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NOTATION

With index, a coefficient

Area

Area of meridian section

Sectional-area curve

Dimensionless sectional-area curve

Half length of distribution

As index, antisymmetry

Midship radius of body of revolution
Form parameter coefficient (Reference 7)
Constant

Prismatic coefficient
Wetted surface coefficient

Midship diameter

Froude number

Depth Proude number

Depth of immersion
Wave amplitude
Wave number

Length of body
Auxiliary integral
Auxiliary integral
Auxiliary integral
Auxiliary integral
Intermediate integral
Intermediate integral
Intermediate integral
Intermediate integral
Resistance, wave resistance
Total Resistance

Viscous resistance
Wave resistance
Resistance coefficient

Resistance coefficient
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F

Wetted surface

As index, symmetry

Speed of advance

Longitudinal coordinate
Longitudinal distance of centroid

Ordinate of the meridian contour
Dimensionless ordinate of the sectional-area curve

Dimensionless ordinate of the sectional-area curve
fore and after body

Dimensionless ordinate of the sectional-area curve
even and odd part

Variable of ‘ntegration

Doublet distribution

Dimensionless longitudinal coordinate
Dimensionless longitudinal distance of centroid

Density
Source~sink distribution

Prismatic coefficient; afterbody
Prismatic coefficlent; forebody
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THE WAVE RESISTANCE OF BODIES OF REVOLUTION

by
Georg P. Weinblum, D.Eng.

ABSTRACT

Following a brief review of prior work on wave resistance of bodies of revo-
lution carried out by Havelock and Weinblum a discussion is presented of the appro-
ximate relations between the shape of sectional-area curves and of hydrodynamic
irregularity distributions. The latter are expressed by polynomiais, which lend them-
selves to an evaluation of the basic resistance integrals by computing intermediate
integrals. Values of the functions thus obtained are tabulated in an appendix. These
functions are then used to calculate the resistance of some simple bodies of revolu-
tion. Also investigated is how the resistance is influenced by asymmetry with respect
to midship section. Distributions leading to bodies of least wave resistance are cal-
culated, assuming rather severe restrictions. A rather complete szt of resistance
curves is given for an important family of bodies.

1. INTRODUCTION

When a body moves uniformly and rectilinearly in an unbounded
liquid the only resistance experienced by it is the viscous drag. Our
lnowledge as to how this drag depends upon the body form is very limited,
but it is well-established that for streamlined, elongated hulls—with which
we are only concerned—the drag is roughly proportional to the wetted sur-
face and i1s rather insensitive to reasonable changes in the shape.l* The
vell-known airship form with a rather blunt forebody and finer tail appears
to be close to the minimum resistance attainable, although it must be empha-
sized that earlier resistance data obtained in wind tunnels at low Reynolds
numbers are utterly unreliable. But that there 1s a slight advantage in
introducing some asymmetry with respect to the midship section appears to
be unquestioned, at least when larger end-radii are used. Matters become
different when a body moves close to the free surface; see Figure 1. A
wave pattern is then produced and therefore a wave resistance arises. The
laws governing the wave resistance Rw are quite different from those valid

lpeferences are listed on page 58.

#Problems of cavitation are not considered here.
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for the viscous drag Rv‘ Hence, in
this case forms of least total resis-
tance Rt must be derived from addi-

tional considerations and may differ,
/_\ l ,  at least in principle, from the fa-

\\\\‘“h-‘_‘——-—_—_'—"”’,/r- miliar streamlined forms.
In the present report it

Figure 1 - Scheme of Submerged Body is intended to analyze the wave re-
sistance of a rather wide class of

elongated bodies of revolution, using an integral relation based on the work
of Havelock.? The first classical solutions for the circular cylinder
(Lamb)’ and the sphere (Havelock)!® have contributed much to the general
understanding of the subject, but these solutions must be applied with great
caution to problems connected with elongateC¢ bodies. The reason herein is
the extreme simplicity of the cylinder and sphere; the resistance curves of
these bodies do not show the characteristic interference effects which are
peculizr for prolate bodles of revoluiion. From physical reasoning we infer
at once that in the latter case two similarity parameters are involved: the
common Froude number F = U/)gL referred to the length L and a parameter
characterising the depth of immersion f, say f/L or the depth Froude number
Fp = U/VgT, while the shape of the wave-resistance curves for the circular
cylinder and the sphere depend only upon Ff, and the parameter f/L appears
as a scaling factor only. Thus, for instance, the peak of the resistance
curve 1is located at Ff = 1 for the cylinder and just below Ff = 1 for the
sphere. It can be easily shown that this unity value of the depth Froude
number has no special significance for the wave resistance of a very elon-
gated body of revolution.

Solutions fer the spheroid and general ellipsoid due to Havelock®'*
lead to results which admit of qualitative and even of quantitative esti-
mates of the resistance of "normal" bodies of revolution. The importance
of the spheroid for general research on the subject cannot be overemphasized.

Using Havelock's general expression vaiid for a plane source-sink
distribution,d formulas were obtained which represent the wave resistance
of & rather wide class of bodies of revolution.® By these formulas the
resistance of various forms has been investigated;® especially, some endea-~
vors were made to find forms of least wave resistance.® These forms vary
obviously with the Froude number and to a lesser degree with the depth
parameter f/L. The rather striking results found in this way were checked
experimentally and good agreement between theory and measurements was es-
tablished as to the general trend.’




As with surface vessels, theoretical forms of least wave resis-
tance are symmetrical with respect to the midship section. Any departure
from symmetry causes an increase in wave resistance, and this increase can g
become appreciable in some ranges of Froude numbers when the asymmetry is :
pronounced. The degree of asymmetry can be described in the usual way,
though roughly, by the location of the center of buoyancy Xy Or the dif-
ference of the prismatic coefficients ¢F' ¢h of the fore and afterbody.

For instance, a difference ¢F - ¢A = 0.2 means a large deviation from sym-
metry. Agaln, the resistance results are qualitatively supported by experi-
ments.°

An extensive hydrodynamic study of bodies of revolution is under-
way at the Taylor Model Basin. It 1s based on a systematic variation of
analytically defined forms.2'!! As an extension of this work it was decided
to make a more comprehensive theoretical investigation on the wave resistance
of bodies of revolution. This is the subject of the present report.

In Section 1 of this report polynomials are discussed which are
suitable for the representation of hydrodynamic singularity distributions
(doublets, sources and sinks); to the first approximation the equation of
the doublet distribution coincides with the equation of the sectional-area
curve except for a scale factor.”® A class of curves is selected which in-
cludes the TMB Series® generalized by one additional arbitrary parameter. %
For this family a set of auxiliary integrals covering a large range of
Froude numbers has been tabulated. The values of these integrals furnish
immediately the variable part of the wave resistance of the simplest forms
(parabolas of the type 1 - &¢"). 1In the general case the wave resistance is

given by a quadratic form of the parameters of the body in which the tabu- 3
lated values appear as coefficients. Thus the computation of the wave re- 3
sistance involves only some multiplications and an algebraic addition.

The auxiliary integrals mentioned have been computed by the Bureau ;

of Standards. A short description of the work involved, contributed by Mr.
Blum of that Bureau, and tables of functions are found in Appendices II and
II11.

As mentioned before, the resistance formula for a line distribution
of singularities used throughout this report follows immediately from a more
general expression due to Havelock® S and therefore will be called Havelock's
integral.

Using the tables annexed, resistance curves are plotted for vari-
ous basic forms of sectional-area curves (doublet distributions); they cover
three depths of immersion ratios f/L except for the spheroid where a fourth
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f/L ratio has been added. Special investigations are made on the influence
of asymmetry, and some examples of resistance curves refer to forms selected
from the TMB Series.

Following an earller attempt distributions of least wave resistance
are investigated.® Former results® are checked and refined. Particularly,
the distributions obtained lead to rather peculiar "swan-neck" forms, for
higher Proude numbers. PFinally it 1s shown how systematic sets of resis-
tance curves can be obtained for families of sectional-area curves (doublet
distributions).

2. THE REPRESENTATION OF SINGULARITY DISTRIBUTIONS
AND SECTIONAL-AREA CURVES BY POLYNOMIALS

2.1. CONNECTION BETWEEN BODY FORM AND GENERATING HYDRODYNAMIC SINGULARITIES

In establishing a relationship between body form and generating
hydrodynamic singularities two well-known problems can be formulated:

a. Given a distribution, find the shape of the body (sectional-area
curve A(x)).

b. @Given a body form (sectional-area curve A(x)), establish the appro-
priate distribution.

In the pre«ent report we disregard the complications connected
with problem b and treat it in a very approximate way. The contemporary
rudimentary state of imowledge on problems of wave resistance justifies this
procedure to some extent; our investigation deals essentially with resistance
properties of hydrodynamic distributions and merely some assumptions are made
as to the probable shape of the bodies generated by these distributions.

Thus two essential sources of error are involved when investigating
the wave resistance of bodies of revolution:

a. The approximate character of the wave-resistance theory, and

b. The generally admitted approximation that for a given body the
deep-immersion distribution of singularities can be used instead of the
actual distribution valid for near-surface conditions.

The second assumption (b) appears to be a serious one when the
body 1s close to the surface. It has been proved by Havelock® that it leads
to inconsistent results with respect to added masses; however, by following
numerous comparisons between theoretical and experimental results referring
to surface ships it works reasonably well when applied to the resistance
problen.

In the present report the assumption willi be made that the shape
of the body gensrated by singularities moving close to the surface ie




identical with the shape of the corresponding body generated by the same
singularities in an unbounded fluid.

It i1s well known that in the latter case one can construct the
contour of a body of revolution for any given singularity distribution along
the axis; auxiliary tables for this work are available,?:!° especially for
cases in which the distribution is given by polynomials. Flat noses-—as
discussed by Weinstein!® — will not be dealt with in the present report,
although 1t is possible that such forms are advantageous from a point of
view of wave resistance at high Froude numbers. When dealing with "normal"
shapes, the important approximation developed by Weinig’ and Munk® holds;
i.e., for very elongated bodies the sectional-area curve of the generating
body A(x) is affine to the doublet distribution u(x). This approximation
will be used throughout the present report although its limitatlons should
not be forgotten.

Some explanation-—1if not definition—must be given as to the concept

of a "normal" shape of a doublet-distribution or a sectional-area curve. It
means essentially a curve whose trend 1s similar to sectlonal-area curves of
common ccean-going ships; these curves generally are monotonic with not more
than one point of inflection in the fore and afterbody.

Since for closed bodles the source-sink distribution o (x) 18 the
derivative of the doublet distribution u(x) the latter is monotonic over the
range of the forebody when o(x) consists only of sources in the same range.
This condition (though not necessarily a required one) is sufficient to ob-
tain bodies such that the circle of curvature at the nose lies inside of the
meridian contour.

We mention some conditions under which the affinity between the
doublet and the sectional-area curve becomes strained:

a. PFor larger values of the elongation D/L the divergence between the
sectional-¢rea curve A(x) and the doublet distribution u(x) becomes more
pronounced even for “normal" shapes. This divergence can be roughly de-
scribed. First, in the mutual relation of the prismatic (area) coefficients
which are the decisive form parameters of the two curves-the one.dh. de-
noting the prismatic or area coefficient of the distribution, and the other,
¢s, the corresponding one for the sectional-area curve-—the following state-
ment holds for a wide class of normal bodies:3: 3

for finite D/L

¢ > ¢3 vhen @, < 2/3

@, <@g when ¢4 > 2/3

Y ——c S R x Frs
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The equality ‘d = ‘s is valid only

E %ﬂ T for the ellipsoid; see Figure 2.
-b Second, in the prismatics a differ-
b l_ ence arises between the length of
i , the body L and the distribution 2a,
L >

'LI-—-O—'P—— 2a being smaller than L. For the

[ spherold the relative difference
Pigure 2 - Spheroid. Sectional-Area L-2a D2 b2
Curve A, Doublet and Source-Sink (= = =

2a

Distribution 2L2 2a2

vwhere { depends on the shape of the distribution, especially at the ends.
(Since this problem is being thoroughly investigated by L. Landweber of the
Taylor Model Basin, we confine ourselves to these brief remarks.)

b. When complicated "abnormal" distributions like "swan necks" or
curves with very steep ends are investigated (for instance, Rankine's ovoid)
the divergence between these distributions and the sectional-area curve can
become appreciable even for smaller D/L.

2.2. REPRESENTATION BY POLYNOMIALS
2.2.17. General Remarks

In former reports polynomials have beer used for the representation
of the generating doublet (source and sink) distribution along the axis®:?®.10:1
The doublet and source-sink distributions u(x), o(x) can be split
up into dimensional factors H,, 0, and variable dimensionless parts u*(¢),
o*(¢); u(x) = u pu*(¢)
o(x) = o o*(¢)

with ¢ = x/a; see Figure 3b.
The dimensional factors will be established later; in the succeed-
ing discussion the functions u*(¢) and o*(¢) will be treated in the same
way as ship lines and their derivatives. Generally following Munk and Weinig
the doublet distribution u*#(¢) is identified with the sectional-area curve
A*(¢) and the symbol n 1is used for both of them. Actually the resistance
computations refer to given distributions for which the corresponding
sectional-area curves can be easily calculated?r!® when Munk's approximation
is not accurate enough-as for instance in cases dealt with in Section 5.
The first adequate'representation of ship lines by polynomials is
due to Taylor;'!:!2 the equations obtained are, however, suitable for a
separate description of the fore or afterbody only. Taylor locates the

A —
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igure 3a - lLandweber's Axes Figure 3b - Present Axes

Filgure 3 - Systems of Axes

origin at the bow or stern. The present writer has proposed!3:!* other sets
of polynomials referred to a system of axes with an origin located midships.

This approach has definite advantages when iInvestigating the wave resistance.

Landweber? has generalized Taylor's equation by adding one more
term and by introducing appropriate boundary conditions; he uses the ex-
pression obtalned as the equation of the sectional-area curve of a four-
parameter form.2 The parameters are interpreted geometrically as the pris-
matic coefficient, the location of the maximum section along the axis and
the nose and tail radii of curvature. It will be immedlately shown that
Landweber's equation transferred to an origin at the midship section can be
split up into a two-parameter symmetrical and a two-parameter skew part with
respect to this section; thus expressions are obtained for which the wave
resistance can be calculated in a simple way.

2.2.2. The TMB (Landweber) Class of Bodies and Some Generalizations

The T™MB (Landweber) class of bodies of revolution 1s given by the
equation of the sectional-area curve
y2=a'x +a'x2+a'x®+atx* +arx®+ arxt (1]
11 21 31 4 1 5 1 8§ 1 .
referred to axes, as shown in Figure 3. We transform the equation of the
body by shifting the origin to the midship section x = 0.5, reversing the
direction of the axes, and putting the length of the body equal to 2.
Thus for

x1=0 ¢ =+ 1
x1=0.5 ¢=0
X =+ 1 ¢= -1

T A
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The transformation is given by

= -Z(xl- 0.5) or

o g
xx 2 (2]
The resulting equation is
2 . ] 3 4 s ]
YimA tAL AL H AL AL+ A Al (3]

where
‘l!l nal'l 4‘ n!n - 1) ar'n
A = el | A = - —_— A = s
° zx’" " S " 2 g N
A ._2'_(—)_(._““'1 nf—ﬂ,etc.
o T 2x3x
Equation [3] can be split up into a symmetrical and an antisymmetrical part
= 2 4 6
Yo= Ao+ AS% + A8+ [4a])
Y=Y, +7Y
T, = Al + As¢° + Asgs [4b]
The obtained form [3] has definite advantages when calculating the wave re-
sistance since the latter is the sum of the wave resistance corresponding to

the symmetrical and antisymmetrical part computed independently.
Going further, we derive from (3] the following simple properties

of the Landweber bodies:
[} [ ]
- n
RIS PR

The coefficient Ao can be factored out and merged into a dimensional constant
which defines the midship section. Thus, the normal form of our polynomial
is obtained

n=1-3"a¢" [4e]
1 'Ai
with a, --To

The symmetrical part of [4c] 1s a two-parameter family |
ng(¢) =1 -8t -até-ats=1-14 -alt®¢) -a/(et-¢)

because from the boundary condition
ng(1) = 0

a =1-a ~-a
s 2 4




Such families have been called "basic forms" by the present writer'® and
designated by (2,4,6;¢;t) =ince the arbitrary parameters a_a_ can be de-
termined by the prismatic coefficient ¢ = f ndé and by Taylor's tangent
value t = - 8n(1)/0¢.

It 1s thought that the Landweber Series [1] meets almost all
reasonable requirements as to wave-resistance properties presented by prac-
tice although only two arbitrary parameters ¢,t are at our disposal for the
min symmetric part. 'The reason for this assumption is that from investi-
gations on surface ships it 1is well known that area curves of fine ships,
based on the basic family equation (2,4,6;4;t) are advantageous in the range
of high and medium Proude numbers. At low Froude numbers other polynomials
are preferable but there the wave resistance of submerged bodies becomes
rather negligible.

We have, however, introduced an additional term a ¢® for which
auxiliary wave-resistance functions are also tabulated in this report; thus

more elaborate investigations can be performed using the polynomial
" 27 i
'18 1 - ai‘
2,468
The asymmetric (skew) part is the function

g =8¢ +agdtas [ud]

factoring out al, we write

- = S S
Mg = amt=a (£+Db e+ D) [t ]

a

Obviously the resultant curve n = ng + N, can have 1ts maximum section out-

side of ¢ = 0 and the area of this section will generally differ from one.

This slight complication does not involve any difficulties in actual work.
Let us investigate

¥ 3 5
¢+ bag + bse [ur]
This trinomial has to comply with the conditions
n¥o) = 0
* = *(. =
n5(+1) = n¥(-1) = 0
whence

b5 = -(1 + ba)

Jipgas
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thus
ng = &+ b - (14b }¢° [4g)

The only arbitrary parameter b3 can be fixed by one additional condition; as
such we choose the tangent value t; at the bow (at the stern the correspond-
ing value is -t;)

onF(1)

¥ = B =
ta B¢ + U4+ 2b3

hence
2= = *
b, 2 + t¥/2 (un}
the corresponding tangent value ta of Ny Equation [le], 18 obviously
— ’
ta alta

. The table below shows some examples of skew forms. The parameter
¢; =J; 17; d¢ is an area coefficient referred to the unit square. Plots of
¢ -¢,¢-£° and some other "skew" forms used in the TMB Series are shown on

Figure 5. The actual skew part n, contains additionally the "strength para-
meter" a ; see Equation [Ue].

t; 0 1 2 Yy
n¥ | 400 - ¢2)? §- 1563+ 0567 | -8 |4 -¢°

an;/ae 1 - 682 + 5¢* 1 - 4,582+ 2,56% | 1 - 382 1 - 5gt

o 1/6 = 0.166... | 5/24 = 0.2083... 1/4 1/3

Our numeric evaluations are primarily based on Equations [UYc] and
[5] —which are stated below—but the theoretical treatment will be carried

out aiong more general lines.
Extended investigations have been made by Landweber and Gertler?

on the influence of an additional term a.}x7 on the form of the body when the

geometric parameters are kept constant.
Using our system of axes it 1is easy to perform similar investiga-

tions for the symmetric and asymmetric part of {Uc]

= & - n 3 S
Ny = Mg + ny 1 ;6 ane +-a1(e + bae + bse Js
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By adding to n, terms with arbitrary parameters a,¢' and a, ¢*, a manifold
n, = mpt e + a.e' is obtained.
The polynomial [Uc] is completely defined by the four geometrical

parameters
1) ¢ h
on (1)
2) t5= - g
an_(0) > (5]
—a " _
3) at &
! : én (1) .
: u) 8‘ = ’alta = 'ta /
£ When n has to comply with the four equations [5] it can be ex-
E pressed by
1 n, =, + Csan(g) + C 4 nle) (6]
where anle) = g2 - 56+ T¢" -3¢ (6a]

ST

complies with the conditions
1
[ anteag = o;
o 3

y.) 0) 1
) n(:=84n()_

Aan(O) =4.1(1) = T T =0
and
A‘n(t) = ¢3(1 - ¢2)2 [6v]
satisfies
34 n(0) 84 n(1)
4 n(0) = 4 n(1) = 56 < 8‘6 =0

Thus, an addition of the functions Aa, A‘ to L does not influence the

boundary conditions, [5]. The shape of the curves Aan(e) and A‘n(e) is

shown in Pigure 13. The advantage of this representation is obvious.
While in the equations

n=mng+n
or

u(8) =u¥(e) + ut(e)
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the symmetrical (even) terms Ngs ug are the main parts, obvicusly in

On _ 07)8 g 0"&
o¢ o¢ o¢
or

o*(4) = o2(8) + o2(4)

the odd terms ans/oe, o¥ become the main part.

2.3. CONNECTION BETWEEN STRENGTH OF SINGULARITIES AND BODY SHAPE

The next consideration is to establish the dimension factors u o

and 9, The {lux through the midship section may be written as

Q= C(2, u® b2 [7]

Here the coefficient C(b/a, u*) is, as indicated, a function of the elonga-
tion ratio b/a = D/L and of the shape of the distribution u*. For very large
elongations C(b/a, u*) 1, but for shapes and values b/a used in actual op-
eration C differs from one.

A closer investigation of the coefficient C will be given elsewhere
by L. Landweber; for the present purpose we introduce C as a correction fac-
tor which improves the accuracy of Munk's or Weinig's approximate affinity
theorem mentioned on page 5. The dependence of C upon u*, although apparent-
ly negligible within the range of presently used submarine hull forms, shows
some interesting features. Earlier brief investigations lead to the follow-
ing table for C(b/a, u*) (Reference 5).

b/a = D/L
1/ | /6| 1/8 | 1100
n*(¢) ® C(b/a,u*)
(1 - ¢2)2 0.533(1.172]1.093|1.060 |1.043] 1
1‘ -¢2 0.660[1.192|1.092{1.054 [1.036] 1
1 -3.0825¢% + 0.165¢° + 1.9175¢*2|0.820] - i.0124{1.008 | 1

Prom these results we gather that C(b/a, u*) values for norma)
submarine shapes apparently can be estimated from the spheroid; an empirical

e, e g
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formula C(b/a) = 1 + 3b2/a2 may fit the facts reasonably well. For fuller
bodies lower values seem to be suitable.
The constant

-
i1s therefore obtained as
1./b
uy = 3Cho w*)% [7a)

The flux [7] or the strength of the doublet distribution at the
midship section must be somewhat higher than the product of the cross section
times the speed of advance.

For the source, we have

o, = {T C(£—. u*) :—2U (8]

3. EVALUATION OF HAVELOCK'S INTEGRAL
3.1." GENERAL CONSIDERATIONS

The wave resistance experienced by a continuous doublet sheet u,
distributed over a vertical plane and moving uniformly on a straight hori-
zontal path, has been calculated by Havelock.® Concentrating the distribu-
tion u(x) along a horizontal straight line we obtain immediately

o r7 [ oo 2 Boan. -
R = 161er3 -'o {Pl + Ql} sec>60d6; Ko = - (9]
with
+
P = exp(-K f secaoxf *u(x) cos (K x sec 6)dx = exp(-K_f sec?6)p [9a]
1 0 o 0 0 1
+
Q = exp(-K f secao)]. ay(x) sin (K_x sec 6)dx = exp(-K_f sec26)q [9v]
1 (o} Ca o (o} 1
hence

R = 167er; f”’ (pf + qf) exp(-2K f sec9) sec°6dé [9¢c]
0
Using a source-sink distribution we obtain similarly

/
"2 (p2 + q3) exp(-2K f sec?6) sec®0d6 (o]

. 2
R 16npK° jo

p = Jh*co(x) sin (Kox sec 6)dx (10a]

q =.[j: o(x) cos (K x sec 6)dé [10b]

-

-
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Introducing dimensionless coordinates x = a¢ and the expressions

u(xj = pp*(¢)
o(x) = o o%(¢)

various forms of the integral for R can be derived for purposes of numerical
evaluation.

We confine ourselves to the source-sink integral.!’ Splitting up
o*(¢) into a main antisymmetrical and a symmetrical part

o*(¢) =of(4) +a%(¢)

and remembering that an integral taken over an odd integrand between limits
of equal absolute value but opposite sign vanishes, we obtain with the desig-
nation

Y = Ko8

) o
= up2 b* "2 £ 2 s
R = UCmpg a7 fo exp[-4 T 7, Sec 0] sec®d. (]
1
[ {f;a;(é) sin(y, ¢sec O)dg}z +{fo a;u) cos: (yoe sec O)de}z] de =
" £ 3 2
const J’o exp[-u T % sec"’o] sec®9[p*2 + q*2])de [12])
We introduce further polynomials for
u(g) =1 -8 [13]
"
hence
o%(8) = Sn a ¢! [14]
or

o¥(8) = o3(¢) + o¥(¢) = -3 2ka_ ¢ 27 - 37 (2m1)a, 42" [14a]
k L

with k, m as integers.
For the main antisymmetrical part the intermediate integral p* becomes

: 1
p* = L o¥(¢) sin (y 4 sec 6 )d¢ = -%'gk a, foizk-lsm (7,¢ seco)ds

= -%‘21{ a, M, _ (7, sec) (15]
with
= 1 -
M. (r,secé) =M _ (7)s= J: ¢ 7! sin(y ¢ sec 6)d¢ = J;G""' 'sin(y¢)d¢
(16]




Here for brevity the decignation y = y sec ¢ has been introduced, (16].
For the symmetrical (even) part

1
q* = J; a;(e) cos(yoe sec 9 )d¢ = -Z(?mﬂ )aZmHMZ'm(yO sec ) [17]

with

1
M. (7, sec @) =M (y) =M = foez"‘ 205 (75 ¢ Seec O)df = f:ez"‘ c<[>887]' d¢
1
inserting (15] and {16] into [12] one obtains

= 42 bt & L = 2
R = UC® mog a roL €xp [-l& It Be0 0] {(4‘:& Y Mzk-l) ¥
1 2 3
+ (MZ (2m1)a_ Mzm) } sec®9de [19]

This formula is suitable for numerical computations above in special cases,
rince tables of the functions Mu-x(’)’ M (r) are available and will be
published in a TMB Report.

3.2. TABULATION OF RESISTANCE INTEGRALS FOR A
FIVE-PARAMETER CLASS OF BODIES

As mentioned before, auxillary integrals have been prepared for the
three-parameter symmetric distributions of Equation (5], y's*(e) (asymmetric
in o2 (¢)).

uB(8) =1 -g‘sane" and o X(¢)=- 3" na ¢

1446, 2,4,6,8
and the one-parameter skew distribution y;(e) (symmetric in o;(f))

uB(8) = £+ b ¢S - (14b )¢ and o B(¢) =1 + 3bg2 - 5(1+b )¢t

The computations are based on a slightly different form of R (see Appendix
II). Substituting

= = = 2 -
Y=y, secd sec 6 r/ro tg 6 V(r/ro) 1

one obtains

(»/7,)%dy
dy =7, sec? 9 sin 6 d6; Yo sec® 9do = T
r/y )% -

0

hence . bt (= . o (7/70)2 ( ( ))2
R = 4C ~— J- ex [- T —-—-] — { 2ka M y %
mPE @ " Bl s V(,/yo)z_1 p 2k 2k =1

+ (g(zmn a_ M- (,.))a} dr [20]
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(7/70)"’

——— = f(y)
V(r/ro)"’ -1 ’

) _uf _rj]
A=y exP[ T 7, flr) gj'21 o) gy MMy

Y

* §(2r+1)(23+1 )8,, , 185041 ML ua'.}dy [21]
with 1, J, 8, r integers. R can be built .up of terms of the type
3 ﬂr_’] .
J;exp[ T 7, f(r)MZ‘._x(r)M _, (v)ay 2‘_x a7 (22]
for the symmetrical part of the sectional-area curve
and
j; [ £ L Jeomy, (v, ey =my (23]

for the skew part. The final result is therefore obtained as a quadratic
form in the parameters a or, better, na,

R=C {2 21 ZJ a 21 2, 2| -1,25*1 i '2:(2“1 )(28+1 )atr+l 8:.+1m;" 20 }[zu]

LEY )
with the tabulated integral values 'm 1o 1 _xm.",' o, 88 maln parts of the
coefficients 21 2JM_ 5o etc.

We mention again the fortunate circumstance that the contributions
to the wave resistance due to the symmetrical and antisymmetrical parts can
be calculated independently and added.

Returning now to a family of distribution curves given by Equation

[4c] but generalized by one additional term a, &,:

RPN EEP AL AR WU
1
The wave resistance can be calculated by the functions
ml 1l ml L ] ml 3 mﬂ mo'o 7";2 7";4
Myy Mas My, Mza Mgy
m -1 m 57 m:ﬁ
m

SR AR RE
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tabulated in the Appendix III. The integral R and the functions M and M
depend upon the two parameters y_ = 1/2P? and f/L. The tables have been pre-
pared for a range 0.5 < »s €10 and /L = 0.125, 0.25, 0.50. Additionally,
for hﬁx an intermediate depth of immersion ratio f/L = 0.1875 has been intro-
duced. From the wave resistance integral it follows immediately that the
ratio depth of immersion over length f/L 1s theoretically preferable to the
more commonly used ratio f/D, since f/L appears explicitly as factor of the
exponent of the e-~function under the integral. With elongated bodies the
ratio b/a or D/L influences primarily the constant C_ = Uc? mpg bv*/a only,
though in a very decisive way. Although the lower speed 1limit Yy = 10

(P = 0.224}—up to which the auxiliary integrals have been computed —is

rather high, it is thought that for normal hulls with ¢ < 2/3 moving at greater
depths than D, the wave resistance becomes unimportant when F <—:0.224. The
low-speed range may, however, be Interesting in connection with other research
problems.

In principle the wave-resistance equation, [24], solves the problem
for any sets of a_ within the family fcllowing (41]. Actually since the
relative error of the tabulated functions 1is approximately 0.0001, a loss of
accuracy may occur—when the coeffliclents a, reach high absolute values with
alternating signs. It 1s not probable that difficulties of this kind will be
important in connection with submarine work; besides, thev can be overcome
to some extent by plotting suitable simpler resistance curves and by inter-
polating.

b, REPRESENTATION OF RESISTANCE CURVES
4.1. THE DIMENSION FACTOR Co AND DIMENSIONLESS REPRESENTATIONS

The dimension factor in Equation (20}, C, = Uc? mpg bv*/a, has a
rather unusual form, but it will be widely used throughout this report
because of its theoretical merits and the comparative ease with which it can
be connected with more familiar expressions. We rewrite, in terms of the
displacement 4,

-4 2
C, = #mb? 2apg 22 2 = 420 c? (25]
¢a fa
2 2n2
%'4 ro=§—9—a—or-§- To 2b§
0 v e da
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Hence we can immediately derive the resistance per unit displacement for a
given b/a and shape when r, 1s known.

The introduction of the displacement 4 in [20] 1s open to objection
since so far we have not distinguished between the length of the body and the
distribution. We repeat the definitions:

2a 18 the length of the distribution along the exis

L 1s the length of the generated body
2b = D 1s the dilameter of the generated body
Obviously for the. displacement of the body we must use L = 2!. Then

2C3b2a

C, = Ymog C2 b*/a = 4 =—= [25a]
¢a2l
Further, the ratio b// = D/L is technically more important than b/a; hence
2
r, <R ¢ "a [25b]
4 202 b2
or
R _ 2C3(D\2 1
R Rer, [25¢]
Later we shall use another coefficlent
r =r°=5_1_(£).a; [26]
, @ 24 D/ 1

One should not, however, overestimate the influence of the length correction.
For the spheroid

l |

. 1
2 2

b3 30) 0+ o @)
i.e., influences the C2 correction by less than 10 percent. Further, even
the iIntroduction of the more important C factor does not lead to an exhaustive
correction since we know that not only the midship section but the whole
trend of the curves changes with increasing b/a. Thus within the limited
accuracy of the present wave-resistance theory we generally can put !{/a = 1.
It 1s of course important to use all approximations in a consistent and

clearly defined way, so that fair comparisons can be made.
We note particularly, that for the spheroid

2
!

n

C

%‘i = r 3C? b/a?

o




For comparison with experiments the coefficients Cy referred to the wetted
surface S is advantageous.

We write
2 2
¢, = —LB a5 MCHAD) (27]
p/2 U3S SP? :
or introducing a surface coefficient S (Reference 17)
Cg = S/nIL
¢ =1, E(2) 2L =, Z), (28]
w o CS a/ C P2 o cS a o

with y, = 1/2P2. Por elongated spheroids Cg = 0.79.

The importance of the resistance coefficlent Cy referred to the
wetted surface S justifies a short digression on the calculation of S for
bodies of revolution. Solutions of the exact expression (Equation [29]) can
be obtained in a closed form in exceptional cases only, as for the spheroid.
Of course it presents no difficulties to evaluate the integral numerically,
but a simple approximate formula can be derived at least for the surface area
of a restricted class of very elongated bodies of revolutions complying with
the condition that the end tangents of their meridianal contour do not become
vertical; i1t 1s similar to the well-known expression for the length of a
slightly curved arc, see Appendix I.

4.2 RESISTANCE CURVES OF SIMPLE SYMMETRICAL BODIES

Since the presentation and the discussion of resistance curves is
the main subject of the present report, various sets cf such curves have been
computed. Essentlally, the resistance properties of the following three
groups of body forms (distributicns) have been investigated:

(a) A set embracing a wide range of prismatic coefficients, which fur-
nishes a general review of the resistance as function of the form (IV,2).

(b) A set dealing with four TMB models. This raises the problem of
the influence of asymmetry with respect to the midship section (IV,3).

(¢) A group consisting of systematically chosen forms belonging to the
two-parameter family (2, 4, 6;¢; t) (VI); for the same family some calcula-
tions of shapes of least resistance dre presented (V).

The procedure adopted leads to repetitions which, having in view
the importance of the subject, have been thought to be advisable. Because
of the complicated dependencies involved the interested reader can more
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Figure 6 - Wave-Resistance Coefficients r_= - of Symmetrical

O u4nC2pg b*/a
Bodies as Defined on Figure 4, f/L = 0.125

easily draw conclusions from the rather comprehensive plots than from any
text.

We are mainly interested in the range of Froude numbers F below
and at the maximum of the large hump in the resistance curve; see, for in-
stance, Figures 6, 7 and 8. Above the maximum the absolute value of wave
resistance decreases comparatively slowly with growing F, but the ratis wave
resistance to frictional resistance drops quickly. Therefore, at high speeds
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Pigure 7 - Wave-Resistance Coefficients of Symmetrical
Bodies as Defined on Figure 4, /L = 0.25

the wave resistance of elongated bodies such as torpedoes represents only a
small part of the total drag. It has been shown in References 4 and 5 that
in the limit of very large Proude numbers the wave resistance becomes pro-
portional to the square of the displacementor r_ to é2.

In general, throughout the present report calculations have been
extended to P = 1 (yo = 0.5), and to P =1.58 (v, = 0.2) for the parabolic
distributions 1 - ez, 1 - e‘, 1 - e'only. From an approximate investigation
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Figure 8 - Wave-Resistance Coefficients of Symmetrical
Bodies as Defined on Figure 4, f/L = 0.5

it appears that the resistance curves R (yo) plotted over y, have a vertical
tangent at ol 0, but no attempt has been made to draw accurately the range
of curves below ¥ " 0.5.

To obtain a general idea of the wave resistance for various symme-
tric distributions u(¢) (sectional-area curves A*(¢)) graphs have been plot-
ted for following simple cases:*¥

*As before, by symmetry we mean symmetry with respect to the midsection.
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ult) ¢ t

1) (1 - &2)2 0.533 0
2) 1 -1.5¢82+0.5¢¢ 0.6 1
3) 1 - ¢2 2/3 2
Y) LI o 0.8 Y
5) | 1-¢° 6/7=0.87 | 6
6) 1 -8 8/9 8

Figure 4 shows these sectional-area curves and Figures 6, 7 and
8 the corresponding resistance coefficients as functions of ¥, = 1/2F2, with
an additional non-equidistant scale for F. The choice of 7, 88 independent
variable yields an appropriate picture of the wave-resistance values at high
speeds.

From tb> Pigures 6, 7 and 8 a rather complete understanding of the
weve-resistance properties of various symmetrical forms can be derived. Ref-
erence 1is also made to Figure 12 and the pertaining discussions in the text.
The influence of the depths of immersion follows immediately from a comparison
of Figures 6 through 8; also, cross curves can be plotted over f/L as the
independent variable. Figure 11 shows this dependency for 47"11' which 1s
the resistance function of a spherold A*(¢) = 1 - ¢2, with y = 1/2F° as
parameter. We note that with increasing depth the resistance drops more
quickly at small than «t large Froude numbers F. This 1is ratier obvious;
it will be discussed later more thoroughly that the most indicative parameter
is the ratio f/A , where A the length of the free wave 1is A = 2aF2L.

In Figures 9 and 10 the resistance curves for three depths of im-
mersion have been reduced to approximately the same maximum ordinates. This
rather artificial approach ylelds a clear idea about the shift of the last
hump (of its steep rise as well as of the position of its maximum) to higher
Froude numbers with increasing depth of immersion; it further emphasizes
again that the rate of decay of the wave resistance with increasing depth 1is
much higher for low Froude numbers than for high ones.

Figure 12 represents a coefficient r = R/A a2/2C%b2 = r,/@. For
approximately constant C2 (very elongated bodies) and given a2/b2 ratio,
r,o~ R/A, i.e., the figure yields a comparison of the resistance per unit
displacement for various forms.

The discussion of the various graphs leads to the following summary
results:
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Flgure 9 - Comparison of the Shape of Wave-Resistance
Curves for the Spheroid n(¢) = 1 - £2; the Curves
are Reduced to Approximately Equal Maxima

A. Small cGepths of immersion
1) Within reasonable 1imits, the peak value of the R/A curve does not
depend too much on the shape of the body,* especially upon the prismatic co-
efficient.
2) The merits of full forms, over a wide and possibly important range
of Froude numbers 0.35 £ F £ 0.50, are clearly emphasized, as vell as

3) The heavy penalty wnich has to be paid for high prismatics at
lower F.

*1! more elaborate results are desired they can be derived from Figures 28 through 35.
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Flgure 10 - Comparison of the Shape of Wave-Resistance
Curves for n = (1 - ¢2)2 Reduced as by Figure 9

B. For larger depths of immersion the dependence of the peak values of
R/A upon ¢ becomes more pronounced; the advantage of high prismatics in the
range mentioned in A(2) 1s, on the average, reduced.

4.3. RESISTANCE CURVES OF ASYMMETRICAL BODIES

Further curves representing the wave-resistance coefficients of the
four TMB models represented in Figures 14 and 75 are shovm in Flgures 16, 17
and 18. Before discussing these particular asymmetric models, however, an
Investigation must be made of the influence of asymmetry on the resistance.

Figure 5 represents examples of asymmetrical lines belonging to
the family n = ¢+ bs¢° - (1 + ba) ¢%, Equation (ug].
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The curves Ia to IVA have been derived from the TMB models (Figure:
14 and 15) by reducing the coefficient of ¢ to unity. The procedure of ob-
taining the symmetric and the skew part from graphs is obvious: The first
one is the arithmetic mean of the fore and afterbody ordinates n = g T Ta
and the latter one the difference l’—;—!-'!‘- or EB-E—”L respectively.

The computation of the wave resistance due to asymmetry is based
on Equation [24]:
For the trinomial

ng =8 (¢ + b+ b3
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Figure 16 - Total Wave-Resistance Coefficlents and Coefficients
Due to Asymmetry of the Four TMB Models Shown
in Figure 14 and Figure 15, f/L = 0.125
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Figure 19 - Wave-Resistance Coefficients Loa Due to
Antisymmetrical Distributions Following Figure §

corresponding to- the distributions ¢ - £%, ¢ - ¢3 and I¥ shown in Figure 5,
where curve I; 1s derived from the TMB body, Figure 14.

The "amount" of asymmetry which corresponds to the equation Ny =g—¢"
is very large, but by assuming the strength parameter a < 1 (Equation [Ue])
more usual distributions are reached; for these asymmetric terms the wave-
resistance curves are obtained simply by multiplying the ordinates of Figure
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19 by af.

The resistance curves in Figure 19 corresponding to ¢ - ¢> and )84
are somewhat similar in the range of the large hump and the ratios of their
absolute values are of the order of 0.5. In the range of the second hump the
ordinates of both curves are small, but it is characteristic that here a much
lower resistance corresponds to the finer line 1¥*, rather than to ¢ - 55.

We return now to the four TMB models designated by I, II, III, IV
shown in Figures 14 and 15. In these figures the line A;(t) shows the sym-
metrical part of a body. The resistance results are plotted on Figures 16, 17
and 18;* in them the lower set represents the contribution due to antisymmetry

R

Toa ™ m‘/a ’
the upper set the total wave-resistance coefficient

e Ra + Rs .

o  LnpgC¥ b¥/a
The computations are made under the assumption that the doublet distribution
u*(&) = A%(¢). With the model number rising from I to IV the prismatic in-
creases and the asymmetry decreases. In the important range of Froude numbers
0.50 2 P 2 0.35 the finer models are extremely unfavorable because of the
low prismatic as well as becanse of the very pronounced asymmetry.

When comparing the total resistance values a 8light departure from
gymmetry generally 1s advantageous because of viscous effects. It has also
been pointed out that small asymmetric terms do not increase appreciably the
wave resistance even in the most sensitive range of Froude numbers, say
0.45 2 P 2 0.35; this 1s well supported by our present results, for instance
by Curve IV. Further, the obvious fact must be once more emphasized that an
immediate comparison between symmetrical and asymmetrical bodies—as to their
wave-resistance properties—1s only feasible when the sectional area of the
former Ag(é) is the even part of the sectional area of the latter

A*(¢) = AR(¢) + AR(¢)
It is entirely possible to obtain asymmetrical forms with wave-resistance
properties which are superior to the corresponding ones of a poorly chosen
symmetrical form, equal prismatics and principal dimensions being assumed.

Similar computations have been performed for other depths of im-
mersion; some results are listed in Table 2 of Appendix III. Obviously it
is not difficult to investigate the wave resistance corresponding to any
curve of the family defined by Equation [4e] at the three depths of immersion
for which the integrals have been tabulated.

#There is & slight error in the resistance curves R. of Model III due to inaccuracy in computations,
but it does not invalidate the comparisom.
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To check the order of magnitude of the wave resistance and to en-
able a comparison with experimental data, resistance coefficients Cu of the
four T™B models I to IV are shown in Figures 20 to 22, calculated for b/a=1/7
and C = 1.07. In this case the depth of immersion ratios f/L correspond to
the technically more familiar f/D ratios as follows:

f/L 0.125 0.25 0.5
£/D 0.875 1.75 5.5

Assuming a rather high viscous-drag coefficlent (cv = 0.003), the
relative importance of the wave resistance at various depths of immersion
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and Froude numbers can be estimated for a comparatively wide span of prismatic
coefficient 0.71 2 ¢ 2 0.59. Attention is drawn to the changes in the mutual
relations between the curves in Pigures 20 to 22. These changes are dependent
upon f/L and upon the obvious shift of the peaks towards smaller Froude numbers
as compared with Figures 16 to 18, because of the factor U2 in the denomina-
tor of Cy

Considerations of wave resistance may play a significant role when
fixing the optimum elongation ratio D/L as long as free-surface conditions
are important. Assuming both ¥ and ¢ to be constant, the surface S and there-
fore the viscous drag vary only with grf75-wh11e the wave resistance varies

P > i = oy i,
o { ’,-_:—-g- v A s -
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with (D/L)2 multiplied by 2 complicated function ry of F. Restricting F to
a range ~0.6 2 F 2 0.35, Es is monotonically and, on the average, heavily
decreasing with decreasing F. Thus any reduction of D/L heavily reduces the
wave resistance.

4.4, LIMTTING DEPTH OF IMMERSION

It is important to know below what depths of immersion fo the wave
resistance can be neglected. This limit can be established from such cross
curves as shown on Figure 11; it obviously depends upon:

a. The Froude number F or y, = 1/2F°

b. The L/D ratio, and

¢. The dimensionless shape of the body, primarily its prismatic coef-
ficient ¢ , especially outside of the large hump.

However, some additional simple reasoning may be helpful when curves
R = R(f/L) are not available. We cen consider the wave resistance as negli-
gible either when

A It 1s a small percentage of a given stanaarda resistunce, or

b. It is less than an absolute small value 4R.

Some obvious differences in results due to the different approach
nave sometimes heen overlooked.

a. Assume that for f >-fo the wave resistance becomes less than a
given small fraction € of the wave resistance Ro at a standard depth, for
instance at the immersion of one diameter; fo is derived from a ratio of the
resistances in question. Comparing bodies of equal length, ro depends upon
the Froude number and upon the dimensionless shape of the body, but only very
slightly upon the elongation ratio D/L = b/a, since the latter influences
only the constant 4nC2pg b*/a, which drops out in the comparison.

b. Assume that the limiting depth ro is derived from the condition
that the wave resistance 1s less than an absolute value 8R independent of
the standard resistance Ro. Comparing again bodies of equal length ro now
becomes highly sensitive to changes in D/L.

A rough idea of the necessary limiting depth fo of immersion can
be obtained from the decline of the water disturbance with increasing depth
in a plane sinusoidal wave; this estimate normally gives exaggerated values
for

Denoting the wave amplitude by Ny and the amplitude of the distur-

bance by h one obtains
i/

h = ho e X
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pautting further

and prescribing h/hm. for instance assuming h/hm < 0.01, one obtains

£,2~0.75A

or
fo/L 2 1.57F2

Tnis estimate 1s superficial for many reasons:

a. The resistance depends rather on the square of the generated wave
amplitudes,

b. The actual problem is three dimensional, and

¢. The body shape 1is neglected.
However, 1t shows at least that in principle the limiting depth cannot be
expressed as a fraction of the dimensions of the body alone, since it depends
upon the length of the free wave A or the Froude number F.

From practical considerations matters are somewhat different. As
mentioned before, at very high Froude numbers the ratio of wave resistance
to frictional drag is rormally very small. Thus the problem of finding an
accurate value of the limiting depth becomes rather unimportant since even
grave errors in computing it do not lead to appreclable errors in the total
resistance.

5. BODIES OF REVOLUTION OF LEAST WAVE RESISTANCE

n

5.1. TWO-PARAMETER FORMS

In an earlier paper® endeavors were made to determine distributions
of least resistance for given Froude numbers. The results varled with Froude
numbers and depths of immersion, which is quite natural in the light of such
resistance graphs as represented by Figures 6, 7 and 8.

An important feature is the peculiar "swan neck" form ottained for
higher Froude numbers —equal to and above F = 0.35. Because of the limited
accuracy of these former calculations the problem has been reconsidered here.
The present investigatlon supports the earlier statements.

The formalism needed is very simple. Some controversy arose as to
how far the application of exact methods of the calculus of variation 1s
consistent when dealing with surface ships;® the results obtained did not




- g e ap——

39

lead to reasonable ship's forms. However, when we restrict ourselves to fam-

1lies of curves expressed by polynomials with few arbitrary parameters, we

really obtain an ordinary minimum problem anc do not need to bother about the

difficulties connected with the application of the calculus of variations.
Take for instance the family (basic form)

B= 1 < ghsn (R ) -a (6t e %) [34)

with two arbitrary parameters. The wave resistance R is given as a second
degree function in a and a,.

R=U4B a2+ 4B a2+ 8B aa +24Ba +24Ba +B [(35]
22 2 44 4 24 2 4 2 2 4 4 (o]

where

= m 15 & 97"5
B44 = urgs B 12”’35 * 97"55

o ™ A M+ o - 6

S
BZ = mls il 37’%5

B, =, -m,

4

B, - %m,

(o]

differentiating R partially with respect to a2 and a‘, one obtains the min-
imum conditions

oR_ _ =
38_2. Baza2 + Ba‘a‘ + 382 0
o (36]
ﬁ: = Bz‘aa + B“a‘ + BB‘ = 0
whence
a = _3[83844 " 34324]
2 B B -B?
22 44 24
(37]
3(BB -BB ]
g = -4 22 2 24
. B B - B2
22 44 24

These equations lead to results which are not applicable to practice
when y, = 1 and of restricted interest when y = 2 (f/L is assumed equal to
0.125).

== TR | | e r— ey =
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When 2o > 3 the distributions shown on Figure 23 are obtained. We
note again the difference in the shapes when f/L = 0.125 and f/L = 0.25. Ex-
tending the calculations to y, = 4 and Yo = 5, curves of more and more "pea-
sonable" character are obtained as shown in Figures 24 and 25.

The apparent failure of the theory to yleld useful results in some
cases, is often due to lack of suitable conditions imposed. There is no
reason, for instance, to expect a solution which leads to a "normal" prismatic
coefficient if no restrictions as to this coefficient are made. On the con-
trary, it is rather fortunate that one obtains results which meet other re-
quirements of practice (i.e., are "reasonable"), without this restriction in
certalin ranges of Froude numbers.

5.2. ISOPERIMETRIC PROBLEMS, ONE-PARAMETER FORMS

Introducing a condition ¢ = const we obtain an isoperimetric pro-
blem. Then Equation [34] retains only one arbitrary parameter. This can be
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interpreted, for example, as Taylor's tangent value t. The resulting equation
is of the type

n(e) = mole) - gt [62 - 5 gt + L] [38]

Here no(e) 1s a given polynomial complying with the conditién ¢ = const; its
tangent value to may be chosen in such a way that the equation Mo is as simple
as possible. The function

1
-3z -8+ et = o nie) [36a]
has the properties:
o4, n(1) _
o¢
2 a, nlo) = Aznﬁ) =0

1
3. [amlede =0

t' 1s the variable tangent parameter, the resulting t of the Equation [38]
being obviously t = t' + ty
Assuming ¢ = 2/3, Mg =1 - ¢

ap= 2t - gt [e - B+ 7e]

one obtains

= 1 2
R= ¢t A+t + UM [39]
=gt +3a =0 [39a]
with " B 8
& 400 -] ' _ 2080
Aa-”&1+ 9 mss+u9’"%s 3m13+“m15 3 mss
- _ 20
Ax m, _5m13+7m15
hence

T Rt [390]
3 A
2
Another 1soperimetric problem is given by t = const and y variable.
Although this problem looks somewhat artificial since there are no technical
reasons to keep the tangent of the sectional-area curve rigidly fixed the
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results are interesting. Figures 2f and 27 show that assuming ratrer diffe:-
ent t values optimum ship lines with a similar trena may be obtained.

We notice that the optimum area coefficient ¢ for a medium depth of
immersion £/L = 0.25 1s much higher than for a slight immersion f/L = 0.125.
This - might have been inferred from the shift of the resistance curves follow-
ing Pigures 6, 7 and 8.

The necessary formalism is again very simple: assuming as before
a curve n, with the fixed t = to value, for example as before, ng =1 - £2,
to = 2, and denoting ¢ = éo t o',

ne=1 - £2 4131259 (£2 - 26% +¢%) (40]
4 n(g) =13.125(62 - ¢ + ¢°) (40a]

complies with

"
o

1. Aln(O) = Alnﬂ)

1
2. J’oaln(e)de =1

N o4 n(1) - o

from

~$
+

= -2¢ + 26.25¢'[¢ - U3 + 3¢5]

we obtain
Al

g' = 26,25'52' (4]

with
Aé ==‘,‘r‘].]. + 16”‘133 + 97’!'35 - 8?" + 67'15 - 2‘4’”&5

13
A]'. =m11 - lmla % 37".5

6. RESISTANCE CURVES OF THE FAMILY (2, 4, 6;¢; t)

A systematic survey of rédsistance properties of ship forms can be
obtained by a different approach, i.e., varying the parameters of a given
family of ship lines and plotting the corresponding resistance curves. Re-
stricting ourselves to a two-parameter equation

(2, 4, 6;¢3 £) =1 - 37 a ¢ [34]
2,4,6
g e p— e aan L T o e T e S i GUMD SIS
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Equation [35) can be used for calculating the resistance, or still simpler,
& 2 2 2
R u[aZmll B ua‘ mSS i 9a‘ mss & ua2a4m13 & 6828' mlS & 128‘8' m35]
(42]

The parameters az, a, and a, are connected with the basic form co-
efficientsgand t by the equations

a = 9 - lgi-¢ +-g-t

1¢
84"15+_Ei¢"42t (43]
a G =1 - 8, - a‘

Table 3 contains wave-resistance coefficients r, fort=0,1, 2, 3 and

0.68 2 ¢ > 0.56 with an interval of 4¢ = 0.02 within a range of Froude num-
bers 1 2 F 2 0.25 (for t = 0 additionally = 0.50, 0.52, 0.54) at a depth of
immersion ratio £/L = 0.125.

The corresponding curves spaced 4¢ = 0.04 are shown on Pigures 28
to 35 grouped following t and ¢. The main purpose of these plots is to dem-
onstrate the dependence of the wave resistance upon t for ¢ = const; it is
interesting to note that the peak values (cf page 24) differ as much as ~15
percent for t = 0 and t = 3, in close agreement with results known from stu-
dies of surface ships and the tendency exposed by the minimum calculations.
One should, however, remember that theory tends to overestimate the favorable
interference effects and that viscosity precludes the realizaticn of excessive
angles of run. On the other hand, for very high Froude numbers the relative
1mportancé of asymmetry decreases, so that forms with steep slopes at the bow
and moderate slopes at the stern may be advantageous.

SUMMARY

Using Havelock's basic work and some former investigations by the
present author, a systematic synopsis is made on the wave resistance of bodies
of revolution. Tables evaluated by the Bureau of Standards and graphs are
given which allow the investigator to estimate immediately the wave resistance
of a wide class of bodies of revolution defined by doublet distributions along
the axis expressed by polynomials.

Some discussions refer to the relations between this distribution
u*(¢) and the sectional area of the body A¥(¢). Por "normal" shapes of dis-
tribution the usual assumption is made that there is affinity between u*(¢)
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and A%*(¢). In extreme cases the shape of the body can be calculated by
methods due to Landweber and Amtsberg; no corrections, however, are given for
the influence of the free surface on the shape.

Within the first-order theory the resistance can be split up into
a main part due to a symmetric distribution with respect to the midship sec-
tion and a part due to asymmetry, which can be investigated independently.
Large amounts of asymmetry can influence the resistance detrimentally in
some ranges of the Proude number.

The investigation of the resistance as a function of the body form
leads to conclusions which sometimes are contrary to those derived for sur-
face ships. The choice of aprropriate prismatic coefficients varies deci-
sively with the range of the Frouue number, as 1s clearly illustrated by
the numerous graphs. The same applies to the influence of the tangent value
t. Ceteris paribus the resistance 1s approximately proportional to the
square of the midsnip section.

The dependence of the resistance upon the depth of immersion is in-
vestigated; this dependence is best explained by the ratio f/A, where A=31'gy—z-
i1s the length of the free wave. Thus for common prismatic coefficlents the
wave resistance decreases rapidly with increasing f except in the range of
high Froude numbers (large A values). In the range of high F the calculation
of forms (distributions) of least resistance leads sometimes to results bare
of practical applicability; by introducing suitable restrictions such diffi-
culties are avoided. These investigat.ions show important peculiarities of
the distributions.

A set of resistance diagrams calculated for the family (2,4,6;¢;t)
gives a survey of the resistance properties of a class of normal bodies.

Acknowledgment 1s made of the valuable help provided by Messrs.
Samuel Lum and David Rego and Miss Janet Kendrick of the Taylor Model Basin.
The author further wishes to express his gratitude to Dr. Alt, Dr. Levin and
Mr. Blum of the National Bureau of Standards. PFinally, it is a pleasure for
the author to thank his colleagues, Mr. Cummins and Mr. Landweber, for re-
viewing the present report.




47

08 0.06
1.0
o7 o o
_ t-0125
od /g\ | pea

0.2

o] 4

[ 1 1
® 0707 0500 0408 O

R
Pigure 28 - Wave-Resistance Coefficients Yo = GntTog T /e’
of Symmetrical Bodies Belonging to the Class

(2,4,6;0;t) = 1-a ¢2-a ¢*-a ¢* Over ¥ = 1/2F2 and P = U/)EL
2 4 ct = 0 0

003

0.04
!
L +0129]
\ 8

0.7

0.6

0.3
| s Y
0
o \.._.__s-
= « 56 e
%
°‘|[
0

Y

| S P e I e
o 0707 0500 0408 0.3:4 0316 0288 02 0.2%0

R
Pigure 29 - Wave-Resistance Coefficients r,= %c]pg ¥ /e
of Symmetrical Bodies Belonging to the Class
(2,4,6;0;t) = 1-a2¢2-a‘e‘-a8¢‘ Over 7, = 1/2F? and F = U/¥gL
t =1




FRNEER

u8

0 [ 2 3 4 5 6 7 8
vn
L

L L 1 L 1 ! 1 I
= 0707 0500 0408 0354 0316 0.288 0.267 0.250
F

- R
Pigure 30 - Wave-Resistance Coefficients r,= U g b'/a’
of Symmetrical Bodies Belonging to the Class
(2,4,6;0;t) = 1-a2¢2-a‘£‘-a‘§° Over y, = 1/2F° and F = U/¥gL

t=2
06556
QS‘f t=3
05 <, 0.03
0.6 / '
05 7-0,125.
0.4 0.02
m
o 03 294\
056 —
e 5 6 7 8
X
: —L
0 2 8 6 7 8

Y
» 0707 08300 0408 O.JFSQ 0316 0288 0267 0.2%0

= R
Figure 31 - Wave-Resistance Coefficients P UnClpg /2’
of Symmetrical Bodies Belonging to the Class

(2,4,6;¢;t) = 1-a_¢2-a ¢4-a ¢° Over y = 1/2F% and F = U/1gL
2 4 t =3 0

e ey e T <~ -
-.;J ,, S

R




49

0.7 0.02
0.6— é.QSJ
P
- AN ‘ = .0128)
r, 0.01
N\ °

¥ __

0 | 2 3 4 5 6 7 s
T

L | 1 | 1 1
= 0.707 0500 04068 0354 0316 0288 5.5%7 0.250
F

Flgure 32 - Wave-Resistance Coefficients Ty = 3551;2_5775’
of Symmeirical Bodies Belonging to the Class

(2,4,6;¢;t) = 1-8262-8‘6‘-8665 Over y, = 1/2P2 and F = U/WRL

$=0.56
0.6 0.041
d-osp
0.5 0.034

tﬁ-otzs

; o_,L/ o0 \&ﬁ-\\

o
o
o
\
20
w

-] 6 7 8
vﬂ
o-l/
PR = e,
0 1 ; 3 4 5 ] T 8

vﬂ
(I ! 1 1 1 1 1 i J
= 0707 0500 0408 0354 03i6 0288 0.267 0.250
F

Figure 33 - Wave-Resistance Coefficients r,= UnChHg 5%/
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APPENDIX I

APPROXIMATE CALCULATION CP THE SURFACE S OPF
A CLASS OF ELONGATED BODIES OF REVOLUTION

From Guldin's rule
= = = ry2 ax
s =2 | yas 2ﬂ[:y1+(y)dx
+a +a 2 +a 2
SEZnJ ydx + nf yy'*dx= mA + trf yy'?ax [29])
- -& -8

the main part of the surface is given by » times area of the meridian section
Am plus a correction term neglecting higher order terms.

With y = bH

_b 8K
y' a

the correction term becomes

+a 2 +1 2 2
12 = b— OH = .b_
nI_‘y y'€ dx = mab 2 I-x H (5{) d¢ = mabd a"'I . [30]
i.e., the correction term is equal to the area of an ellipse with the axes
a, b multiplied by the square of the elongation ratio and a numerical value
I dependernt upon the equation of the curve. To get an idea, with obvious

denotations,

Lo |
[}

16/15 H=1 - ¢

—~
[}

128/77 H=1 - ¢

3 .
In = i?n-1E Br-1] H=1-4{

The next term in the expansion of S
m (*S % - D: +1 A
= F I-c y y'* dx Eﬁ! a‘ I-l ! de [31]
with H' = 8H/0# 1s obviously of the order b*/a*. However, taking H = 1 - ¢"

the factor
+1 4 " - S
[ o = x = sy

grows with n® when n is large. Provided b/a is not too small, say ~1/7, the
error in negledting all terms except the first (Equation [29]) is only per-
missible as long as n € ~5,

e e, W—— _ g e «1 .-
r .
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Using Equation [30], various changes in S can be easily estimated
within the range of validity of the formula. FPor instance, the influence of
an asymmetric term can be discussed as follows:

Ht = Hs . a Ha

+1

2
mgtas + [ H g as

* +1
Ly = I. lms + H)(Hy + HJ)%a¢ = I+

1 -1

[32)

Where I, refers to the even part following [30]. When the meridian
curve has vertical tangents at the bow and stern (or bow or stern) the pre-
ceding reasoning can be applied in principle to a range 1 - €p >¢2-(1 - ‘A')’
and the remsinder is calculated as the surface area of a segment of the
sphere generated by the radius of curvature at the nose or stern. Such an
approach is, however, only useful when the integrals involved are of simple

type.
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APPENDIX I1
EVALUATION OF THE AUXILIARIES INTEGRALS*
The integral to be computed is given by:

(r/7.)2
My =T=c¢ J' '——Q—-M (V)M (7)Y

Vir/y,)

The functions e ' and M (rﬂMJ(y) are well-behaved in the entire interval of
Integration. However, the algebraic function (y/y,) / V(/5)f—1  causes some

dr

difficulty.at the lower limit of integration, i.e., at y = Yo In the neigh-

borhood of y = Yo the contribution of I is far from negligible and therefore
an investigation was carried out to determine the asymptotic behavior of the
integral as a function of the upper limit. Specifically, the following func-
tion was examined:

Ya{1 + ¢)
I(e) = j° Miy)f(y)dy €>0

%o
where kol
Miy) = & b W,y ()
and
(v/7,)?
f{y) = ————x
V(r/ro)5-1

1t was found that:

I(e) ~ e % Mi(y)MJ(y) A V2_¢_{1 4 -%e + 0(¢"’)}

This asymptotic expression was used to determine the interval of
integration, Ay far a numerical integration. This interval was too small to
be practicable, evén allowing for subsequent changes in Ay.

A nevw approach to the problem was sought in &« suitable transforma-
tion. The following trensformation very quickly presentecd itself:

2
y =2+t y,

dy = 22 dZ

The original integral was transform u as given by:

#By J. Blum, Fetiomal Bureau of Standards
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4 252)'

- k + 9y, ‘Zz+ )2
Y Kaad °’t—-—39—n1(ymj(r)(z“’ + 7o)z
0o
o

In this form, the integrand behaves properly, {(there 1s no longer
a singularity at y = ro) and the integrsl converges rapidly.

Thne integral was actually computed by using the form in ([5). The
numerical integration was performed once using Simpson's rule and a second
time using the trapezoidal rule—for checking purposes. The interval AZ was
taken as 0.1 and the range extended from 0.0 to approximately 3.5. The M
functions vere computed from previous tables by using 4-point Lagrangisn in-
terpolation. The exponential function was computed from tables and the use
of the approximation e X =1 .-x4+ x2/2, x < 0.01. The algebraic function
in the integrand was computed in straight form and fashion. All of thils work
was done on the IBM electronic calculator (type 604) and the auxiliary IBM
punch card equipment. All the IBM operations were checked— independently

wherever possible.
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TABLE 3
Resistance Coefficients r_ = R of Symmetrical Bodies Belonging to the Class
%Cng b‘/a 8
n-1 - azg’ - a‘e‘ - a ¢ --z(aac +2a ¢+ 3a, e-")
- 2 2 2
Yo e (a mn * %4 maa %c mss ¥ llaza‘ mxa ¥ zacmxs L 128‘8'7’135)

o~k 0.5 1.0 1.5 2.0 2.5 3.0 3.5 L.0 .5 c

t=0
.50 | 0.2262167) 0.395227 | 0.u8217¢ | 0.478565 | 0.399765 | 0.287017 | 0.17784 | 0.0931007 | 0.0399619 | 0.0
.52 .241061 dnpsurl o.sois87 | .uB113Tl 39Mm6T| 215175 161702 | .07B870'4 | .0299938 | .oc
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t =1
.56 | 0.267895 | 0.u46802] 0.515401 | 0.474195{ 0.358427 | 0.224501 | 0.114702 | 0.0456125 6.0126115 |o0.00
.58 .284159 | .u7ouB7| .536077 ] .UBMu20)| .357237{ .215331 | .103345 | .0367938 | .00833174 | .00
.60 .300976 | .ugus580] .557203 ] .u495080] .356432] .206841| .0931487] .0°96200 .00592792 | .00
.62 38347 | 51998 ] .578777 1 .506176] .356011 | .199032] .0841138| .0240914 | .00540008 | .00
64 .33627M 5439901 .600799 | .517707] .355974| .191904 ] .0762402) .0202079 .0067u822 | .01/
.66 . 354748 5693071 .623271 | .529674) .356321 ] .185456| .0695280] .0179605 .00997234 | .01
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.64 308 528019 .s7u315 | 1485059 | .323909| .167312| .06222881 .0146785 .00470793 | . 00¢
.66 349318 | .5536771 .596705 | 496792 .32u513| .161495 | .0563865] .0130855 | .00799232] .ok
l.68 0.368100 | 0.579743 ] 0.6195u4 | 0.508961 | 0.325501 | 0.156358 | 0.0517057 | 0.0131373 | 0.0131527 |0.0”

.. t = 3
.56 | 0.25972% | 0.410802; 0.463289 | 0.412207} 0.293847 ] 0.172184 | 0.0812897] 0.0305101 | 0.0088%17u | 0.001
.58 .275507 435169 483800 | .u21964) .29 | .16u276] .0TR6T6]| .0229815 .00468247 | .oo0¢C
.60 .29184? .u599us | .sou762 | .432158| .292880| .157049) .0632150| .0170980 .00239918 | . 000
.62 30877 | .uBm28f . 526172 | .uu2786] .292972] .150501 | .0559197( .0128596 .00199186 { .002
64 | 32601 | .sw0720] 548031 | .u53850| .293u49| .1uu635| .0497859| .0102663 | .00546053 | .o00€
.66 U7 36719 570338 ] .u653u9] 294310 .139uu9 | .ouu81351 .00931806] .00680518] .o
ey 6.142723 o ¢3126 | 0.593095 | 0. L7725%  C.295555 | 0.734943 | 0.041 (D24 0.0100149 0.0120258 |0.01€




1 ATSEASMNIN ot s e

to the Class

’f?a;acmss)
L
b k.5 5.0 5.5 6.0 6.5 7.0 1.5 8.0
ft =0
“ 0.0399619 | 0.0130724 | 0.00291654 | 0.000501923 | 0.000654186 | 0.000906827 | 0.000754301 | 0.000409008
} .0299938 .00802265 .00142954 .000915184 | 00153311 .001540M .00100411 .0004L4TO0
' 0219018 | .oo472942 | .00135409 | .00224750 | .00289584 | .00237037 | .00132932 | .000493900
.0156858 .00319270 .00269019 . 00449889 .00474239 .00339760 .00169992 . 000556605
.0113457 .00341247 .00543785 .00766933 .00707276 | .o0462181 .00212591 .0000632815
.00888162 | .00538875 | .00959706 | .0117588 .00988694 | .00604300 | .00260729 | .0007225%
.00829351 | .00912153 .0151678 .0167674 .0131849 .00766116 004406 | .000825753
00958139 | 0146108 .0221501 .0226950 .0169668 . 00947630 .00373623 . 000942480
.07 27452 .0218566 .0305440 .0295417 L0212324 .0114884 00438379 0010721
0.0177851 10.0308589 | 0.0uo3494 | 0.0373074% |0.0259818 | 0.0136975 | 0.00508674 | 0.00121645
=
2 0.0126115 0.0019u853 | 0.000726062 | 0.001164u4 |0.00106146 | 0.000538598 | 0.000167800 | 0.000108211
.00833174 | .00157001 .00227915 .00302235 .00231546 .00108809 .000313147 | .G00156728
" .00592792 | .00294800 .00524380 . 00579932 .00405329 .00183479 .000513887 | .000218750
) .00540008 | .00608246 .00962000 .00949529 .00627493 .00277833 .000770019 | .000294278
.00674822 | .0109735 .0154077 o1 tol .00898039 .00391889 .00108154 .0003833N
.00997234 | 0176210 022607 0195446 .0121697 .005256W .001448u6 | .000u85850
0.0150724 | 0.0260250 | 0.012179 | 0.0260978 |o0.0158u27 0.00679090 {0.00187077 | 0.000601895
t =2
0.0103302 | 0.00150426 | 0.000423770 | 0.000271083 | 0.000301155 | 0.000553898 | 0.000882234 | 0.00102788
.00611066 | 000527452 | .000782298 | .000816457 | .000478817 | 000428905 | .000746938 | .00104870
.00376TY | .o0r3eTs .00255238 .00228089 .00114028 .00L0500888 | .000667035 | .00108303
.00329953 | .00384335 | .00573407 | .00u66439 | .00228557 | .000769848 | .000642525 | .00113087
¢ .00470793 | . 00813606 .0103272 .00796694 .00391467 .00123578 .000673406 | .00119221
' .00799232 | .0141853 .0163319 .01 21886 .00602758 .00189870 .000759681 | .00126705
0.0131527 10.0719910 0.0237u82 0.0173292 0.00862431 | 0.00275892 |0.000901347 | 0.00135540
= 3
0.0088u174 | 0.00185989 | 0.00178332 |0.00181881 |{0.00246152 {0.00344350 |0.00384322 |0.00331561
.00u682u7 | .000284792 | .000947282 | .00105165 .00156282 0026439 .00342728 00330874
.00239918 | .000466200 | .00152280 .00120355 .00114793 .002¢C4129 .00306673 .00331538
.00199186 | .002u0413 .00350987 .00227450 .00121685 . 00153565 .00276158 00333552
.00346053 | .00€09853 .00690846 .00U26U53 .00176959 .00142698 .00251182 .00336916
6] .00680518 | .0115494 087 L0071 7361 .00280615 .00141529 .00231745 L0036
0.0120258 10.0167569 0.0179404 0.0110018  |0.003265. |0.0016005P |0.00217848 | 0.00347697
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