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The Role of Spectral Analysis
in Time Series Analysis

oy
Emanuel. Parzen

Stanford University

1. Introcduction

Statistical spectrel analysis has several roles in time series
analysis: (i) estimation; (ii) hypothesis testing and hypothesis
suggesting; and (iii) description and reduction of data.

In any field where the properties of the phenomenon being studied
can be characterized in terms of its behevior in the frequency domain
one needs to estimabe spectral density functions and other spectral
characteristics associated with stationary multiple time series,

However, spectral analytic techniques seem to provide also &
means of testing the fit of various models (the goodness-of-fit of a
model can be discussed using sample spectre of the residuels from the
fitted model) and suggesting possible models to fit (explanatory
"varisbles" or "mechanisms" to be fitted to a time serizs are often
suggested by sample spectra). As stated so lucidly by Ferman Wold
(1947), "empirical time series present such a host of widely different
patterns that the hypotheses cbout their structure cannot aedequately
be brought together into a single parameter system." Consequently,

an enalysis of a time series is not accomplished by adopting a single

Prepared with the partial support of the Office of Naval Reseerch.
Reproduction is permitted for any purpose of the United States Covern-
ment. To be presented at the Internaticnal Statistical Institute,
September, 1965.
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model, the parameters of which arc estimated. Rather, it is best
carried out by a process of increasing insight from successive
analyses.

To a sample {X(t), t+ =1, 2, ..., T) of a time series, one can

associate a function, called the sample spectral density funciion or

periodogram, defined by

~iwt
e

1
]

fT(w) = Aam !

Y-
5T X(t)|%, -t <w<an.

™M

The periodogram was introduced by Schuster to estimate the fre-
quencies of strict periodicities in a time series satisfying the
following assumptions: (i) it is not evolving but is oscillating
about & constant level; (ii) it may be regarded as composed of a number
of "strict" periodicities plus purely random luctuations.

Since the model of strict periodicities plus random noise seems to
occur rarely in practice, the Schuster periodogram often discovered
spurious cycles. To remedy this, the notion of "disturbed” periodicity
was introduced by means of autoregressive mcdels and moving average
models. The correlogram came to the fore, and periodogram analysis
fell into disfavor, if not disrepute.

Autoregressive and moving average models are (under some additional
assumptions) special cases of stetionary time series. The problems of
finding the order of a finite parameter scheme such as autoregressive
and moving average models led time series analysts to adopt a "non-
parametric" approach and first estimate the spectral density fanction of
the observed time series under the assumption that it was a stationary

time series with no strict periodicities. Techniques of spectrsl analysis
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(using smoothed periodogrems) came back into favor, when interpreted as

estimates of the spectral. density function of an underlying stationary
time series.

But there is more to life than stationary time series with
continuous spectra. Consequently, statisticians added the possibility
of strict periodicities back to the model. Thus was born the so-called
problem of mixed spectra (see Hext (1966) for a current survey).

TFinally, the assumption that the observed time series is trend
free is unnaturel. If one adds trend to a stationary time s=ries, one
hes a time series which can be regarded as derived from a stationsry
time series by a filtering process. A theory of Fourier analysis can
be developed for such time series, and one might seek to estimate this
spectrum. In our approach to empirical time series analyesis, [see

Parzen (1966)] the emphasis is on the use of spzctra defined from

samples rather than from populations or ensembles. Given an observed
time series of finite length, or a time series derived from it, one
defines various "sample spectral functions" such as windowed sample
spectral density functions end distribution functions. fTheir proper-
ties can be determined for each possible model one desires to consider
for the observed time series. Consequently, they can be used to form
estimates of the parameters characterizing the model. Further, they
can te used to determine an appropriate model by compariang the actual
appearance of these spectral functions with their expected appearance
under the various models; thet model for which the correspondence is

closest is considered the most likely.

Our eim in this paper is:(1l) to summerize the basic formulas

.
)
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employed in the empirical spectral analysis of a single time series, and
(2) to show their spplicability to the problem of analyzing and
synthesizing "adaptive predictors" for tim' series. The empirical
spectral analysis of multiple time series is discussed in Parzen (1965).

Other uses of spectral analysis are described in the excellent
survey paper of Jenkins (1965).

2. Sample convolution function

In order to define windowed sample spectral density functions (or
smoothed periodograms) it is convenient to first introduce the sample

convclution function, denoted RT('), of an observed sample

{X(&)‘y t = l, 2) se0y T}:

1 T-v
Ro(v) == 3 X(t) X(¢+v), v=0,1, ..., T-1,
7 T
t=1
(1) = RT("V) s VE=l vee, - (T-1) ,
=0 , otherwise .

The terminology "sample convolution function" is not standard but
is introduced in this psper in order to reserve for other purposes the
terms "sample correlation function" or "autocorrelation function" which
are used by other authors. In the case that the time series of which
{x(t), t =1, 2, ..., T} 4is a sample is known to have zero means and to
be covariance stationary rrith covariance function R(°+) then RT(V)
provides a possible estimate of R(v). Because of this, in previous

writings [see Parzen (1964 a), (1964 b)] the author has called the

function RT(°) the sample covarience funciion. However, it is our

belief that the computation of RT(~) is of great value even for time
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series which are not necessarily covariance stationary. It seems best
therefore when introducing thic function for the first time to give it

a name which indicetes its data-handling, rather than statistical,
character; such a name is "sample convolution function." Similarly,

the sample correlation function pT(v), defined below, is from & statis-~
tical point of view, en estimate of the true correlation function o(v)
of a covariance stationary time series with zero means, while from a
data-handling point of view, it is just the convelution function multi-
plied by a scale factor so as to have value 1 at v = 0.

The relations that exist between the sample convolution function
and sample spectral density function of an observed time series are the
same as those that exist between the covariance function asnd spectral
density function of a covariance stationary time series. In particular,
we note the following facts.

The sample convolution function RT(V) and the sample spectral
density function fT(w) are both even functions of their arguments and
are g Fourier transform pair:

Pl |
RT(V) = /\ cos v f(w) dw =2 cos v £ (w) dw ,
T T
J =x 0
(2)
1 1 &
fﬁ,(w) = EJ?‘R‘I'(O) + s Z cos VW RT(V) .

v=1

The sample distribution function. Given an observed time series

{x{t), t =1, 2, ..., T}, the sample distribution function F. (w) is
, iy

a function of w in the interval 0 < w <« defined by




s e = oo o

Conversely, RT(v) 1s the Fourier-Stieltjes transform of F_(w):
ES

7t
(&) RT(V) =L/; cos vw dFT(w)

The spectral distribution function is a monotone increasing function
of w. Consequently it fluctuates much less than the sample spectral
density function fT(w}. This is both a virtue and a vice. Certain real
effects which it is the aim of the investigation to discern will show up
most clearly in the spectral density function whereas they may be over-
looked in the spectral distribution function. On the other hand,
certain specious effects may appear to show up in the spectral density
function which on the basis of the spectral distribution function may be
rejected as pure fluctuation.

Sample correlation function. The sample correlation function,

denoted pT(-), is defined by

(v)
(5) DT(V) = 23157

In words, pT(v) is the sample convolution function normalized to have
value 1 at v = 0.

Normalized sample spectral density function. For ease of comparing
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the sample spectral density functions arising from different time series,
it seems beat to compute and plot normalized versions of these functions.
Since

19

(6) R(0) = [ tgu) @,
-t

the natural normalization of fT(w) is

T(w)

(7) (w) —;ng

which has the property that its integral form - to = equals 1.
We call ?&(w) the normalized spectral density function; note that it

is also the spectral density function of the sample correlation function,

(8) Pp(v) = /\It VY f&(w) dw .
U -1t

3. Windowed sample spectral density and distribution functions

The windowed sample spectral density function, denoted fT M(w) )
J

is defined by (for - n < w < x)

__l_.z v
(1) fT,M = 5= N cos VW k(M) RT(v)

l/\

where RT(-) is the sample convolution function.

The windowed normalized sample spectral density function, denoted

f& M(w), is defined by (for - n < w < )
J

E: cos vw k(%) pT(v) .

2
(2) o 2k,

21rl
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where pT(°) is the sample correlation function.

The windowed normalized semple spectrsl distribution function,

denoted f& M(w), is defined by (for 0 < w < n)
2
— u)—
- ] ]
FT’M(w) = 2/; fT’M(w ) dw
(3)
w2 1 sin vw k(z) (v)
=% w v W P\

1

v=1

Lag Windows. The function k(+) is known as the lag window of

the windowed spectrum. In our work we use mainly the following lag

window

1«60 + 6|u|3 , vl < 0.5

Ji
£
i

(%) 2(1-|u] )? , 0.5< |u] <100

=0 ) IulZl.

A kernel widely used in existing spectral analysis programs is one

suggested by Tukey (see Blackman and Tukey (1958), p. 14):

k(u) % (L+cos mu) , Jul <1,

(5)
=0 , otherwise .

This lag winaow is not used in our work because the corresponding
windowed spectrum is not necessarily non-negative (and the corres-

ponding estimates of coherence are not necessarily between 0 and 1)

.

Truncation Points. The integer M(< T) is called the truncation

8
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point of the windowed spectrum since it represents the number of sample
correlations of the T availeble actually used in computing the
spectrum. It is wise to choose several truncation points in practice.
In our computations, we usually choose three truncation points

Nent .
Ml’ M2, Ms as percentages of T:

M
5 < = < 106, 10%5%2«25%, 25%5%3-575%.

An alternative rule is:

56T <M < 10F T, 2M) <M, < 3M,, 2M, < M; < 3M, .

Spectral Computation Number. There is a third choice to be made in

forming the estimate o M(w), and this is the number of points on the
J
interval O to = at which it will be computed. We adopt the

gttitude that fT M(w) should be computed for equispaced frequencies
2

7
’26’ ooo’ﬂ

where Q is an integer to be chosen. We call @ +the spectral computa-
tion number.

In the past Q has frequently been chosen to be equel to the
truncetion point M. One can prove a sampling theorem to the effect
that the estimated spectrum (which is a function of w, measured in
cycles per unit of observation time, in the interval 0 < w < 0.5)
can be recovered from its value et M equelly spaced points. However,
this recovery cannot necessarily be done by lineer interpolation. If

the graph of the estimated spectrum is to be obtained by merely drawing

9




line segments connecting the computed values, one needs to compute the
spectrum at @ equi-spaced frequencies, where @ should be at least
2M and perhaps should be U4M (note: further research is needed on
this point).

If one uses 3 truncation points M1 < M2 < M5’ it has seemed
reasonable to me to compute each spectrum at Q = M3 points. However,
one should cheose Q {approximately equal to M3) such thet the
frequencies which are multiples of K/Q are of physical interest. TFor
economic time series of monthly data w. usually choose Q to be a
multiple of 12.

Spectral Window. The spectral window of the windowed spectrim

defined by (2) is defined to be the function

LY dw g
(6) G =g 0 G
For the lag window (4), it msy be shown that

5 [sin(e/t))* 2 2
(7) () = =25 sfiin/ -élf (1 -5 (stn 5)°)

2

This is an even function which integrates to 1, has maximum value

(8) Ky(0) = g M

and achieves its first zero at ® = 4s/M. It is thus concentrated

gbout w = 0 with a rectanguler bandwidth 8x/3M in radians and

4/3M in cycles per unit time.

In order to understand the name "spectral window," we must first

10
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note the reistion that exists between the sample spectral density

function fT(w) and the windowed spectrum fp, H(w):
,V

T
(9) (@) = [ () 2400) 0
since
1§ aive vy PT AW
(10) fT’M(w) = 5= |V|L2 y e k(M)u-n e fT(%.) ar

Thus fT,M(w) is the convolution of fT(w) and Kﬁ(w). In
other words, fT,M(w) is an averaging over the values of fT(w)
when it is viewed through a window (or channel) of variable trans-
mission properties given by KM(w).

A useful approximation to KM(w) can be obtained by introducing

the Fourier transform

(11) ko) = & [ e k(u) au

(W]

which we call the spectral window generator. It may be shown that

approximately

(12) K, (0) = M K(1)
since exactly

(13) Kw) =M Jz K(M(w-273))

11
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From this basic formula we obtain the formula (7) for KM(m). For

the lag window (4), the spectral window generator may be shown to be

(18) K(o) = & {—i‘g}‘[‘:f—l‘l}h

Then

(15) MK(Mw) =

approximates KM(w) given by (7).

Rather than giving a theoretical discussion of the properties of
windowed semple spectra we illustrate their use by analyzing & time
series which has been extensively discussed from the point of view of
forecasting. This is a monthly series of international airline passen-
ger bookings, 1919-1961; compare Brown (1963), p. 429 and Barnard
(1963).

It is to be emphasized that there is not a uniquely best way in
which spectral analytic ideas enter into time series analysis once one
drops the assumption that one is dealing with a stationary time series.
The attitudes to data analysis presented in this paper should be used
in conjunction with other gttitudes such as computing time varying
spectra.

4k, Anelysis of an empirical time series

The monthly time series of intexrnational airline passengers has
the characteristic features of many social and economic time series; in

particular, there is an upward trend asnd a seasonal variation. In
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figure 1 we give plots of three windowed sample spectral density func-
tions (computed for truncation points T2, 36, and 18 on a series of

length 144). The existence of trend is evidenced by pesks at frequency

the seasonal frequencies .083%, .167, .25, .33, and .42 cycles per
month.

In order to gain insight into the structure of a time series, we
often seek to find the coefficients of the minimum mean square error

linear predictor X(t) of the time series X(t) of the form

(1) X(t) = a, X(t-1) + ... + a_ X(t-n)

There are three ways in which one can fit an autoregressive scheme to
data: (i) one can specify the order m and estimate the coefficients
sa,i by solving the system of linear equations

(2) E[i{t) X(t~1)] = B[X(%) X(t-1)), 1 =1,2, «.., m;

(i1) one can take the possible crder m to be some large number (such
as 50 months) but admit only those lags whose coefficients &, eare
U"significantly" different from zero; (iii) one can take the possible
order m +to be some large number but solve for the coefficients &
in order of decreasing contribution to the residual sum of sguares,

and use only a specified number of coefficients. Applying these proce-
dures to the alrline passenger series we find the following resulis:

(1) if one fits a 13th order scheme,

15
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X, (t) = 0.985
0.248
0.346
0.134

-+

+ 0.190
+ 0.068
(3) - 0.080

+ 0.050

0.007

e

0.019
- 00008
+ 0.012

0.011

The coefficients are written in order
mean squeareprediction error. Next let
mekxing a "significant" contribution to

would then fit a first order predictor

(1) %z(t) = 0.986

Finally let us arbitrarily choose to f

obtains the predictor

X5 (¢) 0.957
(5) + 0.257

- 0.224

14

X(t-1)
X(t~11)
X(t~13)
X(t-6)
X(t-12)
X(t-2)
X(t-3)
X(t-4)
X(+-8)
X(t-5)
X(t-7)
X(t-10)

x{t-9)

of decreasing contribution tu
us seek only ‘the coefficients

the residual sum of squares; one

X(t-1) .

it the best fitting 3 terms; one

X(t-1)
X(t-11)

X(-13)
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The means and variences of the original series and the residual

series are as follows:

Series Mean —2221299%-

X(%) 280 1435 10°

e (t) = X(t) - X (v) 536  5.13 107
e (1) = X(t) - %,(t) 539 111 100
e (t) = X(t) - X5 (%) 4.81  5.28 10°

Next one examines the spectra of the residual series ¢(t) = X(t)~§(t).
The windowed sample spectral density function and spectral distribution
function of 65(t) is plotted in the top half of figures 2 and 3,
respectively; the trend in the original X(t) series has been eliminated,
but the seasonal peaks remain. The spectra of el(t) and ee(t) are
similar except that ee(t) has stronger seasonal peaks.

We next repeat the autoregressive model fitting procedures on the

residual ea(t) and 63(t). We find {applying procedure 2 to ea(t)}

(6) 22(1-,) = 0.3 ey(t-12)

while (applying procedure 3 to 63(t))

%(t) =065 egle-12)
(7) + 0,141 eB(t-eu)

- 0.080 eB(t-eo)

In order to interpret the properties of the residuals

7(t) = e(t) -~ e(t) 1let us compare them with the forecasting errors

15




given by Barnard (1963) in his comparison of the "adaptive forecasting"
end Box-Jenkins method Data for 1949 and 1950 were used to provide
initial values, so that the forecast errors were given only for the 10
years, 1951-1960. TFor comparison we computed the spectrsa of the

forecesting errors qa(t) and n5(t) over this 10-year period.

Series of forecasting errors, 1951-1960 Mean Variance

Adaptive forecasting method .28 1.78 102

Box-Jenkins method - .56 1.8 10°
~ 2

ne(t) = ea(t) - ee(t) 1.52 2.05 10
~ 2

t = t - -t lo 6 »
() = e5(t) - e5(t) T 1.73 10

The spectra of the forecasting errors arising from adaptive fore-
casting and the Box-Jenkinsg method are very different! They both are
far from the spectrum of white noise,but the adaptive forecasting errors
are predominantly low frequency while the Box~Jenkins forecasting errors
are predominantly high frequency; their sample windowed spectral density
functions and spectral distrivution functions are plotted in figures L
ani 5, respectively, for a Parzen window and in figures 6 and 7 for a
Tukey window.

In the bottom half of figures 2 and 3 we plot the sample spectrum
of 35(t); it is essentially the spectrum of white noise.

The foregoing considerations lead to both a model and a forecasting
formula for X(t). ILet U, be the r-th backward shif't operator,

X(t~r), end Jet I be the identity operator. Define

UiX(t)
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(8)

P, = 0.657 U12 - 0.080 er + 0.141 U2LP .

Then there is a white-noise series 7(t) such that

(9) (I-B,) (I-By) X(t) = n(%)
Therefore a predictor of X(t) 1is given by

(10) X(%) = (b, + B, - B, ) X(t)

More generelly, let X(t+v) denote the predictor of X(t+v) given

values of the time series up to time +t. Then

(11) X(t4v) = (B, + B, - P, ) X(5+v) ;

A
note that X(s) =X(s) if s<t .

The aim of the foregoing discussion has been to show one important
use of empiricel spectral analysis; given an operator (such as I - Pl)
the properties of the time series (1 - Pl) X(4) can be studied without

regard to the procedure by which one formed the operator.




G.

H.
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