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PREFACE

This Memorandum is a product of a continuing study for

the Advanced Research Projects Agency on defense against

submarine—launched ballistic missiles.
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SUMMARY

We analyze as a game the deployment of a defense
system against submarine-launched balllistic missiles
composed of mobile defense units capable of destroying a

nearby submarine aud its missiles at the time of launch.

We assume that the ocean is divided into zones among

which both the attacker and defender deploy their forces.

The attacker then launches a mass attack against targets on

the defender's land mass. Each defense unit can success—

fully destroy one submarine and its missiles in the same zomne.
We first assume the payoff to the attacker to be the

number of submarines which successfully launch their

i 2. X T K X B K S 1pTy3 R ¥ 3%

missiles. We sclve the game with this payoff function
when neither player has any information about the other's
location, and obtain a partial soluf:ion when the defender
has some information about the location of the attacker's
submarines. We then assume the payoff to the attacker to
be the number of zones from which at least one submarine
successfully launches its missiles. We solve thig game
tor certain values of the parameters involved when neither

side has any information about the location of the other's ]

forces.
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A PRELIMINARY TREATMENT OF

MOBILE SLBM DEFENSE AS A GAME THEORETIC ANALYSIS
1. INTRODUCTION

We postulate a defense system against submarine-
launched ballistic-missile (SLBM) attack. The system is
composed of mobile defense units capable of destroying a
nearby submarine and its missiles at the time of launch.
We then analyze its deployment as a two—person, zero—sun.
game, i.e., one in vaich the attacker's gain is the de--
fender's loss. Thus the attacker will try to maximize
his expected payoff, while the defender will try to mini-
mize it. (For a general discussion of two—person, zero—
sum games, sze [1).)

The game is played as follows. The ocear area of
interest is divided into zones, whose size is determinad
by the capabilities of the defense unit. After both players
have deployed their forces among the zones, the attacker
launches a mass migsile attack against targets on the de—
tenders land mass. Each defense unit is capable of destroy
ing one submarine and its missiles at the time of attack.

We first assume the payoff to the attacker to be the
number of submarines which successfully launch their
missiles, and solve the game when neither player has any
information about the deployment of the other's forces.

(Fcr a variant of this game, in which the zones are of
unequal value to the attacker and the defender may divide
his forces arbitrarily, see [1], pp. 124~127.) We then
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iniroduce a simple detection system whic gives the

defender information about which zones contain submarines,
but no information about how many submarines each zone
contains, We solve this game when the detection probalLility
is unity, and obtain a partial solution when the detection
probability is less than unity.

We next assume the payoff to the attacker to be the

WIS Y X XN N T N BN NN N R VRN

number of zones from which at least one submarine successfully

launches its missiles. We solve this game when the defender

has no detecticn system and the parameters satisfy a par—

ticular constraint. We assume throughout that the attacker

has no knowledge of the defender's denloyment.

2. THE PAYOFF FUNGTION M(x,b) WITHOUT DETECTION

We assume that the ocean area of interest is divided
into N zones, the defender has D defensive units, and the
attacker has § submarines. The parameters N, D, and S are
known to both players, but neither player knows the
deployment of the other's forces. We shall see that each
side may play optimally without knowing the strength of
the opponent.in this case. The payoff to the attacker is
the total number of submarines which successfully launch
their missiles,

A strategy for the attacker is a vector a = (al,...,aN),
with each a, a nonnegative integer, such that g

i=1
This strategy is interpreted as folluows: The attacker

a = S.

é
5
L~
E

divides his submarine; into N groups, with ay submarines in
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the i—-th group (note that a; may be zero), and distributes
the N groups among the zones at random, so that each of the
possible N! assignments of groups to zones is equally likely.
(Note that with this c.nvention, two strategles are the same
if one is a permutation of the other.) A strategy for the
defender is & vector b = bl"é"bN)’ with each bj a non—

= D, The interpretation

negative integer, such that L b
is analogous to the previousj;;e. We need only consider
random assignments of groups to zones, since any bias by
either player toward a particular zone would tend to favor
the other player. Let A be the set of strategies for the
attacker and B be the set of strategies for the defender.

If the attacker uses a and the defender uses b, the

expected payoff is given by

1 N N
(1) M{a,b) = N 121 jzl max(ai—bj,O).

For computational reasons, it will be nore convenient to
work with the attacker's loss, i.e., the number of sub—
marines destroyed by the defender, cather than his payoff.
Let L(ai’bj) denote his expected loss from the i-th group
of submarines and the j—th group of defense units, L(ai,b)
his loss frum the i-th group of submarines, L(a,bj) his
loss from the j~th group of defense units, and L(a,b} his

total loss when he uses a and the defender ises b. Then
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:
min(a,,b,) -_f
L(ai’bj) - — ’ !
“
N 3
-
L(aiib) - jEI L(ailbj) ’ -
s
3
y
(2) L(aobj) = 1:1 L(aiobj) ’
N N
L(a,b) = 2 > L(aiobj)
i=ml =1
It is clear that
(3) M(a,b) = S-L(a,b).

Throughout the remainder of this and the next section,
proofs are givex in terms of the loss function L(a,b).
The corresponding statements in terms of the payoff
function M(a,b) follow immediately from (3).

For any stcrategy a, let m(a) = max a; denote the
1<IKN
largest component of a, and let a" be the strategy for the

attacker such that m(a) = S, i.e., the strategy which
places all submarines in the same zone. Let b* be the
strategy for the defender such that b; = m(b™) or m(b*) -1,
i.e., the strategy which distributes the defensive units
wniformly over the zones.

Theorem 1. The value of the game is v = max(S-D/N,0),

x L
and a and b are optimal. Furthermore
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(4) M(i,b ) = min M(a,b), -

beB ~

for all acA, and if v > 0, then for any a ¢ a’, M(a,b’) < V.

Proof. For any aed, becB,and 1 { 1 { N, we have

min(a,, -
L(ay,b) = j X -:;r-i-l- < min(ag, ). :

If a; 2 m(b‘), tken min (ai,b;) - b; for all j, while if
ay < m(bh), then min (ai,b;) - a for all j. Thus

L(ai:b’) = min (ai’ g) 2 L(ai:b):

for all 1. Summing over i, we have L(a,b’) > L(a,b) for
all a and b, and (4) follows frum (3). Either min(ai,D/N) - a,

] for all i, or min (ai,D/N) = D/N for at least one i; hence

(5) L(a,b") = igl min (a;, §) 2 min (S, Q.
1f D/N < S, then equality holds if and only if ;
a; = S for some i and a; = 0 otherwise, i.e., a = a*. 3
This completes the proof. !
Thus, according to Theorem 1, the ontimal strategy 1

for the attacker is a*, which places all submarines in a
single zone, and the optimal strategy for the defender is

L
!

b , which spreads the defensive units over the zones s

uniformly as possible., 1f the defender uses b, this

minimizes the expected payoif to the attacker regardless

X LY Y ST TN TR T WY L
e e o N T o N e L S o
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of what strategy the attacker uses. If v > 0, this
minimum expected payoff is strictly less than v unless
the actacker uses a', in which case it is v, so that a' is the
unique optimal strategy for the attacker.
For any strategy a, lot n(a) = g min(ai,l) denote
the number of nonzero components of i?l Let A, = {acA{n(a) = k].

Let ake Ak be the strategy such that a? = S-k + 1; a? -1,

24 1<k a =0, k<1gN, (lue., a” = a'). For future :
use we need the following lemma. ?

Lemma 1. For any k,

L(a%,b") = min }F, k-1 + },5),

= min L(a,b*).

aeAk

The prcof follows easily from (5).

Thus, 1if for any r.ason the attacker must spread his
submarine among k zones, i.e., use zome aeh, , then the
strategy which minimizes his expected losses, and thus
maximizes his expected payoff,'is ak——the strategy which
places one gsubmarine in each nf k-1 zmes and the re-
maining S—k+l submarines in a single zone. It can also be
seen from (5) that 1if D/N > 1, i.e., if the defender has
more than one defense unic per zone, this i3 the ualque
strategy in A, for which this minimum is attained, while (f
D/N ¢ 1, then all strategles in A, are equally good against

»* * Lo,
b, so that M(a,b ) = M(a",b ) foo all acA,.
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If D/% > S, the defender may destroy all tne attacking
submarines, and there is nothing mocre to te said. 1f how-
ever, D/N ¢ S, which is a rmuch more interesting situation,
then b', while optimal for the deiender, has the disadvantage
that it minimizes the attacker's expected payoff by assigning
a large probabiiity to a minimum number of submarines
destroyed and probability z2ero to any larger number. It
might be—again, for reasons extrareous to the game—that
the defender would prefer to trade this for some probability
of destroying a larger number cf submarines. Theorem 2
asserts that he may do this and still achieve the value of
the game.

Theorem 2. Any b for which mu(b) { S is optimal.

Furthermore, unless m(b) = D = S, M(a,b) ¢ v for all a % a .

Proof. For each j, either min (ai’bj) - a; for all

i, in which case L(a,bj) = S/N > bj/N or min (a;,b,) = b

] b

for at least one j. Hence

N min(ai,b ) b
Laa,by) = % >3

with equality if and only if a = a’ or bJ = S, Summing

over j, ve get

(a,b) z (a,b D
L(a, o L(a, ’
LA L

with equality when a # a° if and only if bJ = S for some
3, and bj = 0 otheirwise, i.e., m(b) = D = §,

. -‘ ." .
----------------------
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According to Theorem 2, anything the defender does is
optimal, so long as he does not waste defense units by
putting more in a single zone than the attacker has sub-
marines there. This is because the decreased probabili’y
ot destroying at least one submarine, which results from
placing defensive units In fewer zones, is balanced by
the increased probability of destroying a larger number

when they are found. Furthermore, the only case in which

the attacker is not penalized if he uses any strategy
other than a* is the case when both sides have the same
aumber of units (S = D), and the defender places all
defensive units in the same zone (m{b) = S). (Note that
while a strategy b wich n(b.) < S will always guarantee
no more than v successful launches, it is not necessarily
best agajrnst anmy strategy a. -v that in general, Eq. (%)
with b replaced by b' A1l bo false.)

A random stiategy for the defender is a rule which
picks a strategy out of the set of strategies according to
some probability distribution, and any random strategy
which selects nonly optimal strategies is also optimal.
Hence we “ave *hz i_'lowing corcllary,

Corolla y. Any random strategy for the defender

which rrudomizes over a set B' € B such that m(b) < S

g
E
g
E
]
L.
?
g;

for all beB' 1s optimal.

L=

3. THE PAYOFF FUNCTICN M(a,b) WITH DETECTION

1f N is large, the defender imust maintain a large

number of defense units to defend against a small number

e D g i i ™

WA

F.
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of submarines, which might make the defensive system quite
expensive., It is possible that he would then desire to

inves: in a detection system which wou) rovide him with

4
8
r
s
\
E

some information about the lecetion of the attacker's
submarines. We now analyze the game with the same payoff
function and with a detection system in each zone which g
gives an alarm with probability 12} if at least one sub is
present, and gives a false alarm with probability Py < Py
if no sub is present. (Since py is the bability of
detection or false alarm, if the truv detection probability
is p, then p; = p, + p — pp2‘) The systen gives no in—
formation about the number of submarines present, and the
probabliity of detection is not increased by the presence

of multiple submarines.

We dc not solve the game, but find sets of strategies
for both players which dominate all others. We do obtain
a solution for the case P, = 1.

The game is played as follows. The attacker selects
acA, and distributec his submarines among the zones, as
before. Then T alarms occur, where T is a random
variable with values 0 { t < N, The defender then

selects beB, depending on T, and distributes bl""’br

randomly among the zones which gave alarms, aad bT+1""’

By

among the zones where no alarms occurred.
A strategy for the defender is thus a function f
from {0,1,...,N} to 8, i.e., a rule which selects the sub—

strategy b = f(() that the defender will use in the above

et ORI R R R P R I S S S A S S S S S NI S e i . ¥ e B o
a” » . ™ -.-4. LR L T N n e W] L e Y P
e T N e e T e e A e
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manner when T = t. Let F denote the set of s —ategies for
the defender. B is now the set of substrategies for the
defender. Let M(a,b|t) be the expected payoff to the
attacker if the attacker uses a, T = t, and the defender
uses b, and let p(t,n(a))= P(T = t| attacker uses a). Our
assumptions about the detection system imply that this pro—
bability depends only on n(a); in fact, for

0 < Py < Py <1, T is the sum of two binomial random
variables with parameters n(a),p1 and N-n(a), Py
respectively. Hence

t (k} N-i

L k=l _t={ N-k-—t4l
p(t,k) = LEO L C—L) P (1-91) Pz (1-P2) .

The payoff M(a,f) is then given by

N
(6) M(a,f) = I M(a,f(t)|t) p(t,n(a)).
t=0

For some fixed t and any beB, let b = (bl,f..,bt,O,...,O)
] and b = (J,...,0,b,,,...,b), i.e., b is the portion of
the substrategy b which is played against the zones with
alaims, and b is the portion play2d ugainst the game

t
without alarms. Let By = {bj & b, = d}, i.e., the set

g1 3
of substrategies which play d units against the zones with

alarms, and let bdeBd be the substrategy for which

b?-m(Ed) or m(Bd)—l, 1< jJ< tand b;l

t+1¢ J<N, i.e., the strategy which plays uniformly

T T LR

- n(b% or m(x% - 1,

SOALS AT R L N T e SN B e LR RGN A R L L L R AT N LAV LA LA,
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ovel each set of zones. These definitions all devend on t,

but the particular t will be clear from the context, 8o no

LA

confusion will result if t is not indicated.

For any function 8 from {0,1,...,N} to (0,1,...,D},
i.e., any rule which assigns to each integer t between
0 and N an intege: d between 0 and D, let Fg = (feFIf(t)eBa(t)]
be the set of strategies for the defender which play 8(t)
defense units against the zones with alarms when T = t,
and let f6 be the strategy such that fa(t) - bé(t). Let
A = {a|n(a) = k] as before. Theorem 3 states that the
optimal strategy for the attacker is a mixture of strategies

ak and the cptimal strategy for the defender is a mixture

FEEd =g Mals ey  maale g mit o

8
of strategies £ .

Theorem 3. For any a and ary 9,

M(a,fe) = min M(a,f),
fGFé

¢
and for any k and any f ,

M(a*, £%) = max M(a,£).

acA.k
Proof. Let L(ai,bjlt) be the attacker's expected
losses from ay and bj if he uses a, T = t, and the
defender uses b, Let q(t,n(a)) be the conditional proba-
bility that a specific zone containing at least one sub-
marine gives ar alarm, given that the attacker uses a anu
T = t. Routine alculations with conditional probabilities

yield

N A N Ly A TN kL T P L T AT S,
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k=4 _t—t —t+l
l H) p’l'(l-p1> P (1-p,) VT
(t,k) =
! p(t,k)
For any t,d, beBd, and acA,
in(ai,
L(ai,b |[t) = q(t,n(’)) -———————J— iflgjgqt

min(a,,b,)
- [1q(t,n(a)] —pp—- LE e+ 1IN

Summing { « 1,...,Nand j = 1,...,t, we obtain

N t min(ai,b.)
() L(a,b|t) = q(t,n(a)) Z I —am—d-,

i=] =l

I1f n(a) < t, then except fo. the factor q(t,n(a)),

this is the expected loss to the attacker fron tnhe strategy
which splits the submarines into the same groups as a, when
the defender uses the strategy (bl""’bt) in the game
without detection, with t zones, d defense units, and S
submarines. If n(a) > t, this interpretation is not
possible, but the calculations are s(ill the same. Hence

by the argument used to prove (4),

-
L(a, 59t) = max L(a,B|t) ,
b

€Bd

and by Lemma 1,

L(ak,Bdlt) = min L(a,Bdlt).
aeAk

N o B B o e A e T e T S A L B b7
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Similar formulae hold for L(a,b|t), and hence

M(a,bdlt) = min M(a,b|t),
beBd

and

M(ak,bdlt) = max M(a,bdlt).
aeAk
This, together with (6), completes the proof.

Thus, according to Theorem 3, for a given rule &
which tells the defender how many defense units to play
against the zones that give alarms, he can minimize the
attacker's expected payoff by deployirg 8(t) units
uniformly over the zones with alarms and the remaining
D - &¢(t) uniformly over the zores without alarms. If the
attacker is going to spread his submarines among k zones,
he can maximize his expected payoff by using strategy ak.
The cptimal strategies will thus be random strategies
which are a mixture of f6 strategies for the defender and
of ak strategies for the attacker. The particular random
strategies which should be used depend on P and Pr> and
we can make no general statement abaut them. If, however,
the probability of detection is one, we obtain the

following result.
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Theorem 4. If P - 1, then

N N'-k t—k -
(8) v = max pX t—k Pz (l_pz)N t “(akibnlt)i
1KkgS t=k

where

(9 M@0 1) = max(s - 2, sl - 2, 0).

An optimal strategy for the attacker is aK, vhere K is

that k which maximizes the right-hand side of (8). An

optimal strategy for the defender is f¥ E bD, i.e., play

uniformly on those zones with alarms.

Proof. Since p; = 1, q(t,k) = 1 for t > k, and
M(a,bdlt) is a nonincreasing function of d, hence
M(a,b|t) > M(a,bvlt) for all a, b, and t; and £* 1o
Jotimal for the defender.

Thus

k *

(10) v = max M(a, f*) = max M(a, £) ,

acA I<k4s
where the second equality follows from Theorem 3, and the
optimal strategy for the defender is ak where K 1is thke
value of k which maximizes (10). 1If Py = 1, p(t,k) = 0 for
t < k and p(t,k) = (z:t p;—k(l - pz)N—t for t > k; hence
(10) 1is equ’valent to (8). Equation (9) follows from

Lemma 1. This completes the proof.

1If the false alarm rate is zero, we obtain the

following stronger result,

..........
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i Corollary. 1If Py = 1 and p, = 0, then
% K= f{VD]Jor[/D) +1 and v = max(S—K + 1 - D/K, 0).

([ ] denotes integer part.)

J Proof. If P = 1 and Py = 0, then
M(aK, £%) = M(a®, £"|%) = max(S-D, Sk + 1 - D/k, 0).

This resuit follows fran treatirg k as a continuous variable
and maximizing M(ak, f‘).

In other words, if the probability of detection is
one, the defender can minimize the attacker's payoff by
deploying all his defense unlits uniformly over the zones
with alarms, while the attacker must spread his sub—
marines over K zones in order to increase the number of
alarms and cause the defender to spread his forces more

thinly. The number of zones over which the attacker must

spread (K) will increase as the false alarm probability
decreases, and will achieve its maximum value when the
false alarm probability is zero.

Even with an alarm system of the type postulated,
the attacker still maximizes his payoff by bunching.
He is very likely to lose the single submarires, and his

payoff comes from one large group. He is forced to deploy

the single submarines only tc increase the defender's

uncertainty concerning the locatior of the large group.
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4. THE PAYOFF FUNCTION M (a,b) WITHOUT DETECTION

We now consider the game without detection when the
payoff to the attacker is the number of zones from which
at least one submarine successfully launches its missiles.
The game is played in the manner described at the be-
ginn.ng of Sec. 2, but the expected payoff to the attacker

is now given by

M'(ai,bj) 1/N if a; > bj’

0 otherwise,

1 N N 1
M (a,b) = 2 Z M (ai’bj)'
i=]l jel

We will analyze a generalized game which has the
property that any pair of strategies in the submarine
‘game with the payoff function M'(a,b) corresponds to a
pair of strategies in generalized game. We will solve
the generalized game, and whenever there exist strategies
in the submarine game which correspond to the optimal
strategies in the generalized game, we will have a
solution to the submarine game with payoff function
M'(a,b).

We define the generalized game as follows. A

strategy for the attacker is a vector x = (xo,...,xs) with

S S
X 0, I x, =1, and I ix, = 3. A strategy for
125 M jer 1 N

D

the defender is a vector y = (yo,...,yD) with yj 20, EO yj -1
1
o

D
and jzl 3 ¥y = v/N. The payoff to the attacker is given by
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(11) X"(x,y) = 18' 151 X{¥y = g § XYy
jal §m0 13 gm0 fmj41 17

We may interpret the game in the following way. The
attacker must choose a random variable X with values
0,1,...,5, and expected value S/N, such that ?(X = 1) = X
The defender must choose a random variable Y with values
0,1,...,D, and expected value D/N, such that P(Y = }) = Yy
The payoff is M"(x,y) = P(X > Y).

Let L = min(S, [%P + 11). (As before, [ ] denotes

integer part.) We consider only the case vhen

(12) p/N ¢ 5 ¢ NEHD)

The constraint (12) gives the range of S for which our
solution is valid. As was previously remarked, {f

S < D/N, the game is trivial and the value of the game is
zero. 1If S > N(L+1)/2, then x' is not a probability dis—
trivbution, so our solution is nct vaiid. We have not
studied the game in this case, since this corresponds to
the case when the defender wishes to defend against a
large number of submarines with a small number of defense
units, and this does not appear to be of interest.

Let x be the strategy for the attacker given by

X*"l— 28 ’

o N({L+D)

& 2S

1 = FL(¥D L<igL
»
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and let y' be the strategy for the defender given hy

v} = (1= §p (D) 0¢ <L,
y;-l ZNL-D,
yy = 0, L<3<D.

The constraint (12) and the definition of L insure that

x"and y* are indeed strategies.

Theorem 5. If N,D, and S satisfy (12), then the value

of the generalized game is

V" ] (1 — &) NT%FSU-,

and x" and y* are optimal.

Prcof, 1f j > L then L-j < 0, heace for any y

D S

H"(x*; y) = 2 b2 x;_ Yj
J=0  imj+l
N LI e
M |5 Y (‘1:‘1))

25 b 1
2 R(LFY (ﬁo Y3 (Tl))
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If LL 1< S, then #31 (1 - fﬂ) > 1. Hence for any x, A
A
5
-1 X
M'(x,y") = g iz "13" E
j=1 §=0 :
L s :
- 21 D 3
v o4 X (1 - ) + & X ~
w1 LA R T :
S BN
D 21
$ Q-F 2 Xy <
i
2 D 2S A
= (- f) WOy :
— vll.
Thus for any x and vy,
M"(x,y*) (_:_ v" < M“(X*,y) , _‘
which proves the theorem.
In the submarine game, a random strategy a for the
? attacker is a convex canbinaticn of elements of A, i.e.,
; m
r a = 21 A3y for some m, where Kv >0, a eA for 1< v¢m, :
N Ve "
Y m !
E and 21 A, = 1. The interpretation of a is that the :
- V- L
attacker uses a,, with proovability Xv. Coriesponding to o E

is a probability distribution x(a) which #3 a strategy in
the generalized game, such that for 0 {1458, Xi(q) is the
probability that a given zone contains i submarines.

Similarly, a random strategy g for the defender is a

L
------- A R A T T AT S A R
GRS S R e Rt R h ) cvte B T ot e AT T SN et A At R P U TR Ry i e O PR R A I b 0 N S ST b Y
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5
k convex combination of elementu of B. Corresponding to 8 :
l is a =_rategy y(8) in the generalized game, such that for <
E 0<JgD, yj(a) is the probability that a given zone E
. contains J defense units. M'(a,8) is the expected number §
i of zones from which at least one submarine successfully 3
E ires if the attacker uses g and tue defender uses p, hence E
A M'(a,a) = N M"(x,(a),y(®)). Thus we have the following ;
! corollary to Theorem 5.
I Corollary. If the attacker has a random strategy ?
a” such that x(a') = x', and the defender has a random 5
strategy B' such that y(B*) - y*, then a* and e' are .

i e be

optimal and the value of the subiwarine game with payoff

1
function M (a,b) is

v = -3 &Ep.

1f L = S, the desired strategy 8" for the defeader
may not exist. For example, if Nw 3, S = 2, D = 5, then y
L=2andy =(1/9, 1/9, 7/9, 0, 0, 0,). HYowever, the i

X B

only strategy b for the defender which never puts more
than two units in a single zone ‘s the one which places *wo

units in each of two zones &and cone unit in the third zone,

SR A A A

with the resulting probabili’ty distribuzion y(b) ~ (0,1/3,2/3,
0,0,0). We conjecture that the attacker always has a

strategy u‘, and that the defender has a strategy B* when--

ever L = [ %? + 1]. The calculation of these strategies

S W M ML W WM N VTGN S Vg L N L e RIS, P I .\_ 'q LS
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depends on arithmetic propcrties cf D, S, and N, and we

A T R A
TR

have been unable to prove the conjecture. However, in

Fall gt g5 P 3

N
=

the range of parameters which would seem to be of greatest

e

-
S

interest for the problem at hand, i.e., D/2 { S { N, the

* »*
strategies a and 8 seem fairly easy to compute.

< -
ata?

Thus, wh2n the payoff to the attacker is the number

<

of zones from which at least one submarine successfully

ZEA

fires, there exists a number L = min(S,[%P + 1}), such
that when (12) is satisfied, optimal behavior may be

described as follows. The attacker should play so thatr

;

with probability 2S/NL(L+l), any given zone will contain
1,2,..., or L submarines, and with the remaining probability,

L=

-
o

the zone will contain no submarines. The defender shouid

play so that with probability (1 - ﬁt) (E%I) any given zone

A

| P PRI

will contain 0,1,..., or L-1 submarines, and with the

remaining prcecbability the zonc will contain L submarines. §

If L = 5, it may not be possible for the v ."=nder to do i

-~

this. We conjecture however, that the attacker can always ?

play according tr this strategy, and that the defender can 2

&

whenever |, = [%? + 1]. )

A

l.!

5. DISCUSSION OF THE RESULTS i

With no detection system, the value of the game with f

A

the payoff M(a,b) to the attacker is high unless D is much g

greater than S; and an effective defensive system would Le 5

relatively costly, since N defense units are required for i

N

S

A
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complete defense against a single submarine. Furthermore,

W ISR atsl EUNEE

when S > D/N, the attacker may increase the size of his

submarine force with no increase in his expected losses.

:
\
In this sense, tie game is highly favorable to the attacker. 4
On the other hand, the optimal stratcpy a" for the attacker i
is unique, while Theorem ? states that anything the de— S
fender does which does not purposely waste defensive units ;

by putti.g more than S in a single zone will be optimal.

Thus if, instead of successful launches, we choose any :

other payoff function which does not require the defender

to waste units, he can optimize with respect to this payoff
functiorn and still maximize the attacker's losses, while
optimal play with respect to the new payoff function by

the attacker will, in general, increase his expected losses.

For example, if we use the payoff function M'(a,b), then

in the case when S < N, 2D < N, we have L = 1 and aS and b
are optimal, while M(a>,b") = S(1 — D/N) < M(a,b) for all
a,b, so that fram the standpoint of the payoff function }
M(a,b), aS is the worst possible strategy for the attacker. i
With a2ven a simple detection system, it does not seem
possible to obtan a general solution tc the game. The
analysis does show however, tbat while a detection system {
of the type postulated forces the attacker to deploy some
single submarines as decoys to increase the defender's
uncertiainty concerning the location of his main group,

he still must bunch the remainder in order to maximize
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his payoff. Even with a detection probability of one and

. am m w e

no false alarms, " aere is still s noint (S = 2 4/D) such
that for tixed N and D, any further increase in submarine !
fleet size will not increase nis expected losses.

The assumptlon that the detection probability is
independent of the number of submarines prusent 1s clearly :
uarealistic whenever Py < Lo

This analysis ignores completely the fact that the
submarine defense problem takes place over a period of
time, and considers the problem as a static game. This
seems a reasonable simplification—at least, in the game
without detectiom—if the purpose of the system is to deter

or defend against a single mass attack, because then the

T AR TR TR S S N R I N Ty N

only time of interest is the time of attack. In the game

with detection, the amount of information provided would

presumably “e a function of time. The model would then

be affected accordingly.
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