind of samples that are 

used depends on the application.  In some cases time samples are 

convenient, i.e., x^  - xCO, x. ■ x(t ), etc.  In other cases it is 

more convenient to expand x(t) in a Fourier series over the observation 

interval T-  In that case the elements of X can be considered to be 

the Fourier coefficients-  In either case the elements of X are Gaussian 

random variables with zero mean. 

In view of the equivalence between the samples and the continuous 

function, one can say that the probability of a particular realization 

of x(t) is the Joint probability that the set of samples acquires the 

particular value yielding this realization. Thus, suppose that the 

received signal consists of noise only.  The coverlance matrix of the 

•laments of the sample vector X is defined by 

<x x> N - a (A-3) 
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where the symbol <^N represents the statistical average of the quantity 

in the bracket conditional on the hypothesis indicated by the subscript, 

and where Q  is assumed to exist. Then the probability density of x(t), 

given that signal is absent, is the probability density of X given that 

signal is absent, which is 

(X) =  1  erJ.  1 x/ gT1  x\ (A-4) 
n/2       1/2   ^ J 

(2n)n/Z [det £]iU 

The covarianre matrix of X for x(t) ■ s(t) is defined by 

Since signal and noise are independent, the covariance matrix for X if 

signal and noise are both present Is 

i 

<2 X'^H - £ + a 

Then the probability density of x(t) given that signal and noise are 

both present is 

P^X) l exp{- ^ X'CHS)"1!.}      (A-6) 
] (2TT)

n/2[det a + fi)ll/2 

The likelihood ratio is defined as the ratio of p1(X)  to P0(X).     It 

Is  therefore given by 
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In practice it is generally reasonable to assume that the input 

signal-to-noise ratio is very small, so that the elements of the P 

saatrix are all very much smaller than the corresponding elements of 

r,he SL matrix. Then the ratio of the detenninants in Eq. (A-7) is 

approximately unity. Also, the exponent may be expanded as follows 

- ^ x'[(p + a)-1 - a ^ - - ^ i'a^a + m1)'1 - i] x 

- -ix'2"1 [i-ml + as"1)2 - 

...  - l]x (A-8) 

- ^ ik'zhsih - \ iH^hsih. ■ • • • 

«here I is the unit matrix. 

If the signal and noise are "white noise," (i.e., with uniform 

power spectrum) then P ■ SjL and Q ■ NJj where S and N are the signal 

and noise power respectively. Then ft"Pfl" -jjQjjJ^SJPÄlfl  " 
2 

i f J ^ I; etc.  Hence, the magnitude of the higher-order terns in 
N v. N y 

Eq. (A-8) decreases with S/N, and for small S/N only the first term 

needs to be considered. If X is not "white noise," the higher- 

order terns are still negligible, but the demonstration of this fact 

is somewhat more difficult. 

Generally, it is more convenient to deal with the logarithm of 

the likelihood ratio than with the ratio itself. This causes no 
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i 

I 

dtfftcu1ty -..Ince the logarithm is a monotonic function so that if the 

likelihood ratio exceeds a given threshold, its logarithm exceeds a 

different threshold. For small signal-to-noise ratio, the above dis- 

cussion indicate s that 

log L(X) « U - j X'fi"1^"1* (A-9) 

The quantity U is the test statistic of the problem, and it is 

compared to the threshold IT to decide whether or not a signal is 

present. It is essentially the quantity that must be computed by 

the optimum receiver.  Although the likelihood ratio is a ratio 

of probability densities, U is obtained from X by a deterministic 

transformation of the vector X representing the received signal. U is a 

random variable ..ecause the vector X is a random variable. 

If U > U the decision is that a signal is present. The con- 

ditional false-alarm probability a is therefore the probability that 

the random variable U exceeds the threshold U , given that the signal 

is actually absent, i.e. 

OD 

a « J  p (U) dU (A-10) 
Jü 0 

o 

where p (U) Is the conditional probability density of U when 

there Is no signal. Similarly, the conditional probability of a 

correct detection, (1-ß), Is given by 

(1-P) - J P^ü) du (A-ll) 
ü 
o 
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where p.C'J) is the probability density of U when there is a signal prciseat. 

In order to evaluate a  and (l-ß), p (U) snd p.(U) must be computtd. 

This is in general rather difficult because the transformation given in 

Eq. {k-9)  is nonlinear. If the matrix Q PC|  equalled DI, where D is 

a constant and 1  is the unit matrix, U would reduce to the sum of squares 

of the elements of X.  Then, since X is a Gaussian vector, the probability 

density of U would be a chi-square density in n ■ 2TW degrees of freedom. 

-1-1 ** 
For general jj PQ , the probability density of U is what Middleton 

refers to as a "generalized chi-square" ciensity. It can, however, be 

shown (Ref. 1, Section 17.2-1, and Ref. 8, Section 20.2) that if n is 

large, and if the eigenvalues of the matrix 3 £2  are small (which 

means, in effect, that the signal-to-noise ratio is small), both p (U) 
o 

and p,(ü) approach the Gaussian form. Both of these conditions would 

normally be expected to hold very well for problems of interest here. 

It therefore will be assumed that p (U) and p^U) are, in fact, Gaussian. 

A Gaussian distribution is completely determined by its mean and 

variance. The mean p, of p (U) is given by 

^-Kivv^w i i-iXvA 
n  n 

(A-12) 
i-1 J-l 

where a  is the general element of 5 PC}' , However, /x.x \ " q4 ., 
*j \ i j/N   ij 

the general element of 5, by definition. Also, it can be shown ' 

that the double sum Z I b  c  of the product of all the elements 
i j  J  iJ 

of the two matrices B and C is equal to the sum of the diagonal terms, 

or ti-.ee, of the product matrix BC, written tr(BC).  Hence 

See Ref. 8, Section 18.1., 
** 

See Ref. 1, Section 17.2-1, 
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i 

I 

u   u 

i-1 J-l 

(A-U) 

" 2 tr^'l.p) -1 trcia'1) 

Similarly, one finds that the variance of U, given that nclse only 

Is present 

2 
2 ^-Ka'a-W^-KxyVx^ 

n  n  n  n 

i-i j-i k-i je^i 

where the a and a, . are again general elements of £ £2 Since 

the xf are Gaussian variables, one can expand the quadruple average 

into products of covarlances.     Therefore 

n  n  n  n 

III   I aij ^ ( VjVx )N 
1-1 j-l k-l jfr-1 

n  n  n  n 

III hti\i[Wi)n{\'i\ 
1-1 J-l k-l W 
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Thus 

n      n      n      n 

llll 
i-1 J-l k-1  irl 

aij \t \ VsVi 
N 

ii i^i-^X] 
i-1 J-l 

n      n      n      n 

*>l I I I «t Ai ( \\ I < ^ ) 
i-1 J-l k-1 J&-1 'N  ^    J  * /N 

[ tr £a'1^    + 2 trfcPCfl)    I 

Finally 

(A-15) 

»c'-M^-1)] (A-16) 

Similarly, it can be shown that the mean ^l  of ?,(!;) is given by 

and 

^^(^-v^^.i^V] 

2  1  T .! 2       ,21 
'i ■ 2tr^ ) a + pa l) 

+ y trCP^"1)   (A-17) 

fSS I "[(P^-1) ] 
(A-18) 

where the approximation implies, as before, that the signal-to-nolse 

ratio is small so that the elements of £2* are all very much less 

than unity. 
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From Eqs.   (A-10),   (A-13),  and  (A-16),   the  false-alarm probability 

is found to be 

a 2~2    0 

U I trO^"1) 

y^n1)7] 
(A-19) 

where 

0  (z) 
2   rz  -t2^ ■7=        e dt 

Similarly,  from Eqs.   (A-ll), (A-17), and (A-18),  the probability of 

a correct detection is 

(1-0) - I - I 9 
u - \ trcps"1)   ,  r~r   721 

[y^v]      l   J (A-20) 

Comparison of the arguments of the © functions in the two cases 

indicates that the difference is the quantity d//2, where 

■Ä^] (A-21) 

d is referred to as the "detection index" and may be considered as the 

figure of merit of the detection system. For a given false-alarm 

probability which fixes 

d is, the greater is the probability of true detection. Inspection of 

Eqs. (A-13), (A-16), and (A-17) Indicates that 

stection system. For a given false-alarm 

[üo - \  tr(^"S]>ytrC(P2"1)2], the larger 

d - 
'1 

(A-22) 

1 

i 

The optimum receiver forms U from x(t) according to Eq. (A-9). 

One can think of |ij «nd u as the "dc" component of the output under 
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the hypothesis that the signal is present or absent respectively, and 

a •« a, is the tms fluctuation of U. Then d is the ratio of the 
o   1 

difference of useful output from the detector to the output fluctu- 

ation, i.e., it is like an output signal-to-noise ratio. This 

suggests that this same figure of merit be used in evaluating sub- 

optimum systems. 
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Appendix B 

DETECTION WHEN SIGNAL OR NOISE POWER IS UNKNOWN 

In the previous discussion it has been tacitly assumed thac the 

signal power and noise power are known; otherwise the matrices P and 

2, which are proportional to signal and noise power respectively, 

could not be completely determined. In practice neither of these 

power levels would be known exactly. 

- 
Consider first the problem of unknown signal power.  It seems 

I 

clear on heuristic grounds  that  the  false-alarm probability ^ should 

1 
not be a function of the signal power, and this is corroborated by 

* 
statements in the literature.  However, it appears from Eq. (A-19) 

that a does depend on both P and ^ and, therefore, on both signal 

and noise power. In order to resolve this apparent discrepancy, we 
i 

note that the test statistic U defined in Eq. (A-9) is generated from 
I 

the receivad signal by means of a processor which in some way realizes 

-1 -1 
the matrix operation (} P(J . Since the elements of P are proportional 

I 
to the signal power S, the "gain" of the processor is proportional to 

S, This is the only reason why U is proportional to S; the received 

signal x(t) (consisting of noise only) has nothing to do with it. The 

7 

threshold U    for a desired false-alarm probability therefore also o 
I 

depends on S only because the gain of the processor does. If the 

processor gain is arbitrarily changed,   the false-alarm probability a 

will remain unchanged if the threshold U is changed in the same 
o 

proportion an the processor gain. Thus, it is possible to base both 

the processor gain and the threshold on a normalized F matrix, i.e.. 

*See Ref. 2, pp. 133-134. 
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to set 

and 

U 

S£ 

S U' 
o 

(B-l) 

Substitution of Eq. (B-l) into Eq. (A-19) then indicates that a  is 

independent of S. 

This same argument does not hold for unknown noise level. In 

order to show this, suppose that the matrix (} is also normalized, i.e. 

N .a (B-2) 

and that a test statistic u is formed by a normalized processor 

^ ££  which is now independent of both signal and noise power, i.e. 

1 ,.. -1 -1 u « - X'.a ££ X (B-3) 

It is easily seen that for x(t) consisting of noise only, both the 

mean and standard deviation of u are proportional to N through the 

received signal vector X.    If u is compared to the threshold u  , 

the false-alarm probability is given by 

e 
uo - j N trCpq"1) 

N ytrUpq"1)2] 
(B-4) 

This is clearly dependent on N. The noise level cannot be normalized 

out becaus« it depends on the received signal rather than being simply 

a gain adjustirferf in ehe processor as is the signal level. 
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Suppose now that the received signal x(t) consists of noise 

with a known power level N, and signal with an unknown power level 

S, and that this signal is processed through a normalized processor 

as in Eq. (B*3). For small signal-to-noise ratio (which can be 

assumed to exist even though the exact signal power is not known), 

the variance of u is the same as with noise only present. However, 

the change in the mean due to the presence of the signal is now 

* 

(uL"\u>-2str^"l>' (B-5) 
S+N       ^      'N 

Therefore,  the detection index d now takes the forzi 

s-ß NV 2 I trCEa"1)" (B-6) 

and Eq. (A-20) for the probability of correct detection is changed 

to 

(1-P* 

where 

l.i 
2  2 

k(flr) 

k^ " 2 I /* tr^pa" ) (B-7) 

u -1, 
2 N "(23 ') 

N yt 
(B-8) 

trCsa"1) 

is the argument   the error function defining or. 

It should be noted that although in this discussion the matrices 

£, and £ were normalized with respect to total signal and noise powert, 

any other normalization proportional to signal and noise power would 

yield identical results. 
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