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THE PSEUDO-SHOCK: A NON-LINE.R
PROBLEN OF TRANSLATIONAL RELAXATION

B. L. Hicks

Abstr.ct

The Boltzmann equaetion hus been solveda by Nordsieck's Monte Carlo method
for the case of translational relaxation of a gas of elustic spheres whose in-

itial velocity distribution function has the form

f(¢)o) = %Eexp[-ﬂ(z-?u)e] + exp[-n($+fu)2]§ .
The Mach number
M= (61/5)2u

describes the relative separctior of the two peuks of the bimodal distribution
function and therefore controls the degree of initial departure from equilibri-
um. Calculutions have been made for M = 0.5, 1, 2, 4, und 6, which includes o
range of initial conditions from very cloge to very far from thermal
equilibrium.

In the eurly part of the transiational relaxation we find that reluxation
by a factor of e ' requires, on the average, 1.27 + 0.Ok4 collisions for the
lateral temperuture and 0.80 + 0.033 collisions for the Boltzmann function H.
The temperature relaxation rate is thus smaller by a factor of 1.58 + 0.120
than the entropy relaxation rate. (The uncertainties are stated as 90% confi-
dence limits.) These collision numbers are essentially independent of M and
time, 1t least until each molecule has made about ten collisions. Our calcu-

lations agree with earlier, more qualitative results in the literature that



it

correspond to different initial conditions. We have also shown that in a
Krook model of our relaxation process, the ratio of the two collision num-
bers 1s somewhat smaller than two late in the relaxation and, as shown al-
so by Offerhaus, approaches two asymptotically.

Solution of the Boltzmann equation for any other reasonable initial con-
ditiors could be obtained with the same Monte Carlo program. For example, the
relaxation of the asymmetrlic bil-modal distribution functions used by Mott-

Smith to describe shock wave structure could be studied.
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1. Introduction

The series of internal CSL reports, "Numerical Studies of Strong Shock
Waves”,(l-6) describes successive steps in our efforts to calculate the vel-
ocity distribution functions within a shock wave by solving the Boltzmann
equation. We have shown that Nordsieck's Monte Carlo method of evaluating the
collision integral in the Boltzmann equation appears to be both reliable and
feasible. Earlier methods of evaluation have been less accurate and effici-
ent.(7’8’9) The chief difficulty yet remaining to be overcome in the shock
problem is that of insuring an adequate rate of convergence of the iterative
method of solution of the Boltzmann equation. We therefore decided to apply
the Monte Carlo method to & simpler problem than the shock wave in order to

1. Numerical Studies of Strong Shock Waves. Part I. Illiac Solutions of u
Boltzmann Difference Equation by Nordsieck's Method. B. L. Hicks and J. K.
Aggervcl., CSL Report I-111. (1962)

Zc . Part II. Results of Illiac Calculations. B. L. Hicks and
J. K. Aggarwal. CSL Report I-117. (1963)

bR . Purt III. Studies of the Monte Curlo and Integration Pro-
grums. B. L. Hicks. CSL Report 1-122. (1963)

4. . Purt IV. Description of the 1604 Program. J. K. Aggarwal
nd B. L. Hicks. CSL Report I-12%. (1963)

90 . Part V. Equations and Sculing. B. L. Hicks. CSL Report
I-12k. (1963)

6 Purt VI. Subroutines and Tables. B. L. Hicks and M. A.

séith. CSL Report I-125. (1964)

7. "Molecular Dynamics by Electronic Computers". B. J. Alder and T. Wain-
wright in Transport Processes in Statistical Mechunics (Interscience Publish-

ers, 1958), pp. 97-121.

8. "Investigation of the Many Body-Problem by Electronic Computers", B. J.
Alder and T. Wainwright, in The Many Body-Problem (Interscience Publishers,
1963%), pp. S5ll-522.

9. G. A. Bird, "Approach to Translational Equilibrium in a Rigid Sphere Gas".

%

Phys. of Fl. 6, 1518 (1963).
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demonstrate at once the ulility of the method in a real problem and to learn
from this exercise some new tricks to use on the shock structure problem.

We chose at Nordsieck's suggestion the simpler problem of calculating the
translational relaxation of a uniform gas. In particular, we chose as the in-
itial out-of-equilibrium condition a bimodal velocity distribution. This con-
dition resembles that which obtains within a shock wave, and could be made
more like a shock wave by simple extensions of the calculations reported here.

" pseudo-shock” problem.

Hence we call our problem of relaxation the
We have sclved the Boltzmann equation numerically for initial conditions
ranging from near thermnl equilibrium to very far from thermal equilibrium.
The numerical results are readily interpretable physically and suggest a new
nunerical technique that should be useful in the shock wave problem.

We are indebted to Mrs. Margaret Smith who has performed most of the pro-

gramming and data reduction for our study of the pseudo-shock.

2. Formulation of the problem

We shall treat the behavior of ¢ uniform monatomic gus that is not in
thermal equilibriuwm. We shall consider hard sphere molecules of diameter o
and mass m. Molecules with other force fields can be studied if their differ-
ential cross sections ure known. We shall suppose thut there are no external
forces. The behavior to be considered is then that of u simple translational
relaxation which 1s governed by the Boltzmann equation.

One set of units will be used in the body of the paper. A second set,
"michine units", will be used in the Sect. L4.3. (See also Part I(1).) In
the first set, the units are the values, denoted by the subscript 1, of va-
rious properties of a reference gus. Thus n,, T, are the units of number den-
sity and temperuture. The unit of length £; = 1/(2nny02) =

((meun free path);/~/2). The unit of velocity



¢y = (2nk£[‘1/m)é = (mean speed),X(n/2). The unit of time is therefore
(mean free time), X (v/2/x) and of the velocity distribution function

is ny/cy3. In these units the Boltzmann equation may be written

af/dt = a - bf = f (F}'-ff’)lﬁ-'\?rld?‘(dﬁ/hu) (2-1)

vhere f = f(?,T) is the time-dependent velocity distribition function, T is
-
the time variable, N gives the direction of the line of centers during a col-

- -2
lision, W vo- v, and £, £', F, F’ denote the four values of f correspond-

=y, 2 2,
ing to the four velocities v, v, V, V

characterizing a binary collision.
We specify, as the initial condition at T = O, a symmetrical bimodal vel-

ocity distribution function for a spatially uniform gas

£(3,0) = £o= %Eexp [l Pbal®] & 5 [-n(iz‘&'u)a]g . (2-2)
At all later times the velocity distribution function depends only upon T and
the velocity components (vx,vl) which are cylindrical polar coordinates in
velocity space. In our units the parameter u is related to a Mach number by

the equation
M= (6x/5)%u . (2-3)

For M (< 1 the gas described by fy is almost in thermal equilibrium at tem-
perature t = 1 and with number density n= 1. For M> ) 1, the gas described
by fo is very far from equilibrium, and, in fact, consists of two oppositely
directed streams of gas, each at temperature t = 1 moving essentially parallel
to the x axis at a speed large compared to the thermal velocity.

We shall be interested in the behavior of the velocity distribution func-

tion £, the collision integral (a-bf), the "lateral" temperature



T[T = t, = (u/n)valzfdv (2-4)
and the Boltzmann function
P il
H = J flog £ dv . (2-5)

The number density n = 1 throughout the relaxation process. The reduced

temperature

/T, = %

(Eﬂ/jn)Jpvafd¢= 1+ (5/9M2 = 1+ % nu2

is likewise constant throughout the relaxation process.*
The initial and final (T —» oo ) values of t, are equal, respectively, to
1l and t. The initial values of H can be computed analytically for two values

of M:

H(O)

Il
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]
8

H(O) . (2-8)

For other values of M, H(O) must be computed by numerical quadrature. The

asymptotic value of H is giver by

H(o) = - % (1+ Int) (2-9)

corresponding to the asymptotic velocity distribution function

£ (v) = ¢ = t-3 exp (-nv3/t) . (2-10)

*¥As we shall see later (and compensate for) n and t do not remain exactly
constant during the numerically calculated relaxation process.




3. Theoretical Expectations

From Boltzmann's Theorem we know that

dH/dr < 0 (3-1)

during the relaxation. The asymptotic value of H for an equilibrium gas with
given t and for n = 1 is given by Eq. (2-9), and according to Eq. (3-1) this
value must be the lowest value reached by H during the relaxation.

Let Bf = Bf(i,‘l’) represent the departure of the velocity distribution

function from f_ = f('{r‘,oo), its equilibrium value. Then

£ = £ +B8f (3-2)

and

t; = t + (n/n)erlz 5f v . (3-3)

An equation similar to (3-3) holds for any moment of f.

It will be convenient to interpret the time scale and collision rates in
terms of the behavior of the equilibrium gas, described by foo' We may expect
the time constant for the equilibrium gas and for the asymptotic part of the
relaxation to be inversely proportional to the mean molecular speed and there-
fore to t-i . The asymptotic relaxation for different Mach numbers should
then be similar when plotted against (t%‘ T). The number of collisions 7 suf-

fered by a molecule in the equilibrium reference gas in (reduced) time AT is
" = («fE/n)té K = o.usot* oo (3-4)

The relaxation will be almost complete when (t&T) >> 10. 1In this

asyaptotic range, |6f/foo| << 1 and
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Ho® H_ +!?-_.faf2 f;)l (1 - 58/3¢_) av + ... . (3-5)

The teim in (df) is missing from Eq. (3-5) because n and t are constant during
the relaxation. Offerhaus(lo) has discussed the (5f)2 term but not the (&6f)3
term in this equation.

To get a more detuiled view of the relaxation process let us describe the

(11)

process approximately by the Krook model, in which the Boltzmann equation

is replaced by

af/at = b(F- ). (3-6)

In this equation F is a Maxwell-Boltzmann distribution function having the
same (constant) values of n and t as does the (non-equilibrium) function f.

Therefore, E? = foo is independent of T. The solution of Eg. (3-6) then is

-bT 7

f = f_ + (fo-foo)e (3-7)

09

where b may or may not depend upon 3, according to the nature of the Kroock
model. Notice that f, in Eq. (3-7), is & linear combination of fo and foo'
We may thus say that Eq. (3-7) corresponds, for our translautional relaxation
problem, to a Mott-Smith model of the process as well is to a Krook model.

We now have un explicit form for &f to use,

10. M. F. Offerhaus, Theory of Relaxation Phenomena in a Mrnatomic Gas. Akad.
64, 115 (1961), see Sect. 5.

11. Bhatnaghar, Gross, and Krook. "A Model for Collision Processes in Gases."
Phys. Rev. 9k, 511 (1954).



The relaxation of t, (or other moments) is similar to that of f:

i BT A
t.L = t + (n/n)] (fo-foo)vlae dv . (3"9)

But for lurge enough times, namely, for
|oe/3e | = (£-£ e /35 << 1 (3-10)
@ o @ o) ¢

wve find that
T - l "sz _e 2 -1 - _
B = Hm+2fe (fOIOO)foodv. (3-11)

The time constant b(?) of the (asymptotic) relaxation for each velocity
bin increases with increase of the speed v. Let b; be the smullest value of
b. Then for large enough times the relaxetion of the corresponding velocity

bin will dominate the relaxation process and we may write in place of Egs.
(3-9), (3-11)

by T
e °1

t, = t+ (1-t) (2-12)

=N

~-2b, T [\ 2 -1
e <1 (£-£, )2 17 dv . (3-13)

Results of the sume form follow from the alternetive assumption that
5~ constant. For exanmple, we may assume thut by in the Krook model corres-

ponds to the value ©(0) for the equilibrium gas; ‘hen
Y |
by = b(0) = t . (3-1L4)

Insofar as the Krook model is valid for the asymptotic part of the relax-

ation process we thus can predict that the time constant EH for the relaxation

of H is one-half us large as the time constunt 21 = b, for the asymptotic

relaxation of t . It may also be shown for the Krook model thut the term



= sy - e

bane S e L T e

in 5f3 is negative, for large enough values of M, which has the apparent ef-
fect of making bH/pl'> 1/4 when byt ~ 1. Even without appealing to the Krook
model we can show that this is a reasonable result when we look at the
(51‘)3/%‘D term in the integrand of Eq. (3-4). This term behaves near a resid-
ual peak like t3 and elsewhere like t- S . Remembering thath/Nde? = 0, we
see that for large enough t, the integral of bf‘s/f‘gD is positive and the cor-
responding contribution to H 1s negative.

For large values of M we can also make a rrediction about the early part
of the relaxation process. In this case few collisions occur except between
molecules moving with velocities u and (-u) nearly parallel to the x axis.
For t.i T << 1 only a smrll number of molecules will have collided and these
will be distributed u-iformly in velocity space along the circle v = u. We
may expect then (for M 2 ) 1 and (téT) 7> 1) that we will see in isoline
plots of f a "bridging" along a circular arc between the two delta functions
at v, = tu, v, = 0.

It should be noted that one analytical treatment(l2) of translational re-
laxation has been bused upon superposition throughout the relaxation of two
Maxwell-Boitzmann distributions the separation of whose centers continuously
decreases. Thi- model cunnot account for the directionul rundomizution Jjust
discussed, but uaddition of a third Maxwell-Boltzmann distribution might yield
asymptotic results similar to those suggested by the Krook model.

We are nov ready to consider the numerical methods used in solving the

translational relaxation problem.

- ee em we A = o e e e 2 mm em s e e e e e e e e e mm wm e m w wm w e e e o e m = e e

12. K. Buchy, "New Methods in the Kinetic Theory of Rarified Gases." Ergeb.
exakt. Naturwiss. 35, 103 (196k).



4. DNumerical Methods

4.1 Evaluation of the Collision Integral by Monte Carlo Sampling

The most difficult part of the tmnslational reluxation problem is evalu-
ition of the coliision integral. It is fortunate, sir~e no other suitable
method (analytical or numerical) is yet available, that Nordsieck's Monte Car-
1o method is well developed.

The method was described in the first report of the series.(l) The col-
lision integral is first repleced by un integral over o finite region of vel-
ocity space . hat is of volume R and that includes most of the molecules. The
average vilue of the integrond over this region is then cpproximuted by the
average of « lurge and falr sample of N values of the integrand. The value of
the collision integral is then given b,y the product of this average value with
the volure R. The integrand is a function of eight independent varisbles de-
rived from j, 3', ond n. Nordsieck's Monte Curlo method insures fuirness of
the sumpling in the eight-dimensional spuce of these varistbtles. The sampling
«nd Monte Curlo quidruture ruke uce of 226 velocity bins in the (VX,VL) rlane.

In a nunerical sclution of the Boltzmann equation, it is the speed und
uccurzey of the evalw.tion of the collision integrul thut must be our primury
concern before we look at cther churacterisiics of the over-all method of
solution. For samples of moderute size und velocity distributions that cover
about 200 velocity cells, statisticul fluctuations contribute the only signi-
ficant error, for the st.tistic:l error is then much larger than the quadru-
ture error. (Truncation error is generully small except for large values of
the speed v where the collision integral itself is smull.) Thus, with our

present Monte Curlo program,* the calcuiation of 226 vi.lues of (a-bf), for u

*Detailed tests of this progrum have not yet been descrited in reports.
Tests of earlier programs are described in Part III. p)



10

sample of N = 10* collisions, is performed in 50 sec. on the CDC 1604 computer
and yields statistical errors (expressed as probable errors) in z and bf
individually of +15%. The bias, owing to quadreture error, amounts to +2% in
uncorrected a or bf for a well-covered velocity space for an equilibrium gas.
The bias in (a-bf) is not now directly determinable for a non-equilibrium gas
but is reduced by the method described in Sec. 4.4. We would like to empha-
size that some bias in (a-bf), caused by quadrature error, is to be expected
whether the numerical integration uses sampling techniques or not.

The computing time is proportional to N, and the statistical error is
vroportional to N'é . For m:ny calculations it is not practical nor is it
necessary to reduce the statistical error to the some level as the bias. We
have obtained significant results in the relaxation problem with relatively
small samples (N = 10%).

For M ) ) 1, only a few velocity bins, in effect, are used in Monte Carlo
(or other) numerical evaluation of the collision integral. The large result-
ing quadrature error then presents the primary difficulty in solving the re-

laxation problem adequately for large Much numbers. (See Sect. 6.32.)

L4L.,2 Integration of the Boltzmann Equation

Consideration of the various sources of error and of factors influencing
the computing speed indicated that Euler quadrature in the time variable would give ap-

propriate accuracy and speed. For each velocity bin the integration formula is

(4-1)

f(ty+at) = £(T,) + At(df/dr) .
1

In view of the discussion in Section 3 we chose AT to be approximately propor-
tional to t~ 2 so that quadrature errors in the forward integration are ap-

proximetely equal, on a fractional basis, for different Mach numbers.
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We may add two further notes uabout the forward integration process. A
process of higher order than the Euler would require recalculution of (a-bf)
one or more times before a step in time 1s made. Improvements in accuracy of
the time-wise integration must take into account, however, that by far the most
time-consuming part of the whole problem, even with the help of a Monte Carlo
process, is the evaluation of the collision integral. Thus, (see Sect. 4.1)
one forwird step in time tukes 50 sec., for a sample of 10% collisions. We
can, however, on the basis of a1 reasonable assumption, easily correct the re-
sults of the Euler integrution and thereby achieve about the same accuracy in
calculation of t¢ and H as though we had used a higher order integration
process.

The assumption used is thet each function (f, tL and H) which we later
discuss is neurly an exponential function, exp (-Btéi). For the function £(T),
for example, we may then write the expression for the derivative at the mid-

point of an interval as

o(vor o) = e p(r e Lan) = eed ) (1 - Bpeda)

(4-2)

Eacl increment Af from an Euler integration should then be multiplied by the
(constant) correction factor [1 - %Btébﬁ} und logurithmic slopes should be cor-
rected by the sume factor. We ussume that the logurithmic slopes of the func-
tions pl and H should be corrected by the factors [1 - %Bltébﬁ] and

s %BHtéAf] where fiLand QH are determined later. The correction made

of the slopes of the H curves is greater than that of the t_L curves but is less

than 15%. Higher order corrections would not change the values of the slopes

by more than 1%.
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L.3 Integrals involving f and (u-bf)

As in our earlier work(l’S) we culculute n, nt, annnd H (each of which
involves integrution of f over velocity spuce), and dn/dt, d(nt)/dt (each of
vhich involves integrution of (a-bf) over veloclity spice) by numerical quad-
ratures in velocity space. Combined quadrature und truncation errors have
oeen reduced to less than 1% for aull values of M for lurge values of (t éf) :
but, .Jor large Mach numbers, (M2 4), it 1is not possible, for u given number
of velocity bins (226 in our c.se), to xeep the gquudrature errors this sm:ll
for (Lﬁf) < . {w2e discussion of T-ble TI in Sect. G6.2.)

o i ellitote control of the trune .tion error ve introduaced tuo rel ted
per:ueters Ky und p. The par.meter K; is used to scule the wvuriuble 3 SO w5

to "fi111" the velocity spi.ce, for a given function f. Thus

- 2D

v = K (k-3)
where 226 fixed velues of (VX,V.L)m (velocity components in "machine” units)
describe the velocity cells in the truncated region R over which numericul
integrutions nre carried out. Though it is nct in principle necessury, ve
keep K; fixed during the time-wise integrution of the Boltzmann equution for
any one value of M.

As u simple meusure of truncution error (in calculauting integruls over f

we use the integer p in the equution

r_(eh/Ky) = 1077, (b-L)

e = 2L being the radius of the sphericul region R. Cecmbinuation of Eqs. (L-4)

«nd (£-10) then gives = value of K; for each value of Mor t. We took p to

be L.
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We have not exumined the fractionul truncution error in the evaluation of
(a-bf). We would expect it to be less than the corresponding errors in integ-
ru:ls over f because the integrand of the collision integral contains products
of velocity distribution functions and therefore decreases much more rapidly

than f us the speed v increcses.

L.L  Leust Squure andjustment of Calculuted Collision Integruls

As we have noted above, some bilas in values of the collision integral
calculated by numerical quadrature is unavoldable. To reduce the resultant

accunmulation of errors in the forward integration of the Boltzmann equation in

time we huve devised u least squure udjustment of the collision integrals thut
are calculuted by Monte Carlo sampling. This method is preferable to the "mo-
ment correction” method(l’h’S) used for the shock problem two years ago be-
cause 1t less often produces negative and therefore unacceptable values of f.
Let us first consider the values of n and t culculuted from the f's gen-
erated by our numericul treatment of the Boltzmann equation. These values of
n and t would remuin constunt throughout the relaxution process if there were
no errcr in calculauting them. We will go fur towurd enforcing constancy of

these vulues if we adjust the values of (a-tf) as little us possible, in a

least squure sense, while imposing the two conditions

dn/dt = f (df/dat)dv = O (4-5)

d(nt)/dt = (2n/’§)fv2(df/d1)d3 = 0 (4-6)

Both the Monte Carlo calculation of the function (df/dT) and the numerical
quadruture used to approximate the integruls in Eq. (4-5,6) introduce errors
in the values of dn/dt and d(nt)/atv. As noted before, the adjustment process

therefore maintains the constancy of the computed values of n and of t.
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The least square condition, subject to Egs. (4-5) and (k-6), is

229
5 ) (pP P2 = 0 (4-7)
s=0
in which p_ und P_ ure the values of df/dt (for the sth velocity bin) before
:nd after adjustment. Solution of the least square problem yilelds a simple
explicit formula for Ps in terms of moments of df/dT that are approximuted by
weighted sums. Note that we minimize the mean squure value of the fructional
adjustment of Py procedure that is consistent with a characteristic of
Nordsieck's Monte Carlo methond, namely, the upproximately constant fractional
error of the values of df/dt tha%t it produces.

We checked the effectiveness of the ccrrection method by obtaining Monte
Carlo solutions of the Boltzmuinn equation for M = O both with and without the
correction of (a-bf). For M = 0 the gas is initially in equilibrium so that
properties of the guas th:it are calculuated by the Monte Carlo method should de-
viate from the equilibrium vulues of these properties only becuuse of fluctuu-
tions =nd vins in the Monte Cuarlo method.

With u progrum which uses the correction method, the { and a isolines for
= 0 differ in only a fev bins from the equilibrium isolines. This is true
both «fter two und 20 steps in time. The isolines of (a-bf) indicate probable

erro-s of ubout 24$relative to a. When no corrections of (z-bf) huve been
mide then t, t, und || incre.se by 1.6, 1.6 und 1.7%, respectively, after the
20 steps in time. Correction of (a-bf) yields of course = constant computed
r1lue of t (low by 0.3% owing to quudruture und truncation error in integrat-
ing f to ge* t) und yields values or tl-und H that fluctuate neur the equili-

brium vulues. These fluctuations in t; amount to ~0.4% and in H to ~0.05%.
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The mean value of |H| as calculated from the corrected (a-bf) is low by 0.3%
(quadrature and truncution error over f) and perhaps shows a slight downward
bias amounting to 0.1% in 20 steps in time. The size of the fluctuations will
be used later in interpreting the pseudo-shock calculations.

These results show that the least square adjustment of the vulues of
(.-bf) does indeed reduce the trends away from equilibrium that are produced
by unuvoidable slight bius in the Monte Carlo (or other) calculation of

(a=df).

g;f Monte Curlo Fluctuutions

(3)

As in an earlier investigation we wished to study statistical varia-
tion of quuntities that had been calculated with the help of Monte Carlo sum-
pling. Therefore we made four runs of the same type but each run with a
different und independent sample. For each run we chose to vse a sample of
N = 10% collisions for euch of ten steps in time, starting at T = O for euch
Mach number, und also at T = 1047, so that we could judge the effects of the
Mach number und of the phuse of the relaxution upon the variunces among the
runs.

We shzll be concerned chiefly in luter sections with the variance of the

deriv tives of ti und H as functions of (téT).

5. Peranmeters

The parameters thut define the numerical treatment of the translationel
reluxation process are AT, N, p, uncd the first rundom number used in generat-
ing - seguence of independent sumples for o given run. Except us specified
otherwise, the sequences ¢f saumples were wholly independent of one another.
There 1is only one physicul purameter governing the reluxation process, n re-

ly M. Purumeters used in the various runs ure swwmirized in Table I,

bom st

» -
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Teble I. Summary of Pseudo Shock Calculations

interval Range of no. of

; 5
E AT t= ot QTZAf} 2 runs (a E

10,923

O -25 -25 1'20 )“,'
1-20

.5 .25 . 2668 1-10 L
11-16
11-30

1 .25 2118 1-10 4
11-20
11-30

2 .25 L4488 1-10 L
11-20

11-30

.125 .22kl 1-10 L

L .125 .3931 1-10
11-20
11-30

L0625 .1965 1-4

6 .0625 L2864 1-20
1-20

1-20

1-10

11-20

21-30

10 L0625 L4700 1-10 b
11-20
21-30

(b)
10, 925

10,923

10,923

43,691
10,923

k3,691
(c) 10,923

FPOW & &

10,923

=
e =i e R N R e e e e it ~ N SR SR — g S i e e i =

() All runs were made with independent sumples unless indicuted otherwise.
(b) No (a-bf) corrections.

(c) These three runs were m:de with the sume sample.
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6. Results and Discussion

6.1 Preliminary Comparison with Theoretical Expectations

In interpreting our computational results we shall be interested in the
behavior of the lateral temperature t, and the Boltzmann function H, and, to
a lesser extent, in the detailed appearance of isoline plots of f, a, and
(a-bf). The behavior of t, end H is shown in Figs. 1 and C for five values of
the Mach number M. In each figure, the abscissa is t é\‘ where t is the (re-
duced) equilibrium temperature given by Eq. (2-6) and T is the (reduced) time
variable.* The ordinates in Figs. 1 and 2 represent the absolute value of the
differences (tq(O)-tLM(T)) and (H'(o0) - H.M('t), calculated from the
Monte Carlo results, where tq(O) and H' (@ ) are the asymptotic values of ty
and H. Discussion of the estimation of these and other asymptotic values will
be deferred to later sections. Let us now state briefly what these figures
show that was predicted in Sect. 3.

The numerical results do satisfy Boltzmann's Theorem, at least until the
relaxing gas is close enough to equi. .brium so that the Monte Carlo fluctua-
tions produce fluctuations of H above and below the equilibrium value H'(oc).
Except for M = 0.5, the r.nge of (H.‘T(t‘) - E'/m)) before such deviations occur is
two or more decades. Both t; und H (which are measures of depurture frou
equilibrium) relax as though a single relaxation mechanism were effective from

the onset of the relaxation process. Time constants for different values of M

are proportional to +-é , 06 indicated by the parullelism of the reluxation

curves plotted with té‘l’ on the abscissa. The time constant for relaxation

- e Em e wm ® e m m wm m m w e w m o m wm m e e ® wm e @ e e W = wm wm m e e m e = = = o=

*We recall that O.hSOé\' is the number of collisions that have occurred
in reduced time T in the reference gaes. (See Eq. (3-4).)
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Figure 1.

Cotlision number

Translationual relaxation of reduced temperature. The collisior.

number is calculated for a roference gas which is in equilibrium
and has the same totul trunslutional energy as the reluxing gas.
Mach number M.
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Translational relaxation of the Boltzmann function. The collision

number is calculuted for a reference gas which is in equilibrium
and has the same total translational energy as the relaxing gus.
Mach number M.
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of H dces appear to be about one-half as large us for the relaxustion of
t, -

In Fig. 3 the predicted "tridging" is clearly visible in the f-isolines
for M = 4. These isclines (see Takle I) were calculuated for AT = 0.0625 cor-
responding to a collision of only one molecule in 11 in the reference g:s,
showing the sensitivity of Nordsieck's method. Our examination of the iso-
lines for f, a and (a-bf) also shows that they appro.ch, for t E T )) 1, the
shaupes characteristic of equilibrium, us we would expect.

Altrough a more careful discussion of these points will be given later,
we can already see that ugreement with the thecoretical expectutions gives con-

siderable indirect support to the validity of our Monte Curlo solution of the

Boltzmann equation for the pseudo-shock.

6.2 Asymptotic Behavior

Let us first examine the behavior of ti und H for large times, i.e. for
T = 20 &T. We have mude a number of different estimates, given in Table II,
of bcth the initial and nsymptotic values of ti and H. These estim:tes ure
derived from different combinations of analyticul formulus, numerical integ-
rutions, and Monte Carle culculations. It is necess:iry to consider various
estimutes of n(t) ard ©(T) as well as of t (t) and H(t).

Let us use the subscript o vo indic:te ¢ wholly analytical calculu=ion;
the subscript q to indicate ¢ result derived by numerical integration of an

= —_—
analytical f£(v,t) over v; :nd the subscript M to indicute u result derived by
- - : R .

numerical integration of a Monte Curlo f(v,T) over v. Initisl and asymptotic
values of the various estimutes nre indicated by the values O and oo of the

argument, [.
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Figure 3.

T7:0.0625
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1"

0.2-0.3
0.02-0.1
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1
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n

0.001 -0.005

_.,
"

0.00005 - 0.0002

Barly stuges in the relaxation of the velocity distribution func-
tion f for a Mach number of 4.0. Vo and v oure cylindricil polur

coordinutes in velocity spice. The (reduced) time intervaul
AU = 0.0625 corresponds to « collision of one molecule in eleven
in a reference gas.,

2l
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Toble II. Limiting Values of Mucroscopic Properties of the Reluxing Guas
2. e L. 5. 6. 7. 8. G, 10.
n_a n (0) n (co) ti tq(O) tq(oo) t,,Lq(O> lq(oo) th(oo
1.000 92973 1.000 L9GTh3 99736
1.000 99982 . 99056 1.138) 1.13%63 1.1334  .99317 1.13%33 1.14
1.000 1.0002 .99995 1.5556 1.5539 1.5500 .9989% 1.5499 1.55
1.000 1.0015 1.0012 3.2022 3.2201 %,2119 .99691 3,2117 3.22
1.000 1.0148 1.0146 9.888¢9 2, 8686 9.84k36 .96952 9.84k29 9.87
1.000 1.0780 1.0777 21.000 20.965 20.813  .83621 20.812 20.3
1.000 1.291k 1.2913 56.556 53%.976 53.876  .9213%2 53%.871
1.000 oe)
11. 12. 13, 1h. 15. 16.
H(0) K (0)  H(00) B (o) H'(w0) Hyw)
-1.5000 -1.4958  -1.5000 -1.4961
-1.6696  -1.6951 -1.6973  -1.6915 -1.689
-1.9557 -2.1628  -2.1570 -2.161Lk  -2.160
-2.1797 -3.2551 -3.2523  -3.2575 -3%.254
-2.1947  -L.9371L -4.9871 -b.9923 -L.989
-2.1861 -6.0663  -6.4L30  -6.LLBE  -6.442
-2.878k  -7.5528  -9.328L  -9.3331
-2.153%2 -0
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In the second column of Table II appear the analytical values of n(T),
namely n s which has the value unity at all times because the number of mol-
ecules is conserved. In column 3 is the estimate nq(o), obtained by numerical
integration over the analytical values of f(#,O) given by Eq. (2-2). Trunca-
tion errors are negutive for nq(O) (as they are also for numerical integra-
tions yielding estimutes of IH(T)' and of all the positive functions in
Table II) and decrease as M increases. The quadrature errors in nq(o) are ap-
parently positive and increase (unavoidably, for a fixed number of velocity
bins) as M increases. The error in tq(o) (column 6) is negative and smaller
in asbsolute value than the error in nq(O). (Note that numerical quadrature
yields values of (nt) and (ng‘) rather than t and t; directly.)

We must emphasize at this point that our digital computer solution of the
Boltzmann equation produces and uses values of t,, H, dn/dt etc. that have been
obtained by numerical integration. In "clamping" the values of n(T) and t(T),
by the method described in Section 4.4, we are then fixing the values of
nM(T), tM(T) at their initial values, nq(O), tq(O). As the translational re-
laxation proceeds, the quadrature errors (over 3) in H and tJ_decrease and are
much less than 1% for all Mach numbers for (t éi) >? 1. (The quadrature er-
rors in (a-bf) presumably decrease 2ven more rapidly.) The proper interpreta-

tion of our relaxation calculations is then that we are following the

relaxation of a gas whose asymptotic density and temperature are Egﬁgl and
§g§gl. We shall therefore base several estimates of the asymptotic values of
other functions upon these values nq(O) and tq(O).

The velocity distribution function for a gas in thermal equilibrium and

having the density and temperature nq(O), tq(O) is

£ (@ = 5 (0t (007} exp [-av2/t (0] (6-1)
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(Compare eq. (2-10)J Numerical integration over this function gives the
values nq(oo), tq(oo) listed in columns 4 and 7 of Table II. The differ-
ences between nq(o) and nq(oo) and between tq(O) and tq(oo) are very small,
which testifies to the small combined truncation and quadrature errors of our
numerical integration over ¥ for functions f(?) that "fill" properly the part
of 3 space we use for numerical integration.

Having given this much detailed discussion of the quantities appearing in
the first seven columns of Table II, we can discuss rather briefly the related
quantities listed in columns 8, 9, 11, 12, 13, 14, 15 of the Table. The ini-
tial values of ?Lq(o) in column 8 exhibit small deviations from the correct
value t;a = ] for low Mach numbers and larger errors for high Mach numbers
much as did tq(o). Also, as we might expect, qu(oo) in column 9 agrees very
well with tq(oo) for all values of M.

There seems to be no analytical formula for Ha(O) as a function of M.

The initial and asymptotic (M — oo ) values shown in the Table in column 11
are, however, given by the Eqs. (2-7,8). Note the small range of H as com-
pared to that of t. The initial values Hq(O) obtained by numerical integra-
tion over 3 are given in column 12 and show large departures from the correct
values only for M = 10. Exact values of Ha(oo) (column 13) are given by Eg.
(2-9) and may be compared with the values of Hq(oo) (columr 14) obtained by
numerical integration of [f(#,oo)h\f(c,oo)] over V. The agreement is good ex-
cept, as for M = 6, 10, where nq(O) is much different from unity. In view of

our earlier discussion a more useful comparison is that between Hq(oo) and

H'(oco) = nq(O)[ln nq(O) - 1.5 1n tq(o) - 1.5] (6-2)

As we would expect, these two sets of values of H(oco) agree within much less

than 1%.
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We are nov ready to discuss the behavior of the rel .xiny g:s : s deter-
mined from the Monte Curlo cuolcuintions. From our discussion in Section 3
we expect thit ?l(r) and E(T) will each, %o : first aprroximution, relux ex-

ponenti:lly to their equilivriuz values. To explore this possibility we

éf) on

plotted [tq(O) - and HM - H' (o)) on logurithmic scules vs. (t

lM

¢ linear scule ns in Figures 1 nd 2. For :nalysis of the early purt of the
relaxaticn process the esymptotic values chosen for subtruction from th( )
and HM(T) need be values only approximutely equal to tq(O) and H' (o0 ). For
the later parts of the relaxution, where the departure from the equilibrium
volues is smull, it is necessary to chcose these vulues to be tq(O) and H' (o)
(or other values such as ?Lq(oo) and Hq(oo) that approximate closely to them).
The straight und parallel parts of the curves in Figures 1 and 2 will be
discussed in u later section; we are concerned here only with the apparent

asynptotic behavior* of the functions t (1) and 4M . From these curves we

derived estimutes of the .symrtotic values of {tq(O) (00)] und of

iM
= L ] le q fali 3 ar L
[HM(oo) H'(oo )] and from these culculated values of ?LM(OO) and HM(OD) ns

given in columns 10 and 16 of Table I1. The values of FLM( 00) wre equ:l,

within the uncer.uinty of estiauting them (suy 0.7%), to the values of tq(O\.
The vulues of HM(oo) for M € 10, nre equ:l to the vulues of H () or H'(oc

q - —
vitain 0.2% or less, un error level compur:ble with the difference betwecn

H (o) und H'(co0).

q

*Careful numericul unalysis of the Krook model shows thut we would not be
uble, 1n the Monte Curlo calculaticns, to find ot what time the quantity
[HM(I) - H'(0o)] becomes accurate? r proportionnl to [tq(O) iM( 12, sny

within 2%, becuuse of the smullness of these diiferences nnd the very gr:du.l
charge of slope of the curres in the usymptotic region.
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We muy thus conclude that our Monte Carlo integration of the Boltzmann

equution produces the correct usymptotic behavior of t, and H except for small

L

errors that are to be expected from the nature of the numerical integrations

N
over v.

We may nr:ke a few remarks about the asymptotic statistical fluctuations

T c i s of
of le( ) and of HM(r) The fluctuations o le (for M > 0) are roughly equal
to the fluctuations in PLM found in Section 4.4 for un initial state of equi-

librium (M = 0). The flurtuations of HM(I) (for M 0), however, amount to
about 0.01% for all Mach numbers and .are therefore smaller by a factor of about five
thun were found for M= O, Note that this remarkably smill level of fluctuation was

obt:ined with o ruther small Monte Curlo sumple, namely, 10% collisions.

6.%. Behavior for (t ir)‘ {10

Two striking features of the curves in Figures 1 und 2 are evident for
M4 6: they are ulmost straight und ure nearly purallel. To discover how
nearly straight and purullel we cun say they are, we need to examine in detail
various sources of error. We restrict our first discussion to the first ten
steps in AT (for which (t ér) { 5).

Data to permit estimution of the fluctuations in slope owing to the Monte
Carlo calculations of the collision integrul were obtained by the method de-
scribed in Section 4.5. A typicul "fun" generated by this method is shown in
Figure 4. Since we were primurily interested in the apparent constancy of the
slope us M changes we decided to exumine first the meun slope und the (sumple)
standurd deviation § for euch set of four runs of ten iniervuals euch. The

slopes were determined by fitting a straight line (that passed through the
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Lateral temperature t,(0) -t (7)

Figure L.

5 1o 13 20

Collision number

Temperature relaxation computed with four independent sequence: ot
Monte Carlo samples. Each sumple contains 10,923 collisions. Mach

number M = 2.0,
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point for T = 0) to the curve for each sample. The results are given in Ta-
ble III and hove been corrected for quadrature error in integrations with re-
spect to T. (See Section 4.1.) It is unnecessary to correct for the
difference between t_ and tq(O) in the abscissa variable (ték) because this
difference is so small. (Bee Table II.)

Inspection shows that the viriation among the mean slopes for the differ-
ent Mach numbers is generally no larger than the 90% confidence limits for
each Mach number. To moke a more careful judgement we take the following

steps:

a) Comparison of § - from variance ratio tests(l3) we conciude that the

sample standard deviations for the d° “ferent Mach numbers are not significant-

ly different at the 5% level.

b) Comparison of the means - an analysis of variations(lj) shows that

the sample means for the slopes of the K curves are not significantly differ-
ent “rom one another at the 5% level. The mean slopes for tL ugree with one
another even better than do thie mean slopes for H.

We may thus conclude that the logarithmic slopes of the relaxation curves
(plotted vs (t éT)) are independent of M for ¢ ér £ 5and M £6, and are
equal, respectively, to 0.3539 + 0.0122 and 0.5607 + 0.0233, the mean vulues
of the slopes for pL and H. These vulues of mean slope und 90% confidence
limits agree with values obtuined less formally for the range 5 (t ét) { 10.
Detuiled analysis in this runge is less profituable beciuse the estimnated slopes
are sensitive (for (t,ér) near 10) to statisticul fluctuations, to the exact
choice of the nominal asymptotic values of the two variables, und to quadra-

.
ture and truncation errors in integratiuns over v.

- em e e e e o e m e e e e Em em s M e o o w e Em e e e e e e e e e e a e =

13, C. E. Weatherburn, A First Course in Mathematical Statistics (Cumbridge
1961) Chap. X and XI.
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Table III. Monte Carlo Fluctuations of Slope of Relaxation Curves

L H
M STE;Z samplg Sl con?gience Si;;g sumplg Dol con?gience

—— limits = limits
0.5 .3598 0139 .0189 .5596 .0338 L0459
1.0 L3451 .0133 .0180 .6120 .0197 L0267
2.0 3536 .0150 .0203 . 5638 .0268 .0363
2.0% .3528*% .0150* .020%* . 5oL 8% . 0068 .0363*
4.0 .3599 L0430 .0587 .5348 .0842 L1143
6.0 . 3522 . 0565 L0767 .li989g . 0708 . 0961
mean  ,3539 .5607

*The sturred values of mean slopes were obtained from one special run
with a sample four times larger than any sample used for the other runs. For
this special run we take the value of S and of the coafidence limits to be the

sume us for the values given in the line ubove for the same Mach number M.

it Bt bistialuiod S dAditiciitt §
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The analysls of the early part of the relaxation process has thus far
dealt with the apperent parallelism of the curves, each curve having been as-
sumed to be straight. We now ask, "How straight are the curves?' Inspection
of the mean curves for each fan (and also the curves for the special large
sumple at M = 2.0) show no indication of curvature that cannot he attributed
to statistical fluctuations or to small uncertauinties ia the choice of the
asymptotic values of tq(O) and H' (o).

Our over-all conclusions are that t, and H (for M €6 and (téi < 10)

each relaxes ag though it were governed by a single reclaxation process.

tl(T) = 1+ (t-1) exp (-BLté%) (6-6)
HT) = H(0) + [H(w) - H(0)] exp (-B,t%r) (6-7)
vhere
Bi = 0.3539 + 0.0122 (6-8)
By = 0.5607 + 0.0233 (6-9)

and . ¢ independent of M. The uncertuainties are stated in terms of GOp co.f.-
dence limits and ure based upon cobserved Monte Carlo fluctuations. The uncer-
tainties dc nnt include ecstimutes of possible systematic errors.

The rattio BH/QL = 1.534 + 0.120 (90% confidence limit) which, as pre-
dicted in Sect. 3, is somewhat smaller than the known asymptotic value of
two.

Eq. (3-13) for the Krook model (b = bv(0)) corresponds to

B, = n 1 = 0.318. We may interpret the lurger value, 0.354, obtuined

L



by the Monte Carlo solution of the Boltzmunn equation by finding for what no-
leculer speed b(v) (for the equilibrium gas) is equal to 0.35k4 ti . This
speed is 0.51v where v is *the meur. molecular speed. Molecules whose speed is
less than 0.51v relax more slowly than those whose speed is larger than 0.517.
This conclusion could be exumined in detuil by anulysis of the time variction
cf the velocity distribution functions output in our culculations for each
velocity bin.

The number of collisions In a reference gas necessary for relaxation by o
factor of e ' is ~2/(#B) = 0.450/B. The reluxation of t, and of H may ther
be described us follows: 1.27 + 0.0k collisions of each molecule are re-
quired for reluxation of t, by the factor e_l, and 0.80 + 0.033 collisions ure
required for relaxation of H by the same fuctor. (The provisional value of
this second number obtained by Alder and Wainwright(7) for a different sturt-
ing condition was zbout one.) Each number is representative of the transle-
tional relaxation process initially and up to the time that relaxation by a
factor of e ? or e 2 has occurred. Asymptotically, only 0.64 collisions per
melecule may be necessary for relaxation of H bty the factor e 1, (See

Sect. 3.)

6.32 M) 6

For lurge enough values of M we snould expect that the computational
methods used here would break down. Errors then would enter because of the
small number of velocity bins in which f(?,o) is sensibly different from zero.
The resulting quadruture errors amount to 296 and 5%, for n and t respectlvely,
for M = 10. Even more serious quadruture errcrs arise in the Monte Carlo (or
any other) numerical evaluation of the collision integral. In spite of thege
problems, t , (T) — tq(O) and HM(T) — H'(c0) for M = 10 as T increuses. How-

AM
ever, the behavior of le(T) and HM(L) for smuall times exhibits very lurge
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fluctuations. We have not, therefore, presented our results in detail for
M= 10.

It is possible that semi-analytical calculutions like those of Alder and
Wainwright(7) would give accurately the detailed pattern of translational re-
laxation for M ) > 1. Our methods could be used in relaxation calculations

for values of M) 6 if we used & substantially larger number of velocity bins.



