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VISCOELASTIC DAMPING OF VIBRATIONS OF
SANDWICH PLATES AND SHELLSY

YI-YUAN YU»
1. Introduction

In this paper we shall discuss a sequence of four topics which culminate
in a study of the viscoelastic damping of vibrations of sandwich plates
and shells. The paper is thus divided into four parts. In the first part a new
variational principle is presented, which may be considered as a generalized
Hamilton’s principle. The principle is made use of in the second part of
the paper in the derivation of the complete system of equations for a sand-
wich cylindrical shell, which are reducible to those of a sandwich plate
as a special case. The way the equations are derived is also new. In the
third part of the paper the equations of the sandwich plate and cylindrical
shell are used to investigate the undamped vibrations of these structures.
Of particular interest are an analysis of the coupling between the flexural
and extensional motions of the sandwich cylindrical shell and a demon-
stration of the-importance of transverse shear deformation in the vibrations
of the sandwich plate and cylindrical shell. In the last part of the paper
the cffectiveness of viscoelastic damping of vibrations in the sandwich
plate and cylindrical shell is investigated through the use of the concept
of the damping parameter.

2. Generalized Hamiltons Principle

We shall carry out the variation in the following equation:
1 0
8§ Lar=s{(r—v+wydr=0 (1)
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where L = T— U-- W may be called the generalized Lagrangian function
and
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W= {fudv+ { GudS+ @ —m)ds.
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Cartesian tensor notation .and the summation. convention for repeated
indices have been adopted. In the above equations, g is the density, 1
the displacement vector, €;; the non-linear strain tensor; oy, -the Trefltz
stress ‘tensor, & are expressions of ¢;; as functions of the derivatives of
1;, E is the strain energy density which is assumed to exist and is a function
of €y, f; the body force, and p; the surface traction. In addition, f, and
t, are two instants-of time -, overdot indicates differentiation: with respect
to f, overbar the prescribed-vaiue of a quantity, ¥ the volume of the body
under consideration, S, that part of the surface .S of the body on which
traction is prescribed, and S, that part of § on which dispiacement is
prescribed.

The variations of the displacements, strains, and stresses are taken
independently. We thus have

[N I

6 § Tat = §omduav]! — { ar { iiduav, @
fe vV ¢ [ 4
¥ ¢ OE

0 S Udt = S del:GulSSU -+ (EU - 6‘,,)60',1 —"(O'U—"gg;;*) (SCU] dV, (3)
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The variation of the displacement du; will be assumed to vanish at t = ¢,
and ¢ = ¢, as is usual in Hamilton’s principle; the first term on the right-
hand side of eq. (2) is therefore zero. Since ¢ are expressions involving
the derivatives of displacements, they can always be represented in terms
of the linear strains e,, and rotations ®,,,:

&y = elj(emm ®,03) (5)
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with
€nn =5 (i, F ln)
1

Wpy == 'i’ (um,n - “n.m) (6)

where subscripts following a comma indicate -differentiation with respect
to the corresponding coordinates. Introducing e,, and w,, and -making
use of Gauss’ theorem, we find

. 1 ¢ . 0€ ¢
SO'UOEudV=-§- S [UU(.‘;;‘-L.{- t)(l)u )1’,,6,,,,
v » mn

Sp "
g _ 0y ' _ 1 S | &y 0gy;.
+ au(aemn, 0w, ) " 61"] éue'ds —2‘ v G‘J aemn + awmm » élm

,aéu ()8;] } s 'Y
+ {UU (08'“ awmn ) - 6[» fsuldV’ (7)
the left-hand side of which has appeared in eq. (3) and in which 4, is
the Kronecker delta and », = cos (v, n). By virtue of egs. (2), (3), (4),
and (7), eq. (1} becomes

1
1 deu aé‘”
Jar§ [’2“"” ('52;: S, )} Otm
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1 9 0 -
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h
¥ oE
+ S dr 5 (Gu'“gg‘") de,dV
e 14 J
h Iy

+ S dtS (e — &) oy dV + S dt S w—7)épdS=0. (8

le 1 Su

Since the variations du;, d¢;;, day; are arbitrary throughout the volume
V of the body, oy, arbitrary on S,, and dp; arbitrary on S,, their coeffi-
cients in the five integrards in eq. (8) must vanish independently, which
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yield. in succession the stress equations of motion, stress boundary &on-
ditions, stress-strain relations, strain-displacement relations, and displace-
ment, boundary ‘conditions. Depending on the form of ¢, these may
be seen to represent the completé system of equations for infinitesimal
or finite elastic deformations. We have thus proved’ the gencralized
Hamilton’s ‘principle, which may. be stated as follows:

“The displacements, strains, dnd stresses (defined in the mariner -of
Trefftz) over the time interval from. 7, to ¢, which satisfy the equations
of motion and the stress-strain-displacement relations ‘throughout -the
volume ¥ of the’body and the boundary, conditions of fprescribed' tractions
over §, and prescribed displacements over .S, are determined by the
vanishing of the variation of the time integral of the generalized Lagrangian
function over the time interval; provided that the variations of the displace-
ments, strains, and -stresses be taken independently and simultaneously,
that the variations of the displacements vanish at 7, and #; throughout

the body, and that the variations of the displacéments and stresses be-in-
-consistence with the prescribed boundary- conditions”..

T quations (1) and (8), will be referred to as the generalized Hamilton’s
principle .and generalized variational equation of motion, ‘respectively.

If the variations are restricted .to- those of displacements, eq. (8)-is seen

to reduce to:the -ordinary variational equation-of motion.

3. Equations of Sandwich Plate and Cylindrical Shell

The generalized Hamilton’s principle and -the associated variational
equation of motion.are most general in that they are applicable to finite
as well as infinitesimal deformations. In the, following we shall make use
of the generalized variational equation of motion in the derivation of
linear equations of a thin sandwich cylindrical shell. The cylindrical coordi-
nates x, s==al and r = z - a are employed. They are in the longitudinal,
circumferential, and radial directions, respectively, of the shell whose
middle surface has the radius 4. In the radial or thickness direction the
inner face, core, and outer face layers of the shell extend from z = —h
to 2= —Iy, z=—h to z=Fh, and z=h, to z = h, respectively. The
core thus has a thickness 2/1,, each of the two face layers a thickness /i, =
= li— hy, and the total thickness of the shell is 2. The shell is closed in
the s-direction and has a length / in the x-direction.

For the sandwich cylindricai shell we rewrite eq. (8) in its linearized
version in cylindrical coordinates as.follows:

oty e a
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+ _ezzi_'a_z"'] 00351 +"[€xst— (.??‘x_ += ‘3‘;’)] 004y
[ Quy | Ouy
+ _szl— ( Er +—3-:;—)] 00,
i oug . a duy uy z
-e_,z,' (—a-;- T a5 —r-)] 6“3:{} dxds (1 -+ 71—) dz
t, 3

+
+S dt Z S S {[txs — 1) 0 @i Vy + OtV + Gzxi¥;)

fo i=1 §,
+ [uzl - Esl] 0 (dxsi Vx + g5t ¥s + Oyt "’z)
-+ [uzt - E,,](S (ax:l Ve + Oy "; + Gen v:)} dsl =0 (9)

where the subscript, i = 1, 2, or 3 refers to the core, inner or outer face
layer of the sandwich, overbars denote prescribed -quantities, and S, and

B Kot
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S, denote those portions of the surface on which traction and displacement,
respectively, are prescribed. Other notations in-eq. (9) are the usual ones.
The displacements are assumed in the form
Uy = U 2Y, Agay Uy = U Tl ¥
Uy = v+zp, Uga, gy ==V + hl Py (10)

Hyy == Uga = Uy == W

or
g =1+ 28, U=,  wg =48,
Uy = liﬂ’ "’i"Zlé}_), gz = “gg): Uy == ‘dg)) (l l)
u,y = ug, e = UD, g =ul.

The face layers have thus been taken to be membranes, In a consistent
manner the strains arc taken as

€xxl = C?)l +.‘:C£.21 » Crze = cfro}z: bxx:! = Cg"}s,

b= bzl Cpmmel),  ea=-Tof

€ = Cg)l + :ng ’ Copn = ng)g, €rg = ng);;, (12)
stl = cfg)l 289,)1 + "g"' (ng)l + cgt)l H C.u:’. = cgrls)‘.’. + 'g'” C.(x(;)z ’

a.
€xs3= ng)s + r ng)a»
€xn1 = ‘2}2:)» €2 =0, €xzg = 0,
€521 = 55(22, €2 =0, €0 = 0.
In eqs. (11) and (12) 4, uf), ... are the shell-displacements, €@, c(), ...
the shell-strains, and these are all functions of x and s only. The shell-

stresses needed are defined as follows:
b

(a.(tox)l; aa(rlx)l) = S axxl(l +—z-) (1’ z)dz,
%
by

(0';21), 0‘,}1) = S o1, 2)dz,
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b
(Uﬁg}, a}vl S xsl(l» -) d-:
9
hl
an = | am(l +5—)d:,
-h:
"l
oﬁ‘}} = S ‘73-! d"'
_h.l

which are also ‘independent of z and in which. the limits of integration
cover the thickness of the layer.

To derive the cquations of the sandwich cylindrical. sh2ll we substitute
egs. (10)-or (11) and (12)-into eq. (9), carry out the integration with respect
to z, and make use of eqs. (13) together with the assumption

Blat <1

for a thin shell. Since the variations of the' shell-displacements, strains,
and stresses-are independent and arbitrary, their coefficientsin the various
integrals must vanish, and the complete system of shell equations is obtained.
Thus, the stress equations of motion are

é
2 (00 o o)+ (o) 0l )
2
+}5§(1 -%-—:})?-{‘1'7';(1—«»-,»‘:«) — 2y Iy 4ol it — gl;}’ =0,

0+ o0 ) G o o)+ (o o 2

~ L i - 2i
+p?(1 +’2{) +p§(l’—2{")“2(e‘h‘ et —a5, $=0,

é 1
7% @+ o o)+ o (o o)+ 80— ~ (ol + affy + o)

+ﬁ:(i +{,) +P; (1 --’-) Aok +ed)i=0, (14

8
-3"' + hl( xx3 7 g:‘a)] + :xl + hl(df% Oﬁ)z)} - O'S:o:)l

o l s h 2}’3 - 2}1’ -~
+1’§"l(1 ‘*‘*‘é‘) "P;hx(l --a-) —~ & 325::—-(91 —§3+2g,h§h,)"p-_=0,
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a
3 - [0 + Iy (6 — 0’9,)3)]-*-—3}- ng/%'hx( aid]

I 3
r-“” 4 I (G(:s s: ).L!):'hl(l -,--lal—) — s le(l —_ g—-) 0, 203

“'3a
3
- (Q:%ﬁx’i‘ 20, I"fh‘.') =0,

where the prescribed surface tractions p7, pf, p? are those at the cuter
boundary = = h, and py, p;,p- those at the inner boundary z = —4,
The boundary conditions at an edge x = const. are

’

h

o tathro = nf1+2)e o umr
Zk * :
f

o) + 0+ o) = F,(l +~2~) dz or v=7,
=h
"
D+ ok +al = Sﬁ:(l +7})d: or w=7,
=h
hy
o+ e —o = | Fu142]) w0 13
_},,
; , b
+ Iy 5}7_‘3 (i +-(:1-) dz— Iy g )7,‘2(1 +—;—-) dz or p =7,
i h
ks .
xsl + hl(ag)x)s - 0'(35)2) = S ﬁsl(l '*' ‘:1') Zdz
~-hy
h ~hy
+ Iy \I’ss(l‘!‘“‘(‘l“)d-"/’x \ [)s"(l +—")d~ or p =4, .
thy -k
and those at an edge s = const. (for an open shell) are
h .
;2)1 + 0’;?,’_' + (0) S de: or U= '17,
-h
A
aff) + i + ol = S psdz or =79,
-h
h
o+ o+ 0% = | 5.dz or W=7,

-h
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hy h ""l
Gyx1 - hy (0f5 - a2) = \ Pradz+ 0y \ e dz — Iy \ Pudz or  p= P
-hy hy —Il
hx h - ;.
o)+ (o} — ol = l’nd~ -+ Nl)sad-' - hl Pedz  or  p=17.
—h hy Zh

(16}

Likewise, from the generalized variational equation of motion, the
relations between the shell-stresses and shell-strains are found to be

2E\ by I
O = T3 e+ mell + c.(le)l ’
1
o) = Eghzn i___h-i—h,‘ ¢, + 1,69 |
1--4% 2a
2E,hy I
o9 = 250 (01, — 2 o),
1

q
0'.‘:‘.)‘)3 = Exla [(1 + i +ahl) Cg&’a -+ ”2‘3%] s

E, 213
0‘(‘1:)1 — 1 - 1 (l) ._i 10 c(l) }‘"—“C(U) s

| — r- 3 Cxx1 xx1
o= [(1 Ix. ;*;7") @+ ,v.,e«;zo] ,
o= 2B e e~ L), )
oy =2l (1L ey ]

o) = 2l (em reat ess,a),

e
%% = fahy [( {'—2—01'3) e+ c&‘,’,?_.] :

(0) © o i o) o _ h+h) o o o0
Osx1 =24ulhl (cx.u xl 3 csxl y Oxs3 = /12]'2 l+""‘2T exsa'*'esxs ’
2i3 h<h
o= 2 (e + 0+ L t9), o9 = (1415 e 4 ),
23 I h+h
o = gt e et~ L), o= o[ [1- Lo o),
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o) = L e goj“
ng} = 2"1/‘1}'1 s-v (17
where #, is a coefficient introduced for the purpose of adjusting the simple
thickness-shear frequency of the shell to.its value given by the exact theory
of .elasticity. .For an ordinary sandwich plate or cylindrical shell having
a weak core, the.value of », may be taken-equal to 1{3, 7]. For a single-lay-
ered plate it was shown by MiNpLIN [11] that the value of this coefficient
is 72%/12.

Finally, the relations between the shell-strains and shell-displacements
are further found from the generalized variational equation of motion:

(0) (1).
() — S ) — Quz
x1 X ’ xxl ax > yont)
O — Q) | uy _ o
ssi — 3s a ) ssl as ’

€0 = P o
L =3

(O — Ol
sxi — as ’ sx1= as Tae ?

(18)

e, = 9 ol WY ) YO =£“_§(i_):+ (1)_@
x:l ax Ix1s sz1 38 a ¢

Equations (14) to (18) constitute the complete system of equations
for the sandwich cylindrical shell. By taking @ = oo the equations.reduce
to those for the sandwich plate. By taking h, = 0 these equations further
become those for a homogeneous plate or cylindrical shell including the
effect of transverse shear deformation. The stress equations of motion
and boundary conditions in egs. (14) to (16) were obtained before in a more
general non-linear form from the ordinary variational equation of motion
{1], which, however, could not yield directly and simultaneously the stress-
strain-displacement relations.

4. Vibrations of Sandwich Plate and Cylindrical Shell

The vibrations of sandwich plates and cylindrical shells have been inves-
tigated intensively in recent years [I-10]. One important conclusion that
was reached is that, for a sandwich with a weak core, the transverse shear
deformation in the core must not be neglected. This will further be demon-
strated below. In addition, the coupling among the extensional, transverse,
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and thickness-shear motions in a sandwich cylindrical shell -executing
axially symmetric vibration will be explored, particularly in relation to
the vibrations of a sandwich plate, in which case the extensional motion
is uncoupled from the flexural (transverse and ‘thickness-shear) motion.
Such an analysis will lead to-some new and simple expressions for the
frequencies of the cylindrical shell.

Substitution of the stress-strain-displacement relations from egs. (17)
and (18) into the stress equations of motion (14) converts the latter into
the displacement equations of motion. For -axially symmetric free motions
the displacement equations may be shown, after some simplifications,
to have the following form:

2E2"2 ' h? " Vo . s

=5 (“ F W= 2ek + ek

7oy i 2E‘.’?"2 1 Vs e
25y + W) T (‘;{z‘ W‘*‘"f u ) =200+ 02h) W, (19)

1

2E,h0% | ,, . W n
2 12—-5- (tp +-zz-ll ) "'leﬂlhl(lp’rw ) = (91 *‘5}"‘3'29:,’?”:) ¥,

2
1“"’2

where the primes indicate differentiation with respect to x. Among the
simplifications that have been introduced in the derivation of eqs. (19)
are that r,r, > 1 and E, is negligible due to the assumption of a weak core
and that the contribution of  to translatory motion and that of i to rota-
tory motion are negligible. Furthermore, the assumption of A*/a® < I for
a thin shell'has been and will be made usé of freely wherever applicablie.

For a sandwich cylindrical shell having simply supported edges at
x==0, [ and exccuting axially symmetric vibration, the following form
of the shell-displacements may be employed:

x
u= Ucos-;i;«e‘”‘,

w= sin-’%e’”' , (20)

p= il’cos»%e‘“",
where
nzh

A== —

! ]
with 5= 1,2, 3 ... designating the number of half-waves in the length
[ of the shell. The values of A are thus discrete for a given finite shell. Equa-
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tions (20) are also applicable to a sandwich cylindrical shell of infinite
Jength, in which case it is only.necessary to take 4 = 2:vh/L, L being the wave-
length. The parameter 4 then has.a continuous variation ranging between
G for infinitely lofig waves and x for infinitely short waves.

The frequency equation is obtained in the usual'manner by substituting
eqs. 1201 in (19) and setting the determinant ef the coefficients of the ampii-
tudes U, W, ¥ equalto zero. The result is

Q,Qgﬂ*fei

. ‘ i
—~ Ay - st - 2 ra it - !.*..Q,rﬂ,,( gl 1,43
orrd® « 11 Sy 12 it
Cdann g (%) v rafy A5) ~ sy &S| o L rarg B3 (sty + rany 2%)
0 .o B L o 3s
» ..@fargrﬁ’- b’ Tyly ~ Hyh

+4
- r}l‘il’[ﬁz (3{"‘!“ f;fhl?)(l s V;) -+ 81;.‘] T 0, (2])
where

Q, =0 =y - ff»m’ix*(l T FaFa)s
1

ro e Wty
S AL A
_ M = L B
T T T -

The subseript u, w or y attached to the dimensionless frequency parameter
£} indicates whether the particular £ is derived from the &-, w-, or §-
term in eqs. {19).

Equation (21) is cubic in £ und for a given shell yields three frequencies
for any value of 2. When the shell is of infinite length, the equation-leads
to three reaf continuous branches of the frequency spectrum for the full
range of Z. YWhen the shell is finite and simply supported, these become
three families of discrete frequency values, cach infinite in number. In
general, the extensional, transverse, and thickness-shear motions corres-
poading to the -, 1w, and §-terms are coupled together.

For 2 — 0, the motions become uncoupled. and ¢q. (21) yields

0 0. 0.~ K 0, = 22
up Ty Sdwg g Talys Sdyp = (22)
a Fon
-y ey A —
. - g DA s pR PR (M;WM—E“!‘ o A

o
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These give the cut-off frequenciés of the infinite shell, which are usually
the lowest frequencies obtainable frony the three -hranchés, For £ - o
‘the motions again become uncoupled, and ¢g. (21) gives

Lo 0B Ly - i Ly s li1y. £23)

These are the same as those for a sandwich plate, as the wavelength is
now cxtremely small. It is scen that L4 is alas, - smaller than 2, The
latter in turn is usually smaller than Ly, althugh the reverse can be true.
On the other hand, since

rafy ® ¥y, Top = 1,
we always have
!j&v . Qm > Q‘w&-

For hja =0 the sandwich cylindrical shell degenerates into 2 sandwich
plate, and eq. (21) becomes uncoupled.into

!). - r,rgl’ « 0, {24)
DQyvps = 1,(y + rafaM)
”‘”ngﬁaﬂx;} + x;fzfil".' = Q, {28}

These frequency equations are for -¢xtensional and flexural yibrations,
respectively, of the plate (4, 9). The cut-off frequencies for 2 — 0 are now
given by
D6 0. Qg 0, 0, -0 126)
Fox
which are also deducible from egs. (22) by putting k'a - 0 The value
{2 — 0 common to the sandwich plate and cylindrical shell corresponds
to translatory motion 1n the x-direction of the structure as a whole The
value L9 (WP a*)ryr, for the sandwich cylindrical shell corresponds
to a ring-type symmetric motion, which in the case of the plate degencrates
into a translatory motion of the plate as a whole in the transverse direction.
The frequency L., for the sandwich plate 1s thus zevo, as given by egs (26)
Because the shell s thin, its ssmple thwkness-shear frequency £, becomces
essentially the same as that uf the sandwich plate, as shown by eqs 122}
and (26). For 4 - x eqs 124) and (25 for the sandwich plate also yicld
cgs. {23, which should be good for both the plate and shell, as was pointed
out earher.
For arbitrary values of k'‘a and 4 ¢q. (21) cannot be uncoupled and
the three roots of the frequency must be calculated simultansously. How-

S L T S e L e ¥ et s
O P o _

ey A e i

§ i ke 5 s

e




564 YEYUAN YU

ever, if’ v} is negligible in comparison with one, which will be-assumed to'be
the case, eq. (21) does become separable into the following two equations:

£, = ryr 3, @n
'ng\;"ga —~ 13 (% + 12

y 2 i
wﬂgr{ea(;}::ffz"a + 3133) + fz"a{"gi (%) + ryr, 43 + ’ﬁ;*i] =0. (28)

Equation (27) for extensional -motion of the sheil is the same as eq. (24)
for the sandwich plate, and eq. (28) for flexural motion is reducible to
£q, {25) for the plate on putting kfa< = 0. The fatter is 3 quadratic equation
and may be solved-explicitly io give

Y]

i k
L ¢ PN DA % - k]
’?m! ¢ z!g& {("l * St A'”gn) + (ran, xx’p&)}

kt
:? [(xg hnad a,\ rzr‘rga) “+ (rzrh hund x;rm)”).’]
] 1]
1- dirand '} . Q9)

B B ) '3
f!! Rk
xl - “lg“fgfbr(,k + (r’rj, - X‘r{,g)?.

Now the fraction in the square root in eq. (29) is always much smaller than
one-as long as the denominator does not become very small, which is always

{rue 1n ordinary cases in which

hl

In fact, even when £,q = Lo, the fraction in eq. (29) often is still small.
With exceptions, therefore, the square root in eq. (29) may be replaced
by the first two terms of its binomial expansion. After further simplitication
according to the assumption ryry > 1, the following results are abtained:

I %y rahy Al (30)

8, -, e
w g 2t . s

%= aTahmt Fary At

!.?; = “"‘1 (Nl - r,r,:’;*).
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When any two of the three expressions in ¢qs. (27), (30), and (31) yield
approximately the same frequency, the effect of coupling becomes strong,

31)
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and these. equations-become less accurate. Thus, equating' 2, and 2, in
them yields
2} =hfa

near which value egs. .(27) and (30) are expected to yield less accurate
frequency values. Similarly, egs. (30) and (31) become less accurate near
the value

H
3 = 2 .o #y l2
* T\ 2 Toh . ;
a ryr,

which is obtained by equating 2,, and Q, in these cquations, -but which is
real only if £, <£2,y. In contrary to these two cases, 2, and 2, are never
cqual to cach other according to egs. (27) and (31).

To demonstrate the importance of transverse shear deformation in the
core of the sandwich we first reduce eq. (30) to- the following’ result for
asandwich plate:

’ rypi At

o =TT

(32)
Now the effect of transverse shear deformation may be suppressed by putting
%, = 00, as this will. make, according to egs. (17),

(0)
~(0) . ax:l — 0 .

€ [, .11 S
U7 by
Suppressing the transverse shear effect 'is thus equivalent to neglecting
the term ryr, /3, against one in eq. (32). But this is seen to.be permissible

only when
Al £ 1/"2";'.

With n =1 and 2 = ah/l for the fundamental frequency, this yields
2h[1 & 2f7y/ (re1y) .

For r,r, = 100, which is not uncommon and is in fact often exceeded, the
thickness-span ratio of the sandwich plate has to be limited to

21 < 1/15.7.

For greater value of r,r, and for higher frequencies (n =2, 3,...) the
limitation becomes cven more severe. The limitation can be somewhat
relaxed in the case of a sandwich cylindrical shell executing symmetric
transverse vibration, but the transverse shear effect in general must not
be neglected.
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To illustrate the use of egs. (27), (30), and (31) we considér the numerical
cases in which

ro=344, n,=01 r= 4790; =1, 1p=0.
2hja = 0.1/30.

While 2h/a = 0 refers.to the sandwich plate, 2ifa = 1 J30 is-for a sandwich
cylindrical shell. The results of egs. (27), (30),-and (31).are shown in Fig. 1,
where 2 is ‘given a continuous variation, aithough the results are appli-

0 : —
V2, (plate aﬁdM
1 - )
o VR, (stel)
a1
aot
0001 1

Fig. 1. Frequency parameters.

cable to simply supported sandwich plates and cylindrical shells having
finite lengths as well as to the infinitely long ones. For the cylindrical shell
the }/2,-and y/Q,-branches do not actually cross each other, even when
v, = 0. They appear to cross each other only because of the approximate
nature of egs. (27) and (30). Precisely speaking, near the crossing between the
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two branches wherc 2 = hifa = 1/60 the solid curves should be replaced
by the dotted ones also shown in the figure; and the /2, -branch (or
V/2,-branch) to the left of the crossing should. be-connected to the }/12,-
branch (or y£,-branch) to the right of the crossing. In other ‘words,
the.solid curves given by eqgs. (27) and (30) actually serve as bounds to the
true branches of*the frequency spectrum of the.infinite shell. For a simply
supported finite shell for which 2 takes only discrete values, the true picture
is not distorted as much, and it is only important to remember that the
frequency values given by egs. (27) and (30) are not.so accurate for values
of 2 near hja as for other values of .

In Figure i are also shown the results for /Q,, with.the:effect of trans-
verse shear deformation neglected. For 2.=0.08 (n =1, 2ifl = 1/20,
for instance) the frequency of transverse vibration is 101 per cent too
high for the sandwich plate but only 5 per cent too high for the cylindrical
shell when the transverse shear-effect is neglected. However, for 2 = 0.i6
(n = 2 for the same 2h/l = 20, for instance) the errors increase to 259
and 72 .per cent for the plate and shell, respectively.

'S. Viscoelastic Damping of Vibrations
For damped vibrations the displacements in egs. (20) are replaced by

U = Ucos—);—:-e"‘"e“', W=.., p=.. (33)

The logarithmic decrement ¢ is then given by

27
w

o=

which is a measure of the damping of the vibration of the composite plate
or shell. The change from egs. (20) to (33) involves the réplacement of
w by w4 ie = (14 i6/27). Equivalently, the frequency parameter 2
may be replaced by 2(1+ id/27)% The damping property of a viscoelastic
material is specified through the use of the complex modulus. In the present
study this involves the complex moduli of the core and face materials

\ E, .
m(l +igy), ——=(1+igy)

1 —%

which replace u, and E,/(1 —#2) in the undamped case and in which g,
and g, are the loss factors of the core material in shear and the face material
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in extension, respectively. Equivalently, the parameters », and r, in the
above results may.be replaced by #,(1 + igy) and ry(1 + igo).
With replacements made, egs. (27), (30), and (31) become

.0 . &, N .
.Q” l‘—-z:_-l—i'-fll-:;- =r2r,,).(i+lg,_),

o2 é h?
0O S, SN Sy Wl 0 Ry = i

#yraly A1+ ig)(1 + igs)
+ s

2
il -+ ig) + rary (;z - ’ii{reh) (T +ig.)

2
!2,,(1 - %’:; + z—i‘!’-) = -;i—h[z,(l 4 igy) + rary 23(1 + igy)).
It will now .be assumed that ¢, g;, and g, are small cnough so that %, gi,
g3,.and g, g, are negligible in comparison with onc. The real parts of cqgs.
(34) then show that viscoleastic damping has a negligible effect on the
frequencics. On the other hand, the imaginary parts of these equations
when divided by the corresponding real parts yield the following resuits
for the logarithmic decrements:

u
— [}
T &2

X!
w22 — o,
6“. \ e’k at oh

. . 5
%+ f:cf;.(7-z - *;;?"gh ]

L

g (I PETAWA
+ ‘:,5::‘ "E;rth + e B ‘h‘z“ 2l
[;{x + rzr;. ().2 — a?reh)]

By gixt ganan
by 4 3{1 -+ rzl'hi-z

Introducing the damping parameters kg, Kysy ... by writing

6!‘ 6‘3‘? 6'

..:t_ = kﬂlgl ”I.“kyggz. “‘:t‘ ey “;1“ EEEN (35,
we find
‘:ni == U, k.z = 1, (36)
e ’W g o - VRNV e ST = pan s Er-y ARG L S —ra
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Ry == - gy o 2TVE? 37)
1 "z"t.(l'—' "“S‘rgh)]
,2 lergl'h]"
Kyp = e e Pl o g = " 5
[/1 4= raly (Z- - —';-rg,,)]

% ror, 23

kyy = e kyp = mm ety 38
vt ‘Al-i—rgr,,/.z ' vz Zl"}"rgrh;-z' ( )
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h? 2ylary At
2, = v Foly - e o e e = s

R
Zl"f'rgr (;-2"'“0"2'*’9,.

The concept of the damping parameter is a useful one. Since the product
between a damping parameter and the related material loss-factor repre-
sents the contribution to the damping of the composite structure; the
former is a measure of the effectiveness and relative importance of the
associated type of viscoelastic damping. The sum of all damping para-
meters in each case is equal to one; namely,

katha=1 vy (39)

Equations (39) together with (35) show that, if the loss factors in a certain
case are equal to each other and equal to g, then d/= in that case is also
equal to g. Since the loss factors are generally not the same, their contri-
butions to the damping arc weighted according to the ratio between the
damping parameters, and é/z cannot be larger than the largest loss factor.
1t is also noted that the effectiveness of one type of damping will increase
at the expense of a decrease in the effectiveness of the other type. On the
other .hand, the various types of damping may supplement each other.
Only two types of damping have been considered in the present treatment,
the shear damping of the core and extensional damping of the face layers.
There are occasions in which more than these two types have to be taken
into account [8).

To induce damping, a highly viscoclastic material is often used for the
core of a sandwich. But shear.damping of the core is scen to be totally
ineffective for the extensional vibration of a sandwich plate or cylindrical
shell, because £,, is identically zero according to eqgs. (36). Shear damping
is also not very effective for low-frequenc, transverse vibrations, as egs,
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(37) show that:k,, diminishes witk Z. On the other hand, it is:not difficult
to sce from eqs. (38) that shear damping is most effective for thickness-shear
vibrations-when the frequency is near the simple thickness-shear frequency.
This is so because the type of motion that is predominant is precisely what
is needed:for shear damping to.develop strongly. Whenever shear damping
is not effective, extensional damping of the face layers may be resorted to.
f the face material has only a very small loss factor, viscoelastic damping
layers may have to be bonded to the faces of the sandwich, but this will.
change the problem to a radically different one.

Among eqs. (36) to (38) only eqgs. (37) depend on'the effect of curvature,
which makes k., smaller and %, greater than the corresponding values
for a sandwich plate. For the latter, eqs. (37) reduce to

rar 22 #

| L S SN
= e =

A Y #y - Faly 23
Comparison with_eqs. (38) reveals that we now have

Ky == kaz, ke = k;'u-

These interesting results ‘have not been observed before and hold true
only for the sandwich plate but not for the cylindrical shell. They indicate
that an incréase in the effectiveness of damping of the transverse vibration
is always accompanied by an equal decrease in the effectiveness of damping
of the thickness-shear vibration, the increase and decrease in damping
effectiveness being measured in terms of the damping parameters, A similar
conclusion may be drawn for the sandwich cylindrical shell, but the increase
and decrease are not generally equal.

To demonstrate our findings on viscoelastic damping, the damping
parameters as given by egs. (37) and (38) have been caiculated for the
same numerical cases discussed before. The results are shown in Fig. 2,
in which ky, or k,,, is measured from the bottony line to a curve, and ky,
or k,, measured from the top line to the curve. Numerical results of eqs.
(36) are trivial and need not be plotted. In addition to having verified the
above discussion on damping parameters, the results in Fig. 2 further
reveal the fact that shear damping contributed by a viscoelastic core can
be quite ineffective for a sandwich cylindrical shell. Such is the case, for
instance, when 2 is in the neighborhood of 0.14, for which Fig. 2 gives

Ky =0.13, k= 0.10.

Neither of these two values is a large number.
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Fig. 2. Damping parameters.
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