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SUMMARY 

An exploratory study is made in connection with the problem of pre- 

dicting properties of the turbulent base flow region of a body at hypersonic 

speeds.  An attempt is made to calculate the gross features of the base flow 

using a non-similar mixing model including the Chapman-Korst recompression 

condition.  The expression for the eddy viscosity is based on a model which 

allows the turbulent equations to be transformed into incompressible laminar 

form.  The empirical factor in the eddy viscosity expression is evaluated 

from data obtained from the near field (in the linear growth region) of jets 

exhausting into a quiescent region.  The same expression for the eddy vis- 

cosity is then used in an attempt to estimate the growth of non-similar 

turbulent mixing layer using both turbulent and laminar initial profiles. 

The correlation of turbulent jet mixing data for speeds up to Mach 3 

fhows that the eddy viscosity is » -very strong function of Mach number (or 

of density ratio across the jet, since the data are for adiabatic flow). 

If the eddy viscosity dependence on density ratio persists for density 

ratios typical of re-entry conditions, then it is found that at these 

conditions the growth rate of the turbulent shear layer is orders of magni- 

tude slower approaching the rate of growth of the laminar mixing layer 

under the same conditions.  This is in maTked contrast to the situation 

at low supersonic speeds, where the turbulent mixing layer dividing stream- 

line velocity approaches the similar value well before recompression occurs. 

If this speculation is correct, then the stagnation enthalpy at recompress- 

ion in the hypersonic turbulent base flow should be well below the total 

enthalpy value, since the enthalpy build-up on the dividing streamline 

will be similarly suppressed. 

This research is a part of PROJECT DEFENDER, sponsored by the Advanced 
Research Projects Agency, Department of Defense, under ARPA Order No. 
254-62, monitored by Air Fcrce Ballistic Systems Division under Contract 
No. AF 04(694)-570. 
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1.  INTRODUCTION 

Predictions of observables in the wakes of slender re-entry vehicles 

have been found to depend crucially on the flow properties assumed at 

the neck region.  For example, predicted electron densities and radar 

cross-sections of wakes may vary by orders of magnitude, depending on 

the assumed value oi the centerline neck enthalpy ratio h/H .    Since CJ e 

properties at the wake neck are determined by the flow processes in the 

body boundary layer and base flow mixing regions, it is clear that 

accurate methods for flow calculations in these regions must be developed. 

The primary objective of the present, paper is to devise a procedure 

for calculating the gross properties of the hypersonic turbulent base 

flow (e.g. base pressure, neck enthalpy, etc.).  The problem is approached 

Trom the point of view of the generalized Chapman-Korst base flow model, 
(2 3) 

as was done in the laminar case.  '  For laminar flow this model is 

thought to be reasonable for moderate supersonic Mach numbers, but is 

probably not adequate for re-entry conditions,  Recently, Reeves and 
(4) (5) 

Lees,   Webb, Golik and Lees,   and others have attempted to devise 

base flow models more applicable to re-entry conditions.  These methods 

are not yet well established and still may not contain essential features 

even for the laminar case. For turbulent flow the difficulty is compounded 

by   uncertainties related to the "eddy" transport coefficients, so it 

seems more reasonable to use the simpler Chapman-Korst model at the 

present time.  If this procedure is adopted, then what remains is to 

develop a reasonable empirical model for the eddy coefficients.  A major 

pare of the present paper is devoted to this task. 

Having developed appropriate expressions for the eddy coefficients, 

one can then solve the non-similar mixing layer equations4 an: thereby 

determine how rapidly the profiles change from the initial distributions 

on the body at separation to the fully-developed profiles far downstream 
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from separation. For the base flow this rate of change or build-up of 

the profiles may be of crucial importance if recompression occurs before 

the asymptotic or fully developed condition is approached.  This is the 
(2 3) 

situation occurring in laminar case,      and could also occur in the 

turbulent case. 

The present report contains three separate parts.  The first shows 

that experimental turbulent mixing data can be correlated by an eddy 

viscosity model based on the assumption that pc   -  function of x only. 

Thus the effect of compressability is taken into account in the same 

manner as with laminar flow; the effect of turbulence thereby being 

placed in the streamwise variable transformation.  The second part of 

the report deals with the solution of the non-similar mixing layer 

problem, assuming that the previously developed expression for the 

eddy viscosity .emains valid even near the separation point.  The third 

portion of the report utilizes the results of the non-similar mixing 

layer analysis and the Chapman-Korst base flow model to predict the 

base flow properties of a highly cooled slender cone under re-entry 

conditions. 

As might be expected, the results of this report depend crucially 

on the expression developed for the eddy viscosity.  Unfortunately, the 

available data cover a vei-y limited Mach number range and are for 

essentially adiabatic flow, so that a considerable extrapolation is 

involved in applying the model to the re-entry case.  Thus the final 

base flow results presented must be considered tentative and subject 

to revision when new turbulent mixing data become available. 
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2.  EDDY VISCOSITY 

A fundamental assumption of this report is that the compressible 

mixing layer flow can be transformed to an equivalent incompressible 

flow.  The transformation is of the type used by Ma^er,  Burggraf 
(8) Ting and Libby   and nthers, in which the stream function and shear 

stress over a mass element are assumed invariant,  In the incompress- 

ible plane the eddy viscosity is assumed to be given by Prandtl's 
(9) expression,  and is proportional to the width of t^e mixing «one 

and the velocity difference across the layer. Ferri   recently has 

argued that when generalized to compressible flow, Prandtl's expression 

should be proportional to the tangential mass flux difference instead 

of the velocity difference. For mixing layers with negligible flow 

on the inside both expressions are identical. A more serious defect 

is that the eddy viscosity is assume^ to suddenly change from a form 

suitable to the body boundary layer to that characteristic of the 

mixing layer after the shoulder expansion. 

With these assumptions the resulting compressible eddy viscosity 

is the following: i 

€ = K — Ue D (1) 

In Eq, (1) k is a dimensionless proportionality factor to be deter- 

mined by correlating the theory with experimental data and is fit most 

a function of the external flow conditions.  The quantity b is a 

suitably chosen width of the mixing layer and p is a reference 

density used to give e the dimensions of viscosity.  As pointed out 

by Ting and Libby, Eq. (1) implies that e is variable across the mix- 

ing zone because of the density variation, whereas in the incompressible 

case it is constant.  For the mixing layer the width is assumed to be: 
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b = 6 = \  u*a-u*) -^ dy (2a) 

so that e Is proportional to the momentum thickness of the mixing 

layer. We could also try for the width 

b = \  -^ dy (2b) 

where (by convention) y. and y are respectively the values of y where 
2 

u* = 0.1 and 0,9.  It turns out that Eqs. (2a) and (2b) produce 

essentially the same final results for a mixing layer of negligible 

initial thickness.  For the more general problem however, Eq# (2a) 

seems more lensonable than (2b).  The only justification for these 

assumptions for b at present is that they simplify the analysis some- 

what by uncoupling the energy terms from the momentum equation.  As 

with all turbulent theories of this type, further justification for 

the selection of the expression for e must come by comparing the 

results of the analysis with experimental data. 
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3.  CONSERVATION EQUATIONS 

The boundary Layer equations involving the me^n flow variables «re 

assumed to be appropriate for the description of the constant pressure 

mixing region (Fig. 1), provided the exchange coefficients are replaced 

by their empirical turbulent counterparts.  In spite of the well recog- 

nii-'id fact that er tgy, species, and momentum transport may occur by 

different mechanisms in turbulent flow, we simplify matters by assuming 

that Fr = Le = 1.  Then only the eddy visccs.vy is used explicitly. 

This rough model later may be refine*    the results prove prot  ing. 

The equations are: 

(puro
:l)x + (pvro

J)y = 0 (3a) 

puu + pvu - (cu ) (3b) 
x    y    y y 

puH + pvH = (PH  ) (3c) 
x     y   - y y 

where r - r (x) is the mean radius of the thin mixing layer in the 
o   o  ' e>       j 

axisymmetric case.  The boundary conditions are (Fig. 1) : 

y - - <x>: u = 0, H = H (constant) (4a) 

y  = *>: u = u,H=H (4b) 
e      e 

y = 0: v = 0 (dividing streamline) (4c) 

x = 0, y > 0:     u ■ given initial velocity profile (4d) 

H = H - (H - H ) (1-u*) (Crocco Integral) (4e) 
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Since we wish to consider c. es where H jt H , the Crocco integral 

is not applicable in the mixing region, although it is assumed to apply 

initially (at the body base, x = 0). Thus, as in the laminar case, ^ 

Introduce an auxiliary enth&lpy /unction W which is related to H as 

follows: 

H = H - (H - H )(1 - u*) - (H - H ) W (5) 

Then the W equation is 

puV + pvW = (rW ) (6a) 
x    y    y y 

W(^=) = W(co) - 0 (6b) 

W(x = 0) = 1 - u* (6c) 

This allows the energy equation to be solved without explicit knowledge 

of the core enthalpy H . With W available the enthalpy profile may be 

calculated from Eq, (5) after H is specified. 

In order to transform the equations to incompressible form, the 

usual transformation of the y coordinate is introduced. Let 

j(ß-dy (7a) 
J p0 

Y = p u r e e o ._e 
o 

and define 

Then 

u* = u/u_ W 

v    .    2"* (7c) F " ÖY 

pe - k P v'h C8a) v- e o 

where 
\ u* (1-u^ o * y      F 

) du^ 
= \ -' ^jp — (8b) 

EOS RN-24, 5-65 



I 
I 

Introduction of relations (7) and (8) in the conservation equations (3) 

and further transformation to Crocco coordinates yields 

U* S = ^eU»roJk ^ F2 ?2 <9) ^x    e . o        ^t 

and a similar expression for W.  The factor in parentheses on the right 

hand side depends on x only, although $ depends upon the solution. 

Therefore Eq. (9) can be put in the form of the laminar momentum equa- 

tion if we define 

dS-- = Fw
2 (Peuero

Jk *) dx (10a) 

F* = F/Fw (10b) 

where F Is the value of F on the body before separation. 

Then the conservation equations become 

2 
u* r^— ■ F* " (\\a} 

* ^H   „,,.2 Ö_W .  . 
U ÖS* =  F ~2 <llb) 

du" 

These equations are in a form identical to the laminar equations and 

also have the same boundary conditions as in the laminar case.  The 

differences are in the inversion of S* back to physical space and in 

the initial conditions.  If the body boundary layer is turbulent, 

initial conditions for the mixing layer must take this into account. 

On the other hand it is conceivable that the body boundary layer might 

be laminar with transition occurring at the shoulder.  In this case 

the initial profile wiH also correspond to the laminar case. 
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For a  lauiinar body boundaiy  layer  the  initial and boundary condi- 

tion    are; 

S* =  0:       FnO.u*)   =  f W/f,!B<0) (12a) 

W(0,u*)   =  1-u* (12b) 

u* - 0:      F*(S*,0)  = W(F*,0)   = 0 (12c) 

u* « 1:       F*(S*,1)   = W(S*,1)   = 0 (12d) 

where f" Is obtained from the Blaslus solution (see Section 7). 

(11) 
These equations have been previously solved and the solution tabulated. 

The problems remaining, then, are the inversion of the turbulent 

flow transformation S* back to physical space and establishment of 

initial conditions for turbulent flow on the body. 
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A.  SIMILAR SOLUTION 

A first step in inverting the turbulent solution is to obtain the 

parameter k from experiments.  For this purpose we investigate similar 

solutions which can then be compared with experimental data.  It is 

known from the laminar case that at large values of S* the effect of 

the initial structure of the shear layer will disappear and the solution 

will asymptotically approach the similar solution of Chapman. 

Since Che turbulent problem has been made mathematically equivalent to 

the laminar case with the exception of initial conditions, the asymp- 

totic solutions must be identical. 

In order to obtain the Blasius equation instead of its counterpart 

in Crocco coordinates we introduce the normal distance parameter 

(25*) ' 

Then the velocity is assumed to be a function of TJ only 

u* - f'Crj) (13b) 

When Eqs. (JJö) and (i3b) are introduced in the conservation equations 

the familiar results are obtained. 

f  + ff  =0 (14a) 

w + fw =0 duh) 

The boundary conditions are f (-<») = 0, f (*>)  «= 1, W(~ac,)  = W(-x) ■ 0, 

and f(0) = 0, The last condition follows from the specification that 

EOS RF 24, 5-6 5 



rj = 0 corresponds to the dividing streamline.  Clearly the solution for 

W is W = 0, which of course implies the usual Crocco integral relation 

for the total enthalpy from Eq. (3).  The solution for f may be obtained 

from tabulations by Chapmanv  and Christian 

The momentum thickness function for the similar solution is given by 

1/2 
* = "^p  c (15a) 

w 

where 

f'd-f) dt) = ,8756 (15b) 

-00 

Use of Eq, (15) in Eq, (10) and integration yields: 

(2S*)1/2= k c F \ p u r jdx (16a) 
w 1 e e o 

Hence 

where 

n =  -4- (i6b) 

\  p u r jdx = (2S*)1/2/ " = k c \  pur Jdx = (2S*)   /F (16c) 
j  e e o w 

It can be seen from Eqs. (I6b) and (16c; as well as the definition 

of Y, Eq. (7a), that the similarity parameter r\  becomes proportional 

to y/x for a two dimensional incompressible flow, which is a well 

known behavior. 
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5.  CORRELATION WITH EXPERIMENT 

The primary source of correlation is obtained from experiments 

dealing with the turbulent flow of jets exhausting into a quiescent 

region (Fig. 2).  The region most applicable to the problem of the base 

flow is the mixing zone between the jet exit and about five diameters 

downstream.  This type of flow is "inside-out" compared with the base 

flow problem, since the high velocity flow is inside the mixing region 

rather than outside.  This hopefully will not make any difference, so 

that if the jet experimental data can be correlated with the theory, 

then the theoretical results can be applied directly to the base flow 

problem. 

The primary source of data for the eddy viscosity correlation of 
(14) 

this report is the work of Maydew and Reed,   who measured velocity 

profiles in the near mixing region of turbulent jets exhausting into 

the atmosphere.  The nozzle exit diameter of these experiments was 3", 

and profile data were obtained for exit Mach numbers ,7, .85, .95, 1.49, 

and 1.96 at five axial stations in the range 1,5" < x^ll^", Leipmann 

and Laufer   also give data for MR=.05, while 5ome earlier data of 

possible applicability to the present problem are referred to by Maydew 

and Reed, 

One result which can be compared with the theory is the velocity 

on the dividing streamline.  According to the solution of Eq, (14«) this 

value should be u* = .587 if the flow is sufficiently downstream of 

separation for similarity to hold.  In order to check this result, the 
(14) jet mixing profiles of Mayd»/and Reed   were integrated outward from 

the axis of the jet until the mass in the profile was equal to the mass 

flowing throv.   '^e  jet.  In these calculations the Crocco integral 

relation was used to calculate the density variation, and the entrance 

mass was calculated from the measured stagnation temperature and 

pressure, assuming an isentropic one-dimensional expansion.  Further 

details regarding this mass balance are given in the Appendix. 

EOS RN-24. 5-65 11 



Flg. 3 shows the calculated results of the mass balance for the five 

exit Mach numbers of the experiments of Maydew and Reed,  One sees that 

the calculated experimental dividing streamline velocity u* is about 

0,6 or perhaps a little higher.  It is substantially independent of 

streamwise distance for x/d > 1, indicating that the mixing region has 

probably reached similarity.  It should be noted, however, that the 

accuracy of the integration procedure is very poor for stations close 

to the jet exit, since most of the mass flow inside the dividing stream- 

line is in the potential core and not in the mixing profile (see Fig. 2). 

UnJer these conditions a small error in the mass flow calculation will 

produce a large error in the value of u* on the dividing streamline. 

Further, the use of the Crocco integral for the density variation may 

be questioned.  We therefore conclude from Fig. 3 that the dividing 

streamline velocity data agree with the present  theory within the 

possible error of the measurements and integration procedure, but these 

data are prcoably too crude to constitute a critical test. 

The second and more important portion of the data correlation concerns 

the fitting of the theoretical velocity profile to the data.  This has 

traditionally been done by finding the best numerical value of the 

"spreading parameter" a such that the velocity profile is represented by 

u* = g(o p (17) 

where g is a profile function specified beforehand.  For example, the 

error function profile is frequently used, while Maydew and Reed find 

that the data correlate well with the results of Crane.    The numeri- 

cal value of o for "best fit" of course depends on the choice of profile, 

rt certain arbitrariness also exists in the selection of the profile 

position from which y is measured, and this traditionally is taren as 

the location where u* = ,5 for the data. 

> 

i 
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We 1 egin by noting that the present solution ''or compressiblt; flow 

does not allow the physical velocity profile to be expressed in the form 

of Eq, (17).  This of course is due to the manner in which the effect 

of compressibility is included in the transformation.  To derive the 

form of the velocity profile in the physical coordinates, the Howarth 

integral in the expression for "H must be inverted.  This can be done 

by assuming perfect gas behavior (which is reasonable for the Maydew- 

Reed experiments) and using the Crocco integral relation.  Thus for a 

perfect gas: 

h_ 
h 

H 

e L_ e 

H 
+ 1 (18a) 

H ,   o, 
e = ! + 1^1 M 2 

h        2  e c 
(18b) 

Then if r  is assumed to be constant, one finds that 
o 

L  .. 

. n 

d^l (19) 

Since u* = f (r\) ,   it is clear that an expression for u* of the form of 

Eq. (17) is not possible. 

To compare with the velocity profile data of Maydew and Raed, 

Eq, (19) is multiplied by a, where a is now considered to be just a 

given scale factor for each set of profile data.  Also In the above, 

for convenience y is measured from the position for u* ■ .587, rather 

than u* = .5, as done by Maydew and Reed. 

Re 

It is assumed that H /H =1, since this was assumed in the Mavdew- 
c e ' 

ed data reduction, even though .93 < H /H < 1 for their experiments. c e 
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Also x = x + Ax, where x  is the experimental distance from the jet 
e e 

exit and Ax is an additional incremental d?st. nee to the "virtual origin" 
(14) 

of the turbulent mixing layer as tabulated by Maydew and Reed, 

Fig. 4 shows the correlation of the Maydew-Reed data with the Chapman 

profile for the various experimental Mach numbers.  The constant k was 

first obtained by finding the "best fit" of Eq. (19) with each set of 

profile data, using a "le> t squares" analysis,  (Note that the momentum 

thickness factor c = ,8756 from the Chapman solution,)  The theoretical 

curves shown, however, are based on the final equation for the correla- 

tion constant, as described below.  It is seen that the shapes of the 

profiles seem to correlate quite well. This is perhaps not too surpris- 

ing, however, since many curves of this general shape seem to correlate 

in a reasonable manner it the adjustable constant is properly chosen. 

It was hoped initially that the quantity k would not be a function 

of Mach number, but would be a universal constant.  Instead it is found 

to vary quite strongly with Mach number for .05 ^ M s 3.  It is reason- 

able to assume that this variation is related to the density ratio 

across the mixing region p /p .  For a perfect gas this is equal to 

H /h , and if the flow is completely adiabätic, then p /p = H /h = 
ce.,, ecee v—    Z 

(1 + ■'y^ M ).  Figure 5 shows a log-log plot of k as a function of 

p /p , assuming adiab&tic flow.  Based only on the Maydew-Reed data, 

it is found that very nearly 

b = ,0606 

b2 - 2.0 

If the data of Leipmann and Laufer and tentative data of Zumwalt 

(see Appendix) had been included in the correlation, the constants in 

Eq. (20) would probably be changed slightly.  Thus for the similar 

solution: /  * b. 

(20) 

(21) 

Comparing this with Eq, (1), it is seen that a more reasonable reference 
2 2 

density probably would have been p  rather than o 
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6.  NGN-SIMILAR SOLUTION 

Equation (21) xs  a plausible form for the  eddy viscosity, which 

should be applicable at least to fully-developed, i-.early adiabatic 

turbulent mixing for Mach numbers up to about 3.  The justification for 

its use lies in the fact that experimental data correlate well with theory, 

Application of this equation at higher Mach numbers, for highly cooled 

mixing layers, or in the non-similar region close to the separation point 

(Fig. 1) obviously may be improper.  Because of the urgent need for some 

sort of theoretical description of turbulent mixing under these condi- 

tions, however, the extended use of Eq, (21) is proposed.  Any conclusions 

based on this model must of course remain tentative for conditions out- 

side of the established correlation range. 

We now propose to solve non-similar Eqs. (11) using Eq. (21) f"r ti-e 

eddy viscosity. We introduce the correlation in the x coordinate trans- 

formation for the non-similar case. 

S* = Fw2 \ peVTroJ dx ^22a) 

where 

MT = k $ (22b) 

( 2} Comparing Eq, (22$  with the well-known laminar expression for S*, 

we see that the term Li„ replaces the laminar viscosity u  times r  . 
i "  e       o 

Thus the relative growth rates dS-'/dx of turbulent and laminar mixing 

layers (in the two-dimensional case; are directly related by the ratio 

!' Ai • One sees that if the eddy viscosity is in fact representaMe 

by Eq, (21) over a wide range of conditions, then the density ratio 

EOS RN-24, 5-65 15 



across the mixing layir (p /p ) is extremely important in determining the 

growth of the turbulent mixing 1ayer.  It has already been shown thai, 

the conse-vation equations have been converted to laminar form in Eqs, (ll) 

Eqs. (22) provide the transformation of Sx back to phys-cal space. In 

essence what has been accomplished, therefore, is the placement of the 

turbulent effects into the coordinate transformations.  One should thus 

be able to obtain universal solutions to Eq. (11) which depend only on 

the shape of the initial profile F(0,u"), just as in the laminar case. 

The task that remains is to obtain the initial mixing layer profiles 

by soIvin3 the boundary layer on the body surface upstream of  separa- 
(2 3) tion.  Eqs, (11) will then be solved by a finite difference method.  ' * 

The simplest case to consider is that for laminar flow on the body sur- 

face, which is a limiting situation which might correspond to the occur- 

rence of transition at the separation point.  A slightly more difficult 

but still tractable problem occurs for fully developed constant pressure 

turbulent flow (i.e. cone or wedge).  The calculations of this report 

are restricted to these cases. 
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7.  LAMINAR INITIAL CONDITIONS 

For laminar flow on the body it is found that Blasius solution is 

applicable.  Thus ac the separation point: 

f" (u*) 
F(0,u*) =   : (23a) 

u* = f W (23b) 

^ r M   A e o   \ pdy 
% " ^- \ (23c) 

S =  \ C. p u u r 2jdx (23d) 
w    \      be e e o 

bod y 

C, = pu/p U  (Chapman-Rubesin constant       /__ , b      e e c  \.u u J \ C23e) for the body) 

In (23a) and CcJb) prime denotes dif ferentiatior. with respect t« 
(2) the Blasius variable TI_. As in the laminei mixing case  we let: 

Fw = f,V0)/^\ C24a) 

£'^(0) = .4696 (24b) 

The initial condition for the energy equation is W = 1-u*, since 

the Crocco integral is assumed to apply to the flow on the body surface. 
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8.  TRANSFORMATION INVERSION - LAMINAR BODY 

The calculation of S* is now considered.  From Eq, (22), we are led 

to the following differential equation: 

■— = Jp u F kr j"W (25a) 
dx   I e e w o : K       / 

{ 
1 

$*(S*) = Fw^ - \ u*(l-u*) ^ (23b) 

Define a new variable x* by the following relation 

e'ew  o 
* = \  PQUDFTk r^

Jdx (26) 

o 

Then Eq, (25a) may be written 

dS* 
~~; =  **(S*)     S*(0) = 0 (27) 

This equation was integrated using the function data for Q*  from the 

shear layer solution, and the resulting function x>v(S") is given in 

Fig. 14, The relation between S* and physical x is therefore obtained 

from Eq, (26) and the function x^S*) . 

For comparison of turbulent mixing with the laminar mixing case, 

it may be desirable to express the turbulent solution in the laminar 

variables.  For this we need to calculate S** for the turbulent case, 

where 

S** = S/S 
w 

f 2^ 
S » \ C p u u r  Jdx (28) 

l  m e e ~ o v  ' 
-'o 
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and C  is the laminar Chapman-Rubes in constant for the mixing laver. 
m 

Then the rate of build-up of transformed length scale ratio S** with 

respect to x* is given by: 

dS*-* 
dx* 

C 
n^ 

k F S 
w w 

(29) 

The bracket term in Eq. (29) is a constant for a given body at given 

flow conditions.  The value of this constant in a base flow depends on 

the details of the "matching," which is carried out using the Chapman- 

Korst recompression condition.  For two dimensional flow the laminar 

length variable S**  is  proportional to x*(S*) , but for axisymmetric 

flow the radius factor enters explicitely.  Further discussion of the 

laminar-body, turbulent-mixing-layer problem is deferred until later. 

i 

1 

i 

i 
I 

I 
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9.  TURBULENT INITIAL CONDITIONS 

For a turbulent body boundary layer we need to obtain new initial 

conditions which replace Eq. (23) in the analysis of the preceding 

sections.  In spite of the great effort which has been devoted to 

research on turbulent boundary layers, there still does not exist a 

well established theoretical method to obtain compressible turbulent 

boundary layer profiles.  The most recent and promising method appears 
^ 17) 

to be the transformation method of Coles,v   as further explained by 
( ig) 

Crocco.'   Thus a transformation will be found which (hopefully) 

establishes a correspondence between a known incompressible flow and 

the desired compressible flow.  The incompressible profiles (which are 

established by a semi-empirical method) are thereby transformed to the 

compressible flow. 

Let "barred" symbols refer to the transformed incompressible flow 

and unbarred symbols represent the compressible flow.  The aim of the 

Coles transformation is to find the quantities a(x), •q (x), and 5(x) 

defined as follows: 

r *j 2   f£4^(x) 
r 

Ol 

* }   ,J{  = a(x) (30a) 
.(x,y) 

(x) (30b) 
P äy '• 

dx  -, , 
d^'W OOc) 
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.'heie the stream functions are: 

y 

''O 

j, = r j  - pu dy (30e) 
0  J 

o 

(The quantity of cr Eq, (3Ua) is not related to the jet-mixing o of 

Fig. 4.)  Restricting attention to the cpse of zero pressurr gradient. 

Coles and Crocco find that 

u 
u    e  ri /" J i \ 
— = i—  =■- -L = constant \J*■ ' u u c 

e 

The relation between the wall shear stresses is 

T       ^ p U     C p U 
W W W       L  C  € /1 O \ 

T ~   ~ p u   = Z       2 v* 
w   n  w w  o^p u 1 f e e 

? 
where Cc-  x /(p u /2) is the usual skin friction coefficient.  Coles 

r  w  e e 
introduces the idea of a turbulent substructure, which yields for a 

the result 

- \L .  \L- l**M (33) 
i  l    ■ 

S ^w/VJs] 

where u is a mean substructure viscosity, obtained from the hypothesis 

of a constant substructure Reynolds number. ' 'From Eq. (31) to (33) 

we obtain 

2 _ Cf   / Mw « ;=i^;i~; 
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For the case of Pr = 1 the Crocco integral relation holds on ttu body. 

Then if laminar viscosity is a^sumed proportional to static enthalpy, 

the following generalization of Coles' results (Coles' Fq. 4.17 for 

u, /u  is obtained: 
s w 

Hi. 

V1 

c
"f 
2 

7.5 

ai 

/H - H  \ e      w | 

\      w    / 

a2= 305 

Öf 
2 

_J 
(3 5a) 

(35b) 

It is further consistent within this framework to use the approximation 

P   H 
e   w 

P = h 
w   e 

(36) 

So that from Eq. ( 34) : 

= ■ 

H 

r+N - a. 
H - h 
e  e 

M 2 

H \ e (37) 

The simplest way to treat the compressible turbulent boundary layer 

using this formulation is to specify C  (i.e. work the problem backwards 

by specifying the equivalent incompressible skin friction coefficient). 

Then the compressible skin friction is given by Eq, (37), and the com- 

pressible heat transfer is obtained from the enthalpy gradient using 

the Crocco integral.  What remains to be done, then, is to find the 

relation between the compressible and incompressible length scales 

(i.e. Reynolds numbers).  Then the compressible velocity profile can 

be expressed in terms of a given incompressible profile corresponding 

to the specified C . 

Rather than finding the "elation for C(x), we instead seek a direct 

relation between C- and the curopressible length x.  If the Coles-Crocco 
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transformation relations are substituted in the compressible momentum 

integral relation, it is found that 

■'.x -pur  Jx = 
w e o (38a) 

P u 
R = -~-    \    u* (1 - u*) dy 
e^   I- e  |a  o 

(38b) 

The incompressible momentum thickness Reynolds number R  is ee 
related to Cf by a relation based on the law of the wall.  Let the In- 

compressible velocity profile in this region be given by (Ref, 19, 

page 140): 

u_ 

u 

i       u y 
i- in -4- + c (39a) 

Y  
w  " v 7 

2 
(39b) 

where according to Coles,   ^K = ,4 and C = 5.1.  Then from Eq. (38b) 

it is found that 

-KC 

eQ    K 

7 0 O 

e  (1 - T) + (1 + 7) (40a) 

where 
K (40b) 

\i5f/2 

! 
-4 

\ 

I 
I 

By using Eq, (40) and (35), Eq. (38) can be integrated along the body 

from the point of transition to the uase.  If Z is assumed to be very 

large, then the integration is easy to carry out.  Assuming that transi- 

tion occurs at the nose, the final result nay be put into the standard form; 
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JL 

f^ 
= C1 + C2 log10 

H u 
—Z  C, R 
h u  f e^ es     T 

(41a) 

where cp is defined in Eq. (34) and 

ci- 

KC   + ^n K 

K {T 
1.99 (41b) 

C2  = 
^n   (10) 

Kvpr 
4.07 (41c) 

R     = 
\ Pur    dx 
o    w e o 

w o [i  r  J 
w o 

(41d) 

Equations (35), (37), and (41) are three equations for the three 

unknowns C,., C,, —.  The parameters are H /H , H =h , and R  , which 
ffu weee      e 

will be known for a given body at given flight conditions. 

For wedges and cones Eq. (4l4) may be integrated explicitely. 

Figs, 6, 7 and 8 show values of the equivalent C  for these bodies as 

a function of wall enthalpy ratio, boundary layer edge Mach number M9 

or enthalpy ratio H /h , and reduced Reynolds number R: 
e e 

R « 
C Re0 w  2 
j + 1 

(42a) 

P U  Ä 
e e base K   =     .——— 

e2 
(42b) 

C = p u /p u 
w   "V w' Me^e (42c) 
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From the result for C,, the initial compressible F(u*) profile at the 

body base can be found from the laminar sublayer and law-of-the-wal1 

profiles.  Thus: 

Sublayer: F = F = ^ p) -~^r ^3a) 
2Vus/ uwro] 

in the region 

+ 
0 <■  u* S u \J Cf/2 

(71) + 
Rubesin   finds that u = 13.1,  In the law-of-the-wall region the 

velocity gradient function is found from Eq. (39) and the proper* JS 

of the Coles-Crocco transformation: 

F 
_v 
K 

(43b) 

Law-of-the-wall F  = 
■     r w 
— exp 

L 
- K - C 

NI^T^   J f 

in the  region 

u+ \| C /2 <u* < 1 

(43c) 

(43d) 

1 

I 

In this form the initial velocity gradient profile F/F  is a func- 

tion only of the equivalent incompressible skin friction coefficient C,, 

Therefore this is the natural parameter defining a family of solutions 

to the non-similar turbulent mixing layer problem.  Fig. 9 shows the 

shape of these profiles for various values of Cf in the range of interest. 

One sees that there are square corners at locetions corresponding to the 

sublayer limit, and the outer edge.  This behavior is, of course, not 

physically reasonable, so these points should be arbitrarily rounded 

slightly to obtain a reasonably smooth starting prof i It; for the non- 

similar mixing layer calculation.  This hopefully will not affect  the 

Dividing streamline properties much because the dividing streamline is 

initially at u* = 0,  One could probably improve the profile by includ- 

ing the law-of-the-wake and buffer layers, but this does not seem worth 

the effort at preseni..  The discontinuity at S* = u* = 0 (i.e. F(0) = 0 

immediately after separation) is of course treated in the same manner 
(22) 

as done in the laminar case. k 
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Note that for a base flow p-oblem the sudden turn at the separation 

point causes a distortion of the profile.  If one assumes that this occurs 

according to an isentropic expansion along streamlines (as in Ref. 23), 

then one could use the distorted initial profiles as the mixing layer 

initial conditions.  This would involve finding the streamlines using 

the Coles-'Crocco relation for the stream function from Eq. (30) and 

presents no essential difficulty. The presumed increase in accuracy 

from this refinement does not appear to be worth the effort at this 

stage, but can be included in a later analysis if the present results 

appear promising. 

For the turbulent body and tu-ou'ent-mixing-layer problem, then, the 

initial conditions are given by; 

F* =) 

W^ exp 

0 < u* < 13,1 >Jcf/2 

L\jCf/2 
5.1 13a\jCf/2 < u* < 1 

(44a) 

(44b) 

The integration procedure is again identical to the purely laminar case. 

The non-similar calculation of the shear layer must of course be 

repeated because the turbulent initial profile shapes are different. 

i 

I 
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10.  TRANSFORMATION INVERSION - TURBULENT BODY 

As before, one needs to know the relation between S* and the physical 

length x. Also for comparison with the purely laminar results it may be 

desirable to know the solution in terms of the laminar streamwise scale 

parameter S** =  S/S .  Examination of the transformation equations reveals 
w ^ 

that the rate of build-up of S** along the shear layer is given by Eq, (29), 

with X"(S,V) defined by Eq, (27).   Thus the difference between turbulent 

mixing cases having laminar or turbulent initial conditions resides only 

in the shape of the initial profile and in the value of wall velocity 

gradient at separation F ,  For the laminar body this quantity is given 
w 

by Eq. (24), while for the turbulent body it is obtaine ' from Eq, (4ja). 

EOS RN-24, 5-65 27 



11,  NUMERICAL SHEAR LAYER CAI.CULATIONS 

Non-similar shear layer calculations were carried out corresponding 

to the thre«1. turbulent initial profiles and the laminar profile shown in 

Fig. 9,  Th calculations were started at Sir -  10  and carried to 
3 

S* = 10 , with output at intervals of 0.2 in log „(S*). Approximately 

ten minutes of IBM 7094 time was required for each initial profile. 

The u* mesh contained 80 intervals in the range 0 s uff ^ .05 and 152 

intervals in the remaining rang' ,05s u* s 1.0,  Overall integral 

balances (from momentum and energy) agreed within 0.5 /o for all condi- 

tions, which is probably indicative of the accuracy of the numerical 

calculations. 

Fig, 10 showj the results of the non-similar shear layer calcula- 

tions for the velocity gradient function F* for the four different 

initial profiles shown in Fig. 9.  This is the solution of Eq. (11a). 

At small values of the streamwise variable S*  the profiles resemble the 

initial conditions, but as S* increases the profiles become more rounded 

and decay in amplitade,-  This is of course to be expected since the 

differential equatica is parabolic. One would expect that as S* - * 

the shape of th F* curves would approach the asy .iptotic shape given 

by the Chapman profile.  Because of computer cost, however, it was 
3 

aecessary to stop the calculation at S* = 10 .  Only the Blasius (and 

perhaos the Cf = ,006) profile were near the asymptotic shape at this 

value of S*, 

The solution for the ent'.ialpy function W from Eq, (lib) is shown 

in Fig. 11.  Bec.-.use tne Crocco integral for total enthalpy is assumed 

to be valid initially, W = 1 - u* for all profiles at the initial sta- 

tion.  Since the W equation is also parabolic, the decay of this function 

is qualitatively similar to the F* curves.  Differences in W results for 
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the various initial F* profiles do not become apparent, however, until 
-2 

some distance dovmstream (S* ss 10 ) because all W profiles begin with 

the same initial condition.  At large -  one would again expect the shape 

of the W function curves to be independent of the initial F"' profile 
3 

shape, but this occurs at S* --* 10 . 

Fig. 12 shows the results for the velocity u* on the dividing stream- 
(2) 

line, is obtained by integrating the momentum equation fot v -  0,v 

For the Blasius and C = .006 initial profiles u* has effectively reached 
3 

the Chapman limiting value of .587 at S* = 10 , but the other profiles 

apparently require several more deca-Ies in S* to reach the limit.  All 

the initial profiles used give the same value of uy' for small S*, since 
(22) 

the starting profiles of B&um    (snail S* and u") are identical, as 

may be seen liom Fig. 9. 

The development with distarce of the enthalpy function W on the 

dividing streamline is illustrated in Fig. 13.  The limiting value W =.611 
(22) 

as S* "♦ 0 was obtained from the starting solution of Baum.     At large 
3 

S* the W function decays uniformly to zero (Fig. 11), but at S,v = 10 , W 

still has an appreciable magnitude for the Cf = ,004 and .006 initial 

profiles. 

It should be noted that a direct comparison between the laminar and 

turbulent cases cannot be made on the brsis of Fig. 10-13, sine., the 

streamwise variable S* is not directly related to the streamwise distance. 

For this one must use the variables x+ or S** for the turbulent shear 

layer, or better yet the actual distance x.  The relation between x* and 

3* from Eq. (27) is shown in Fig, 14.  Fig. 15 gives values of the momentum 

thickness integral ♦*($*) which appears in Eq. (27). 
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12,  BASE FLOW OF CONE OR WEDGE 

Fig. 16 illustrates the application of the mixing layer analysis to 

the batie flow region.  The "core" or recirculating region is assumed to 

have negligible velocity and constant (but initially unknown) enthalpy 

H .  The recompression region is assumed to be small, and recompression 

is assumed to be isentropic along streamlines.  The distortion of the 

initial profiles at separation is neglected, although it could be included 

later using the method of Ref. 23. 
(2 3) 

Following the previous laminar analysis,  '  the configuration of the 

base flow is determined using the empirical Chapman-Korst recompression 

condition.  This states that the total pressure on the stagnating stream- 

line just before recompression must equal the static pressure after re- 

compression (determined from the invisci 1 flow calculation).  Assuming 

that the values of u^ and W on the dividing streamline are available 

(from Figs. 12 and 13), matching involves the simultaneous calculation of 

the inviscid flow (as defined by the initial wake 'ngle), the core enthalpy 

H , the value of S* ct  esponding to the position of recompression, and 

possibly the total base heat transfer rate Q, .  As shown in Refs, 3 and 11 

these latter quantities are related by an overall energy balance condi- 

tion. 

By equating the energy entering the base region through the body 

boundary layer to that leaving through the neck and by base heat trans- 

fer, the following equation is obtained:  * 

H Q* + (H - H ) (K* - J*) 
Ti   ,i     e^ b    e  w ,, 
Kc = He ^ ^•) 

wher« 
Q F 

Q*b =  iTTFP (46b) 
e 
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K* 

r-ri 

J 
o 

U"-(l-u*) du" = ^--(0) (Mc) 

body 

J* = 

r-r-l 

'—11* 

u*W 
du- C46d) 

recompression 

L* = 

r-nl 

*-~  11* 

u^-(l-u^-W) 
F* 

(46e) 

recompression 

and u,v is the velocity on the stagnating streamline just before recom- 

pression. It may be seen that Eq. (46«) is a relation between H , Q, , 

and S*, the value of S* defining the position of recompression. 

Because the base heat transfer Q. enters into the matching analysis, 

one needs an additional relation which specifies this quantity. Probably 

Q. is proportional to the enthalpy difference (H - H. ), where H. is the 

enthalpy corresponding to the base wall temperature. An analysis of 
(24) 

the laminar case   showed that conditions were such that Q could 

safely be assumed to be zero  without affecting the base flow solution 

much.  For the time being it is assumed that this conclusion is valid 

for turbulent flow as well, so that in what follows the assumption 

Q = 0 is made. 

In order to compare the turbulent base flow results with laminar 

results, matching calculations were carried out for a 10 cone for per- 

fect gas conditions with y = 1.4 and viscosity proportion to tempera- 

ture to the .76 power.  For simplicity the outer edge conditions in the 

base region were obtained from a Frandt1-Meyer expansion at the corner, 

and the shear layer was assumed to be straight oetween separation and 

recompression.  The recompression was assumed to be isentropic and all 
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Chapman-Rubes in constants were assumed to be equal to unity.  This model 
(25) 

corresponds to calculations previously carried out for the laminar case. I 

Details of the numerical procedure for carrying out matching calculations 

were given in Ref. 11. t 
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13,  RESULTS FOR 10° CONE 

Even with the approximations listed in the previous section, the 

base flow results are a function of Mach number, Reynolds number, body 

shape, wall enthalpv ratio, and condition of the boundary layer at the 

separation point.  Because of the preliminary nature of the present 

theory for turbulent flow, it does not seem appropriate to make an 

exhaustive study of the effects of each variable at this time.  Instead, 

attention is restricted mainly to a 10 half-angle cone with a "highly- 

cooled" surface.  The results therefore will indicate how the theory, 

developed from a correlation of experimental data at low supersonic 

speeds, is extrapolated to conditions tvpical of re-entry conditions 

on a slender body. 

Figure 17 shows the effect of Mach num'er on the dividing stream- 

line velocity just before recompression for a cold-wall 10 cone at 

Re = 10 .  The curve labeled "turbulent" corresponds to a fully developed 

turbulent flow on the body surface and a turbulent mixing layer.  The 

laminar curve gives the results previously reported for completely 
(25) 

laminar flow,   while the "laminar-turbulent" curve is based on the 

assumption of a laminar body and turbulent mixing layer (i.e. transi- 

tion at the separation point).  One sees that at high Mach numbers all 

curves give a dividing streamline velocity in the range 0.2 to 0.3, 

which is very much lower than the Chapman value of ,587.  This indicates 

that the mixing layer in the base flow undergoes recompression long 

before tue fully developed or asymptotic condition is approached.  At 

low Mach numbers, however, the turbulent u* curves approach u* = ,587, 

indicating that at lower Mach numbers the turbulent mixing effect (as 

measured by the eddy viscosity e) is very much stronger.  The strong 

Mach number effect on e is directly related to the effect of Mach number 

on the eddy viscosity factor k of Fig. 5,  In fact, the effect of Mach 
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number 01, k completelv overshadows the effect of Mach on the initial 

profile shape.  Thus from Fig. 6 it is seen that reducing the Mach 

I 
i 

number reduces C while Fig. 12 shows that this reduces the rate of 

build-up of dividing streamline velocity u*.  Because the expression 

for k completely dominates the analysis, experiments are needed to see 

if the trend of Fig. b  persists to high Mach number conditions. 

Figure 18 shows the results of the energy balance to determine 

uhe enthalpy H in the recirculating core region.  Again the effect of 

Mach number is evident, the results Indicating that at low Mach numbers 

the turbulent mixing Is so rapid that H - H , I.e. adlabatlc conditions. 
c  e 

This occurs In spite of the fact that the upstream body surface Is 

highly cooled.  Any base heat transfer would of crurse tend to lower 

H , and this may be an Important effect in turbulent flow.  If the pro- 

posed correlation for k of Fig. 5 Is correct, then the core enthalpy 

may be extremely Important, since for a perfect gas: 

/p f0        /h f0 

k =* .0606 ~ 1  «.0606 l^-l (47) 

The core enthalpy therefore enters Into the determination of the eddy 

viscosity. 

The calculated effects of Mach and Reynolds numbers on the center- 

line stagnation enthalpy at recompresolon are shown In Figs. 19 and 20. 

The results for h /H as a function of Mach number closely follow those 
s  ä 

for the core enthalpy. At high Mach numbers the turbulent results are 

far from adlabatlc, and the theory even predicti a decrease In h /H If 
7     S e 

transition occurs In the mixing layer at Re  less than 10 (Fig, 20). 

Since the "fast expansion" distortion of the initial profiles has been 

neglected In these calculations, h might even be smaller due to this 
(23)S 

effect, If the laminar results   carry over to the turbulent case. 

Finally, the effect of Mach and Reynolds numbers on the base pressure 

Is Indicated In Figs. 21 and 22.  Generally speaking, the range of P./Pgo 
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is about .3 to .6, regardless of conditions.  One notices that at high 

Mach numbers the laminar and turbulent predictions appear to agree 

within about 15 to.     If the theory can be believed under these condi- 

tions, then one should not expect transition in the base flow of a 

slender re-entry vehicle to be accompanied by a large change in base 

pressure.  This is in contrast to the situation for Mach 3 adiabatic 

conditions (shown in Fig. 22), where a sudden drop in base pressure is 

indicated as the flow changes from laminar to turbulent. 
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1A.  CONCLUDING REMARKS 

In the present report a new empirical turbulent mixing and bas« 

flow model has been constructed which hopefully will be applicable 

slender re-entry vehicles. A plausible snethod has been foun^ to extra- 

polate turbulent mixing results for low Mach numbers to high Mach number 

flows and to include the effects of non-similar and highly cooled turbu- 

lent mixing layer development.  Reasonable results were found for gross 

effects such as the base pressure and rear stagnation enthalpy for a 

highly cooled 10 half-angle cone. 

The asymptotic mixing layer analysis for adiabatic conditions up to 

about Mach 3 can probably be considered reasonable, since the velocity 

profile data appear to be correlated.  Under these conditions the effect 

of any Initial boundary layer thickness becomes negligible, since the 

turbulent profiles develop very rapidly.  Application of the present 

theory to any situation where the initial profile effects may become 

important must be considered conjecture at this stage, since no experi- 

mental confirmation is presently available.  This includes the highly 

cooled case at relatively low Mach numbers and all conditions at high 

Mach numbers.  Hopefully, the p.esent treatment of non-similar turbulent 

mixing can serve as a guide to future experiments for these technically 

important flow conditions. 
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APPENDIX A 

Maydew-Reed Dividing Streamline Location 

Refentiig to Fig. 2, It may be seen that the total mass flow Inside 

the dividing streamline at some station x downstream oi the nozzle exit 

must equal the mass flow through the nozzle. Assuming that the flow Is 

axisymmetrlc, the mass balance yields 

f^DSL 

fl p u A 
e e 

L_   _Jexit 
2TT pu r drI 

—Ix 
(A-l) 

The total mass flov ft through the nozzle was calculared by assuming an 

Isentropic expansion from the reservoir conditions tabulated by Maydew 

and Reed  ' for each run. 

Since the e^perlau ntal porfile data u(r) are glvet. by Maydew and 

Reed for each station x, the integral of Eq. (A-1) can be evaluated as 

a function of l*-s upper limit until Eq. (A-l) Is satistled.  This of. 

course requires that the density variation be kncvn, anc< this was 

assumed to be given by the Crocco integral relation for a perfect gas, 

Eq. (18).  The dividing streamline velocity is then given by u(r „.), 

An estimate of ^he eccuracy of tMs procedure can be obtained by 

assuming that the flov Inside the dividing streamline can be arbitrarily 

divided into a '.rofile" part and a "potential core" part.  If most of 

the total ft is In the potential core (as It Is for small x), then a 

small error In the value of total ft will have a large effect on the 

value of !-incT . Fcr example, at x = 1.5" a 5"7o change in M would pro- 

duce about 50 to 100 /o changa In UpCT for tb'i experlnn ntal conditions 
DSL 

but at x = 9" a 5 /o change In ft wovild produce only a   5 /o  to l^  fo  In 

u  .  The datf. shown in Fig. 3 for x - 1.5 and 3.0 Inches therefore 

could le considerably in error. 
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APPENDIX B 

Eddy Viscosity Factor k of Figure b 

When detailed profile data are available, as in the Maydew-Reed 

repoit, the factor k in the eddy viscosity expression (Eq. 1) can be 

fcund by a least-squares fit of the data with Eq, (19). However, much 

of the previous literature on the mixing problem does rot contain 

sufficiently detailed profile data, but presents only the final result 

in the form of the jet spread parameter a, A summary of previous 

experimenial determinations of a  up to 196 2 is given by Maydew and Reed, 

Since a  deper.ds on the choice of profile used in the theory, this must 

also be specified. 

One way that the quantity k can be related to a  is by comparing 

the derivatives du*/d(y/x) of Eq. (l?) and (19) at some selected value 

of U". For example, for the error function profile 

u* = 1/2 (■ - ^ r •-■-] (A-2) 

we match the slopes at u* = ,5 to get: 

k = 
/H 

\ e/ L 

H 
c 

H 
L. e 

/ 
fl c \ 

_vCZ. 

f - 
_J  TiT .* = .5 

(A-3) 

1 
I 
1 
I 

Thus one must specify the profile shape function g(cy/x) and the 

valje of u,v at which the slopes are to be matched. 

,iearly the above method for determining k may not be very accurate 

and in addition depends on an arbitrary assumption of the value of u* 

at which the equr^ion is evaluated.  This procedure therefore will not 
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be used In this report, with one exception: The data of Zutnwalt at 

Mach 3 referred to by Mtydew and Reed provide an additional point on 

Fig. 5 which further "  ands the correlation. 

In a private communication with Prof. Zutnwalt at the University of 

Oklahoma it was found for ehe error function profile the best a was 

loughly a%23 to 30 at Mach 2.9, depending on how the initial boundary 

layer thickness was taken into account.  Eq. (A-3) was evaluated at 

u* « .5 using this information to give the data points of Fig. 5 

attributed to Zutnwalt. 

A second point to be made concerns the determination of k by 

correlating mixing layer profile data in the non-similar growth region. 

This will surely be a problem in high Mach number flows if the relation 

of Fig, 5 IJ approximately correct.  The mixing layer experiment should 

produce either velocity or density profiles (or both) as a function of 

physical x and y. The basic equations of this report show that the 

theoretical relation for u^Cx^jk) is given implicitely by the relations 

y - y 
1     \   e au* 

DSL J«    \   P  F' p u r F    4 

e e o w 
U" 
DSL 

F* = F*(S*,u*) 

S* = S*(x*, Cf) 

C, = Cr ^H /H . h /H , R ) 
f   f  w e  e e  e 

x* = \ p u F k r J  e e w   o 
Jdx 

F = F  (C, H /H , h /H , u ) w   wfweeew 

D = oCP.b) 

h = H - u2/2 
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Thus k appears explicltely in the relation for x* as a function of x, 

Although somewhat cumbersome, these relations can be programmced for 

a computer so that a least squares deternünation of k from velocity 

profile da,a, density profile data, or bat],  car In  performed. 
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