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ABSTRACT

The fundamental equations of the transonic box
method were derived, based on the representation of
the velocity potential by a doublet distribution. They
form the basis of a systeiratic method of treating an
oscillating wing at M = 1, analogous to the supersonic
Mach box method.

A digital computer program, written in Fortran IV,
is presented. The program applies to a planar wing of
polygonal planform, with a straight trailing edge, and
as many as three syeep angles along the leading edge.
For a maximum of ten modes of oscillation, the pro-
gram computes the oscillatory potentials and pressures
and a generalized force matrix.

Results obtained from the program are compared
with existing theoretical and experimental values.
Several possible extensions of the method are described.
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UST OF SYMBOLS

Symbol Definition
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(Brrf) Matrix used in least squares surface fits
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(Cr) , (C! Column matrices used in least squares surface fits
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F Factor which gives j the proper edge behavior
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SymolDefinition

g, g. I f Functions used in the equations of upper and lower wing
surfaces
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I kd
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M Mach number

2
n, m Indexes equal to power of x and power of y

NC Number of coefficients

NP Number of points
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p, q Integration variables

Q Quantity minimized in least stluares surface fits

r index

S Function used in the equation of a surface

S Region in the xy-plane occupied by the wing; the area of this
region

t Time

u, v Integration variables

uj Point used in Gaussian quadrature

UM Air speed of the wing; speed of flow at infinity
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Symbol Definition

w Upwash at z = 0+

W The region of the xy-plane occupied by the wing's wake

, y, ~Z Coordinates with dimensions of length

,. y, z Dimensionless coordinates

(xi, yj) Center of Bij

(xj. Yj) Point at which a value of potential or deflection is given

Xr-.-,x NS
o Coordinates of points on the leading edge given by the dataYo, ' "NSJ

x o  Function which describes the leading edge: x = xo(y)

Yrmax Value of y at the wing '.p

y+# y. Limits of integration

Ohmo Or Real part of anm

Imaginary part of anm

6 Constant factor in the deflection

APi Lifting pressure in the ith mode

Sj qIntegration variables equivalent to x, y

V Frequency

p Density

p Source or doublet strength

a. The integral over x involved in BXY

* Velocity potential

*b Steady perturbation potential
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(Continued on next page.)
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Symbol Definition

tTime independent factor of p

00o Potential of a point source

- Potential of a point doublet

' s Potential of a source distribution

I d Potential of a doublet distribution

Iij Value of in Bij

-j Real part of value of i at (xj, yj)

Upwash in the xy-p'ine caused by a point doublet

Angular frequency, Z1Tv
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1. INTRODUCTION

The transonic box program is designed to caiculate the unsteady potentials
for a given set of modef of wing oscillation and to compute the generalized
forces. Pressure distributions may be obtained from the potentials.

A planar wing with a straight trailing edge is assumed. The oscilla-
tions are assumed to be symmetric in the spanwise coordinate y. None of
these assumptions is necessary for the method. (See Section S.)

The basic step in the box method is the solution of the system of
simultaneous equations [Equation (33)) which determine a set of values of
potential on the wing from a corresponding array of upwash values. A sur-
face is fitted to these values, giving a functional representation of the
potential that is used subsequently to find pressures and generalized forces.

The method used is suggested by the success of supersonic box
methods (References I through 4). The potential is generated by a dc, iblet
distribution rather than by a source distribution because the latter method
would involve diaphragm regions of infiaite extent, whereas the doublet
distribution is confined to the wing and its wake.

I
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2. THEORETIC... OEVELOPMENT OF THE METHO

1. THE DIFFERENTIAL EQUATION

We consider an oscillating body moving at speed Uam through a

nonviscous fluid. From the point of view of a moving coordinate system
(x, , z) in which the average position of the body is fixed, there is a flow
past the body with velocity UD at infinity. Assume that the flow is irrota-
tional; then the velocity field of the flow is the gradient of a potential function
4, which satiafies the differential equation

2 @" 4t +  2 vo" V-0, + (Ve' v) 1/2= 0 1)

(See Reference 5, p. 193' where a is the iocal speed of sound.

Suppose that the flow- is approximally uniform in the direction of the
positive x -axis. This may be true, for ex&rple, if the body is almost
plane and the oi cillations are small. Then * may be broken up irto several
parts, as

0=U.(x4+ +9 ) (2)

where the first term gives a uniform flow, the second term gives the cor-
rection for a steady flow about the body, the third term gives the correction
to this for the oscillating body, and 0 and p are smalL

To the first order, a and P are different soltions of the same differ-
ential equation

21 U I
+y V- + ,Z 2 Vi - 02 (3)a a

where M. a are the Mach number and speed of sound at infinity. 4See Refer-
ence 5, p. 198. ) 4 is a periodic function of t. Since the differential equation
is linear, we may put p = (x, y, z) e i wt , where w is the angular frequency
of oscillation. In terms of the nondimensional quantities,

3



x = x/b

y = y/b

z =/b

k = / U

(b is a characteristic length of the body); Equation (3) becomes

(l-M ) XX +# yy +0 zz - 2iM 2 k-x + M2 k = 0 (4)

For M = 1, this reduces to

Yy + ;P -2 ikfx +k 2  = 0 (5)

the linearized transonic equation (see Reference 6, p. 7) It has been sug-
gested by Landahl (Reference 6) that the proper equation to use instead of (4)
is

-yy - 2iMk + Mk = 0
yy zz k'x

if k>> I M- 11. Comparison of this equation with (5) leads to a similarity rule
for flows in the transonic range (see Reference 6, p. 18)

The range of validity of this equation is duscussed by Landahl (Refer-
ence 6, Chapter 1). First, there is the requirement for linearization in any
speed range, that the perturbation potential + be small. This is not
satisfied at the leading edge of a wing for any realistic cross-sectional
shape; however, it may be satisfied over the rest of the wing, if the wing
has small thickness, and the results on parts of the wing away from the lead-
ing edge are not much affected by the error there.

Another restriction peculiar to transonic speeds is associated with the
absence of the term in;xx" The actual flow has some variation in local Mach
number which may influence the iature of the flow considerably if M is near 1.
The presence of the term in Wx tends to reduce this influence, but for k small
or zero, the equation is valid only for a highly swept wing with a pointed nose.

The difference of the local Mach number from the value I assumed in
Equation (5) may come from two sources: (1) wing thickness, and (2) a change
in the free stream Mach number. Thus, for any value of k, there are limits
on the thickness ratio and the Mach number range, which increase with k.
Estimates of these limits are not possible, because of the small amount of
experimental data available.

4



2. BOUNDARY CONDITiON-

The solution of Equation (1) must give a velocity field which is such
that a particle at the body surface moves along the moving surface. If the
equation of the surface is

S(;, y, -'t) 0

this equation must be satisfied when (x, y. z) moves with the velocity VO&
Differentiating with respect to t gives the condition

v vs+ S = 0 ()

This determines the normal velocity at the surface.

Now suppose that the body (to be referred to henceforth as a wing) is
almost planar, lying almost in the xy-plane (see Figure 1). For vertical

U4006 VY

- b

S w

/-- - - 4W op ---

Figure 1. Coordinate Systems

oscillations of the body, the upper and lower surfaces may be represented
by the equations

z = gu (x.y) + e t f (x-y)

5



z g1 (x,y)+e f (xy)

where the functions gu, g. are associated with the deviation of the shape of
the body from planar, and f depends on the mode of oscillation. Then on
the two surfaces, we inay take

S Z g u e f

S z zg 1 - f

Use these expressions for S and Equation (2) in Equation (6) Neglect-
ing terms that involve products of 0 or 40 with gu, gi, or f, the resulting
equation may be broken up into a steady part, which gives the boundary
condition for 9, and an unsteady part, which gives the boundary condition
for i. The unsteady part is

_ _ f + k (7)8z x

where f = fib. To the present degree oi approximation, this condition should
be applied at z = 0, over the region of the xy- plane on which the body

-t projects.

3. THE BOUNDARY VALUE PROBLEM FOR i

In linearized theory, a disturbance of a flow at Mach I does not have
any influence upstream. Consequently,

(x,y,z) = 0, x < 0 (8)

j if the body lies in the region x Z 0. This is one of the conditions must
satisfy.

4 is a solution of Equation (5) in all space outside S and W, the regions
in the xy-plane occupied by the wing and its wake (see Figure I ) In general,
IF is discontinuous in these regions. A boundary condition on W is obtained
by equating the pressures above and below the surface of the wake. From
the linearized form of the pressure coefficient,

C = -2 ( + ik)
p x

(see Reference 6, p. 15) we get

6



0+

[-x (x,y,z)+ikV (, (x,y)ui W (9)-

Tiis condition, plus Equation (7) applied on the two sides of 3, plus Equation
(8). determine F as a solution of Equation (5X

The conditions satisfied by f (x.y, z) are satisfied also by -'#(x, y, -Z

Hence, W is an odd function of z- This implies that 'C is zero in the wake.

In the half space z > 0, - is a solution of Equation (5). which satisfies

Equation (8) and the boundary conditions

Z (x,y,0+) = - +ikf, (x.y) inS (10)

5x(x,y, 0+)+ik (x,y,0+) = 0. (xy) inW (11)

I(x,y,0+) = 0, (x,y) not inS+W (12)

Such a solution may be built up from a doublet distribution over S + W or a

source distribution over the half plane z = 0, x > 0.

4. BASIC SOURCE AND DOUBLET SOLUTIONS OF THE DIFFERENTIAL

EQUATION (See Referencem 7. 8, and 9.)

The solution of Equation (5) which represents a point source at the

origin is

0, x S 0

V° (x,y,z) =ik (Xy 2 + 2  (13)
I e-gik x

(See Reference 9. ) The potential of a point doublet oriented parallel to the

z-axis is obtained by differentiation. as

o(x.y.Z) = = -T i k(x + (14)1I x y z  z ik Z e-> 0

x>

It is easily verified that these functions satisfy Equation (5) for x+0. They

are poorly behaved at x = 0 for real values of k.|

7



To improve the beha-,ior of o and I at x = 0. assuxe that k has a
small negative imaginary part. This causes j; and 1F tc approach zero
exponentially ams x - 0+, except at the origin. All partial derivatives of all
orders have the same property. Thus, jo and ;I are solutions of Equation

(5) everywhere except at (0, 0, 0) In the final formulas to be obtained,

the imag;nary part of k can be put equal to zero.

Solutior.s of Equation (5) for z > 0 which satisfy Equation (8) are given
for a distribution of sources as

"- (x y[z) p=. (x- , y-n. z)dtdq (15)

t> 0

and for a distribution of doublets as

fd(Xfyx) - ff y-r. z)d 6 dq (16)

4> 0

where, to be completely general, p(g,vI) may be any function such that the
integrals exist. From the form of 4o and #I, the region of integration may
be restricted to the plane strip 0 < 4 < x. It is shown in Appendix I that these
functions satisfy the following boundary conditions for z = 0, x > 0:

- (X,y, 0+) = p(x,y) (17)

Td(X y 0+) = p(x'y) (18)

(in fact, if the same function p is used in both integrals, id = W9/8z).

5. THE DETERMINATION OF F BY A SOURCE DISTRIBUTION

One method of attack on the problem of finding # is to set =

Then, in terms of the upwash

w(xy) : 'z(x,y, 0+) (19)

we have from Equations (17) and (15)

;(XyZ) ff W(4,v-)% (z-4, y-n. z)dtdq (20)
00

for z > 0.

8.. - - - -



The values of w on S are known by Equation (10) Elsewhere, w is
unknown, and it must be chosen so that the boundary conditions
(11) and (12) are satisfied. We may take the limit as z -- 0+ in Equation (20)
by taking the limit under the integral sign:

;(x,y,0+) = Jf w (ttj)7'(x-4, y-n, 0)dtd 1  (21)

From Equations (11) and (12) are obtained the system of integral equations

ff WV!,)P-jfo(X-, y-n, 0)dd : = 0, (x,y)not inS + W (22)

,> 01

( +ik) IJ w(t -,)o(x-t. y-,r, O)dtd 1 = 0, (xy) inW (23)

L> 0

Solution of Equations (22) and (23), followed by evaluation of according to
Equation (21), would yield the values of on S, from which pressures and
forces can be computed.

A box method based on a source distribution, described briefly in
Reference 9, has been used by Weatherill at the Boeing Company. Some ci
his preliminary results are given in Reference 9.

6. THE DETERMINATION OF f BY A DOUBLET DISTRIBUTION

If we set = , then by Equations (18), (16), and (12)

(x,y,z) = ff ( .(0+) l(x-. y-wj,z)d4d (24)

S+W

In terms of

(0. ox 0

4(x,y) = lim - 1  x, y,z -) (25)
Z I - k + 2

2 "V 2 e -, X > 0

x



the normal derivative of j at z = 0 is given by a singular integral:

w(x,y) = Jf (t,€,,0+) 4(x-ty-q)d t d1i (26)

S+W

The values of (j, , 0+) must be determined then from

Jf j (t,.0+) %p (x-t,y-n )d d - = w(x.y), (x, y) in S (27)

S+W

("A. +ik (x'y'O+) = 0, (xy) in W (28)

7. A COMPARISON OF THE METHODS

Except for the singularity of the integral in Equation (27), all points of
difference are in favor of solving the problem by doublets. There are these
points:

a. The region of integration in the source method extends theoreti-
cally to *O'inn ; even practically, the region must be extended an
extreme distance. In the doublet method, the region is restricted
to S + W. This distinction is not so great for supersonic flows.
There, the region of influence of the wing is swept back along
Mach lines, and the set of points in this region that influences the
wing is bounded (see Reference 10)

b. After the unknown function under the integral sign is known, the
source method requires an extra step - the evaluation of ; on the
wing from Equation (21)

c. IU values in the wake must be considered, the condition in the
wake for the source method. Equation (23), is more complicated
than the corresponding condition, Equation (28), for the doublet
method.

The doublet method was used because of point a.

8. THE ADVANTAGE OF A STRAIGHT TRAILING EDGE

Suppose the wing has a straight trailing edge perpendicular to the
direction of flow (x = constant along the edge); then the wing is not influenced
by the wake. This is reflected in the equations by the fact that the inte-
grands are zero when 4 > x. Hence, in either method, for the determina-
tion of F on the wing, the condition in W need not be used.

10



9. THE DOUBLET BOX METHOD

Consider a flow at Mach 1 past an oscillating wing with its nose at the
origin, lying approximately in the xy-plane, with x = I along the trailing
edge. The value of the unsteady potential j on the wing may be found by
solution of Equation (27), which may be written as

11(4.,,0+ (,x -t, y-T)d 4 d w(xy). (x. y) inS (29)

S

To get an approximate solution of this equation, let the xy-plane be covered
with a grid of square boxes with sides of length d, so that box edges lie
along the coordinate axes (see Figure 2) Let the region B be composed of
all boxes whose centers lie in S; B is an approximation to S by boxes. Let
i, j be box indexes in the x- and y-directions. Approximate I by a constant
value in the (i,j)-th box B-.. Impose the condition of Equation (7) at the
center (x1 , y_) of each box B1, in B, with the region of integration replaced
by B. Then Equation (29) gives a system of linear algebraic equations for
the ;ij :

>; 'j'ff wx yj-q ) d.)d dl = w(x. y.) (30)
Biljl

Examination of the integral in Equation (30) shows that it depends on
i. j, i',j' only via i-i', i-i' The notation

A(i-i',lj-j'I) = f (xii-'yjr d E d (31)

Bi j,

is introduced. Formulas for the evaluation of this quantity are given in
Appendix L

Segregating the terms with i'=i on the left. Equation (30) becomes

A(O Ij-'l) ii w(x.. y. i S A(i-iV, Ii-jIi)i.,.j, (32)
i' i'<i it

For fixed i and varying j, this is a smaller system of equations that may
be solved for each consecutive value of L

11t
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Now suppose the wing is symmetric about the x-axis; then okdj1 modes
of oscillation that are symmetric or antisynimetric in y need be treated.
Consider a symmetric mode. ij will have the same value at corresponding
boxes across the x-axis. This may be used to reduce the range of the sumij
in Equation (32) and the range of j. Let j = I in ihe row of boxes in which
0 < y < d. Then, combining terms for symmetrically placed boxes,

1[A(0, j-'ll + A!0,j~j')] A ij (33)?

W (xi. yj)- Aiijjl+~-'l-'~ ~~,

il<i ;'> 1

The equations for j - 0 are implied by those with j 2t 1. Thus, the size of
the system has been reduced by a factor of 2.

For antisymrnetric modes, Equation (33) applies, with the sums of
values of A replaced by differences.

10. EXTENSIONS OF THE METHOD

The computer program discussed in Section 3 has some restrictions
that are not inherent in the box method, such as the requirement of a straight
trailing edge. Some possible modifications that extend the applicability of
the program will now be described. I

'to modify the program for modes antisymmetri, in y, it is only
necessary to change some of the signs in Equation (33), as
indicated in the discussion above, and replace even powers of y
by odd powers in the formulas used for deflection and potential.

To deal with a more general trailing edge, it is necessary to
use the values of 4P in the wake. For fixed y. if x = xT at the
trailing edge. Equation (28) may be integrated to give

+(x, y, 0 +) = -ik(x - xT) (xT, y, 0 +)

in W. In addition to the set of boxes B on the wing, a corres-
ponding set of boxes BW on W musL be considered. After finding
a value ij in a boA of B along the trailing edge, the formula
above may be used ta find values in the boxes directly down-
stream. If the ith row of boxes includes boxes of BW . to the
right side of Equation (33) must be added the contribution of all
boxes Bi' j' in BW with i'z i. The computer program must also
be modified in several other respects, to take into account the
more general wing shape.

13



!
A wing that consists of several almost planar sections indifferent
planes, such as a wing with folded tips. may also be handled by
the d,-blet box method. Eq'vvtion (33) applie3, if +ij is inter-
preted as one-half of the discontinuity in between the upper and
lower surfaces. The influence coefficients involved are given by
a more general formula (not given in this i'eport), allowing for
out-of-plane influence of the doublets. Formulas analogous to

those oi Appendix II may be developed, which are not much more
complicated. The main effect of this extension on the computer
program would be a greater number of distinct values of the
influence coefficients, so that it would not be possible to store
them all in an array in core unless the limit on the number of
boxes in each direction were considerably reduced.

Rectangular boxes, not necessarily square, may be used. Let
the boxes have sides of length dl chordwise and d2 spanwise.

If

2i = kdl, / 2 = kd2 /dI

the formula for the influence coefficients, Equation (39) in
Appendix II, must be replaced by

A (nm) dudv -1/2 i (flu + 1 2 v 2 /u)

Iv-mj <1/2
lu-ni < I1Z

u>O

This may be evaluated by the methods of Appendix I. Except for
this difference, the method is essentially the same. The best
choice of box shape probably depends on the aspect ratio of the
wing.

14



3. DESCRIPTION OF.THE COMPUTER PROGRAM

I. COORDINATE SYSTEMS I
An initial coordinate system (x, y, z) is assumed, with the i-axis in the

direction of the flow. The undisturbed position of the wing is in a region S
in the xy-plane, with the x-axis along the center line and the origin at the
nose (see Figure I). This coordinate system is used in the data.

In the program, a dimensionless ccordinate system (x. y. z) is used.
based on the root chord length b:

x =/b

y =yb

= zIb

2. WING GEOMETRY

The -wing is symmetric, with trailing edge x b. To complete its
description, the portion of the leading edge on which j > 0 must be speci-
fied. This is done by giving the coordinates of the end points of NS line
segments along the edge (IS NS--3). beginning at a point at which y 0:
(0, yo), (l. yj) .... (xNS, jNS The edge of S includes the polygonal line
through these points. If Vo >0. it also includes the line from the origin to
(0,io U 7NS < b, it includes the line from (xlN. )NS) to (b, YNS). (See
Figure 3. )

Leading edges of fairly general shape may be appr-x.*nated by such
polygonal lines.

3. THE DEFLECTION DATA

A mode is specified by the vertical deflection function f(7, j) in terms
of which the equation for the instantaneous position of the planform is3

= Re [6. e i t f(,

where 6 is a constant.I

In the program, f is assumed to be a polynomial in R and j2. The
data may give either the coefficients of this polynomial, or values of f at a

1i L
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~~S S

Figure 3. Wing Geometry (NS 2)

set of points on the wing. In the latter case, a polynomial is fitted to the
given values by a least square error techmnique.

4. LEAST SQUARE SURFACE FITS

The problem involved here is the approximation of a function of x and y
by an expression of the form

i(x, y) =m (X. a x!y (Y)

n, m

when a set of values of the function is known. This arises in the program
in two places. The subroutine DRED fits a representation of the deflection

f of this type with F = I to the given deflection values. In the subroutine
BOXP, such a fit is made for the potential, with

2 2 2
X' x (v), r 1 ?/J 0 max

F(x, y) = or or

Iv/ 1 x --3x O(/y

16



(x xO(y) is the equation of the leading edge) depending oa the wing shape.
This factor approximates the proper behavior of Wat the edges. The factor
VI2 22 - xo(y) is used for a pointed nose (yo0). and v jx - io(y)for an

unswept nose (Y. > 0). The factor I1 - yZ/y,,. is included if the planform
has a side edge along which y = Ymax"

The factor F(x.y) is real, so the values of 'have real and imaginary I
parts that involve only the corresponding parts of the anm's. Hence, these
real and imaginary parts may be handled separately, reducing the problem
from one in complex numbers to one in real numbers.

Let airn = Re [anm] , and let the real parts of given values of the
function at data points be at (xj, yj), j 1. NP. Then for the real
parts we wish to have

n 2Mn
a X. Y F(x., y.) jm., j I... .NP
nmnj j , j

n, m

The least squares method minimizes

rn Zm 2

oj n, m

(See Reference 11, Chapter 16. )

For condensed notation, let r be a single index over the pairs (n, m),
let ah = ar and 'Kn yi2m F'x,, yj)- Air. Then

Q = ~[~r jriJ

j r

Let the range ai r be from Ito NC -5 NP.

To minimize Q, we set

a Q = 0, r = 1,...., NC

r

17



This leads to the system of equations

A A. !, r 1, NC (34)

Z. Ajr Ajr, = rr,

(3s)
Aj ! = C,

jr r

Then Equation (34) reduces to

B B r C' , r 1,. NC (36)Brr, r ,  ,..r

The matrices (Brr,) and (Cr) must be set up to solve Equation (36).
It is not necessary, however, to set up the matrix (Ajr) Only one row of
(Ajr) is needed at a time. This is fortunate, because the program allows
(Ajr) to become as large as 2500 x 20. For each value of j, the jth row of
(Ajr) is computed, and from this the jth terms in the sums in Equation (35)
are formed and added in.

In the complex case, there is a corresponding syst,-m of equations for
the imaginary parts:

B rr' r' C"

r' r

The two systems of equations are solved together by the subroutine XSIMEQ,
which allows for more than one set of values on the right.

5. GENERALIZED FORCES

The generalized force coefficient Lij is defined (Reference 6) by

L. z s AfApi(x, y) f(x, y) d x d y
S I/ZPUW S

18



where Api is the lifting pressure difference in the ith mode, and fj is the
deflection function in the jth mode. In terms of the potential iF(x. y) on the
upper surface,

2
Ap i = 2pUo(#x +ik

Li" = IS Jf(i + ik;)f. dxdy

S

After integration by parts,

L. = j f.dy+ ff~k. ~x y(37)
x=l iS

In Equation (37) insert the series

a x n ax Zy F(x,y)
i n m

n, n

The result is

L dnm a f4. f Zm+Zml F(I.y) dy
Sm' 21

i fn+n' Zm+2rn'
+ik" Jf- y F(x.y)d x d y

S

n' f" x y F(x y) d x dy

S

The integrals in this expression depend only on the wing shape. They
are computed by the subroutine FORCI before the work on the individual
modes begins. During the work on the ith mode, the sum over n and m is

19



performed in the last part of the subroutine BdXP, for each set of values of
n' and m'. The sum over n' and n' and multiplication by 8/S is performed
in the last part of the main program

6. THE USE OF GAUSSIAN QUADRATURE IN THE EVALUATION OF
GENERALIZED FORCES

Gaussian quadrature is an approximation of the form

b N

f f(u)du w h f(u.)

a j=l

exact for polynomials of degree 5 ZN - 1. (See Reference 11, Chapter 7. )
This formula is used with (a, b) = (0, 1). N = 6. The values of the hi's and
uj'S for this case were obtained from values listed in Reference 11. They
are given as H(l)..... H(6), U(1).... & U(6) in the subroutine SECT.

Subroutine FORCI finds the values of

AXY (1,J) ff= . y 6 F(x.y)dxdy
S

and

AY(J) = ± f y 2 J- 2 FlyAY ()y i2 F(I, y) d y

x- f
x=1

for I, J 1... 9. To do this, the contributions to the integrals from each
section of wing behind a straight piece of leading edge are calculated
separately in SECT.

The form of F(x, v) is

X - Xoy) - y2 2y a

F(x, y) : or or
x - x tvyl2

depending on the wing shape. We have integrals that behave like square
roots at the leading edge. The integrals over one wing section are of the
form

zo



BXY f dy f dx x F4- 1Y)- dT  j xtyy
y- x olY)

and

BY = f dy y Z F(I, y)

In BXY. the chordwise integral is evaluated first at each value of y
at which it will be needed. The now variable

u = /X- Xo(y) 1 - xo(y) (38)

is introduced. Then

1 1.121_1-1 21-)

f y dx 1 ' 2  F(x.y) f f du Z 1 xo(y x y Z xy)
x ° 0(y) 0

The integrand, as a function of u, is well-behaved at the leading edge. It
is approximated by

6

a (y) = hi. 4 11 x(y)] x. 1 1y 23 F (zipY)

where x i is computed from the value of ui according to Equation (38
i

In the y-integration in BXY and BY, the inegrand approaches sero as
an y - yr-x like Vi- Y/YMax or (I y/ymax)312 . Accordingly, the change
of variable

y + - y < Ymax

!Y+ (Y+ y )WZ' Y+ y YMAX

is used, which makes the interval of integration 0 < v < I and removes the
square root behavior in the last section of the wing. This leads to the
formulas

21



6 + < Ymax

BXY + -y-) h. o(y.)

j=l Zu = Ymax

6 12 y + < Ymax

BY (y+ - y_) I h. y - F(l, yj)"

j=l Zu, y+= Yr-

7. LEADING EDGE CORRECTION

The value of potential found for each box from Equation (33) is taken
to be the value of ; at the box center. Thus, the values obtained are in

error only by virtue of the error introduced in the values of upwash when

the actual distribution of potential in a box is replaced by this constant

value. This error is especially important in the first row of boxes, for a
wing with an unswept leading edge. The major effect is on the upwash
values in that row.

To estimate this error, consider the two-dimensional case, in which

9 is independent of y. In Equation (26), the expression for upwash due to a
doublet distribution, integrate by parts over g, then integrate over 71. The
result is

ik x +J W x, ) kff d'di1__(4..n,0+) x

O<t< x

(y - nO<t<x

'Zik X d 4 e
7

i k(x " g )

0

I
For x d, if kd is smaU.
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I d

2
d, y).-), _- FV.0+

0 2

The correct leading edge behavior is possessed by the expression
= CJ- We have

0 V2

If is constant on 0< 4 < d, and has the value C -.512 d, then-, in the
above integral, can be exprcssed in terms of a delta function:

C~' 6(t)

Accordingly,

d d

oC.

Note that the latter value is srnaller than the value of W evaluated for
fi =C/-by the factor 2/w. This implies that the values of potential found

for the first row of boxes will be more accurate if the upwashes in that row
are multiplied by 2/w.

8. THE FORM OF OUTPUT

The viewpoint is taken that c:Iculation of the generalized forces is the
basic purpose cl the program. They are always printed out. There are
other outputs that will be printed if the appropriate data signal is given.
Each of the following is printed if the data item specified in parentheses !i
non- zero:

a. The coefficients of the deflection polynomial. if it has been com-

puted as a fit to given values of deflection, DA(87)

b. The upwash array, DA(88)

c. The potential array. DA(89)

d. The coefficients of the potential series. DA(90)

23



e. Values of pressure and potential at the box centers, computed

from the series, DA(91).

9. THE DATA SUBROUTINE DATRD

This subroutine reads all data items into the array DA. Punched cards
used for data are considered to contain six fields of length 12 as indicated in
the sample data sheets. The first field contains information for DATRD.
Ending in column 12 is an integer giving the location in the data array for
the entry in the second field. The following fields go into consecutive loca-
tions, if the data are numeric. Floating point numbers should be written
with decimal points, and fixed point nunbers adjusted to the right end of the
field.

The word ALPHA in columns 2 through 6 indicates that the data on the
card are alphanumeric. These are stored in DA in a different way, taking
up ten locations per card. The data may be printed later, just as they
appeared on the card.

On a numeric card, if a fieli is blank the corresponding location in DA
is unchanged. This is not true for an ALPHA card.

A minus sign in column I indicates the last card to be read at the time.
DATRD reads cards until this minus sign is encountered, then returns to the
main program.

10. A NOTE ON THE USE OF TAPES

In writing of this program, the following tape numbers have been used:
output tape, number 6; input tape, number 5; and tape simulated by an internal

file, number 99.

The tape numbers 5 and 99 appear in the subroutine DATRD. Elsewhere

only the output tApe number is used. It occurs in the main program, and in
the subroutines SHAPE, DRED, BOXP and BOXPO.

1). USE OF THE PROGRAM FOR FIXED WING AND MODES AT

VARIOUS FREQUENCIES

If a non-zero quantity is entered in the appropriate location in the data

array, (DA26), it indicates that a wing shape and set of modes to be used

are the same already used for another frequency. Then quantities that

depend only on wing shape and deflection data will not be computed, but will

be taken from the permanent arrays in which they were stored in the pre-

vious case. The number of boxes along the root chord, DA(Z7), may not be

changcd when this is done.

24
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When this option is exercised, all work for the present frequency will
be carried out atter reading one set of data, which need only include the
frequency and the indicator, DA (26) Titles for the individual modes are
not printed.

12. DESCRIPTION OF THE DATA ARRAY

All data are eotered into the array DA. dimensioned for 700, as
described in Paragraph 9. Thm layout of the array is as follows:

I- 10 Title

13 - 24 Mode Title

23 : Frequency (cycles per unit of time), v

24 : Root chord length, b

25 : Speed of sound, a

26 : Indicator for new frequency (See Paragraph 11)

27 : Number ot boxes along root chord

28 : Number of modes

29 : Number of sections of leading edge to be given
(See Paragraph 2)

30 - 36 Coordinates of points on the leading edge
(See Paragraph 2)

39: Indicator to suppress calcudation of potential for
a mode

46 - 70 Coefficients of the deflection polynomial

(See Paragraph 3)

87 - 91 Output indicators (See Paragraph 8)

98: Number of points at which deflections are given

(See Paragraph 3)

99: Number of i values

100: Number of j values

101 - 700 Deflection data for a waximum of 150 points



Note: 23, 24. 25 and 30-36 must be entered in consistent units
of length and tlrne.

13. OUTLINE OF THE PROGRAM

For the purpose o description, the main program has been divided
into Z0 parts, as indicated in Figure 4, which shows the flow of the program
and the subroutines called.

14. SIZE LIMITATIONS OF THE PROGRAM

The program's size limitations are as follows:

a. Box size - the half wing must be enclosed in a rectangle that
contains no more than 50 boxes in each direction. (The use of a
large number of boxes is not recommended, because the time
required is roughly proportional to the cube of the number of
boxes along the root chord. The poss"ility of 50 boxes in each
direction is intended to allow a large range in aspect ratio. )

b. Number of modes -ten at most.

c. Number of points at which the deflections are given for one
mode- 150 at most.

n 2rn

d. Terms in the deflection polynomial - this is Ed xnyz , where
O n 4, Ocm ! 4. nrn
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1 0 The data array is initialized by "aIng the titles blank andl weights 1 .0.

2 DAM ~ (~ Subroutine DATRD rods the first block of data

3 ()The folowing quantities ore computed: reduced Frequency
k = 2 vvb/a, D = dimnssionless box size, DH - 0.50.

4 ()The title is printed, with the values of L Ohe number of boxes along the chord),
kc, and v.

5 ()If DA(26) #' 0 (See Paragraph 11 of this section) control transfers to Part )
~~6 Sub srutine SHAPE computes the number of bcoxes in each tow and the wing area.

7 FCI SECT (3 Sukroutine, FORCI comiputes the integrals to bse used in evaluation of generalized
fores (See Paragraphs 5, 6 of this section).

a POT2 (0)Subroutine P0T2 coimputes the influence coefficients. Control goes to Part G3

9 (3)If OA(26) 0 0(see Paragraoi I1I of this section) control goes to Port j

10 DATRO Gj~ DATRLD reads the next block of data.

11 0i The mode number and title are printed.

12 If DA(26)ri 0, control goes to Parta

13 DRED ( T)he subroutine DRED compute- the deflection polynominal if deflection values were
given. The ,aefficients are transiformed Into coefficients of a polysomnal In the
dimensionless variables x, y and stored in the permanentf army DF.

14 ®G(M) -DA(39)

15 8ij If G(M) 0i 0, this indicates; that the potential should not be caomputed for the
current mode. In this case, this mode will be used only as 9i4flection in the
comvputaton of ge...ralized forces. Control goes to Par U9

16 A G Subroutine WVAL sets up the array of dowawoasf values W.

17 17The first row of values in W ore corrected as described in Paragraph 7
''of this section.

18 BOXP BsXPO ~ Subroutmne B0XP is called. The subroutine B0XP0 solves Equation (33) to got
the array of potential values. A least-squares fit Is moide to these values "a
described in Paragraph 8 of this section. The print options (b), (c), (d), (e) listed
in Paragraph 8 of this sections are haondled by this subroutine. The final section of
the subroutine stores in the array PS the sums over the Potential coefficients ars
shown in Paragraph 5 of this section.

19 (3) If there are more modes, control returns to Part )

20f (~) The generalized forces ore computed by isurniming over the deflection caT.itnts
\/das described in Paragraph 5 of this section. Control goestoPart U

Figure 4. Program Flow Diagram
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4. RESULTSI1. THE ASPECT RATIO 1. 5 DELTA WING

The computer program was run for the plunging and pitching modes
(pitch axis at x = 0) at the reduced frequencies k = 0.2, 0. 5, 0.8. 1. 0. Forty
boxes along the root chord were used, which leads to about 300 boxes on the
half-wing.

Theoretical values for comparison were calculated from Davies' formu-
las (Reference 12). These are analytic expressions of the solution of Equa-
tion (5) for the potential and generalized forces for the delta wing in rigid
modes of oscillation, expressed as series in k. Figures 5 through 7 show
the values of generalized forces L I 1 (lift due to plunge), L 2 1 (lift due to
pitch), and L2 2 (moment due to itch). Note that the vertical scales have
been expanded in the portion of interest, especially for Ll I- Most of the
values agree to within 2 or 3 percent.

The differences indicate the errors introduced by the box method in
the solution of Equation (5), as distinguished from the errors inherent in
this equation.

Figure 8 gives the chordwise distribution of values of * for the plunging
mode at k = 0.5, for y = Ymax/3 = 0. 125.

2. THE ASPECT RATIO 2. 0 RECTANGULAR WING

The plunging and pitching modes were again used at k = 0. 3. 0. 6, 0.9.
Twenty-five boxes were allowed along the chord, giving 625 boxes on the
half-wing. The values of L 2 1 and .27 are shown in Figures 9 and 10, with
values from Landahl (Reference 6, page 84) for comparison. Landahl's
values were obtained by a method of solution of Equation (5) which applies
onl) to a rectangular wing in modes of oscillation with a deflection independent
of y.

3. THE ASPECT RATIO 3. 0 RECTANGULAR WING

Finally, for the aspect ratio 3. 0 rectangular wing, a comparison is
made with experimental pressure values. These values were given in
Reference 13 for a 5-percent thickness wing oscillating in an elastic bending
mode. At Mach 1, the reduced frequency was 0. 24. The chordwise pressure
distribution at y = Ymax/2 is shown in Figure 11.
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The variation of the experimental values from the computed values is
of the type that thickness effects should be expected to cause: the measured

pressure is (1) smaller near the leading edge. (2) larger before the point of
maximum thickness (x - 0. 5), and (3) smaller beyond this point. The experi-
mentally determined values of local Ma h number along this chord range
from 0. 84 to 1. 35, which indicates tha' he thickness has a considerable

effect on the flow.

The theoretical curve given in K. ference 1 3 was obtained from the sub-
sonic kernel function method, applied at M = 0. 99. This curve is included to
show how another theoretical method compares with the experimental values.

4. COMPUTER RUNNING TIME

The results described in this section required about 20 minutes total

computer time on the IBM 7094. With nonessential output omitted, this time
could have been reduced. All optional output was given, resulting in about
40, 000 lines of output.



5. CONCLUSIONS

A procedure has been developed for predicting unsteady aerodynamic
forces and pressures on an oscillating wing by the use of the transonic box
method. The results obtained by this method agree quite well with theoreti-
cal values from other methods that are applicable only to special planforms
The box method has the advantage of applicability to a general planform.
The only other method of this generality at Mach I is the sonic limit of the
subsonic kernel function method (see Reference 16) that has not been very

successful.

The comparison with experimental values in Figure II indicates that
the most serious limitation of the method is that thickness is neglected.
Thickness may be incorporated into a box program by using modified forms
for sources and doublets. depending on the local Mach number (see
Reference 14). This was not accomplished under the present program.
Other possible extensions of the transonic box method, that would not require
much change in the existing computer program, are described in Paragraph 10
of Section 2.
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APPENDIX I. PROPERTIES OF SOURCE AND DOUBLET DISTRIBUTIONS

1. BOUNDARY BEHAVIOR OF A DOUBLET DISTRIBUTION

We wish to evaluate

rd(xyO+) lim, // dfdJ p%.ql y(x- iy,-n, z).
Z () >0

The L.- grand is zero for t >x. If we define p%.r) = 0 for t < 0. then

;d(x'y, 0+) = imr ff dtd-1p(4,.1)Fl{x-t , y-,q, z).

t<x

Put

=

y - z V

11 = y-zv'

Then, using Equation (14), we have

id(x, y, 0+) = Ir ff dudvp x -zup y-zv) z3 Fl(Z2u, LV, Z)
Z- 0+

= lim ff dudv p(x-z uy-zv) ik 1 •

z-0+ u>0 u

Let (x, y) be a point at which p is continuous. Then the value of p in the
integrand approaches p(x. y) a z- 0. Taking the limit under the integral
sign,

1 1+v z

0d , ,0 ) = P (x y ) . iv d ,i k
FW xy Of)k dudv - e

u>O U
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*ILetv =s u. Then

Uk i k/u - -iks2
d (x. y 0 + = p(x, y)- _-J f / e 2 ds e

0 -co

These integrale may be reduced to a standard form by rotating the paths
integration in the complex plane into positions in which the exponents are
negative, then making the substitutions

ik
2p

s - q

The result is

CXD -- GD 2

V N. Y. 0+ .) )-1_f ep p 2 dp e-qdq

0 .o

= p(x, y)

since both integrals have the value V,- (see Reference 12, formulas 507.
512 Consequently, Equation (18) is valid at any point ci continuity of
p(x, y).

Z. BOUNDARY BEHAVIOR OF A SOURCE DISTRIBUTION

To evaluate sg(x,y. 0+), note that

a ffddd p(gn)'z V(XOt. y-1, Z)

= ff ddq p(%,Ti)- 1 (x-&, y-q, z)

i " d

,4

I I I II I I II I I



Hence, by the result of the preceding section, if (x, y) is & point at which

p(X, y) is continuous,

Vd~yO+ (XY.+ -= X

which verifies Equation (17).



APPENDIX II. EXPRESSIONS FOR THE INFLUENCE COEFFICIENTS
I

.4 Equation (31) may be expressed more conveniently in terms of

u (xi - 6)id

v (yj -q/d

n = i -l

I = kd

(d = box side length). By Equation (14) we have

A(n, m) ik du dv 4UG( iF) (39)

u>O

It is assumed that I is small. If I < 0. 1, the following approximation
gives an error of less than 0. 1 percent in the value of A:

lfu in -- iU(u- n)
e Is e

• U - (u- n,)-- 1(u - 07



This reduces Equation (39)to

I A( )fj I itv/u

A~nM) I 0 Z1 +Uri z du v 2

du ev (40

du dv 
f f d d 

/ u2

where the limits of integration are the sam. as in Equation (39).

The following formula expresses these double integrals in terms of
single integral@:

f f-p .3 -2p(4

u u-p v
u IV 1  u Iv a

2 2  dv

3-2p f
V.

Equation (40) became@

A (n+m1  1 n>0

Au dm)v e 2 (41

A 3-0 /2 M), n 0 2 '
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whe re
11

An(u, = vI 1du)e 1 + - Un -n7

0

1

M + -+

[,2 1 4(.

+ (Iu I -iln- -n2 +2 -il + - 12n (42)

1 I 21 1. 2

Ifl
m - Uv/

2

= B (u,m) + C (u.m)n n

B n and C. denote the contributions of the terms containing the u - integrals
and v - integrals, respectively.

Bn(u, m) may be expressed in terms of the sine and cosine integrals

S(x) = sinxt dt

S(x) f / otxt
I

(C(x) and S(x) are evaluated by the subroutine CIN. The resulting formula
for B. is
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,,o~~m_ itv, l o/u
i.L_~ ~~ (141U IIi- T

+ v B In) + ,,31 /1v (43)

m +

ru IV =- 1M ---

To evaluate Cn(u , m), put v =s + mn. Expanding part of the exponen-
tial gives the approximation

igv/I U 1 _ it(r + Zms + s )/u
r2 dve -dse

fl I
22

and performing the integration gives

11 2 1 2
d - e e sin (Im/u) 1 il

fIm

+ sin (m/Zu) - cos (Im/u) M rn O

For small values of im/Zu, the trigonometric functions of this argument
are expanded in power series. To sufficient accuracy,

1 1 2/u 1rn ve e -1- /0x -- ,n l , /m//u<0.2

2 fJ 2 dye2u, 4 _U/u<.
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It may be verified that thit is valid for m = 0.

Combining these expresslons,

1l 2 /
-n(u, M) = [ -- L- +-lin -- n 2 + 2 it +-L- -I 2uL

n u 2Al 1

I i t  " fm hu) + iuZ si( / 2D~ - coslIMml u)

IM Im~ -cs u
(44)

Im/Zu > 0. 2

1 if 11M\ 2
T.4 u 6 ,VZ ) m/ Zu < O. 2

The subroutine POTZ evaluates tAe influence coefficients according to
Equations (41), (42), (43), and (44)

1
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APPENDIX IV. SAMPLE DATA SHEETS

The following pages are sample data heets for a computer run on
three modes at three frequencies. The i tential will not be computed for the
first mode. The generalized forces fow will be Lzi. L2. LZ3, L31, L32,
L 3 3 .

Of the first fourteen cards, the cards numbered 6, 9, 10, 11. 12, 13.
14 do nothing and are included only to indicate how all data is entered.
Cards 1 through 14 are complete in this respect, and all later cards are of
the same type as one of the first fourteen. The data used in the least
squares surface fit for the deflection is entered in locations 101 through 700.

Card number 22 represents 56 cards for the intermediate data points
which would have to be included in an actual run.
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