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ABSTRACT 

This paper extends the theory of Programming under Uncertainty 

to the case when the decision variables are elements of a Banach space. 

This approach leads to a very natural application of the computational 

techniques of mathematical programming to stochastic optimal control 

problems.  It is shown that there exists an equivalent deterministic 

mathematical program whose set of feasible solutions is a convex set 

and whose objective function can be expressed as a convex function of 

the initial decision variables.  In the second part, a duality theory 

is developed for this class of problems and some of the relations to 

the maximum principle for stochastic linear control problems are given. 
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1.  INTRODUCTION 

Most optimization models (programming models, optimal control 

models, etc.) assume that the model's parameters (coefficients, functions, 

etc.) are well specified, either as best estimates, or by their expected 

values, and so on.  In reality, however, these quantities are subject to 

uncertain or random variations of various kinds due to noise, component 

failure, unexpected demands, etc. Such discrepancies between reality and 

model can be reduced by assuming that all or some of the parameters are 

random variables with known probability distribution function. 

Unfortunately, the complexity of such models, and of their solution, 

increases rapidly with the "amount" of uncertainty present in the problem. 

Nonetheless, different approaches and different techniques have given us 

some grip on a certain class of problems, for which there exist now 

"efficient" solution methods. 

A.  Programming under Uncertainty 

In 1953, G. Dantzig formulated the two-stage linear program under 

uncertainty model [2].  The theory was furthered by G. Dantzig and 

A. Madansky [3], A. Madansky [5], R. Wets [8], and some special cases were 

Investigated by A. Williams [9], [10] and R. Wets [7]. 

The standard form  of a programming under uncertainty problem reads. 

Minimize z(x) 

subject to 

ex + E {Min qy} 

Ax 

Tx   +    My - £; 

x 10»   y i 0« 

on (H,^,F) 



*'■•      %WMW%¥, 'WMAMVMWM 

where A, T, and M are fixed matrices, c, q, b are constant 

vectors, x and y are variables, and (,    Is a random vector defined 

on the probability space  (5,£7,F),  The only random parameter present 

In this problem Is £.  The decision process described by this model Is 

a two-stage process In which one first selects x,  then observes £ 

and finally selects y so as to satisfy the constraints of the problem. 

The decision process is thus divided into two parts, but only the first 

one is of interest since once x is selected and £ is observed, finding 

Inf of qy subject to My ■ Tx - Ct y ^ 0 is a deterministic 

problem. One procedure to solve such a problem is to exhibit a 

deterministic problem, whose set of optimal solutions is Identical to 

the set of optimal solution of our original problem. In general, such 

a deterministic problem exists, and it is shown that it has the form of 

a convex program. To find an explicit expression for this equivalent 

convex program is not always trivial, but it is possible to do so for 

an important class of problems [7]. 

B.  Sequential Decision Processes and Stochastic Optimization 

It is not difficult to see that the two-stage programming under 

uncertainty problem can be generalized to a n-stage decision process 

where we have a sequence of decisions, observance of the behavior of 

the system and new decisions (corrective action). This idea is not new 

but literally Illustrated by Dynamic Programming.  Many stochastic 

optimization problems fall naturally in Ihis framework, even if sometimes 



the concept of decision stage may only be a mathematical fiction, 

see [8, II. A]. 

C. The Stochastic Optimal Control Problem 

Usually, the stochastic optimal control problem is also formulated 

in the framework of a sequential decision process. But rather than 

dealing with a finite number of stages, it is assumed that the corrective 

actions are taken at every instant, i.e. at an infinite number of stages. 

To see this, it suffices to remark that a solution (control) for such a 

problem is not only expressed as a function of time, but also as a 

function of the actual state of the system [1], [4]. The observed state 

of the system consists then of the space-state determined by the control 

function affected by the interference of a random (noise) process. 

In order to obtain an explicit expression for the solution of such 

a problem, or find an algorithmic procedure leading to the solution, 

different assumptions have been made, explicitly or Implicitly in the 

formulation of the problem. From a practical point of view, probably one 

of the weakest assumptions one could make is to assume that the number of 

corrective actions is finite, either at fixed time intervals or at some 

time Intervals to be determined by the control system itself. 

An n-stage control system can be described as follows: Let x(t) 

describe the space state obtained by controlling the system with u. (t) 

for  0 .1 t ^ t..  Let y(t) be the observed state of the process, i.e. 



y(t) ■ x(t) + ^(t) where C(t) is a random (noise) function.  If 

u2(t) is the second stage control for t\ t. * L ^2*    we ^ave 

u2(t) - ♦(t.y1(t)) or ♦(t,u1(t),^(t1)) and similarly for t2 ^ t <^ t3, 

we have u3(t) - (j;(tfy(t2)) or i(t,u1(t) .^Ctj^) ,u2(t) ,C(t2)), and so on. 

This structure is underlying our approach to the stochastic optimal 

control problem.  We develop the theory for a two-stagi system but the 

generalization to an n-stage process presents no mathematical difficulty. 

In Section II, we derive the deterministic equivalent of the stochastic 

problem.  Section III is devoted to a duality theory for this class of 

problems and its relation to the maximum principle. A projected paper 

will deal with the applications of the theoretical results obtained here 

to specific control problems. 

■ 
I 

■ 



2. THE EQUIVALENT CONVEX PROGRAM 

A. The Problem 

The standard form  of the problem to be considered in this 

paper is: 

(1)  Find Inf 2(u) - c(u) + E {Inf q(vU])} 

subject to     A(u) ■ b 

T(ufO + W(vm)     - d 

where 

• u Is restricted to lie In some closed convex subset U 

of a Banach space U   and, v[£] must belong to a closed 

convex subset V of a Banach space V   for each £. 

• b and d are points In 9t  and 9} , respectively. 

£ Is a random vaiiable defined on a probability space 

(•:,^,F), note that v: H -► V. 

• c    and q are continuous  convex functlonals on U     and 

Vt     respectively. 

• A,T,W are continuous linear operators such that 

A : tf - 9r 

T : (/ x H -. JRm 

• The operator E  stands for expectation of the inf of q(vU]) 

with respect to £. 



The process described by Problem (1) can be Interpreted as 

follows: We first select a point in Ut    satisfying the constraints 

A(u) ■ 0 and u e U,  say u; we then observe the random event, 

say £;, and we are finally allowed to pick a point of V    such that 

v e V, W(v) + T(u,0 ■ 0 and q(v)  is minimum.  The decision process 

is thus divided into two stages. The second-stage decision is taken, 

when no uncertainties are left in the problem, i.e. when the random 

variable has been observed.  This second stage is not our immediate 

interest here.  Our primary interest is to find a "feasible"    u which 

minimizes our total cost.  Not only does our objective function take Into 

account the immediate cost:  c(u),  but also a weighted average of the 

cost of all the optimal second-stage decision,a given u, may lead to. 

For the sake of simplicity, we shall assume that  (5,^,F)  is the 

probability space induced in 91 . 5 is a subset of 9J ,  F is a 

probability measure generated by a distribution function also denoted by 

F and &   is the completion for F of the Borel algebra in 9? .  We 

shall assume that z     is convex.  If this was not the case, we then 

replace it by its convex hull which we will also denote z 

and fill up ^ with the appropriate sets of 

measure zero.  Without loss of generality, we can assume that z     is of 

full dimension.  If not, we can change Problem (1) so as to include the 

deterministic second-stage constraints, into the set of fixed first-stage 

constraints.  Then, our new 5 has full dimension.  The probability 

distribution function F is continuous, discrete or a mixture of both. 



In view of the interpretation given to (1), It Is easy to see that 

the second-stage decision (control) variable v Is a function of the 

observed state of the system, viz.  d - T(u,C), and In particular a 

function of the random variable C«  Thus, v is Itself a random 

variable. This fact is expressed by our notation v[£]. Moreover, we do 

not make any assumptions on v as a function of £,  e.g., as to its 

measurability.  Since by the nature of the model it is "calculated" 

only for the value of C which actually occurs. We will, however, show 

that  E (Inf q(v[C])} makes sense. 

In what follows we show that there exists an equivalent problem to 

(1), i.e. a problem with the same set of optimal solutions as (1), that 

can be expressed as the minimization of a convex functional on a convex 

set. 

B.  The Second Stage Problem 

Once u is selected and  ^ is observed, the second stage problem 

(2)  Find   inf q(v) 

subject to W(v) ■ d - T(u,0 

v e V 

becomes a deterministic problem. 

Let 

(3) V(u,0 - {v | W(v) + T(u,0 - d, v e V} 
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be the set of feasible solutions for (2), and le: 

(A) Q(u,0 - Inf{q(v) | v c V(u,0} 

be the functional describing the range of the inflmum of q(v)  as 

a function of u and C. As we shall see later, we may restrict 

ourselves to the case when V(u,0  is non-empty.  The set V(u,0 

is convex and closed, but not necessarily compact.  Thus, the functional 

q(v) may fall to achieve its minimum on V(u,0.  We shall assume that 

q(v)  possesses finite inflmum on V(u,C).  Such a condition is not 

very restrictive, because if for some u,  Q(u,0 E -» for all C in 

5 ,  then z(u) ■ -<*>    and Problem (1) is of no Interest. Moreover, if 

for some u,  Q(u,0 equals minus infinity for a proper subset of E, 

we could still hope that this set would have measure zero, and our problem 

could have a meaningful solution.  But it is not the case, since we shall 

show that if Q(u,0 ■ -00 for some t,    in 5, then Q(u,0 = -00 for all 

f, in H.  To do so, we need the following results: 

(5) PROPOSITION: Fix u and let V(u,0 ^ 0 for all ^ in E,  then 

Q(u,0  is a convex function in £ on E. 

Proof;  For e > 0,  we say that v determines an e- inf of q(v) on 

V(u,0  if v £ V(u,0  and q(v) 1 Q(u,0 + e. 

First, we shall assume that Q(u,0 > -« for all ^ in E. Let 

^0, Cj t  E,  then \t.0  + (1 - A)^1 " CA £ 5 for \ z   [0,1].  Let v0 

and v.  determine e - inf on V(u,Cn)  and V(\itt,.)t     respectively. 

By the convexity of V and linearity of the operators W and T, 



Xv0 + (1 - X)v1 e  V(u,^)  for X e [0,1]. 

Then 

Q(u.^) <_ q(Xv0 + (1 - X)v1) 

also, by the convexity of the functional q, 

q(Av0 + (1 - X)v1) 1 Xq(v0) + (1 - X)q(v1) 

and since vn and v. determine e - inf, we have 

Xq(v0) + (1 - X)q(v1) <. XQ(u,C0) + (1 - X)Q(u.C1) + e 

i.e. 

Q(u,CA) 1 AQ(u,C0) + (1 - X)Q(u^1) + e. 

Since, the above inequality holds for any e, arbitrarily close to 

zero, we obtain 

Q(u,Cx) 1 XQ(u,C0) + (1 - X)Q(u,C1). 

Let us now consider the case when Q(u,0 is not finite for all 

C in E.  Without loss of generality, we can assume that Q(u,C0) ■ -00. 

If Q(u,^0) ■ -00,  then for all N arbitrarily large, there exists 

v- e V(u,C0)  such that  q(v0) 1 -N.  But 

Q(u,cx) iq(Av0 + (1 - X)v1) 

and by convexity of the functional q 
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q(Xv0 + (1 - A)v1) <_ Xq(v0) + (1 - X)q(v1) 

and since Q(u,^ ) ■ -<*>, 3v0 such that 

Xq(v0) + (1 - X)q(v1) <_ -N 

for any N;  thus 

Q(u,^x) <_ -N 

i.e.  Q(u,CA) - -
0°  for  A e (0,1). 

This implies that if there exists some  ^ in 5  such that Q(u,0 

has no lower bound, then Q(u,C) = -00 for every C  in the interior 

on 5 and Q(u,0 may be different from -00 at most on the boundaries 

of E. 

(6) PROPOSITION:  If for a fixed u,  V(u,0 j* 0    for all f,  in E  and 

at least one of the three following assumptions is satisfied: 

(i)  q(v)  is linear and V  is a convex polyhedral subset of 9? , 

(il)  V  is compact 

(iii)  q(v)  is weakly continuous on V and V is weakly compact 

(iv)  E  is open 

thpn Q(u,r)  is continuous in i    on S. 

Proof;  Since Q(u,0  is convex,  Q(u,0  is continuous on the interior of 

E  (this proves the proposition under assumption (iv)).  Thus, the only case 

of interest is when C  is on the boundary of E.  The proposition under 

Assumption (i) is proved in [8].  We limit ourselves to (ii) and (iii). 
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Let r, c  6H and t.    ■*■  4n, where each ^  belongs to the 

interior of 5. Under either (ii) or (iii) there exists a subsequence 

v ^ such that q(v 'c) -► q(v )  for some v  in V and such that 

W(v ) + T(u,0 ■ d,  where v  is an e-inf corresponding to   .  Henca, 

lim Q(u,£; ) >_ {Inf q(v) | v t  V(u, lim 4 )} - QCu.cJ. On the 

other hand, by the convexity of Q(u,0. we have 

Q(u^0) >_ lim Q(u,Ck) 
k -► 00 

thus 

lim Q(u^ ) - Q(u^0). 
k -•■ »     K 

Remark;     The conditions  (i),   (ii),   (iii)  or  (iv)  are sufficient 

conditions  to ensure the continuity of    Q(u,0*     They are not necessary. 

In general,   however,    Q(u,0    may  fail to be continuous  in    C»  as  is 

shown by the following example,  where    V    is of  finite dimension.     Let 

V -<)£,     5  -  [0,1],     q(v)  - q(x,y)  - -Min  (|/T7 I.D.  d - 0 

W(v)  - x    and    T(u,0  - -£. 

It is easy to see that Q(u,0 ■ -1 if  4^0 and Q(u,0) ■ 0.  Hence, 

Q(u,C)  is not continuous for  C ■ 0. 
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(7) Corollary; For a fixed u,  let V(u,0 + 0    for all C in E. 

If Q(u,0 ■ -00 for some C  in 5 and at leacc one of the conditions 

(i), (ii), (ill) or (iv) of Proposition (6) is satisfied, then 

Q(u,0 =  -0D  for all £  in E. 

In what follows, we shall assume that either E  is open—or it can 

be  redefined so that it is open—or that at least one of the conditions 

(i), (ii), or (iii) of Proposition (6) holds. 

C.  The Solution Set 

A fixed u and an observed  C determines Q(u,C)  uniquely, then 

our only decision variable is u.  It is in this context that we examine 

the solution set of Problem (1).  Nonetheless, the second-stage decisions 

affect our first-stage decision, not only by the values assumed by Q(u,0, 

but also by the restriction that we have to limit our set of admissible 

first-stage decision to those for which there exist a feasible second-stage 

decision. 

(8) Definition: u is a feasible solution to (1), if A(u) « b, u e U, 

and if the feasibility of Problem (2) is independent of the value assumed 

by f;  in E.   Let K be the set of feasible solutions to (1). Let 

K. » {u e i/ | A(u) ■ b} 0 U,  be the set determined by the fixed constraints. 

(9) PROPOSITION: K  is a closed convex subset of U. 

Proof:  By linearity and continuity of the operator A and convexity of 

the closed set  U. 
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Let K- ■ {u e £/ I  ^ e 5,V(u,0 ** 0} be the set representing 

the induced oonetraints.     By induced, we mean that the set K- is 

determined by a condition to be satisfied at some later time, viz.: 

the second-stage problem must be feasible for all  C  in E. 

Let K - {u e i/|V(u,0 »* 0} , then K? - O K, . By the 

linearity of the operators W and T and convexity of V, K». is 

convex.  Thus, 

(10) PROPOSITION: K2 is a convex subset of U. 

Note that introducing the appropriate sets of measure zero, in 

order to replace the original E by its convex hull, does not change 

the set Kj. Let E be the original probability space and let E be 

its convex hull.  Let K- ■ n.K-f and K- as above. Obviously, 
£ e = ^      * 

K^DK. since the intersection is taken over a smaller index set. Thus, it 

suffices to show that u e K?  implies that u e K..  If u e iL,  then 

u e K   for all t.    in S,  and V(u,0 ^ 0 for all C in 1.  If 

£ e E,  but not to E,  then there exists ^i»C?  in E such that 

^ - X^ + (1 - AH. for some X e (0,1). By the linearity of W and T 

and since V(u,£;i) and V(u,^2)  are non-empty so is V(u,0. Thus, 

V(u,0 ^ 0 for all C in E,  i.e. u e Kj. 

(11) PROPOSITION: The set K of feasible solution to Problem (1), is 

a convex subset of U. 

Proof:  K - ^0 K2. 
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D.  The Obiective Function 

To show that (1) can be reduced do an equivalent convex program, It 

now suffices to show that z(u) —the objective function of Problem CD- 

Is a convex function In u on K.  Remark that u c K Implies that 

V(u,0  Is non-empty for all  C In z. 

(12)  PROPOSITION: Q(u,0  Is convex In u on K. 

Proof:  Fix t,    and take u , u. e K,  then  Au + (1 - A)u1 ■ u. e K. 

Since we assumed that Q(u,0 > -00,  there exists v» and v. which 

determine e- Inf of q(v)  on V(u ,C) and V(u.tO«  respectively. 

Al so, by convexity of V and linearity of W and T,  Xvn + (1 - X)v1 

c V(ux,C).  Then 

Q(V0 1 ^(^o + (1 " A)vl) - Aq(vo) + (1 " X)ci(vi) 1 AQ(u0»O + (1 * X)Q(u1.C) + c 

Since this Inequality holds for all  e, we have 

Q(ux,0 <_ AQ(u0,O + (1 - A)Q(u1,0  for \  e [0,1]. 

(13)  PROPOSITION:  Let Q(u) - E.{Q(u,^}.  Then Q(u)  Is convex In u on K. 

Proof;  The function Q(u,0  Is continuous, thus Lebesque measurable.  But F 

Is a Lebesque-Stleltze measure and &   contains the Borel Algebra, thus Q(u,0  Is 

also F -measurable. Since F determines a positive measure, Q(u)  is the 

result of a weighted positive linear combination of convex functions. Thus 

Q(u)  is convex. 

Since c(u)  is convex, we have shown that there exists an equivalent 

convex program to Problem (1), viz. 
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(1A) 

Find    Inf    z(u)  - c(u)  + Q(u) 

subject  to u c  K 

where no random elements are present any longer.     Nonetheless,   two main 

difficulties remain to be solved before one could use efficiently the 

techniques available  for convex programs,  namely:     Depending on  the 

structure of  the different operators of  the original problem,   to  find an 

explicit expression for    Q(u)    and  the set    K,    may be a major undertaking, 

As we shall show in a forthcoming paper,  a certain and interesting class 

of problems allow us  to express    Q(u)    and    K    explicitly, with relatively 

little effort. 



16 

3.  DUALITY 

A.  The Dual Problem 

Solution methods for any particular problem of the form (1) depend 

strongly on the form of the operators Involved.  However, as was the case 

in linear programming under uncertainty [8], there is a dua "y theory 

which plays a crucial role. 

The second-stage problem, (once u is selected and  C is observed), 

Find  inf q(v) 

subject to W(v) - d - T(u,0 

v e V 

and the equivalent convex program. 

Find  inf c(u) + Q(u) 

subject to A(u)       ■ b 

u e K2 O U 

are in the same form.  To develop the duality theory for this class of 

problems, it suffices to consider the following simple problem. 

(15) Find  inf c(u) 

subject to A(u) ■ b 

u e U C i/, 

where b, c(u), U and U    are as defined in the previous section.  We 

remember in particular that U is closed and convex, and A is a continuous 

linear operator with range in 91 . 
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Let 

C -  {p -  (Po»Pi»,,,»Pm
) I PQ - c(u)'   (Pi»,,,»Pin^   ' A(u^  " b,    u £: U} 

and 

ß -  {(P, Pm) I  (p,....^ )  - A(u)  - b,    u e  U} i in x vn 

(16)    Lemma;       C    Is convex. 

12 12 Proof;     Suppose    p  ,p    e C    and suppose  further that    u   ,   u    t U    satisfy 

P0 1 c(u )»       ^Pl,,,,,pm^  " A^U ^  ~ b» i -  1»2, 

Let      pA « Ap1 + (1 - X)p2    and    uX  -    u1 + (1 - A)u2 for    \  z  [0,1]. 

Then 

1                        lx      .      „             ,w    2                        2V ww    lv .   v       .      .,             ,v.w    2 A ^I'-'-'V  +  (1 "  A)(P1 V  ' A(A(u  >  - b)   +  (1 - A)(A(u')  - b) 

- A(uA)  - b. 

Also, by convexity of the functional c we have 

c(uA) < AcCu1) + (1 - A)c(u2) <. Ap1 + (1 - A)p2 

Unfortunately, it is not true, in general, that C Is closed. 

Consider (15) with 

U - l2-  {{ui}|Zu
2 < »} 

A(u) - u 

00  1  2 
c(u) - 2 "T U4 

i-2 21 * 

00 

U - (u I E u2 - 1} 
i-2 1 
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For any b in (7,  inf c(u) ■ 0, but there exists no feasible u such 

that c(u) ■ 0.  In particular, let u , i«2,... be given by u ■ 6  . 

Then A(u ) « 0 and c(u ) - —r, 1-2... .  Thus, we have 
21 

p ■ (p0,p1) >_ (-T,0) ■♦ (0,0) ■ p  where p  ^ C and each p  does. 

However, we will need Ci closed.  This will be the case when U  is weakly 

sequentially compact or if it is a convex polyhedron subset of a finite 

Euclidian space.  In general, we see thac we are essentially seeking to 

find the "lowest" point of C,  on the p  axis. That is, we can 

reformulate (15) as follows: 

(17) 
Find      Inf    p 

0 

subject  to    p G LOG 

where    L  »  {(p^.p, ,... ,p  ) | p.  • 0,   i»l,...,m} 
(J     1 ml 

Figure 18 
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Problem  (17)  has  the very natural dual. 

(19) Find    sup      u 

subject  to    TT     =  1 J 0 

Tip  - M  ^ 0    for all    p     in    C, 

where    u     is a scalar,  and    TT       is  the  first component  of  the    m + 1 

dimensional  vector    TT. 

If we  think of    Ttp - y » o    as defining a hyperplane  in 91   ,    then 

there  is a one-to-one correspondence between feasible solutions of  (19) 

and non-vertical  supporting hyperplanes which are  "below"  the  set    C, 

in the sense  that   increasing    p      means up. 

Immediately,  we have 

(20) Proposition   (Weak Duality);     Pn ^_ U    for all feasible solutions 

to  (17)  and   (19). 

Proof;     Tip -  u ^ 0    by (19).     Since    p    is feasible for  (17),   then 

p    =   ...   = p    =o    and hence    ^nPn - u ^_0.    But    TT    ■  1. 

We now prove  the following intuitively obvious duality theorem; 

(21) Theorem  (Strong Duality):     If  the  projection    6    of    C    with respect 

to    p      is closed,   exactly one of  the following occurs: 

a) (17)  and   (19)  both admit  feasible solutions  in which case 

inf p0 = sup  M, 

b) (17)   is  feasible and   (19)   is not  in which case    inf pn ■ -00, 

c) (19)   is feasible and  (17)   is not   in which case    sup p ■ +■», 
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d) neither (17) nor (19) is feasible. 

Proof;  (a)  By (20)  inf p  and sup u    are finite. Let 

u* ■ inf{pn| p e L 0 C} > -«. Clearly there exists p* which belongs to 

COL such that u* ■ p* and p* is a boundary point of 

C « {(p0,...,pm) | p1 - pj, i«l,...,in, P0 1 PQ, p' G C}.  Hence, there 

exists a supporting hyperplane to C at  p*.  Let it be defined by 

irp - O^O.  Clearly  ft ^0.  If  ^f  > 0 division by TT0 yields 

Tip - IJ>_0 where TT ■ "s—(TT), p » -¥-    for all p c C. Since up* - u = 0 
^0      "o 

implies p* * W* ■ W,     (^.u)  is optimal for (19) and inf p • sup y. 

If for every supporting hyperplane of C at  p*, we have that ^  « 0 a 

somewhat more complicated construction is necessary. Let  c > 0 be 

arbitrary, and let  p « (p* - e,0,...,0),  then p ^ C.  Hence there exists a 

hyperplane separating strictly p  and C,  i.e. there exists 7T,U  such that 

Tip - y<0 and Tip - iJ^O for all p  in C.  In particular,  np* - y > 0 

but  np ■ "fiPr, " ^o^pO ~ e^ < "nPn imPlies that ^o  > 0'  Letting 

TT » -=— Ti and u * p ■ pi - e. we have a feasible solution to (19) with 
"o        o  o 

u • p* - E.  Since e  is arbitrary sup u - inf p0 - p*. 

(b) If  inf  p  > -00, a feasible solution to (19) exists by the same 

construction as in a), but by hypothesis no feasible solution to (19) exists, 

therefore inf p ■ -». 

(c) Suppose  sup u  <  +0D,  then let  y ■ sup{y|Tr «1,  Tip - y >_ 0, y p E C} 

and let p « (y,0,...,0).  We now establish that p ^ C.  In fact,  p i C,  for 

if it did  (p.,...,p ) - (0,...,0)  would belong to G = G.  But then 
1     m 
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(c(0),0,...,0)  is a feasible point for (17) which is assumed infeasible. 

Hence,  p ^ C.  Therefore, there is a hyperplane separating strictly  p 

and C determined by, say 7T,u,  and such that 

frp < inf{itp | p e C}  <_ inf {ifp | p c C}. 

By definition of C and since C  is non-empty, we have the TT >^ 0. 

If IT  > 0,  let  Ti,u be ^iven by 

IT ■ T— • TT and -^ « y < p < r— inf {flp I p c C } 
0 0 0 

TI,)J is a feasible solution to (19) with y > u which contradict the 

definition of  y.  Suppose now that  ff  - 0.  Then flp ■ 0,  hence 

Tfp > 6 > 0 for all p e C.  Let Tf,n be any feasible solution to (19), 

then TT » (TT + ATT), p = (U + X(5)  is also feasible for any  X. Taking any 

A > 0 contradicts the definition of v, 

(22)  Corollary:  If p* and TT*,VJ* are respectively feasible for (17) 

and (19) they are optimal iff 

Proof;  (TT*P*) - < (1,TT*, ... ,TT*) , (p*,0,... ,0) > • p*.  hence p* - U* 

but P0 1 V1 for all feasible solutions of (17) and (19) by Proposition (20). 

In particular,  p* >^ sup u .  Since u* ■ pi, (TT*,M*)  is optimal. Conversely, 

inf p >_ u* and since p* ■ TT*,P*  is optimal.  On the other hand, if 

p* and TT*,P* are optimal, i.e. they achieve the  inf and sup in (17) 

and (19) then by Theorem (21) they must satisfy TT*P* ■ y*. 
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(23)  Corollary (Pre-maximum principle)  If p* is optimal for (17), 

there exists a TT* such that: 

Tr*p* - Min{ii*p| p e O. 

Proof;  Clearly p* is a boundary point of C then  3 supporting 

hyperplane Ti*p - p ^ 0 for all p e C with Tt*p* - p ■ 0. 

TT* 
Remark;  If in Corollary (23)  TT* > 0, then — , p* determines an 

optimal solution to (17); however, this need not be the case (see 

Figure 24). 

s 
■ 

■ 

Figure Ik 
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(25) Corollary;  If C is closed and the inflmum in (17) exists and 

is finite, then the infimum is attained for a feasible solution. 

(26) Corollary;  If L    intersects the relative interior of C and (19) 

is feasible, the supremum in (19) is attained. 

Proof;  [6]. 

B.  Special Cases 

We now apply the results of the last section to the original problem (15) 

and examine some special cases.  We first interpret the dual problem (19). 

For the special case (18), it is equivalent to 

(27) Find    sup w 

s.t.    c(u) - MA(u) - b] _ p for all u e U. 

An easy lemma is: 

(28) Lemma;  If c(u) ■ c^u  is linear and U is a cone, then for any 

feasible ^%V    for (27) we have 

[c - ^A](u) 1 0  for all u e U. 

(29) Application to linear programs; Consider the linear program 

Min ex 

s.t. Ax ■ b 

x i 0. 

By direct application of (27), its "dual" is 
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(30) Find   sup u 

s.t.  ex - IT[AX - b] ^ U for all  x ^ 0. 

Since the set of non-negative x is a cone (28) applies and we 

have 

[c - TTAJX i_ 0 for all x ^ 0. Further, by taking x ■ I 

l"l,...,m, where I.  Is the  i   unit vector.  We obtain 

c - TTA ^ 0 for any feasible TT, 

Re-arranglng (30) we obtain 

(c - 7rA)x + Tib ^ y. 

Clearly for a given TT ,  the largest u Is given by 

U - Ttb ■ Inf  (c - TTA)X ■ 0. 
x ^ 0 

Hence,   the dual  problem becomes 

(31) sup      nb 

s.t.      c - TTA ^ 0. 

To obtain  the usual duality  theorem for linear programming from  (21) 

it  suffices  to observe  that  if     sup     Trb < <*>,     then  it  is  attained by some 

feasible    TT,     and similarly  for  the primal objective. 

(32) Application to linear control  problems;    Consider a dynamical system, 

the evolution of which,   is described  by the ordinary linear differential equations 
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^j~ - A(t)x(t) + u(t)   on the  time  interval at 

[0,T]     where    x(t)  «   (x   (t),...,x  (t)),  A(t)     is a    n+l^n+l 

matrix of continuous functions and u(t) * (urt(t),...,u (t))  is a vector 
u       n 

of controls.  For simplicity, we assume that  u e U «{uluCt) e fi 

0 <^ t ^ T, and   u   is measurable and bounded} where n    is a closed 

convex subset of 91   .  Further we assume that 

x (0) -  x       i«0,...,n 

T 
and x (T) ■  x       i»l,...,n. 

The value of x (T)  is not prescribed and the problem is to minimize 

x (T)  over all x(t)  and u(t) satisfying the above relations. 

T 
As is well known,  x(T) • Y(T)x0 + C    Y(T)Y~1(s) u(s)ds where 

0 
Y(T)  is a n+lxn+1 matrix of functions satisfying the adjoint 

equation: 

Y(t) - -Y(t)A(t), Y(0) « I. 

/•T     "I 
It is easily seen that  ST « {x(T) | x(T) - Y(T)x(0) + j    Y(T)Y  (s)u(s)ds, u e U} 

■'o 

is convex.    Thus,   the duality  theory    previously developed can be used. 

If    x*(t),  u*(t),     is an optimal solution to  the control problem,  we 

can apply Corollary  (23)  yielding the existence of    TT ■  (n_,....7T   ..) 
0     m+1 

such that 

TTX*(t) « MinUx | x e S }. 

Using the particular form of the description of the set S , we have: 
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Y(t) 
•'0 

Y(T)Y"1(s)u*(s)ds 

/ 

-1 
<. ITY(T)X0 + I  TtY(T)Y  (s)u(s)ds 

0 

for all u e n.  Thus 

0 <_   rTTY(T)Y"1(s)[s(s) - u*(s)]ds. 

If we define n(t) « TTY(T)Y" (S),  It is easily seen [6] that 

u*(s) ■ Min n(s)u and n(t)  is a vector solution of the adjoint 
u e n 

equation, which is equivalent to the maximum principle for this problem. 
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