
4j

ITHE ROLE OF SPECTRAL ANALYSIS IN

3 TIME SERIES ANALYSIS

BY
EMANUEL PARZEN

TECHNICAL REPORT NO. 2I ; July 12, 1965

I HARD ',oZ);:
m Ic P 0 K , 5,C

PREPARED UNDER CONTRACT Nonr-225(80) c, 2 -'p

(NR-04 2-234)
r FOR

OFFICE OF NAVAL RESEARCH

DDCI Jl
I U~~~UL. 2'-, u LF ILD

DEPARTMENT OF STATISTICS DD,lRA E

I STANFORD UNIVERSITY

* STANFORD, -CALIFORN IA

I" i.



THE ROLE OF SPECTRAL ANATYSIS

IN TIE SERIES ANALYSIS

by

Emanuel Parzen

TECHNICAL REPORT NO. 2

July 12, 1965

PREPARED UNDER CONTRACT Nonr-225(80)

(N -Oh,2-23,.)

FOR

OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted for

any Purpose of the United States Government

DEPARTMENT OF STATISTICS

STANFORD UNIVERSITY

STANFORD, CALIFORNIA



I
The Role of Spectral Analysis

in Time Series Analysis

by

1Emanuel Parzen

Stanford University

1. Introduction

IStatistical spectral analysis has several roles in time series

analysis: (i) estimation; (ii) hypothesis testing and hypothesis

suggesting; and (iii) description and reduction of data.

J In any field where the properties of the phenomenon being studied

can be characterized in terms of its behavior in the frequency domain

Tone needs to estimate spectral density functions and other spectral
characteristics associated with stationary multiple time series.

However, spectral analytic techniques seem to provide also a

means of testing the fit of various models (the goodness-of-fit of a

model can be discussed using sample spectra of the residuals from the

] fitted model) and suggesting possible models to fit (explanatory

"variables" or "mechanisms" to be fitted to a time serics are often

suggested by sample spectra). As stated so lucidly by Eerman Wold

(1947), "empirical time series present such a host of widely different

patterns that the hypotheses &bout their structure cannot adequately

be brought together into a single parameter system." Consequently,

an analysis of a time series is not accomplished by adopting a single

Prepared with the partial support of the Office of Naval Research.
Reproduction is permitted for any purpose of the United States Govern-
ment. To be presented at the International Statistical Institute,
September, 1965.
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model, the parameters of which arc estimated. Rather, it is best

carried out by a process of increasing insight from successive

analyses.

To a sample [X(t), t = 1, 2, ..., T' of a time series, one can

associate a function, called the sample spectral density function or

periodogr defined by

T1) -i~t tj2 < <x 2tAT E - •
t=l

The periodogram was introduced by Schuster to estimate the fre-

quencies of strict periodicities in a time series satisfying the

following assumptions: (i) it is not evolving but is oscillating

about a constant level; (ii) it may be regarded as composed of a number

of "strict" periodicities plus purely random fluctuations.

Since the model of strict periodicities plus random noise seems to

occur rarely in practice, the Schuster periodogram often discovered

spuxious cycles. To remedy this, the notion of "disturbed" periodicity

was introduced by means of autoregressive models and moving average

models. The correlogram came to the fore, and periodogram analysis

fell into disfavor, if not disrepute.

Autoregressive and moving average models are (under some additional

assumptions) special cases of stationary time series. The problems of

finding the order of a finite parameter scheme such as autoregressive

and moving average models led time series analysts to adopt a "non-

parametric" approach and first estimate the spectral density function of

the observed time series under the assumption that it was a stationary

time series with no strict periodicities. Techniques of spectral analysis
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(using smoothed periodograms) came back into favor, when interpreted as

estimates of the spectral density function of an underlying stationary

[" time series.

But there is more to life than stationary time series with

continuous spectra. Consequently, statisticians added the Possibility

of strict periodicities back to the model. Thus was born the so-called

Fproblem of mixed spectra (see Hext (1966) for a current survey).

Finally, the assumption that the observed time series is trend

free is unnatural. If one adds trend to a stationary time series, one

has a time series which can be regarded as derived from a stationary

time series by a filtering process. A theory of Fourier analysis can

Ube developed for such time series, and one might seek to estimate this

spectrum. In our approach to empirical time series analysis, [see

Parzen (1966)] the emphasis is on the use of spectra defined from

samples rather than from populations or ensembles. Given an observed

time series of finite length, or a time series derived from it, one

defines various "sample spectral functions" such as windowed sample

spectral density functions and distribution functions. Their proper-

ties can be determined for each possible model one desires to consider

I for the observed time series. Consequently they can be used to form

estimates of the parameters characterizing the model. Further, they

can be used to determine an appropriate model by comparixig the actual

appearance of these spectral functions with their expected appearance

under the various models; that model for which the correEpondence is

jclosest is considered the most likely.
Our aim in this paper is.: (1) to smmarize the basic formulas
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employed in the empirical spectral analysis of a single time series, and

(2) to show their applicability to the problem of analyzing and

synthesizing "adaptive predictors" for tim, series. The empirical

spectral analysis of multiple time series is discussed in Parzen (1965).

Other uses of spectral analysis are described in the excellent

survey paper of Jenkins (1965).

2. Sample convolution function

in order to define windowed sample spectral density functions (or

smoothed periodograms) it is convenient to first introduce bhe sample

convolution function, denoted RT('), of an observed sample

(X(6)) t = 1, 2, ... , T):

T-vX(t) X(t+v)j v = O l; T - 1

t=l

(1) = RT(--, , v =- ., ... , - (T-1) ,

= 0 , otherwise

The terminology "sample convolution function" is not standard but

is introduced in this paper in order to reserve for other purposes the

terms "sample correlation function" or "autocorrelation function" which

are used by other authors. In the case that the time series of which

tx(t), t = 1, 2, ... , T) is a sample is known to have zero means and to

be covariance stationary ,rith covariance function R(.) then RT(v)

provides a possible estimate of R(v). Because of this, in previous

writings [see Parzen (1964 a), (1964 b)] the author has called the

function RT(.) the sample covarience function. However, it is our

belief that the computation of R T H is of great value even for time



series which are not necessarily covariance stationary. It seems best

F therefore when introducing this function for the first time to give it

a name which indicates its data-handling, rather than statistical,

character; such a name is "sample convolution function." Similarly,

the sample correlation function PT(v), defined below, is from a statis-

tical point of view, an estimate of the true correlation function p(v)

fof a covariance stationary time series with zero means. while from a

data-handling point of view it is just the convolution function multi-

plied by a scale factor so as to have value 1 at v = 0.

FThe relations that exist between the sample convolution function

and sample spectral density function of an observed time series are the

same as those that exist between the covariance function and spectral

density function of a covariance stationary time series. In particular,

V we note the following facts.

r The sample convolution function RT(v) and the sample spectral

density function fT(W) are both even functions of their arguments and

are a Fourier transform pair:

IRT(,) = r~ Cos VO) f T(0) dw = 2/ Cos vW f Tm(w) dwi
%J -IT Jo

(2)

1R(0) + 1 T-1cos vW
21t= T 9 T-(v)l.

v=l

I The sam le distribution function. Given an observed time series

(X(t)., t = 1 2, ... , T), the sample distribution function FT(W) is

a function of w in the interval 0 < w < g defined by



FT(W) T2 f T (0

() _ RO ) + 2 T1 Sin vw RT(V)

Conversely RT (v) is the Fourier-Stieltjes transform of FT( ):

(.) IRv) =r Cos vw dFT(w)

The spectral distribution function is a monotone increasing function

of W. Consequentl, it fluctuates much less than the sample spectral

density function f T(W. This is both a virtue and a vice. Certain real

effects which it is the aim of the investigation to discern will show up

most clearly in the spectral density function whereas they may be over-

looked in the spectral distribution function. On the other hand,

certain specious effects may appear to show up in the spectral density

function which on the basis of the spectral distribution function may be

rejected as pure fluctuation.

Sample correlation function. The sample correlation function,

denoted pT(.)J is defined by

RT(v)

(5) 
PT(v) = T( )

In words, PT(v) is the sample convolution function normalized to have

value 1 at v =O.

Normalized sample spectral density function. For ease of comparing
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the sample spectral density functions arising from different time series,

1it seems best to compute and plot normalized versions of these functions.

Since

(6) ( =f fT(w) d,

the natural normalization of f (w) is
T(7) naua omliaino T() is

which has the property that its integral form -g to g equals 1.

We call YT(w) the normalized spectral density function; note that it

3is also the spectral density function of the sample correlation function,

(8) PT(v) = f"e vW FT(w) dw
Q- -it

3. Windowed sample spectral density and distribution functions

The windowed sample spectral density function, denoted fTM(W)

is defined by (for - g < w < g)

f 'M( )Ivl < M

I- where iT(.) is the sample convolution function.

The windowed normalized sample spectral density function, denoted

i f-TM(w),, is defined by (for - g < w < g)

(2) (W) cos vw k(l) PTv

FT) M 2



where p,( •) is the sample correlation function.

The windowed normalized sample spectral distribution function,

denoted FTM(w), is defined by (for 0 < w < 9)

FTM (W) 2 1f TM( W1 dwf

(3) M sin vw M T
W2 + ~ siv k(Y) p (v)

Lag Windows. The function k(.) is known as the lag window of

the windowed spectrum. In our work we use mainly the following lag

window

k(u) = 1 - 6u2 + 61uJ3 , Jul < o.5

(4) = 2(1-ul)3 , 0.5 < Jul < 1.0

=o , Jul >i.

A kernel widely used in existing spectral analysis programs is one

suggested by Tukey (see Blackman and Tukey (1958), p. 14):

k(u) = 1 (1 + cos nu) , Jul < 1

(5)
= 0 , otherwise

This lag wiriaow is not used in our work because the corresponding

windowed spectrum is not necessarily non-negative (and the corres-

ponding estimates of coherence are not necessarily between 0 and 1).

Truncation Points. The integer M(< T) is called the truncation
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point of the windowed spectrum since it represents the number of sample

Icorrelations of the T available actually used in computing the

spectrum. It is wise to choose several truncation points in practice.

TIn our computations, we usually choose three truncation points

M1, M l as percentages of T:

% < , < 1O%, o% < - < 25%, 25% _<- - < 75% •

1An alternative rule is:

5% T <M <10% T, 2lvLM2 .L<3V.), S M

Spectral Computation Number. There is a third choice to be made in

forming the estimate fT.M(w), and this is the number of points on the

interval 0 to n at which it will be computed. We adopt the

attitude that fTM(w) should be computed for equispaced frequencies

where Q is an integer to be chosen. We call Q the spectral computa-

tion number.

fIn the past Q has frequently been chosen to be equal to the

truncation point M. One can prove a sampling theorem to the effect

I that the estimated spectrum (which is a function of w, measured in

cycles per unit of observation time, in the interval 0 < w < 0.5)

ican be recovered from its value at M equally spaced points. However,

this recovery cannot necessarily be done by linear interpolation. If

the graph of the estimated spectrum is to be obtained by merely drawing

9



line segments connecting the computed values, one needs to compute the

spectrum at Q equi-spaced frequencies, where Q should be at least

2M and perhaps should be 4M (note: fuarther research is needed on

this point).

If one uses 3 truncation points 1 < Y4 < Y45 it has seemed

reasonable to me to compute each spectrum at Q = 14 points. However,

one should choose Q (approximately equal to 14) such that the

frequencies which are multiples of A/Q are of physical interest. For

economic time series of monthly data w. usually choose Q to be a

multiple of .12.

Spectral Window. The spectral window of the windowed spectrum

defined by (2) is defined to be the function

(6) -L() e i< Z i W k(Z)
21r lv <1

For the lag window (4), it may be shown that

83 sin(L! 14)]14  2 w 2
(7) KM(w) = - (1- . (sin 1 ) ]8- sin W 1

2 2

This is an even function which integrates to 1, has maximum value

(8) () = 3M

and achieves its first zero at w = 44/M. It is thus concentrated

about w = 0 with a rectangular bandwidth 81c/3M in radians and

4/3M in cycles per unit time.

In order to understand the name "spectral window," must first

10



r
note the relation that exists between the sample spectral density

function fT(w) and the windowed spectrum fT'M(w):

since

1 -iv itvv
(o) e e

T; 21( lvi < M M t-7

Thus fT, M(W) is the convolution of fT(w) and KM(w) . In

other words, fT,M( ) is an averaging over the values of fT(w)

when it is viewed through a window (or channel) of variable trans-

fmission properties given by KM(w).

A useful approximation to KM(w) can be obtained by introducing

I the Fourier transform

Cl) K(w) = 1 [ eiuw k(u) du
t.J -lu ~)dI r-O

which we call the sPectral window generator. It may be shown that

Iapproximately

1(212) KM(W) = MK(4w)

since exactly

Co

(K M Z K(M(w-2gj))r=C



From this basic formula we obtain the formula (7) for KM(w). For

the lag window (I), the spectral window generator may be shown to be

L IL

Then

3 4sn M~w 4
(15) MK(MW) L. to

approximates KM(w) given by (7).

Rather than giving a theoretical discussion of the properties of

windowed sample spectra we illustrate their use by analyzing F time

series which has been extensively discussed from the point of view of

forecasting. This is a monthly series of international airline passen-

ger bo.kings, 1949-1961; compare Brown (1963), p. 429 and Barnard

(1963).

It is to be emphasized that there is not a uniquely best way in

which spectral analytic ideas enter into time series analysis once one

drops the assumption that one is dealing with a stationary time series.

The attitudes to data analysis presented in this paper should be used

in conjunction with other attitudes such as computing time varying

spectra.

4. Analysis of an empirical time series

The monthly time series of international airline passengers has

the characteristic features of many social and economic time series; in

particular, there is an upward trend and a seasonal variation. In
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figure 1 we give plots of three windowed sample spectral density func-

I tions (computed for truncation points 72, 36, and 18 on a series of

length 144). The existence of trend is evidenced by peaks at frequency

O, while the existence of seasonal vpr:-_ti=n is evidenced by peaks at

I the seasonal frequencies .083, .167, .25, .33, and .42 cycles per

month.

In order to gain insight into the structure of a time series, we

often seek to find the coefficients of the minimum mean square error

linear predictor X(t) of' the time series X(t) of the form

(1) X(t) = a1 X(t-1) + ... + am X(t-m)I
There are three ways in which one can fit an autoregressive scheme to

if data: (i) one can specify the order m and estimate the coefficients

ai by solving the system of linear equations

(2) E[X-t) X(t-i)] = E[X(t) X(t-i)], i = 1, 2, ..., m

(ii) one can take the possible order m to be some large number (such

as 50 months) but admit only those lags whose coefficients ai are

I "significantly" different from zero; (iii) one can take the possible

order m to be some large number but solve for the coefficients a,

j in order of decreasing contribution to the residual sum of squares,

and use only a specified number of coefficients. Applying these proce-

dures to the airline passenger series we find the following results:

3 (i) if one fits a 15th order scheme,

115



xl(t) = 0.985 X(t-1)

+ 0.248 x(t-ul)

- o.346 x(t-13)

- o.3 14 x(t-6)

+ 0.190 x(t-12)

+ o.o68 x(t-2)

(3) - o.o8o x(t-3)

+ 0.050 x(t-4)

- 0.007 x(t-8)

+ 0.019 x(t-5)

- 0.008 X(t-7)

+ 0.012 x(t-lo)

- o.o1 xt-9)

The coefficients are written in order of decreasing contribution to

mean square prediction error. Next let us seek only the coefficients

making a "significant" contribution to the residual sum of squares; one

would then fit a first order predictor

(4) x2(t) =0.986 x(t-1)

Finally let us arbitrarily choose to fit the best fitting 3 terms; one

obtains the predictor

x (t) = 0.957 X(t-l)

(5) + 0.257 x(t-u)

- 0.224 x(t-13)

14



The means and variances of the original series and the residual

jseries are as follows:

Series Mean Variance
X(t) 280 1.43 10

j 6l(t) = x(t) - xl(t) 5.36 5.13 102

e2 (t) = X(t) - X2 (t) 5.39 l.1 l0

3(t) = x(t) - x3(t) li4.81 6.28 102
!/ -3

Next one examines the spectra of the residual series e(t) X(t)-X(t).

The windowed sample spectral density function and spectral distribution

function of e 5 (t) is plotted in the top half of figures 2 and 3,

I respectively; the trend in the original X(t) 3eries has been eliminated,

but the seasonal peaks remain. The spectra of G1(t) and e (t) ere

I similar except that e2 (t) has stronger seasonal peaks.

3 We next repeat the autoregressive model fitting procedures on the

residual 2(t) and 3(t). We find (applying procedure 2 to 2 (t))

(6) e2 (t) = 0.831 E2 (t-12)

while (applying procedure 3 to G3 (t))

%(t) 0.657 C3(t-12)

1 (7) + o.Ii E 3 (t-24)

- 0.080 E3 (t-20)

In order to interpret the properties of the residuals

I(t) = e(t) - e(t) let us compare them with the forecasting errors

1 15
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given by Barnard (1963) in his comparison of the "adaptive forecasting"

and Box-Jenkins method Data for 1949 and 1950 were used to provide

initial values, so that thc forecast errors were given only for the 10

years, 1951-1960. For comparison we computed the spectra of the

forecezting errors q2 (t) and 3(t) over this 10-year period.

Series of forecasting errors, 1951-1960 Mean Variance

2

Adaptive forecasting method .28 1.78 102

Box-Jenkins method - .356 1.83 lO2

%(t) = 62 (t) - G2 (t) 1.52 2.05 10

r3 (t) = e3(t) - e3 (t) 1.76 1.73 102

The spectra of the forecasting errors arising from adaptive fore-

casting and the Box-Jenkins method are very different! They both are

far from the spectrum of white noise but the adaptive forecasting errors

are predominantly low frequency while the Box-Jenkins forecasting errors

are predominantly high frequency; their sample vindowed spectral density

functions and spectral distribution functions are plotted in figures 4

snd. 5, respectively, for a Parzen window and in figures 6 and 7 for a

Tukey window.

In the bottom half of figures 2 and 3 we plot the sample spectrum

of 1 3 (t); it is essentially the spectrum of white noise.

The foregoing considerations lead to both a model and a forecasting

formula for X(t). Let U be the r-th backward shift operator,r

UrX(t) = X(t-r), and let I be the identity operator. Define

16
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P1 = 0.957 U1 + 0.257 Ul - 0.274 ul 3
~(8)

P2 -o.657 u -o.8o u 20 + .141 U24 .

I
Then there is a white-noise series r(t) such that

(9) (I-P2) (I-Pl) X(t) = (t)

I Therefore a predictor of X(t) is given by

(10 )x() = (PI + P2 - P2PI x(t)

More generally, let X(t+v) denote the predictor of X(t+v) given

3 values of the time series up to time t. Then

(13-) x(t+v) = (P1 + P2 - P2 PI) X(t+v)

A

note that X(s) = X(s) if s < t

I The aim of the foregoing discussion has been to show one important

use of empirical spectral analysis; given an operator (such as I - P 1)

jthe properties of the time series (1 - P1) X(t) can be studied without

regard to the procedure by which one formed the operator.

317
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