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SUMMARY

An exploratory study is made in connection with the problem of pre-
dicting properties of the turbulent base flow region of a body at hypersonic
speeds. An attempt is made tc calculate the gross features of the base flow
using a non-similar mixing model including the Chapman-Korst recompression
condition. The expression for the eddy viscosity is based on a model which
allows the turbulent equations to be transformed into incompressible laminar
form. The empirical factor in the eddy viscosity expression is evaluated
from data obtained from the near field (in the linear growth region) of jets
exhausting Into a quiescent regicn. The same expression for the eddy vis-
cosity is then used in an attempt to estimate the growth of non-similar

turbulent mixing layer using both turbulent and laminar initial profiles.

The correlation of turbulent jet mixing data for speeds up to Mach 3
thows that the eddy viscosity is ' very strong function of Mach number (or
of density ratic across the jet, since the data are for adiabatic flow).

If the eddy viscosity dependence on dersity ratio persists for deasity
ratios typical of re-entry conditions, then it is found that at these
conditions the growth rate of the turbulent shear layer is orders of magni-
tude slower epproaching the rate of growth of the laminar mixing layer
under the same conditions. This is in marked contrast to the situation

at low supersonic speeds, where the turtulent mixing layer dividing stream-
line velocity approaches the similar value well before recompression occurs.
If this speculation is correct, then the stagnation enthalpy at recompress-
ion in the hypersonic turbulent base flow should be well below the total
enthalpy value, since the enthalpy build-up on the dividing streamline

will be similarly suppressed.

This research is a part of PROJECT DEFENDER, sponsored by the Advanced
Research Projects Agency, Department of Defense, under ARPA Order No.

254-62, monitored by Air Fcrce Ballistic Systems Division under Contract
No. AF 04(694)-570,
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1. INTRODUCTION

Predictions of observables in the wakes of slender re-entry vehicles
have been fcund to depend crucially on the flow properties assumed at
the neck region. For example, predicted electron densities and radar
cross-sections of wakes may vary by orders of magnitude, depending on

(1)

the assumed value oi the centerline neck enthalpy ratio h/He. Since
properties at the wake neck are determined by the flow processes in the
body boundary layer and base flow mixing regions, it is clear that

accurate methods for flow calculations in these regions must be developed.

The primary objective of the present paper is to devise a procedure
for calculating the gross properties ot the hypersonic turbulent base
flow (e.g. base pressure, neck enthalpy, etc.). The problem is approached
_rom the point of view of the generalized Chapman-Korst base flow model,

(2,3)

as was done in the laminar case, For laminar flow this model is
thought to be reasonable for moderate supersonic Mach numoers, but is
probablg not adequate for ve-entry conditions. Recently, Reeves and

(5)

Lees, Webb, Golik and Lees, and others have attempted to devise

base flow models more applicable to re-entry conditions. These methods

are not yet well established and still may not contain essential features
even for the laminar case. For turbulent flow the difficulty is compounded
by uncertainties related to the ''eddy' transport coefficients, so it
seems more reasonable to use the simpler Chapman-Korst model at the

present time. If this procedure is adopted, then what remains is to

develop a reasonable empirical model for the eddy coefficients, A major

part of the present paper is devoted to this task.

Having developed appropriate expressions for the eddy coefficients,
one can then solve the non-similar mixing layer equations, au: thereby
determine how rapidly the profiles change from the initial distributions

on the body at separation to the fully-developed profiles far downstream

EOS RN-24, 5-65 1




from separation, For the base flow rhis rate of change or build-up of
the profiles may be of crucial importance if recompression occurs before
the asymptotic or fully developed condition is approa~hed, This is the
situatiuvn occurring in laminar case, $2050 and could also occur in the

turbulent case.

The present report contains three separate parts. The first shows
that experimental turbulent mixing data can be correlated by an eddy
viscosity model based on the assumption that pe = function of x only.
Thus the effect of compressability is taken into account in the same
manner as with laminar flow; the effect of turbulence thereby being
placed in the streamwise variable transformation. The second part of
the report deals with the solution of the non-similar mixing layer
problem, assuming that the previously developed expression for the
eddy viscosity .emains valid even near the separation point. The third
portion of the report utilizes the results of the non-similar mixing
layer arnalysis and the Chapman-Korst base flow model to »redict the
base flow properties of a highly cooled slender cone under re-entry
conditions.

As might be expected, the results of this report depend crucially
on the expression developed for the eddy viscositv. Unfortunately, the
available data cover a very limited Mach number range and are for
esrentially adiabatic flow, so that a considerable extrdpolation is
involved in applying the model to the re-entry case. Thus the final
base {low results presented must be considered tentative and subject

to revision when new turbulent mixing data become available,

EOS RN-24, 65-65 2




2. EDDY VISCOSITY

A fundamental assumption of this report is that the compressible
mixing layer flow can be transformed to an equivalent ircompressible
(6) (7)

flow. The transformation is of the type used by Mager,
Ting and Libby (8)

Burzgraf
and nthers, in which the stream function and shear
stress over a mass element are assumed invariant. In the incompress-

ible plane the eddy viscosgsity is assumed to be given by Prandtl's

(9

‘and is proportional to the width of %..e mixing zone

and the velocity difference across the layer. Ferri(IO)recently has

expression,

argued that when generalized to compressible flow, Prandtl's expression
should be propertional to the tangential mass flux difference instead
of the Velocity difference. For mixing layers with negligible flow

on the inside both expressions are identical. A more serious defect
is that the eddy viscosity is assumed to suddenly change from a form
suitable to the body boundary layer to that characteristic of the

mixing layer after the shoulder expansion.

With these assumptions the resulting compressible eddy viscosity
is the following: 2

u b (1)

In Eq., (1) k is a dimencionless proportionality factor to be deter-
mined by correcating the theory with experimental data and s &a! most

a function of the external flow cornditions. The quantity b is a
suitably chosen width of the mixing layer and Pe is a reference

density used to give ¢ the dimensions of viscosity. As puinted out

by Ting and Libby, Eq. (1) implies that ¢ is variable across the mix-
ing zone because of the density variation, whereas in the incompressible

case it is constant, For the mixing layer the width is assumed to be:

EOS RN-24, 5-65 3




b =6 =$; u*y1-u*) :E dy (2a)
e

so that ¢ is proportioral toc the momentum thickness of the mixing

laver., We could also try for the width

Pe

Y2
b =S £ gy (2b)

Y1

where (by convention) Yy and y, are respectively the vulues of y where
u*2= 0.1 and 0,9. It turns out that Eqs. (2a) and (2b) produce
essentially the same final results for a mixing layer of negligible
initia1l thickness, For the more general problem however, Eq, {Za)
seems more reasonable than (2b). The only justification for these
assumptions for b at present is that they simplify the analysis some-
what by uncoupling the energy terms from the momentum equation. As
with all turbulent theories of this type, further justification for
the selection ¢f the expression for ¢ must come by comparing the

results of the analysis with experimental data.

EOS RMN=24, 5-65 4




P R pra— -t owe g e el e s S— w— L R

o ] ] oo —

3. CONSERVATION EQUATIONS

The boundary layer equations involving the meon flow variables are
assumed to be appropriate for the description of the constant pressure
mixing region {Fig. 1), provided the exchange coefficients are replaced
by their empirical *turbulent counterparts, In spite of the well recog-
ni.:d fact that er ‘vgy, species, and momentum t+~ansport may occur by
different mechanisms in turbulent flow, we simpl.fy matters by assuming
that Prt= Let= 1. Then only the eddy visccs.vy is used explicitly,
This rough model later may be refinet the results prove prot -ing.

The equations are:

j Jy .
(our 7), + (ovr )y =0 (3a)
== hY
puu + pvuy (euy)y (3}
puHx + vay = (eHy)y (3c)

where o= ro(x) is the mean radius of the thin mixing layer in the

axisymmetric case. The boundary conditions are (Fig. 1):

y = - o u=0, H = Hc {(constant) (4a)
y = @ us=u,, H=H (4b)
y = 0: v = 0 (dividing streamline) (4c)
x=0C,y >0 v = given initial velocity profile (44d)
H = He- (He- Hw) (1-u*) (Crocco Integral) (4e)
EOS RN-24, 5-65 5




Since we wish to consider c. 'es where Hc # Hw, the Crocco integral
is not applicable in the mixing regior.,, although it is assumed to apply
initially (at the body base, x = 0), Thus, as in the laminar case,(n)
introduce an auxiliary enthalpy function W which is related to H as
follows:

H = He— (He- uc)(l - y*) - (Hc- Hw) W (5)

Then the W equation is

pqu + pva = (rwy)y (6a)
W(=) = W(o) = 0 (6b)
W(x =0) =1 - u* (6¢)

This allows the energy equation to be solved without explicit knowledge
of the core enthalpy Hc. With W available the enthalpy preofile may be

calculated from Eq., (5) after Hc is specified.

In order to transform the equations to incompressible form the

usual transformation of the y cocordinate is introduced. Let

= 3 j L 73
¥ peJero S Ce dy (72)
0
and define
u* = ufu (7b)
e
- Qu¥ 7c
F = aY ( /7
Then
pe = k per;3¢ (8a)
where 1 duk
% -u*
B = | L (85)
o

FOS RN-24, 5-65 6
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Introduction of relations (7) and (8) in the conservation equations (3)
and further transformation to Crocco coordinates yields

ZBZF

(p ur, i P) F (9)
dur?

O/IO/
b heo

u e

and a similar expression for W, The factor in parentheses on the right
hand side depends on x only, although ¢ depends upon the solution,
Therefcre Eq. (9) can be put in the form of the laminar momentum equa-

tion if we define

o

w
-
]

2 j
Fﬂ (peuer0 k § dx (10a)

F*

[}

F/Fw (10b)

where Fw is the value of F on the body before separation.

Then the conservation equations become

, 2
JF* F*z a F*

uk T = 1la

Js* au*z ( )
LA 220w

UT Ngw T 2 (11b)
Ju*

These equations are in a form identical to the laminar equations and
also have the same boundary conditions as in the laminar case. The
differences are in the inversion of S* back to physical space and in
the initial conditions, If the body boundary layer is turbulent,
initial conditions for the mixing layer must take this into account.
On the other hand it is conceivable that the body boundary layer might
be laminar with transition occurring at the shoulder. In this case

the initial profile will also correspond to the laminar case.

EOS RN=-24, 5-65 7




For a lzainar body boundary layer the initial and bcundary condi-

tion  are:
§* = 0: F*(0,u*) = f”B(qB)/f"B(O) (12a)
W(0,u*) = l-u* (12b)
u* = 0: F*(S*,0) = W(c+,0) =0 (12c)
u¥ = 1: F*(S*,1) = W(S*,1) =0 (124)

where f”B i8 obtained from the Blasius solution (see Section 7).

an

These equations have been previously solved and the solution tabulated.

The problems remaining, then, are the inversion of the turbulent
flow transformation S* back to physical space and establishment of

initial conditions for turbulent flow on the bcdy.

EOS RN-24, 5-65 8
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4. SIMILAR SOLUTION

A first step ir inverting the turbulent solution is to obtain the
parameter k from experiments. For this purpose we investigete similar
solutions which can then be compared with experimental data. It is
known from the laminar case that at large values of S* the effect of
the initial structure of the shear leyer will disappear and the solution
will asymptotically approach the similar solution of Chapman.(lﬁ)

Since the turbulent problem has been made mathematically equivalent to
the laminar case with the exception of initial conditions, the asymp-

totic solutions must be idertical.

In order to obtain the Blasius equation instead of its counterpart

in Crocco coordinates we introduce the normal distance parameter

YF
w

no= I (13a)

Then the velocity is assumed to be a function of n only

u* = £'(n) (13b)

When Eqs. (%) and (13b) are introduced in the conservation equations

the familiar results are obtained.
f + ff =0 (]_l‘a)
nnm nn
W +fW =0

nn T (14b)

The boundary counditions are fﬂ(-m) = 0, fjén) =1, W(-=) = W(=) = 0,

and f£(0) = 0, The last condition follows from the specification that

EOS RN 24, 5-65 o




n = 0 corresponds to the dividing streamline. Clearly the solution for
W is W = 0, which of course implies the usual Crocco integral relation
for the total enthalpy from Eq. (5. The soiution for f may be obtained

(12) (13)

from tabulations by Chapman and Christian

The momentum thickness function for the similar solution is given Ly

1/2
*
= LQ%—2—~— c (15a)
w
where ©
= =SS £'(1-f') dn = ,8756 (15b)
-

Use of Eq, (15) in Eq. (10) and integration yields:

x
1/2 j
* =
(25%) k ¢ Fw g PeleTq dx (16a)
()
Hence
N — (16b)
where
an
_ Jax = (25%y1/2 16
£ =k c 3 PeleTy dx = (28%) /Fw (16c)
o

It can be seen from Eqs. (16b) and (16c) as well as the definition
of Y, Eq. ( 7a), that the similarity parameter 1 becomes proportional
to y/x for a two dimensiornal incompressible flow, which is a well

known behavior,.

EOS RN=-24, 5-65 10
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5, CORRELATION WITH EXPERIMENT

The primary source of correlation is obtained from experiments
dealing with the turbulent flow of jets exhausting into a quiescent
region (Fig. 2). The region most applicable to the problem of the base
flow is the mixing zone between the jet exit and about five diameters
downstream. This type of flow is '"inside-out' compared with the base
flow problem, since the high velocity flow is inside the mixing region
rather than outside. This hopefully will not make any difference, so
that if the jet experimental data can be correlated with the theory,
then the theoretical results can be applied directly to the base flow
problem,

The primary source of data for the eddy viscosity correlation of

(14)

this report is the work of Maydew and Reed, who measured velocity
profiles in the near mixing region of turbulent jets exhausting into

the atmosphere. The nozzle exit diameter of these experiments was 3",
and profile data were obtained for exit Mach numbers .7, .85, .95, 1.49,

-

and 1,96 at five axial stations in the range 1,5" < x<11.5". Leipmann

(15)

and Laufer also give data for M=.05, while some earlier data of
possible applicability to the present problem are referred to by Maydew
and Reed,

One result which can be compared with the theory is the velocity
on the dividing streamline., According to the solution of Eq. (l4a) this
value should be u* = ,587 if the flow is sufficiently downstream of
separation for similerity to hold. In order to check this result, the
jet mixing profiles of Maydew and Reed(la)were integrated outward from
the axis of the jet until the mass in the profile was equal to the mass
flowing throu “e jet, In these calculations the Crocco integral
relation was used to calculate the density variation, and the entrance
mass was calculated from the measured stagnation tewperature and
pressure, assuming an isentropic one-dimensional expansion., Further

details regarding this mass balance are given in the Appendix.

FEOS RN-24, 5-65 11




Fig. 3 shows the calculated results of the mass balance for the five
exit Mach numbers of the experiments of Maydew and Reed, One sees that
the calculated experimental dividing streamline velocity u* is about
0.6 or perhaps a little higher., It is substantially independent of
streamwise distance for x/d > 1, indicatiig that the mixing regiocn has
probably reached similarity. It should be noted, however, that the
accuracy of the integration procedure is very poor for stations close

to the jet exit, since most of the mass flow inside the dividing stream-

line is in the potential core and not in the mixing profile (see Fig. 2).

Under these conditions a small error in the mass flow calculetion will
produce a large error in the value of u* on the dividing streamline.
Further, the use of the Crocco integral for the density variation may
be questioned., We thereiore conclude from Fig. 3 that the dividing
streamline velocity data agree with the present theory within the
possible error of the measurements and integration procedure, but these

data are prcuvably too crude tc constitute a critical test,

The second and more important portion of the data correlation concerns

the fitting of the theoretical velocity profile to the data. This has
traditionally been done by finding the best numerical value of the

"spreading parameter' ¢ such that the velocity profile is represented by
u* = g(c ﬁ) 17)

where g is a profile function specified beforehand. For example, the
error function profile is frequently used, while Maydew and Reed find

that the data correlate well with the results of Crane.(l6) The numeri-

cal value of ¢ for '"best fit' of course depends on the choice of profile.

A certain arbitrariness also exists in the selection of the profile
position from which y is measured, and this traditionally is taken as

the location where u* = .5 for the data.

EOS RN-24, 5-65 12
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We Legin by noting that the present solution for compressible flow
does not allow the physical velocity profile to be expressed in the form
of Eq. (17). This of course is due to the manner in which the effect
of compressibility is included in the transformation. To derive the
form of the velocity profile in the physical coordinates, the Howarth
integral in the expression for N must be inverted. This can be done
by assuming perfect gas behavior (which is reasonable for the Maydew-
Reed experiments) and using the Crocco integral relation. Thus for a

perfect gas:

P H { H h\
e h e C o e 2
— o mm— o e — - — % - - — *
S 5 T ™ + 1 T |u 1 T v (18a)
e e e e e/
He -1 2
<=1+ XI=N (18b)
h 2 e
fa
Then if T is assumed to be constant, one finds that
Yy He\ Hc Hc\ he ) 2
el ) w) ) e g2
e e e/ e 5

Since u* = fn(n), it is clear that an expression for u* of the form of

Eq. (17) is not possible,

To compare with the velocity profile data of Maydew and Rzed,
Eq. (19) is multiplied by o, where o is now considered to be just a
given scale factor for each set of profile data. Also in the above,
for convenience y is measured from the position for u* = ,587, rather

than u* = ,5, as done by Maydew and Reed.

It is assumed that HC/He = 1, since this was assumed in the Maydew-

Reed data reduction, even though .93 < Hc/He< 1 for their experiments.

EOS RN-24, 5-65 13
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Also x = Xq + Ax, where X, is the experimental distance from the jet
exit and Ax is an additional incremental dist :nce to the 'virtual origin"

of the turbulent mixing layer as tabulated by Maydew and Reed.(la)

Fig. 4 shows the correlation of the Maydew-Reed data with the Chapman
profile for the various experimertal Mach numbers. The constant k was
first obtained by finding the 'best fit'" of Eq., {(19) with each set of
profile data, using a '"les 't squares' analysis, (Note that the momentum
thickness factor ¢ = ,875 from the Chapman solution.) The theoretical
curves sliown, however, are based on the final equation for the correla-
tion constant, as described below. 1t is seen that the shapes of the
profiles seem to correlate quite well. This is perhaps not too surpris-
ing, however, since many curves of this general shape seem to correlate

in a reasonable manner if the adjustable constant is properly chosen.

It was hoped initially that the quantity k would not be a function
of Mach number, but would be a universal constant. Instead it is found
to vary quite strongly with Mach number for .05 S M = 3, It is reason-
able to assume that this variation is related to the density ratio
across the mixing region pe/pc. For a perfect gas this is equal to
Hc/he’ a?d ig the flow is completely‘adiabatic, then pe/pc= He/he =
(1 + Xé; Me ). Figure 5 shows a log-log plot of k as a function of
pe/pc, assuming adiabatic flow. Based only on the Maydew-Reed data,

it is found that very nearly

O

~

o
L}

o L0606
k=b [= (20)
2,0

(]
o
]

If the data of Leipmann and Laufer and tentative data of Zumwalt
(see Appendix) had been included in the correlation, the constants in J
Eq. (20) would probably be changed slightly. Thus for the similar
solution: b

fe=b,p - u € (21)

Comparing this with Eq., (1), it is seen that a more rcasonable reference

density probably would have been pC2 rather than oez

EDS RN-24, 5-55 14
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6. NON-SIMILAR SOLUTION

Equation (21) is a plausible form for the eddy viscosity, which
should be applicable at least to fully-developed, .early adiabatic
turbulent mixing for Mach numbers up to about 3. The justification for
its use lies in the fact that experimental data ccrrelate well with theory.
Application of this equation at higher Mach numbers, for highly cooled
mixing layers, or in the non-similar region close to the separation point
(Fig. 1) obviously may be improper. Because of the urgent need for some
sort of theoretical description of turbulent mixing under thece condi-
tions, however, the extended use of Eq. (21) is nroposed. Any conclusions
based on this model must of course rema:n tentative for conditions cut-

side of the established correlation range.

We now propose to solve non-similar Eqs. (11) using Eq. (21) f~-r tie
eddy viscosity. We introduce the correlation in the x coordinate trans-

formation for the non-similar case.

AKX
S¥* F c o up.r i dx (22a)
w ) eeTo

(o]

where b,

8] ‘
“T={:b1 = {}ﬂc@ (22b)
e

Comparing Eq, (222 with the well-known iaminar expressien for S*,(3)

e g

we see that the term Ko replaces the laminar viscosity He times roj.
Thus the relative growth rates dS*/dx of turbulent and laminar mixing
layers (in the two-dimensional case; are directly related by the ratioc
wT/pe. One sees that if the eddy viscosity is in fact representable

by Eq. (21) over a wide ranze of conditions, then the density ratio

EOS RN-24, 5-65 15




across the mixing layur (pc/pp) is extremely important in Jetermining the
growth of the turbulent mixing Yayer. It has already been shown that

the conse-vation equations have been converted to laminar form in Eqs. (11).
Eqs. (22) provide the transformation of S* back to physical space. In
essence what has been accomplished, therefore, is the placement of the
turbulent effects into the coordinate transformations., One should thus
be able to obtain universal solutions to Eq. (11) which depend only on

the shape of the initial profile F(O,u*), just as in the laminar case.

The task tnat remains is to obtain the initial mixing layer profiles
by solvinz the boundary layer on the body surface upstream of separa-
tion. Egs. (11) will then be solved by a finite difference method.(2'3)
The simplest case to consider is that for laminar flow on the body sur-
face, which is a limiting situation which might correspond to the occur-
rence of transition at the separation point. A slightly more difficult
but still tractable problem occurs for fully developed constant pres.ure

turbulent flow (i.e. cone or wedge). The calculations of this report

are restricted to these cases.

EOS RN-24, 5-65 16
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7. LAMINAR INITIAL CONDITIONS

For laminar flow on the bodv it is found that Elasius solution is

applicable. Thus ac the separation point:

f"B(u*)
F(O,u*x) = —————- (23a)
%S
w
¥ = ! 23b
u f B(nB) ( )
]
0 e “e'o & ody
B = o (23c)
W
S = C,opuu r 2J-dx (234d)
w b"e e e o
body
Cb = pu/peue {Chapman-Rubesin constant (23e)

for the body)

In (23a) and (3b) prime denotes differentiatior. with respect to

(2)

the Blasius variable Mg As in the laminar mixing case “‘we let:

F, = £'5(0)/\ 25 (24a)
f"B(O) = .4696 (24b)

The initial condition for the energy equation is W = l-u%, since

the Crocco ii.tegral is assumec to apply to the flow on the body surface.

EOS RN-24, 5-65 17




8. TRANSFORMATION INVERSION - LAMINAR BODY

The calculation of S* is now considered. From Eq., (22), we are led

to the following differential equation:

dS* i
E%— = [%euerkroJ:}4W (25a)
1
¥
& (s1) = F 0 - | ur(louny 4 (25b)
o

Define a new variable x* by the following relation
X

x* = Deuerk ronx (26)

Then Eq. (25a) may be written

5% _ gir(s%) 5%{0) = 0 (27)
dx* - \ = .
This equation was integrated using the function data for ¢* from the
shear layer solution, and the resulting rfunction x*(S*) is given in

Fig. 14. The relation between S* and physical x is therefore obtained

from Eq. (26) and the function x7(S%).

For comparison of turbulent mixing with the laminar mixing case,
it may be desirabie to express the turbulent solution in the laminar
variables., ¥or this we need to calculate S** for the turoulent case,
where

SECEN S
w

{ 3

2
S = N J
S i Cmpeueuero dx (28)
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and Cm is the laminar Chapman-Rubesin constant for the mixing laver,

Then the rate of build-up of tvansformed length scale ratio S** with

respect to x* is given by:

C 0
ds e e j
dx* k F S ro (29)
wow

The bracket term in Eq. (29 is a constant for a given body at given
flow ~onditiors. The value of this constant in a base flow depends on
the details of the ''matching,' which is carried out using the Chapman -
Korst recompression condition. For two dimensional flow the laminar
length variable S** is proportioral to x*(S*), but for axisymmetric
flow the radius factor enters explicitely. Further discussion of the

laminar -body, turbulent-mixing-layer problem is deferred until later.
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9. TUPBULENT INITIAL CONDITIONS

For a turbulent body boundary layer we need to obtain new initial
conditions which replace Eq., (23) in the analysis of the preceding
sections. In spite of the great effort which has been devoted to
research on turbulent boundary layers, there still does not exist a
well established theoretical method to obtain compressible turbulent
boundary layer profiies. The most recent and promising method appears

an

to be the transformation method of Coles, as further explained by

(18

Crocco, Thus a transformation will be found which (hopefully)
establishes a correspondence betweer a known incompressible flow and
the desired compressible flow, The incompressible profiles (which are
established by a semi-empirical method) are thereby transformed tc the

compressible flow,

Let ''barred' symbols refer to the transformed incompressible flow
and unbarred symbols represent the compressible flow, The aim of the
Coles transformation is to firnd the quantities c(x), n(x), and £(x)

defined as follows:

ol G,y

=] ey T ™ (30a)
[

_é_ dy = 1 (x) (30b)
p Jy

%f = 7(x) (30c)
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whetre the stream functions are: -

y
= _ =] — . 304
’ ro o pu dy ( )

¢ =1~ . opudy (30e)

(7
J
)
(The quantity of o Eq, (30a) is not related to the jet-mixing - of
Fig. 4,) Restricting attention to the case of zero pressurec gradient,

Coles and Crocco find that

u

8= £ -1=: constant (3D
u u (4

e

The relation between the wall shear stresses is

- B oo 2
T fof pr“w fpeue
- _ < = (32)
WwoonP P cpu

[ fee

— 2 . e 203 Ao
where C.= Tw/(peue /2) is the usual skin friction coetficient. Coles
introduces the idea of a turbulent substructure, which yields for ¢
the resuit
- (i u
e o= B Bl o i v (33)
- \“w s
where;;s is a mean substructure viscosity, obtained from the hypothesis

of a constant substructure Reynolds number.(17’18¥rom Eq. (31) to (33)

we obtain

N
[

ot ()

e S/

on
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For the case of Prt= 1 the Crocco integral relation holds on the body.
Then if laminar viscosity is assumed proportional to static enthalpy,
the following generalization of Ccles' results (Coles' Eq. 4.l17 for

us/pw is obtained:

U c H - H_ H - h lé’
5.1+ _% a eH ‘A a, ‘eH e\ _% _} (35a)
M w - w / _J
= = 35b
a ;= 17.5 a,= 305 (35b)

ko]

€ —W
—_— o e 36

So that from Eq., (34):

= (37)

OI [}
2 (o))
i
g
+
IOI
wr-nl
1
[
ro
s
(4]
js o) '
(4]
jo g
[14]
\-—/
<
[®]]
Nm|
I
:‘l:ﬁ

—J
H
e

The simplest way to treat the compressible turbulent boundary layer
using this formulation is to specify 6f (i.e. work the problem backwards
by specifying the equivalent incompressible skin friction coefficient).
Then the compressible skin friction is given by Eq. (37), and the com-
pressible heat transfer is obtained from the enthalpy gradient using
the Crocco integral. What remains to be done, then, is to find the
relation between the compressible and incompressible length scales
(i.e. Reynolds numbers). Then the compressible velocity profile can
be expressed in terms of a given incompressible profile corresponding
to the specified Ef.
Rather than finding the relation for £(x), we instead seek a direct

relation between Ef and the cumpressible length x. If the Coles-Crocco
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e

transformation relations are substituted in the compressible momentum

integral relation, it is found that

j 2\ (2o [oa, ()i )
X =pur N = TN Tt R T Re (38a)
weo £/ “w} \“w ?J
jo o]
) 5858 . - -
R = — u* (1 = u¥*) dy (38b)
86 H
0

The incompressible momentum thickness Reynolds number Re is

related to C by & relation based on the law of the wall. Let the in-

f
compressible velocity profile in this region be given by (Ref. 19,

page 140):

- uy
u 1 T
—= 5= =40 (39a)
u
1
- Tw - Ef
u = —5— =u, \| 3 (39b)
. (20), _ -
where according to Coles, K= ,48nd C = 5.,1. Then from Eq. (38b)
it is found that
- e_KC Z &2 2
R = e’ (1 -2+ {1+ (40a)
eg K 2 Z
where
: K
7 = — (40b)

o

By using Eq, (40) and (35), Eq., (38) can bte integrated along the body
from the point of transitjon to the vase. If Z is assumed to be wvery
large, then the integration is easy to carry out. Assuming that transi-

tion occurs at the nose, the final result may be put into the standard form:
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—c R (41a)

where ¢ is defined in Eq. (34) and

KC + 4n K
C, = —— =~ 1.99 (41b)

L x\\‘—Z—

c, = _n (10) o7 (41c)
x\l 2

Sx .

0 owuerojdx x

R = = (41d)
3 .

e “wro cor J

Equations (35), (37), and (41) are three equations {or the three

unknowns C_., C The parameters are H /H , H =h , and R , which
w'e ‘e e e

£' °f T

will be known for asgiven body at given flight conditions.

For wedges and coaes Eq. (41d may be integrated explicitely.

Figs. 6, 7 and 8 show values of the equivalent 5f for these bodies as

a function of wall enthalpy ratio, boundary layer edge Mach number M

2
or enthalpy ratio He/he, and reduced Reynolds number F:

- Cw Re2

R = 42
R 7+ 1 (42a)

Pelle “base
R = — —232% (42b)
e u
2 e

(42¢)

(@)
I
<
€
~
ko)
]
=
m
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From the result for éf, the initial compressible F(u*) profile at the
body base can be found from the laminar sublayer and law-of -the-wall

profiles, Thus:

€, fu
Sublayer: F =TF = _g w1 (43a)
w Z;_z u.or ]
s w o

in the region

+

0 S u* = u \I(':f/z (43b)

+
finds that u = 13.1, In the law-of-the-wall region the

(21)

Rubesin
velocity gradient function is fourd from Eq. (3%9) and the proper* :s

of the Coles-Crocco transformation:

F . _
Law-of-the-wall: F = - exp{.- K[- 2 - —[} (43c)
K L .

\IU%/Q

in the region

ot C /2 <u* <1 (43d)

In this form the initial velocity gradient profile E/Fw is a funce
tion only of the equivalent incompressible skin friction coefficient Ef,
Therefore this is the natural parameter defining a family of solutions
to the non-similar turbulent mixing layer problem. Fig., 9 shows the
shape of these profiles for various values of éf in the range of interest.
One sees that there are square corners at iocetions corresponding to the
sublayer limit, and the outer edge. This behavicr is, of course, not
physically reasonable, so these points should be arbitrarily rounded
slightly to obtain a reasonably smooth starting profile for the non-
similar mixing layer calculation, This hopefully will not affect the
aividing streamline properties much because the dividing streamline is
initially at u* = G, One could probably improve the profile by in~lud-
ing the law-of-the-wake and buffcr layers, but this does not seem worth
the effort at present. The discontinuity at S* = u* = 0 (i.e, F(0) =2

immediately after separation) is of course treated in the same manner
{22

\

as done in the laminar case,




Note that for a base flow p-oblem the sudden turn at the s2paration

point causes a distortion of the profile., If one assumes that this occurs

according to an isentropic expansion along streamlines (as in Ref. 23),
then one could use the distorted initial profiles as the mixing layer
initial conditions, This would involve finding the streamlines using
the Coles~Crocco relation for the stream function from Eq. (30) and
presents no essential difficulty, The presumed increase in accuracy
from this refinement does not appear to be worth the effort at this
stage, but can be included in a later analysis if the present results
aprpear promising.

For the turbulent body and tu.bu'ent-mixing-layer problem, then, the

initial conditions are given by:

f

Fr =

| -

The integration procedure is again identical to the purely laminar case,
The non-similar calculation of the shear layer must of course be

repeated because the turbulent initial profile shapes are different.
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10, TRANSFORMATION INVERSION - TURBULENT BODY

As before, one needs to know the relation between S* and the physical
length x. Also for comparison with the purely laminar results it may be
desirable to know the solution in terms of the laminar streamwise scale
parameter S¥% = S/Sw' Examination of the transformation equations reveals
that the rate of build-up of S** along the shcar layer is given by Eq, (29),
with x*(S*) defined by Eq. (27). Thus the difference betwe~n turbulent
mixing cases having laminar or turbulent initial conditions resides only
in the shape of thc initial profiic and in the value of wall velocity
gradient at separation Fw' For the laminar body this quantity is given

by Eq. (24), while for the turbulent body it is obtaine® rrom Eq, (43a).
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11, NUMERICAL SHEAR LAYER CAI.CULATIONS

Non-similar shear layer calculations were carried out corresponding
to the threa turbulent initiai profiies and the laminar profile shown ir
Fig. 9. Th. calculations were started at S* = 10_6 and carried to
S* = 103, with cutput at intervals of 0.2 in 10810(8*)' Apprcximately
ten winutes of IBM 7094 time was required for each initial profile.

The u* mesh contained 80 intervals in the range 0 S u* = 05 and 152
intervals in the remaining rang .05% u* < 1.0, Overall integral
balances (from momentum and energy) agreed within 0.5°/0 for all condi-
tions, which is probably indicative of the accuracy of the numerical
calculations,

Fig. 10 shows the results of the non-similar shear layer calcula-
tions for the velocitv gradient function F* for the four different
initial profiles shown in Fig. 9. This is the solution of Eq. {lla).

At small values cof the streamwise variable S* the profiles resemble the
initial conditions, but as S* increases the profiles become more rounded
and decay in amplitude. This is of ccurse to be expected since the
differential equatica is paraholic. One would expeci that as S* — =

the shape of th' F* curves would apprcach the asy.aptetic shape given

by the Chapman profile. Because of computer cost, however, it was
aecessary to stop the calculation at S* = 103. Only the Blasius (and
perhans the éf = ,006) profile were near the asymptotic shape at thia
value of 3%,

The solution for the enthalpy function W from Eq. (11b) is shown
in Fig. 11, Bec:use tae Crocco inteyral for toral enthalpy is gcsumed
to be valid initially, W =1 - u* for all profiles at the initial sta-
tion, Since the W equation it also parabolic, the decay of this function

is qualitatively similar to the F* curves, Differences in W results for
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the various initial F* profiles do not become apparent, hLowever, until
some distance downstream {S¥* a.IO-z) because all W profiles begin with
the same initial condition. At large - one would again expect the shape
of the W functicn curves to be independent of the initial F* profile
shape, but this occurs at S* > 103.

Fig., 12 shows the results for the velocity ug on the dividing stream-

line, 1s obtained by integrating the momentum equation fot v = 0.(2)
du*
D BF*
Jr ——= = o aee— \
"0 das* T “D\dur (45)
For the Blasius and Ef = ,006 initial profiles US has effectively reached

the Chapman limiting value of .587 at S* = 103, but the other profiles
apparently require several more decales in S* to reach the limit, All

the initial profiles used give the same value of u* for small S*, since

(

the stavting profiles of Baum 2 (small S* and u*) are identical, as

may be seen ryom Fig. 9.
The development with distarce of the enthalpy function Wq on the
dividing streamline is illusirated in Fig. 13. The limiting value W_=,611

(22) D

as S*¥ ™ 0 was obtained from the starting solution of Baum. At large

S* the W function decays uniformly to zero (Fig. 11), but at S¥* = 103, WD
still has an appreciable magnitude for the 6f = ,004 and .006 initial
profiles,

It should be noted that a direct comparison between the laminar and
turbulent cases canno’. bte made on the besis of Fig. 10-13, sinc. the
streamwise variable $¥% is not directly related to the streamwise distance,
For this one must use the variables x* or S** for the turbulent shear
layer, or better yet the actual distance x. The relation betwesen x* and
5% from Eq. (27) is shown in Fig. 14, Fig. 15 gives values of the momentum

thickness integral ¢*(S*) which appears in Eq. (27),
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12. BASE FLOW OF CONE OR WEDGE

Fig. 16 illustrates the application of the mixing layer analysis to

the base flow region, The 'core"

or recirculating region is assumed to
have negligible velocity and constant (but initially unknown) enthalpy

HC. The recompression region is assumed to be small, and recompression

is assumed to be isentropic along streamlines, The distortion of the
initial profiles at separation is neglected, although it could be included
later using the method of Ref., 23,

(2,3)

Following the previous laminar analysis, the configuration of the
base flow is determined using the empirical Chapman-Korst recompression
condition, This states that the total pressure on the stagnating stream-
line just before reccmpression must equal the static pressure after re-
compression (determined from the inviscil flow calculation). Assuming
that the values of u* and W on the dividing streamline are available
(from Figs. 12 and i3), matching invoives the simultaneous calculation of
the inviscid flow (as defined by the initial wake -ngle), the core enthalpy
HC, the value of S* c« esponding to the position of recompression, and
possibly the tctal bsse heat transfer rate Qb. As shown in Refs, 3 and 11
these latter quantities are related by an overall energy balance cond:-
tion.

By equating the erergy entering the base region through the body
bcundary layer to that leaving through the neck and by base heat trans-

fer, the following eq.ation is obtained:<3’11)

* o ? % o %)
HQ* + (H - H ) (K¥ - J%)

H, = H, - = (46a)
where Q.F
4 = bW
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1l
v -u¥
K ___[L: &.%‘_l du® = Q#\‘(O) (ABC)

body

(46d)

recompression

o u”(l-u’-W
L* = T (46e)

u® recompression
s

and U: is the velocity on the stagnating streamlire just before recom-
pression. It may be seen that Eq. (46a) is a relation between Hc’ Qb’

and Sz, the value of S* defining the position of recompression.

Because the base heat transfer Qb enters into the matching analysis,
one needs an additional relation which specifies this quantity. Probably
Q, is proportional to the enthalpy difference (HC- Hb), where Hy is the
enthalpy corresponding to the base wall temperature, An analysis of

(24)

the laminar case showed that cornditions were such that Qy could
safely be assumed to be zerc without affecting the base flow solution
much. TFor the time being it is assumed that this conclusion is wvalid
for turbulent flow as well, so that in what follows the assumption

Qb = 0 is made.

In order to compare the turbulent base flow results with laminar
results, matching calculations were carried out for a 10° cone for per-
fect gas conditions with y = 1,4 and viscosity proportion to tempera-
ture to the .76 power. For simplicity the outer edge conditions in the
base region were obtained from a Frandtl-Meyer expansion at the corner,

and the shear layer was assumed to be straight between separation and

recompression. The recompression was assumed to be isentropic and all
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Chapman-Rubesin constants were assumed to be equal to unity. This model
corresponds to calculations previously carried out for the laminar case.(zs)
Details of the numerical procedure for carrying out matching calculations

were given in Ref. 11,
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13. RESULTS FOR 10° CONE

Even with the approximations listed in the previous section, the
base flow results are a functicu of Mach number, Reynolds number, body
shape, wall enthalpv ratic, and condition of the boundary layer at the
separation point. Because of the preliminary nature of the present
theory for turbulent flow, it does not seem appropriate to make an
exhaustive study of the effects of each variable at this time. Instead,
attention is restricted mainly to a 10° half-angle cone with a "highly-
cooled' surface. The results therefore will indicate how the theory,
developed from a correlation of experimental data at low supersonic
speeds, is extrapolated to conditions tvpical of re-entry conditions
on a slender body.

Figure 17 shows the effect of Mach num' er on the dividing stream-
line velocity just before recompression fer a cold-wall 10° cone at
Re1= 106. The curve labeled '"'turbulent' corresponds to a fully developed
turbulent flow on the body surface and a turbulent mixing layer. The
laminar curve gives the results previously reported for completely

(25)

laminar flow, while the 'laminar-turbulent' curve is based on the
assumption of a laminar body and turbulent mixing layer (i.e. transi-
tion at the separation point). One sees that at high Mach numbers all
curves give a dividing streamline velocity in the range 0,2 to 0.3,
which is very much lower than the Chapman value of .587. This indicates
that the mixing layer in the base flow underjoes recompression long
before tue fully developed or asymptotic condition is approached. At
low Mach numbers, however, the turbulent US curves approach u* = ,587,
indicating that at lower Mach numbers the turbuleut mixing effect (as
measured by the eddy viscosity <) 1is very much struonger, The strong

Mach number effect on ¢ is directly related to the effect of Mach number

on the eddy viscosity factor k of Fig, 5., In fact, the effect of Mach
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number o1 k completely overshadows the eifect of Mach on the initial
profile shape. Thus from Fig. 6 it is seen that reducing the Mach
number reduces Ef while Fig, 12 shows that this reduces the rate of
build-up of dividing streamline velocity UB' Because the expression
for k completely dominates the analysis, experiinents are needed to see

if the trend of Fig, 5 persists to high Mach number conditions.

Figure 18 shows the results of the energy balance to determine
the enthalpy Hc in the recirculating core region., Again the effect of
Mach number is evident, the results indircating that at low Mach numbers
the turbulent mixing is so rapid that HC~ He, i.e, adiabatic conditions.
This occurs in spite of the fact that the upstream body surface is
highly cooled. Any base heat transfer would of c~-urse tend to lower
Hc, and this may be an important effect in turbulent flow, If the pro-
posed correlation for k of Fig. 5 is correct, then the core enthalpy
may be extremely important, since for a perfect gas:

/5 2.0 ’ 2.0

h
k ~ .0606 [==| ~ .0600 [== (47)
pe HC

The core enthalpy therefore enters into the determination of the eddy
viscosity,

The calculated effects of Mach and Reynolds numbers on the center-
line stagnation enthalpy at recompression are shown in Figs. 19 and 20.
The results for hS/H3 as a function of Mach number closely follow those
for the core enthalpy. At high Mach numbers the turbulent results are
far from adiabatic, and the theory even predicts; a decrease in hs/He if

transition occurs in the mixing layer at Re, less than 107(Fig. 20).

1
Since the '"fast expansion' distortion of the initial profiles has been

neglected in these calculations, h might even be smaller due to this

(23)°

effect, if the laminar results carry over to the turbulent case,

Finally, the effect of Mach and Reynolds numbers on the base pressure

is indicatad in Figs. 21 and 22, Generally speaking, the range of Pb/P°°
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is about .3 to .6, rcgardless of conditions. One notices that at high
Mach numbers the laminar and turbulent predictions appear to agree
within about 150/0. 1f the theory can be believed under these condi-
tions, then one shculd not expect transition in the base flow of a
slender re-entry vehicle to be accompanied by a large change in bLase
pressure. This is in contrast to the situation for Mach 3 adiabatic
conditions (shown in Fig. 22), where a sudden drop in base pressure is

indicated as the flow changes from laminar to turbulent.
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14, CONCLUDING REMARKS

In the present report a new empirical turbulent mixing and base
flow model has been constructed which hopefully will be applicable
slender re-entry vehicles. A plausible method has been found Lo extra-
polate turbulent mixing results fcr low Mach numbers to high Mach number
flows and to include the effects of non-similar and highly cooled turbu-
lent mixing layer development, Reasonabla results were fournd for gross
effects such as the base pressure and rear stagnation enthalpy for a

highly cooled 10°half-angle cone.

The asymptotic mixirg layer analysis for adiabatic conditions up to
about Mach 3 can probably be considered reasonable, since the velocity
profile data appear to be correlated. Under these conditions the effect
of any initial boundary layer thickness becomes negligible, since the
turbulent profiles develop very rapidly. Applicstion of the present
theory to anv situation where the initial profile effects may become
impertant must be considered conjecture at this stage, since no experi-
mental confirmation is presently available. This includes the highly
cooled case at relatively low Mach numbers and all conditions at high
Mach numbers. Hopefully, the present treatment of non-similar turbulent
mixing can serve as a guide to future experiments for these technically

important flow cornditions.
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APPENDIX A

Mavdew-Reed Dividing Streawline Locatior

Referiing to Fig., 2, it may be seen that the total mass flow inside
the dividing streamline at some station x downstream oi the nozzle exit
must equal the mass flow through the nozzle. Assuming that the flow is

axisymmetric, the mass balance yields
~TpsL

- ~ -
bl k:[% u f] = LZH pu T diJ a-1)
e e
exit 5 o x

The total mass flow M through the nozzle was calculared by assuming an
isentropic expansicon from the reservoir conditions tabulated by Maydew

)
and Reed(la’ for each run.

Since the erperim:ntal porfile data u(r) are giver by Maydew and
Reed for each station x, the integral! of Eq. (A-1) can be evaluated as
a function of i+~ upper limit until Eq., {A-1) is satisfied, This o7
course requires that the density variation be kncwn, and this was

assumed to be giver by the Crocco integral relation for a perfect gas,

).

Eq. {18). The dividing streamline velocity is ther given by u(rD(,L
2

An estimate of *he zccuracy of this procecure can be obtained by

assuming that the flouw ‘nside the dividing streamline can be arbitrarily

divided into a ' rofile' part and a '"potential core' zart. If most of

the total M ic in the potential core (as it is for small x), then a
small error in the value of total M wiil have a large effect on the

value of dhgp Fer example, at x = 1,.5" a 50/0 change in M would pro-

duce about 50 to 1000/0 chang2 in u for thbe experim¢ntal conditions

bSL
but at x = 9" a 5°/0 change in M would produce cnly a 5 /0 to 15°/0 in
Ungr.® The data shown in Fig., 3 for x = 1.5 and 3.0 inches therefore
ceculd Le considerably in error,
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APPENDIX b

Eddy Viscosity Factor k of Figure 5

When d. tailed profile data are available, as in the Maydew-Reed
report, the factor k in the eddy viscosity expression (Eq. 1) can be
fcund by a least-squares fit of the data with Eq. (19). However, much
of the previous literature on the mixing problem does rot contain
sufficiently detailed profile data, but presents only the final result
in the form of the jet spread parameter ¢, A summary of previous
experimenial determinations of o up to 1962 is given by Maydew and Reed,
Since ¢ deperds on the choice of profile used in the theory, this must

also be spec.fied.

Cne way that the quantity k can be related to o is by comparing
the derivatives du*/d(y/x) of Eq. (17) and (19) at some selected value

of u*, For example, for the error function profile

ay/x 2
2 ( -2
u* = 1/2 {1 - — e ~ dz (A-2)

& J

(o]

we match the slopes at u* = ,5 to get:

= Y : = (A-3)
ﬁc(E;) IEE = {1 - EE f 1 - 22 £ <ll=Is
\he;t_ He 1 H 1 H n £ i

Thus one must specifv the profile shape function g(cy/x) and the

valre of u* at which the slopes are to be matched.

.learly the above method for determining k may not be very accurate
and in additior. depends on an arbitrary assumption of the value of u*

at which the equrtion is evaluated. This prccedure therefore will not
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be used in this report, with one exception: 1lhe data of Zumwalt at
Mach 3 referred to by Msydew and Reed provide an additional point on

Fig. 5 which further ~ inds the correiation.

In a private communication with Prof. Zumwalt at the University of
Oklahoma it was found for the error function profile the best ¢ was
1oughly =23 to 30 at Mach 2,9, cepending on how the initial boundary
layer thickness was taken into account. Eq. (A-3) was evaluated at
u* = ,5 using this information to give the data points of Fig. 5

attributed to Zumwalt,

A second point to be made concerns the determinaticn of k by
correlating mixing layer profile data in the non-similar growth region.
This will surely be a problem in high Mach number flows if the relation
of Fig. 5 is approximately correct. The mixing layer experiment should
produce either velocity cr density profiles (or both) as a function cof
physical x and y. The basic eqrations of this report show that the

theoretical relation for u*(x,y,k) is given implicitely by the relations:

y -y = -1 iﬁ du*
DSL pur JF o} Fx
e e 0 w O
DSL
F* = F*(S* u%)
* = SQh(x%. C
S S*(x*, Cg)
Cf = Cf (Hw/He, he/He, Re)
x :
x* = S ¢ uF kr tdx
e e w o
O
Fw = FW (Cf’ Hw/He, hP/He' )
o o= p(P,h)
e 4
k=H - u®/2
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Thus k appesars explicitely in the relation for x* gs a function of x.
Although somewhat cumbersome, these relations can be programmmed for
a computer so that a least squares determination of k from velocity

profile da_a, density profile data, or boti: car .= performed.
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