
ffi?gi 

CO 

K 

o 
a. 
«i 

OK 

a 

<x> 

WÄJcfMtll OF THE NAVY 

^/N6T0^' 

$£\   HYDROMECHANICS 

AERODYNAMICS 

STRUCTURAL 
MECHANICS 

APPLIED 
MATHEMATICS 

ACOUSTICS AND 
VIBRATION 

PRNC-TMB-648 (Rev 1-64) 

i __: 

THE WAVE RESISTANCE OF BODIES 

OF REVOLUTION 

0,-7 tr 

by 

Georg P, Weinblum, D.Eng. 
with a Contribution by 

J. Blum, National Bureau of Standards 

DDC 
p)r?raiHüti.nf2fp 
üf 

(i 
JUL2 6 1965 

May 1951 

DDC-IRA   E 

Report 758 

Auwuiiüiid; UÄ^ 4_ 



THE WAVE RESISTANCE OF BODIES 

OF REVOLUTION 

by 

Georg P. Weinblum, D. Eng. 

with a Contribution by 
J. Blum, National Bureau of Standards 

May 1951 Report 758 
NS 715-084 

—«*■■« 



TABLE OP CONTENTS 

Page 

ABSTRACT    1 

1. INTRODUCTION   1 

2. THE REPRESENTATION OP SINGULARITY DISTRIBUTIONS 
AND SECTIONAL-AREA CURVES BY POLYNOMIALS   4 
2.1. Connection between Body Form and Generating 

Hydrodynamic Singularities   4 
2.2. Representation by Polynomials   6 

2.2.1. General Remarks   6 
2.2.2. The TMB (Landweber) Class of Bodies 

and Some Generalizations  7 
2.3- Connection between Strength of Singularities 

and Body Shape   13 

3. EVALUATION OP HAVELOCK'S INTEGRAL   14 
3.1. General Considerations   . . 14 
3.2. Tabulation of Resistance Integrals for a 

Pive-Parameter Class of Bodies   l6 

4. REPRESENTATION OP RESISTANCE CURVES  l8 
4.1. The Dimension Factor C and Dimensionless 

Representations   i8 
4.2. Resistance Curves of Simple Symmetrical Bodies  20 
4.3. Resistance Curves of Asymmetrical Bodies   26 
4.4. Limiting Depth of Immersion  37 

5. BODIES OP REVOLUTION OP LEAST WAVE RESISTANCE  38 
5.1. Two-Parameter Forms  38 
5.2. Isoperimetric Problems, One-Parameter Forms   40 

6. RESISTANCE CURVES OF THE FAMILY (2, 4, 6;*; t)  Hk 

SUMMARY  45 

APPENDIX I - APPROXIMATE CALCULATION OF THE SURFACE S OF 
A CLASS OF ELONGATED BODIES OF REVOLUTION   51 

APPENDIX II - EVALUATION OF THE AUXILIARIES INTEGRALS*   53 

APPENDIX III - AUXILIARY INTEGRALS FOR VARIOUS FROUDE NUMBERS. ... 55 

REFERENCES  58 

»By J. Blu», Rational Bureau of Standards 

■» ■•-«»•»s&^fc«ii«e*»»'*^^* 



NOTATION 
1 

A With index, a coefficient 
A Area 
A_ Area of meridian section 

A(x) Sectional-area curve 
k*il) Dimenslonless sectional-area curve 

a Half length of distribution 
a As index, antisymmetry 
b Midship radius of body of revolution 
C Form parameter coefficient (Reference 7) 

C„ «= kitCzpg^~       Constant o       a 

C« -+ Prismatic coefficient 
Cs * 8/irDL Wetted surface coefficient 

D « 2b Midship diameter 

P -   -~= Proude number 

P. « -~ Depth Proude number 

f Depth of immersion 
h Wave amplitude 

!L = -2- Wave number 
O      2 uz 

L Length of body 
M Auxiliary integral 
M' Auxiliary integral 
7n Auxiliary integral I 
ttT Auxiliary integral 
P Intermediate integral 
p Intermediate integral I 
Q Intermediate Integral 
q Intermediate Integral 
R Resistance, wave resistance 
R, Total Resistance 

R Viscous resistance 

r. Resistance coefficient 

r„ Resistance coefficient o 
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S Wetted surface 
s As index, symmetry 
U Speed of advance 
x Longitudinal coordinate 
x Longitudinal distance of centroid 

y Ordinate of the meridian contour 
q Dimensionless ordinate of the sectional-area curve 

»fp»j» Dimensionless ordinate of the sectional-area curve 
fore and after body 

ij 11 Dimensionless ordinate of the sectional-area curve 
even and odd part 

• Variable of integration 
A»(x)./«*({) Doublet distribution 

{ Dimensionless longitudinal coordinate 
{ Dimensionless longitudinal distance of centroid 

p Density 
a[x), **(0 Source-sink distribution 

+. Prismatic coefficient; afterbody 

4_ Prismatic coefficient; forebody 
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1References are listed on page 58. 

♦Problems of capitation are not considered here. 
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THE WAVE RESISTANCE OF BODIES OP REVOLUTION 

by 

Georg P. Welnblum, D.Eng. 

ABSTRACT 

Following a brief reviev of prior work on wave resistance of bodies of revo- 

lution carried out by Havelock and Weinblum a discussion is presented of the appro- 
ximate relations between the shape of sectional-area curves and of hydrodynamic 
irregularity distributions.   The latter are expressed by polynomials, which lend them- 

I 
selves to an evaluation of the basic resistance integrals by computing intermediate 

integrals.   Values of the functions thus obtained are tabulated in an appendix.   These 
functions are then used to calculate the resistance of some simple bodies of revolu- 
tion.   Also investigated is how the resistance is influenced by asymmetry with respect 
to midship section.   Distributions leading to bodies of least wave resistance are cal- 

culated, assuming rather severe restrictions.   A rather complete set of resistance 
curves is given for an important family of bodies. 

1 .  INTRODUCTION 

When a body moves uniformly and rectilinearly In an unbounded 

liquid the only resistance experienced by it is the viscous drag. Our 

knowledge as to how this drag depends upon the body form is very limited, 

but it is well-established that for streamlined, elongated hulls—with which 

we are only concerned—the drag is roughly proportional to the wetted sur- 

face and is rather insensitive to reasonable changes in the shape.1* The 

well-known airship form with a rather blunt forebody and finer tail appears 

to be close to the minimum resistance attainable, although it must be empha- 

sized that earlier resistance data obtained in wind tunnels at low Reynolds 

numbers are utterly unreliable. But that there is a slight advantage in 

introducing some asymmetry with respect to the midship section appears to 

be unquestioned, at least when larger end-radii are used. Matters become 

different when a body moves close to the free surface; see Figure 1. A 

wave pattern is then produced and therefore a wave resistance arises. The 

laws governing the wave resistance R^ are quite different from those valid 

4*&*usM(*tl»i..-<-«n»r      ^-wwM.aww»!'™«»"'  ■■  "- .■.»■ *«*■»■ ,- ■ —*»;**,,.u,.mwmmß 'i"l" i ■■ iifn1 ww■ ■ ■ ■ ««*»■■*»-■ **»•*• wmiimn**«mr!*rei&&?**i*'™jitaiimamtwuBW»*«wiewWW<*iWHMHBp^B^^i -- 
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for the viscous drag R . Hence, in 

this case forms of least total resis- 

tance R. must be derived from addi- 

tional considerations and may differ, 

at least in principle, from the fa- 

miliar streamlined forms. 

In the present report it 

Pigure 1 - Scheme of Submerged Body   ls intended to analyze the wave re- 
sistance of a rather wide class of 

elongated bodies of revolution, using an integral relation based on the work 

of Havelock.2 The first classical solutions for the circular cylinder 

(Lamb)17 and the sphere (Havelock)18 have contributed much to the general 

understanding of the subject, but these solutions must be applied with great 

caution to problems connected with elongated bodies. The reason herein is 

the extreme simplicity of the cylinder and sphere; the resistance curves of 

these bodies do not show the characteristic interference effects which are 

peculiar for prolate bodies of revolution. Prom physical reasoning we infer 

at once that in the latter case two similarity parameters are involved: the 

common Proude number P = U/KgT referred to the length L and a parameter 

characterising the depth of immersion f, say f/L or the depth Proude number 

Ff ■ U/KgT, while the shape of the wave-resistance curves for the circular 
cylinder and the sphere depend only upon Ff, and the parameter f/L appears 

as a scaling factor only. Thus, for instance, the peak of the resistance 

curve is located at Ff -  l for the cylinder and Just below P- = 1 for the 

sphere. It can be easily shown that this unity value of the depth Proude 

number has no special significance for the wave resistance of a very elon- 

gated body of revolution. 

Solutions for the spheroid and general ellipsoid due to Havelock3'4 

lead to results which admit of qualitative and even of quantitative esti- 

mates of the resistance of "normal" bodies of revolution. The importance 

of the spheroid for general research on the subject cannot be overemphasized. 

Using Havelock's general expression valid for a plane source-sink 

distribution,3 formulas were obtained which represent the wave resistance 

of a rather wide class of bodies of revolution.5 By these formulas the 

resistance of various forms has been investigated;6 especially, some endea- 

vors were made to find forms of least wave resistance.3 These forms vary 

obviously with the Proude number and to a lesser degree with the depth 

parameter f/L. The rather striking results found in this way were checked 

experimentally and good agreement between theory and measurements was es- 

tablished as to the general trend.6 

;■!. '':*$■'(''•'-"■>'■*   '■*" 



As with surface vessels, theoretical forms of least wave resis- 

tance are symmetrical with respect to the midship section. Any departure 

from symmetry causes an increase in wave resistance, and this increase can 

become appreciable in some ranges of Proude numbers when the asymmetry is 

pronounced. The degree of asymmetry can be described in the usual way, 

though roughly, by the location of the center of buoyancy x , or the dif- 

ference of the prismatic coefficients 0p, 0. of the fore and afterbody. 

For instance, a difference #„ - 4J. s 0.2 means a large deviation from sym- 

metry. Again, the resistance results are qualitatively supported by experi- 

ments.6 

An extensive hydrodynamic study of bodies of revolution is under- 

way at the Taylor Model Basin. It is based on a systematic variation of 

analytically defined forms.2,1X As an extension of this work it was decided 

to make a more comprehensive theoretical investigation on the wave resistance 

of bodies of revolution. This is the subject of the present report. 

In Section 1 of this report polynomials are discussed which are 

suitable for the representation of hydrodynamic singularity distributions 

(doublets, sources and sinks); to the first approximation the equation of 

the doublet distribution coincides with the equation of the sectional-area 

curve except for a scale factor.7,8 A class of curves is selected which in- 

cludes the TMB Series2 generalized by one additional arbitrary parameter. 

For this family a set of auxiliary integrals covering a large range of 

Froude numbers has been tabulated. The values of these integrals furnish 

immediately the variable part of the wave resistance of the simplest forms 

(parabolas of the type 1 - £n). In the general case the wave resistance is 

given by a quadratic form of the parameters of the body in which the tabu- 

lated values appear as coefficients. Thus the computation of the wave re- 

sistance involves only some multiplications and an algebraic addition. 

The auxiliary integrals mentioned have been computed by the Bureau 

of Standards. A short description of the work involved, contributed by Mr. 

Blum of that Bureau, and tables of functions are found in Appendices II and 

III. 

As mentioned before, the resistance formula for a line distribution 
j 

of singularities used throughout this report follows immediately from a more 

general expression due to Havelock3'5 and therefore will be called Havelock's 

integral. 

Using the tables annexed, resistance curves are plotted for vari- 

ous basic forms of sectional-area curves (doublet distributions); they cover 

three depths of immersion ratios fA except for the spheroid where a fourth 

■-■■ ■.. ■f^ixmKjfl*"*""""''*''*'"*1*'1 -"T-^""'" «s*«*w- * „-«*»»-«***"■.. --        ■■ -■-■*«--*«K*««»«*»«M»^^ 



t 

1 

f/L ratio has been added. Special Investigations are made on the influence 

of asymmetry, and some examples of resistance curves refer to forms selected 

from the TNB Series. 

Following an earlier attempt distributions of least wave resistance 

are investigated.5 Former results5 are checked and refined. Particularly, 

the distributions obtained lead to rather peculiar "swan-neck" forms, for 

higher Froude numbers. Finally It is shown how systematic sets of resis- 

tance curves can be obtained for families of sectional-area curves (doublet 
distributions). 

2. THE REPRESENTATION OF SINGULARITY DISTRIBUTIONS 
AND SECTIONAL-AREA CURVES BY POLYNOMIALS 

2.1. CONNECTION BETWEEN BODY FORM AND GENERATING HYDRODYNAMIC SINGULARITIES 

In establishing a relationship between body form and generating 

hydrodynamic singularities two well-known problems can be formulated: 
a. Given a distribution, find the shape of the body (sectional-area 

curve A(x)). 

b. Given a body form (sectional-area curve A(x)), establish the appro- 

priate distribution. 
In the present report we disregard the complications connected 

with problem b and treat it in a very approximate way. The contemporary 

rudimentary state of knowledge on problems of wave resistance Justifies this 

procedure to some extent; our Investigation deals essentially with resistance 
properties of hydrodynamic distributions and merely some assumptions are made 

as to the probable shape of the bodies generated by these distributions. 

Thus two essential sources of error are involved when investigating 
the wave resistance of bodies of revolution: 

a. The approximate character of the wave-resistance theory, and 
b. The generally admitted approximation that for a given body the 

deep-Immersion distribution of singularities can be used instead of the 
actual distribution valid for near-sur^ee conditions. 

The second assumption (b) appears to be a serious one when the 

body is close to the surface. It has been proved by Havelock' that it leads 
to inconsistent results with respect to added masses; however, by following 

numerous comparisons between theoretical and experimental results referring 
to surface ships it works reasonably well when applied to the resistance 

problem. 
In th* present report the assumption will be made that the shape 

of the body generated by singularities moving close to the surface Is 



identical with the shape of the corresponding body generated by the same 

singularities in an unbounded fluid. 

It is well known that in the latter case one can construct the 

contour of a body of revolution for any given singularity distribution along 

the axis; auxiliary tables for this work are a va liable, 2,1° especially for 

cases in which the distribution is given by polynomials. Plat noses-as 

discussed by Weinstein16- will not be dealt with in the present report, 

although it is possible that such forms are advantageous from a point of 

view of wave resistance at high Proude numbers. When dealing with "normal" 

shapes, the important approximation developed by Welnig7 and Munk8 holds; 

i.e., for very elongated bodies the sectional-area curve of the generating 

body A(x) is affine to the doublet distribution AI(X). This approximation 

will be used throughout the present report although its limitations should 

not be forgotten. 

Some explanation-if not definition-must be given as to the concept 

of a "normal" shape of a doublet-distribution or a sectional-area curve. It 

means essentially a curve whose trend is similar to sectional-area curves of 

common ccean-going ships; these curves generally are monotonlc with not more 

than one point of inflection In the fore and afterbody. 

Since for closed bodies the source-sink distribution o(x) is the 

derivative of the doublet distribution #(x) the latter is monotonlc over the 

range of the forebody when a(x)  consists only of sources In the same range. 

This condition (though not necessarily a required one) Is sufficient to ob- 

tain bodies such that the circle of curvature at the nose lies inside of the 

meridian contour. 

We mention some conditions under which the affinity between the 

doublet and the sectional-area curve becomes strained: 

a.  Por larger values of the elongation D/L the divergence between the 

sectional-rrea curve A(x) and the doublet distribution /i(x) becomes more 

pronounced even for 'normal" shapes. This divergence can be roughly de- 

scribed. First, in the mutual relation of the prismatic (area) coefficients 

which are the decisive form parameters of the two curves-the one,^, de- 

noting the prismatic or area coefficient of the distribution, and the other, 

ja,  the corresponding one for the sectional-area curve-the following state- s 
ment holds for a wide class of normal bodies:5,15 

for finite D/L 

*>s > *d   wnen    *d < 2/3 

*8 < *d   when    *d * 2/3 
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Figure 2 - Spheroid. Sectional-Area 
Curve A, Doublet and Source-Sink 

Distribution 

The equality ^ ■ ^B is valid only 
for the ellipsoid; see Figure 2. 

Second, in the prismatics a differ- 

ence arises between the length of 

the body L and the distribution 2a, 

2a being smaller than L. For the 

spheroid the relative difference 

L-2a ^ D2 s 
2L2 ~2T 

_bi 
2a2 

where £ depends on the shape of the distribution, especially at the ends. 

(Since this problem is being thoroughly investigated by L. Landweber of the 

Taylor Model Basin, we confine ourselves to these brief remarks.) 

b.  When complicated "abnormal" distributions like "swan necks" or 

curves with very steep ends are investigated (for instance, Rankine's ovoid) 

the divergence between these distributions and the sectional-area curve can 

become appreciable even for smaller DA. 

2.2. REPRESENTATION BY POLYNOMIALS 

2.2.1. General Remarks 

In former reports polynomials have beer used for the representation 
of the generating doublet (source and sink) distribution along the axis.5,,,w,M 

The doublet and source-sink distributions M(X), <r(x) can be split 
up into dimensional factors p     a   and variable dimensionless parts n*($), 

with $ ■ x/a; see Figure 3b. 
The dimensional factors will be established later; in the succeed- 

ing discussion the functions //*({) and a#($) will be treated in the same 

way as ship lines and their derivatives. Generally following Munk and Weinig 

the doublet distribution i*'*(t)  is identified with the sectional-area curve 
A*(£) and the symbol ij is used for both of them. Actually the resistance 

computations refer to given distributions for which the corresponding 

sectional-area curves can be easily calculated2'" when Munk's approximation 
is not accurate enough-as for instance in cases dealt with in Section 5. 

The first adequate representation of ship lines by polynomials is 

due to Taylor;11,12 the equations obtained are, however, suitable for a 

separate description of the fore or afterbody only. Taylor locates the 



Figure 3a - Landweber's Axes Figure 3b - Present Axes 

Figure 3 - Systems of Axes 

origin at the bow or stern. The present writer has proposed13,14 other sets 

of polynomials referred to a system of axes with an origin located midships. 

This approach has definite advantages when investigating the wave resistance. 

Landweber2 has generalized Taylor's equation by adding one more 

term and by introducing appropriate boundary conditions; he uses the ex- 

pression obtained as the equation of the sectional-area curve of a four- 

parameter form.2 The parameters are interpreted geometrically as the pris- 

matic coefficient, the location of the maximum section along the axis and 

the nose and tall radii of curvature. It will be Immediately shown that 

Landweber 's equation transferred to an origin at the midship section can be 

split up into a two-parameter symmetrical and & two-parameter skew part with 

respect to this section; thus expressions are obtained for which the wave 

resistance can be calculated in a simple way. 

j 

2.2.2.    The TMB (Landweber) Class of Bodies and Some Generalizations 

The TMB (Landweber) class of bodies of revolution is given by the 
equation of the sectional-area curve 

,,2 a'x   + a'x2 + a'x3 + a'x4 + a'xs + a'x* 
11 21 31 41 51 6   1 

[1] 

referred to axes, as shown in Figure 3- We transform the equation of the 

body by shifting the origin to the midship section x ■ 0.5, reversing the 
direction of the axes, and putting the length of the body equal to 2. 

Thus for 

x = 0.5 
1 

x « + 1 
1 

*- 0 

*« - 1 

.:.  I  ■■ 
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The transformation is given by 

<« -2(x - 0.5) or 
1 

\ - H1 M 
The resulting equation Is 

y2 - Art + A ( + A {' H ^ + A (* + A (s + A (' [3] 0       1 a a 4 3 « 

where 

°i2n x<T2n a     T*        T       21* 

A   . .£ n(n-l)(n>^it etc. 
a       -Y       2x3x2» 

Equation [3] can be split up Into a symmetrical and an antisymmetrlcal part 

Ys" Ao+ V2 + V4 + V*    [l*] 

Ya - AJt + Aa|
8 + As«s [4b] 

y2 - Y - Y8 + ya 

The obtained form [3] has definite advantages when calculating the wave re- 
sistance since the latter Is the sun of the wave resistance corresponding to 
the symmetrical and antisymmetrleal part computed Independently. 

Going further, we derive from [3] the following simple properties 
of the Landweber bodies: 

The coefficient A can be factored out and merged into a dimensional constant 
which defines the midship section. Thus, the normal form of our polynomial 
is obtained 

1 -A 
with a4 « —A 1  Ao 

The symmetrical part of [4c] is a two-parameter family 

■.(♦) - 1  - aa*a - a4** - a6«« - l -  «•   - »t(««-«•) - ^d4-!«) 

because from the boundary condition 
n8(D"0 

a  * 1 - a - a 
< 2    4 



Such families have been called "basic forms" by the present writer18 and 

designated by (2,U,6;^;t) since the arbitrary parameters a a can be de- 

termined by the prismatic coefficient 4 *J 17 d< and by Taylor's tangent 

value t » -dij(l)/d£. 

It is thought that the Landweber Series [1] meets almost all 

reasonable requirements as to wave-resistance properties presented by prac- 

tice although only two arbitrary parameters 4,t are at our disposal for the 

main symmetric part. The reason for this assumption is that from investi- 

gations on surface ships it is well known that area curves of fine ships, 

based on the basic family equation (2,4,6;^;t) are advantageous In the range 

of high and medium Proude numbers. At low Proude numbers other polynomials 

are preferable but there the wave resistance of submerged bodies becomes 

rather negligible. 

We have, however, introduced an additional term as£* for which 

auxiliary wave-resistance functions are also tabulated In this report; thus 

more elaborate investigations can be performed using the polynomial 

The asymmetric (skew) part is the function 

V 

D   = a { + a r + a {■ \m 
factoring out a , we write 

% " M? " » U + MS + M5) [4e] 

Obviously the resultant curve rj = n   + ria  can have its maximum section out« 
a a 

side of £ = 0 and the area of this section will generally differ from one. 

This slight complication does not involve any difficulties in actual work. 

Let us investigate 

a  '   3    5 Ptf] 

This trinomial has to comply with the conditions 

i?*(o) = 0 

whence 

nj(+1) = u*(-1) = 0 

b = -(1 + b ) 
5       a 

....>,..'1.*..4«.W!V>. W>M*.*-*-i^ j****""*«» «ft Vi -«* i^vm*&^te8i#&m?*,*.. 
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thus 

.* = t  + b3(
a - (1+b3)^

! r%j 

; 

The only arbitrary parameter b can be fixed by one additional condition; as 
such we choose the tangent value t* at the bow (at the stern the correspond- 
lng value is -t*) 

*:■ 

a»*(i) 
—£— = + 4 + 2b 

d{ 3 

hence 
b = - 2 + t*/2 
3       a 

[4h] 

the corresponding tangent value t_ of n , Equation [4e], is obviously 

to " a t# a   i a 

The table below shows some examples of skew forms. The parameter 
6* =j   17* d| is an area coefficient referred to the unit square. Plots of 
f - $3 , £ - f5 and some other "skew" forms used in the TMB Series are shown on 
Figure 5- The actual skew part n contains additionally the "strength para- 

cl 

meter" a ; see Equation [4e]. 

*: 
0 1 2 4 

"a* «0   -*2)2 * - 1.5*3 + 0.5«5 < -«3 1 -*5 

dr,£/df 1  - 6$2 + 5$4 i  - 4.5*2 + 2.5£4 l  -3*2 
i  -5*4 

^a 1/6 = 0.166... 5/24 = 0.2083... 1/4 1/3 

Our numeric evaluations are primarily based on Equations [4c] and 
[5]—which are stated below-but the theoretical treatment will be carried 
out along more general lines. 

- Extended investigations have been made by Landweber and Gertler2 

on the influence of an additional term a,}x7 on the form of the body when the 
geometric parameters are kept constant. 

Using our system of axes it is easy to perform similar investiga- 
tions for the symmetric and asymmetric part of [4c] 

"o="s + "a = 1 Z    V" + V* + V3+ V5)' 
2,4,6 

■s-«r 
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Figure k  - Dimensionless Sectional-Area Curves A* (f) (Doublet Distributions' 
u*\0)  of Some Simple Bodies Symmetric with Respect to the Midship Section 
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I 

r 

By adding to i?Q terms with arbitrary parameters a7{
7 and a, $■ , a manifold 

i»x ■ n, + a7^
7   + ag('    is obtained. 

The polynomial [4cJ is completely defined by the four geometrical 

parameters 
\ 

1) 4 

an (i) 
2> ts = --^— 

drjlO) 
3) —S- a* = a 

> 

an (1) 
«0   *   --at*- -t d{     i a   a 

[5J 

/ 

pressed by 

where 

When » has to comply with the four equations [5] it can be ex- 

*i c "o + CsV(t) + V^*1 

4.^1) -|" - 5*4 + 7*6 - 3*8 

[6] 

[6a] 

complies with the conditions 

j1 A n(*)d*   = 0; 

d4 n(0)     84n(D 
V(0,.ia*l,.-^L_.--JL_.o 

and 
2\Z \rtt) M3d -*2) [6b] 

satisfies 
WJI(0)    ö4n(i) 

Thus, an addition of the functions A  , A    to n   does not influence the 
3       4 o 

boundary conditions, [5]. The shape of the curves A  n(<) and A  n($) is 

shown in Figure 13- The advantage of this representation is obvious. 

While in the equations 

or 

* - Bs + "a 

*•(«) -*JU) + *}(«) 

-w 
■g—^™'*_.*-^^""^-— *?' 
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the symmetrical (even) terms n, |i* are the main parts, obviously in s      s 

or 

the odd terms BtiJdi, o* become the main part. 
8       3 

v"8 + . 
et 

w"a 
a* 

••(♦)« •{(«) + ••(«) 
i 

-« 
•■-?. 
i 

2.3  CONNECTION BETWEEN STRENGTH OP SINGULARITIES AND BODY SHAPE 

The next consideration is to establish the dimension factors M( 

and oQ.   The flux through the midship section may be written as 

Q - C(£, *»)rt* [71 

Here the coefficient C(b/a, n*)  is, as indicated, a function of the elonga- 
tion ratio b/a s D/L and of the shape of the distribution/1*. Por very* large 
elongations C(b/a, /**)-*1, but for shapes and values b/a used In actual op- 

eration C differs from one. 

A closer investigation of the coefficient C will be given elsewhere 

by L. Landweber; for the present purpose we introduce C as a correction fac- 
tor which improves the accuracy of Munk's or Welnig's approximate affinity 

theorem mentioned on page 5. The dependence of C upon it*,  although apparent- 
ly negligible within the range of presently used submarine hull forms, shows 

some interesting features. Earlier brief investigations lead to the follow- 
ing table for C(b/a, /1*) (Reference 5). 

b/a * D/L 

1A 1/6 1/8 1/10 0 

**(«) ♦d C(b/a,/i*) 

(1 -<8)2 0.533 1.172 1.093 1.060 1.043 1 

1 a* O.660 1.192 1.092 1.0511 1.036 1 

1 - 3.082518 + 0.165410    +1.9175*12 0.820 - 1.0124 1.008 1 

Prom these results we gather that C(b/a, //*) values for normal 

submarine shapes apparently can be estimated from the spheroid; an empirical 

;^*-^- "r7--" u 

•JWJ .' m ,. M 
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formula C(b/a) =  1 + 3b2/a2 may fit the facts reasonably well. For fuller 

bodies lower values seem to be suitable. 

The constant 

Is therefore obtained as 

Mo  4** 

*o * ic(f "*,b2u [?a] 

The flux (7J or the strength of the doublet distribution at the 

midship section must be somewhat higher than the product of the cross section 

times the speed of advance. 

For the source, we have 

L2 

a - i c& "*) irü [8J 

3. EVALUATION OP HAVELOCK'S INTEGRAL 

3.1.' GENERAL CONSIDERATIONS 

The v;ave resistance experienced by a continuous doublet sheet u, 

distributed over a vertical plane and moving uniformly on a straight hori- 

zontal path, has been calculated by Havelock.3 Concentrating the distribu- 

tion ^(x) along a horizontal straight line we obtain immediately 

R = l6*pKj J* jV + Q21  sec5*!*; KQ = -^ [9] 

with 
r+a 

P   ■ exp(-KQf secz0)J     ^(x) cos (KQx sec 0)dx = exp(-KQf sec20)p        [9a] 

_     r+a 
Qx = exp(-KQf sec2«)!     /i(x) sin (KQx sec 0)dx = exp(-KQf sec20)q        [9b] 

hence 

R = l6»rpKj    fn/* (p2 + q2) exp(-2KQf sec20) sec5*d« [9c] 
0 

Using a source-sink distribution we obtain similarly 

R = l6wpK2   !'/2 (p2 + q2) exp(-2K f sec20) sec30d0 [10] 
J 0 

r + a 
p = I     o(x) sin (K x sec 0)dx [10a] 

J -a 
/+a 

o(x) cos (KQx sec $)d$ [10b] 

E*^ 
H~*r 
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Introducing dimensionless coordinates x = a$ and the expressions 

/i(x) = u0i<*(t) 

a(x)  - <r0o*U) 

various forms of the integral for R can be derived for purposes of numerical 

evaluation. 

We confine ourselves to the source-sink integral.10 Splitting up 

?*(() into a main antisymmetrlcal and a symmetrical part 

• •(«) ="*(«) +»•(«) 

and remembering that an integral taken over an odd integrand between limits 

of equal absolute value but opposite sign vanishes, we obtain with the desig- 
nation 

y   - K a =M = _L 
0   °   U2  2F2 

R = 4C2irpg |lyo j'
/z exp[-U £ yQ sec2«] sec3«. [11 ] 

j/^JM) sin<r0 *sec *)d*r +{/0
,<'?^) cos (*0*sec *,dy d# * 

const J    * exp[-4-£ yQ sec2«] sec3«[p*2 + q*2]d«   [12] 

We introduce further polynomials for 

*•(♦) = i  "2V* [13] 

hence 
• •(«) = £*n a^""1 [14] 

2k-1 -57 (2mfl)a.     f2"1 [lUa] 
or 

4 

with k, m as integers. 
For the main antisymmetrlcal part the intermediate integral p* becomes 

P* = jl
Q aj(«) sin (yQ* sec 0 )d* * -^2k afc J^2*"lsin (yQ* sec«)d* 

= .fZkat M2t„1(y0 sec«) * [15] 

with 
M

2*-i(yo sec 9) a M
2*-1

(y) = ft* _1 Sln^0^ sec *,d* " jV*"xsin(r*)d{ 

[16] 

.,    f : -.-■**! » 
<> 

-«•Sf 
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Here for brevity the designation   y =  y   sec 0   has been introduced,  [l6]. 

For the symmetrical (even) part 

q* *   f o*M) cos(yn* sec * )d* = -   F(2m+1 ^       H'  (y   sec»)      [17] 
J0       5 O Ji—' 2m + l    2m     0 

with 

M'    (yft sec 6) = M'   (y) = M'    =    f #2m cos(v  f sec 0 )d{   =   f f2m cos y d* 
2m       O 2m 2m I O I    » 

J° J° [18] 

inserting [15] and [16] into [12] one obtains 

R = tC= wg £ r0 ["'exp [-K f r„ sec* .] {(.£» sj4 H^ J * + 

'(Ii»!',.,,»;.)'} sec3*"  "»] 
This formula is suitable for numerical computations above In special cases, 

since tables of the functions M   (y), M1 (y) are available and will be 

published in a TMB Report. 

3.2. TABULATION OP RESISTANCE INTEGRALS FOR A 
FIVE-PARAMETER CLASS OF BODIES 

As mentioned before, auxiliary integrals have been prepared for the 

three-parameter symmetric distributions of Equation [5], #?({) (asymmetric 

lna*(0). 

*•(<) = 1 -y  anr  and ,J(«) = -JT na^-"1 

and the one-parameter skew distribution i<|U)  (symmetric ina*({)) 

A*U) - * + b<3 - (1+b )*5       and    a*U) = 1 + 3b f2 - 5(l+b )*4 

a 3 3 a 33 

The computations are based on a slightly different form of R (see Appendix 

II). Substituting 

r a r0 sec e sec 6  =   r/r0 tg B =   ]/(r/Y )a -1 

one obtains 

dy   « y   sec2* sin 0d0; y„ sec3 0d0 0 

(y/yQ)2dy 

^fy7y0)' 

hence 
R - 4C2 

' m 2m + l   2m '   J 

-äii- 
3P* CBi   IWI «i.«^        ■_ A-4**- 
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putting for abbreviation 

4C2 npg ~ = const ■ C, 
(y/yj2 

V* (r/r0)
2 -i 

f(r) 

R - Co f e*4 I1 £j'<r> {^2i 2J aal ^M.,.^ + 

^(^DfZs+D^^^^M^M-jdy  [21] 

with i, J, s, r integers. R can be built up of terms of the type 

r*w\'££]t(y)*a..Ay)*9.„Ar)*y-%.„x .... 
for the symmetrical part of the sectional-area curve 
and 

[22] 

JT exP [- r r~]f {y)M
2r 

(y>M
2. 

(y)d' " \r, 2« [23] 

for the skew part. The final result is therefore obtained as a quadratic 

form in the parameters a or, better, na 

[24] R=Cft{j
,2i2Ja   am +    J*(2r+1 )(2s+l )a       a     7)T        I 

°\X} "      2%   2j2i-l,2j-l T? *r+l    ** + l     2r, 2»  J 

with the tabulated integral values ft?     ,7M
1
   as main parts of the 

° 2i-l, 2;-l'  M2r,2t 
coefficients 21 2J fr\ .etc. 

'2i-X,2>-l 
We mention again the fortunate circumstance that the contributions 

to the wave resistance due to the symmetrical and antlsymmetrical parts can 

be calculated independently and added. 

Returning now to a family of distribution curves given by Equation 

[4c] but generalized by one additional term a8 fg: 

1 -^Vn+S^aV-^nVn~l + <V7 [41] 

The wave resistance can be calculated by the functions 

"»11 **1.        ^15 ^17 

^39 ^33        ^37 

*M ^57 

^77 

itiL   7?i!>2   ^i "00 '04 

n\L ml '22      "'24 

^4 44 

! 
i 

- ■     - 

. -*>^,ai«;-,=»-- -'..-■ 
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tabulated in the Appendix III. The integral R and the functions 7Y\  and Tff 
depend upon the two parameters y   ~  1/2F2 and f/L. The tables have been pre- 
pared for a range 0.5 < y0 4 10 and f/L = 0.125, O.25, O.50. Additionally, 
for )ti     an intermediate depth of immersion ratio f/L = 0.1875 has been intro- 
duced. Prom the wave resistance integral it follows immediately that the 
ratio depth of immersion over length f/L is theoretically preferable to the 
more commonly used ratio f/D, since f/L appears explicitly as factor of the 
exponent of the e-function under the integral. With elongated bodies the 
ratio b/a or D/L influences primarily the constant C ■ 4C2 npg bVa only, 
though in a very decisive way. Although the lower speed limit y   -  10 
(P = 0.224)—up to which the auxiliary Integrals have been computed—is 
rather high, it is thought that for normal hulls with 4< 2/3 moving at greater 
depths than D, the wave resistance becomes unimportant when P <~ 0.224. The 
low-speed range may, however, be interesting in connection with other research 
problems. 

In principle the wave-resistance equation, [24], solves the problem 
for any sets of a within the family following [4i]. Actually since the 
relative error of the tabulated functions is approximately 0.0001, a loss of 
accuracy may occur—when the coefficients a reach high absolute values with 
alternating signs. It is not probable that difficulties of this kind will be 
important in connection with submarine work; besides, they can be overcome 
to some extent by plotting suitable simpler resistance curves and by inter- 
polating. 

U. REPRESENTATION OP RESISTANCE CURVES 

4.1 . THE DIMENSION FACTOR CQ AND DIMENSIONLESS REPRESENTATIONS 

The dimension factor in Equation [20], CQ • 4C
2 npg bVa, has a 

rather unusual form, but it will be widely used throughout this report 
because of its theoretical merits and the comparative ease with which it can 
be connected with more familiar expressions. We rewrite, in terms of the 
displacement 4, 

C = 07rb2 2apg^C2 * 4-?4c2 [25] 
0 tfa2     0a2 

J_ = r = R_£iLor R . r   
2b2°2 

Co   ° A  2b2C2  4   ° *a2 
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Hence we can immediately derive the resistance per unit displacement for a 

given b/a and shape when r is known. o 
The introduction of the displacement A in [20] is open to objection 

since so far we have not distinguished between the length of the body and the 

distribution. We repeat the definitions: 

2a is the length of the distribution along the axis 

L is the length of the generated body 

2b = D is the diameter of the generated body 

Obviously for the displacement of the body we must use L ■ 21.    Then 

C = Wnpg  C2 bVa = A 2Ci?b2a [25a] 
0 *a2/ 

Further, the ratio b// = D/L is technically more Important than b/a; hence 

0 A  2C2 b2 / 

or 

A       4 

Later we shall use another coefficient 

1-Wi'o 1*1 

vMi(!)! i*] 
2C 

One should not, however, overestimate the influence of the length correction. 

For the spheroid 

a_l_ 1  
/ C2      ------ —  — o+ i (*n o+ * tt-n 

i.e., influences the C2 correction by less than 10 percent. Further, even 

the introduction of the more important C factor does not lead to an exhaustive 

correction since we know that not only the midship section but the whole 

trend of the curves changes with increasing b/a. Thus within the limited 

accuracy of the present wave-resistance theory we generally can put //a ss l. 

It is of course important to use all approximations in a consistent and 

clearly defined way, so that fair comparisons can be made. 

We note particularly, that for the spheroid 

| = r03C
2 b2/a2 
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Por comparison with experiments the coefficients c referred to the wetted 

surface S Is advantageous. 

We write 

„ _  R  _ „ UJTC
2

!) c =   s r 
W fi/2 U2S   ° SP 

or introducing a surface coefficient S (Reference 17) 

Cg = S/irDL 

?^)' ™ 

Cf 
cw " ro Cs (*)'*i. •'.£&)''.     M 

with yQ « 1/2P
2. Por elongated spheroids C« = 0.79- 

The Importance of the resistance coefficient c referred to the 

wetted surface S justifies a short digression on the calculation of S for 

bodies of revolution. Solutions of the exact expression (Equation [29]) can 

be obtained In a closed form in exceptional cases only, as for the spheroid. 

Of course it presents no difficulties to evaluate the Integral numerically, 

but a simple approximate formula can be derived at least for the Surface area 

of a restricted class of very elongated bodies of revolutions complying with 

the condition that the end tangents of their merldianal contour do not become 

vertical; It is similar to the well-known expression for the length of a 

slightly curved arc, see Appendix I. 

4.2 RESISTANCE CURVES OP SIMPLE SYMMETRICAL BODIES 

Since the presentation and the discussion of resistance curves is 

the main subject of the present report, various sets cf such curves have been 

computed. Essentially, the resistance properties of the following three 

groups of body forms (distributions) have been investigated; 

(a) A set embracing a wide range of prismatic coefficients, which fur- 

nishes a general review of the resistance as function of the form (IV,2). 

(b) A set dealing with four TMB models. This raises the problem of 

the Influence of asymmetry with respect to the midship section (IV,3). 

(c) A group consisting of systematically chosen forms belonging to the 

two-parameter family (2, 4, 6; ^; t) (VI); for the same family some calcula- 

tions of shapes of least resistance are presented (V). 

The procedure adopted leads to repetitions which, having in view 

the importance of the subject, have been thought to be advisable. Because 

of the complicated dependencies Involved the interested reader can more 

Uli    I     I IWMJII  » 
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Figure 6 - Wave-Resistance Coefficients rQ 
knCzpg bVa 

Bodies as Defined on Figure U, f/L = 0.125 

of Symmetrical 

easily draw conclusions from the rather comprehensive plots than from any 

text. 

We are mainly interested in the range of Froude numbers F below 

and at the maximum of the large hump in the resistance curve; see, for in- 

stance, Figures 6, 7 and 8. Above the maximum the absolute value of wave 

resistance decreases comparatively slowly with growing F, but the ratio wave 

resistance to frictional resistance drops quickly. Therefore, at high speeds 

mm *t.. 
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Curv« 7 represents the resistance coefficient r 

0.2 

for 0 dit tribution 1 -fl(»pntr< >id) at f/L »0.1875. 
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F « w 
Figure 7 - Wave-Resistance Coefficients of Symmetrical 

Bodies as Defined on Figure k,  f/L = 0.25 

the wave resistance of elongated bodies such as torpedoes represents only a 

small part of the total drag. It has been shown in References k and 5 that 

in the limit of very large Froude numbers the wave resistance becomes pro- 

portional to the square of the displacement or r to <>2. 

In general, throughout the present report calculations have been 

extended to F = 1 (yQ - 0.5), and to F s 1.58 (y = 0.2) for the parabolic 

distributions 1 - f2, 1 - f4, 1 - {'only. From an approximate investigation 
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Figure 8 - Wave-Resistance Coefficients of Symmetrical 
Bodies as Defined on Figure b,  f/L =0.5 

it appears that the resistance curves R (y ) plotted over y have a vertical 

tangent at yQ - 0, but no attempt has been made to draw accurately the range 
of curves below y   -  0.5. 

To obtain a general idea of the wave resistance for various Symme- 

trie distributions M((\ (sectional-area curves A*({)) graphs have been plot- 
ted for following simple cases:* 

*Aa before, by symetiy we mean aymetry with respect to the midaectlon. 

.^.*^ s„*. -*;,*i^ 

sm-JiSLT 
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nUJ 4> t 

1) (1 - *2)2 0.533 0 

2) l - 1.5 f2 + 0.5 *4 0.6 1 

3) i - *a 2/3 2 

4) i -*4 0.8 4 

5) i -e« 6/7 = O.857 6 

6) i -<• 8/9 8 

Figure 4 shows these sectlonal-arta curves and Figures 6, 7 and 

8 the corresponding resistance coefficients as functions of y = 1/2F2, with 

an additional non-equidistant scale for F. The choice of y   as Independent 

variable yields an appropriate picture of the wave-resistance values at high 

speeds. 

From tM Figures 6, 7 and 8 a rather complete understanding of the 

wave-resistance properties of various symmetrical forms can be derived." Ref- 

erence is also made to Figure 12 and the pertaining discussions in the text. 

The influence of the depths of immersion follows immediately from a comparison 

of Figures 6 through 8; also, cross curves can be plotted over f/L as the 

Independent variable. Figure 11 shows this dependency for 47/} , which is 

the resistance function of a spheroid A*(f) «1 -% f2, with yQ = 1/2F
2 as 

parameter. We note that with increasing depth the resistance drops more 

quickly at small than t»c large Froude numbers F. This is rather obvious; 

it will be discussed later more thoroughly that the most Indicative parameter 

Is the ratio f/X , where X the length of the free wave is X = 2TTF
2
L. 

In Figures 9 and 10 the resistance curves for three depths of Im- 

mersion have been reduced to approximately the same maximum ordinates. This 

rather artificial approach yields a clear idea about the shift of the last 

hump (of its steep rise as well as of the position of its maximum) to higher 

Froude numbers with Increasing depth of immersion; it further emphasizes 

again that the rate of decay of the wave resistance with increasing depth is 

much higher for low Froude numbers than for high ones. 

Figure 12 represents a coefficient r   - E/A  a2/2C2b2 ■ r fo.    For 

approximately constant C2 (very elongated bodies) and given a2/b2 ratio, 

r - R/4, i.e., the figure yields a comparison of the resistance per unit 

displacement for various forms. 

The discussion of the various graphs leads to the following summary 

results: 

a. 
£**■ 

«gwq --^_ A--' 
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Figure 9 - Comparison of the Shape of Wave-Resistance 
Curves for the Spheroid r}(()  = 1 - f2; the Curves 

are Reduced to Approximately Equal Maxima 

A. Small depths of Immersion 
1) Within reasonable limits, the peak value of the R/4 curve does not 

depend too much on the shape of the body,* especially upon the prismatic co- 
efficient. 

2) The merits of full forms, over a wide and possibly important range 
of Froude numbers 0.35 £  * 4 0-50, are clearly emphasized, as well as 

3) The heavy penalty wnich has to be paid for high prismatics at 
lower F. 

*li  more elaborate results are desired they can be derived from Figures 28 through 35. 
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Figure 10 - Comparison of the Shape of Wave-Resistance 
Curves for r\ -  (1 - (2)2 Reduced as by Figure 9 

B. For larger depths of immersion the dependence of the peak values of 

R/4 upon 4> becomes more pronounced; the advantage of high prismatics in the 

range mentioned in A(2) is, on the average, reduced. 

4.3. RESISTANCE CURVES OF ASYMMETRICAL BODIES 

Further curves representing the wave-resistance coefficients of the 

four TMB models represented in Figures 14 and 1*5 are shown in Figures 16, 17 

and 18. Before discussing these particular asymmetric models, hov/ever, an 

investigation must be made of the influence of asymmetry on the resistance. 

Figure 5 represents examples of asymmetrical lines belonging to 

the family n*  = { + b <3 - (1 + b ) fs, Equation [kg]. 
OS 3 

>* '" 
|M^L»'' «T 



27 

060 

0 50 

0 40 

T  0.30 

020 

0.10 

K * ■ 
v3M K 

V   ■ 0 5 
\ V \ 

»0 ' "\ Ä 
"„ • 3.0 

\ *          \ 

\ 
,-4f/t 

o.s 1.0 I.S 8.0 

J 
0.18» 0.250 0378 OftOO 

Figure 11  - Wave-Resistance Coefficients of the Spheroid 
as Functions of f/L with yQ ■ l/2Fa as Parameter 

1.0 

or «i 

0.5 
o 

f  \\\ 

\\\ 

o-fV 
-l-l 5^+0 it* 

-i-tO.125 

vft \Np A\ \ \ \\\ \ \ 
n\ \ \ A\ \ \ A\ \ 
n\ \ n\ \ \\\ \ 

\\\ 

V 
3k. X^\ 

s 

_1_ _L J_ _L J 
0 70? 0 500 0 408 0364 0316 0288 0267 0290 

ro  R a2 
Figure 12 - Wave-Resistance Coefficients r ■ -r ■ j 

2*2 2C*b 
of Symmetrical Bodies Shovm on Figure 4, f/L ■ 0.125 
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Figure 13 - Distribution Functions Following Equations [6a] and [6b] 

The curves I to IV have been derived from the TMB models (Figure? 

14 and 15) by reducing the coefficient of £ to unity. The procedure of ob- 

taining the symmetric and the skew part from graphs is obvious: The first 

one is the arithmetic mean of the fore and afterbody ordinates rjm - -*—*—- 

and the latter one the difference -£-*—=■ or "Ä^ respectively. 
The computation of the wave resistance due to asymmetry is based 

on Equation [24]: 

For the trinomial 

'a a ( < + b/ + b*5) 
1        3      5 

2&— ms*% 
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Figure 16 - Total Wave-Resistance Coefficients and Coefficients 
Due to Asymmetry of the Pour TMB Models Shown 

in Figure 14 and Figure 15, f/L = 0.125 
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Figure 18 - Total Wave-Resistance 
Coefficients rQ of the TMB 

Models Shown in Figures 
14 and 15, f/L = 0.5 

with the derivative 

WS*S + 3V2+5V4) 

we obtain 

R    = C a2 [77?'    + 9b2 W    + 25b2 7??'    + 6b   W    + ICb   ttj» +30b b  ttj'  ] 
a 0   i   [     00 3      23 5      44 3       02 5       04 3   5       24j 

[33] 

Figure 19 shows the functions 

"a 
ca knpgC2  b4/a 

--.■I ' 
i-r^*" i*j;wm 
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0.250       0236       0224 

Figure 19 - Wave-Resistance Coefficients r  Due to oa 
Antisymmetrical Distributions Following Figure 5 

corresponding to-the distributions $ - *3, { - £3 and I* shown in Figure 5, 

where curve I* is derived from the TMB body, Figure 14. 

The "amount" of asymmetry which corresponds to the equation ija  -*-?' 
fit 

is very large, but by assuming the strength parameter a < 1 (Equation [ke]) 

more usual distributions are reached; for these asymmetric terms the wave- 

resistance curves are obtained simply by multiplying the ordinates of Figure 

"■i 
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19 by a*. 

The resistance curves In Figure 19 corresponding to f - {s and I* 

are somewhat similar in the range of the large hump and the ratios of their 

absolute values are of the order of 0.5. In the range of the second hump the 

ordlnates of both curves are small, but it is characteristic that here a much 

lower resistance corresponds to the finer line I*, rather than to f - f5. 

We return now to the four TMB models designated by I, II, III, IV 

shown in Figures 14 and 15. In these figures the line A*({) shows the sym- 

metrical part of a body. The resistance results are plotted on Figures 16,17 

and l8;* in them the lower set represents the contribution due to antisymmetry 

y 
roa " W/jgC" b47a ' 

the upper set the total wave-resistance coefficient 

K + R« 
ro ' UffpgC» bVa' 

The computations are made under the assumption that the doublet distribution 

0*U)'S A*U). With the model number rising from I to IV the prismatic In- 

creases and the asymmetry decreases. In the important range of Froude numbers 

0.50 > F > 0.35 the finer models are extremely unfavorable because of the 

low prismatic as well as because of the very pronounced asymmetry. 

When comparing the total resistance values a slight departure from 

symmetry generally is advantageous because of viscous effects. It has also 

been pointed out that small asymmetric terms do not increase appreciably the 

wave resistance eveh in the most sensitive range of Froude numbers, say 

0.45 > F > 0.35; this is well supported by our present results, for instance 

by Curve IV. Further, the obvious fact must be once more emphasized that an 

immediate comparison between symmetrical and asymmetrical bodies—as to their 

wave-resistance properties—is only feasible when the sectional area of the 

former A*(£) is the even part of the sectional area of the latter 

A*U) = AJU) + AJU) 
It is entirely possible to obtain asymmetrical forms with wave-resistance 

properties which are superior to the corresponding ones of a poorly chosen 

symmetrical form, equal prismatlcs and principal dimensions being assumed. 

Similar computations have been performed for other depths of im- 

mersion; some results are listed in Table 2 of Appendix III. Obviously it 

is not difficult to Investigate the wave resistance corresponding to any 

curve of the family defined by Equation [4e] at the three depths of immersion 

for which the Integrals have been tabulated. 

«Thar« it a alight arror In tha raaiatanca curvaa R   of Modal III dua to inaccuracy in coaputationa, 
bat it doaa not inralidata tha coapariacn. 

■~mmmr\.mm ■ -      ■'w.^iaum«      ■ —WBB -— —    w   ■■■—.■.■     ■— 
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of Range Single Curves for f/L = 0.25 and f/L =0.5 are Shown) 

To check the order of magnitude of the wave resistance and to en- 

able a comparison with experimental data, resistance coefficients c of the 

four TMB models I to IV are shown in Figures 20 to 22, calculated for b/a = 1 /f 

and C = 1.07. In this case the depth of immersion ratios f/L correspond to 

the technically more familiar f/D ratios as follows: 

f/L 

f/D 

0.125 

0.875 

0.25 

1.75 

0.5 

3-5 

Assuming a rather high viscous-drag coefficient (c = 0.003), the 

relative importance of the wave resistance at various depths of immersion 
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S for the Pour TMB Models 

I-IV, f/L = 0.50 

Figure 21 - Wave-Resistance 
Coefficients cw = p/2 U»S 
Referred to the Wetted Area 
S for the Four TMB Models 

I-IV. f/L = 0.25 

and Froude numbers can be estimated for a comparatively wide span of prismatic 

coefficient 0.71 ^ 0 > O.59. Attention is drawn to the changes in the mutual 

relations between the curves in Figures 20 to,22.    These changes are dependent 

upon fA and upon the obvious shift of the peaks towards smaller Froude numbers 

as compared with Figures 16 to 18, because of the factor U2 in the denomina- 

tor of cu. w 
Considerations of wave resistance may play a significant role when 

fixing the optimum elongation ratio D/L as long as free-surface conditions 

are important. Assuming both V and # to be constant, the surface S and there- 

fore the viscous drag vary only with V L/D while the wave resistance varies 

ju»' "\   "_ «*—•■* 
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with (D/L)2 multiplied by a complicated function r of P. Restricting P to 

a range -0.6 ^ P > 0.35, r Is monotonically and, on the average, heavily 

decreasing with decreasing P. Thus any reduction of D/L heavily reduces the 

wave resistance. 

U.U. LIFTING DEPTH OP IMMERSION 

It is important to know below what depths of immersion f the wave 

resistance can be neglected. This limit can be established from such cross 

curves as shown on Figure 11; it obviously depends upon: 

a. The Proude number P or yQ = 1/2F
2 

b. The L/D ratio, and 

c. The dimensionless shape of the body, primarily its prismatic coef- 

ficient <(> ,  especially outside of the large hump. 

However, some additional simple reasoning may be helpful when curves 

R = R(f/L) are not available. We can consider the wave resistance as negli- 

gible either when 

a. It is a small percentage of a given standard resistance, or 

b. It is less than an absolute small value #R. 

Some obvious differences in results due to the different approach 

have sometimes been overlooked. 

a. Assume that for f > f the wave resistance becomes less than a 

given small fraction e of the wave resistance R at a standard depth, for 

instance at the immersion of one diameter; f is derived from a ratio of the 

resistances in question. Comparing bodies of equal length, f depends upon 

the Proude number and upon the dimensionless shape of the body, but only very 

slightly upon the elongation ratio DA » b/a, since the latter influences 

only the constant k7tCzpg bVa, which drops out in the comparison. 

b. Assume that the limiting depth f is derived from the condition 

that the wave resistance is less than an absolute value 6R Independent of 

the standard resistance R . Comparing again bodies of equal length f now 

becomes highly sensitive to changes in D/L. 

A rough idea of the necessary limiting depth f of immersion can 

be obtained from the decline of the water disturbance with increasing depth 

in a plane sinusoidal wave; this estimate normally gives exaggerated values 

V 
Denoting the wave amplitude by n and the amplitude of the distur- 

bance by h one obtains 
In/ 

h = h    e k 

rs. 
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putting further 

X = Mf = 27rp2L 
g 

h = h   e"* m 

and prescribing h/h  . for instance assuming h/h    <  0.01, one obtains m m 

f0^~o.75A 

or 

f0/L >  1 . 5*rF2 

This estimate is superficial for many reasons: 

a. The resistance depends rather on the square of the generated wave 

amplitudes, 

b. The actual problem is three dimensional, and 

c. The body shape is neglected. 

However, it shows at least that in principle the limiting depth cannot be 

expressed as a fraction of the dimensions of the body alone, since it depends 

upon the length of the free wave A or the Froude number P. 

Prom practical considerations matters are somewhat different. As 

mentioned before, at very high Proude numbers the ratio of wave resistance 

to frictional drag is normally very small. Thus the problem of finding an 

accurate value of the limiting depth becomes rather unimportant since even 

grave errors in computing it do not lead to appreciable errors in the total 

resistance. 

5. BODIES OF REVOLUTION OP LEAST WAVE RESISTANCE 

5.1. TWO-PARAMETER PORMS 

In an earlier paper5 endeavors were made to determine distributions 

of least resistance for given Proude numbers. The results varied with Proude 

numbers and depths of immersion, which is quite natural in the light of such 

resistance graphs as represented by Figures 6, 7 and 8. 

An important feature is the peculiar "swan neck" form obtained for 

higher Froude numbers-equal to and above F = 0.35- Because of the limited 

accuracy of these former calculations the problem has been reconsidered here. 

The present investigation supports the earlier statements. 

The formalism needed is very simple. Some controversy arose as to 

how far the application of exact methods of the calculus of variation is 

consistent when dealing with surface ships;5 the results obtained did not 

•>4 
^— »g»—*——— ■       ——tKSWBBmm——    ■>»■■' i   iiia. in"  »^ 
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lead to reasonable ship's forms. However, when we restrict ourselves to fam- 
ilies of curves expressed by polynomials with few arbitrary parameters, we 
really obtain an ordinary minimum problem anci do not need to bother about the 
difficulties connected with the application of the calculus of variations. 

Take for instance the family (basic form) 

„. i - *« - aaU
2 - *6) - a4(*

4 - *•)       [34] 

with two arbitrary parameters. The wave resistance R is given as a second 
degree function in a and a . z    * 

R = UB a2 + 4B a2 + 8B a a + 24B a + 24B a + Brt   [35) 
22 2     44 4     24 24      22      44    0 

where 

B     =7?)     - 6bi   + 9»? 
22           11               15              55 

B     - k7h    - 12»?    + 9fo 
44               S3                 35              55 

B24   *   2\*   -   »1.   +   9*55   - 
6m 

95 

B     =7»?     - ytn 
2              15              55 

B    = 27n   - ym 
4                 35              55 

Bn    = 367»! 
0                    55 

[36] 

differentiating R partially with respect to a and a , one obtains the min- 
imum conditions 

jSr- - B   a   +B   a   +3B   =0 
öa 22   2 24   4 2 

2 

|§- - B   a   +B   a   +3B   =0 
0a 24   2 44   4 4 

whence 
3[B B     - B B    ] 

a     = 2   44 4   24 
2 B   B      - B2 

22   44 24 

3[B B      - B B   ] 
a     = 4   22 2   24 

4 B   B      - B2 
ZZ  44 24 

[37] 

These equations lead to results which are not applicable to practice 

0.125). 

when y   e 1 and of restricted interest when y   » 2 (ftL  is assumed equal to 
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Figure 23 - Doublet Distribution for Least Resistance, 
Two-Parameter Forms, F = 0.U08, y = 3 

When yQ -  3 the distributions shown on Figure 23 are obtained. We 

note again the difference in the shapes when f/L = 0.125 and f/L = O.25. Ex- 

tending the calculations to y- k and y   -  5, curves of more and more "rea- 

sonable" character are obtained as shown in Figures 24 and 25. 

The apparent failure of the theory to yield useful results in some 

cases, is often due to lack of suitable conditions imposed. There is no 

reason, for instance, to expect a solution which leads to a "normal" prismatic 

coefficient if no restrictions as to this coefficient are made. On the con- 

trary, it is rather fortunate that one obtains results which meet other re- 

quirements of practice (i.e., are "reasonable"), without this restriction in 

certain ranges of Froude numbers. 

5.2. ISOPERIMETRIC PROBLEMS, ONE-PARAMETER FORMS 

Introducing a condition 0 = const we obtain an isoperimetric pro- 

blem. Then Equation [34] retains only one arbitrary parameter. This can be 

■eSMamu m« 
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interpreted, for example, as Taylor's tangent value t. The resulting equation 
is of the type 

*(*) = n0(e) -&'[** -^ ** +j«*]       f38] 

Here >70U) is a given polynomial complying with the condition # - const; its 
tangent value t may be chosen in such a way that the equation 17 is as simple 
as possible. The function 

"ft*2 -I3^+ it']  -^n(«) [38a] 

has the properties: 

1 
Ö42i7 0) 

«t               n 

2. 42»7(°)  e V(1)  = ° 

3. 
Jo 

t' is the variable tangent parameter, the resulting t of the Equation [38] 
being obviously t = t' + t . 

Assuming # = 2/3, tjQ *= 1 - £ 2 

one obtains 

SR -9 
'2     '  1 

IP s-g-t'A_ + 3A. = 0 [39a] 

with 

A 

400v».  A „«*.   40^  j.. ,,1>ta   28O 

20 

2    11    9   33      55    3  l13      15    3   ' 3b 

1    "ll    3   13      1! 

hence 
8A 

t' = -?/ [39b] 3 A 
2 

Another isoperimetric problem is given by t » const and <p variable. 
Although this problem looks somewhat artificial since there are no technical 
reasons to keep the tangent of the sectional-area curve rigidly fixed the 
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results are interesting.    Figures 26 and 27 show that assuming rather differ- 
ent t values optimum ship lines with a similar treno may be obtained. 

We notice that the optimum area coefficient 4> for a medium depth of 
immersion f/L = 0.25 is much higher than for a slight immersion f/L «= 0.125. 
This- might have been inferred from the shift of the resistance curves follow- 
ing Figures 6, 7 and 8. 

The necessary formalism is again very simple: assuming as before 
a curve i? with the fixed t * t value, for example as before, 17 = 1 - f2, 
tQ « 2, and denoting <f> = ^   + *', 

17 » 1   - S* + 13.125*'U2 - 2*4 + ?) [40] 

Ajlt) - 13.125(*2 - 2i* +  **) [40a] 

complies with 

from 

we obtain 

T. A T](0) = A ??(1) - 0 

2. f^nfO«    » 1 

|l= -2* + 26.250' [* - 4{3 +  3*5] 

*' s 26^25 I* [41] 

2 

with 

35 
A'=rn    + l6to    + ym    - 8&I    + 67h    - 24*771 

2 IX 33 55 13 15 3 

6.  RESISTANCE CURVES OF THE FAMILY (2, 4, 6;0; t) 

A systematic survey of resistance properties of ship forms can be 

obtained by a different approach, i.e., varying the parameters of a given 

family of ship lines and plotting the corresponding resistance curves. Re- 

stricting ourselves to a two-parameter equation 

(2, 4, 6;tf; t) - 1 - £   ^C [34] 
2,4,6 

>*L-L   
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Equation [35] can be used for calculating the resistance, or still simpler, 

R « 4[a2tf?    + ita2JM     +9a2Wj    + 4a a W?    + 6a a   Wl     +I2aa???] 
2  11     4  33     6  35     2 4  13     2 <   15      4 C  35 

[42] 

The parameters a , a and a are connected with the basic form co- 

efficients 0 and t by the equations 

a4- -i5 + ^--f t [45J 

a. ■ 1 - a - a 
« 2    4 

Table 3 contains wave-resistance coefficients rQ for t ■ 0, 1, 2, 3 and 
0.68 > 0 > O.56 with an interval of 40 ■ 0.02 within a range of Proude num- 
bers l > P >0.25 (for t ■ 0 additionally - O.50, O.52, 0.54) at a depth of 

immersion ratio f/L » 0.125. 

The corresponding curves spaced A4 » 0.04 are shown on Plgures 28 

to 35 grouped following t and 0. The main purpose of these plots is to dem- 

onstrate -the dependence of the wave resistance upon t for 0 « const; it is 

interesting to note that the peak values (cf page 24) differ as much as -15 
"I 

percent for t ■ 0 and t * 3» in close agreement with results known from stu- 
dies of surface ships and the tendency exposed by the minimum calculations. 

One should, however, remember that theory tends to overestimate the favorable 

interference effects and that viscosity precludes the realization of excessive 

angles of run. On the other hand, for very high Proude numbers the relative 

importance of asymmetry decreases, so that forms with steep slopes at the bow 

and moderate slopes at the stern may be advantageous. 

SUMMARY 

Using Havelock's basic work and some former investigations by the 

present author, a systematic synopsis Is made on the wave resistance of bodies 

of revolution. Tables evaluated by the Bureau of Standards and graphs are 

given which allow the investigator to estimate immediately the wave resistance 

of a wide class of bodies of revolution defined by doublet distributions along 

the axis expressed by polynomials. 

Some discussions refer to the relations between this distribution 

p*(S)  and the sectional area of the body A*U)« For "normal" shapes of dis- 

tribution the usual assumption is made that there is affinity between /i*(0 
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and A*((). In extreme cases the shape of the body can be calculated by 

methods due to Landweber and Amtsberg; no corrections, however, are given for 

the Influence of the free surface on the shape. 

Within the first-order theory the resistance can be split up into 

a main part due to a symmetric distribution with respect to the midship sec- 

tion and a part due to asymmetry, which can be investigated Independently. 

Large amounts of asymmetry can influence the resistance detrimentally in 

some ranges of the Proude number. 
The investigation of the resistance as a function of the body form 

leads to conclusions which sometimes are contrary to those derived for sur- 

face ships. The choice of appropriate prismatic coefficients varies deci- 

sively with the range of the Prouue number, as is clearly illustrated by 

the numerous graphs. The same applies to the influence of the tangent value 

t. Ceterls parlbus the resistance is approximately proportional to the 

square of the midship section. 

The dependence of the resistance upon the depth of Immersion is In- 

vestigated; this dependence is best explained by the ratio f/X, where X= 2|LV 

is the length of the free wave. Thus for common prismatic coefficients the 

wave resistance decreases rapidly with increasing f except in the range of 

high Froude numbers (largekvalues). In the range of high F the calculation 

of forms (distributions) of least resistance leads sometimes to results bare 

of practical applicability; by introducing suitable restrictions such diffi- 
culties are avoided. These Investigations show important peculiarities of 
the distributions. 

A set of resistance diagrams calculated for the family (2,4,6;tf;t) 

gives a survey of the resistance properties of a class of normal bodies. 
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APPENDIX I 

APPROXIMATE CALCULATION OP THE SURFACE S OP 
A CUSS OP ELONGATED BODIES OP REVOLUTION 

Prom Guldin's rule 

S = 2n  f yds = 2n C*y /T + (y')2 dx" 

S a 2n J_+"ydx + * J+*y y'2 dx * >rAm + nj  * y y'2 dx  [29] 

the main part of the surface Is given by n times area of the meridian section 
Am plus a correction term neglecting higher order terms. 

With y « Ui [ 

y «1 a 
an 

the correction term becomes 

n 1 y y'z dx «= ;rab 
a2 r; [ff)' d* - *ab tfi . [30] 

i.e., the correction term is equal to the area of an ellipse with the axes 
a, b multiplied by the square of the elongation ratio and a numerical value 
I dependent upon the equation of the curve.    To get an idea, with obvious 
denotations, 

I8 - 16/15 H - 1  - *2 

I   = 128/77 H - 1  - ** 
4 

nöffen H -1. *■ xn" W- 
The next term in the expansion of S 

a4 

with H' - ÖH/Ö*   is obviously of the order b4/a*. However, taking H - 1 - <" 
the factor 

- f f.° y y'4 «* - f ^ C «H'*«1« (>' J 

1.HH"' "< ■K - nssffen 
grows with n3 when n is large. Provided b/a is not too small, say -1/7, the 

error in neglecting all terms except the first (Equation [29]) is only per- 
missible as long as n < ~5. 

?--*■•■—-- -„ «?«#,. ■» -. 

i 
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Using Equation [30], various changes in S can be easily estimated 

within the range of validity of the formula. Por instance, the influence of 

an asymmetric term can be discussed as follows: 

Ht ' Hs + Ha 

XB " C (Hs + Ha><Hs + W***   " h + C HsHaa<i«   + I*'   Wa' d* 
[32] 

Where I_ refers to the even part following [30]. When the meridian 

curve has vertical tangents at the bow and stern (or bow or stern) the pre- 

ceding reasoning can be applied In principle to a range 1 - *_ > £>-(l -««•)» 

and the remainder Is calculated as the surface area of a segment of the 

sphere generated by the radius of curvature at the nose or stern. Such an 

approach is, however, only useful when the integrals Involved are of simple 
type. 
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APPENDIX II 

EVALUATION OP THE AUXILIARIES INTEGRALS* 

The integral to be computed is given by: 

The functions e ro and M,(y)M.j(y) are well-behaved in the entire interval of 
integration. However, the algebraic function (y/yj/ V{y/yJx- 1 causes some 
difficulty.at the lower limit of integration, i.e., at y « y . In the neigh- 
borhood of y = yQ, the contribution of I is far from negligible and therefore 
an investigation was carried out to determine the asymptotic behavior of the 
integral as a function of the upper limit. Specifically, the following func- 
tion was examined: 

»r9(i + *) 
IU) »       M(y)f(y)dy  € > 0 

where . t 
M(y) » e'TMjfyjHjfr) 

and 
(y/yj2 

f(y) ■ 
ny/y0)

2-i 

It was found that: 

1(e) - e~*r« MjfyjMjfy) yQ ^27 jl + ^« + 0(«2}| 

This asymptotic expression was used to determine the interval of 
integration, Ay far a numerical integration. This Interval was too smaU to 
be practicable, evin allowing for subsequent changes in 4j». 

A new approach to the problem was sought in & suitable transforma- 
tion. The following transformation very quickly presented itself: 

y ■ Z2 + yQ 

dy = 2Z dZ 

The original integral was transformed as given by: 

*Bjr J. Blua, ffttioosl Bureau of Standards 

3t 



:;~ 

i 
■ ■'•. 

5* 

o 

2 + y0)dz 

', 
] 

In this form, the integrand behaves properly, (there is no longer 

a singularity at y * y )  and the integral converges rapidly. 
The integral was actually confuted by using the form in [5]. The 

numerical Integration was performed once using Simpson's rule and a second 

time using the trapezoidal rule—for checking purposes. The Interval AZ was 
taken as 0.1 and the range extended from 0.0 to approximately 3.5« The M 

functions vere computed from previous tables by using 4-point Lagran&ian in- 

terpolation. The exponential function was computed from tables and the use 

of the approximation e~x ■ 1 - x + x2/2, x < 0.01. The algebraic function 

in the integrand was computed in straight form and fashion. All of this work 

was done on the IBM electronic calculator (type 604) and the auxiliary IBM 

punch card equipment. All the IBM operations were checked— Independently 

wherever possible. 
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Resistance Coefficients r 

TABLE 3 

R 
4*Capg b*/a 

-1 - a^* - a^* - a,*«   ^■-2(«a* + 2a | 

of Symmetrical Bodies Belonging to the Class 

( 
ftam 

ii 4      99 
9a*W? 

«      55 
Ma a 7n    + 

2   4    *19 
6a aty z • + 12a a???  1 

15 4 •    95J 

X 0.5 1.0 M 2.0 2.5 3.0 3.5 4.0 «*.5 

t - 0 

•50 0.2262167 0.395227 O.482I76 O.478585 O.399765 O.287017 0.177414 0.0931007 0.0399619 0.01 

•52 .241061 .417347 .501587 .487737 .397167 .275175 .161702 .0787014 .0299938 .oc 
.54 .256458 .439875 .521448 .497324 •394953 .264013 .147151 .0659474 .0219018 .oc 
•56 .272409 .462811 •541757 .507347 .393122 .253531 .133762 .0548385 .0156858 .oc 
•58 .288913 .486154 .562515 .517805 .391676 .243731 .121534 .0453746 •0113457 .oc 
.60 .305971 .509906 .583722 .528699 .390614 .234610 .110468 .0375558 .00888162 .00 

,62 .323582 .534066 .6O5378 .540029 .389936 .226170 .100563 .0313821 .00829351 .00 
.64 .341747 .558634 .627483 .551794 .389642 .218411 .0918200 .0268536 .00958139 .01 

.66 .360465 .583609 .65OO37 .563994 .389732 .211332 .0842379 .0239701 .0127452 .02 

.68 0.379736 0.608993 0.673040 0.576630 0.390207 0.204933 0.0778173 O.O227317 O.OI77851 0.03 

t > • 1 

• 56 O.267895 O.446802 0.515401 0.474195 0.358427 0.224501 O.114702 0.0456125 C.0126115 0.00 

.58 .284159 .470487 .536077 .484420 •357237 .215331 .103345 .0367938 .00833174 .00 

.60 .300976 .494580 .557203 .495080 .356432 .206841 .0931487 ,0-'96200 .00592792 .00 

.6? .318347 .519181 .578777 .506176 .356011 .199032 .0841138 .0240914 .00540008 .00 

.64 .336?71 .543990 .600799 .517707 •355974 .191904 .0762402 .0202079 .00674822 .Oil 

.66 .354748 .569307 .623271 .529674 .356321 .185456 .0695280 .0179695 .00997234 .01 

.68 0.375780 0.595031 G. 646192 0.542075 0.357052 0.179688 0.0639773 0.0173762 0.0150724 0.021 

t > » 2 

• 56 0.263667 0.429466 0.489245 0.442482 0.325335 O.197385 0.0972121 0.0375030 u.0103302 0.001 

.58 ,279690 .453492 .509839 .452473 .324402 .188846 .0867242 .0293293 .OO61IO66 .00( 

.60 .?9626? .477926 .530882 .462899 .323854 .180987 .0773976 .0228007 .00376711 .001 

.6? .313397 .502768 .552374 .473761 .323690 .173809 .0692325 1    .0179172 .00329953 .00] 

.64 .331081 .5>8oi9 .574315 .485059 .323909 .167312 .0622288 .0146788 .00470793 .00* 

.66 .349318 .553677 .596705 .496792 .324513 .161495 .0563865 .0130855 .00799232 .OH 

.68 0.368100 0.579743 0.619544 0.508961 0.325501 O.156358 O.0517057 0.0131373 0.0131527 0.021 

t • 3 

• 56 0.2597?1- 0.410802 0.463289 0.412207 0.293847 0.172184 0.0812897 0.0305101 0.00884174 0.001 

■ 58 .275507 .435169 .483801 .421964 .293171 .164276 .0716716 .0229815 .00468247 .00c 

.60 .29184: .HS0945 .504762 .432158 .292880 .157049 .0632150 .0170980 .0«2399l8 .00c 

.62 .3087* . 'iOf-i 28 .526172 .442786 .292972 .150501 .0559197 .0128596 .00199186 .002 

.64 .3261V. .^'0720 .548031 .453850 .293449 .144635 .0497P59 .0102663 .00546053 .006 

.66 ,3i|l*l7^ .'.36719 •570338 .465349 .294310 .139449 .0448135 .00931806 .OO680518 .011 
.    ,* o.'4?7?5 0   £3126 0.$93095 0.1*77284 C295555 0.i3"9i43 0.041 (I-J24 0.0100149 0.0120258 O.OlE 



to the Class 

?a atf?   1 

4 6    35, 

Jf— 
"♦•5 5.0 5-', 6.0 6.5 7-0 7.5 8.0 

s 
0.039961 Q O.OI30724 0.C0291654 0.000501923 O.OOO654186 0.000906827 0.000754301 0.000409008 

.0299938 .00802265 .00142954 .000915184 .00153311 .00154011 .00101411 .000444701 

.0219018 .00472942 .00135409 .00224750 .00289584 .00237037 .00132932 .000493900 

.0156858 . 00319270 .00269019 .00449889 .00474239 .00339760 .OO169992 .OOO556605 

.0113457 .00341247 .00543785 .00766933 .00707276 .00462181 .00212591 .000632815 

.0088816? .00538875 .00959706 .0117588 .OO988694 .OO604300 .00260729 .000722531 

.00829351 .00912153 .0151678 . 0167674 .0131849 .00766116 .OO314406 .000825755 

.00958139 .0146108 .0221501 .0226950 .OI69668 .00947630 .00373623 .000942480 

.0127452 .0218566 .0305440 . 0295417 .0212324 .0114884 .OO438379 .00107271 

5 O.OI77851 0.0308589 0.0!M)3494 0.0373074 0.0259818 0.0136975 O.OO508674 0.00121645 

■■ 1 

i 0.0126115 O.OOI94853 0.000726062 0.00116444 0.00106146 0.000538598 O.OOOI6780O 0.000108211 

1 .00833174 .00157001 .00227915 .00302235 .00231546 .00108809 .000313147 .OOOI56728 

.00592792 .00294800 .00524380 .00579932 .00405329 .00183479 .OOO513887 .000218750 

Er .00540008 .006o8246 .00962000 .00949529 .00627493 .00277833 .000770019 .OOO294278 

.00674822 •0109735 .0154077 . 0141104 .00898039 .00391889 .00108154 .000383311 

.00997234 .0176210 .0226071 .0196446 .0121697 .00525641 .00144846 .OOO48585O 

O.O150724 O.O26025O 0.0312179 0.0260978 0.0158427 O.OO67909O 0.00187077 O.OOO601895 

& = 2 • 

0.0103302 0.001'>04?6 0.000423770 0.000271083 0.000301165 O.OOO553898 0.000882234 0.00102788 

.00611066 .000527452 .000782298 . 000816457 .000478817 000428905 .000746938 .00104870 

.OO3767H .CO13C715 .00255238 .00228089 .00114028 .000500888 .000667035 .00108303 

.00329953 .00384335 .00573401 .00466439 .00228557 .000769848 .000642525 .00113087 

.00470793 .OO8136O6 .0103272 .00796694 .00391467 .00123578 .000673406 .00119221 

.00799232 .0141853 .0163319 .0121886 .00602758 .OOI8987O . 000759681 .OO126705 

B 
O.OI31527 0.0219910 0.0237482 0.0173292 0.00862431 0.00275892 0.000901347 0.00135540 

I1 * 3 

0.00884174 O.OO185989 0.00178332 0.00i8l88i 0.00246152 0.00344350 0.00384322 0.00331561 
.00468247 .000284792 .000947282 . ooi 05165 '   .OOI56282 . 00264391 .00342728 .00330874 

.0*239918 .000466200 .00152280 .00120355 .00114793 .00204129 .00306673 .00331538 

.00199186 .00240411 .003S0987 .00227450 .00121685 .001:53565 .00276158 .00333552 

.OO346053 .00609853 .00690849 .00426453 .00176959 .00142698 .00251182 .00336916 

P6 .00680518 .OH5494 .0117187 .00717361 .00280615 .00141529 .00231745 .00341631 
0.0120258 O.OI67569 0.0179404 0.0110018 O.0043265; O.OOI6005P 0 00217848 O.OO347697 
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