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A COMPARISON OF SEISMIC ARRAY PROCESSING SCHEMES 

E. J.  Kelly 

ABSTRACT 

It is our purpose in this note to discuss three of the many approaches to seismic 

array processing from the theoretical point of view.   The three are:   1)  maximum- 

likelihood processing, 2)  the minimum-variance, unbiased estimator (MVU) approach 

used by Levin, and   3)  multichannel Wiener filtering.   A feature common to these 

techniques is the formation of a single output waveform which serves as an estimator 

of the unknown signal coming from a fixed direction.   We refer to such an output as a 

"beam." 

It will be shown that 1) reduces to 2) in the case of gaussian noise and known 

signal parameters (i. e. , known epicenter) and that 3) is related very simply to 2). 

In fact, the Wiener filtering output can be obtained directly from the MVU output.   We 

treat both the sampled-data and continuous-time cases.   The note contains no new 

results. 

Accepted for the Air Force 
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I.   Introduction 

Suppose that the array seismometers are identical (say short-period vertical 

instruments and are situated in a horizontal plane at the points r, , k = 1,... ,N.   We 

write the output, x, (t), of the k*^" seismometer as a sum of signal and noise: 

Xj^(t) =   Sj^(t) + nj^(t) (1) 

We suppose that the noise components have zero mean and are (wide-sense) stationary 

with covariance matrix 

^k^(^-^'>  = E n^(t) n^(t') (2) 

(Here E stands for expectation or ensemble average.)   The signal is an unknown wave- 

form, propagating across the array with horizontal phase velocity v and coming from 

a direction bearing 0 to the East of North.   If this signal has the form S(t) at the origin 

of coordinates, it has the form S(t-a'r) at point r, where 

sin P 
a    =     _ 

X V 

cos 3 
a    =     _ 

y      V 

in a coordinate system where the x-axis points East and the y-axis points North. Thus, 

s^(t)  = S(t-a-rj^) (3) 

We assume, at first, that the signal parameters (a   and a , or v and 0) are 

known, which is equivalent to knowing the epicenter if the depth of the event is assumed 

or known.   Then the array can be "steered" by delaying the output of the k^^ seismom- 

eter by the amount cc-r   .   We call this output xl (t): 

xj^(t)  =  x^(t+a-rj^)  =  S(t)+n;,(t) (4) 

where 

nj^(t) = n^(t+a-rj^) 

now has the covariance matrix 

R;^^(t-t')  =  En;^(t)n;^(f)  = Rj^^[t-t'-h a-(r -r^)] (5) 

The x! (t) are, of course, equivalent to the x (t) and no information has been destroyed. 

1 



n.    The Minimum-Variance Unbiased Estimator 

In this completely ad hoc approach we postulate a linear combination of the 

steered array outputs which is to provide a minimum variance unbiased estimate of 

the unknown signal S(t).   Such an output beam has the form 

N 
y'(t) =  YJ    J h (T) X'(t-T) dT (6) 

k=l 

i.e., the steered array outputs are filtered and then summed.   We do not impose 

realizability on the filter functions, h (t), and all time integrals run from -» to +». 

Since 

Ex^(t)  =   S(t), 

the expected output is 

N 
E yKt)   =    YJ    I  h, (T) S (t-T) dT. 

k=l ^ 

If y'(t) is to be an unbiased estimator of S(t) for any S(t), we must have 

N 
2    h (t)  =   6(t)    . 
k=l     ^ 

The variance of y'(t), which is a constant since y'(t) is a stationary process, is 

0^   =  E [y'(t)-S(t)]^ 

N 2 
=   E   {    j;    ;   hj^(T) nj^(t-T) dT } 

(7) 

k=l 
N 

=       Z       JJ   h^(T)h^(T')R;^^(T'-T)dTdT' 
k=l 

k' '   V   '   kr (8) 

The functions hj^(t) are to be chosen to minimize expression (8) subject to constraint (7). 



In the sampled-data version of the problem, we suppose that the steered array 

outputs are sampled every 6 seconds, providing a sequence 

?k(i) = x;^(i6) i = 0, ±1, ±2, etc. 

and the output beam is the sequence 

N     V 

k=lj=-v 
(9) 

where it is supposed that the filters, 6 (i), are of length (2v+l) samples, symmetrically 

placed about zero (this last is non-essential assumption).   Since 

E ?: (i)  =  S(i)  =  S(i6), 

the analogue of (7) is 

N 
Z 
k=l 
L V" = h., 

In terms of the covariance matrix 

v-3> = V-J^>= V-'>- 

the output variance is just 

(10) 

N 

^ = Endf =   YJ       Z     Pkt^-i)\<i>9^<J) 
k,-t=l    i,j=-v 

(11) 

We solve the discrete version first, using the calculus of variations to minimize 

(11) subject to the set of (2v+l) constraints (10).   Using the symmetry of the covariance 

matrix, we find 
N V 

60^   =   2    Z Z   PlpO-i) 69 (i) 9.0) . 
k,^=l i.j^-v^-^ ^       ^ 



for the variation of c? under variations, 5 6 (i), in the filter weights.   We multiply the 

variation of the i    constraint by the Lagrange multiplier 2 X(i), sum over i and add 

the result to 60^.   The 5 9 (i) are now treated as independent variations, which leads 

immediately to the set of linear equations 

N      V 
Z    E    p;,^(J-i)e^(j) + Mi) = 0 

^=1   j=-v 
(12) 

where k = 1 N and i = -v,... , + v. 

Equations (12) could be solved for 0 (i) in terms of the undetermined X(i), and 

the latter determined by substitution in the equations of constraint.   However, since the 

constraints are also linear in the 9, (i)» we may adjoin equations (10) to equations (12), 

treat the X(i) as unknowns, and solve at once for the 9 (i) and the X(i).   We observe that 

(12) implies that 0^ is equal to 

N V 

0^ =   Z    Z    ev(i)[-^<i)] 
k=l  i=-v 

V 

Z 6 
i=-v 

1,0 
X(i)  =  -X(o), (13) 

hence the value of X(o), at least, is of interest since it gives us the actual minimum 

noise variance attained.   If we define 

Wi<'> = ^<'> (14) 

we find that the system of equations can be written 

N+1     V 

Z    Z   Pl/J-i) e,(j) = 6 \.v k,N+l   j,o (15) 
KJ=^\   j=-v 

where we have extended the definition of the matrix P as follows: 



and 
PL.N+/-J>  = ^k+l.k^-J)  =   ^.j ' 

Vl.N+l<^-J>  =   0- 

k= 1,...,N 

The set of (N+1) (2v+l) equations (15) is equivalent* to the set given by Levin in 

Reference (1). 

In the continuous-time case, we could carry out a similar analysis in time do- 

main, by introducing a Lagrangian function, X(t), to incorporate the infinity of constraints 

contained in (7), and leading to a system of integral equations for the functions \(t) and 

Mt).   However, if neither realizability nor finite memory is imposed on the hjj.(t), the 

solution is more easily obtained in frequency domain. We introduce the transform filter 

functions 

\(^)  = Jh^(t)e^^^dt  =  H*(-u)) 

and the noise spectral density matrix of the steered outputs, 

which has the symmetry properties 

In terms of the spectral density matrix, G   .(uu), of the unsteered array outputs, G\ ,(uj) 

is given by the simple relation 

G'^^iw)  =  exp [-iU)a(r^-r,)] G,^/U)) 
-f    kV 

kV 

(16) 

The transform of the constraints (7) is simply 

N 
2    H (uu)  =   1 for all uu , 
k=l 

(17) 

*  Levin's h (i) equals our 9 (-i) and his A., is our M-i). 



and expression (8) is equal to 

N 
°^  =     E       J   G'   (aj)H (uj)H*(aJ)  daj/2TT 

k,^=l-c= kl V (18) 

It can be shown that G'   (uj) is a non-negative definite matrix for each tiJ, so that 

necessarily 

N 

(19) 

Hence (18) is minimized by minimizing the integrand, i.e., the left side of (19), at 

each frequency.    Taking cognizance of the constraint (17) at each frequency, we obtain 

N 

H,(.)  =   -^ 

'^k' 
(20) 

m, n= 1 

where Q' is the inverse of the matrix G' at each frequency.   The minimum noise 

variance obtained is given by 

N -1 
^   =   I    {    Z     Ql/'^)}      dau/2n 

k.-f^l 
k^' (21) 

From (20) we find that the H (uu) satisfy the equations 
I 

N N 

k=l 
kV 

m,n=l 
m,n (22) 

for each I.   In time domain, this means that the h (t) satisfy the system of integral 

equations 



where 

YJ  /  R;,^(t-s) ys) ds  =  X'(t) (23) 

X'(t)  =   J  A'(uj)e        duu/2n 

We also have, from (21), 

0^   =   J   A'(u;)  dUJ/2n =  \'(o) (24) 

The function - X'(t) is just the Lagrangian multiplier function we mentioned above in a 

direct time-domain approach.   Also, from (21) and (22) it is obvious that A'(uu) is the 

spectral density of the noise component of the output beam y(t). 

^-    The Maximum-Likelihood Processor 

The maximum-likelihood form of processing has been discussed in detail in 

Reference 2.   It is a constructive procedure for estimating both the signal waveform, 

S(t), and the signal parameters, a, considered to be unknown a priori.    The noise is 

assumed to be gaussian and the estimation procedure takes place in two steps.   First 

a tentative a is chosen and an estimate, S(t;a), of the signal waveform is constructed. 

This estimate is, in fact, the maximum-likelihood estimate of S(t) for the case in 

which a is known and turns out to be exactly the beam, y'(t), discussed in H,   i. e., a 

sum of the filtered, steered array outputs with filter functions given by (20). 

In the general case, a modified likelihood function, L(a), is also constructed 

which is then maximized over a.   The resulting value, a, is the maximum-likelihood 

estimate of a and S(t;a) is the final estimate of S(t).   In terms of the transform, Y'(u)), 

of y'(t), the function L(a,) is given by 



The expression, a sort of signal-to-noise ratio, contains a implicitly by way of the 

array steering indicated by the primes in our notation.   In general, the final maximum- 

likelihood estimate of S(t) is biased, as would be any estimator for the case of unknown 

a and more than one sensor.    The accuracy of the estimate of a is discussed in detail 

in Reference 2. 

It can be shown that the maximum-likelihood filter weights for the estimation 

of signal with known parameters in the sampled-data case are also identical with those 

obtained by Levin. 

rV.   Multichannel Wiener Filtering 

This case was also discussed briefly in Reference 2, but will be reviewed in 

greater detail here. As in II, we form a steered beam, y*(t), given by (6), but now 

we choose the filter functions to minimize the variance of the error function 

e(t)  =  y'(t)-S(t)   , (25) 
I 
I 

where S(t) is taken to be a stationary random process with covariance function 

R^(t-t')  =  ES(t)S(t')  =  R^(t'-t). 

independent of the noise components. 

First, we compute 

and 

E x;,(t) x^(t')  =  R^(t-t') + R^^(t-t') 

Ex^(t)S(t')  =  R^(t-t') 

hence 



N 
Ey'(t)2   =     Z        n   yT)h^(T')ExJ^(t-T)x;^(t-T')dTdT' 

N 
=       Z        II   h(''>^^^'>^^o('^'-'r)+Rw(T'-T)}dTdT 

k,^l kV 

and 

N 
Ey'(t)S(t)  =     Z   I  h-(T) E x;(t-T) S(t) dT 

k=l ^ ^ 

N 
=       Z     J   MT)RJ-T)dT 

k=l 

N 
=       Z     I   MT)Ro(T)dT    . 

k=l 

Finally, combining these results, we have 

N 
E{y'(t)-S(t)}       =       Z       II   yT)h^(T'){R^(T'-T) + R;^^(T'-T)}dTdT' 

k,^=l 

N 
- 2    Z    I  \(T) R (T) dT  + R (0) 

k=l ^ ° 0 

At this point we reintroduce the Fourier transforms used in 11    and also the 

signal spectral density 

G^m = ;  RJt) e'"^ dt  . 

Expressing all time functions in terms of their Fourier transforms, we find 



N 
E {y'(t) - S(t)}    =     YJ       !   H. (u)) HVUJ) {G^(UJ) + G'   (O))} daJ/2TT 

k,^=l -co     ^        ^ ° k^ 

N 
-     Z        J      1HJ,(UJ) + H*(UJ)}    0^(0))   dUJ/2TT 

k=l — 00 

+ ;   G (uj)  dt«/2n 

We now vary the H^(UJ) (as complex quantities) and find that the Wiener filter functions 

satisfy the equations 

N 
Z    {G;,^C^) + G^(U))}   HJ,(U;)  = G^(U)) 
k=l 

(26) 

In ternns of the inverse, QJ,^('J"). to the matrix G'   (UJ), we try a solution of the form 

N 
H (uu)  = ^(UJ)    2   Q\J^) GJ^) 

^1 ^k' 

We find that 

Gn((^)     -1 

and that the Wiener fUter functions are 

v>=^— GoC^J) 

E Q:.(^) 
G^(u)) + A'(U)) (27) 

ij=l ij 

These functions are equal to the MVU filters, multiplied by the common filter function. 

10 



Go(a)) 
Go(au) + A'(uj) 

which is simply the appropriate infinite-memory, non-realizable Wiener filter to apply 

to the MVU output beam to convert it directly into a Wiener estimate of S(t). 

The smoothing error committed by the multichannel Wiener fUter is 

E{y'(t)-S(t)}^  =   I   G^(cu){l-   YJ    H (UU)}   d(«/2n 
k=l 

= _{      G».A'(.)     ^^/^" (28) 

The case of unknown a is not directly amenable to Wiener smoothing methods. 

The sampled data version of the Wiener filtering problem is easily formulated 
3 

and formally solved.   However, because of the finite memory restrictions, we shall 

not find quite so direct a relationship to the sampled-data MVU solution as in the 

continuous time case. 

We assume that the sampled signal sequence, 2j(i)»   ^^ statistically stationary 

with covariance matrix 

E Z(i) Z(J)  =  PoCi-J)  =  Po(J-i) , 

and form a beam as in III: 

N V 

^(i) =   Z     Z   Yj^(j) §;^(i-j). 
k=l   j=-v 

(29) 

We use YT^(i) for the filter weights to distinguish them from the MVU weights \(i).   We 

now require a minimum value for 

E[ri(i)- 2(i)]^    , 

which leads immediately to the set of equations 

11 



N      V 

Z     E    [Pk^(J-i) + Po(J-i)]   Y^(j) =  Po(i) 
^1 j=-v 

(30) 

for k = 1 N and   i = -v,..., v. 

In order to solve this system we modify the notation, and define the doubly- 

indexed matrices 

\l^''^^  ^    ^k..<J-> 

\l^''^^    ^   PoO-i) k,l= 1,...,N 

(31) 

By A     .(i. j) we mean shall the inverse of A, in the sense that 

m=l s=-v » »j 
(32) 

Equations (30) now read 

N       V 

Z      E     [\ ^<i'J)+\ /i'J)]   Y/j)  =  Po(i)   , 
-1=1   j=-v ' k,r 

and our problem is to invert the sum matrix A + B.   We wish to express this inverse 
^   -1   . -1 

in terms of A     smce A     appears in the MVU solution.   We digress here to obtain 

expressions for the MVU filters in terms of A"-^.   With our present notation, equation 

(12)reads 

N      V 

Z 

hence 

IN V 

^1  j=-V ' 

N       V 

yi) = - Z  Z \ ^(i.j)Mj) 
-1=1 j=-v       ' 

12 
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According to the constraints, (10), we have 

N V       N 

^,o = ^ V^) = - Z   2   A' (i,j)Mj) . 
k=l j=-v   k,^=l      ^''^ 

We define the (2v+l) x (2v+l) matrix a(i, j) by means of its inverse: 

N 
-1/. 

k,^l 
(34) 

Thus 
V 

^io = " Z   a"\i,j)Mj) 
j=-v 

and we have 

V 

Mi)  = - YJ    a(i,j)6.       = - a(i,o) (35) 

Finally, we have the desired expression for the MVU filters: 

N     V 

,(i)  =    YJ     Z    A'^\(i,J)aa,o) 
k=l j=-v       ' 

(36) 

Had we asked that the MVU beam, Ti(i), be an estimate of ^(i-s), for some integer s 

between -v and +v, still using the 2v+l data prints symmetrically disposed about the 

point i, the analysis would be unchanged, except that in constraint (10) we have 5.     on 

the right side instead of 6.^^.   We call the resulting MVU filters ej^(i|s), and the  ' 

multipliers that go with them X(i|s), and we have immediately 

N       V 

^(i|s)  =    2      Z    A"^^^(i,j)a(j,s) 
^1   j=-v       ' 

(37) 

Of course, Gj^d) = Gj^dlo) and X(i) = X(i|o).   We also find that the noise variance attained 

by the fUters Gj^ajs) is just - \(s |s) = a(s, s), while a(s, s') = the covariance of the noise 

13 



outputs of the two processors 9j,(i|s) and ej^(i|s').   We have introduced these modified 

MVU filters because the Wiener filter weights are expressed in terms of a combination 

of all of them.  \ 

Returning to the Wiener filters, we make use of the matrix expansion analogue 

Of 

(1+x)-^   =    2     (-D^'x^   . 
n=o 

namely 
03 

(A+B)'-^   =  A'^    2    (-if   (BA-i)" 
n=o 

[ Here (BA   )   is the unit matrix. ] 

Thus 

YkW  =     E E      \|^(i,j)    2   (-1)"  (BA-\"^(j.s)P,(s) 
'6,m=l  j,s=-v n=0 %,m 

(38) 

Now suppose we introduce the (2v+l) x (2v+l) matrix 

b(i,j)  =  Po(j-i)  =  B    (i,j)   . 
kV 

Then 
N       V 

Z       E     (BA-\^(i.J)P,(j) 
>l   j=-v ' 

N V 

2     Z 
'£/,m=l j,s=-v 

=  2     2   B^^a.s)A-/_^(s,j)p^(j) 

V N 

=     Z       b(i,s)    2      A-^J^(s,j)P^(j) 
" -6, m=l J.s=-v 

=     2      b(i,s)a-l(s,j)P^(j) ' 
j.s=-v 

V 
=      YJ   [t'a-l] (i,j)Po(j) ,   k= 1 N 

i=-v 

14 



in terms of the matrix product ba"^.   In fact, 

N       V 

Z   Z (RA-i:^^(i,j)p^(j) 
^1   j=-v ' 

V 

=    X    [^^'^f  (i,J)Po(J) . k=l N   , 

and therefore. 

N      V ^ 

Yk(i)  =    Z      2   \\<i.J)    Z    (-l)''[ba-if(j,s)   P^Q)   . 
^=1 j=-v       ' n=o 

But 

2    (-if [ba-lf  =  a(a+b)"^   , 
n=o 

and therefore. 

N      V 

Yk^i)  =   Z      Z A"^^^(i,j)a(j,s)(a^)-i(s,t)  P^(j) 
-^=lj,s,t=-v       * 

We define 

V 
.-1 

W(i)  =     YJ    (a+b)"     (i,j)  Po(j) 
j=-v 

and find the desired expression in terms of the MVU filters: 

(39) 

V 

Y,(i)  =    Z    W(j) e, (i|j) 
J=-v 

(40) 

which is analogous to equation (27) in the continuous case.   It might be remarked that 

the sequence W(i) is vaguely related to the single-channel "signal/signal noise" Wiener 

filter.   Finally, the Wiener smoothing error is 

15 



...^1 

E [ri(i) - 2(i) ]    =  Po(0) -  E      (a + b)'   (i, j) P^W P^(j) 
i.j=-v 

(41) 

We can also introduce a set of Wiener filter weights, Yi,(i|s), in analogy to the 

MVU filters   9 (ils), by defining 

N       V 
Ti(i|s)   =    YJ       TJ   Y,(j|s)   I'Ai-j) (42) 

k=l j=-v    ^ ^ 

to be a Wiener estimate of ^(i-s).   The only change is that PQ(i) becomes PQ(i-s) on 

the right side of (30) and W(j) in (40) becomes W(jls), where 

V 

W(i|s)   =    2    (a+b)"^   (i,j)P^(i-s) 
j=-v 

(43) 

The corresponding smoothing error is 

E [in(i|s)-2;(i-s)]^  = 
V 

P^(0)-   2     (a+b)'    (i,j)Po(i-s)P^(j-s) 
i,j=-v 

= {b-b(a + b)"J-b} (s,s) 

-1 
= {a (a+b)    b} (s,s) 

Incidentally, 

(44) 

W(ils)   =    2   (a+b)"^(i,j)b(j,s) 
j=-v 

-1 
= { (a+b)    b} (i,s) 

16 
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