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VISCOELASTIC DAMPING OF VIBRATIONS OF
SANDWICH PLATES AND SHELLS')

YI-YUAN YU 2)

1. Introduction

In this paper we shall discuss a sequence of four topics which culminate
in a study of the viscoelastic damping of vibrations of sandwich plates
and shells. The paper is thus divided into four parts. In the first part a new
variational principle is presented, which may be considered as a generalized
Hamilton's principle. The principle is made use of in the second part of
the paper in the derivation of the complete system of equations for a sand-
wich cylindrical shell, which are reducible to those of a sandwich plate
as a special case. The way the equations are derived is also new. In the
third part of the paper the equations of the sandwich plate and cylindrical
shell are used to investigate the undamped vibrations of these structures.
Of particular interest are an analysis of the coupling between the flexural
and extensional motions of the sandwich cylindrical shell and a demon-
stration of the-importance of transverse shear deformation in the vibrations
of the sandwich plate and cylindrical shell. In the last part of the paper
the effectiveness of viscoelastic damping of vibrations in the sandwich
plate and cylindrical shell is investigated through the use of the concept
of the damping parameter.

W a a 2. Generalized Hamiltons Principle

We shall carry out the variation in the following equation:

6 Ldt = O (T- U+ W)dt = 0 (1)
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where L - T- U+ W may be called the generalized Lagrangian function
and

T= .5PidP ,
V

U = \(l.j,; - cjelcj + ,F)dV,
Vr

IV = JijdV+ T,udS+ ,(t - PQ)dS.
V SSM

Cartesian tensor notation and the summation, convention for repeated
indices have been adopted. In the above equations, Q is the density, ul
the displacement vector, cij the non-linear strain tensor; crij the Trefftz
stress 'tensor, e1, are expressions of clj as functions of the derivatives of
ui, E is the strain energy density Which is assumed to exist and is a function
of c11 , f, the body force, and P, the surface traction. In addition, to and
t1 are two instants, of time -, overdot indicates differentiation with respect
to t, overbar the prescribed: value of a quantity, V the volume of the body
under consideration, S. that part of the surface S of the body on which
traction is prescribed, and S. that part of S on which disnl.icemcnt is
prescribed.

The variations of the displacements, strains, and stresses are taken
independently. We thus have

6 Tdt = Q4t6tu, d;-]t: -  dt Q ,6uqdV, (2)

to V to V

I i

[ci 6ri + es l)60i (ai _ ),E
Udt=Sdt 6c]dV, (3)

to to V _ c-i

it It

JVdt = [fi6u, dV+ S,,6u, IdS+ (u-i,)6pdS] dt. (4)
S o V Sp su

The variation of the displacement 6ul will be assumed to vanish at t = to*
and t=11 as is usual in Hamilton's principle; the first term on the right-
hand side of eq. (2) is therefore zero. Since ey are expressions involving
the derivatives of displacements, they can always be represented in terms
of the linear strains e,.. and rotations (o,..:

=- ej(e., 0.,o,) (5)
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with
" 1 (u., + u,,,,)

01 =- (U... - U..m) :(6)

where subscripts following a comma indicate -differentiation with- respect
to the corresponding coordinates. Introducing e,,, and (om" and -making
use of Gauss' theorem, we find

,,~jjV I [ri ( Eu aeu \ , .

Y Spe,, s ''
011i .-|-[ '  ,.. 61.]bu, ,dS- o[(u..- ). t. v 6oeM2 ae..&s  RI

+j tO'I11 61 bu)}V (7)

the left-hand side of which has appeared in eq. (3) and in which 61, is
the Kronecker delta and v. = cos (v, n). By virtue of eqs. (2), (3), (4),
and (7), eq. (1) becomes

t a, 6 6u1 d

1 a1 e. - . +fi1i 6ud

ts

" ~~d L] - +  A.

i ( 6el .

t, Sp

+ a2 \ae, y Vo,. 6. T ud

~+ dt atl- cij d

+ t , - y ad t , -Su  pd 0 8

i Since the variations 6ut&j, ep6aj are arbitrary throughout the volume
V of the body, 6u, arbitrary on S., and bpi arbitrary on S, their coeffi-
cients in the five intgasine.()m t vanish idpnety which

iner*l cq ( mus inepndnty
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yield, in succession the stress equations of motion, stress boundary con-
ditions, stress-strain relations, strain-displacement relations, and displace-
ment boundary -conditions. Depending on the form of erj, these may
be seen to represent the complete system of equations for infinitesimal
or finite elastic deformations. We have thus proved' the generalized
Hamilton's 'principle, which may, be stated as follows:

"The displacements, strains, and Stresses (defined in the manner -of
Trefftz) over the time interval from to to t1 which satisfy the' equations
of motion and the stress-strain-displacement relations throughout -the
volume V of the'b6dy and the boundary conditions ofprescribed tractions
over S. and prescribed displacements over 'S. are determined by the
vanishing of the variation of the-time integral ofthe generalized Lagrangian
function over the'time interval; provided that the variations of the displace-
ments, strains, and -stresses be taken independently and simultaneously,
that the variationis of the displacements vanish at to and' t1 throughout
the body, and that the variations of the displacements and stresses be in'
-consistence with the prescribed boundary- conditions"..

rquations (1) and (8). will be referred to as the generalized Hamilton's
principle .and generalized variational equation of motion, :respectiVely.
-If the variations are restricted to those of displacements, eq. (8) is seen
to reduce to, the -ordinary variational equation , of motion.

3. Equations of Sandwich Plate and Cylindrical Shell

The generalized Hamilton's principle and -the associated variational
equation of motion hare most general in that they are applicable to finite
as well as infinitesimal deformations. In the, following we shall make use
of the generalized variational equation of motion in the derivation of
linear equations of a thin sandwich cylindrical shell..The cylindrical coordi-
nates x, s = aO and r = z + a are employed. They are in the longitudinal,
circumferential, and radial directions, respectively, of the shell', whose
middle surface has the radius a. In the radial or thickness direction the
inner face, core, and o.ter face layers of the shell extend from z = -h
to z = -hl, z = -h , to z = h,, and z = h to z = h, respectively. The
core thus has a thickness 2h, each of the two face layers a thickness h2 =

= h- hl, and the total thickness of the shell is 2h. The shell is closed in
the s-direction and' has a length I in the x-direction.

For the sandwich cylindrical shell we rewrite eq. (8) in -its linearized
version in cylindrical coordinates asfollows:
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t1  3

0s jSi + 1

Xdrds dx+.dz rd

a d

+ [&.,I(1 + a, s )d -' 6S

+~ d {[ax.-iv. + ar, 1,i 5 + cr1,,iv- -p7,]5u~j M

to =

+ [ass, - (2 + 2szI's (C~iil+ p Cx[6u ]6S

J dl ~ {[flxxi -(I, + 2ii)c.._, - ).(xx + e)C~

+ [as -(A pjc,jlc 5, +' Agqc.d+ -p 5~x6 5c.,

+ [a -/s, jzC.. 1] bc, 1 dxds (I +- -)dz

1=1 dt xxi+[Cx-i a 'svl+ SE ( um zj]U 6a.sj
+~dZ bc C r (Os !a-

+ [~11 ~ ~zl -ax r as,~ ~

+ dx( 012 uxi

+ [C,,,_ (as +aa.. sdx I+ z
+1C1 . z r ds- r / ,

t1 3

+ dtZ ([ux -la,]6 @ x 1 v + sx va + q-x I
to i=1 SU,

+ u'l - W.'116 (crxsiV ass, vs + 5 V.)

where the subscript, i =1, 2, or 3 refers to the co,re, inner or outer face
lyrof the sandwich, overbafs de note prescribed quantities, and. S. and
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S 'denote those portions of the surface on which traction and displacement,
respectively, are prescribed. Other notations in eq. (9) are the uual ones.

The displacements are assumed in the form
., U+ W/, -Y2,x3 u -h1 ,

u.t = V + 9', u. 2, u =,v T ht , (10)

11:1 = U j2 U,3 == It'
or

I,= + Z 141), u - 3

.t = .=u(d, -2 403 .

The face layers have thus been taken to be membranes, In a consistent
manner the strains are taken asCX0) 40 +,-M o)

SC
( ) -.-c(C SA c 2, C1- C % , CX1

C 41 , ,,l)a ) a,

'" iii i , ss2 +1 ZC3 + (1' c ss2 v 3s3,
r r r

= () + -c( t  C.=2 - - (12)

= c() + C(,) + a ,(M) +.-10), C() -. + a C(0)r i'xI V sxl, S r sx2,
Cx53l C + -~ Csl7 ,

C X31 X5s3 SX X1 x32 3,
r

=J3 C(0 a- , -,O

C.11. Iq 0 .2xzI, -0): CXZ3 O= Cu C 2 = O, -3 0.
-: s:1, s z2 = , Cz 3 =0

In eqs. (11) and (i2) u("f), UM), are the shell-displacements, c( ), c(,.
the shell-strains, and these are all functions of x and s only. The shell-
stresses needed are defined as follows:

b!

a.".);?) = r.., +( z +--(1,z) dz,
aa

b,

=ass, (1, z) d),

b,

aa
b,

i= uI( + )(1,z)dz (13)
aa
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bi

( ' )= a O,(Iz)d:,

"t

-A 1

A1

G.qI = ..-, dz,

which are also independent of z and in which. the limits of integration
cover the thickness of the layer.

To derive the equatiofis of the sandwich cylindrical.shell we substitute

eqs. (10)or (11) and (12),into eq. (9), carry out the integration with respect

to z, and make use of eqs. (13) together with the assumption

h/a2 < I

for a thin, shell. Since the variations of the shelldisplacemeihts, strains,

and stresses-are independent andarbitrary,,their coefficients-in the various

integrals must vanish, and the complete system of shell eqluations is obtained.

Thus, the stress equations of motion are

a as

+ l + ,F; (I - - -2( j4-rchjz1-,-

a a) 3a) )

(4'2, + do0, + 4o.0,+ ± (4 0+' + +a + 4 +(03) + I o :2+ o Moa

+ AF. I+± + 1,p l- - 2( h + ,) f e Oh , (4

a a 3a

a(.1 + )4-T,(l -+ ?2+(0))-.a + a 0 , + a)

+~~(- +) ;( ) 2(0L + eiia)t= 0, (14)

+ x j7.+ 1 .XX T zX3 as el 2h I P+7 202i x

a a 3a 3 1 2
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-' "'I +. a ),,3 -, O)+ _S) -./, (403) _ 0.252'

)x XS hS a, Iii { I:~
+ ILI 3~(ao "4O ) hi a. h Ta

a s -()+- +7 -ph. ) l O,

-( 2 ~LP o~P 02h 3 -4..0

where the prescribed surface tractions T,-, j, T). are those at the outer
boundary : -- h, and p;, p;6,pq those at the inner boundary : -h.
The boundary conditions at an edge x = const. are

h

-,"I + '' 2 + 0°. = ( 1+ (I d:: or u = -,
-h

a.(11 -;-%" + 0223 = (I +z d;, or v =:U,

h
-h

a1 ji + +I 1-%= (i~. d: or it Ts
h

/-i

a% hj(xaO23 -a1) (15)

h7 -h
hi

A~ l,(a 3 - = i ( + zd
h-i

-= -s l - d z -- ,: + zl- or u= ,

hi -h

hi

a01 + .t I0 (a XO) - Tdz or A- =v z,

-h

h+alo . I+-= d-dz or w=,

-h

a."0"{ + a'°(O=t " - 4° = = Txdz or t =i,
-h
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hs h -A,
'yXi +/5 X3 x2) x d hi T\.,,dz- h, \ x2dz or ip=

-hi A1  -A

Az 
h

I 1 "ss3 -ss2 = .l- + hj *fls 3 u-l h, . o
-A, h, -h

Likewise, from the generalized 'ariational equation or motion, the
relations between the shell-stresses and shell-strains are found to be

2E1 (0 + 1.,~ (1))+ C
1 -OX'l -1,2 XXIJ

q()- I25 +AC(O) + IC(O(lxx:! XX SS k 2a/ 1

= ~ o 1Evc-. c~o)j(I

II 1j

= Eh 2  + /11 cX3 'C

1-2 2a J
E() l 2h3(~+~ CO

ax"1±111 C(I +.CQ V2 C2]

p2 "hiI + $I X

E h2  I 11

a3(0 =* 2,(1h(c+IAc (

Ix

CI 
-

~2 hh



560 DAMPING OF VIBRATIONS OF SHELLS

X: =

=(o0 2;1pih-c€(  (17)

where x, is a coefficient introduced for the purpose of adjusting the simple

thickness-shear frequency of the shell toeits value given by the exact theory

of elasticity. For an ordinary sandwich- plate or cylindrical shell having
a weak core, thevalue of -I may be taken equal to 1[3, 7]. For a single-lay-
ered plate it was shown by MINDLIN [11] that the value of this coefficient

is ; 2/12.
Finally, the relations between the shell-strains and shell-displacements

are further found from the generalized variational equation of motion:

-u) .xt ^) _____

----- c -(1ax' ax'
C IO )_ () _ _ a ~

'as 33 as'
_), =-2!t, () a=")

ax - .-ax
au(o) = l., , al O,+a'--) . - X1

SX i" S1 as' (18)

C(0) =!t a u () C(i) 2! +u~ * - _

Equations (14) to (18) constitute the complete system of equations
for the sandwich cylindrical shell. By taking a = co the equations reduce
to those for the sandwich plate. By taking h2 = 0 these equations further
become those for a homogeneous plate or cylindrical shell including the
effect of transverse shear deformation. The stress equations of motion
and boundary conditions in eqs. (14) to (16) were obtained before in a more
general non-linear form from the ordinary variational equation of motion
[1], which, however, could not yield directly and simultaneously the stress-
strain-displacement relations.

4. Vibrations of Sandwich Plate and Cylindrical Shell

The vibrations of sandwich plates and cylindrical shells have been inves-
tigated intensively in recent years [1-10]. One important conclusion that

was reached is that, for a sandwich with a weak core, the transverse shear
deformation in the core must not be neglected. This will further be demon-
strated below. In addition, the coupling among the extensional, transverse,

I
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and thickness-shear motions in a sandwich cylindrical shell texecuting
axially symmetric vibration will be explored, particularly- in relation to
the vibrations of a sanidwich plate, in which case the extensional motion
is uncoupled from the flexural (transverse and 'thicknesg-shear) motion.
Such an analysis will lead to, some new and simple expressions for the
frcquencies of the cylindrical shell.

Substitution of the stress-strain-displAcement relations from eqs. (17)
and (18) into the stress equations of motion (14) converts the latter into
the displacement equations of motion. For -axially symmetric free motions
the displacement equations may be shown, after 'some simplifications,
to have the following form:

2E 2h2 (+ h2 + '-- -V '2 --2--a au"2(e t + g:ho):,

2Ejhl W + 2 (ph,+ 02 h2), (19)

2 ;,luI hI :i(p' +w) 1 V _.2 k a 2 a
2Es2hZ i ),) (
l--- V ") ' -2xlpjhj(,p+ivw -- N-3+2h~h ,

where the primes indicate differentiation with respect to x. Among the
simplifications that have been introduced in the derivation of eqs. (19)
are that r.rh > I and E, is negligible due to the assumption of a weak core
and that the contribution of ? to translatory motion and that of 5 to rota-
tory motion are negligible. Furthermore, the assumption of h'/at , I for
a thin shell has been and will be made use of freely wherever applicable.

For a sandwich cylindrical shell having simply supported edges at
x = 0, 1 and executing axially symmetric vibration, the following form
of the shell-displacements may be employed:

u = U Cos 11~It

w = Wsin e't t, (20)

W= 'os' ''

where
nzh

with n = 1, 2, 3 ... designating the number of half-waves in the length
I of the shell. The values of A are thus discrete for a given finite shell. Equa-
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tions (20) are Also applicable to a sandwich cylindrical shell of infinite
length, in which case it is only necessary to take A 2.h!L L being the wave-
length. The- parameter . then hzs-a continuous variation ranging between
0 for infinitely long wavt and x for infinitely short waves.

The frequcncy equation is obtained in the usual~manner by substituting
tqs. (201 in (19) and setting the determinant of the coefficients of the apipli-
tudzs V. 11". 'i equal-to zero. The result is

!3IJLY4 4 x;

- .9,t r .r,;,) -£.Wrlr 2
lt - .er a -rar

XLIrar a (- rXrhitl - X11 - r~rA 1! rlrh;;)

a2
QrVrr)J, h r i -r X

- dAS hsk (lt - r1r*Ml -l ,,) -- , (21)

where
..,., 2'h D .2 - t-.fthI(l - rorh),

P1

113 - r.,rj,

. - , r = 2 2 -:r_ ...I - E,

The subscript ut, W or ! attached to the dimensionless frequency parameter
L) indicates ,vhether the particular Q is derived from the ii-, 0-. or
term in eqs. 119).

Equation (21) is cubic in L2 and for a given shell yields three frequencies
for any value of 2. When the shell is of infinite length, the equation, leads
to three real continuous branches of the frequency spectrum for the full
range of 2. When the shell is finite and simply supported, these become
three families of discrete frequency values, each infinite in number. In
general, the extensional, transverse, and thickness-slhear motions corres-
mnding to the i-, i,. and P-terms are coupled together.

For A - 0. the motions become uncoupled. and eq. (21) yields

0 2r 9 (22)

--I_ , _ o --r'-
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These give the cut-off frequencies of the infinite shell which are usually
the lowest frequencies obtainable front the three -branches. For A -
-the motions again become uncoupled. and eq. (21) gives

) (0 - rr;I ,WV '- x1AS.  Q# W rjr4A r,, .  (23)

These are the same as those for a sandwich plate, as the wavelength is
now extremely small, It is seen that 94 is al, smaller than f?.*. The
latter in turn is usually smalkrthan V#6, althE-,uoh the reverse can be true.
On the other hand, since

rtrh >, "A. rot, <1

%e always have

For h,,a ,- 0 the, sandwich cylindrical shell degenerates into a sandwich
plate, 4nd eq. (21) becomes uncoupled. into

D. -rerAA P  - 0. (24)
P ,D# PfA- Q. (Xi - ri rh M

- 9# r MA P - Xrr - 0. (25)

These frequency equations are for ,extensional and flexural vibrations.
respectively, of the~plate (4, 9]. The cut-off frequencies for A - 0 are now
given by

vo 0. 1U. -0, !4, _26)
rch-

which are also deducible from eqs. (22) by putting hka -0 The %alue
D.. --- 0 common to the sandwich plate and cylindncal shell corresponds
to tiUanslatory motion in the x-direction of the structure as a whole The
Vale 19 th'a 2)rjrh for the sandwich cylhndral shell "corresponds
to a ring-type symmetric motion, which in the case of the plate degenerates
into a translatory motion of the platea as a whole in the transverse dirc.tion.
The frequeny 901 for the sandtch plate is thus zro. as gramn by eq% 1261
Because the shell is thin. its simple thickness-shcar frcquency P, bo:-e,mas
essentially the same as that of the sandwich plate. as shown by cq 221
and (26). For A -+ x cqs t24) and 425) for the sand%ach plate also yicld
cqs. (23). which should be good for both the plate and shell, as %sas p,,mted
out earlier.

For arbitrary values of hka and X ecq. (21) cannot be uncoupled and
the three roots of the frequency must be calculated simultancousl). How-
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ever, if 4 is negligible irt comparison with one,'which will be-assumcd'tobe
the case, eq. (21) does become separable into the-following two equations:

A., = rs P,. (27)

(27
-VfWK + rsr)

+ M + t h (xi~ + -z , A~) + Xi,]~ 0. (28)

Equation (27) for extensional motion of the shell is the same as eq. (24)

for the sandwich plate, and eq. (28) for flexural motion is reducible to
eq. (25) for the plate on-putting hja, = 0,. The latter is a quadratic equation
and-may be solved'explicitly to giVe-

Ar -I- 7rrA + (r,

F ,- 'irrkrh) (r~r -)Cl r h.[ 1.rh).' ]s (29)

Now the, fraction in the square root in eq. (29) is always much smaller than

one as long as the denominator does not become very small, which is always
true in ordinary cases in which

hl rjr,%rr > 0 or 9#0 > 9,.

In fact. even when 942 , !,. the fraction in eq. (29) often is still small.

With exceptions, therefore, the square root in eq. (29) may be replaced

by the first two terms of its binomial expansion. After further simplification
according to the assumption rAr , 1. the following results are obtained:

litr, + xr rhl (30)at rl -t- ht
x=- = r~~r + rAr).'

14 i- r~rW). (31)td -ro

When any two of the three expressions in cqs. (27), (30), and (31) yield

appromately the same frequency, the effect of coupling becomes strong,
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and' these. equations , become less accurate. Thus, equating, Q, and ()W in
them yields

h/a

near which value eqs. .(27) and (30) are expected to yield less accurate
frequency values. Similarly, eqs. (30) and (31) become less accurate near
the value

= (= r - r=h)

which is obtained by equating -Qw and .(2 in- these equations, -but which is
real only if Doo<Qo.,o. In contiary to these two cases, . and .4 are never
equal to each other according to eqs. (27) and (31).

To demonstrate the importance of transverse shear deformation in the
core of the sandwich we first reduce eq. (30) to the following, result 'or
a sandwich plate:

r2 r .

+= -r2 rh .2/X (32)

Now the effect of transverse shear deformation may be suppressed by putting
Yj = co, as this willmake, according to eqs. (17),

e XZI2 1  ph = 0.

Suppressing the transverse shear effect 'is thus equivalent to neglecting
the term r2rh).21x1 against one in eq. (32). But this is seen to be permissible
only when

< 1 1/r2rh.

With n = 1 and A = -rh/I for the fundamental frequency, this yields

2/i/I < 2/;r I/ (r2 rh).

For r2rh = 100, which is not uncommon and is in fact often exceeded, the
thickness-span ratio of the sandwich plate has to be limited to
: 2h1l << 1/15.7.

For greater value of r2rh and for higher frequencies (n = 2, 3, ...) the
limitation becomes even more severe. The limitation can be somewhat
relaxed in the case of a sandwich cylindrical shell executing symmetric
transverse vibration, but the transverse shear effect in general must not
be neglected.
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To illustrate the use ofeqs. (27), (30), and (31) we consider the numerical

cases in which

r. = 34.4, rh - 0.1, r. = 4790, , = 1, 2.- 0.

21/a = 0.1/30.

While 2h1a = 0 refersto the sandwich plate, 2h/a = 1/30 is for a sandwich

cylindrical shell. The results of eqs. (27), (3O),.and (31),are shown inFig. 1,

where 2. is given a continuous variation, although the results are appli-

to

(ls e ed

01

0011_ _ _ __ _ _ _

0001 01

Fig. 1. Frequency parameters.

cable to simply supported sandwich plates and cylindrical shells having

finite lengths as well as to the infinitely long ones. For the cylindrical shell

the 1/Q.-and I/-,-branches do not actually cross each other, even when

v. = 0. They appear to cross each other only because of the approximate

nature of eqs. (27) and (30). Precisely speaking, near the crossing between the

N,; - _ ..;.: _ : _ _ - . - L .. _,s 
w, 

'. . R m .,.,v
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two branches where 2 = h/a = 1/60 the solid curves should be replaced

by ,the dotted ones also shown in the figure; and the VD.,-branch (or
/,Q.-branch) to the left of the crossing :should, beconnected ,to the )/.-

branch (or ;/-2,-branch) to the right of the crossing. In other words,
the,solid curves given by eqs. (27) and (30) actually serve as bounds to the
true branches oftthe frequency spectrum of the. infinite shell. For a. simply
supported finite shell for which ). takes only discrete values, the truepicture

is ,not distorted as much, and it is only important to remember that the
frequency values given by eqs. (27) and (30) are not so accurate for values
of 2. near h/a as for other values of 2.

In Figure 1 are also shown the results for /!?, with :theeffect of trans-
verse shear deformation neglected. For 2.-= 0.08 (n = 1, 2h/1 = 1/20,

for instance) the frequency of transverse vibration is 101 per cent too
high for the sandwich plate but only 5 per, cent too high for the cylindrical
shell when the transverse shear-effect is neglected. However, for 2. = 0.16
(n = 2 for the same 2h/l = 20, for instance)- the errors increase to 259
and 72 per cent for the plate and shell, respectively.

'5. Viscoelastic Damping of Vibrations

For damped vibrations the displacements in eqs. (20) are replaced by

U = Ucos- -h wet, ew,= ... , P= ... (33)

The logarithmic decrement 6 is then given by

which is a measure of the damping of the vibration of the composite plate
or shell. The change from eqs. (20) to (33) involves the replacement of
co by co+ io' = co(l+ i/2;r). Equivalently, the frequency parameter Q
may be replaced by Q(I+ ib/2,r)2 . The damping property of a viscoelastic
material is specified through the use of the complex modulus. In the present

study this involves the complex moduli of the core and face materials

'U1 +i~i E ( + ig2)

which replace ul and E2/(l - v) in the undamped case and in which g,
and g2 are the loss factors of the core material in shear and the face material
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in extension, respectively. Equivalently, the parameters x, and r. in the
above results.maybe rep!aced by.xl(1 + ig) and r.(l + ig).

With replacements made, eqs. (27), (30), and (31) become

+ ' ir)2(l +ig),

or (364)6
49 ' I =-j"rrh(1+ ig) 04)

+ ,lr2rh).(l + iO(1 + -,0

:'(l + igO+ r., .2--LrQh)(I + ig.)

- + iA.) i[VP(l + ig1 ) + r2rh;2(l + ig)].

It will now.be assumed that 6, g,, and g2 are small enough so that 62, g ,
g,and g, g2 are negligible in comparison with one. The real parts of eqs.
(34) then show that viscoleastic damping has a negligible effect on the
frequencies. On the other hand, the imaginary parts of these equations
when divided by the corresponding real parts yield the following results
for the logarithmic decrements:

bit +r(

6. kg rhrl(;2 - a r(36)

P I + r~r .a _rr

+t h2A rit. -reh

ti,_gtX1 + 92 r2rh .2

Ir X, + r~r k;,z

Introducing the damping parameters k,,j, ke, ..by writing

f kwlgt kv=g , _6V, -1 (35)

we find

k ut 0- , k ,2-- 1, (36)
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.(37)

- 1 [12  
___r_____ I[-r1A- )] 2h }

x., + r h :- rh,

' - k,-- r2rh;2 (38)
1, + r rrh >l + rgrh). "

where
h2  - r2r ?-

)'.2

a- -h

The concept of the damping parameter is a useful one. Since the product
between a damping parameter and the related material loss-factor repre-
sents the contribution to the damping of the composite st'ucture, the
former is a measure of the effectiveness and relative importance of the
associated type of viscoelastic damping. The sum of all damping para-
meters in each case is equal to one; namely,

A_1 + A-2= 'I ..., .. (39)

Equations (39) together with (35) show that, if the loss factors in a certain
case are equal to each other and equal to g, then 61z. in -that case is also
equal to g. Since the loss factors are generally not the same, their contri-
butions to the damping are weighted according to the ratio between the
damping parameters, and 6.rr cannot be larger than the largest loss factor.
It is also noted that the effectiveness of one type of damping will increase
at the expense of a decrease in the effectiveness of the other type. On the
other hand, the various types of damping may supplement each other.
Only two types of damping have been considered in the present treatment,
the shear damping of the core and extensional damping of the face layers.
There are occasions in which more than these two types have to be taken
into account [8].

To induce damping, a highly viscoelastic material is often used for the
core of a sandwich. But sheardamping of the core is seen to be totally
ineffective for the extensional vibration of a sandwich plate or cylindrical
shell, because k., is identically zero according to eqs. (36). Shear damping
is also not very effective for low-frequenc transverse vibrations, as eqs.

. . . ,.. -. . .. , . ,, _- . . . _ _ .. .. ........
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(37) show thatu/,k diminishes with A. On the. other hand, it is-not difficult
to see from eqs. (38) that shear damping is most effective for thickness-shear
vibrations-when the frequency is near the simple thickness-shear frequency.
This is so because the type of motion that is predominant is precisely what
is needed for shear damping to.develop strongly. Whenever shear damping
is not effective, extensional damping of the face layers may be resorted to.
If the face material has only a very small loss factor, viscoelastic damping
layers may have to be bonded to the faces of the sandwich, but this -will
change the problem-to a radically different one.

Among eqs. (36) to (38) only eqs. (37) depend on'the effect of curvature,
which makes k,,, smaller and k,.2 greater than the corresponding values
for a sandwich plate. For the latter, eqs. (37) reduce to

k k r=.rh . k =;'I -t r'-rh)" ' " ,, --f- r.,rh ;2

Comparison with eqs. (38) reveals that we now have

k, = k02, = kj.

These interesting results 'have not been observed before and hold true
only for the sandwich plate but not for the cylindrical shell. They indicate
that an increase in the effectiveness of damping of the transverse vibration
is always accompanied by an equal decrease in the effectiveness of damping
of the thickness-shear vibration, the increase and decrease in damping
effectiveness being measured in terms of the damping parameters. A similar
conclusion may be drawn for the sandwich cylindrical shell, but the increase
and decrease are not generally equal.

To demonstrate our findings on viscoelastic damping, the damping
parameters as given by eqs. (37) and (38) have been calculated for the
same numerical cases discussed before. The results are shown in Fig. 2,
in which k , or k,, is measured from the bottomi line to a curve, and k02
or k,1 measured from the top line to the curve. Numerical results of eqs.
(36) are trivial and need not be plotted. In addition to having verified the
above discussion on damping parameters, the xresults in Fig. 2 further
reveal the fact that shear damping contributed by a viscoelastic core can
be quite ineffective for a sandwich cylindrical shell. Such is the case, for
instance, when . is in the neighborhood of 0.14, for which Fig. 2 gives

k,, = 0.13, k 1 = 0.10.

Neither of these two values is a large number.
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Fig. 2. Damping parameters.
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