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PRfiFACE 

This Memorandum is a product of a continuing study for 

the Advanced Research Projects Agency on defense against 

submarine-launched ballistic missiles. 
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SUMMA.RY 

We analyze as a game the deployment of a defense 

system against submarine—launched ballistic missiles 

composed of mobile defense units capable of destroying a 

nearby submarine and its missiles at the time of launch. 

We assume that the ocean is divided into zones among 

which both the attacker and defender deploy their forces. 

The attacker then launches a mass attack against targets on 

the defender's land mass.  Each defense unit can success- 

fully destroy one submarine and its missiles in the same zone. 

We first assume the payoff to the attacker to be the 

number of submarines which successfully launch their 

missiles.  We solve the game with this payoff function 

when neither player has any information about the other's 

location, and obtain a partial solution when the defender 

has some information about the location of the attacker's 

submarines.  We then assume the payoff to the attacker to 

be the number of zones from which at least one submarine 

successfully launches its missiles. We solve this game 

for certain values of the parameters involved when neither 

side has any information about the location of the other's 

forces. 

ifi&M-:sbM^ 
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A PRELIMINARY TREATMENT OF 
MOBILE SLBM DEFENSE AS A GAME THEORETIC ANALYSIS 

1.  INTRCOUCTION 

We postulate a  defense system against submarine- 

launched ballistlc-mlsslle (SLBM) attack.  The system Is 

composed of mobile defense units capable of destroying a 

nearby submarine and Its missiles at the time of launch. 

We then analyze Its deployment as a two-person, zero-sun. 

game. I.e., one In v.ilch the attacker's gain is the de-- 

fender's loss.  Thus the attacker will try to maximize 

his expected payoff, while the defender will try to mini- 

mize it.  (For a general discussion of two—person, zero- 

sum games, see [1].) 

The game Is played as follows. The ocean area of 

Interest is divided Into zones, whose size is determlnod 

by the capabilities of the defense unit.  After both players 

have deployed their forces among the zones, the attacker 

launches a mass missile attack against targets on the de- 

fenders land mass.  Each defense unit Is capable of destroy- 

ing one submarine and Its missiles at the time of attack. 

We first assume the payoff to the attacker to be the 

number of submarines which successfully launch their 

missiles, and solve the game when neither player has any 

Information about the deployment of the other's forces. 

(Fcr a variant of this game, In which the zones are of 

unequal value to the attacker and the defender may divide 

his forces arbitrarily, see [1], pp. 124-127.)  We then 
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In^roduce a simple detection system whir  gives the 

defender information about which zones contain submarines, 

but no information about how many submarines each zone 

contains.  We solve this game when the detection probability 

is unity, and obtain a partial solution when the detection 

probability is less than unity. 

We next assume the payoff to the attacker to be t.h?, 

number of zones from which at least one submarine successfully 

launches its missiles.  We solve this game when the defender 

has no detection system and the parameters satisfy a par- 

ticular constraint.  We assume throughout that the attacker 

has no knowledge of the defender's deployrttent. 

2,  THE PAYOFF FUNCTION M(^b) WITHOIT: DETECTION 

We assume that the ocean area of interest is divided 

into N zones, the defender has D defensive units, and the 

attacker has S submarines.  The parameters N, D, and S are 

known to both players, but neither player knows the 

deployment of the other's forces.  We shall see that each 

side may play optimally without knowing the strength of 

the opponent.in this case. The payoff to the attacker is 

the total number of submarines which successfully launch 

their missiles. 

A strategy for the attacker is a vector a - (a^^^a^), 
N N 

with each a. a nonnegative integer, such that E  a. ■» S. 
1 i-1  1 

This strategy is interpreted as follows:  The attacker 

divides his submarinei into N groups, with a. submarines in 
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the 1—th group (note that a. may be zero), and distributes 

the N groups among the zones at random, so that each of the 

possible Ni assignments of groups to zones is equally likely. 

(Note that with this convention, two strategies are the same 

if one is a permutation of the other.)  A strategy for the 

defender is K vector b - b, ^'''^b.,), with each b, a noi>- 
i N  N J 

negative integer, such that E b. - D. The interpretation 
j-1 J 

is analogous to the previous one.  We need only consider 

ra\"vdom assignments of  groups to zones, since any bias by 

either player toward a particular zone would tend to favor 

the other player. Let A be the set of strategies for the 

attacker and B be the set of strategies for the defender. 

If the attacker uses a and the defender uses b, the 

expected payoff is given by 

T  N  K 
(1) M(a.b) -w S  2 n!ax(a.-b.,0). 

N 1-1 J-1     1 J 

For computational reasons, it will be rore convenient to 

work with the attacker's loss, i.e., the number of sub- 

marines destroyed by the defender, rather than his payoff. 

Let L(a^,b.) denote his expected loss from the i-th group 

of submarines and the j-th group of defense units, L(a,,b) 

his loss frum the 1—th group of submarines, L(a,b.) his 

loss from the j-th group of defense units, and L(a,b) his 

total loss when he uses a and the defender vses b. Then 

£££&&C VSV--'-'"•.>'" ."■V. .v ,"■,'->"►•'>% .■V".V>V'.^"N ,"."%■,> JV;". '.VVr> LV- V V V N" Vl V "VT,.-'«, 
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(2) 

mln(a.,b.) 

N 
L(a.,b) - 2 LC^^b.) , 1     J-l   1 J 

N 
L(a,b.) - 2 L(a.,b.) , 

J   1-1   1 J 

N   N 
L(a,b)  - T   S L(a.,b.) 

1-1 j-l   l J 

It Is clear that 

(3)     M(a,b) - S-L(a,b), 

Throughout the remainder of this and the next section, 

proofs are given In terms of the loss function L(a,b), 

Tine corresponding statements In terms of the payoff 

function M(a,b) follow Inraedlately from (3). 

For any strategy a, let m(a) - max a. denote the 
l^N 

largest component of a,  and let a be the strategy for the 

attacker such that m(a) - S, I.e.,, the strategy which 

places all submarines» In the same zone. Let b be the 

strategy for the defender such that b. - m(b ) or m(b ) _ l. 

I.e., the strategy vhlch distributes the defensive units 

^Iformly over the zones. 

Theorem 1.  The value of the game is v - max(S-D/N,0), 
•*     ♦ 

and a and b are optimal.  Furthermore 



(4) M(^,b ) - min MCa^b), 
beB 

for all aeA, and if v > 0, then for any a i* a , M(a,b ) < v. 

Proof.  For any aeA, beB,and 1 £ 1 £ N, we have 

N inin(a.,b.) ^ 
LCa^b) - 2    H * J ^ min(at, g). 

If a. ^ m(b*), then min (a^^b*) - b* for all J, wtille if 

Bit  < ^(b'), then min (a^^b.) - a^ for all J,  Thus 

L(ai,b*) - min (a1> §) ^ Lia^b), 

for all i.  Summing over i, we have L(a,b ) ^ L(a,b) for 

all a and b, and (4) follows from (3).  Either minCa^D/N) - a^ 

for all i, or rain (a.,,J)/H)  ■ D/N for at least one 1; hence 

(5) L(a,b*) - 2 min (a^ g) ^ min (S, g). 

If D/N < S, then equality holds if and only if 

a^ •■ S for some i and a. ■ 0 otherwise, i.e., a •• a . 

This completes the proof. 

Thus, according to Theorem 1, the optimal strategy 

for the attacker xs a , which places all submarines in a 

single zone, and the optimal strategy for the defender is 

b , which spreads the defensive units over the zones ns 

uniformly as possible.  If the defender uses b , this 

minimizes the expected payoff to the attacker regardless 
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of what strategy the attacker uses.  If v > 0, this 

minimum expected payoff Is strictly less than v unlesw 

the actacker uses a , In which case It Is v, so that a Is the 

unique opflmal strategy for the attacker. 
N 

For any strategy a, l^.t n(a) • 2 mln(a.,l) denote 
1-1 I the number of nonzero components of a.  Let A. ■ (seA n(a) - kj. 

k k k 
Let a e A- be the strategy such that aj •• S-k + 1; a^ - 1, 

2 <; 1 ^ k; a. - 0, k < 1 ^ N, (i.e., a* - a1).  For future 

use we need the following lemma. 

Lemma 1. For any k, 

L(ak,b*) - min (^ k-1 +§,5), 

« min LCa^b ). 
arAk 

The proof follows easily from (5). 

Thus, if for any reason the attacker must spread his 

submarine among k zones, i.e., use dome aeA. , then the 

strategy which minimizes his expected losses, and thus 

maximizes his expected payoff, is a —the strategy which 

places one submarine in each of k-1 zones and the re- 

maining S-k+1 submarines in a single zone.  It can also be 

seen from (5) that if D/N > 1, i.e., if the defender has 

more than one defense unic per zone, this is the  unique 

strategy in A^ for which this minimum is attained, while .If 

D/N <^ 1, then all strategies it? A. are equally good against 

b , so that M(a,b ) - M(a' ,D ) fo.- all acAv. 

M PLk UM   >   LA All   ^r   J.   JlrJ   J*   J".   JKTJk.1 ■■"_ to*   ^_. JV f _ J-   -*_ J . J _ J*__ »'_ ■"_ .V ►*■_ A. ^_ rf^.. ^ N - v*~ »» - ■" - «r- H •• «■ «xV K^ «VJCVJ"!» *, *_**_? ^ *L.w^*^*^lt., »JVWl «/! IÜ1 wJ*. <   ^ 



If D/N ^ S, the defender may destroy all the attacking 

submarines, and there Is nothing nore to be said.  If hov*- 

ever, D/N < S, which Is a mach more Interesting situation, 

then b , vhlle optimal for the defender, has the disadvantage 

that It minimizes the attacker's expected payoff by assigning 

a large probability to a minimum number of submarines 

destroyed and probability 2.ero to any larger number.  It 

might be—again, for reasons extraneous to the game—that 

the defender would prefer to trade this for some probability 

of destroying a larger number of submarines.  Theorem 2 

asserts that hü may do this and still achieve the value of 

the game. 

Theorem 2.  Any b for which m(b) «£ S is optimal. 

Furthermore, unless m(b) - D - S, M(ä,b) < v for all a 7t a . 

Proof.  For each j, either min (a.,b,) - a. for all 

i. In which case L(a,b.) - S/N ^ b./N or min (a.,b.) - b. 

for at least one J.  Hence 

N inin(a. ,b.)  b. 
L(a>bj)" ifi —T<- ^ T ' 

with equality if and only if a ■ a  or b. ■ S.  Summing 

over J, we get 

N D L(a,b) - Z Ua,^) ^ g , 

with equality when a / a  if and only if b. - S for some 

jfand b. « 0 othei^lse. I.e., m(b) - D - S. 



According to Theorem 2, anything the defender does is 

optimal, so long as he does not waste defense units by 

putting more in a single zone than the attacker has sub- 

marines there. This is because tht decreased probability 

oi destroying at least one submarine, which results from 

placing defensive units in fewer zones, is balanced by 

the increased probability of destroying a larger number 

when they are found.  Furthermore, the only case in which 

the attacker is not penalized if he uses any strategy 

other than a is the case when both sides have the same 

number of units (S - D), and the defender places all 

defensive units in the same zone (ro(b) - S).  (Note that 
» 

while a strategy b w.ch  -n(b ) ^ S will always guarantee 

no more than v successful launches, it is not necessarily 

best against an> -.trategy a zo  that in general, Eq. (4) 
i 

JL 

with b replaced by b  rill be fAlse.) 

A random strategy for the defender is a rule which 

picks a strategy out of the set of strategies according to 

some probability distribution, and any random strategy 

which selects only optimal strategies is also optimal. 

Hence we have !"h3 i_Mowing corollary. 

Corolla ^. Any random strategy for the defender 

which rr-.don.lces over a set B* c B such that m(b) «£ S 

for all bcB1 is optimal. 

3.  THE PAYOFF FUNCTION MCa.b) WITH DETECTION 

If N is large, the defender nust maintain a large 

number of defense units to defend against a small number 
i 
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of submarines, which might make the defensive system quite 

expensive.  It is possible that he would then desire to 

invest in a detection system which woui   rovlde him with 

some information about the looftion of the attacker's 

submarines.  We now analyze the game with the same payoff 

function and with a detection system In each zone which g 

gives an alarm with probability p, if at least one sub Is 

present, and gives a false alarm with probability P2 < Pi 

If no sub is present.  (Since p, is the   bablllty of 

detection or false alarm. If the true detection probability 

is p, then p, ■ Pn + P — PPo«)  "T*10 systen gives no itv- 

formation about the number of submarines present, and the 

probability of detection is not Increased by the presence 

of multiple submarines. 

We dc not solve the game, but find sets of strategies 

for both players which dominate all others. We do obtain 

a solution for the case p, ■ 1. 

The game is played as follows.  The attacker select! 

acA, and distributes his submarines among the zones, as 

before.  Then T alarms occur, where T Is a random 

variable with values 0 •£ t ^ N.  The defender then 

selects beB, depending on T, and distributes bj^, ...,bT 

randomly among the zones which gave alarms,, and b-,,,...,bN 

among the zones where no alarms occurred. 

A strategy for the defender is thus a function f 

frciQ ^0,1,...^} to 3, i.e., a rule which selects the sub- 

strategy b - f(c) that the defender will use in the above 

• "> ■>->■>' -'j'' V ".« ".- ' f' ''j-'.- 's ",,- 's V ",' 'J- V '.' '." V '-" V V '.• V V V.V V."-". ".•', s.s'','.~.'','Sk's,'s's.;-'-''ir'J'Js'*''"J,^'f'f~f. 
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manner when T - t.  Let F denote the set of s rategles for 

the defender.  B is now the set of substrategles for the 

defender. Let M(a,blt) be the expected payoff to the 

attacker if the actacker uses a, T - t, and the defender 

uses b, and let p(tln(a))- P(T ■ t| attajker uses a).  Our 

assumptions about the detection system imply that this pro- 

bability depends only on n(a); in fact, for 

0<P2<CPi<^Tis the sum of two binoruial random 

variables with parameters n(a),p, and N-nCa), p« 

respectively.  Hence 

P( '^ * &    ^' \^l Pi ^-PP   P2  (1-P2> 

The payoff MCa^) is then given by 

N 
(6)  M(a,f) - 2 M(a,f(t)|t) pCt^Ca)). 

t-0 

For some fixed t and any bcB, let b - (b,,c..,bt,0,.,.,0) 

and b - (J,...^O^b ,,,...,b), i.e., E is the portion of 

the substrategy b which is played against the zones with 

alarms, and b is the portion pla>2d against the game 
t 

without alarms.  Let Bd - [b|  2b,- d], i.e., the set 

of substrategles which play d units against the zones with 

alarms, and let b eB^ be the substrategy for which 

bj-mCE0) or mC^-l, 1 ^ j ^ t and b*? - m(bd) or m(bd) - 1, 

t + 1 <^ j ^ N, i.e., the strategy which plays uniformly 
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ovei each set of zones.  These definitions all depend on t, 

but the particular t will be clear from the context, so no 

confusion will result if t is not indicated. 

For any function 6 from {0,1,...,N) to [0,1,...,Dl, 

i.e., any rule which assigns to each integer t between 

0 and N an integer d between 0 and D, let Ffi - (feFj f (t^B^v) 

be the set of strategies for the defender which play 6(t) 

defense units against the zones with alarms when T - t, 

A 6      6 ft) 
and let f be the strategy such that f (t) - b v '.  Let 

A. ■ {a|n(a) - k} as before.  Theorem 3 states that the 

optimal strategy for the attacker is a mixture of strategies 

a and the optimal strategy for the defender Is a mixture 

of strategies f . 

Theorem 3.  For any a and ary 6, 

M(a,f6)  - mln M(a,f), 
feF6 

t 
and for any k and any f  , 

M(ak,f*)  - max    M(a,fö). 
afAk * 

Proof.  Let L(aj,,b.|t) be the attacker's expected 

losses from a, and b. if he uses a, T ■ t, and the 

defender uses b.  Let q(t,n(a)) be the conditional proba- 

bility that a specific zone containing at least one sub- 

marine gives an alarm, given that the attacker uses a an«- 

T - t.  Routine calculations with conditional probabilities 

yield 
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^Wll   t-l\   P (^Pl) p2    (1-P2) 

q(t,k)  - ^ — — 
P(t,k) 

For any t^d, beBj,  and aeA, 

mln(a. ,b,) 
LCa^bjlt)  - q(t,n(^))   E±-J-        If  1 ^ J <; t, 

inln(a. ,b,) 
-  [l-qCt^nCa))]     ^    J       If  t + 1 ^ j ^ N. 

Sunning 1 - I,...,N and J - l,.,,,t,  we obtain 

N t      mln(a.,b,) 
(7)    L(a,F|t)  - q(t,n(a))    2        2 ri—1~ . 

1-1.    J-l C 

If n(a) ^ t, then except fo. the factor qC^nCa)), 

this Is the expected loss to the attacker fron tne strategy 

which splits the submarines Into the same groups as a, when 

the defender uses the strategy (b,,...,bt) In the game 

without detection, with t zones, d defense units, and S 

submarines.  If n(a) > t, this Interpretation Is not 

possible, but the calculations are sLlll the same.  Hence 

by the argument used to prove (4), 

L(a, t) it) - max L(a,F| t) , 
b€Bd 

and by Lemma 1, 

L(ak,Fd|t) - mln L(a,Fd|t). 
ae 
\ 

^y^w^y-Kxy&:i^ 
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Similar formulae hold for L(a,b|t), and hence 

and 

M(a,bd|t) - rnin M(a,b|t), 
b€Bd 

H(ak,hd\t)  - max    M(a,bd|t). 
ae \ 

This, together with (6), completes the proof. 

Thus, according to Theorem 3, for a given rule ft 

which tells the defender how many defense units to play 

against the zones that give alarms, he can minimize the 

attacker's expected payoff by deploying 6(t) units 

uniformly over the zones with alarms and the romaining 

D - 6(t) uniformly over the zones without alarms.  If the 

attacker is going to spread his submarines among k zones, 

he can maximize his expected payoff by using strategy a . 

The optimal strategies will thus be random strategies 

which are a mixture of f strategies for the defender and 

of a strategies for the attacker.  The particular random 

strategies which should be used depend on p, and p-, and 

we can make no general statement about them.  If, however, 

the probability of detection is one, we obtain the 

following result. 

bwaQSM^^ft^^ 
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Theorem 4.  If p^ - 1, then 

(8)  v - max   2     .   p2 (1-P2)
n  M(a,blt), 

l^k^S t-k 
where 

(9)  M(akib
D|t) - max(S - ^, S-k+l - ^ 0). 

An optimal strategy for the attacker is a , where K is 

that k which maximizes the right-hand side of (8).  An 

*   D optimal strategy for the defender is f  - b , i.e., play 

uniformly on those zones with alarms. 

Proof.  Since p* ■ 1, q(t,k) - 1 for t ^ k, and 

M(a,b |t) is a nonincreasing function of d, hence 

M(a,b|t) ^ M(a,b |t) for all a, b, and t; and f* io 

jptimal for the defender. 

Thus 

(10)     v - max MCa, f*) « max  M(ak, f*) , 
aeA ^K8 

where the second equality follows from Theorem 3,   and the 

optimal strategy for the defender is a where K is the 

value of k which maximizes (10).  If p, ■ 1, p(t,k) - 0 for 

t < k and p(t,k) - [^plrV " P2)N"t for t. ± k; hence 

(10) is equivalent to (8).  Equation (9) follows from 

Lemma 1.  This completes the proof. 

If the false alarm rate is zero, we obtain the 

following stronger result. 

im&^^&^^ 
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Corollary.  If p« ■ 1 and p2 - 0,   then 

K - [ VÜ ] or [ TD ] + 1 and v - max(S-K + 1 - D/K, 0). 

([ ] denotes integer part.) 

Proof.  If p, - 1 and p2 - 0, then 

M(ak, f*) - M(ak, f*jk) - max(S-n, S-k + 1 - D/k, 0). 

This result follows from treating k as a continuous variable 

k  * and maximizing M(a , f ). 

In other words, if the probability of detection is 

one, the defender can minimize the attacker's payoff by 

deploying all his defense units uniformly over the zones 

with alarms, while the attacker must spread his sub- 

marines over K zones in order to increase the number of 

alarms and cause the defender to spread his forces more 

thinly.  The number of zones over which the at:acker must 

spread (K)  will increase as the false alarm probability 

decreases, and will achieve its maximum value when the 

false alarm probability is zero. 

Even with an alarm system of the type postulated, 

the attacker still maximizes his payoff by bunching. 

He is very likely to lose the single submarines, and his 

payoff comes from one large group.  He is forced to deploy 

the single submarines only to increase the defender's 

uncertainty concerning the location of the large group. 

k^i::Ä:;:..i^ 
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I 

4.  THE PAYOFF FUNCTION M (a,b) WITHOUT DETECTION 

We now consider ehe game without detection when the 

payoff to the attacker is the number of zones from which 

at least one submarine successfully launches its missiles. 

The game is played in the manner described at the be- 

ginning of Sec. 2,  but the expected payoff to the attacker 

is now given by 

M'Ca^bj) j 1/N if a^^ > hy 

0  otherwise^ 

N   N   r 
M (a^b)   - Z   2 M (a.,b.). 

1-1 j-1    1 J 

We will analyze a generalized game which has the 

property that any pair of strategies in the submarine 
i 

game with the payoff function M (a,b) corresponds to a 

pair of strategies in generalized game.  We will solve 

the generalized game, and whenever there exist strategies 

in the submarine game which correspond to the optimal 

strategies in the generalized game, we will have a 

solution to the submarine game with payoff function 

M (a,b). 

We define the generalized game as follows. A 

strategy for the attacker is a vector x ■ (*«,...,xq) with 
S      „ 

x, ^ 0,   E  x. - I, and S ix ■ jj»  A strategy for 
1      i-O  1 1-1  l  N 

D 
the defender is a vector y - (yn,.,.,yn) with y. > 0,  2 y. - I D u     u       j «-   J^Q 'j   > 
and Z j y ■ U/N.  The payoff to the attacker is given by 

^'*V ' ^>^/.//'.y.-%y.>V^^C^- ^^^ s   *■   r   s   s   s   j-  .-■*■ *•  *■   *r   s   f   J-   , 
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S  1-1        D   S 
(11) M"(x,y) - Z   S x.y, - 2   2   x.y.. 

t-1 J-0  1 J   J-0  i-j+1  1 J 

We may interpret the game in the following way.  The 

attacker must choose a random variable X with values 

0,1,...,S, and expected value S/N, such that ?(X - i) « x.. 

The defender must choose a random variable Y with values 

0,1,...,D, and expected value D/N, such that P(Y - j) ■ yi 

The payoff is M"(x,y) - P(X > Y). 

2D 
Let L - min(S, f-w- + 1]). (As before, [ ] denotes 

integer part.) We consider only the case "hen 

(12) D/N < S ^ lÜL±li . 

The constraint (12) gives the range of S for which our 

solution is valid.  As was previously remarked, if 

S ^ D/N, the game is trivial and the value of the game is 

zero.  If S > N(L+l)/2, then x* is not a probability dis- 

tribution, so our solution is net valid.  We have not 

studied the game in this case, since this corresponds to 

the case when the defender wishes to defend against a 

large number of submarines with a small number of defense 

units, and this does not appear to be of interest. 

Let x be the strategy for the attacker given by 

*  ,    2S 
xo " 1 " FTTL+TT' 

x. ■ 

» 

Fjrtr-nT' 11 i i L' 

x. - 0, L < i ^ S 

:^ää*^;^2^^^^^ 
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and let y* be the strategy for the defender given hy 

y]' (1-K) (m)' OO<L, 

♦ ^  !   2(NI^D) 

* yj - o. L < J 1 D. 

The constraint (12) and the definition of L Insure that 

x and y are Indeed strategies. 

Theorem 5.  If N^D, and S satisfy (12)J then the value 

of the generalized game is 

«" - /i   D ■*   2S v " (1 " ^  M(U-l) ' 

and x and y are optimal. 

Proof.  If J ^ L then L-j ^ 0, hence for any y 

*  .    P   S    # 
M"(x', y) -  2   S   xi y. 

j-0 1-j+l 1 J 

2S   Z1^1 v .L-j, 

2S    n   Dx 

-  v". 

&W^^^^^^rtfü^^^^ ; ■:: V/^^y^ 
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If L < 1 ^ S, then ^ (1 - j^) ^ 1.  Hence for any x, 

S  1-1 
MM(x,y ) - 2   2  x.y. 

1-1 J-0  i J 

L S 
- 2  x ^-(1 -8^+2   x 

i-l l L+1    ^   1-L+l i 

^  c1 - fe) J, m xl 

- n  D ^  2S 

- v". 

Thus for any x and y, 

M"(x,y*) < v"^M"(x*,y) , 

which proves the theorem. 

In the submarine game, a rttndom strategy a for the 

attacker is a convex combination of elements of A, i.e.. 

m 
2 
v 
2 \vav, for some m, where Xv ^ 0, a^A for 1 ^ v ^ m. 

ra 

and 2 \    ■ 1.  The Interpretation of a is that the 
v-1 v 

attacker uses a with probability \   .     Con.esponding to a 

is a probability distribution \(a) which ?3 a strategy in 

the generalized game, such that for 0 £ 1 ^ S, x.(a) is the 

probability that a given zone contains t submarines. 

Similarly, a random strategy (3 for ihe defender is a 

trjy.syM^y&teW^^^ 
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convex combination of elements of B.  Corresponding to 0 

Is a .«.Lrategy y(S) in the generalized game, such that for 

0 ^ J < D, y.(3) Is the probability that a given zone 

contains J defense units.  M*(a,0) is the expected number 

of «ones from which at least one submarine successfully 

fires if the attacker uses a and the defender uses p, hence 
i 

M (a>0) - N M'^x^a^yCfi)) . Thus we have the following 

corollary to Theorem 5. 

Corollary.  If the attacker has a random s trategy 

O such that x(a ) ■ x , and the defender has a random 

strategy ß such that y(0 ) ■ y , then a and ß are 

optimal and the value of the submarine game with payoff 
i 

function M (a^b) jLs 

If L - S, the desired strategy ß for the defender 

may not exist.  For example, if N ■ 3, S - 2, D - 5, then 

L - 2 and y* ^ (1/9, 1/9, 7/9, 0, 0, 0,).  However, the 

only strategy b for the defender which never puts more 

than two units in a single zone is the one which places *:wo 

units in each of two zones and one unit in the third zone, 

with the resulting probability distribution y(b) - (0,1/3,2/3, 

0,0,0).  We conjecture th^t the attacker always has a 

strategy a , and that the defender has a strategy 3  when— 

2D 
ev«r L - [ -jj- + 1].  The calculation of these strategies 
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depends on aflthnetlo properties of D, S, and N, and we 

havs  been unable to prove the conjecture.  However, In 

the range o£ parameters which would seem to be of greatest 

Interest for the problem at hand, i.e., D/2 £ S <^ N, the 

strategies a and 6 seem fairly eaa> to compute. 

Thus, whan the payoff to the attacker is the number 

of zones from which at least one submarine successfully 

2D 
fires, there exists a number L - rain(S, [•«- + 1J), such 

that when (12) is satisfied, optimal behavior may be 

described as follows.  The attacker should play so thar 

with probability 2S/NL(l/f 1) , any given zone will contain 

1,2,..., or L submarines, and with the remaining probability, 

the zone will contain no submarines.  The defender should 

D    2 
play so that with probability (1 - «r-) (rrr) any given zone 

will contain 0,1,..., or L—1 submarines, and with the 

remaining probability the zone will contain L submarines. 

If L * S, it may not be possible for the u ./•nuJcr to do 

this.  We conjeeture^ however, that the attacker can always 

play according tc this strategy, and that the defender can 

2D 
whenever I,  •- [-tr-  + 1], 

5.  DISCUSSION OF THE RESULTS 

With no detection system, the value of the game with 

the payoff M(a,b) to the attacker is high unless D is much 

greater than S; and an effective defensive system would be 

relatively costly, since N defense units are required for 

iM V •.- •->. 
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complete defense against a single submarine.  Furthermore, 

when S ^ D/N, the attacker may Increase the size of his 

submarine force with no increase in his expected losses. 

In this sense, t.ie game is highly favorable to the attacker. 

On the other hand, the optimal strategy a for the attacker 

is unique, while Theorem ">  states that anything the de- 

fender does which does not purposely waste defensive units 

by putting inore than S in a single zone will be optimal. 

Thus if. Instead of successful, launches, we choose any 

other payoff function which does not require the defender 

to waste units, he can optimize with respect to this payoff 

function and still maximize the attacker's losses, while 

optimal play with respect to the new payoff function by 

the attacker will, in general, increase his expected losses, 

For example, if we use the payoff function Ml(a,b), then 

S     * in the case when S < N, 2D < N, we have L - 1 and a and b 

are optimal, while M(aS,b*) - S(l - D/N) ^ M(a,b) for all 

a,b, so that fron the standpoint of the payoff function 
c 

M(a,b), a is the worst possible strategy for the attacker. 

With even a simple detection system, it does not seem 

possible to obta.'.n a general solution to the game.  The 

analysis does show howeyer, tbat while a detection system 

of tne type postulated forces the attacker to deploy some 

single submarines as decoys to increase the defender's 

uncertainty concerning the location of his main group, 

he still must bunch the remainder in order to maximize 

ummmssmji ^^wx^^ 
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his payoff.  Even with a detection probability of one and 

no false alarms^  lere is still / ooint (S m 2 t/f))  such 

that for fixed N and D, any further increase in submarine 

fleet size will not increase his expected losses. 

The assumption that the detection probability is 

independent of the number of submarines present )s clearly 

unrealistic whenever p, < 1. 

Tills analysis Ignores completely the fact that the 

submarine defense problem takes place over a period of 

time, and considers the problem as a static game.  This 

seems a reasonable simplification—at least, in the game 

without detection—if the purpose of the system is to deter 

or defend against a single mass attack, because then the 

only time of interest is the time of attack.  In the game 

with detection, the amount of information provided would 

presumably ^e a function of time.  The model would then 

be affected accordingly. 

»".'".'". »r, '\ """i *■. J'.-r--\'r^>r.  ""i. ,,r» ■'V '"« fm k  ^^v.-:<^..^^ 
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