Contract Nonr-4793(00) Program Code Number 3730 Authorization ARPA Order 306 Task Number NR017-722

CZOCHRALSKI GROWTH OF LaAlO3

FINAL REPORT

July 9, 1965

Contract Period: January 1965 - May 1965 Contract Cost: \$14,915

C. D. Brandle - Project Scientist, Report Author H. Fay - Group Leader O. H. Nestor - Principal Investigator

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This research is a part of Project DEFENDER under the joint sponsorship of the Advanced Research Projects Agency, the Office of Naval Research, and the Department of Defense.

COPY	267	7	
ARD COPY		nion Carbide Corporation, Linde Divi Speedway Laboratories	sion
	\$.2.00	P. O. Box 24184 Indianapolis, Indiana 46224	
	\$.0,50		ARC

TABLE OF CONTENTS

Page

List of Figures				
I.	SUMM	ARY	1	
II.	INTRO		1	
ПІ.	CRYST	FALLOGRAPHIC LATÀ		
	Ă.	Structure	2	
	в.	Phase-Change	3	
	C.	Density	3	
IV.	EXPE	RIMENTAL		
	A .	Crystal Growth	4	
	В.	Crystal Quality	5	
	C.	Crystal Defects in $LaAlO_3$	7	
		1. Color Centers	7	
		2. Twinning	8	
	D.	Spectroscopy of Doped Samples	9	
	Е.	Growth of Related Hosts	9	
		1. $BiAlO_3$	9	
		2. $PrAlO_3$	10	
v.	DISCU	SSION		
	А.	Color Centers	10	
	В.		12	
Appendix - Cubic-Rhombohedral-Hexagonal Transformation				
Document Control Data - R and D				

Report Distribution List

1. 1. 1. 1. A.

LIST OF FIGURES

- 1. Cubic-Rhombohedral Unit Cells
- 2. "Hopper" Growth
- 3. Growth Interface of Cr^{3+} Doped Boule
- 4. Effect of Pulling Rate on Lineage
- 5. Twin Boundaries in Various Crystal Orientations
- 6. Pseudo Cell Angle for Rare Earth Aluminates
- 7. Various Types of Twinning

I. SUMMARY

The objective of this program was to explore the possibility of growing high optical quality LaA:O₃ by the Czochralski method. The techniques developed for ruby growth were found to be directly translatable to LaAlO₃ with no apparent limitations imposed by the use of a crucible. Undoped and doped (Cr^{3+} , Eu^{3+}) crystals of various orientations were grown.

Two major defects were encountered: color centers and twinning. Color centers were eliminated by using high purity starting materials in combination with selected growth and post-growth treatment. Two mechanisms for forming color centers are proposed and their relation to LaAlO₃ defect chemistry is discussed. The dominant twin planes have been identified to be those of the (100) system. Their relation to the crystal structure of LaAlO₃ has been elucidated.

Isolated attempts were made to grow BiAlO₃ and PrAlO₃ to determine if twinning might be a problem in these potential host compositions; other growth problems were encountered indicating that an answer could be obtained only by an extensive effort beyond the bounds of the present program.

II. INTRODUCTION

Of the many known III-III perovskites (ABO₃), only one (LaAlO₃) has been found to exist in the ideal cubic phase; however, the cubic phase exists only at elevated temperatures. At room temperature, LaAlO₃ is rhombohedral, having a rhombohedral angle of 60°6' referring to the primitive rhombohedral cell or 90°5' referring to the face centered rhombohedral cell.

Because the departure of the unit cell from the cubic is so slight, it has been hoped that such a material would provide an attractive laser host for substitutional doping of trivalent ions in either the A or B sites. LaAlO₃ has been shown to be an attractive host in that fluorescence data from Cr^{3+} doped LaAlO₃ is reported to be

 25^{1} - 34^{2} milliseconds at room temperature as compared to 3 milliseconds for Cr^{3+} : Al₂O₃, while for Nd³⁺ doped LaAlO₃, the lifetime of the dopant is enhanced by a factor of two relative to that in CaWO₄ and Y₂O₃²⁾.

However, LaAlO₃ heretofore available was unattractive optically because of a twinning defect. The material on which fluorescence data were obtained was Verneuil grown. The present work was undertaken to explore whether Czochralskigrown material suffered the same defect or whether, by virtue of reduced stresses during growth, twinning would be avoided. In the course of this program it became apparent that the structural basis for twinning needed elucidation. Hence this aspect of the problem received attention.

III. CRYSTALLOGRAPHIC DATA

A. Structure

Geller and Bala³⁾ have done an extensive survey of rare-earth aluminates and in particular LaAlO₃. They reported that LaAlO₃ is rhombohedral belonging to the space group R3m and having unit cell dimensions of a = 5.357Å $\alpha = 60^{\circ}6^{\circ}$ at room temperature. The above symbols mean that the unit cell has a 3 fold inversion axis along the body diagonal and a mirror plane paralle! to this axis as symmetry elements.

The Al^{3+} occupy the eight corners of the rhombohedron and its center (Figure 1). In addition to being on the 3 fold axis, they occupy the inversion center of the unit cell. The La³⁺, however, <u>do not</u> occupy an inversion center, but are approximately 0.01Å from it along the body diagonal, as indicated by arrows in Figure 1.

³⁾ S. Geller and V. B. Bala, Acta Cryst., 9 1019 (1956).

¹⁾ F. Forrat, R. Jansen and P. Trevoux, Comptes Rendus Acad. Sci. <u>t 256</u> 1271 (1963).

²⁾ Laser Materials Final Report - Korad Corporation No. AD 439901.

Derighetti, et al.⁴⁾, however, report the most probable space group to be R3c on the basis of electron paramagnetic measurements. In this space group, the mirror plane is replaced by a glide plane; however, the Al^{3+} positions remain the same as in R3m. The structure would thus have equivalent La^{3+} sites and Al^{3+} sites. In either space group, the Al^{3+} are the only atoms located on an inversion center and long fluorescence lifetimes can only be predicted for atoms substituted on the B site. This, in fact, seems to be the case for Cr^{3+} and not for rare-earth dopants on the A site.

B. Phase Change

In addition to the room temperature data on LaAlO₃, Geller and Bala took high temperature x-ray powder patterns of LaAlO₃. Here they found a gradual change from the rhombohedral to the cubic cell with increasing temperature. They were unable to detect any additional change above 350°C. Wood¹⁾, however, observed a phase change at 435°C \pm 25°C. DTA showed no indication of a phase change implying that there is no appreciable heat of transition. Such results would probably indicate a second order transition.

Visible observations of the phase change of crystals from 1/2-inch to 2-inches in length in the present work showed it to be a gradual change as reported by Geller and Bala; however, the rhombohedral phase could be seen up to $512^{\circ}C \pm 3^{\circ}C$. This value is 77°C above that of Celler and Bala, 65°C above that reported by Gränecker and Müller⁵⁾ and 22°C above that reported by Bondar and Vinogradova⁶⁾.

C. Density

The theoretical x-ray density for $LaAlO_3$ using the cell constants as reported by Geller and Bala was calculated in this work to be 6.51 g/cc while the

⁴⁾ B. Derighetti, J.E. Drumheller, F. Laves, K.A. Müller and F. Waldner, Acta Cryst. <u>18</u> 557 (1965).

⁵⁾ H. Gränicher and K. A. Müller, Nuova Cim., Suppl. 6 Serx. X 1216 (1957).

⁶⁾ I.A. Bondar and N.V. Vinogradova, Izr. Akad. Nauk. SSSR, Ser. Khim. 5 785 (1964).

measured density of the solid crystal boules was found to be 6. 16 g/cc. This agreement confirms the doubly primitive (two molecules per unit cell) rhombohedral unit cell chosen by Geller and Bala. Bondar and Vinogradova report a density of 5.84 g/cc, probably applying to powder samples.

IV. EXPERIMENTAL

A. Crystal Growth

The crystal growth chamber used for pulling ruby was found to be directly applicable to LaAlO₃ without change of design or materials. The chamber provides for atmosphere control (neutral or H₂-containing atmospheres were used for LaAlO₃ growth) and temperature control. The crucible was charged with La₂O₃ powder and crystalline Al₂O₃ (Verneuil crackle) in stoichiometric ratio. The melting point of pure LaAlO₃ was read to be 2075-2080°C, uncorrected pyrometer values. Several melts were checked for stoichiometry after having been held for 6-8 hours above the melting point and were found to have maintained stoichiometry with no detectable departure therefrom. There was no visible attack of the crucible and no crucible contaminant was found in the frozen melt by emission spectroscopy.

Crystals ranging from 8.5 to 43 grams and from 1/2-inch to 4-inch length were grown. A total of five different boule axis orientations were obtained; referred to the pseudo-cubic unit cell (transformations from cubic to rhombohedral to hexagonal indices are given in Appendix J) these were as follows: $\langle 111 \rangle$, 20° from $\langle 111 \rangle$, $\langle 2\overline{11} \rangle$, 10° from $\langle 2\overline{11} \rangle$, and $\langle 3\overline{11} \rangle$.

Several doped crystals were pulled in the "10° from $\langle 211 \rangle$ " orientation. Two different dopants were used separately: Cr^{3+} as a B site dopant and Eu^{3+} as an A site dopant, each introduced into the original charge as the sesquioxide. The melting point of the Cr-doped charge was higher than that of pure LaAlO₃ and increased with the Cr concentration in the range . 07-2. 2 wt % Cr₂O₃. The Eudoped charge (0.1 to 1 wt % Eu₂O₃) did not show a melting point different relative to pure LaAlO₃.

The L: O_3 used initially for growth of LaAlO₃ was obtained from American Potash and had a purity rating of 99, 99 and 99, 997% with respect to rare earths (Code 528 and 529 respectively). Calcium, magnesium and silicon impurities were found to be present in concentrations of from 100 to 200 ppm each. All crystals grown from this material were a dark yellow-brown in color. At the present time a special grade of La₂O₃ has been obtained which has a total non-rare earth impurity level of about 60 ppm, the majority of this being silicon while the calcium and magnesium total less than 15 ppm. Crystals grown with this material are clear and colorless.

It was noted that during the initial heating of the unreacted oxides, two characteristic "breaks" could be seen in the heating curve. The first break occurred at about 1650° to 1660°C and was accompanied by a complete change in the character of the charge. The material would "puff" to perhaps twice its original volume. At about 1715°C, the exact reverse would occur, i.e., the "puffed" material would collapse into a dense charge and thereafter no change was noted until the melting point was reached.

The "puffed" material was very plastic at that temperature and it is believed the "puffing" is a result of a solid-solid reaction between the oxide components of the charge. The collapse of the charge is believed due to the increase in plasticity of the material with increasing temperature.

B. Crystal Quality

During the course of the first few tests, it became apparent that the seed orientation strongly affected the overall quality of the crystal. In the first few crystals pulled, a central defect could be seen which usually ran the length of the crystal. This defect was then terminated at the growth interface by a small depression. Figure 2 shows a photograph of such a depression. Examination of the figure will show that the depression is composed of many facets giving it an overall appearance of hopper growth. These facets have been found to be the (100) faces of the pseudo-cubic unit cell. It is believed that the central defect is a

result of an overgrowth of the "hopper" section of the growth interface.

Such defects as described above have been found on all undoped crystals of LaAlO₃ that were grown along a low index direction. The crystals which have been grown along a high index direction did not show this defect and had few, if any, bubbles. Such results as described above would suggest that growth along a high index direction is desirable.

Another factor which strongly affected the crystal quality was the type of dopant used. When Cr^{3+} was placed in the melt, two things became apparent. First, as mentioned before, the melting point of the material was raised and more important the crystal quality of the boule dropped considerably. The addition of Cr^{3+} to the melt enhanced the faceting tendency of LaAlO₃ to such an extent that the (100) face was formed on the growth interface even though growth was in a high index direction. This faceting again led to the formation of <u>oriented</u> voids and bubbles through-out the entire crystal. A photograph of the growth interface of a Cr^{3+} doped crystal is shown in Figure 3.

One spproach which can be taken is to grow at much slower rates. Several attempts at slow growth rates yielded promising results and crystals of Cr^{3+} doped LaAlO₃ have been grown with only a few bubbles and voids; however, examination of these crystals still showed twinning to about the same extent as in the undoped crystals.

Doping on the "A" site is an entirely different matter. Good quality Eu^{3+} doped crystals of LaAlO₃ have been pulled with no evidence of facets as were seen in the Cr³⁺ doped samples, though both were grown off the same seed rod. Examination of ionic sizes of Eu^{3+} and Cr^{3+} as compared to La^{3+} and Al^{3+} respectively shows a much better "fit" for Eu^{3+} than for Cr^{3+} . This fit could be part of the reason for the ease at which Eu^{3+} doped LaAlO₃ can be grown.

A third parameter which strongly affects crystal quality is the pulling rate. Crystals of undoped LaAlO₃ have been pulled at rates from 1/16 to $1 \frac{1}{2}$ -inches per hour. The crystals pulled at a rate of greater than 0.60-inches per hour showed

a slight lineage structure in the center and as the pulling rate was increased so did the lineage increase until a point was reached where the entire crystal becomes opaque due to lineage. Figure 4 shows the effect of pulling rate on crystal quality.

C. Crystal Defects in LaAlO₃

Two defects exist in $LaAlO_3$ which would be detrimental to its use as a laser \hat{i} ost. These defects are color centers and twinning. Both of these must be eliminated before single crystals of $LaAlO_3$ can be used for a laser host material.

1. Color Centers

The first of these defects which must be eliminated are color centers which give the crystal a yellow-brown color. Forrat, Jansen and Trevoux¹⁾ report that these color centers are due to vacancies on the La³⁺ site and can be removed by substituting on the vacant site mono-, bi-, or trivalent ions. Furthermore, they state that these are <u>V</u> color centers which implies a <u>positive ion vacancy-hole</u> combination. In addition to the La³⁺ ion vacancy, it has been found that the purity of the starting materials strongly affects the color of the final boule. As has been found in other crystal growth problems, e.g., Al₂O₃ and YAG, the presence of alkaline earths such as calcium or magnesium greatly affects crystal clarity.

The problem then becomes one of (1) climinating the impurity atoms which cause the discoloration of the crystal or (2) permanent "bleaching" of the color from the crystal. Of the two choices, the first is by far the best. As already mentioned above, the first objective has been accomplished by use of a special grade La_2O_3 .

"Bleaching of the color from the boules has also been accomplished by growth in a hydrogen atmosphere or by heating the boules under vacuum to 1800°C for about 1 1/2 hours. The vacuum heated crystals, when removed, from the furnace were colorless; however, exposure to UV light caused them to again return to their original color.

The hydrogen "bleached" crystals were col Mess as grown; however, as in the vacuum heated case, UV light caused them to turn to the characteristic yellow-brown color. Unlike the vacuum heated crystals, however, the color was not permarent and the crystals gradually became colorless after several hours. It was also found that prolonged heating in air at 450°C caused both the vacuum heated and hydrogen "bleached" to become permanently discolored. It should be pointed out that these dark crystals were grown from Code 528 or 529 La₂O₃.

2. Twinning

The other major defect in LaAlO₃ is twinning of the crystals which is a direct result of the phase change from the ideal, cubic perovskite structure to the rhombo' drai structure. This phase change is accompanied by a gradual shift of $1 = a^{3+}$ ion along the body dimonal of the pseudo-cubic unit cell and a shift in the opposite direction of the adjacent "body diagonal" La³⁺ ion. Such shifts as described above are accompanied by a distortion of the cubic cell. The rhombohedral-cubic-transformation and the direction of the La³⁺ ion shift are shown in Figure 1. The twins result when the initial shift of the La³⁺ ions at various parts of the crystal are along different, equivalent cube body diagonals. It should be pointed out that the twins formed have <u>identical structures</u> and the only difference lies in the <u>orientation</u> of one part of the cryst.² with respect to another part.

To determine the sets of twins present, disks of three different orientations were cut from a boule: (100), (110), (112), these indices defining the planes parallel to the disk surface. The (100) disk, shown in Figure 5b, showed two distinct sets of twin planes. These sets are at right angles to each other and are perpendicular to the disk surface. The (110) disk, shown in Figure 5a, showed two sets of twin planes. One set is perpendicular to the disk surface while the other set is inclined from the surface. A difference in the extinction angle between the two parts of the crystal separated by the perpendicular twin plane was found to be 30 ± 10 arc minutes. Figure 5c shows the (111) disk which has three separate sets of twin planes present. All these sets are inclined with respect to the disk surface, i.e. (111) plane.

Several attempts have been nade to remove the twinning by annealing. Although heat treatment does not remove the twinning, it does tend to produce large areas where only one direction of twin planes are present and reduce the twinning to some extent.

D. Spectroscopy of Doped Samples

The fluorescent spectra of both the Cr^{3+} and Eu^{3+} doped samples of LaAlO₃ were taken using an ARL Guantograph and agreed closely with that reported by Korad Corporation. The Cr^{3+} doped sample of LaAlO₃ showed a line at 7350Å and had a line width of approximately 8Å at room temperature. No low temperature data was taken nor were lifetimes measured.

The Eu³⁺ doped sample showed four strong lines which are: 4462Å, 5175Å, 5930Å and 6175Å however no line widths were measured. As in the case of the Cr^{3+} sample, no low temperature data was taken nor lifetimes measured.

E. Growth of Related Hosts

1. BiAlO₃

At the start of this program, a search of the literature revealed numerous references to rare-earth aluminates. It was found that all these were of rhombohedral or lower symmetry, but as the rare-earth ionic radius increased, the material tended toward the cubic phase as shown in Figure 6 which shows the pseudo-cubic angle as a function of the "A" ionic radius.

If the curve can be extrapolated, an ionic radius of 1,20Å of a 3 plus ion could yield a cubic III - III perovskite at room temperature. Such an ion is Bi^{3+} which is reported to have an ionic radius of 1,20 in some literature. Furthermore a reference⁷ was found in which $BiAlO_3$ was reported. With these facts in mind, an attempt was made to form $BiAlO_3$.

⁷⁾

Naray-Szabo, Publ. Univ. Tech. Sc. Budapest 1 30 (1947).

One to one mole ratios of Bi₂O₃ and Al₂O₃ were mixed together and heated in a platinum crucible for 1 to 5 hours and at temperatures of from 800 to 1200°C. Examination of the frozen melt did show small hexagonal crystals, however, these were found to be $\alpha - Al_2O_3$ only. Further attempts to produce BiAlO₃ gave only the $\alpha - Al_2O_3$ crystals.

2. PrAlO₃

 $PrAlO_3$ is reported to have the same space group as LaAlO₃; however, the distortion from the cubic is slightly more, the rhombohedral angle being 90°17' as compared to arc 90°5' for LaAlO₃¹⁾. The symmetry of the Al³⁺ site remains the same as in LaAlO₃, and therefore Cr³⁺ doped PrAlO₃ should exhibit the same fuorescence characteristics as Cr³⁺ doped LaAlO₃.

Furthermore, it was reported that the rhombohedral angle at 950°C was 90°9'¹⁾. It was thought that a way to avoid the twinning problem in LaAlO₃ was to grow Cr^{3+} doped PrAlO₃ if the material melted while still in the rhombohedral phase. This value would be about 1950°C. The melting point of PrAlO₃ was found to be 2050°C or very close to the melting point of LaAlO₃. The material was much harder to grow than LaAlO₃ and had an emerald green color. whose origin was not identified. The sample that was pulled was of insufficient optical quality to determine if twinning was present or not. Because of the difficulty of growth, no additional attempts were made to grow PrAlO₃.

V. DISCUSSION

A. Color Centers

As stated before, it was found that the problem of color centers in $LaAlO_3$ can be linked directly to the non-rare earth impurities in the starting material, in other words, the higher the non-rare earth impurity concentration, the more color centers produced. As a result of this observation, the color center problem in $LaAlO_3$ can be eliminated by careful selection of the starting material, giving particular attention to the concentration of calcium, magnesium and silicon.

If an alkaline earth impurity, either calcium or magnesium, is chosen as the color center producing agent, two possible mechanisms can be formulated to explain the experimental results. The first proposed mechanism consists of the diffusion of hydrogen into the crystal lattice and the association of the hydrogen with the lattice defect (color center). This mechanism is very similar to that proposed by Forrat, Jansen and Trevoux and can be represented by the following equations using the nomenclature of Kröger and Vink⁸⁾.

$$H_2 \neq 2H_i$$
 (i = interstitial) (1)

$$H_{i} \neq (H_{i}^{\dagger})^{\cdot} + e^{-}$$
(2)

$$(Ca_{La^{3+}}^{3+}) \neq (Ca_{La^{3+}}^{2+})' + e^{+} \neq V \text{ color center}$$
(3)

$$(Ca_{La^{3+}}^{2+})' + (H_i^{+}) \stackrel{*}{\to} (Ca_{La^{3+}}^{2+} H_i^{+})^{\circ}$$
 (4)

$$e' + e \not\equiv ground state$$
 (5)

If such a mechanism existed, heating a "hydrogen containing crystal" would tend to drive off the hydrogen and produce color centers. Likewise, exposure to UV light could supply enough energy to break up the complex formed in equation (4); however, in this case, the hydrogen would be retained and could again complex with the calcium defect. This mechanism does not explain the disappearance of the color centers when heated in a vacuum. In fact, one would predict on the basis of the above mechanism an increase in the number of color centers in the crystal due to the evolution of hydrogen under vacuum.

The second mechanism results in the formation of oxygen vacancies due to the reduction of the oxygen partial pressure by the hydrogen. These vacancies would then tend to produce electrons in a similar manner as did the hydrogen. The increase in the concentration of the electrons would tend to reduce the ho⁻. concentration and therefore the color center concentration. This mechanism can be r_presented as follows:

8)

F. A. Kroger and H. J. Vink, Solid State Physics 3 307 (1956).

$$(V_{O^{2-}}^{2-})^{\circ} \neq (V_{O^{2-}})^{\circ} + 2e^{-}$$
 (V = vacancy) (6)
 $(Ca_{La^{3+}}^{3+}) \neq (Ca_{La^{3+}}^{2+})^{\circ} + e^{+} \neq V$ color center (7)

$$e^{+} + e^{-} \neq \text{ground state}$$
 (8)

In a neutral atmosphere, the following equilibrium can be thought to exist between the solid and gas:

$$(La^{3+})_{1-2\delta} (Ca^{2+}_{La^{3+}})'_{2\delta} (Al^{3+}) (O^{-2})_{2} + 2\delta e^{+} \neq (La^{3+})_{1-2\delta} (Ca^{2+}_{La^{3+}})'_{2\delta} (Al^{3+}) (O^{-2})_{3-\delta} (V_{O^{-2}})_{\delta} + \frac{\delta}{2} O_{2} (g) (9)$$

Any reduction of the equilibrium oxygen vapor pressure in the atmosphere would tend to drive the above reaction to the right producing more oxygen vacancies in the lattice. Such a reduction can be accomplished by either vacuum heating or growth in a reducing (hydrogen) atmosphere. If such a sample were heated in air, a decrease in oxygen vacancies would result with a corresponding increase in the number of holes.

Of the two mechanisms proposed, the second appears more likely than the first since identical results can be accomplished by the use of CO as reported by Forrat et al. ¹⁾ Also the second mechanism appears more probable when compared to other perovskites such as $SrTiO_3$ which are known to have an oxygen vacancy-oxygen partial pressure equilibrium.

B. Twinning

The other major defect found in LaAlO₃ which greatly affected the optical properties of the boules was the twinning which resulted from the phase

transformation from cubic to rhombohedral. Buerger^{9, 10)} has shown that crystals connected by a high-low phase transformation possess related symmetries, i. e. the symmetry of the low temperature form is a subgroup of the symmetry of the high temperature form. This implies that the symmetry of one form can be derived from that of another form by the suppression of one or more symmetry element sets in the unit cell. Furthermore, derivative structure theory can provide a basis for the prediction of the twin boundaries formed by such a phase transition and the prediction that the suppressed symmetry element can become the symmetry element of the twin.

For the case of $LaAlO_3$, the high temperature form is the cubic perovskite form which belongs to the point group m3m, space group Pm3m, while the lcw temperature (rhombohedral) form belongs to the point group 3m and either the space group $\overline{R3m}$ or $\overline{R3c}$. The International Tables for x-ray Crystallography, Vol. $I^{(1)}$ shows that the point group 3m is a subgroup of the point group m3m and likewise for the space group. Thus the suppressed symmetry set which results from the phase transformation is the set of mirror planes (m) perpendicular to the cube axes. The mirror planes perpendicular to the face diagonals remain as does the three fold axis. An inversion three fold axis arises due to the doubling of the original cubic unit cell to form the rhombohedral cell. Therefore, one would predict the twin planes to be mirror planes (as are most twin planes) perpendicular to the $\langle 100 \rangle$, $\langle 010 \rangle$ and $\langle 001 \rangle$ directions of the original cubic unit cell. Such twins are referred to as transformation twins and result in a change of direction (approximately 70°) of the (111) axis (body diagonal) of the true rhombohedral cell at the twin boundary. These predictions on the twin boundaries agree with the results observed on the (100) disk, the (110) disk and the (111) disk as shown in Figure 5.

⁹⁾ M. J. Buerger, Am. Min. 30 469 (1945).

¹⁰⁾ M.J. Buerger, J. Chem. Phys. <u>15</u> 1 (1947).

¹¹⁾ International Tables for X-Ray Crystallography, Vol. I p 36 (1952).

Two other forms of twins could exist. One of these forms occurs along the face diagonals of the cube that are not in the same plane as the body diagonal. However, such a twin requires the La^{3+} ions on the twin plane (mirror plane placed in the (110) plane) to occupy a special position on the twin plane. This form of twinning is more disruptive to the crystal than the transformation twin since it does require the La^{3+} ions to occupy their "cubic positions" on the twin plane. Since such a position would be highly unstable, the La^{3+} ion would tend to "flip" to one of the other rhombohedral directions and form a (100) twin.

The third form of twinning which might occur is along the (111) face of the cubic unit cell or the faces of the rhombohedral unit cell. This form of twin represents a gross distortion from the original cubic phase and <u>can not</u> be formed by a simple change of direction of the La^{3+} ion shift and therefore can only be formed during growth of the crystal. Such a twin is called a growth twin and is shown in Figure 7 along with the other forms of twinning discussed.

Of the three forms of twinning possible, only the transformation twin has been found in the crystals grown.

APPENDIX

.

I. CUBIC-RHOMBOHEDRAL-HEXAGONAL TRANSFORMATION

Because the departure of the rhombohedral unit cell is so slight when compared to the cubic cell, it is easier to refer different crystal directions to the cubic cell. The following matrix represents the transformation from the cubic to the rhombohedral unit cell. It should be stated that this transformation applies only for a rhombohedral angle of between 59 and 61°.

Transformation matrix

Transformation equations

$\int 1$	0	IJ		$h_{\mathbf{R}} = h_{\mathbf{C}} + \mathcal{L}_{\mathbf{C}}$
1			or	$k_{R} = h_{C} + k_{C}$
٥	1	IJ		$\ell_{\mathbf{R}} = \mathbf{k}_{\mathbf{C}} + \ell_{\mathbf{C}}$

where h, k, and l refer to the Miller indices while C and R refer to the cubic and rhombohedral phases respectively. The inverse of the above matrix is:

$$\begin{pmatrix} 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \end{pmatrix}$$
 or
$$\begin{aligned} h_{C} &= 1/2 (h_{R} + k_{R} - \ell_{R}) \\ k_{C} &= -1/2 (h_{R} - k_{R} - \ell_{R}) \\ \ell_{C} &= 1/2 (h_{R} - k_{R} + \ell_{R}) \end{aligned}$$

Likewise a similar transformation exists for a rhombohedral to hexagonal unit cell relationship. Unlike the cubic-rhombohedral transformation, this applies to any hexagonal or rhombohedral system. The hexagonal-rhombohedral transformation matrix is given as follows:

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$
 or
$$\begin{aligned} h_{H} = h_{R} - k_{R} \\ k_{H} = k_{R} - \ell_{R} \\ \ell_{H} = h_{R} + k_{R} + \ell_{R} \end{aligned}$$

where H refers to the hexagonal unit cell. The inverse of the above matrix is:

A - 1

$$\begin{pmatrix} 2/3 & 1/3 & 1/3 \\ -1/3 & 1/3 & 1/3 \\ -1/3 & -2/3 & 1/3 \end{pmatrix}$$
 or
$$\begin{aligned} h_{R} &= 1/3 (2h_{H} + k_{H} + \ell_{H}) \\ k_{R} &= 1/3 (-h_{H} + k_{H} + \ell_{H}) \\ \ell_{R} &= 1/3 (-h_{H} - 2k_{H} + \ell_{H}) \end{aligned}$$

Again a similar matrix can be found for the cubic-hexagonal transformation and is as follows:

$$\begin{pmatrix} 0 & -1 & 1 \\ \cdot & 0 & -1 \\ 2 & 2 & 2 \end{pmatrix}$$
 or
$$\begin{aligned} h_{H} & -k_{C} + \ell_{C} \\ k_{H} = h_{C} & -\ell_{C} \\ \ell_{H} = 2(h_{C} + k_{C} + \ell_{C}) \end{aligned}$$

which is subject to the condition that the distortion is very slight. The inverse can be given as:

$$\begin{pmatrix} 1/3 & 2/3 & 1/6 \\ -2/3 & -1/3 & 1/6 \\ 1/3 & -1/3 & 1/6 \end{pmatrix}$$
 or
$$\begin{aligned} h_{C} &= 1/6 (2h_{H} + 4k_{H} + \ell_{H}) \\ k_{C} &= 1/6 (-4h_{H} - 2k_{H} + \ell_{H}) \\ \ell_{C} &= 1/6 (2h_{H} - 2k_{H} + \ell_{H}) \end{aligned}$$

CUBIC-RHOMBOHEDRAL UNIT CELLS

A DAMA DATA A PARAME SHOW AND AND AND

Small circles represent Al⁺³ Large circles represent La⁺³ The arrows show direction of La⁺³ shift

a. 22

iler.

A State of the sta

Growth Interface of Undoped Boule (Low Index)

FIGURE 3 Grow⁻⁻ Interface of Cr⁺³ Doped Boule (High Index)

Effect of Pulling Rate on Lineage (IX)

-

Twin Boundaries in Various Crystal Orientations

a (110) Disk showing perpendicular and 45° twin boundaries. Approximately 7x

b (100) Disk showing both sets of perpendicular twin boundaries. Approximately 7x

c (111) Disk showing three sets of twin boundaries, each set 120° from the others. Approximately 7x

PSEUDO CELL ANGLE FOR RARE EARTH ALUMINATES

VAP.IOUS TYPES OF TWINNING TRANSFORMATION TWINS

3

4

5

6.

8.4

10.

11.

13

DI

GROWTH TWIN

(111) Twin

The grid on the first two figures represents the original cubic unit cell. The arrows represent the direction of the $\langle 111 \rangle$ axis. The circle (o) represents a shift of the La⁺³ ion in the direction indicated below the plane of the paper, the positive sign (+) a shift above the plane of the paper. The twin boundaries are represented by m (mirror planes). In the lower figure the large circle (O) represents the La⁺³ ion.

ivision	. REFO	AT SECURITY CLASSIFICA	
ivision ze	Uncl	AT SECURITY CLASSIFICA	
71	And in case of the local division of the loc		
	And in case of the local division of the loc		
Technical Percet			
Technical Benert			
Technical Benowt		,	
r recumear deport			
5 - May 1965			
		•	
78. TOTAL NO. OF PAS	E 8	75. NO. C'F REFS	
28		11	
SA. ORIGINATOR'S REPO	DRT HUM	sen(3)	
SRCR-00-4			
S. OTHER REPORT NO	(8) (Any	other numbers that may be as	aigned
this report)		·	-
12. SPONSORING MILITAR	RY ACT	VITY	<u> </u>
Office of Naval	Resea	rch	
Department of t	the Na	vy	
Washington, D.	.C. 2	0360	
	28 9. ORIGINATOR'S REPO SRCR-65-4 9. OTHER REPORT NO Dis report 12. SPONSORING MILITAL Office of Naval Department of Washington, D o explore the possibilit	74. TOTAL NO. OF PAGES 28 94. ORIGINATOR'S REPORT HUM SRCR-65-4 95. OTHER REPORT NC(5) (Any 96. OTHER REPORT NC(5) (Any 97. OTHER REPORT NC(5) (Any 98. OTHER REPORT NC(5) (Any 99. OTHER REPORT NC(5) (Any 99. OTHER REPORT NC(5) (Any 90. OTHER REPORT NC(5) (Any	35 - May 1965 74. TOTAL NO. OF PAGES 28 11 94. ORIGINATOR'S REPORT HUMBER(3)

quality LaAlO₃ by the Czochralski method. The techniques developed for ruby growth were found to be directly translatable to LaAlO₃ with no apparent limitations imposed by the use of a crucible. Undoped and doped (Cr^{3+} , Eu^{3+}) crystals of various orientations were grown

Two major defects were encountered: color centers and twinning. Color centers were eliminated by using high purity starting materials in combination with selected growth and post-growth treatment. Two mechanisms for forming color centers are proposed and their relation to LaAlO₃ defect chemistry is discussed. The dominant twin planes have been identified to be those of the (100) system. Their relation to the crystal structure of LaAlO₃ has been elucidated.

Isolated attempts were made to grow $BiAlO_3$ and $PrAlO_3$ to determine if twinning might be a problem in these potential host compositions; other growth problems were encountered indicating that an answer could be obtained only by an extensive effort beyond the bounds of the present program.

UNCLASSIFIED

Security Classification

14.							KC	
KEY WORDS		ROLE		ROLE	₩T	ROLE	WT	
		ļ						
Czochralski growth				-		1		
Twinning							ì	
Color centers								
Doper crystals								
						Ì.		
			L	<u> </u>		<u> </u>		
	UCTIONS							
I. ORIGINATING ACTIVITY: Enter the name and address of the contractor, aubcontrector, grantee, Department of De-	imposed such as:	by security	clasaifi	cation, u	sing stan	dard state	emente	
ense activity or other organization (corporate author) issuing he report.		"Qualified report from		era may ol	otein c p	les of thi		
2a. REPORT SECURITY CLASSIFICATION: Enter the over- all security cleasification of the report. Indicate whether "Restricted Deter" is included. Mathematicate to be in second	(2)	"Foreign a report by D	nnounce			ation of t	tis	
"Reatricted Data" is included. Marking is to be in accord- ance with appropriete accurity regulations.		"U. S. Gov						
25. GROUP: Automatic downgrading is specified in DoD Di- rective 5200.10 and Armed Forces Industrial Manual. Enter		this report users shall			C. Other	qualified	DDC	

- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All diatribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for asle to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory aponaoring (paying for) the reasarch and development. Include eddreas.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elaewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cetaloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, are graphic location, may be used as key words but will be teclowed by an indication of technical context. The use ignored of links, roles, and weights is optional.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as suthorized.

3. **REPORT TITLE:** Enter the complete report title in ell cepital letters. Titles in all cases should be unclassified. If a meeningful title cannot be selected without classification, show title classification in all cepitals in perenthesis immedietely following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progreas, summary, Lnnusl, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the neme(a) of author(a) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an shaolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7e. TOTAL NUMBER OF PAGES: The total page count should follow normel pagination procedures, i.e., enter the number of pages conteining information.

76. NUMBER OF REFERENCES. Enter the total number of references cited in the report.

8. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which he report was written.

85, 8c, 8 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, aubproject number, system numbers, task number, etc.

9a. GRIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

95. OTHER REPORT NUMBER(S): If the rejort has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter may limltations on further dissemination of the report, other than these

UNCLASSIFIED

REPORT DISTRIBUTION LIST

	1	0030	R. S. CONGLETON	54	
	2	0030	HUGHES AIRCRAFT CORP.	54	
		0030	AEROSPACE GROUP	54	
		0030	RESEARCH & DEVELOPMENT DIVISION	54	
		0030	CULVER CITY, CALIFORNIA	54	
	-	0070	COLICE CLIFT CALL MATA	24	
	1	0035	BASIL CURNUTTE, JR.	54 4	
		0035	KANSAS STATE UNIVERSITY	54	
	-	0335	MANHATTAN, KANSAS	34	
		••••		24	
	· ·•	0.542	G. H. DIEKE	54 (
			JOHNS HOPKINS UNIVERSITY	- 24 · - 54	4
*		0042	BALTINORE 18, MARYLAND		
	2	0042	DALIIMURE 109 MARTLAND	54	
	•	0.000			
		0092	C. H. KELLER	54 (•
		0092	PEK LABS. INC.	54	
		0092	925 EVELYN AVENUE SUNNYVALE, CALIFORNIA	54	
	•	0092	SUNNYVALED CALIFORNIA	54	
	-				
		0093	S. P. KELLER	- 54 - 1	•
		0093	INTERNATIONAL BUSINESS MACHINES	54	
		0093	T. J. WATSON RESEARCH CENTER	54	
	4	0093	YORKTOWN HEIGHTS, NEW YORK	54	
			•		
	-	0108	A. LEMPICKI	54 4	ł
		0108	GENERAL TELEPHONE & ELECTRONICS LABS	54	
	3	0108 ~	BAYSIDE 60. NEW YORK	54	
			•		
			R. C. PASTOR	54 1	ŧ
	2	0117	KORAD CORPORATION	54	
	3	0117	KORAD CORPORATION 2520 COLORADO AVENUE	54	
		0117		54	
		~	an a		
	1	0121	T. C. MCAVOY	54 1	F
	2	0121	CORNING GLASS WORKS	54	
	3	0121	CORNING, NEW YORK	54	
			and the second		
	1	0122	W. MCKUSICK	54 4	•
	2	0122	EASTMAN KODAK COMPANY	34	
	3	0122	APPARATUS AND OFTICAL DIVISION	54	
		0122	400 PLYHOUTH AVENUE, N.	54	
		ë122		54	
	-			2.9	
	1	0139	O. H. NESTOR	54 4	
	-		LINDE COMPANY	54	
	1	0110	1500 POLCO STREET	54	
	Ĺ	0139	INDIANAPOLIS 24, IPDIANA	54	
	*		······································	74	
	1	0144	J. W. NIELSON	54 1	
			AIRTRON. A LIVISION OF LITTON INDUSTRIES	- 54 - 54	
			200 EAST HANOVER AVENUE	24 54	
			MCRRIS PLAINS. NEW JERSEY	-	
	4	1144	TRANID FEATHDE NEW DERDET	54	

1	0148	GERALD OSTER	54	
2	•)148	CHEMISTRY DEPARTMENT	54	~
3	0148	POLYTECHNIC INSTITUTE OF BROOKLYN	54	
- 4	0148		54	
5	0148	333 JAY STREET BROOKLYN 1. NEW YORK	54	
,	0178	DAVID STOCKMAN		
	0178	ELECTRONICS LABORATORY	54	+
	0178		54	
	0178		54	
		STRACUSED NEW TORK	54	
1	0189	J. W. TURNER	54	
2	0189	WESTINGHOUSE ELECTRIC CORP.	54	
	0159	ELECTRONICS DIVISION	54	
	0189	P. C. BOX 1897	54	
5	0189	BALTIMORE 3. HARYLAND	54	
,	0237	WESTINGHOUSE ELECTRIC CORP. ELECTRONICS DIVISION P. O. BOX 1897 BALTIMORE 3. MARYLAND R. W. YOUNG		
-	0207		54	
-	0207	CONTRADINGE MASSACHICETTE	54	
.,	V 2 0 1	AMERICAN OPTICAL COMPANY Southeridge, Massachusetts	54	
1	0213	DR. JERALD R. IZATT	54	
2	0213		54	-2
	0213	UNIVERSITY PARK. NEW MEXICO	54	
		a naa a amagaagaana ahayaana ahayaana ahayaa aha ga ga ga	•••	
_	0214	PROFESSOR A. K. KAMAL	54	#
		PURDUE UNIVERSITY	54	
	0214		54	
4	0214	LAPATEITEO INDIANA	54	-
1	0215	MR. THOMAS C. MARSHALL	54	
-	0215	COLUMBIA UNIVERSITY	54	•
		DEPT. OF ELECTRICAL ENGINEERING	54	
4	0215	NEW YORK 27. NEW YORK	54	
			-	
	0216	MR. CHARLES G. NAIMAM MITHRAS, INC.	54	•
-	0216	MITHRAS, INC.	54	_
9	0216	CAMBRIDGE 39, MASSACHUSETTS	54	
1	0217	DR. J. H. SCHUENAN	54	
2	0217	SOLTD STATE DIVISION	- 34	
3	0217	U. S. NAVAL RESEARCH LABORATORY	54	
	0217	WASHINGTON 25. U. C.	54	
		· .	-	
	0218	DR. JACK A. SOULES PHYSICS DEPARTMENT	54	
- Z	0218	PHYSICS DEPARTMENT NEW MEXICO STATE UNIVERSITY	54	
2	0218	NEW MEXICU SIAIC UNIVERSITY	54	
•	1110	UNIVERSITY PARK, NEW MEXICO	54	
1	0219	DR. ARDEN SHER	54	#
-	ú219	VARIAN ASSOCIATES	54	
	6219		54	
4	0219	PALO ALTO, CALIFORNIA	54	

•*

100 (1) (1)

,

، » . » م کرم، ک لاطمیلاندو**د**ه » » در دُر را رو

.

. . .

......

1

t

5 6----

	•	0220	PHYSICAL SCIENCES DIVISION	54
			ARMY RESEARCH OFFICE	54
4	۰. ۹	0220	OFFICE, CHIEF, RESEARCH & DEVELOPMENT	54
	A 1	199.1	MARNITNETAN BR. N. P	54
4	5	0220	ATTN DR. ROBERT A. WATSON	54
•	-	~ # # ~		
			CHIEF SCIENTIST	54
	2	0221	U. S. ARMY ELECTRONICS COMMAND	54
	3	0221	FORT MONMOUTH, NEW JERSEY	54
	4	0221	ATTN DR. HANS K. ZIEGLER	54
,	•	0222	NIRECTOR INCLUTE FOR EVENATORY REFERENCY	-
			DIRECTOR, INSTITUTE FOR EXPLATORY RESEARCH	54
	-	0222	ARMY SIGNAL RESEARCHSDEVELOPMENT LABORATORY FORT MONMOUTH, NEW JERSEY	54 54
	2	~	TORT MUNHOUTHS NEW DERSET	74
	1	0223	ASST DIRECTOR OF SURVEILLANCE	54
	2	0223	ARMY SIGNAL RESEARCHEDEVELOPMENT LABORATORY	54
	3 1	0223	FORT MOMMOUTH, NEW JERSEY	54
	6	0223	ATTN DR. HARRISON J. MERRILL	54
-			NIDERTAD OF DECEMBER & BOUCH ADMENT	
			DIRECTOR OF RESEARCH & DEVELOPMENT	54
			ARMY ORDNANCE MISSILE COMMAND HUNTSVILLE, ALABAMA	54 54
			ATTN MR. WILLIAM D. MCKNIGHT	24 54
		• • • • >	HIN NO RICLING VE PICKAIOUT	24
1	1	0226	OFFICE, CHIEF OF NAVAL OPERATIONS /OP-07T-1/	54
	2	0226	DEPARTMENT OF THE NAVY	54
	3 (0226	WASHINGTON 25, D. C. ATTN MR. BEN ROSENBERG	54
	b) (0226	ATTN MR. BEN ROSENBERG	54
		n 7 7 7	BUREAU OF NAVAL WEAPONS /RR-2/	54
			DEPARTMENT OF THE NAVY	54
			WASHINGTON 25+ D. C.	54
				54
	•	~~~		27
1	1	0228	BUREAU OF SHIPS /CODE 305/	54
	2 (0228	DEPARTMENT OF THE NAVY	54
	3	0228	WASHINGTON 25. D. C.	54
6	6	0228	ATTN DR. JOHN HUTH	54
	•	0000 -	OFFICE OF NAVAL RESEARCH /CODE 402C/	
		-	DEPARTMENT OF THE NAVY	54
-			WACHTNETON 28- D. C.	54 54
			ATTN DR. SIDNEY REED	54
				2-4
1	1	0230	OFFICE OF NAVAL RESEARCH /CODE 421/ 03 COPIES	54
	2 (0230	DEPARTMENT OF THE NAVY	54
			WASHINGTON 25. D. C.	54
1	4	0230	ATTN MR. FRANK B. ISAKSON	54

STREAM STREAM

*

I

L

1	0231	OFFICE OF NAVAL RESEARCH /CODE 406T/	54
2	0231	DEPARTMENT OF THE NAVY	54
	231		-
		• • •	54
- 4	0231	ATTN MR. J. W. SMITH	54
		· Al in many states · A state constraint of grantes of	•
3	0232	NAVAL RESEARCH LABORATORY /CODE 6440/	54
_	0232	DEPARTMENT OF THE NAVY	• •
			54
	0232	WASHINGTON 25. D. C.	54
4	0232	ATTN DR. C. C. KLICK	54
1	0233	NAVAL RESEARCH LABORATORY /CODE 7360/ DEPARTMENT OF THE NAVY	54
2	0233	DEPARTMENT OF THE NAVY	54
	0233	WASHINGTON 25, D. C.	• •
	0233	ATTN DR. L. F. DRUMMETER	54
-	7275	ATTN DRE GE FE DRUMMETCR	54
	0234	HEADGUARTERS USAF /AFRDR-NU-3/	54
2	0234	HEADGUARTERS USAF /AFRDR-NU-3/ DEPARTMENT OF THE AIR FORCE	54
3	0234	WASHINGTON. D. C.	54
	0234	WASHINGTON, D. C. Attn Ltcol terrel	•
-	V 2 34	ATTA LICOL TERREL	54
_			
-	0235	RESEARCH & TECHNOLOGY DIVISION	54
2	0235		54
3	0235	WASHINGTON, D. C.	54
	0235	WASHINGTON, D. C. ATTN MR. ROBERT FEIK	54
		WITH THAT DADED'S LAW	
	0.3.44	OFFICE, AEROSPACE RESEARCH /MROSP/ WASHINGTON 25, D. C. Attn Lt. Col. Ivan Atkinson.	
1	0230	OFFICE, AEROSPACE RESEARCH /MROSP/	54
2	0236	WASHINGTON 25. D. C.	54
3	0236	ATTN LT. COL. IVAN ATKENSON.	54
h		ուս ու	na waa waa
1	0238	TECHNICAL AREA MANAGER /T60A/	54
	0238	ADVANCED WEADONE AEDONANTTEAL EVETPME AVA	24
_	-	TECHNICAL AREA MANAGER /760A/ Advanced Weapons Aeronautical systems div	54
	0238	WRIGHT-PATTERSON AFB	54
	0238		54
5	U238	ATTN MR. DON NEVMAN	54 -
		ATTN MR. DON NEIMAN	
1	0239	PROJECT ENGINEER /3237/	54
	0239	PROJECT ENGINEER /5237/ AEROSPACE RADIATION WEAPONS	
_		ACONIANTERAN ENERGIAE ATMEETAN	54
	0239	AERONAUTICAL SYSTEMS DIVISION WRIGHT-PATTERSON AFB	54
	0237	WRIGHT-PATTERSON APS	54
5	0239	OHIO ATTN MR. DON LEWIS	54
6	0239	ATTN MR. DON LEWIS	54
			•••
3	0240	AIR FORCE SPECIAL WEAPONS CENTER /SWRDA/	54
_	0240	AIR FORCE SPECIAL WEAPONS CENTER /SWRPA/	
	0240	NIKILANU AFO	54
	0240	NEW MEXICO	54
4	0240	ATTN MAJOR T. T. DOSS	54
I	0241	PROJECT ENGINEER /5561/ COMET	54
-	0241	ROME AIR DEVELOPMENT CENTER	54
-	0241	GRIFFISS AFB	54
-		NEW YORK	-
			54
3	J241	ATTN MR. DURWOOD CREED	54
		· · · · · · · · · · · · · · · · · · ·	

+

••

2	0242	DEPARTMENT OF ELECTRICAL ENGINEERING NEW YORK UNIVERSITY UNIVERSITY HEIGHTS		54 54 54
- 4	0242			54
	0242			54
-	0243	BMDR	OB COPIES	54
2	0243	ROOM 2 8 263		54
-	0243	THE PENTAGON		54
6	0243	WASHINGTON 23, D. C.		54
	0243	ATTN MAJOR GLENN SHERWOOD		54
		MR. JOHN EMMETT		54 4
		PHYSICS DEPARTMENT		54
		STANFORD UNIVERSITY		54
4	0284	PALO ALTO, CALIF.		54
		SECRETARY, SPECIAL GROUP ON OPTICAL MASERS		
		ODDRCE ADVISORY GROUP ON ELECTRON DEVICES		54
		346 BROADWAY - BTH FLOOR		54
4	0326	NEW YORK 13. NEW YORK		54
		ASD /ASRCE-31/	-	54
	0332	WRISHT-PATTERSON AF8. OHIO		54
	0354			54 4
		SPERRY RAND RESEARCH CENTER		54
1.0	0354	SUDBURY, MASSACHUSETTS		54
i	0372	TECHNICAL AREA MANAGER /7608/	-	54
		SURVEILLANCE ELECTRONIC SYSTEMS DIVISION		54
	0372			54
	Ú372	MASSACHUSETTS		54
	0372	ATTN MAJOR H. I. JONES, JR.		54
		COMMANDING OFFICER		54
		U. S. NAVAL ORDNANCE LABORATORY		54
3	8360	CORONA, CALIF.		54
	• -	DIRECTOR		54
		U. S. ARMY ENGINEERING RESEARCH		54
		AND DEVELOPMENT LABORATORIES		54
	-	FORT BELVOIR, VIRGINIA		54
1	0420	ATTN TECHNICAL DOCUMENTS CENTER		54
		OFFICE OF THE DIRECTOR OF DEFENSE	02 COPIES	•••
		DEFENSE RESEARCH AND ENGINEERING		54
-		INFORMATION OFFICE LIBRARY BRANCH		54
		PENTAGON BUILDING		54
	0449	WASHINGTON 25. D. C.		54

. ..

2	0471	U. S. ARMY RESEARCH OFFICE OZ COPIES BOX CM, DUKE STATION DURHAM, NORTH CAROLINA	54 54 54
2	0499 0499 0499	DEFENSE DOCUMENTATION CENTER 20 COPIES CAMERON STATION BUILDING ALEXANDRIA 14, VIRGINIA	54 54 54
2 3 4	0527 0527 0527	DIRECTOR 06 COPIES U. S. NAVAL RESEARCH LABORATORY TECHNICAL INFORMATION OFFICER CODE 2000, CODE 2021 WASHINGTON 25, D. C.	54 54 54 54
2 3	0555 0555	COMMANDING OFFICER OFFICE OF NAVAL RESEARCH BRANCH OFFICE 219 S. DEARBORN ST. CHICAGO, I'LINOIS 60604	54 54 54 34
23	0584	COMMANDING OFFICER OFFICE OF NAVAL RISEARCH BRANCH OFFICE 207 W. 24TH ST. NEW YORK 11, NEW YORK 10011	54 54 54 54
2 3	0640 0640	COMMANDING OFFICER OFFICE OF NAVAL RESEARCH BRANCH OFFICE 1000 GEARY STREET SAN FRANCISCO, CALIFORNIA 94109	54 54 54 54
2	0949	AIR FORCE OFFICE OF SCIENTIFIC RESEARCH WASHINGTON 25. D. C.	54 54
2	0724	DIRECTOR NATIONAL BUREAU OF STANDARDS WASHINGTON 25, D. C.	24
23		DIRECTOR RESEARCH DEPARTMENT U. S. NAVAL ORDNANCE LABORATORY WHITE OAK, SILVER SPRING, MD.	54 54 54 54
23	0780 0780 0780 0780 0780	COMMANDING OFFICER OFFICE OF NAVAL RESEARCH BRANCH OFFICE 1030 EAST GREEN STREET PASADENA, CALIFORNIA 91101	54 54 54 54
2	1208 4808	COMMANDING OFFICER OFFICE OF NAVAL RESEARCH BRANCH OFFICE 495 SUMMER STREET BOSTON 10. MASS.	54 54 54

• -

in the

1	0836	U. S. NAVAL RADIOLOGICAL DEFENSE LABORATORY	54 54
3	0836	SAN FRANCISCO, CALIFORNIA 94135	54
		COMMANDING OFFICER	54
2	0853	U. S. ARMY MATERIALS RESEARCH AGENCY	54
	0853		54
.5	0853	WATERTOWN. MASSACHUSETTS 02172	54
		BOULDER LABORATORIES	54
	0875		54
			54
4	0375	BOULDER, COLORADO	54
		AIR FORCE WEAPONS LABORATORY ATTN GUENTHER WLRPF KIRTLAND AIR FORCE BASE	54
		ATTN GUENTHER WLRPF	54
	v9.5		54
4	0918	NEW MEXICO	54
		CHIEF. LUREAU OF NAVAL WEAPONS	54
2	Ú932	DEPARTMENT OF THE NAVY	54
3	0932	WASHINGTON 25. D. C. ATTN J. M. LEE RMGA-81	54
4	9 932	ATTN J. M. LEE RMGA-81	54
1	0976	AIR FORCE CAMBRIDGE RESEARCH LABORATORIES	54
		ATTN CRXL-R. RESEARCH LIBRARY	54
_		LAWRENCE G. HANSCOM FIELD	54
4	0976	BEDFORD, MASSACHUSETTS	54
	0989		54
		505 KING AVENUE	54
		COLUMBUS 1, OHIO	54
4	0988	ATTN BMI-DEFENDER	54
-		HEADQUARTERS, USAELRDL	54
		FORT MONHOUTH. NEW JERSEY 07703	54
3	1030	ATTN SELRA/SAR.NO-4. X. AND PF	54
1	1032	COMMANDER, U. S. NAVAL ORDNANCE TEST STATION	54
2	1032	CHINA LAKE. CALIF	54
3	1.132	ATTN MR. G. A. WILKINS /CODE 4041/	54
1	1036	J. C. ALMASI	54 #
		GENERAL ELECTRIC COMPANY	54
		ADVANCED TECHNOLOGY LABORATOFIES	54
	1036		54
1	1039	PROF. RUBIN BRAUNSTEIN	54 #
-		UNIVERSITY OF CALIFORNIA	54
		DEPARTMENT OF PHYSICS	54
4	1039	LOS ANGELES 24. CAL.	54

••

1	1040	Ne I. ADAMS	
	1040		54 *
	1040		54
3	1.340	NURRALKS CUNNS	54
•	10.66	E. P. REIDEL	.
1	1040	CO MA KCIVEL	54 +
		QUANTUM ELECTRONICS DEPT.	54
		WESTINGHOUSE ELECTRIC CORP.	54
4	1046	RESEARCH LABORATORIES	54
		PITYSBURGH, PA.	54
1	1047	PROF. H. G. HANSON	54 .
		UNIVERSITY OF MINNESOTA	54
	1047	DULUTH. MINN	
7	1.41		54
•	1070		. .
		P. SCHAFFER	54 #
		LEXINGTON LABORATORIES, INC.	54
3	1048	84 SH IMAN ST.	54
4	1048	CAMBRIDGE. MASS.	54
			24
1	1049	L. E. RAUTIOLA	54 +
		LINDE COMPANY, DIVISION OF UNION CARBIDE	
			54
3	1048	EAST CHICAGO, IND.	54
_			
	1050		54 #
2	1050	UNITED AIRCRAFT CORP RESEARCH LABS.	54
3	1050	400 MAIN ST.	54
4	1050	EAST HARTFORD, CONN.	54
1	1051	J. W. NIELSON	54 *
2	1051	ALOTONI, DIVICION OF LITYON INDUCTOIRE	÷ ·
2	1051	AIRTRON, DIVISION OF LITTON INDUSTRIES	54
3	1021	MORRIS PLAINS. N. J.	54
1	1052	E. M. FLANIGEN	54 +
2	1052	LINDE COMPANY	54
3	1052	DIVISION OF UNION CARBIDE	54
4	1052	TONAWANDA'A NA YA	54
•	• • • •		24
1	1:151	W. PRINDLE	54 *
1	1000	AMERICAN OPTICAL COMPANY	
2	1099	AMERICAN OPTICAL COMPANY	54
3	1053	14 MECHANIC ST.	54
4	1453	SOUTHBRIDGE, MASS.	54
1	1054	DR. ALAN HAUGHT	54 *
		PUASMA PHYSICS	54
		UNITED AIRCRAFT CORP.	54
2	1044	EAST HARTFORD 8, CONN.	54
-	1034		24
1	1055	PROF. N. BLOEMBERGEN	54 +
		HARVARD UNIVERSITY	-
			54
		DIVISION OF ENGINEERING & APPLIED PHYSICS	54
4	1055	CAMBRIDGE 38, HASS.	54

.

.

			÷
	1 1056	PROF. R. J. COLLINS	54 *
	2 1056	UNIVERSITY OF MINNESOTA	54
	3 1056		54
8	4 1056	MINNEAPOLIS 14. MINN.	54
	1 1057	OR. ALAN KOUB	54 #
	2 1057	U. S. NAVAL RESEARCH LAB.	54
	3 1057	WASHINGTON - D C	
	3 1057	WASHINGTON. D. C.	54
_	1 1058	PROF. J. M. FELDMAN	54 +
1		CARNEGIE INSTITUTE OF TECHNOLOGY	54
1		DEPARTMENT OF ELECTRICAL ENGR.	54
	4 1058	PITTSBURGH 13. PENNA.	54
A.	1 1059	PROF. ARTHUR SCHAWLOW	54 #
1	2 1059		54
	3 1.057	STANFORD. CALIFORNIA	54
Γ	2 2020		24
1	1 1060	J. ATWOOD	54 #
	2 1060	ELECTRO-OPTICAL DIV.	54
1	3 1060	PERKIN-ELMER CORP.	54
L	4 1060	NORWALK . CONN.	54
	1 1065	RESEARCH MATERIALS INFORMATION CENTER	54
	2 1065	OAK RIDGE NATIONAL LABORATORY	54
			54
	4 1065	POST OFFICE BOX X OAK RIDGE, TENN. 37831	54
	5 1065		54
	3 1005	ATTR ARE TO FE CONNOLLY S	24
_		J-5 PLANS AND POLICY DIRECTORATE	54
		JOINT CHIEFS OF STAFF	54
	3 1066	REQUIREMENTS AND DEVELOPMENT DIVISION	54
	4 1066	ATTN SPECIAL PROJECTS BRANCH	54
	5 1066	ROOM 20982. THE PENTAGON	54
L.	6 1066	WASHINGTON. D. C 20301	54
	1 1067	ADVANCED RESEARCH PROJECTS AGENCY	54
ſ		RESEARCH AND DEVELOPEMENT FIELD UNIT	54
L		APO 143, BOX 41	54
	4 1067		54
T			24
		ADVANCED RESEARCH PROJECTS AGENCY	54
		RESEARCH & DEVELOPMENT FIELD UNIT	54
	-	APO 146, BOX 271	54
		SAN FRANCISCO. CALIFORNIA	54
	5 1068	ATTN MR. TOH BRUNDAGE	54
	1 1082	AIR FORCE MATERIALS LABORATORY	54 +
	2 1082		54
	-	WRIGHT-PATTERSON AIR FORCE BASE, OHIO	54
	4 1082		34
Ę	- 1796		2 *

•

ē,

1

. •

23	1083 1083 1083 1083	WESTINGHOUSE ELECTRIC CORPORATION RESEARCH LABORATORIES	54 * 54 54 54
2 3	1084	PROF. DONALD S. MCCLURE INSTITUTE FOR THE STUDY OF METALS UNIVERSITY OF CHICAGO CHICAGO 37. ILLINOIS	54 4 54 54 54
2 3	1085	DR. DANIEL GRAFSTEIN GENERAL PRECISION, INC. AEROSPACE GROUP LITTLE FALLS, NEW JERSEY	54 # 54 54 54
2 3	1087	DR. R. C. LINARES PERKIN-ELHER CORPORATION SOLID STATE MATERIALS BRANCH NORWALK, CONN.	54 + 54 54 54 54
2 3	1028 1088	DR. R. C. OHLMANN WESTINGHOUSE RESEARCH LABORATORIES PITTSBURGH 35, PENNA.	54 # 54 54
2	1089	PROFESSOR S. CLAESSON UPPSALA UNIVERSITY UPPSALA. SWEDEN	54 # 54 54
2 3	1196 1196	COMMANDING OFFICER Office of Naval Research Branch Office BOX 39, FPO New Yurk, New York 09510	54 54 54 54
2 3 4	. –	DR. C. B. ELLIS GPL DIVISION GENERAL PRECISION, INC. 63 BEDFORD ROAD PLEASANTVILLE, NEW YORK	54 * 54 54 54 54
2 3 4	1172 1172	MR. C. M. STICKLEY AIR FORCE CAMBRIDGE RESEARCH LABORATORIES - CROL LAURENCE G. HANSCOM FIELD BEDFORD, MASSACHUSETTS 0172	54 54 54 54
2 3 4	1177 1177 1177	DR. WAYNE H. KEEN WESTINCHOUSE DEFENSE & SPACE CENTER /Surface Division/ P. 0. Box 1897 Balti fore, Maryland 21203	54 * 54 54 54 54

4. . . .

ļ	1178	AMERICAN OPTICAL COMPANY	54 *
	1178	RESEARCH CENTER	54
	1178	SOUTHBRIDGE, HASSACHUSETTS	54
-•		2001 JULINARA HUJSURIASEIIS	27
1	1179	DR. RAY HOSKINS	54 *
2	1179	KORAD CORPORATION	54
3	1179	3520 COLORADO AVENUE	54
		SANTA MONICO, CALIFORNIA 90406	54
1	1180	DR. J. W. CARSON	54 #
2	1180	HUGHES AIRCRAFT COMPANY	54
3	1180	CULVER CITY. CALIFORNIA	54
1	1181	DR. MARVIN LASSER	54 #
2	1181	PHILCO CORPORATION	54
3	1161	RESEARCH LABORATORIES	54
4	1181	BLUE BELL. PENN.	54
1	1183	PROF. A. SMAKULA	54 +
		CRYSTAL PHYSICS LAB	54
3	1163	MASSACHUSETTS INSTITUTE OF TECHNOLOGY	54
4	1183	CAMBRIDGE + MASS	54
1	1184	DR. F. MCCLUNG	54 +
2	1184	HUGHES RESEARCH LABORATORIES	54
3	1184	3011 MALIBU CANYON ROAD	54
4	1184	MALIBU, CALIFORNIA 90265	54
1	1185	DR. M. C. TOBIN	54 *
2	1185	PERKIN-ELMER CORPORATION	54
3	1185	NORWALK, CONNECTICUT	54
-	1186	PROF. G. W. STROKE	54 #
-		ELECT. ENGINEERING DEPT.	54
	1156	THE UNIVERSITY OF MICHIGAN	54
4	1186	ANN ARBOR, MICHIGAN 48107	54

a v .

- 121 -

· ·

and the second second

F

Ĩ

X

FURTHER ADDITIONS TO LIST 54*

Robert L. Parker
 National Bureau of Standards
 Washington, D.C.

N.D. Schoenberger Precision Instrument Company 3170 Porter Drive Palo Alto, California

*Authorized by letter

ONR:421:CES:lm NR 017-708 30 November 1964

ONR:421;FBI:1sp 13 Nov 1964