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FOREWORD 

The material on radar signal design in this report was presented by the 

author in lectures given during the two-week summer course on radar conducted 

at MIT in 1961.    The lecture material was afterward expanded and prepared in 

written form for inclusion as Chapter 3 of a book entitled "Elements of High- 

Power Radar Design, " edited by J.  Freedman and L.  Smullin of MIT.    Now, in 

June 1965, it appears that plans for the book have been abandoned.    Therefore, 

it seems desirable to make this material more generally available by issuing 

it as a technical report. 

The ideas on signal design contained in this report have come from many 

sources, and these sources are acknowledged with care insofar as they are 

known to the author.   The author is indebted to many of his colleagues; in 

particular, it is a pleasure to acknowledge many stimulating discussions with 

E.  L.   Key, R. Manasse,  J. A.  Sheehan, and R.  D.  Haggarty, of the MITRE 

Corporation, and with E.  J.  Kelly and R.  C.  Yost, of MIT Lincoln Laboratory. 



ABSTRACT 

This report discusses the design of radar signals.   It is 
assumed that the radar receiver is matched to the signal so that 
the receiver output waveform, in the presence of signal Doppler 
frequency shift, is characterized by Woodward's two-dimensional 
signal correlation function.    The signal correlation function is 
discussed, and certain of its properties are collected together. 
The problem of the detection of a target in the presence of many 
nearby targets is discussed, and an expression for the target capac- 
ity of a radar is developed in terms of the signal correlation 
function.    There follows a discussion of the general problems of 
signal design for multiple target resolution and for detection of 
single targets in clutter.    Signal waveforms are classified according 
to the type of modulation, and the design of waveforms of each type 
is considered in detail.    The two-dimensional correlation function 
is given for each type of signal.    Finally, the subject of techniques 
for generation and reception of signals is discussed. 

REVIEW AND APPROVAL 

Publication of this technical report does not constitute Air Force 
approval of the report' s findings or conclusions. It is published 
only for the exchange and stimulation of ideas. 

HARRY Jfi.   BYRAM 
Project Officer 
MITRE Project 750 
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1.0 INTRODUCTION 

Central to the discussion of radar signal design is the signal correla- 

tion function and the related ambiguity function.   It is recognized that the 

ambiguity function characterizes the degree to which a signal can be located in 

time and frequency.   In Section 2. 0 the subject of signal design is considered 

primarily from the standpoint of the signal correlation and ambiguity functions. 

First, we will collect some properties of the two functions.    Then we will con- 

sider the problem of resolution and develop an expression for the target capacity 

of a radar in terms of the ambiguity function of the radar waveform and the 

target parameters.    Three different idealized ambiguity function shapes — the 

ridge, the thumbtack, and the bed-of-spikes — are considered, and their utility 

and method of use in a multi-target environment is discussed. 

In Section 3. 0 signals are classified as to the type of modulation 

employed — amplitude modulation, phase or frequency modulation, and a 

combination of the two — and some aspects of the design of each type of signal 

are discussed.    In every case some idea is given of the kinds of ambiguity 

function shapes that are possible with the various kinds of waveforms. 

In Section 4.0 a number of the most important, well-developed tech- 

niques for the generation and reception of signals are considered, each in some 

detail. 

Section 5. 0 contains the list of references and, for convenience, a 

bibliography listing the referenced documents in alphabetical order. 



2. 0 THE SIGNAL CORRELATION FUNCTION AND THE PROBLEM 
OF RESOLUTION 

2.1 Introduction 

In this section we will tabulate some of the properties of the signal 

correlation function and the related ambiguity function and proceed then to 

discuss the problem of resolution in the context of the signal ambiguity function. 

Then we will develop an expression for the target capacity of a radar which 

depends upon, among other things, the ambiguity function of the radar signal. 

The specific dependence gives some insight as to how the signal ambiguity 

function ought to be shaped for various kinds of measurements and for various 

distributions of radar targets.    Then the broad problem of signal design to 

achieve high target capacity is considered.    The ideas developed for the problem 

of resolving multiple targets are then applied to the problem of detecting targets 

which are immersed in a clutter background. 

2. 2 Some Properties of the Signal Correlation Function and 
Related Ambiguity Function 

The significance of the signal correlation function and the ambiguity 

function, and the manner in which these two functions enter the subject of 

A 
[3] 

detection theory has been discussed by Woodward and Siebert. A 

number of properties of the two functions have been collected by Siebert; 

since these are not too readily accessible in the literature, it seems worth 

while tabulating them here for easy reference. 

Several notations are used in writing the signal correlation function. 

Woodward calls the signal correlation function   x (T > v)>   where* 

*The Notation  u(x) denotes the complex conjugate of  u(x). 



C -)2irvt 
X(T, V) =   \    u(t) u(t+ r)e dt 

[ 4 5] 
while Siebert and others have used the symmetrical form.    6(T , cu ), 

(1) 

with 

, CO ) = j     u(t - ^ ) u(t + -^ ) 0(T, co) = : )e "JWt dt    • (2) 

In Eq.  (1),   v   is Doppler frequency in cycles per second; in Eq.  (2),   cu   is 

Doppler frequency in radians per second.    The relation between the two 

functions,    x   and   ©,  is simple.    If we write   2 TT v = u;   and put   t = t' - T/2 

Eq.  (1) becomes 

.CUT 
J   2        f T T 

X (T . w ) = e \     u(t - -) u(t + -) e_:icot dt   > (3) 

or 

. CO T 
J 

X(T, co) •-••  e 9 (T,CO)   • (4) 

The functions   x   and   6 thus are seen to differ only by a phase factor.    Notice 

that 

JX(T ,C0)1   =    I   9(T ,   C0)| • 

The squared modulus of  X(T.  V)   or alternatively of   6 (T, co )   is usually 

referred to as the ambiguity function,   ty   .   We have 



4>(r, v) =  |X(T, v)\ (5) 

or 

4>(T ,   w)   =   |9(T,   C0)| . (6) 

The  x  notation of Woodward occurs naturally in analysis and is perhaps the 

most common in the literature,  and for this reason the   x notation is used in 

this report.   Because of its symmetry, however, manipulation of the G function 

yields neater results.    Thus the properties of the signal correlation function 

are tabulated below in terms of the   9 function.    The theorems on  9 functions 

are taken directly from Siebert with permission and with only minor 

changes.   Proofs of the theorems are given only when the method of proof is 

not obvious. 

We have the signal correlation function  9(T, CO), Eq.  (2), repeated 

here as Eq.  (7). 

e<T, co) = j    u(t - I ) u(t + | ) e ~iwt dt   . (7) 

Definitions 

1. We assume that  u(t)   is a reasonably well-behaved, complex- 

valued function of the real variable    t.   In particular,   any integrals involving 

u(t)  are assumed to exist. 

2. We define 

U(cu)  =  ——   \     u(t) e ~jwt dt (8) 
v/Zrr      -°° 



so that 

u(t) = 
\Z2TF 

U (co) eJ      dco (9) 

3. We shall call a complex function 0( T , co ) of two real variables, 

r and 00 , a 0 function if and only if there exists a function u(t) which is such 

that © (T , a;)   may be represented as in Eq.  (7). 

4. We shall call a real positive function   !/(T, CO)   of two real variables, 

T   and  d),    a   ip function if and only if there exists a function   u(t)   which is such 

that 

^(T, oo)   =   1© (T, OO) 1 u(t - I ) u(t + \ ) e ~ja;t dt (10) 

Theorems 

1. 0(T, OO) = 0(- T,  -oo)   • 

2. If   ©(T , a;)   is a ©function, it has the additional representations 

6(T, co)  =   \       U(u -f) U(M +f)e"JM7 du 
— 00 

(11) 

and 

OOT 

©(T,   CO) 
V/2TT 

u(p - T) U(JU - co) e e dp dp (12) 



3. If 9(T , to)  is a  0function corresponding to  u(t), then  (1/a ) 

j 0[ QfT , (to /a )] j is a  0 function corresponding to  u(a t). 

4. If 0(T, OJ) is a 0 function corresponding to u(t), then 0(T, OJ + 2k T) 
P 

is a  0 function corresponding to  exp  [ jkt   ]    u(t) . 

5. If 0(T, to)   is a0function corresponding to   U(to), then 

0 (T + 2a u>, to)   is a0function corresponding to exp [ ja to   ]   U(a>). 

6. If 0(T, to)  is a0function corresponding to  u(t),   then 

cos <p    0(o> sin <p + T cos <p,   to cos <p   -  T sin   <p) is a  0 function 

corresponding to the time function 

2 2 
. t   tan CP . a;    tan cp        .     tot 

2 1      f     -.   .       J 2 J   coscp 
e _ \       U(to)e e dto 

/2TT 
.00 

In other words, the property of being a  0 function is independent of a rotation 

in the coordinate axes. 

7.     If 0(T,  to) is a 0function, then, along any straight line through the 

origin, J [ 0(T , to)] /[ 0(0, 0)] |   has the properties of a characteristic function; 

for example, 

r 0 (T COS <p, - T sin <p) e   ^T dT  ^   0 (13) 

for all  T  and to . 

8.     A necessary and sufficient condition that    0 (T, to)  be a 

0 function is that 



2TT   J 

J 
. (co + u )T 

9 (T, co - /i ) e (IT (14) 

shall factor in the form   f(p.) f (co) .    If this condition is satisfied, then   U(co) 

can be identified with   f(co). 

Proof: 

Necessity follows directly upon substituting Eq.  (11) into Eq.  (14). 

To prove sufficiency, assume that Eq.  (14) factors and set  p = cp- (p /2) and 

co = cp + (p /2 ).    Then we have 

r i(<P--^)f((P + \)e~i<p^ dcp 
27T    J J 

6(T, p)e ]C/'TdT e-j^d^ 

=    6(|,  p)   . 

which is valid if   f(co)   is identified with   U(co). 

9.     An equivalent necessary and sufficient condition that 0(T, CO) 

be a 9 function is that 

2^ J 

J 
(T + P)y 

9 (T - p, co)e dco (15) 

factor in the form 

f(P) f(M) 

If this condition is satisfied,  then   u(t)   may be identified with   f(t). 



10.        If 0 (T, co)  and  6 (T, CO)  are both 0 functions and neither is 
1 L* 

identically zero, then  6(T, CO) = © (T, CO) + 6> (T, CO)  is a 6 function if and only 
X LJ 

if 0 (T, co) = C0 (T, co),   where  C  is a constant. 

Proof: 

The sufficiency of the condition is obvious.   Necessity follows from 

Eq.  (14) because we must have    U(M)  U(CO) = U (LI) U, (co) + U ALL) U (co)   for 
XX t- u 

all   /J   and  co .   It is easily shown that this can be true only if   U (fi)   is 

proportional to   U (LL); that is, if    © (T, co)   is proportional to   ©   (T, co). 
Li X ^ 

11.        If  0 (T, CO)   and   0 (T, CO)   are both ©functions, then both 
X c\ 

0'(T,   CO)   =       \ 01(t,   CO)  ©2(T-  t,   CO) dt (16) 

and 

0"(T,   CO)   =    \        ©^T, LL  )  02(T,   CO  -LL)dLL (17) 
-oo 

are also ©functions.   In the case of Eq.  (16) 

U'(co) = lyco) U2(co)    , 

and in the case of Eq.  (17) 

u" (t) = Ul(t) u2(t) 

9 



Theorems 3, 4, 5 and 6 also apply, with obvious modifications,  to 

;/' functions in place of  0 functions.    In particular, the property of being a 

ip function is independent of a rotation in axes.   Other theorems are: 

12. If   ip(T , o))   is a ip function, then   ip (T , w)   is its own two- 

dimensional Fourier transform, i. e., 

27   II     ^(T'   ^"^e^dTda; =   *<p, y. )   • (18) 

13. If   $(T, u)   is a   ip function, then 

2TT     J J 
ip(r, w)dTdu;   =   ip(0,  0) >  ip(T, w)   • (19) 

14. If   ^(T, O>)   satisfies condition 12, and   a fortiori,  if 

ip(r, w)   is a $ function 

oo 

II j I ^(T2 - Tl' W2 - ^^ g(T1,co1)I(T2,a;2) d^ d^ dc^ dc^ ^ 0 

(20) 

for any function  g(r, w). 

15.        If   f (T, W)   and   #>(T, CO)   satisfy condition 12, and, a fortiori, 

if   ip (T, W)   or ^ (T, W)   are   ip functions, then 

lp(T,   w)    =   j ^(t,   W)  ^(t "  T,   W)  dt (21) 
-oo 

also satisfies condition 12 but is not necessarily a tp function. 

10 



Necessary and sufficient conditions for   I(I(T, OJ)  to be a ip function 

have not yet been discovered. 

2. 3 The Resolution of Two Nearby Targets 

It frequently happens that radar targets are close enough together in 

range and radial velocity so that their echoes overlap.   When the echoes over- 

lap significantly, the detection and parameter estimation problems become 

considerably more complicated than is the case for isolated targets.   The 

problem of determining whether there is one echo or more than one in an 

interval is called the resolution problem.   In this section we will consider 

the problem of two nearby targets.   In the next section the problem of many 

targets will be discussed. 

Let us first consider the two-target problem in a qualitative way. 

Assume that we have a radar whose receiver is matched to a known signal, 

the echo from a stationary, point target.   The input to the matched filter 

consists of noise and possible signals.   At the filter output a threshold is set. 

When the filter output exceeds the threshold, we say a signal exists.   The 

probability of noise alone exceeding the threshold is the so-called probability 

of false alarm.    Let us assume that we are trying to decide whether there is 

a target at a range corresponding to  t   .   We ask:   What is the effect on 

detection at  t    of a possible second target at  t   + T ?   We assume  T   is 

small enough so that the matched filter response to a target at  t   + T   would 

extend past the point  t .   It is obvious that the possible second target has the 

effect of increasing the probability of false alarm,   P   ,   at the point of 

observation,   t .   We can keep   P     constant by raising the threshold.   Raising 

the threshold, however, reduces the probability of detection,   P   .   Increasing 

the probability of the occurrence of the second target or reducing the separation, 

T ,   would further reduce   P   ,   if  P     were held constant.   So we see that 
D F 

11 



when the signal processing is predicated on isolated targets there is a loss in 

detection when the targets cease to be isolated. 

One possible approach to the problem of resolving two nearby targets 
r   n~\ 

in noise is given by Helstrom. Helstrom postulates that the range of both 

targets is exactly known and that the signal echo amplitudes are unknown.    To 

resolve the signals, one constructs a separate filter to give a maximum- 

likelihood estimate of the amplitude of each signal.   In the two-target case, 

two such filters are required.   When taken at the proper time, the estimates 

of the amplitudes of the two signals are independent, and the estimates may 

be compared to a threshold.    If the threshold is exceeded by the output of filter 

number one, for example, signal number one is said to be present, and so 

forth.    The probabilities of false alarm and detection may be calculated for 

this process.    If A*   is the estimate of actual amplitude  A  of one signal and 

if  b   is the threshold, we have for the probability of false alarm,    P 

P     =   p  [ |A*| > b/A   = o]    =2 erfc[ b /   2(1-\
2
)/N] (22) 

where 

erfc x =     .      —   \      e dt H 
7T *J n 

N   is the noise power per cycle and  X   is a parameter which depends on the 

amount of overlap of the two signals, being zero for no overlap and one for 

complete overlap.    As the amount of overlap increases, the parameter   A 

increases and the probability of false alarm increases. 
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The probability of detection of one signal is given by Helstrom 

P    = P    [  |A* | >b/A *  o]   = 1-erfcy    + erfc y     , (23) 

where 

y, /2(l-\2)/N     (A+b) 

and 

y2 =     /2(1- \2)/N    (A-b) 

We can hold the probability of false alarm constant by setting the threshold 

b   in Eq.  (22) 

Kl 
(24) 

/2(1 -X2)/N 

where   K     is a constant.   With the above value of  b  the probability of 

detection becomes 

P_ = 1 -  erfc y    + erfc   y        . (25) 
D 2 1 

where 

A~2E     r     ~2 

and 

= /f t \   IT   l-^2-K! 
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where we have written  E = A ,   the energy in the signal.   The probability of 

detection is the shaded area in Fig.  1.   As  X   approaches   1,   the unshaded 

region moves toward the origin, and its area increases, thus reducing the 

probability of detection.   If the signal-to-noise ration, 

2E 
N 

K 
(26) 

where  K    is a constant, the probability of detection will be kept constant.    The 

signal-to-noise ratio, then, must be increased as the overlap of the signals 

increases, to maintain a certain probability of detection when the probability of 

false alarm is held constant. 

Fig. 1. Sketch to illustrate the effect on probability of detection of an overlap of 
the two echoes and of signal-to-noise ratio.   Probability of detection is 
given by shaded area. 
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Thus we see that, even when elaborate signal processing methods are 

employed, a loss in detection occurs when two signals overlap.   In the case 

considered, the range of both was assumed known exactly.   As additional quanti- 

ties are allowed to vary, for example, the range to the first target, the target 

separation, frequency shift, carrier phase and so forth, the processing required 

to make maximum-likelihood estimates of the unknowns becomes very complex. 

Detection is apparently impaired by each successive estimate of an unknown 

parameter made in the presence of noise. 

The problem of the resolution of echoes from two nearby targets can 

be approached, alternatively, from the standpoint of signal design.   To obtain 

the best probability of detection for a given probability of false alarm one 

should design the radar signal so that the responses from the expected targets 

do not overlap significantly.    Not only does this approach give the best detection, 

but it results in the simplest signal processing as well. 

2. 4 The Resolution of Multiple Targets* 

In the last section, the maximum-likelihood processing of the echoes 

from two targets was considered and expressions for probability of detection 

and false alarm were given.   We saw that the probability of detection of either 

of the two targets decreased as the overlap of the echoes increased when the 

false alarm probability was held constant.   Similar expressions could be 

developed for the three-target situation.    It is clear that addition of a third 

target whose echo overlapped the first two echoes would have the effect of 

reducing further the probability of detection of any one target.   As the number 

* An excellent qualitative discussion of the multiple-target detection problem 
is given by Applebaum and Howells in Ref.  7. 
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of targets becomes large,  it is clear that the probability of detection of any one 

target is going to be small if there is a significant amount of overlapping of the 

echoes.   One should approach the multiple-target resolution problem, then, 

from the standpoint of signal design.    The designer should find a signal which 

would optimize, as nearly as possible, the probability of detection of the 

individual targets.    The ideal signal would be such that the echoes did not overlap 

at all.    The optimum way (from the detection standpoint) to solve the multiple- 

target resolution problem is to avoid it,  for when the signal is designed so that 

the echoes do not overlap, the multiple-target problem disappears.    The signals 

are isolated and the receiver consists of an array of single target processors. 

To design the signal so that the echoes do not overlap significantly, 

one must define some measure of total overlap of responses in a way which 

takes into account the number of targets, their cross sections, their probable 

distribution in time and Doppler frequency,  and the detailed characteristics of 
r gi 

the radar signal.    Fowle,  Kelly and Sheehan have defined as "interference" 

the mean energy from a complex of  n   objects with average cross section   b, 

distributed according to a probability density function   P(t,  f).    They get 

2 r>°°     r>°° 
E   |e(T,  v)\    =   nb \        \       ip(r - t, v - i) P(t, f) dtdf (27) 

_oo        —oo 

where   4>(j,  V)   is the single-target ambiguity function,  Eq.  (5), and the 

signal   u(t)   is normalized to have unit energy so that   J/(0,  0) = 1   and 

II #(t, f) dtdf = 1.    Here (T,  V)   is the point in the time-frequency plane 

,2 
at which the output of the single-target processor is observed.    E [e(r,  v ) \ 

is a noisy background against which the detector must look for objects of interest. 

L6 



If now at the point   (T, V)  we insert a target of energy   b,   we may 

form a signal-to-interference ratio,   S/I, 

S 
I    - - . (28) 

nb   II    ip(T- t, v - f) P(t, f) dtdf 

where   I = E|e(T,  v)\     •    Or,  solving for   n,    and using the fact that   S = b, 

°°^ • (29) 

(b/I)   J J    ip(T- t,  P- i) P(t, f)dtdf 

We note that from Eq. (29) that  b/I  need not be greater than unity. 

An upper bound for   n, N       , may be obtained as 

N =    55    . (30) 
max        _ r n 

(b/I)    . f(T - t, v - f) P(t, f) dtdf 
min  J J 

_O0 

and this will be the maximum number of objects (in addition to the target of 

interest) which may be tolerated, subject to the constraints of a given P(T, V), 

a given   ^(T,  y)   and a given minimum (mean signal)-to-(mean interference) 

ratio. 

If we write 

mm      \   min / min 
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(since   S = b),   we see that the ratio (b/l)    .     may be partitioned into the product 
mm 

of an extremum of signal-to-interference ratio, and an extremum of dynamic 

range, either (but not both) of which is arbitrary. 

A more careful treatment of this problem recognizes the fact that the 

integration in Eq. (27) through (30) should be extended only over that region 

of the  t, f plane which is external to a small area which includes the point 

(T,  v ),    since echoes from objects very near   (T,  V)   should properly be inter- 

preted as targets of interest to the filter "tuned" to   (T,  V).   We should rewrite 

Eq.  (30) for   N thus: 
max 

N = — p—p       , (32) 
(b/l)mm J    j   *(T-t,  v-l)V(t, f)dtdf 

R* 

where   R'   is the   T,  V   plane less an area centered at   (T,  V). 

It will frequently be true that the target distribution function,    P(t,  f), 

will not be known.    In that case, it is interesting to assume the objects uniformly 

distributed over a region in the   t, f plane of area   T   W    .    Then, if we take 

1 
,  |.|<  2

T . If I < 
wT 

T   W^ 
T    T 

2 

0 ,    otherwise, 

P(t, f)   =    \ (33) 



Eq.  (32) becomes 

T^W^ 
N = T     T 

max 

min/\   / min 

        • (34) 
(T - t,  v - f) dtdf 

The integration in Eq.  (34) is now over the region   R,   which is given by 

J t  | < T  /2   and   | f | £   W   /2   with a small area excluded at  t = f = 0. 

Since   n   itself will usually be of a statistical nature,    N should J max 
be viewed as the average number of targets that the radar could separately 

detect (or resolve).    That   N varies inversely with   b/b    .   ,   the dynamic v max min 
range of range of target sizes, and   (S/I)    .   ,    the minimum tolerable signal- 

to-interference ratio, appears quite plausible.    The dependence of  N on 
II ^ X|     is more interesting, however. 

We have the facts that the dimensionless quantity   T   W     is a measure of the 

intrinsic capacity of the target space.    The target capacity of the radar can 

be increased over the intrinsic capacity by appropriate design of the radar 

signal. 

2. 5 Signal Design for Multiple Target Resolution 

In the preceding section an expression for interference power was 

taken as a measure of the total overlap of the echoes from the multiple-target 

complex.    From the expression for interference an expression was developed 

for   N       ,   the average maximum number of targets that a radar can accommodate 
max 

on an isolated target basis.   In this section we investigate techniques of signal 

design which make it possible to reduce the interference (or to increase   N       ). 6 * x max 
The discussion will be cast in terms of several idealized signal ambiguity 

function shapes.    The subject of the design of actual signals whose ambiguity 

functions approximate the ideal shapes will be reserved for Section 3.0. 
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We repeat the expression for interference   E je(T,   v)\' 

T^T"      ) )    #(T-t,   1/ - f) dtdf     . (35) T^W_ 
T   T 

II 

The integration in Eq. (35) is over the target space, which is assumed to have 

its center at the origin of the   (T,  V)   plane.    The interference will tend to be 

worst when the point of observation   (T,  V )   is at the center of the target space, 

that is, at   T = v = 0.      Let us consider that case.    Then we have 

T   W 
T    T tt 

E|e(°.  °)|2 =       "L 
R 

n, b  and   T      in Eq.  (36) are characteristics of the target complex and are 

beyond our control.    The Doppler frequency spread of the target space,   W   , 

is proportional to carrier frequency; thus the interference may be reduced by 

increasing the carrier frequency.    But generally the most promising way to 

reduce interference, and certainly the most interesting way, is to shape the 

ambiguity function,    ip(r,  v ),    in such a way as to reduce the value of the 

integral in Eq.  (35). 

We recall that   ^(0,  0) = 1   and that 

^(t, f) dtdf = 1   , (37) 
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because of the normalization of the signal,    u(t).    While the total volume under 

ip(t, f)   is thus constrained, the value of the integral \    \    $(t, f) dtdf  maybe 

R 
reduced by shaping   4>(t, f)   to cause some of the volume under   ip  to lie outside 

the target space, that is, outside the region   R. * 

Accuracy requirements in the measurement of range and radial velocity 

will determine the shape of the ambiguity function near its peak.    For example, 

if accurate estimates are required of both range and radial velocity, the central 

response of the ambiguity function must have the shape of a narrow spike.    In 

addition, if the interference is to be low, the spike should be surrounded by a 

clear space, that is, a region where   V    is zero or very small.   A signal 

consisting of a train of equally spaced pulses has an ambiguity function of the 

correct general shape.    The pulse train signal and its ambiguity function are 

sketched in Fig.  2.    The ambiguity function is identically zero except in strips 

oriented in the Doppler direction.    The spacing of the strips is, of course, the 

spacing between pulses, A , and the strips have a width of  26  where   6   is the 

pulse length.   In the strips where  if)   has value, the volume is primarily con- 

centrated at points spaced at intervals of   l/A   in Doppler frequency.    As shown 

in Fig. 2, the central peak has significant value over a region, the area of 

which is approximately equal to   S/mA,   where   mA   is the total time duration 

of the train of pulses.     Notice that the central response is surrounded by an 

approximately clear space of dimensions  A   in range by   l/A   in Doppler. 

We should use the pulse train signal in the multiple-target problem 

by scaling the radar parameters to cause echoes from objects in the target 

* A very good general discussion of signals and the shapes of their 
X    functions is given by Siebert in Ref. 9. 
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Fig. 2. Sketch of a pulse-train signal and its ambiguity function. 

space to fall within the clear space surrounding the central response in Fig. 2. 

To scale the radar parameters properly, we would set  A,    the interval between 

pulses in the train, equal to   T  ,   the time extent of echoes from the multiple 

targets.    Next we select the carrier frequency,    f ,    to spread the objects in 

Doppler frequency sufficiently to fill the dimension   l/A   in Fig.  2.    To do this 

we would set 

2V. 
W^ = 

T 
_R f *1 
C        o       A 

(38) 

where   V     is the total spread of the multiple-target complex in radial velocity, 
R 

and  C   the velocity of light.    This would yield for the carrier frequency   f 
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f    =£   OT.
C

A • (39) 
o        2V   A v    ; 

R 

The required range and radial-velocity accuracies can be achieved by making 

6  sufficiently small and  mA   sufficiently large.    The region   R  in Eq.  (36) by 

the above discussion consists of the space  A  by   l/A  about the origin in Fig. 2. 

We can estimate the volume under   4>     in   R.    The volume under the central 

response is roughly 

volume  =  height at origin  x  area of base 

-    1,-2- 
mA 

signal time-bandwidth product 
(40) 

and the volume under   ^   in   R  will be of the same order of magnitude.    Then 

the interference is approximately 

E|e(0' °>l2   *    (T^HTsW^       ' <41> 

where   T W     is the signal time-bandwidth product.    The interference is thus 
-4 -5 

reduced by a factor   l/T W    ,   which can be of the order of   10     or 10       when 
o    o 

the signal is a properly designed pulse train. 

If the requirements of the radar system do not include estimation of 

both range and Doppler frequency simultaneously, other signal designs may be 

employed to reduce the volume under   ip  inside the target space.    For example, 
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if it is sufficient to detect the targets and measure their range only, then one 

may choose a signal whose ambiguity function has the shape of a thin ridge 

oriented in the Doppler direction.    The volume under   |)  in   R  may be reduced, 

by making the ridge extend in Doppler far beyond  W   ,    the Doppler extent of 

the target complex.   A signal whose ambiguity function has the general shape 

of a thin ridge oriented in the Doppler direction is the short, constant-frequency 

pulse.    A pulse of length 5  has an ambiguity function having a width in the 

range direction of about   <5  and an extent in the Doppler direction of about   1/5. 

The pulse length   6  would be chosen so that the ridges corresponding to the 

objects in the multiple-target complex would not overlap significantly. 

If the simple pulse signal is made to have a large duration,   the 

signal ambiguity function assumes the shape of a thin ridge oriented in the range 

direction.    If the duration,    6,    is made much greater than   T   ,   the extent 

of target echoes in time, the volume under   4>   in   R,    and hence the interference, 

is reduced.    Targets may then be separated by their differences in radial 

velocity.    This is the CW radar case. 

Another type of signal which may be useful in multiple-target situations 

is the large time-bandwidth product,  frequency-modulated signal whose frequency 

variation is uni-directional with time.    Such signals tend to have ambiguity 

functions of the shape of a thin ridge, except in this case the ridge is at an angle 

to both the time and frequency axes.    An example of this type of signal is the 
[ 10] 

so-called "tangent FM" signal described by Key,   Fowle, and Haggarty. 

Another such FM signal is the familiar linear FM or "chirp" signal described 

by Cook, Klauder et al. ,        J Fowle et al, Jacobus, and others. 

In the discussion up to this point we have explicitly assumed that the 

dense target complex was bounded in time and Doppler frequency.   When the 

target complex extends so far in time and Doppler that it is not practical to 
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design the signal to cause any of the volume under   ip  to lie outside the target 

space, we have 

n 2 
^(t, f) dtdf  s   (signal energy)   = 1     , (42) 

R 

and   N          becomes 
max 

N 
max 

T    T 

(TM(!). \   min /       min 

(43) 

Now it is meaningful to speak of target capacity in terms of a density or target 

capacity per unit area in range-radial velocity space.    To do this we may 

write for   Tm T 

T 
TT "     C 

and for   W 

2V 
W     =   -£2L  f 

T Co 

where   R      is twice the extent of the target complex in range,    V  the spread 

in radial velocity,   f    the radar carrier frequency, and   C  the velocity of 

propagation.   Then we have   N per unit area in the range-radial velocity 
max 

plane given by 
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N f 
_!Bax = _2_  2        . (44) 

RTV 2      (b/b    .  )(S/i)    . 
1 ^ min min 

The target capacity per unit area may only be increased by increasing the 

carrier frequency when the target complex is of large extent in range and radial 

velocity, as shown by Eq.  (44). 

2. 6 Detection of a Target in Clutter* 

In the situation that exists when an isolated target is imbedded in clutter 

at   T = v = 0,    it is meaningful to speak of the signal-to-interference ratio,    S/I 

S  =   _ S  (45) 
I 

I  !*<'• nb \       W(t, f) P(t, f) dtdf 

where   n   is very large and   b   very small so that the product   (nb)   is finite. 

If the clutter is assumed to be uniformly distributed over time   T     and Doppler 

frequency shift  W  ,    the expression for the signal-to-interference ratio becomes 

T   W 

f =    n^         . (46) 
(a/b)  \     W(t,   f) dtdf 

R 

* This section follows Fowle, Kelly, and Sheehan,  Ref.  8.    For a treatment 
of the problem of the detection of a target in clutter distributed in rnnge 
only,  see Manasse,  Ref.  15. 
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where we have written  a = nb  to signify an "average clutter cross section. " 

The region   R  now includes the entire clutter space.    Quite obviously, all the 

commentary about the problems of detection in the multiple-target situation 

apply to the case of a target in clutter.    In addition,  it is possible that the clutter 

cross section,   a,   may be reduced by appropriate choice of carrier frequency. 

As previously mentioned, once the interference is lowered to a point where 

targets of suitably small cross section can be detected, there is little motivation 

for going farther and exploring the structure of the clutter, even if that could 

be done.   When the clutter is of very great extent in time and Doppler, as in 

the unbounded multiple-target situation, the only method available for reduction 

of interference is that of increasing the radar carrier frequency. 
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3.0 WAVEFORMS 

3. 1 Introduction 

As a preliminary to a discussion of the design of radar waveforms, it 

is most appropriate to assert that no one waveform is ideal in all operating 

situations.   A particular waveform can be very useful in one situation and less 

than optimum in another.   Hence, in the design of a versatile radar it is con- 

ceivable that provision should be made for the transmission, at the option of the 

operator, of any one of several waveforms. 

For example, the radar operator might want to perform with a long- 

range, high-power radar a sequence of operations somewhat like the following: 

(1) Search a given region of space for targets with potentially 

large velocity toward or away from the radar; upon detection 

of an echo, measure coarse range and velocity. 

(2) Following reception of an echo, determine whether the target 

is single or multiple. 

(3) Measure with increased accuracy the range and radial velocity 

of the object (or objects). 

(4) Distinguish between genuine signal echoes and bogus echoes. 

In the search mode, because of the possible large velocities and 

correspondingly large Doppler frequency shifts, it is necessary to provide in 

the radar receiver a bank of matched filters spaced uniformly in frequency 

over the anticipated Doppler band.    Many filters may be necessary in some 

cases.   In the search mode the only important parameter of the signal is the 

energy it contains (all signals of equal energy received in matched filters give 

the same probability of detection of isolated targets).    The radar operator, 
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looking for possible distant targets, would thus begrudge a waveform design 

which made his transmission inefficient.   Also, the waveform should be simple. 

Simple signals generally have simple matched filters, and simple matched 

filters are desirable when a large number of them must be built, paid for, and 

maintained.    For the search mode a signal consisting of a rectangular burst 

of constant frequency sinusoid might serve well.   With the flat-topped signal 

the transmitter can be operated in the saturated mode at maximum efficiency. 

When an echo is received, the coarse range and radial velocity of the 

object are measured.   To determine whether there is one object or several 

nearby objects the operator might switch to a different signal — one of large 

bandwidth with an autocorrelation function having a very narrow central peak 

and very low sidelobes.    In general, echoes somewhat more widely separated 

in time than the duration of the central part of the autocorrelation function may 

be resolved, and the lower the sidelobes, the greater the permissible ratio of 

the cross sections of the resolvable nearby objects.    Signal-to-noise ratio is 

always important, but to answer the question of whether there is one or many 

objects, ultra-low sidelobes are important, too, and one might use a less 

efficient signal than that employed in Operation 1 to get the low sidelobes.    For 

example, one might use an amplitude- and phase-modulated signal, say, a linear 

FM signal with a Gaussian envelope or a simple amplitude-modulated, pulse- 

burst signal.    The former would provide high resolution in range and the latter 

high resolution in both range and Doppler. 

To perform Operation 3, that is, to measure with greater accuracy 

the range and radial velocity of an object, the operator might transmit a very 

complicated signal having an ambiguity function of the thumb-tack shape.    Such 

a signal, as we shall see, might have a symmetrical (about the center of the 

pulse) frequency sweep and more or less constant envelope.    The matched filter 
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for such a signal can be very complex to design, build, and align and, hence, 

very costly.    One would not want to make a filter bank consisting of many such 

filters.    However, one might make, say, three such filters tuned to different 

frequencies so that their responses overlapped at the minus 1-   or minus 2-db 

points.   One could steer the bank of three filters to the approximate frequency 

of the echo (measured in Operation 1) and refine the measurement of frequency 

(and hence of radial velocity) by interpolating between the filter outputs and at 

the same time,  refine the measurement of range made in Operation 1. 

Finally, the operator, by hypothesis, has the problem of distinguishing 

between genuine and bogus echoes. There are a number of things the operator 

could do. For example, he could detect certain kinds of bogus echoes by trans- 

mitting several highly structured signals in succession and observing the output 

of the respective matched filters. If the output waveform did not have the shape 

of the signal autocorrelation function in each case, the operator should suspect 

that the echoes were not genuine. 

It should be clear, of course, that there are other equally valid signals 

and procedures for solving the operating problems postulated in the example. 

The reader can invent his own.    The above discussion serves to illustrate, 

however, the point made earlier that no one signal solves all radar operating 

problems in an optimum way and that it is not unreasonable in the design of a 

radar to provide several signals to serve various purposes.   In fact, this is 

frequently done. 

In the preceding section we classified signal correlation function (and 

the related ambiguity function) shapes and gave a discussion which indicated 

something of the utility of the various shapes in regard to the accuracy of 

target parameter estimation and to the resolution of multiple targets.   It 

would be pleasant if there were a method of synthesizing a signal to have a 
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specified two-dimensional correlation function. Sussman and others 

have studied the general problem of signal correlation function synthesis but 

have not produced useful general methods.   In the last analysis the signal de- 

signer must choose a signal, calculate its two-dimensional correlation function, 

and continue the process until he finds a satisfactory signal whose X   function 

is also satisfactory for his purpose.   In this process he may, of course, be 

guided by experience. 

In this section we will classify signals by type of modulation, that 

is, whether amplitude modulation, phase modulation, or a combination of the 

two.   We will try to see what kinds of  X- function shapes are possible with the 

various kinds of modulation in the signal and, where possible,  see how to 

control the X-function shape, at least over a limited region.    For purposes of 

convenience we will distinguish between "compact" signals (energy concentrated 

into one time interval) and "distributed" signals.   An example of the former is 

a single rectangular pulse; an example of the latter is a burst of pulses spaced 

at intervals in time.    Compact signals are treated in the first 12 sub-sections, 

and distributed signals are treated in the 3 sub-sections which follow. 

In the discussion which follows we will assume that the signal   s(t)   is 

s(t)   =   u (t) cos [2ir f t + <p(t)]    > (47) 

where u (t) is called the envelope and <p (t) is called the phase modulation. 

We will assume that narrow band conditions apply and represent s(t) as the 

real part of  s (t)   where 

s(t)   =   R   j s  (t) [ 
(48) 

=   R    ju (t) expj<p(t) expj2 7r f t ( 
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We let 

u(t) = ue(t)expj<p(t)     • (49) 

The function  u(t)   is usually referred to as the complex modulation of the signal. 

Notice that   u(t)   completely defines the signal except for the carrier frequency 

which is, at this point, of no particular concern.    For simplicity, then, we 

shall refer to  u(t)   as the signal in the material which follows, unless otherwise 

noted.    The Fourier transform of  u(t)   will be   U(f)   where 

U(f)   =   U   (f)expjG(f)      • (50) 

The two-dimensional signal correlation function   x (T .   v) has the two representa- 

tions, one in terms of  u(t)   and the other in terms of   U(f)   thus: 

j      u(t) u X(T, V)   =   \      u(t) u(t + T) exp(-j27r vt) dt (51) 

I U(f) U(f + v) exp(-j2irfT) df   • (52) 

The complex conjugate of  u(t)   is denoted by   u(t).    Notice that along the   T 

axis 

\      u(t) u X(T,  0)   =    \      u(t)u(t + r)dt (53) 

=    \      U2(f) 
m 
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The first Eq. , (53), shows   X(T,  0)   to be the complex signal autocorrelation 

function, and the second line,  Eq.  (54),  shows   \(T>  °)   to be the Fourier 

transform of the square of the modulus of the signal spectrum.    From the 

latter relation we may deduce that the effective duration of  X(T, 0)   is inversely 

proportional to the bandwidth of the signal.    Along the v axis 

I X(0,  v)   =      \      U(f) U(f +r)df (55) 

=     \      u   (t) exp (-J2TT v t) dt   • (56) 

X(0,  v)   is given by the complex autocorrelation of the signal spectrum and, 

alternatively, by the Fourier transform of the square of the signal envelope, 

u (t).   The extent of  x(0, v)  is thus inversely proportional to the duration of 

the signal.    It should be noted, however, that the function   X(T,  V )   is not in 

general determined in the   T,  V  plane by its behavior on the   T   and   v   axes. 

3. 2 Amplitude-modulated Signals 

When the signal is merely amplitude modulated,    u(t)   =   u (t),   and 

cp(t)   =   0.    U(f)   is then determined solely by the envelope,    u (t).   We have 

for   X(T,  V) 

X(T,  V)   =   \     u (t) u (t + T) exp(-j27ri/t) dt    • (57) 
J        e        e 

To show how the ambiguity function shape is related to the envelope shape, 

let us calculate the ambiguity function for two amplitude-modulated signals. 

First let us consider a signal with a rectangular envelope.   We take 
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/     0     , 

0<  t 

ue(t) 

otherwise 

We substitute Eq.  (58) into Eq.  (57) and integrate to obtain for   x(T>   v) 

\ 

expLj^(r-T)]    (T-r)   g7~iT~D   ,   0   £   r  <T 

X(T,  i;) =       exp [ pv(r - T)]    (T + T)   ~^^T^   ,   -T <  T   ^   0     ,      (59) 

^ o    , otherwise 

Along the   v axis   (that is,    V   = 0)  we have 

T-T        .        O^T<T 

X(T,0)=<T + T        ,        -T=:T<0 , (60) 

(      o otherwise 

and along the   v axis  we have 

sin IT vT 
X(0, v)   =   exp(-J7rvT)T      ffyT • (61) 

The function   |X(T,  V)\   is sketched in Fig.  3.    The section of   | x I    along the 

T axis is triangular in shape with an extent of 2T; this section is the auto- 

correlation function of the envelope   u (t).   In the v direction the section of 

| X [   is the Fourier transform   of u (t).    The extent of | x | in the   T   direction 

is effectively,    T,   the reciprocal of the bandwidth of the signal.    The extent 

of  | X | in the   v direction is effectively the reciprocal of the signal duration. 
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Fig. 3. Sketch of the | X | function of a rectangular, constant-frequency signal. 
Profiles are shown vs. time at intervals of 1/2T in Doppler where T is the 
signal duration.   (Taken from Applebaum and Howells, Ref. 7, with permission.) 

Next, as a second example, let us consider a signal with a 

Gaussian envelope.   We take 

ug(t) = exp (- t ) (62) 

The signal correlation function becomes 

f °° 9 2 X(T, V) =    \       exp(-t *) exp - (t + T )   exp(-j27r v t) dt   • (63) 
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We complete the square in the exponent in Eq.  (63) and use the relation 

1 °o /        2 

exp   I --£-   Jdy   =      /2ir  a 
2CT 

to obtain for   x (T , ^ ) 

/  2 2   2 \ 
X(T,  J>)    :  /-    exp (JTT i/ T ) exp   -    I — +—— J    • (65) 

Notice that in Eq.  (65) sections of  | x |   taken in the   T   direction are all 

Gaussian of constant width between   e       points.    The effect of a Doppler shift 

is to reduce the amplitude of the peak.    The signal correlation function of 

the Gaussian signal is sketched in Fig. 4. 

The two examples above serve to illustrate somewhat the extent to 

which the signal correlation function may be shaped by shaping only the signal 

envelope,   u (t).   In both of these cases   |x|   has appreciable value over 

approximately the interval   1/W   (where  W  is the bandwidth of the signal) in 

the T direction and   l/T   in the   v   direction.    In both cases   TW   is approxi- 

mately equal to one.    The volume under   |x|   is thus largely contained in a unit 

area centered about the origin of the   T,  V   plane, and   |x|   has approximately 

unit height in this region.    The width of   |x|   in the T   direction can be decreased 

by increasing W   (that is, by decreasing   T)   and target range may thus be 

measured more accurately in presence of noise.   However,   decreasing  T  has 

the effect of increasing the extent of   | x[   in the  v direction and reducing our 

ability to measure frequency shift.   In the following sections we will show that 

a combination of amplitude and phase modulation will permit the time-bandwidth 
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Fig. 4. Sketch of the | X I  function of a constant-frequency signal with a Gaussian 
envelope. 

product to be much greater than one, and that with a large time-bandwidth 

product a great deal more control over the shape of   | X(T", V )  \   is possiKe. 

3.3 Phase-modulated Signals 

We will say a signal is phase modulated when its structure ; nd that of 

X(T,  v)   is largely determined by the phase modulation and is relatively inde- 

pendent of the amplitude modulation.   We have seen that the extent of   x   on the 

T   axis is reciprocally related to the signal bandwidth and that the extent on the 

v   axis depends on the reciprocal of the signal duration.    Simple amplitude- 

modulated signals have time-bandwidth products of approximately one.    By phase 
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modulation we can make the bandwidth much greater than the reciprocal of the 

duration, and hence, it is possible by phase modulation to make   x  narrowly 

confined in both the  T   and v  directions, subject, of course, to the volume 

constraint on   | x I    •   However, we will see that phase modulation achieved 

by sweeping the frequency in one direction does not necessarily narrowly con- 

fine the peak of  x  in the  T, V  plane.    To confine   x  to an area of  l/W   by   l/T 

in the  T, V  plane it is necessary that the frequency sweep be symmetrical, 

that is, down and up or vice versa.    But confining   x   in the   T   and   v directions 

is not always necessary or desirable.   We will see that by sweeping the frequency 

in one direction we can control the shape of   x   in a narrow strip about the   T 

axis.   We will develop a procedure for designing signals to do this and give some 

examples.    Then we will extend our results to see what can be said about phase- 

modulated signals whose   x_functions are narrowly confined in both the   T   and   v 

directions.   We will also consider phase modulation achieved by making step 

changes in the phase of the signals, and see what kinds of   x functions are 

associated with this kind of signal. 

If the range of expected Doppler frequency shifts is small and if 

measurement of Doppler frequency is not desired, then a suitable shape for 

| X( T ,   v ) 1   would be a narrow ridge perpendicular or nearly perpendicular to 

the time axis.    The ridge should be sharp enough to permit a sufficiently 

accurate determination of range to be made in the presence of noise, and it 

should fall away quickly enough in range to make the interference due to echoes 

from nearby objects small.   With   v = 0,   the signal correlation function 

becomes   X(T, 0)  which is, of course, the signal autocorrelation function, and 

the problem of shaping     | X(T.  V) |   in a narrow strip about the   T axis   becomes 

that of designing the signal to have a desirable autocorrelation function. 

39 



If the only problem were that of designing a signal whose auto- 

correlation function were short, the solution would be easy:   a simple signal 

of short duration.    But in general the easy solution is not acceptable because 

the returning signal echo is detected in noise on the basis of the energy it 

contains, and energy in the echo is proportional to energy in the transmitted 

signal.    To get high energy in a short signal requires high voltages in the 

transmitter, leading eventually to arcing, etc ; frequently it is not possible 

to get sufficient energy in a short signal, and recourse must be had to long 

signals whose autocorrelation functions are narrow.    The problem of designing 

a relatively long,  rectangular, phase-modulated signal to have an autocorre- 

lation function of short duration and specified shape has been treated, by Key, 

Fowle, and Haggarty and, independently, by Watters. The solution 

for the phase modulation when the signal envelope is constrained and of arbitrary 
\ 181 

shape (that is, non-rectangular) and duration has been given by Fowle. We 

will first treat the general rectangular signal case and then consider examples 

to illustrate the design procedures.    Then we will discuss an approximation to 

a smooth frequency sweep:   a rectangular signal whose frequency changes by 

discrete steps at intervals during the signal duration.    Next we will discuss 

rectangular signals with phase modulation obtained by making step changes in 

the phase at intervals during the signal's duration.    Following that, we will 

return to smooth frequency sweeps and consider the general problem of designing 

a signal of arbitrary envelope shape to have a specified autocorrelation function, 

and, finally, we will give an example of an amplitude- and phase-modulated 

signal. 
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3. 4 Uni-directional FM Signals* 

Here our purpose is to consider how to design a signal of rectangular 

envelope and given duration so that the   | x|   function of the signal will have a 

specified shape along the  T axis.    By controlling the shape of the   | x |   function 

along the   T   axis we will, in fact,  shape the    |x  I function in a strip on either 

side of the  T   axis.   Such a signal will be useful when the range of expected 

Doppler shifts is less than the width of the strip.   We have for   X(T,  0) 

CO 

X(T,  0)   =      ( |U(f) |2 exp (-J27T fr) df     - (66) 

Specification of  X(T,  0)   determines   U   (f),   the modulus of the signal 
m 

spectrum, thus: 

1/2 

U   (f) m I X(T, 0) exp (J2TT fr) df (67) 

At this point we have specified the modulus of the signal (i.e. , that it be 

rectangular) and the modulus of the Fourier transform of the signal,    U   (f). 
m 

The question is, what phase functions must be associated with these moduli 

to make a Fourier pair? We must find an expression for 0 (f),   for example, 

to make 

*Early work in FM signal design is described in the patents of Sproule and 

Hughes in England, Dicke and Darlington in the U.S. , and 
[221 [ 10 

Cauer in Germany. The material in this section is based upon Key etal. 

Watters, and Fowle .L    J 
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y U   (f) exp j0(f) exp (J2TT ft) df u(t) I   , (68) 

where   |u(t)| =  constant during the signal duration.    Eq.  (68) is an integral 

equation of an unusual kind; it is not clear how the solution for   © (f)     should 

proceed.   The problem is further complicated by the fact that an exact solution 

for  © (f)    does not, in general, exist, because the moduli of a Fourier pair 

may not be arbitrarily specified.   Worse still, a concise set of necessary and 

sufficient conditions on two functions to be the moduli of a Fourier pair does 

not exist.   How then are we to proceed to solve the problem we have formulated? 

Fortunately there is a way.   An approximate expression for   © (f) 

in terms of the specified moduli may be gotten from Eq.  (68) by the method of 

stationary phase.   As we will see, the approximate expression for   ©(f)   together 

with the initially specified   U   (f)  will satisfy Eq. (68) with good accuracy under 

certain circumstances even for modest signal time-bandwidth products. 

To begin the approximate solution for   ©(f),   we write for   u(t) 

u(t)   =     \        U   (f)expj©(f)exp(j27rft) df      • (69) 

According to the principle of stationary phase, * the integral of an oscillatory 

function,  such as Eq.  (68) above, has little value except in the vicinity of points 

where the phase is "stationary" or where the derivative of the phase is zero. 

The phase in Eq.  (68) is     /3(f)   where   /3(f) = 27rft + ©(f),   and the derivative, 

/3 -(f),    is 

* For a discussion of the method of stationary phase,  see Sneddon,  Ref.  23. 
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0 '(f)   =   2;rt + 0'(f) (70) 

where the prime denotes differentiation with respect to  f.    The phase is stationary 

at the point   f = X ,   which makes   /3 '(f) = 0.    Then we have 

9'(X)   =  - 27Tt    • (71) 

In the stationary phase method,   /3(f)    is expanded in a Taylor's series about the 

stationary point,   X ,   and terms of higher degree than second are dropped. 

The resulting equation can be integrated to give the following approximate ex- 

pression for   u(t): 

Um(M 
u(t)   =    /2TT       . expj [2irXt + 9(X)   ± TT/4] (72) 

/[©"(Ml 

where the   +   sign is taken in the exponent for   9"(X) > 0   and   -   for   9"(X) < 0. 

Equation (72) above assumes that only one stationary point exists at time   t, 

and this is adequate for our purpose.   We note that   u (t)   and     <t> (t)   are given 

approximately by 

U   (X) 
m 

u (t)   =/2i       , (73) 
le"<x)| ft 

and 

cp(t) 2    27r\t +    6(\) ± TT/4 • (74) 
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The trouble with the solutions for   u (t)   and   <£(t)   above is that they are func- 

tions of the variable  X ,   and  X   is, as yet, an unknown function of  t,   given 

in Eq.  (71).   In the special case which is of interest here,    u (t)   is required 

to be constant.   With  u (t)   constant,  Eq. (73) becomes 

6"(X)   =   k U2 (X)    , (75) 
m 

and the phase,   0(f),   is given by two integrations of Eq. (75) with  X = f. 

We get 

f      x 

6(f) = k   \       \      U^ (y) dy dx   • (76) 

— oo       —oo 

By definition, the group time delay   T(f) = -6'(f)/2 7r ;   we differentiate Eq.  (76) 

to obtain for   T(f) 

T(f)   =   k± J      U^(x)dx    . (77) 

where   k      is a constant. 

Up to this point, we have obtained the following result:   If we 

associate with an arbitrary spectral modulus a group delay proportional to the 

integral of the square of the modulus, we then have the Fourier transform of 

a function that has an approximately constant envelope.   In other words, we 

have the result that 
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oo 

1 U   (f) exp 
m 

f     x 

U     (y) dy dx 
m 

— oo     —oo 

exp (J2TT f t) df 

(78) 

A exp j<p(t), for  t  such that a 
stationary point exists, 

elsewhere, 

where   A   is a constant.   We have the final question to answer:   What is the 

phase modulation,    <p(t) ?    To get an approximate expression for   <p(t),   we 

differentiate Eq.  (74) with respect to   t.   We get 

<p'(t)   £   2TT\    + 
de x 

27Tt   + ,  '   ' 
d\ 

dX_ 
dt 

(79) 

have 

The term in brackets in Eq.  (79) is zero by Eq.  (71).    Then we 

<p»(t) £ 2TT \ (80) 

If we define the instantaneous frequency   f(t) = <p'(t)/27r,    Eq. (80) 

becomes 

f(t) S   X (81) 

The instantaneous frequency at time   t   is thus given approximately by  X ,    the 

frequency which makes the integrand in Eq.  (69) stationary.    Another relation 

between  X   and  t  can be gotten from Eq. (71).   We have 
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But   -0'(X)/27r   is, according to the discussion above, the group time delay, 

T(X),    and Eq.  (82) becomes 

t = T(X)    • (83) 

If we use Eq.  (83) in Eq.  (81), we get 

f[T(X)]£X      , (84) 

which shows that instantaneous frequency and group time delay are approximately 

inverse functions.    That is, we have 

T(\) = f X (X)    , (85a) 

and,  in addition 

f(t) = T_1(t)   • (85b) 

Using Eq.  (85b) we can write for   <p'(t) 

<p'(t) = 27rT"1(t)   • (86) 

We integrate Eq.  (86) to get for   <p(t) 

I*'1 
<p(t) = 2vr   \      T    (x) dx    • (87) 
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cp(t)   in Eq.  (87) is given by the integral of the inverse of the group delay, 

T(f),   which depends only on the spectral modulus   U   (f)   and upon the fact 
m 

that the envelope   U (t)   is required to be constant. 

Let us now summarize the procedure that we have given for the design 

of unidirectional FM signals.   The problem is to design a constant amplitude 

signal to have a specified duration and an autocorrelation function of specified 

shape and duration.    Specification of the autocorrelation function determines the 

modulus of the signal spectrum.   We then associate with the modulus of the 

signal spectrum a group time delay characteristic proportional to the integral 

of the squared spectral modulus to obtain the approximate transform of a con- 
2 

stant amplitude signal.    Because   U    (f)   is non-negative, the group delay, 

Eq. (77) will either monotonically increase or decrease with frequency, depending 

on the sign of  k .   Since the instantaneous frequency and group time delay are 

approximately inverse by Eq.  (85), the instantaneous frequency will be a mono- 

tonic function of time.    A little thought will show that if the group delay increases 

with increasing frequency, the instantaneous frequency will increase with time 

and vice versa.    In the two sections which follow we will consider signal design 

examples that will illustrate the ideas we have developed in this section. 

3. 5 The Rectangular Linear FM Signal 

We will consider the linear FM signal for two reasons.    First, it 

illustrates in the simplest way the FM signal design ideas we have developed 

and second, the linear FM signal is a widely used and useful radar signal.    To 

put the linear FM ideas in terms which fit our development, let us suppose that 

we want a rectangular signal whose   x   function along the   r axis has the 

following form, 
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sin7Tt/T 

*<T>0) = T; -717F7- • <88> 

The effective duration of the signal autocorrelation function above is   T .   We 
2 

set   T   = 1/W.    The Fourier transform of   X(T, 0)  is   U    (f).   We perform 
1 2 

the transformation and obtain for   U    (f) 
m 

W       .     W 
Y<f<Y 

U^(f) =   \ • (89) 

otherwise 

i1. 

The modulus of the signal spectrum,    U   (f), is 

r- w     r    w 
"T<f<T 

Um(f) -    , . (90) 

'   0    ,        otherwise 

We find the group delay   T(f)   required, with   U   (f)   [ Eq.  (90) ] , to make the 
m 

Fourier transform of a rectangular signal by means of Eq.  (77).   We have two 

choices, one corresponding to a frequency sweep whose frequency increases 

with time, the second to a frequency which decreases with time.    To find the 

former, we set 

T(£)   =   K   \ df 
-W/2 

(91) 

rr/r        W    v W r W 
-   K(f + T)    ,     -  T   <f <   -    • 
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We find   K   by requiring that the signal have duration   T     where   T    » T . 
£ _ I 

The signal duration is given approximately by the range of delay through which 

T(f)   varies.    Hence we set 

T(f) = T2 , (92) 

and find that 

T2 
K = —     • (93) 

Hence 

T2   /.     W \ W       .      W 

T(f) 

otherwise 

and solve for \ .   We find that 

T-'i)   '   0<t 

otherwise 
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(94) 

We can find the instantaneous frequency vs. time by use of Eq. (83) which 

says 

t = T(X) , (95) 

where  A , by Eq.  (81),  is the instantaneous frequency.   We set 

T t=^r(x+f) <96> 

(97) 



lb is apparent iin Eq. ((9>7)t that the instantaneous; frequency increases with time 

from -W/2.'to>+W/'&. 

fit order to find the second solution) floor   T(f)» we re-write Eq.  (77), 

changing; the- Mimaits of integratEon thiiSy 

•  - 

TT<^)» = K \\ dfi     ,. (AS); 

A' 

and! require- that Tft-W/24)= T_..   We obtain for Tp) 
4- 

iT2/W       A W 

V 0    , 

<f<¥ 
T(f) = 

(99) 

otherwise 

We find the frequency vs. time,   X,    corresponding to   T(f)   in Eq.  (99), to be 

0 <  t < T2 

(100)! 

otherwise 

which- shows that the frequency decreases with time from   +W/2   to   -W/2 . 

It is well to' note here that we have been trying to design a band- 

limited signal to be time limited as well. Paley and Wiener show that it is 

impossible for a function to be both time limited and band limited. *   As the 

* See Theorem 10 of Paley and Wiener,  Ref. 24. 
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time-bandwidth product of the signal increases, however, the above restriction 

appears to lose force, and a better and better approximation to a time-limited 
[ 12] 

signal is possible.   Klauder et al. calculate the envelope of a signal whose 

spectrum has a rectangular modulus and linear group delay.    Their results are 

given in Fig. 5 for several TW products.    For   TW £ 10, the envelope is not 

very rectangular.    For   TW a 60  the approximation is better; finally for 

TW a 120,    the approximation is fairly good.    As the   TW  product increases, 

the envelope will become more and more nearly rectangular although, of 

course, never exactly rectangular.    For modest   TW   products it can be shown 

that the frequency vs. time is quite linear except near the ends of the pulse, 

and that the fraction of the pulse over which the frequency is approximately 

linear increases as the   TW   product increases. 

The linear   FM  signal can be generated in a number of ways.    The 

most common way is to apply an impulse (i. e. , a short pulse) to a composite 

filter with a frequency response that has an approximately rectangular modulus 

and a group delay that is linear with frequency.    The signal can also be generated 

by sweeping an oscillator in frequency at a uniform rate and holding the ampli- 

tude constant.    In the latter case it is the spectrum that has the ripple and is 

only approximately rectangular.   We will say more about the techniques that 

are available to generate and receive signals in Section 4. 0. 

In Fig. 6 we show schematically a radar which employs a matched 

filter receiver.   The transmitter is represented as an equivalent linear filter 

whose impulse response is the linear   FM  signal.   The system operates in the 

following way.    The impulse response of the transmitter bandpass filter in 

Fig.  6 is a   BinrrWt/irWt  waveform of duration   T   = l/W.    The   sin 7rWtAWt 

pulse is dispersed in the all-pass filter in a manner which, according to the 

previous discussion, gives a waveform of nearly constant amplitude with 
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(a) TW = 10.125 (b) TW = 60.5 

1.0 

0.5 

U\AA A 'rW\J \J \ 

0.2 0.4 

1/T, 
0.6 0.8 

(c) TW = I20.I25 

Fig. 5   Envelope of a signal with a Fourier transform that has a rectangular modulus 
and quadratic phase for (a) TW = 10, (b) TW = 60, and (c) TW = 120.   (Taken 
from Klauder et al, Ref.  12, with permission.) 
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duration   T .    The ratio of the duration of the waveforms is   T /T   = TW, 

the time-bandwidth product.    The dispersed waveform, which we call the signal, 

is transmitted.   A replica of the signal, attenuated and delayed, is presented 

to the receiver.    The receiver, in this case a matched filter, is shown as an 

equivalent linear filter whose impulse response is the signal inverted in time. 

The dispersed signal echo is compressed in the receiver all-pass filter, the 

output waveform of which is again  sin 7r WtAWt.    The signal then passes, in 

this case without change in shape, through the bandpass filter to the receiver 

output terminal. 

When the echo returns with a Doppler frequency shift (due to reflec- 

tion from an object moving radially with respect to the radar), we have the 

situation in the receiver illustrated in Fig.  7.   In Fig.  7(a) the receiver frequency 

response is shown centered at  f .    The signal spectrum is shown shifted up 

in frequency from   f    by   f ,    the Doppler shift.    The moduli of the frequency 

functions of the signal and the receiver multiply and the group delay charac- 

teristics add, to give the modulus and group delay,  respectively, of the 

receiver output waveform [ Fig. 7(b) ] .    The effect of the Doppler shift is 

two-fold.    First, the bandwidth of the output waveform is reduced and its 

duration correspondingly increased, and second, the signal appears at the output 

terminals advanced in time by AT  which is proportional to   f .   When the 

Doppler shift is negative, the signal is delayed in time by   AT.    As the output 

waveform broadens because of Doppler shift in the signal, the resolving power 

of the radar (the ability to make echoes from nearby objects distinct or non- 

overlapping) decreases.    The time shift which results from the Doppler shift 

causes an error to be made in the estimate of the range to the target.    But, 

regardless of Doppler shift, the group delay of the waveform at the receiver 

output is constant (non-dispersive) and the output waveform thus is free of 

phase modulation. 
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(a)   MATCHED   RECEIVER   FREQUENCY   RESPONSE   AND   DOPPLER-SHIFTED   SIGNAL 
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OF RECEIVER OUTPUT 
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GROUP   DELAY t 
T-AT 
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(b)    SPECTRUM   OF  THE   RECEIVER   OUTPUT 

Fig. 7   Effect of Doppler frequency shift on linear FM pulse compression system. 
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Fig. 8 shows a model of the two-dimensional correlation function, 

|X(T,  V) I ,   corresponding to a signal of rectangular envelope and exactly 

linear instantaneous frequency.   The   TW  product of the signal is 10.    The 

profiles in Fig. 8 are taken vs. time at intervals in Doppler equal to one-tenth 

of the signal bandwidth.    The profile with the tallest peak is the envelope of 

the signal autocorrelation function; the peak occurs at the origin of the   T, v 

plane.    The most significant feature of the function is the ridge which runs at 

an angle to the time and Doppler axes.    Elsewhere in the plane the function 

is low. 

We might consider how the linear   FM  signal could be used.    The 

duration of the signal we will assume will be determined by the energy require- 

ments for detection and the available transmitter peak power.   The bandwidth 

of the signal should be large enough to give the desired resolution in range. 

The duration of the signal at the receiver output in Fig. 6 is approximately 

T ,   and  T   = l/W,   where  W  is the bandwidth.   To resolve echoes which 

are separated by an interval in time equal to   T ,    a bandwidth of at least  W 

is required.   It is possible, depending on the parameters of the radar, that 

the error in the estimate of range caused by Doppler shifts is negligible.     For 

example, the error in the estimate of time of arrival,   AT,   of a Doppler 

shifted signal can be shown to be 

"•'dt' <101> 

where   f,   is the Doppler shift,    T   the signal duration and  W   the signal 

bandwidth.    The Doppler shift   f. = 2v„ f /c   where   v„   is the radial velocity 
d R   o K 

of the target,    f    the radar operating frequency, and   C   the speed of light. 

If the radar transmitting at 400 Mcps a 100 p. sec signal of 1 Mc bandwidth looks 

at an airplane traveling at 600 miles/hr toward the radar, the resulting error 
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in the estimate of range will be of the order of 40 feet,  in all likelihood a 

negligible error. 

However, the same radar measuring the range to a satellite traveling 

toward it at 4 miles/sec would be in error by about 970 feet, and 970 feet might 

not be negligible.   What can be done to eliminate the error?   One thing that 

could be done would be to measure the range to the target on a number of 

successive pulses, and from the measured values of range compute the range 

rate or velocity of the target.   With range rate known, one could compute the 

Doppler shift and correct the measured values of range by use of Eq.  (101). 

In addition, one could reduce the range error caused by Doppler shift to a 

negligible value by making the signal bandwidth  W   sufficiently large. 

One disadvantage of the linear   FM   signal is the shape of the auto- 

correlation function of the signal.   When it is desired to resolve two echoes 

close together in time,  it is desirable to use a signal that has an autocorrelation 

function that falls off rapidly and smoothly from its peak.    In this way the 

receiver response due to one signal may fall to a low value before the response 

to a nearby echo occurs,  and the resolving power of the radar is enhanced. 

The autocorrelation function of the linear   FM   signal falls off as   l/t   (which 

is not very fast) and it is oscillatory, which is to say that it has sidelobes. 

In most applications it is desirable to suppress the sidelobes, while at the same 

time preserving the rectangular signal shape and its approximately linear 

frequency sweep.    The sidelobes of the autocorrelation function arise, of 

course, because of the rectangular shape of the signal spectrum.    The usual 

method of suppressing the sidelobes is to weight or taper the frequency charac- 

teristic of the receiver, leaving the shape of the signal spectrum, and hence 

the signal envelope,  rectangular.    The spectrum weighting problem here is 

exactly the same mathematically as that of tapering the illumination of an 
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r 251 
antenna to reduce sidelobes, a problem treated by Taylor1   '      and others. 

Figure 9 shows: (a) the unweighted spectrum of the receiver output and (b) the 

associated  sin 7rWt/7rWt  time function, and (c) the general shape of the spectrum 

after weighting and (d) the associated time function.    Notice that the effect of 

tapering is to broaden the output waveform, usually by a factor of about two. 

The weighted receiver is, of course, no longer a matched filter to the signal, 

and a loss in the detection capability of the system results.    This loss is 

usually about 1 to 1-1/2 db,     and in many cases is not serious.    The reader 
[ 12] is referred to the paper by Klauder et al for a thorough discussion of the 

details of the problem of suppressing the sidelobes of the autocorrelation function 

of the rectangular linear   FM   signal. 

(a) (b) 

(c) (d) 

Fig. 9    Sketches to show (a) spectrum of receiver output before weighting, (b) receiver 
output waveform before weighting, (c) spectrum of receiver output waveform after 
weighting,  (d) receiver output waveform after weighting. 
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15. G A Rectangular Non-linear FM Signal* 

Earlier in this section we gave a method for the design of rectangular, 

phase-modulated signals of large time-bandwidth product to have a specified 

autocorrelation function.   In the preceding section we applied these ideas to 

design a rectangular signal of large    TW   product whose autocorrelation func- 

tion was of the form   simr WT AWT.   In most applications it is desirable to 

have a signal whose autocorrelation function has sidelobes of low rms value 

(so that the sidelobes of echoes from many nearby targets will not build up and 

obscure echoes from objects of small cross section) and whose peak sidelobes 

are low (to avoid ambiguities;  i. e. , is it a sidelobe or a second nearby target?). 

The objectionable sidelobes of the linear   FM   autocorrelation function are 

usually suppressed by mismatching the receiver at some loss in detection. 

As a second example of the procedure,  let us design a signal to have 

an exponential autocorrelation function.    The exponential shape falls off 

smoothly (i.e. , does not oscillate and cause ambiguities) and with adequate 

bandwidth can be made to fall off rapidly.   With such a signal the receiver can 

be an ideal matched filter, because no mismatching, with the attendant losses 

in detection, is necessary.    For the envelope of the autocorrelation function 

we take 

X(T,  0) = exp j - 2TTW |T I j . (102) 

The duration of   X(T,  0)   between   e       points is   T   = 1/fW.   We take the 

Fourier transform of 

spectrum.   We obtain 

2 
Fourier transform of   x(T>  0)   above to get   U    (f),  the square of the signal 

* The example in this section is taken from Key et al. ,  Ref.  10. 
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1 
2 7rW 

U    (f)  =   277T2        • (103) i J±y 

To be the Fourier transform of a rectangular signal, the modulus   U   (f)   must 
m 

be associated with a group delay characteristic proportional to the integral of 
2 

U   (f)   as shown by Eq. (77).   As in the previous example, there are two 

possibilities:   one corresponds to a signal whose frequency increases with time, 

the other corresponds to a signal whose frequency decreases with time.    To 

obtain the group delay corresponding to the former signal we write 

Um(f) J        i 

which yields, using Eq.  (103), 

T<« - Mi • *»"1£] (105) 

We find   k   by setting   T(°°) = T,   the desired pulse length, and obtain   k = T. 

The frequency vs. time,   X   ,    is obtained from Eq.  (105) by use of Eq.  (95), 

here repeated as Eq.  (106): 

t= T(X)    • (106) 

We obtain for  X 

X   =Wtan^(t-  f )   • (107) 
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The signal autocorrelation function,  its spectrum and group delay,  envelope, 

and frequency vs. time are all illustrated in Fig.  10.    The amplitude of the 

envelope is found by use of Parseval's law, which requires that 

r 2      r 2 
J       Um(f)df=  J      %(t)   dt (108) 

We obtain 

1 

7T~ 
0 < t <   T 

u
e(t) =  \ • (109) 

0        , otherwise 

We should emphasize, of course, that the procedure we have followed is 

approximate.    For a suitably large time-bandwidth product (here the time- 

bandwidth product may be taken, again, as TW) the Fourier transform of the 

spectral modulus, the square root of Eq.  (103) together with the group delay, 

Eq.  (105),  should have a rectangular envelope and the instantaneous frequency 

given by Eq. (107).    Key et al. have by numerical integration determined 

the Fourier transform of the modulus and group delay cited above.    Their 

results are shown in Fig.  11.    For   TW = 5/TT   in Fig.  11 (a), the envelope is 

within about ±4 percent of being constant.    For   TW = 50A   [ Fig.  11(b)] , the 

envelope is constant to within the limits of accuracy of the numerical calculation 

(about 0.25%).    In this example, where the signal spectrum is a smooth, con- 

tinuous function,  the method of signal design we have outlined yields good 

results for TW products of the order of 10. 
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(a)   EXPONENTIAL  CORRELATION  FUNCTION 

T 
T 

(b)   SPECTRUM   AND   GROUP   DELAY 
OF RECTANGULAR   SIGNAL 

t    vm[1) 

Aw [.Ml)2] 

f     T(f ) = — [ ir/2 + ton'l] 

/j~ =L,o<t < T 
t    u. (t) • W T 

1     O, OTHERWISE 

I 

t     X = W ton-2 (1-y) 

Fig. 10    The tangent1 FM signal 
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As in the case of the linear FM signal considered previously, the 

signal can be generated in a linear fashion by applying an impulse to a linear 

filter or by sweeping properly the frequency of an oscillator. 

In this example the signal and receiver have non-linear group delay 

characteristics.    The non-linear group delay permits the signal spectrum and 

hence the autocorrelation function to be of controlled shape while the signal 

has rectangular shape for efficient transmission.    The receiver is exactly 

matched to the signal, and the maximum detection capability is obtained.    The 

group delay characteristic of the receiver output is constant only for zero 

Doppler shift; when the signal is Doppler shifted, the delay of the receiver 

output becomes dispersive and hence, in general, the peak of the receiver 

output will fall off more rapidly with Doppler shift than it does with the linear 

FM signal. 

The modulus of the two-dimensional signal correlation function of the 

tangent FM signal is shown in Fig.  12.    Notice that     | X(T,  ^)1     is sharply 

peaked at the origin.   With the sharp peak, there is some possibility of locating 

the signal in time and Doppler frequency and hence, of measuring both parameters 

with a single pulse.    (This was not possible with the linear FM signal.)   We 

will later get some insight into the problem of designing frequency-modulated 

signals to have sharply peaked two-dimensional correlation functions; we will 

see then that non-linear frequency sweeps (or non-linear group delay charac- 

teristics) are required. 

3. 7 The Rectangular, Staircase FM Signal 

A smooth frequency sweep can be approximated crudely by a fre- 

quency pattern which changes in steps at intervals in time.   Such signals are 

useful in many applications and will be discussed briefly here. 
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Let us suppose that we have a rectangular signal whose frequency 

changes by equal steps at equal intervals of time, as shown in Fig. 13. The 

signal is a stepwise approximation to a linear FM signal.   The signal duration 

is   nT,   and the bandwidth with the frequency step  W = l/T   is approximately 
2 

nW,   making the duration-bandwidth product  n TW. 

f »2W o 

f0+W 

10 
in 

n ENVELOPE 

 ^.TIME 
nT • 

r 

2T       3T      4T it- 

FREOUENCY 

-•TIME 
(n-l) T 

Fig. 13    Envelope and frequency vs. 
time of the staircase FM 
signal. 

Consider the block diagram of a filter shown in Fig.  14 whose 

impulse response is the staircase FM signal.   The impulse is applied to a 

bank of  sin f/f  filters arranged in parallel.    Each filter has an impulse re- 

sponse which is a rectangular pulse of constant frequency and duration   T, 

and the filter responses are spaced at intervals of W   in frequency.    The 

response of the  kth  filter is delayed by  kT  and all pulses are added to form 

a long-duration signal of constant amplitude. 

The matched filter for the signal is required to have an impulse 

response which is a replica of the signal inverted in time.    The matched filter 

for the staircase  FM signal is simply the filter of Fig.  14 with delay lines 

rearranged so that the longest delay,    nT,    appears on the first line, next to 

longest on the second and so on, with zero delay on the bottom line.   When 
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I 
< 

BANDPASS    FILTER 

SIN ir T(f-fo) DELAY 

T = 0 

z 
00 

n T(f-fo) 

SIN TrT(f-fo-W) DELAY 

T = T 
irT( f-fo-W) 

SIN wTff- to-(n-l)W] 

TTT   f-fo-(n-l)W 

DELAY 

r = (n-l )T 

Fig. 14    Block diagram of a filter whose impulse response is the staircase FM signal. 

the signal is inserted into the matched filter, after an interval   t = nT   all of 

the pulses appear simultaneously at the output and add together.    During this 

interval,    nT <   t   :£   (n + 1) T,   the matched filter output   e(t)   may be written 

as 

n-1 

e(t)   -      )       a(t) cos 2TT (f„ + kW)t (110) a(t) cos 27r (f   + kW)t 

k = 0 

Re 
\ 

n- 1 

V a(t) expj2;r (f   + kW)t 

I k=0 

(ill) 
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where 

T-   111 ,     -T £ t S T 

(112) 

0       ,       otherwise 

is the autocorrelation function of the envelope of the short pulse of duration T. 

Equation (111) is a simple geometric progression and may be summed to 

obtain for   e(t) 

e(t) = a(t)  cos27rt["f    + ^=-1 wl Sl" *Bgf      . (113) 
L o 2 J    sm7r Wt 

Notice that the waveform   e(t)   has a carrier frequency of  [ f   + (n - 1) W/2] , 

the mean frequency of the signal.   The waveform without the carrier is sketched 

in Fig.  15.    The duration of the signal at the 3-db points is approximately 

1/nW.   The compression ratio,   C,   is the ratio of the signal duration to the 

duration of the receiver output.   We have 

2 
The interesting thing is the fact that the compression ratio goes as   n ,   where 

n   is the number of sub-pulses. 

It should be noted that the receiver output waveform exists in time 

for an interval about equal to twice the duration of the signal, that is, (2n - 1)T. 

Physically, the extended duration of the receiver output is due to cross-channel 

leakage.    The bandpass filters in Fig.  14 overlap in frequency as shown in 

69 



(a)   SKETCH OF 

SINirnWI 

SIN irWt 

(b)   AUTOCORRELATION 
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alt) 
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Fig. 15    The staircase FM signal 
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Fig.  16, and, hence, respond somewhat to sub-pulses centered in the passband 

of other channels.   When a signal leaks through a wrong channel, it appears at 

the output at a time different from that at which the peak occurs.   The leakage 

is distributed over an interval of about  nT  on either side of the peak. 

Fig. 16    Sketch showing the frequency characteristics of the channels in Fig.  14. 

Analytically, the leakage may be viewed as the sidelobes of the signal 

autocorrelation function.   The sidelobes are difficult to calculate, and usually 

the calculation is not made.    The sidelobes may be suppressed by weighting in 

a way similar to that done for the linear FM signal.   In the case of the stair- 

case  FM signal, however, one may insert a complex weighting function in 

each channel and adjust each channel separately in turn to suppress the side- 

lobes.    Signal-to-sidelobe ratios of 30 db or better may be achieved in this way. 
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The staircase  FM signal is useful over a range of Doppler frequencies 

which is less than the reciprocal of the signal duration,   nT.   Over a wide Doppler 

range, the two-dimensional signal correlation function generally resembles that 

of the linear FM signal, being a ridge at an angle to both the time and Doppler 

axes. 

The individual channels of the filter shown in Fig.  14 have only band- 

width  W.    From many components, each of narrow bandwidth, a wide-band 

system can be fashioned in this way.    This is frequently an advantage in practice. 

3. 8 Rectangular,  Phase-reversal Signals 

In previous sections we have considered various methods for increasing 

the bandwidth of a signal of given duration.   We have discussed some methods of 

modulating the phase and/or frequency of the signal to do this.    These methods 

so far have yielded signals whose two-dimensional correlation functions have a 

useful shape only in a relatively narrow region on either side of theT axis.    In 

this section we will consider another kind of phase-modulated signal, which is 

useful, again, over a narrow Doppler region. 

The bandwidth of a constant frequency pulse can be increased by 

making step changes in the phase at intervals during the pulse.    One could make 

the phase steps any amount, but in the most commonly used phase-step signals 

the step is   TT   radians.   A signal of duration  A   is divided into  n  parts and 

the phase of each part (taken with respect to a phase reference) is set at either 

zero or   n . 

The autocorrelation function of the phase reversal signal may be shown 

to have an envelope which is the autocorrelation function of the plus-minus code 

waveform.   We take the signal,    s(t),   to be 
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s(t)   =   a(t) cos [ 2TT f t + <p (t) ] , (115) 
O K 

where <P (t)   is the phase code; the corresponding complex form,   s (t),   in the 

narrow band case is 

s (t)  =  a(t)expj<p (t) exp(j27rf t)    . (116) 
C K O 

We see in Eq. (116) that the complex modulation,   u(t),   is 

u(t)   =  a(t)expj<pk(t)        . (117) 

Since   <p (t)   is either zero or   rr,    expjcp (t)   is either   (+1) or (-1); and with 
K K. 

a(t)   given by 

1       ,     0 < t <   A 

(118) 

^0       ,      otherwise 

u(t)   is purely real, that is, either plus one or minus one.   A possible   u(t) 

for a phase-coded signal is shown in Fig. 17.    The autocorrelation function of 

s(t),   A(T ),    is given by the real part of the complex autocorrelation of  s (t). 

That is, 

A(T) = Re       \        s (t) s   (t + T ) dt > 
{ -OO ) 

I -J27T f   T     p00 | 
Re   \   e °     \       u(t) u(t + T ) dt |    . (119) 
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Since   u(t)   is real, 

A( T )  = cos 2TT f   T \       u(t) u(t +    T ) dt (120) 

The envelope of  A(T)   is thus seen to be the autocorrelation function of u(t). 

-i 

< Fig. 17    A plus-minus code waveform. 

The sequence of phases in   u(t)   may be chosen randomly or according 

to a code.    If the sequence is chosen at random, it is likely that the autocor- 

relation function of the signal will have rather large sidelobes.    To control the 

sidelobes the sequence will be chosen according to a carefully selected binary 

code. 

Plus-minus or binary codes having satisfactory (in some sense) 
r oc 1 f  on 1 

autocorrelation functions have been investigated by Zierler, Lerner, 
f 28 1 f 29 1 

Elspas, Barker, and many others.    Three-phase codes have been 

investigated by DeLong. We will not here attempt to discuss codes in 

general but rather refer the reader to the literature.    Instead, we will illustrate 

our remarks about phase-reversal codes in general by using for an example a 

particular class of codes called "Barker codes" or "optimum words." 
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An   n     order Barker code is a sequence of plus ones and minus ones 

of length  n which has the property that its autocorrelation function has a peak 

value of n  and has uniformly spaced sidelobes, all of unit height.    The plus- 

minus code shown previously in Fig.  17 is actually a 7     order Barker code; 

its autocorrelation function is shown in Fig.  18.    Table 1 lists all of the known 

Barker codes.    The highest code of odd-order has been shown to be 13, and it 

has been shown that higher order codes, should they exist, must have orders 

which are even and perfect squares.   So far none of the latter have been found. 

Table 1 

Barker Codes 

Fiq. 18    Autocorrelation function of the 
7th order Barker code of Fig .17. 

Order Code 

3 ++- 

4 ++-+ 

5 +++-+ 

7 +++--+- 

11 +++—+—+- 

13 +++++—++-+-+ 
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H*h 
A=   I3T 

I3T 

(o)   THE  WAVEFORM 

I3T -5T     -3T      -T   0 

(b)    ITS  AUTOCORRELATION    FUNCTION    (FUNCTION   IS   EVEN   ABOUT    THE    ORIGIN) 

(c)    ITS  SPECTRUM   (FUNCTION   IS   EVEN   ABOUT   THE   ORIGIN) 

Fig. 19    The 13• order Barker code waveform. 
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The highest order Barker code, of length 13, has been used as a 

phase-reversal code in a radar signal.   The 13-code waveform, its auto- 

correlation functions, and its spectrum are shown in Fig.  19.   The spectrum 

has the bandwidth associated with a simple pulse of duration  A/13.   The time 

bandwidth product,    TW,   is then 

TW = AXT   =13 
A 

(121) 

The block diagram of a tapped delay line filter that may be used to 

generate the 13-code signal is shown in Fig. 20.    Discussion of the design, 

however, will be reserved for Section 4. 0, where tapped delay line techniques 

are considered. 

o   »•   T 

DELAY    LINE,   T    SECONDS 

©©©©0Q©©©6©6© 

SUMMING   BUS sin TTTf 

TTTf 

Fig. 20    Block diagram of video filter used to generate and "match" 13-code waveform. 
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A model of the modulus of the two-dimensional signal correlation 

function of the 13-code signal is shown in Fig. 21.   The profiles are taken in 

the time direction at intervals of   1/4A   in Doppler frequency.    For clarity, 

only one-half of the time-Doppler plane is shown.    The zero-Doppler profile, 

the 13-code autocorrelation function,  is the first profile.    For a Doppler shift 

of   1/4 A   (the second profile), the sidelobe levels are fairly constant although 

the height of the peak does decrease somewhat.   However, for Doppler shifts 

v  >   1/4 A,    the surface is terrible.    Hence, the earlier remarks on the utility 

of the signal in a narrow Doppler strip. 

Figure 22 shows a photograph of the receiver output waveforms of 

a radar operating alternately with a simple uncoded signal (top) and a 13-code 

signal of the same duration (bottom).    In the top trace one can see a ground 

clutter return on the left,  followed by a return from a single moving target, 

and finally a return from several nearby moving targets.    But how many ?   In 

the bottom trace the radar views the same targets as in the top trace.    Notice 

on the left that the rms value of the clutter return is much decreased and that 

the position of the isolated target can be much more accurately fixed in time, 

and finally, that there were three targets in the overlapping returns of the top 

trace.    In the bottom trace the echoes stand out clearly without overlapping. 

But notice also that the sidelobes of the autocorrelation function are 

visible in the lower trace and are bothersome.    The question always arises: 

Is it a sidelobe or a nearby small target ? 

The sidelobes may be suppressed in this case by a simple method 

[ 31 1 given by Key,   Fowle, and Haggarty. The sidelobe suppression method 

makes use of the fact that the central part of the autocorrelation function and 

the sidelobes are all triangles.    Because of this geometric similarity, it is 

possible to suppress the sidelobes by adding to the signal autocorrelation 
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Fig. 22    Photograph of A-scope of a radar operating alternately with a simple pulse 
and with a 13-code signal of the same length. Top: simple pulse operation. 
Bottom: 13-code signal operation.    (Courtesy of G.B. Tiffany, of The 
MITRE Corporation.) 

function properly scaled replicas of the autocorrelation functions which are 

relatively advanced and delayed in time. *   Figure 23 illustrates this process. 

Here a weighted and shifted replica of the autocorrelation function is shown for 

each of the 12 sidelobes and for the central peak.   Weights are found for each 

so that they add up to produce   g(t)   shown at the bottom of Fig.  23.   We have 

for   g(t) 

[ 31 1 
*The method of Key et al. is very general and may be applied to shape 
waveforms at bandpass as well as at video. 
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k= I 13 /3(        /3<f>  (t-x) 

k=-l 

13 1 6 
g(t) = S /3k<£ (t-kx) 

K = -6 

-6x -4x -2x 2x 4x 6x 

X = 2T 

Fig. 23    Illustration of the method of suppression of the sidelobes of the 13-code 
autocorrelation function. 
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g(t) = (3 k<p(t- kx) (122) 

k = -6 

where   cp(t)   is the 13-code autocorrelation function.   We let   t   assume the 

values   -6x, -5x,  ... 0, +x . . . +6x   in succession.    For each value of  t  we 

specify the value we want  g(t)  to have and set it equal to the sum on the right. 

In this way a set of 13 equations is generated whose solution yields the values of 

the weighting coefficients,   /3   .    If the weighted waveform is made symmetrical, 

j3      - fi.    and the number of equations reduces to 7.    In Fig.  23,    g(t)   has been 
— k       k 

made zero where the original sidelobes were.    New sidelobes farther out in   t 

are created, of course, and these may be suppressed in the same way,  if de- 

sired.    Table 2 gives the weighting coefficients which reduce the 6 sidelobes on 

either side of the central peak to zero, and Fig.  24 shows the block diagram of 

the sidelobe suppression network. 

Table 2 

Weighting Coefficients for the Suppression of 
Sidelobes of 13-Code Autocorrelation Function 

<V 1.047722182 
^4 = 

- 0.0542686157 

'l- 
- 0.0407328662 <V - 0.0580662589 

?2 = - 0.0455717223 ^- 
- 0.0614606642 

h = - 0.0500941064 

When the original sidelobes are suppressed to zero, the ratio of the amplitude 

of the peak to the maximum sidelobe is increased to 42(32.4 db) from the initial 

value of 13 (22. 3 db).    The loss in detection due to mismatching the receiver to 

suppress the sidelobes in this way is of the order of 0. 25 db . 
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3. 9 Amplitude- and Phase-modulated Signals * 

Earlier in Section 3. 0 we derived a method of designing a rectangular 

signal of large TW product to have a specified autocorrelation function.    By 

controlling the autocorrelation function, one in fact shapes the two-dimensional 

signal correlation function in a narrow strip on either side of the  T   axis.   The 

X   function associated with a rectangular signal, however,  is not a smooth 

function over a very large time-Doppler region.    For example, the   x   function 

associated with the rectangular, tangent FM signal, shown in Fig.  12,    begins 

to have an oscillatory character for   v   >   l/T  where   T   is the signal duration. 

In many cases some improvement in the shape of a   x  function might be obtained 

if the requirement were relaxed that the signal have a rectangular envelope. 

In this section we will extend the method of designing FM signals to 

cover signals of arbitrary envelope shape.    To put it another way, we will give 

a method for determining the phase characteristics necessary to the construc- 

tion of a Fourier pair when,  initially, the signal envelope and the modulus of 

the signal spectrum are specified. 

We may begin with the statement that   u(t) = u (t) e is, by 

definition, the inverse Fourier transform of   U(f) = U   (f) e thus, 
m 

u (t) expj<p(t)   =    \        U   (f) expjG(f) expj2vrft   df      . (123) 

We can control the signal shape by specifying   u (t),    and the autocorrelation 

function by specifying   U   (f).   When   u (t)   and U   (f)   are independently 

* This section follows Fowle in Ref. 32 . 
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specified, we need a method of finding  <p(t)  and  9 (f)   to make   u(t)   and   U(f) 

a Fourier pair. 

We should point out that it is not possible in general to specify 

independently the modulus of a function and the modulus of its Fourier trans- 

form.   The two moduli must satisfy certain constraints, the full details of 

which Fourier theory does not make clear.   However, as the time-bandwidth 

product of the signal increases, these constraints seem to lose force, and 

independently specified moduli may be realized in a Fourier pair in some cases 

with very good accuracy. 

The derivation of expressions for   <p(t)   and    0(f)   begins with the 

approximate relations, Eq. (72), calculated from Eq. (69) by the method of 

stationary phase.   We have Eq. (73), which relates the two moduli with the 

second derivative of one of the phase functions, 

uJM 
u (t)   «   [^ . (124) 

e     " /|e"(M| 

The relation between  X   and  t,    Eq.  (71), is given by one of the unknown 

functions thus, 

27rt = - 9'(X)      . (125) 

We must first find a relation between  X   and t   in terms of the known functions, 

the moduli   u (t)   and   U   (f).    To do this we square Eq. (124), and substitute 
e m 

in it the expression for   6"(X )   obtained by differentiating Eq.  (125) with 

respect to  X .   We obtain 

u2(t) dt  =   U2 (X)   dX , (126) 
e m 
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which upon integration yields 

P(t)   =   Q(A)   +   C      , (127) 

2 2 
where   P  and  Q  are the indefinite integrals of  u (t)   and   U    (f),    respectively, 

and   C   is a constant of integration.    Equation (127) may be solved for either 

t   or  X .   We may solve for   t   and substitute for   t   in Eq. (125) to obtain for 

e'(A) 

0'(A)   =   -27TP"1 [ Q(A)   +   C] . (128) 

We integrate Eq.  (128) and substitute   f = X   to obtain for   9(f) 

6(f)   =   - 2TT   \      P l [ Q(f)   +   C ]   df (129) 

We may find an expression for    <^'(t)   by solving Eq.  (127) for   X   and sub- 

stituting into Eq.  (80).   We obtain for   cp'(t), 

cp'(t)   =   2TTQ 
X [ P(t)   -   C]      , (130) 

from which we get   <p(t)   by integration, 

<p(t)   =   2TT    \Q  X[P(t)   -   C ]     dt      . (131) 
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Equations (129) and (131) give   <p(t)  and  0(f)   entirely in terms of the specified 

functions   u (t)   and   U   (f)   and are, therefore, the i 
e m 

have derived the following approximate Fourier pair 

functions   u (t)   and   U   (f)   and are, therefore, the results we sought.   We 

u (t) expj27r \   Q1[P(t)-C]   dt s    J"1 j U   (f) exp-j2 7r \   P_1 [ Q(f) + C ] [df   . 

(132) 

We may obtain another corresponding pair of relations for <p(t) and 0 (f) by 

conjugating Eq. (132). Conjugation of Eq. (132) has the effect of changing the 

direction of the frequency sweep, so that of the two expressions for <p(t), one 

corresponds to an upward frequency sweep and the other to a downward sweep. 

There are several comments that are appropriate at this point.    First, 

as shown earlier, the group delay characteristic,    -0'(f)/2 7r ,   and the instan- 

taneous frequency,    <p'(t)/27r,   are approximately inverse functions.    The 

frequency sweep (and hence the group time delay) is ordinarily a non-linear 

function.    The exception, of course, occurs when the signal envelope and 

spectral modulus are required to have the same functional form;   then, frequency 

vs. time and group delay vs. frequency are linear, as the reader may demon- 

strate.    The argument given above is predicated on the assumption that the 

signal time-bandwidth product is large.   Just how large quite obviously depends 

on the shape of the signal envelope and spectral modulus and upon the accuracy 

desired.    If both envelope and spectrum are smooth, continuous functions, the 

method described can give excellent results for TW products as small as 3 

or 4.    If one modulus is smooth and continuous and the other rectangular,   TW 

products of the order of 10 give very good results, as we saw in the example 
[ 31 ] of the rectangular, tangent FM signal of Key et al. discussed earlier. 
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Finally,  if both moduli are required to be rectangular, as in the linear  FM 

example considered earlier, (a requirement which, by the way,  expressly 

violates Paley-Wiener Theorem 10),   TW products of the order of 100 or more 

are required to get good results. 

3.10 An Amplitude- and Phase-modulated Signal 

To illustrate the method described in the preceding section let us 

assume that we want a signal whose autocorrelation function has a Gaussian 

shape and whose envelope also has a Gaussian shape.    Let us take for the desired 

autocorrelation function 

2   2„ 2 nr I TW   /T\ 
X(r,  0)   =Jj    exp - X

2
W       (~)        • (133) 

2 
The squared spectrum   U    (f)   is given by the Fourier transform of   x(T>  0) 

thus, 

Um(f)   =   'f lX(T'  0)1 

= i exp -2 (i)2    • (134) 

which gives 

U   (f) =   -zr   exp   -  (~) . (135) 
y/W 
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In addition, we require that the envelope  u (t)  be Gaussian thus: 

u
e
(t) = J=- exp - (T-y (136) 

If we take the interval to the   e       point for duration and bandwidth, the time- 

bandwidth product of the signal is  TW.    We assume that TW is adequately 

large.    vVe want to find an expression for the phase characteristics   cp (t)   and 

©(f)   which when associated with   u (t)   and   U   (f),    respectively will make a 

Fourier pair.   As the first step, we determine the relation between  t  and 

X by use of Eq.  (126).   We have 

T I -P-2(T)2 dt - -*1 exp-2(i)2 dx  •    (137) 

which yields immediately 

_t_ 
T 

X 
W 

(138) 

From Eq. (138) above we find, by the methods of the last section, an expression 

for   6(f)   and     <p(t).   We obtain 

9(f) »•(w) + e (139) 

and 

cp(t)   =  TTTW(Y)     +   <PQ 
(140) 
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where   9      and   <p    are constants.   We have now constructed the approximate 
o o 

Fourier pair 

/w 
-k exp - (-£-)     exp -j |* TW (•£) * ejf SJ jr exp -(-^-)   exp J |„ Tw(-^) 

/F 

+      <p (141) 

The right side of Eq. (141) above has an exact Fourier transform which we 

may compute as a check on the approximate methods.    For   TW   =   10A     we 

have the following exact Fourier pair: 

100\ 
.101/ 

1/4 

v/w 
exp 100 / f  \2 100       m,/ f  \2 

ioi(w")   exp-jl_7ui-*TW(^r)   + e!_ 

expj *Tw(—)     H-    „», 

(142) 

which differs negligibly from the approximate pair, Eq. (141). Thus, good 

results are obtained here for TW » 3, which is in accord with our earlier 

statement.    The signal   u(t)   is 

u(t)   =   —  exp 
/T 

-(^r)   expj 7rTw(-^r)     + <pQ 

(143) 
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We see that the signal and its approximate Fourier transform, Eq. (141), have 

quadratic phase, corresponding to a linear frequency sweep and to a linear 

group delay. 

We may compute the two-dimensional signal correlation function for 

this linear FM Gaussian signal.   We have 

X(T 
f°°        - ,  v)   =     \      u(t) u(t + T)exp(-j27r^ t) dt (144) 

We substitute   u(t)   of Eq. (143) into Eq. (144) above and integrate and rearrange 

terms to obtain for   X(T, V) 

X(T,  v)  =  /— exp (jTr vT)exp 
1 (7T TW)2 /    V  \2 

2 2   iw / 
1  + (TTTW)      

v      ' 

x exp 

j_         (TTTW) v 
T +   .      .    2     W 

1 + (TT TW) 

1 + (TT TW) 

(145) 

When  ?r 2T2W2 »   1 

X(T,  v)   s f— exp(j7r ^T)exp 2 \w y exp 
(TTTW) 

(- * —)' \T        W / 

(146) 
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Notice that   X(T,  0)   is approximately equal to the value required at the beginning 

of this example.    For Eq. (146) above to hold, the TW product need not be 

very large. 

Figure 25 shows a photograph of a model of the two-dimensional 

correlation function of the linear FM Gaussian signal.    The profiles are taken 

vs. time at intervals in Doppler equal to 20 percent of the 3-db signal band- 

width.    The interesting thing about this two-dimensional signal correlation 

function is that all profiles taken vs. time are Gaussian functions regardless of 

the value of Doppler shift   v,    and, further, that the standard deviation or width 

of the function between   e       points in the   T   direction is constant.    The function 

does not broaden (and degrade resolution) with Doppler shift.    The effect of a 

Doppler shift is to attenuate the receiver output by   exp - 1/2 (v/W)  ,   and to 

shift in time the position at which the peak value of the receiver output wave- 

form occurs.    The latter we should suspect from the linear FM discussion 

given previously.   We see, further, that relaxing the requirement that the 

envelope be rectangular did,  in this case, yield a smooth,  non-oscillatory x 

function. 

Figures 26,  27 and 28 show photographs of waveforms in a pulse 

compression system which employs a linear FM Gaussian signal. *   Figure 26 

shows the Gaussian signal generated by applying a short pulse to a passive 

filter.    Figure 27 shows the signal autocorrelation function.    The time scales 

in Figs.  26 and 27 are the same.    The time-bandwidth product (or compression 

ratio) is about 50.    Notice that there are no sidelobes visible in the photograph 

of the autocorrelation function.    Figure 28(a) through (f) shows the effect of a 

*The experimental results are taken from Fowle et al. ,  Ref.   13. 
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Fig. 26    Observed linear FM Gaussian signal generated by applying a short pulse to a 
linear filter.    (Taken from Fowle et al, Ref.  13, with permission.) 

Fig. 27    Output waveform of the filter matched to the linear FM Gaussian signal when 
the signal has zero Doppler shift.    (Taken from Fowle et al, Ref.  13, with 
permission.) 
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(a)   Zero Doppler (b)    5 % 

(c)10% (d)   20% 

(e)   25% (f)   50% 

Fig. 28    Output waveform of the filter matched to the linear FM Gaussian signal when 
the signal has various Doppler shifts.   Amount of Doppler shift is given as a 
percent of the 3-db signal bandwidth.   (Taken from Fowle et al., Ref. 13, 
with permission.) 
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Doppler shift in the signal on the shape of the matched filter output waveform. 

(The time shift of the peak caused by the Doppler shift has been suppressed in 

the photographs.) The shape of the receiver output waveform does not change 

appreciably for Doppler shifts of up to 25 percent of the signal bandwidth; the 

sidelobes remain low. The shape of the output waveform changes considerably 

in Fig. 28(f) for a Doppler shift of 50 percent of the signal bandwidth, but this 

is due to the details of the equipment used. 

3.11 Design of Phase-modulated Signals with Two-dimensional 
Correlation Functions of the Thumbtack Shape* 

So far in this chapter we have discussed a variety of phase-modulated 

signals, most of which have been useful over a (relatively) narrow range of 

Doppler frequency shifts.   If the signal   x  function were sharply peaked at the 

origin and low elsewhere in the time-Doppler plane, it would be possible to 

locate a signal echo accurately in time and frequency and hence, permit simul- 

taneous measurement of target range and radial velocity.    In this section we 

will discuss a particular class of signals whose   x  functions are sharply peaked 

at the origin and which have, approximately, the shape of a thumbtack with its 

point up. 

To begin our discussion, let us represent the signal correlation 

function in terms of  u(t).   We have 

j      u(t) u X(T, V)   =    \      u(t) u(t + T) exp(-j27rin)   dt    . (147) 

*The material in this section is taken from Fowle, Ref. 33. 
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To place the phase modulation in evidence, we substitute  u (t) eJ   * '   for   u(t) 

in Eq. (147). 

X(T ,  v)   =    \     u (t) u (t + T) exp-j[27rvt - <p(t) + <p(t+ T)]   dt   .      (148) 

Now let us evaluate the integral in Eq.  (148) above by the method of stationary 

phase.    For a given Doppler shift,   v,   and time shift,   T,   the argument of the 

exponential is stationary when its derivative is zero, that is, when 

[2irvt-  (p(t) +   <p(t + T)]     =0      . (149) 
dt 

The stationary point is given by the value of  t which satisfies the equation 

2nv    -  <p'(t) + <p'(t+   T)= 0 . (150) 

Assume Eq. (150) above is satisfied for   t = t   .    The instantaneous frequency, 
0 

f(t), is related to   <p'(t)  by the relation 

2irf(t)   = <p'(t)    . (151) 

In terms of the frequency,   f(t),   Eq. (150) above becomes 

v  +  f(t   +T) - f(t ) = 0    . (152) 
s s 
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If the frequency sweep is unidirectional with time, we have the situation illus- 

trated in Fig.  29.   In the figure the solution of Eq. (152) for  t     is indicated 

graphically.    By inspection of Fig.  29, one can see how the stationary point, 

t ,    moves with time shift,   T,   and Doppler shift,    v .   In Fig. 29(a), where 

v  and  T  are both greater than zero, and in Fig. 29(b), where   v  and  T   are 

both less than zero, a stationary point exists.    For values of  T   and   v   in the 

first and third quadrants of the   T,    V   plane, where a stationary point exists, 

the integral which gives   X(T,  V )  will tend to have non-zero value.    In the 

second and fourth quadrants a stationary point does not exist, as shown in Fig. 

30, and the integral which gives   X(T,  V)  will tend to have zero value.   Where 

a stationary point exists, we can evaluate the integral for   x(T>  v),   Eq.  (148), 

by the method of stationary phase described in an earlier section.   We obtain 

for   X(T, V) 

U (t )U (t + T) for   v, T > 0 
6    S      6    S IT 

2ir   —;   expj[27ryt   - <p(t )+ <p(t + T)± ~ ] 
o o o T: 

X(T,V)   £ 

a M /t \ | and   v, T < 0 
s 

otherwise 

(153) 

where  /3 (t) = 27ryt -  cp(t) + cp(t + T)   and (3 "(t)   is the second derivative with 

respect to time.   We take   +  for /3 "(t ) >   0   and   -   for  j3 "(t ) <   0.    There 
s s 

are two objectives at this point in our development.    First we want to determine 

what kind of phase modulation we should use to make    x(i",  v )   small in the 

regions of the   T,  <p    plane where it has value.    Second,  since the total volume 

under      | X(T,  (P)\      is constrained, to make   X(T> v)   as small as possible 

everywhere in the   T,  cp    plane away from the origin, we should probably try 
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W-W  + f (t + T ) 

\ W— f (t> 

~" iVdT 
T 

t, t 

(o)FOR T>0,l/>0 

Fig. 29    Solution of Eq. (152) for   t , illustrated graphically,   (a) for T > 0,    v >0; 
(b) for   T < 0,   v < 0.       S 
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(a)   FOR    T < o,  v >o 

(b)   FOR   r > o,  v < o 

Fig. 30    Solution of Eq. (152) for   t , illustrated graphically,    (a) for  T < 0,     v  >   0; 
(b) for  T  > 0,     v < 0.     S 
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to spread the volume out uniformly rather than let it concentrate in the first 

and third quadrants. 

The latter problem has a simple solution, so let us consider it first. 

We can cause   X(T,  V)  to have value in the second and fourth quadrants by re- 

designing the shape of the frequency sweep so that a stationary point exists for 

values of T   and  v  in those quadrants.   A frequency sweep which does this 

is illustrated in Fig. 31 for two of the four quadrants.    The frequency sweep 

shown first decreases and then increases; a sweep which first increased and then 

decreased would do quite as well.    The frequency sweep shown in Fig. 31 is an 

even function about its center; it does not have to be even, but there is probably 

no reason why it should not be.  Let us consider, then, that for our purpose the 

frequency sweep is an even function.    Now   X(T,  V )   has a stationary point in 

all four quadrants everywhere, except on the   v  axis; with the surface   | x  I 

more nearly uniform,  it can be lower and still satisfy the volume constraint 

on      | X(T,  v) |   . 

We have the first problem yet to answer:   What should the nature of 

the phase modulation be to cause   X(T,  V )   to be small in the regions where it 

has value ?     First we note that the stationary phase solution for   X(T,  V)   now 

applies everywhere except near the origin and on the   v  axis.   We have 

u (t ) u (t   + T ) 
X(r,  v)  st   /iff     6   S    6   S expj[/3(tg)± j]        . (154) 

Jl/3"(ts)| 

We have hypothesized that the product of the envelopes is to be slowly varying; 

the envelope product cannot, therefore, be manipulated to make   X(T, V )   small. 

The exponential has a modulus of unity.    Clearly if  X(T, V )   is to be small, 

the function    1/3 "(t ) I   must be large for every  t .    Let us see how this may be 
s s 

done.   We have for /3 (t) 
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V + f   (t +T) 

« V- 

/             f   (t) 

j. \ 
-1 

(a) T >o,   v >o 

v+ f  (t+T) 

HvH 

(b) v> o, T <o 

Fig. 31     Solution of Eq. (152) for a symmetrical frequency sweep,   (a)   T > 0,    v >   0; 

(b)   v >   0,   T < 0. 
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/3(t)   =   2-nvt +  (p(t + T) - <p(t) (155) 

By differentiating Eq.  (155) twice with respect to   t   and substituting   t = t 
£ 

we obtain 

0"(t )   =   <p"(t   + T) - <p"(t ) 
s s s 

(156) 

In Eq.  (156) above let us expand </>"(t + T)   in a Taylor's series about   t = t 

We obtain 

*IV<y 2 /3 "(t   )    =    <p"(t   ) +  <p'"(t   )   T +    T      +. . .  -   <p"(t   ) 

^V        2 
<P•(ts)  T+     T       +. (157) 

In terms of the instantaneous frequency   f(t),   (3 "(t )   becomes 

P "(t   )    =    27T 
f'"(t) 

f"(ts) r  +   -jj-   r     + (158) 

Equation (158) states that before   |/3 "(t ) |   can begin to be large, the frequency 
s 

sweep must have a non-zero second derivative.    Vee-shaped linear frequency 

sweeps, for example, will not do, because the second derivative is zero.    At 

least a quadratic frequency sweep is required before  /3 "(t )   can be large and 
s 

X(T,  V)   therefore small.    The existence, in the frequency sweep, of derivatives 

higher than the second will help make  j3 "(t )   even larger and   x   even smaller. 
s 

103 



Let us recapitulate our progress up to this point.   We first make the 

frequency sweep bi-directional, that is, a downward sweep followed by an upward 

sweep (or vice versa) to cause the x function to have some value in all four quad- 

rants of the  T, V  plane so that the volume under   | x 1     would be spread over all 

four quadrants.   Next we saw that to make the x function small away from the 

origin, the second and higher derivatives of the frequency sweep should be large. 

No stationary point exists, however, in the integral of Eq. (148) for points on 

the v axis, and we ask how the x function may be controlled there.   With T = 0 

in Eq. (148), we see that x(0, v) is given by the Fourier transform of the square 

of the signal envelope,  u (t).   Given a desired shape for x(0, v),  one may then 

compute the required signal envelope shape.   We have thus determined one method 

of constructing a signal so that its two-dimensional correlation function will be 

sharply peaked at the origin of the T,   V plane and low elsewhere. 

The facts that we have deduced about the characteristics necessary to 

the frequency sweep of a signal to cause its x function to assume the thumbtack 

shape confirm our experience and extend our ideas.   For example, the x-function 
[ 541 modulus has been given by Miedema1 for a signal with a vee-shaped linear 

frequency sweep.   Figure 32 shows the envelope and frequency versus time of 

ENVELOPE 

J 
FREQUENCY 

E50KC 

L, 
-AOOfis 

Fig. 32    Envelope and frequency sweep of 
the vee-shaped linear FM signal. 
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the signal, and Fig. 33 shows a photograph of a model of the x function of the 

signal in the region near the origin of the T, V plane.    The shape is not very 

much like that of a thumbtack and indeed, according to our argument it should 

not be. 

Fig. 33     |x |   function of the vee-notch linear FM signal of Fig. 32.    Region shown 
is neat K the origin of the  T,  V  plane.    (Photo courtesy of Western Electric 
Company and H. Miedema, of Bell Telephone Laboratories.) 

In Fig. 34 we have the envelope and instantaneous frequency vs. time 
[ 54] for a quadratic  FM signal.*   Figure 35, from Miedema, shows a photo- 

graph of a model of the x function of the signal, again in the vicinity of the 

origin.    Notice that the x function of the quadratic  FM signal is much closer 

to the desired thumbtack shape, as our argument above says it should be.    The 

•The quadratic  FM signal was proposed independently by Richman, 
Ref.  35 and by Callahan,  Ref. 36. 
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Fig. 34    Envelope and frequency sweep 

of a quadratic FM signal. 

shape in Fig. 35 is a dramatic improvement over that of the x function of the 

vee-notch FM signal of Fig. 33.   The envelope shape of both the vee-notch FM 

signal and the quadratic FM signal is rectangular.   Smoother signal envelopes 

would no doubt lead to smoother x functions.    However, a smooth envelope 

would not eliminate the very high ridges in the x function of the vee-notch FM 

signal. 

X functions of signals with frequency sweeps of higher power than 

quadratic have not, to the author's knowledge, been computed, although there 

is no practical reason why they cannot be.   The stationary phase argument 

given above indicates that such signals should have x functions which are better 

approximations to the thumbtack shape than the quadratic  FM signal. 

It is interesting, at this point, to inquire whether there are other 

types of signals that have x functions of the general thumbtack shape.   We 
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Fig. 35     | X |    function of the quadratic FM signal of Fig. 33.   Region shown is near 
the origin of the T ,  v  plane.    (Photo courtesty of Western Electric Company 
and H. Miedema, of Bell Telephone Laboratories.) 

recall that it was noted in Section 2. 0 that if a signal gives a certain   x function, 

then its Fourier transform, if taken for the signal, yields the same x function 

but rotated 90° in the   T,  V  plane.   A signal with a symmetrical envelope and 

symmetrical frequency sweep has a Fourier transform with a highly structured 

modulus and a phase which alternates between zero and   IT .    In short, the 

Fourier transform, taken as the signal, is an amplitude-modulated phase- 

reversal signal.   Or to put it another way, certain phase-reversal signals also 

have x functions which approximate the thumbtack shape.    Figure 36, for 

example,  shows another photograph of the model of the x function of the 13-code, 

phase-reversal signal.    Note the similarity between the shape of the x function 

of the 13-code signal and that of the x function of the vee-notch  FM signal. 

107 



o>   o 
La 
o   c 
« 2 

S-g 

C *- 
o>      .2 
* < a 
2     'i 
8j 8. 

1 i \ 
*•    0-—*" 

•s §•«" 
0 c <u 

X .= ex. 
o 
§«_? 

O •—   4) 
"*• u-   -s. j ° sr 
^   o   _ 
° ?• £ o  >-  o 

& $ s 

O) 

108 



In the next section we shall discuss a procedure for the design of 

phase-reversal signals which have x functions of the general thumbtack shape 

but which have smoother skirts than the x function of the 13-code signal. 

3.12        Amplitude-modulated, Phase-reversal Signals with x functions 
of the Thumbtack Shape* 

In the last section we saw that signals of large time-bandwidth product 

with smoothly varying envelopes and symmetrical, highly curved frequency 

sweeps had x functions of the general thumbtack shape.   The Fourier transform 

of such a signal has a highly structured modulus and a phase which changes by 

n   radians at points in frequency where the modulus is zero.    Thus we see that 

we can get a thumbtack x function by transmitting certain kinds of amplitude- 

modulated, phase-reversal signals.   Since the phase-reversal signal is 

attractive because of the relative ease with which it can be generated and 

received (see Section 4.0), it seems worthwhile to explore the matter further. 

Earlier in Section 3. 0 we considered the problem of designing phase-reversal 

signals to have x functions of useful shape in a narrow Doppler region on either 

side of the time axis.    In that case we had to worry only about choosing codes 

that had good autocorrelation functions.    Here we have the problem of choosing 

codes that have good two-dimensional properties.    The problem seems very 

difficult.    How do we proceed ? 

[ 37] An ingenious method of approach has been invented by Lerner. 

To explain Lerner's method, let us for the moment assume that we have a 

signal which consists of a periodic sequence of numbers.    The periodic function 

has, of course, a line spectrum.    The x function associated with such a periodic 

* The material in this section is taken from Lerner, Ref. 37. 
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sequence must be zero except for values of Doppler shift equal to multiples of 

the line spacing, and it must be zero except for values of time equal to multiples 

of the space in time between the members of the sequence.    The x function of 

such a periodic sequence thus has value only at lattice points in the T, V  plane, 

and, of course, it is periodic in both time and Doppler.   The value the   x function 

has will be a maximum for values of  T  and  v  equal to multiples of the period 

of the sequence in time and frequency, respectively.   The values x has in between 

must, by Theorem 13 of Section 2. 0, be less than the maximum values.    For 

our purpose here, an ideal sequence would have a   if>   function (i.e.,    ] x ] " ) 

whose values at the lattice points would be uniform and, of course, small 

compared to the maximum values. 

The next step is to truncate the periodic sequence (which we tentatively 

took for the signal at the beginning of this discussion) in time and to truncate 

its spectrum in frequency.    The x function of the sequence after truncation in 

time is given by the convolution in the Doppler direction of the x function of the 

periodic sequence with the x function of the time-truncating function.   The x 

function following frequency truncation, analogously, is given by the convolution 

in the time direction of the x function of the time-truncated sequence with the 

X function of the spectrum-truncating function.   This is the statement of 

Theorem 11 of Section 2. 0 for  6 functions, and the same theorem also holds 

for x functions.   Quite obviously,  if the function used for time truncation is 

chosen so that its x function has an extent in Doppler less than or about equal 

to the spacing in Doppler of the lines of the x function of the periodic sequence, 

then the x function of the truncated sequence will be at least as low, relatively, 

in regions away from the maximum values as was the x function of the sequence 

before truncation.   Analogously, the spectrum-truncating function should be 

chosen to have a x function with an extent in time less than or about equal to 
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the spacing in time of the lines of the x function of the sequence.    Thus, if 

the truncations are done carefully, the space between the lines of the x function 

of the periodic sequence is filled in (by the convolution processes) without 

raising the level of the x function away from the origin in the  T, V  plane 

relative to the maximum value.   The signal that one transmits is the time- 

and frequency-truncated sequence. 

To implement the design procedure we have given above, we need 

periodic sequences which have x functions that are uniformly low away from 

the periodic lattice points.    Useful periodic sequences are the so-called 

maximal length, binary shift register sequences (abbreviated to M-sequences) 
r 9fi 1 

which have been studied by Zierler and used by Lerner and others in the 

design of signals.    In the material which follows in this section we will discuss 

a method of generation of M-sequences, give a few of their properties, and 

calculate their x functions.    Finally, we will give an example of a signal 

derived from an M-sequence and give its x function. 

An M-sequence is a set of plus and minus ones   (x )   such that for all 
r 

p   the next member of the sequence is given by the product 

yi y2 y3 yn 
x =x        x     ,    x     _   x L, (159) 

p + 1 p       p-1      p-2 p-n +1 v      ' 

in which the numbers  y    are either one or zero.   With a set of y's   and an 

initial set of x's,    Eq. (159) generates a sequence   (x )  which, after an initial 

transient, is periodic.   The period of the sequence is at most   2   - 1.    For a 

given  n  there is always at least one sequence of maximal length. 

For example, if we take  n = 3, y  = 0, y   = 1, y   = 1, and  x   = -1, 
1 Z o p 

x        = -1, x        =1,   the sequence one obtains (which has length 7) is 
p-1 p-2 
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one 
. period. 

+ _+ + + _ +  and so forth. * 

Some of the properties of M-sequences as given by Lerner are of 

interest here.   They are as follows: 

(1)   The algebraic sum of the x's  taken over a period  P  is minus 

one.   That is 

x   =-1 
P 

(160) 

(2)   The product of two M-sequences one of which is a translate of 

the other is itself a translate of the same sequence.   That is 

(xx)  =  (x       )    ,     k*   OmodP 
p  p+k p+h 

(161) 

(3)   The autocorrelation function of a sequence  (x )  has a period  P. 

At the origin its value is   P,   elsewhere in the period it is   (-1).   That is 

)   x x     ,   = 
Li    P  p+k 

P    ,     k =  0  mod P 

= -1    ,     k *   0  mod P (162) 

* The seven-bit sequence marked off constitutes one period; by accident 
it turns out to be the 7th order Barker code (see Table 1, Section 3.0). 
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(4) The Fourier transform of the periodic sequence (x) is another 

periodic sequence of complex numbers (X) with period P. The zero order 

term and those which occur at multiples of the period have magnitude one. 

The other terms all have magnitude of    y/p + 1   .   That is 

.  2TT 
3 "p Pm 

x 
m "Zs 

[ I2 

X =   1      ,       m = 0  modP 1    m' 

=   P + 1    ;      m  *   0    mod P      . (163) 

Now we are in a position to compute the analog of the x function, 

b,   ,   for the M-sequence which we take as   a .   We have 
ks n 

2TT 
J — ns 

•k 
b,      =     )   a  a     ,   e      P 

ks Li     n   n + 1' 

Here  k  and  s   are parameters of the two-dimensional sequence analogous to 

the variables   T   and   v ,   respectively.    The 

using Property (2) above, Eq. (164) becomes 

the variables   T   and   v ,   respectively.    The   a    are real, of course, and 
n 

.  2?r 
J  "p ns 

b, >a,e ,k#0  mod P    . (165) 
ks       i_i    n + n 
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But the right side of Eq. (165) gives the Fourier coefficients of the sequence 

a    shifted by h.   Use of the shifting rule of Fourier Series on Eq. (165) gives 

i 27r v 
-J-p"hs 

b      = A   e k *   0  mod P     . (166) 

Also 

27T 

b      =   y    e k = 0    mod P     . (167) 

We represent the squared moduli of the b    ,   the ambiguity function 

he M- of the M-sequence, by  C    .   Using Eqs. (163), (166), (167) and the relation 

n-1 

exp f J —• n ) = 0, we obtain for  C 

2 
C      =  P , k, s  =  00  mod P 

=   0, k=0  mod P,   s ^  0  mod P 

=   1, k ±  0  mod P,   s = 0  mod P 

=  P + 1,   elsewhere 

(168) 

The ambiguity function for an M-sequence of length 7 is sketched in Fig. 37. 

Now let us consider a signal consisting of very narrow pulses with 

complex magnitudes  a (t).   Let the period be of duration  T    and the interval 

between pulses  T /P.   The ambiguity function  X(T, V) will look like  C 
x KS 
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Fig. 37    The ambiguity function of a 
7—digit M-sequence.   (Taken 
from Lerner, Ref. 37, with 
permission.) 

where the intervals in  k  correspond to   T /P  in  T,   and the intervals in  s 

correspond to   l/T    in  v .   We now truncate this sequence in time by h(t) 

where 

h(t)   = 
sin 7rt/T 

7Tt/T 
(169) 

The   x   function corresponding to  h(t)  has an extent of roughly   l/T     in the 

v  direction, which is equal to the spacing of the lines of the   x  function of the 

M-sequence in Doppler.    Next we truncate the function in frequency by   g(f) 

where 

g(f)   = 

sin TTT f/P 

irT f/P 
(170) 
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The x function associated with   g(f)   has a duration of about   T /P,    the line 

spacing in the   T   direction.    The   |x|   function of the time- and frequency- 

truncated 7-digit M-sequence is shown in Fig.  38.    Notice in our example that 

the time duration of the signal is approximately   T ,    and the bandwidth   P/T  . 

The time-bandwidth product,    TW, is then 

TW   =   P (171) 

Fig. 38     | X |  function of the truncated 7-digit M-sequence.    (Taken from Lerner, 
Ref.  37, with permission.) 

The truncation has been designed so as to keep the relative levels of the peak 

and the skirts the same as those of the line function   C       of Eq.  (168).    In the 
2 

ambiguity function of Fig.  38,  the peak-to-skirt ratio is approximately   P /P+l. 

For the   \   function,  the ratio is r& P+l.       For long sequences, the skirts 
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of the   x  function are below the peak by about JP,   where   P   is the time- 

bandwidth product.   It should be emphasized that when the  a (t)   are given 

by the M-sequence, their values will be plus or minus one.   The signal after 

truncation will be an amplitude-modulated, phase-reversal signal.   When the 

a (t)   are complex (for example, if they are taken as the Fourier transform of 

an M-sequence), the phase of the resulting signal will, of course, be given by 

the phase angle of the  a (t). 

Other truncations more conservative of time and bandwidth than those 

used here are discussed by Lerner. 

3.13        Amplitude-modulated, Phase-reversal Signals With 
Circularly Symmetric   x   Functions* 

We shall now discuss a class of ambiguity functions that have the 
2 2 

property that their moduli are functions of  T     +   v     only.   A more general 

formulation would recognize the fact that a change of time scale  t'   =  at, 
2 2 

where  a  is a constant, maps the circles   T     +   v     = constant into the 
2    2 2   9 

ellipses   T ' /a    + a v    - constant, but this perspective would encumber the 

notation without particularly clarifying the discussion. 

We consider the function 

e(r,  v) = X(T,  v)e~]*rV , (172) 

the modulus of which is    [ X(T,  V) \ . 

*This section, which depends on Klauder, Ref. 38, and on Wilcox, 
Ref.  16, was written by J. A. Sheehan. 
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Then a necessary and sufficient condition that     0 (T,  V )   should be 
2 2 

a function of T     + y     only is that it should satisfy the differential equation 

99 ae 
p— -T — = ° • <173> 

It can be shown that this equation for  6(T,  V)   reduces to the following one for 

u(t): 

2 
y   - t2u(t)   +  \u(t)   =   0      , (174) 

dr 

where  \   is an arbitrary parameter.   It can further be shown that the only 

values of X   which yield solutions   u(t)  which are finite-energy waveforms are 

the odd integers, and we have the result that any solution of 

2 
d   U^    -   t2u(t)   +   (2n + l)u(t)   =   0 (175) 

dt2 

will produce an ambiguity function with a radially symmetric modulus. 

The solutions of Eq. (175) are the Hermite functions 

-t2/2 
u (t) = e H (t)      , 

n n 

where  H (t)   is the  nth  Hermite polynomial 

.2   ,n  -t2 

n    t    d  e 
H (t)  =  (-1)    e 

dtn 
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The   6 function of Eq.  (172) is, within a suitable normalizing factor, 

/    2        2 \         2         2 
9(T,   v) = Ll  le      , (176) 

where   L (x)   is the Laguerre polynomial, 

T   / \        x     d 
L (x) = e 

n ,   n 
dx 

(*%-*) 

It is important to note the fact that the Hermite functions solve a specific 

problem, that is, that the  6(T,  V)  of Eq. (172) shall be radially symmetric. 

The discussion here does not preclude the possibility that other functions exist 

which have   x  or  Q functions which have radially symmetric moduli. * 

Figures 39(a) and 39(b) illustrate the 10th order Hermite function and 

its associated autocorrelation function, respectively, both of which are even 

functions.    A view of the 10th order ambiguity surface is given in Fig. 40.   With 

the type of ambiguity function shown in Fig. 40, there is no correlation of range 

and Doppler measurements, and both may be accurately measured simultaneously. 

The difficulty with the signal of Fig. 39(a) and its ambiguity function of Fig. 40 

is that it is suitable for general use only with isolated targets according to the 

discussion in Section 2.0. 

* This is one aspect of a more general situation:   Statements relating to 
uniqueness,  realizability,  etc. of the complex function   x (T, V)   are 
relatively easy to make; it has not yet been possible to establish analogous 

statements for    |X(T, V ) ] . 
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Fig. 39    (a) Envelope of 10th order Hermite 
function signal for positive time 
(envelope is an even function about 
the origin); (b) a radial section of 
the envelope of the two-dimensional 
correlation function of the signal of 
part (a).   (Taken from Klauder, Ref. 
38, with permission.) 

Fig. 40    The radially symmetric two- 
dimensional correlation function 
associated with the 10"1 order 
Hermite function signal.   (Taken 
from Klauder, Ref. 38, with 
permission.) 

< 
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3.14        Pulse Burst Signals 

According to the discussion in Section 2. 0, the pulse burst signal has 

a   x  function which has a shape that is useful when one wants to resolve (i.e. , 

detect) a large number of nearby objects and, at the same time, measure with 

high accuracy both the range and Doppler shift parameters of the objects. 

When the number of pulses in the burst is large, the peaks of the  x  function 

near the origin of the  T, V  plane are nearly the same size, and in the presence 

of noise the measurements of range and Doppler are somewhat ambiguous (i.e. , 

which peak corresponds to true range and Doppler ?).   When the ambiguity is 

objectionable, it may be removed by operation of the radar in different modes 

(perhaps by transmitting different signals) or by making measurements with a 

second radar, etc.    The virtue of the   x  function of the simple pulse burst 

signal is that it is identically zero in certain regions of the  T, V  plane.   One 

way to make a   x  function identically zero in regions of the time-Doppler plane 

is to make the signal identically zero at regularly spaced intervals in time 

(and, of course, non-zero in between).   In this section we will augment the 

discussion of simple pulse burst signals given in Section 2. 0.    By "simple, " 

we mean that the pulses in the burst are all at the same frequency and equally 

spaced in time.   In the two sections that follow we will discuss pulse burst 

signals other than the simple kind. 

It is interesting to apply Lerner's method, discussed earlier, to the 

problem of designing a pulse burst signal.   We will take as a preliminary signal 

a periodic train of impulses and compute the associated   x   function.    Then we 

will see how one may truncate the train of impulses in time and frequency in 

such a way as to make the   X  function assume a desirable shape and at the 

same time give a signal which can be transmitted. 
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Let the train of impulses be denoted by  u (t)  thus, 

Uj(t)  =   £       «5(t-nA)    , (177) 

n=-°° 

where   S(t)   is the unit impulse function.   The two-dimensional correlation 

function,    X(T,  V ), is given by 

Xl {T' V)   =   J      Vt)lri(t + T) e dt 

>   y    \      5(t-nA)6(t + T- mA)e"] "      dt    .      (178) 

Equation (178) may be written 

X1(T'  V)   =   Z  Z  e"j27r,'nA «[T- (m- n)A]     . (179) 
n     m 

X..(T,  v)   is, of course, periodic in both the  T  and  t>   directions.    The period 

in the  T   direction is A;  we can see the shape of  X(T, y)>   then, by restricting 

| T | ^A/2,   which requires that  m = n   in Eq.  (179).   With   m = n,    the 

double sum in Eq. (179) becomes a single sum on  n  which may be evaluated to 

give for   % {j,  v) 

CO 

X1(T)   ")   *   A     Z      6(l/ "   A)6(T)      ' (180) 

ps-eo 
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where it is understood that   ]T ]^ A/2.   The   x  function of the train of impulses 

[ Eq. (180)]   is thus seen to be an array of impulses of uniform weight regularly 

spaced at intervals of  l/A  in the   v  direction on lines which are themselves 

equally spaced by  A  in the  T   direction.   There is a clear space around the 

impulse at the origin of the  T, V  plane which is of extent  A  in time by   l/A 

in Doppler frequency.   The area of the clear space is unity.    The point of the 

truncation process which follows is to create a signal which can be transmitted 

while at the same time keeping the spaces between the peaks of the   x   function 

as clear as possible.   We consider two truncation procedures out of the many 

that are possible.    The first will give a very good   x  function but yields a signal 

not economical of time or bandwidth.    The second yields a convenient signal but 

a less attractive   x  function. 

Theorem 11 of Section 2.0 states that if  u (t)   corresponds to   x, (T, V) 

and if  u (t)   corresponds to   XO(T,  V),    then  u (t)   = u (t) u (t)   corresponds to 

X3(T, V) where 

X3(T, V)  =   J      X^T,  \i ) X2(T, v - ii )  d|Lt    . (181) 

The   x  function of the product of two time functions is thus given by the con- 

volution in the   v   direction of the   x   functions of the two time functions.   We 

want to have the space between successive peaks in the   v   direction as clear 

as possible,  so we will want to convolve with the bed-of-spikes   x  function, 

X (T,  U), a   x  function,    X9(T>  V), which is narrow in the   v   direction compared 

to   l/A.   As a first example we let the time-truncating function,    u (t),   be 

sin7rt/T 
U2(t)   = Trt/T        ' (182) 
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where   T »  A.   The   x  function of this function is given by Eq. (59) if signal 

and transform are interchanged.    The effect of the truncation on the signal is 

sketched in Fig. 41, and the   x  function which results from the convolution in 

the   v  direction is sketched in Fig. 42. 

We now consider the problem of the truncation of the spectrum of the 

impulse train signal. By Theorem 11 of Section 2.0, if U (f) corresponds to 

X (T,  V)   and   U (f)   to   X(T,  V),   then   U (f) = U (f) U (f)   corresponds to 
o 4 4 O o 4 

X5(T, v),   where 

X5(r, v)   = j    x3(t,  v)x4(r-t,  v) dt       . (183) 

In keeping with our choice of   u (t),    Eq.  (182), we choose for   U (f) 
— 4 

V> • SJ;TUJ • <1M> 

where l/F « A. The x function corresponding to the time- and frequency- 

truncated impulse train is shown in Fig. 43; the corresponding signal is sketched 

in Fig. 44. 

The more usual pulse burst signal is obtained by truncation in time 

by a rectangular function and truncation in frequency by a   sin y/y  function. 

The resulting signal consists of a finite number of pulses of uniform amplitude. 

We take for   u' (t) 

-^   < t   < ^~ 
2   - 2 

u^(t)= . (185) 

,     elsewhere 
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Fig. 41 The time truncation of the periodic impulse train, (a) The periodic train of 
impulses; (b) the (sin irt/T) (7rt/T) truncating function; (c) time-truncated 
train of impulses.   (Weight of impulse is indicated by height.) 

Fig. 42 Central region of the   X   function of the impulse train after truncation in time by 
the   (sin    fft/T) ( TTt/T) function. 
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Fig. 43    Central region of the   X    function of the periodic impulse train after truncation 
in time and frequency by siny/y functions. 

Fig. 44    Sketch of the pulse-train signal after siny/y time and frequency truncations. 
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and for   U1 (f) 

UJ(f)  = sin 7rf/F 
fff/F (186) 

The   x  function which results and the corresponding signal are shown in 

Figs. 45 and 46 respectively. 

DIMENSIONS OF REGION 

WHERE SPIKES HAVE 

APPRECIABLE VALUE 

Fig. 45    Sketch of the central region of the  X    function corresponding to rectangular 
time truncation and sin y/y spectrum truncation. 

Optimal use of the pulse burst, as explained in Section 2. 0, requires 

that the repetition interval,   A,   of the pulse train be adjusted to correspond to 

the extent in time of echoes from objects in the beam of the radar, and that the 

carrier frequency be low enough so that the extent of the echoes in Doppler fit 

into the interval   l/A.    For example, with  A = 12 n sec (corresponding to a 
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Fig. 46    Sketch of the impulse-train signal 
after rectangular time truncation 
and sin y/y spectrum truncation. 

group of targets extending over a one-mile interval) and a carrier frequency of 

1000 Mcps, we calculate the allowable spread of target radial velocities,    6 V  , 
R 

as follows. 

26 V 
R 

6VR  = 

A Doppler    C carrier A 

C 
2f A 
c 

3 x 108 
12.5 x 103 

meters 

2 x 109 x 12 x 10~6 
sec 

=   6. 8 nautical miles/sec 
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If the targets extended over a two-mile range interval, and if the total spread 

of velocities was 6. 8 nautical miles/sec, quite obviously the carrier frequency 

would have to be set at 500 Mcps and so forth. 

The question which occurs naturally at this point is this:   What can 

be done to eliminate fold-overs in the Doppler direction when the radar carrier 

frequency is fixed and cannot be lowered ?    For this problem one would like a 

X   function with an unambiguous clear space around the origin with an area 

greater than unity.   It does not appear, however, that such a  x   function is 

possible. *  When the time-Doppler area occupied by the expected target complex 

cannot be scaled to unity, it should be clear that the pulse burst signal loses 

much of its attractiveness.   It is possible, of course, to modify the pulse burst 

signal to reduce the amplitude of certain spikes of the   x  function by changing 

the carrier frequency from pulse to pulse within the burst or by jittering the 

interval between pulses.    But the thing that makes the simple pulse burst signal 

attractive is, as we have said, that its   x  function is identically zero in regions. 

Jittering the carrier frequency or the repetition interval suppresses certain of 

the spikes (sometimes called "ambiguities") at cost of giving the   x  function 

non-zero value in regions where it was zero and, hence, impairs the multiple 

target capacity of the radar.   If estimates of both range and velocity are re- 

quired and if the area of the target space cannot be scaled to unity, then there 

are two alternatives.    First, signals with   x  functions of the thumbtack shape 

can be used and the pedestal made low enough (by increasing the TW product 

of the signal) to reduce the interference as defined in Section 2. 0 to an acceptably 

low level for detection and parameter estimation.   Second, the objects can be 

*See Kailath,  Ref. 39. 
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resolved in range only by signals with  x  functions having the shape of thin 

ridges.    True range and radial velocity of the objects can then be determined 

from range rate and apparent range measurements. 

The repetition interval of the pulse burst signal can be jittered to 

cause the associated  x  function to assume, approximately, the thumbtack 

shape in a strip.   Alternatively, the carrier frequency of a pulse burst signal 

can be jittered to make the associated  x  function assume, effectively, the 

shape of a thin ridge.    Pulse burst signals with jittered repetition intervals and 

carrier frequencies will be considered in the next two sections. 

3. 15        Pulse Burst Signals with Non-uniform Repetition Intervals 

The   x   function of the simple pulse burst signal, as we have seen, 

consists of a two-dimensional array of spikes, but when the objects in the beam 

of the radar have an extent of less than  A  in range and   l/A  in Doppler (area 

less than one), the large number of spikes causes no trouble.    The details of 

the target complex may be seen clearly (i. e. , there are no fold-overs, etc.). 

When the area of the target space is greater than unity, however, if the pulse 

burst signal is to be used at all, some means must be found to suppress at 

least some of the spikes of the  x  function away from the origin.    The spikes 

or "ambiguities" or "sidelobes" in range may be suppressed by a variety of 

methods.    First, the phase of successive pulses might be stepped according to 

a suitable code,  such as a Barker code or an M-sequence.   Second, the carrier 

frequency could be changed from pulse to pulse to reduce the sidelobe level of 

the   x  function.   A third method of reducing the range sidelobes is to make the 

time interval between successive pulses non-uniform.    The latter method is 

our subject here. 
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Figure 47(a) shows a simple pulse burst signal consisting of five 

pulses, and 47(b) shows its autocorrelation function.    In Fig. 48(a) the signal 

is modified in a simple way:   each successive interval between pulses is increased 

beyond the preceding one by a pulse width.    Figure 48(b) shows the associated 

autocorrelation function.   All of the sidelobes have been reduced to unit height. 

The  x  function of the signal is particularly easy to visualize.    The   x  function 

vs.    v  for a given shift  T   is actually the Fourier transform of the product of 

the signal with a replica of itself shifted by  T.   When the pulse burst is arranged 

like that of Fig. 48(a) for values of T   greater than a pulse width, at the most 

only two pairs of pulses overlap partially and only single pairs of pulses overlap 

completely.   The product in the latter case is a rectangular pulse.    The   x 

function divided by   6,   the pulse duration, vs. Doppler for that  T  then has the 

form   (sin TT 6V )/ir 6 v );   the maximum value, which occurs at  v = 0, is one.   It 

appears to be generally true that for    |T ] > 6    the height of the  x  function in 

the plane has a maximum value of one.    For    ] T |   <  6  the   x  function is of 

course different, because the product function looks like the signal which con- 

sists of five pulses.    The peak value of the   x   function, normalized with respect 

to   6,   occurs at  T = v = 0  and is equal to the number of pulses, 5 in this 

case.   A sketch of the   x  function of a signal constructed in the same way as 

that of Fig. 48(a) is shown in Fig. 49.   Within the Doppler interval,   ± 1/2 A 

average on either side of the   T   axis, the   x   function has roughly the thumb- 

tack shape. 

Other methods of staggering the pulses of a burst to suppress sidelobes 

m investigated extensively by 

information is referred to his report. 

have been investigated extensively by Resnick; the reader desiring more 
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Fig. 47    (a) A simple pulse-burst signal; (b) the autocorrelation function of (a). 

JUl n n. •• t 

(a) 

^YA/W 
-*\   28    K 

Ib) 

Fig. 48    (a) A pulse-burst signal with non-uniform pulse spacing; (b) the autocorrelation 
function of (a). 
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3.16 Pulse Burst Signals with Jittered Carrier Frequency* 

If the successive pulses in a burst of pulses are designed so that their 

spectra do not overlap significantly, the sidelobes of the autocorrelation function 

of the signal will be quite small.    The sidelobes will remain small for values of 

Doppler shift up to the minimum spacing in frequency between the spectra of 

the pulses.    Let us compute the   x   function of a pulse burst signal in the vicinity 

of the origin of the  T, V  plane.    For convenience let us consider that the pulses 

of the signal   s(t)   are uniformly spaced in time by  A   and that the carrier 

frequency increases by the fixed amount  f    on successive pulses.   We have 
s 

for   s (t),    the exponential form of   s(t) 

A j27r(f   + nf )t v o        s' 
sc(t)   = >      a(t-nA) e 

n = -N 

= 

N 
j27Tf  t     A 

e                )       a(t - 

n = -N 

j2 7rnf t J        s 
nA) e (187) 

The   x  function of  s(t)   is 

N      N oo v-^    v^        p j27rnf t    -j27rmf (t + T) 
X(T,V)-   /     /        \     a(t-nA)a(t + r -mA)e e 

m=-N n=-N -°° 

x e   J dt 

*This section is based upon an unpublished manuscript of R.  Price, MIT 
Lincoln Laboratory. 



^ Y"     -j27rmf T  p°° -j27rf t(m - n) 
X(T,V)=   )   )   e \      a(t-nA)a(t + T  -mA)e 

m  n -oo 

x  e-j27rVt     dt      . (188) 

Let us assume that  a(t)  is substantially zero for    |t ]   >   6/2,   where   6  « A. 

Then the central peak of  X(T, V)  will occur for     |T | < 6 .   For the integral 

to have value for     |T ]   < 6/2, we must have  m = n.   Then Eq. (188) becomes 

N 
^ -j27rnf T   p°° 12     t 

X (T,  V) =      >       e S    \      a(t - nA) a(t + T - nA) e   } *V      dt    , 

n = -N 

(189) 

where the subscript  "o"   indicates that the expression is for the region near 

the origin.   We set  t' =   t -  nA   in Eq. (189) to obtain 

N 
Y^ -j27rn(f T + A v ) 

X0(T,  V) = xa(T,  v)   2     e , (190) 

n = -N 

where   x (T, V )   is the   x  function associated with the envelope of the individual 
a 

pulses,    a(t).    The sum on  n   in Eq.  (190) may be written in closed form, and 

X (T, v)   becomes 
o 

sin TT(2N+ 1) (f T + Av) 

*o<T' "» " "a(T' ->   sinl(fr
S

+A,) (191) 
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To interpret Eq. (191), first consider the case when the frequency step f   = 0. 
s 

Then the factor which multiplies  x (T, V)  is a function of  v  only.   For  N large, 

the factor is essentially a sampling function with a sampling interval of  l/A 

as sketched in Fig. 50.   As   f    is increased from zero, the peaks of the s 
sampling factor in Eq. (191) are inclined at an angle to the  T  and v  axes.   The 

maxima occur when 

f T + Av = ±k 
s k = 0, 1, 2  (192) 

The tangent of the angle of the ridge is given by the derivative 

dv       s 
dT "    A (193) 

Fig. 50    Sketch of the   X   function of a 
simple pulse-burst signal in a 
strip in the Doppler direction. 
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The situation which occurs for  f   4.  0   is sketched in Fig. 51.   When the fre- 

quency step,   f ,   is made large compared to   1/6  to suppress sidelobes, a 
s 

cut through the surface in the   T   direction sketched in Fig. 51 will have the 

character shown in Fig. 52.   As the Doppler shift is allowed to increase or 

decrease, the pattern of spikes in Fig. 52 will move to the right or left.    The 

width of the lines in the   T   direction is about   l/[ (2N + l)f ] , which is the 
s 

reciprocal of the total bandwidth used in the signal.    If the Doppler shift of the 

signal has been determined by some other means, and if the range to the target 

is known to within the ambiguity spacing   1/f ,   then range can be measured 

with an accuracy commensurate with the total bandwidth,    1/(2N + l)f .    Other- 
s 

wise it will not be possible to make use of the fine structure of Fig. 52.   One 

would then probably take the envelope of the lines, and accuracy in the meas- 

urement of range would be that corresponding to the bandwidth of a single pulse, 

1/6.   Without prior knowledge of Doppler and approximate range, we have, 

effectively, the   x   function of a single pulse of the burst.    However, provided 

that the target is not larger than the interval between ambiguities,    l/f ,    the 
s 

range resolution of the signal corresponds to the full bandwidth,    l/(2N + l)f . 
s 

To make use of this resolving power, it is not necessary to have prior knowledge 

of either Doppler or range.    The target must not, of course, have too large a 

spread of Doppler in its echo or obvious difficulties will arise. 

What is gained by using the stepped frequency pulse burst instead of 

a single short pulse ?   Clearly, one gain is in signal energy.   Assuming that 

the radar transmitter is peak power limited, the energy received from the 

burst signal echo is greater than that received from a single pulse by a factor 

equal to the number of pulses in the burst.    Bandwidth is traded in this case 

for signal energy and, hence, for detection.    In addition, with the stepped 

frequency pulse burst one may achieve high resolution over a limited range 

interval. 
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Fig. 51     Sketch of the X   function of a 
pulse-burst signal whose frequency 
increases by   f    on successive 
pulses. 

SINir(f, T*AI;)(2N+I) 

SINir(f8T+Ai>) 

Fig. 52    Sketch of a cross section in the 
T direction of the   X  function 

of Fig. 51. 
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How does the stepped frequency pulse burst signal compare to the 

simple constant frequency pulse burst?   Clearly, at the expense of bandwidth, 

the stepped frequency pulse burst gives a   x  function that can have low side- 

lobes along the  T   axis and high resolution in a limited region; the comparable 

constant frequency pulse burst has large sidelobes.   On the other hand, the 

constant frequency pulse burst permits resolution in Doppler proportional to 

the reciprocal of the total time duration of the burst, while the stepped frequency 

pulse burst has a Doppler resolution proportional only to the reciprocal of the 

duration of one pulse of the burst. 

How does the stepped frequency pulse burst signal compare to the 

non-uniformly spaced pulse burst?  With the latter, one gets essentially the 

Doppler resolution which goes with the duration of the burst; the price paid for 

Doppler resolution in this case is the presence of skirts in the   x  function 

which, while low, extend over the entire useful region of the T, V  plane.   The 

presence of the skirts, of course, impairs the multiple target capacity of the 

signal, as described in Section 2.0. 
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4.0 TECHNIQUES 

4.1 Introduction 

In Section 2. 0 we discussed signals from the standpoint of the signal 

ambiguity functions and the effect of the ambiguity function shape upon the 

accuracy of parameter estimation and upon the multiple target capacity of the 

radar.    In Section 3. 0 we discussed signals in terms of the modulation the 

signal contained and the kinds of ambiguity function shapes which were achievable 

with particular types of modulation.   In this section we will discuss some of the 

techniques available for generating and receiving the types of signals described 

earlier.    The subject of techniques is central to the question of signal selection. 

One will certainly tend to use signals that are supported by well-developed 

techniques, and tend to avoid signals not thus supported unless time and re- 

sources are available to develop techniques.    The subject is thus clearly 

important, but it is also the most difficult to discuss.   A great deal of develop- 

ment work is presently going on in many places, and consequently,  remarks 

made about the state-of-the-art in techniques soon will be obsolete.    There is 

also the problem of security classification; new developments in techniques 

frequently arise in connection with military equipment and are thus more likely 

to have a security classification.    The above problems, together with a space 

limitation, preclude a complete treatment of the subject of techniques here. 

We will, instead, try to stress some fundamental aspects and then refer the 

reader to the literature for further details. 

In this section we will briefly consider the kinds of waveforms dis- 

cussed in Section 3. 0 and discuss in general the ways in which such signals 

may be generated and received.    Then we will discuss the technique of sideband 

exchange which, for certain types of waveforms, makes it possible to use as a 
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matched filter the filter initially used to generate the waveform.    Following 

that, we will discuss some aspects of lumped constant filters, ultrasonic delay 

lines, and tapped delay lines. 

4.2 General 

Here we will list the waveforms considered in Section 3. 0 and tabulate 

for each waveform the most attractive techniques for generation and reception. 

Some techniques are well developed; others are less so.   It is useful at this 

point again to call attention to the fact that when it is desired only to achieve 

a certain   x   function shape, one can transmit the signal which gives the   x 

function or the Fourier transform of the signal.   When the Fourier transform 

is taken for the signal, the   x  function has the same shape but is rotated in the 

T,    v  plane by 90 . 

It is convenient for purposes of classification to distinguish between 

two methods of synthesis of a device to generate a signal:   frequency domain 

and time domain.    The distinction is a usual and obvious one.   When the syn- 

thesis has as its object the realization of a filter with a frequency response 

equal to the Fourier transform of the signal, we will say that frequency domain 

synthesis is employed.   Alternatively, when the design proceeds directly in 

the time domain to produce a device the impulse response of which is the signal, 

we will say time domain synthesis is employed. 

A.       Uni-directional frequency-modulated signals with smooth envelopes 

(The Fourier transform of such a signal has a smooth modulus and 

a group delay characteristic which varies in a unidirectional way 

with frequency.) 

(1)    Frequency domain realization requires a device with a dispersive 

group delay characteristic such as one of the following: 
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(a) lumped constant, electric networks, 

(b) waveguides in the vicinity of the cut-off frequency, 

(c) ultrasonic delay lines. 

(2)   Time domain realization: 

(a) tapped delay lines, 

(b) non-linear means such as variable frequency oscillators. 

B. Symmetrical FM signals with smooth symmetrical envelopes    (The 

Fourier transform of such signals has a highly structured modulus 

and a phase which is either zero or  IT   radians.    Clearly the same 

X  function, rotated by 90 , could be obtained by transmitting the 

Fourier transform of the symmetrical FM signal, in this case, an 

amplitude-modulated, phase-reversal signal.) 

(1) Frequency domain realization: 

(a)    filter with highly structured frequency response modulus 

and a phase of zero or  IT   radians.   This could be a difficult 

synthesis job. 

(2) Time domain realization: 

(a) tapped delay line, 

(b) non-linear means such as a variable frequency oscillator. 

C. Amplitude-modulated, phase-reversal signals    (The Fourier transform 

of Category "B" above) 

(1)   Frequency domain realization (spectral modulus smooth and 

symmetrical, group time delay): 

(a)   lumped constant filters. 
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(2)   Time domain realization: 

(a)   tapped delay lines. 

D. Time-limited, constant amplitude, phase-reversal signals 

(1) Frequency domain realization is apparently, in many cases, 

unattractive. 

(2) Time domain realization: 

(a)   tapped delay lines. 

E. Pulse burst signals including simple bursts, jittered p. r. f. bursts, 

jittered frequency burst, bursts with complex modulation in the 

individual pulses 

(1) Frequency domain realization: 

(a)   lumped constant filters (useful as a component of the 

overall filter). 

(2) Time domain realization: 

(a)   tapped delay lines (useful for realizing the repetitive 

character of the burst). 

4. 3 Sideband Exchange 

When the signal is generated by applying a pulse (effectively an 

impulse) to a linear filter, under certain circumstances the same filter may 

be used as a matched filter.    It is useful to consider briefly the circumstances 

under which this may be done. 
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We recall that the matched filter to a signal has an impulse response 

which is a replica of the signal inverted in time.   Quite obviously, then, when 

the signal is an even function of time about its midpoint, the filter used to 

generate the signal will serve directly as a matched filter. 

We have a second example of a filter which serves to generate the 

signal and which also serves as a matched filter in the tapped delay line filter 

of Fig.  20.    An impulse applied to terminal "a" in Fig.  20 produces the signal 

waveform at "b. "      When the impulse is applied at terminal "a', " the wave- 

form at "b" is the signal inverted in time.    Therefore, the filter is a matched 

filter for the signal when the signal is applied at terminal   "a1. " 

Alternatively, if the signal could be inverted in time after generation, 

then the filter used to generate the signal would obviously serve as a matched 

filter.    The signal may in effect be inverted in time by a modulation and filtering 

process which is called sideband exchange if it possesses certain characteristics: 

the signal envelope must be an even function of time about the midpoint of the 

signal, and the instantaneous frequency must be an odd function of time about 

the midpoint of the signal and about the carrier frequency.    The sideband 

exchange process is illustrated in Fig. 53.    In Fig. 53 the signal is shown with 

an even envelope and a linear downward frequency sweep of 26   centered about 

f   .    The frequency sweep does not, of course, have to be linear, but it must 

be an odd function.    The signal is multiplied by a sine wave of frequency   2f , 

and the sum component of the product, the upper sideband at  3f ,   is selected 

by the first bandpass filter.    Next follows multiplication by a sine wave of 

frequency  4f ;   the difference component centered at  f    is selected by a 

second bandpass filter.    The frequency of the output waveform now increases 

with time as shown in the figure, and the waveform with which we began has 

been effectively reversed in time. 
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Figure 54 illustrates by successive convolutions of spectra how such 

a signal as we have discussed might be transmitted and received in a radar. 

It may easily be shown that a narrow band signal which has an even envelope 

and an odd frequency sweep has a Fourier transform the modulus of which is 

even about the center frequency of the signal and the group delay of which is 

odd, as shown in Fig. 54(a).   With this established, the rest of Fig. 54 is self 

explanatory. 

4. 4 Lumped-constant Filters 

A filter, the impulse response of which is the signal, will usually con- 

sist of a number of parts arranged in cascade.   A possible arrangement is 

shown in Fig. 55.    In the figure, the first network serves to shape the modulus 

of the frequency response of the filter, and network number two equalizes the 

delay (or linearizes the phase) of network number one; network number three, 

an all-pass network,  supplies the desired phase characteristic, and network 

number four corrects the overall frequency response modulus for errors 

caused by parasitic losses.   For convenience in synthesis and construction, each 

block in Fig. 55 might well be further broken down into several blocks. 

The parts of the filter will usually be specified by frequency response 

modulus and phase, and a first step in realizing the parts is that of finding 

arrangements of poles and zeros in the complex frequency plane which yield 

satisfactory approximations to the required j-axis characteristics.    This is 

the so-called "approximation problem" in network synthesis.    The techniques 

of handling the approximation problem are many and varied, and the interested 
[ 41  42 43] 

reader is referred to the literature. Perhaps the most common 

method of handling the approximation problem is that of trial and error.    The 

trial and error method is much speeded by use of a digital computer programmed 
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to give the j-axis modulus and phase associated with a set of poles and zeros. 

Here we will give some examples of frequency response characteristics and 

pole-zero configurations which approximately realize them.    The circuit 

building block for all-pass network construction is the bridged-tee network. 

We will discuss some of the problems which arise in the construction and 

alignment of these networks. 

Figure 56 shows a frequency response modulus and phase.    The 

modulus is that associated with a single pole and the delay is constant (and 

hence, the phase is linear).    Figure 57 shows an arrangement of poles and 

zeros which has approximately the frequency response characteristic shown in 

Fig. 56.   The single pole on the real axis establishes the shape of the modulus 

of the transfer function frequency response.   The other poles and zeros con- 

stitute an all-pass structure which linearizes the phase. 

Figure 58 shows the frequency response characteristics of a bandpass 

filter with a maximally flat modulus and constant group delay (or linear phase). 

Figure 59 shows the pole-zero configuration which gives the frequency response 

of Fig. 58.    The five poles on the semi-circular contour centered at   jf    and 

the j-axis zero, together with their conjugates at negative frequency,  give the 

modulus of the frequency response.    The five poles are a low-pass Butterworth 

configuration reproduced about the center frequency,   f .    The unwanted weighting 

caused by the conjugate poles is approximately compensated for by the j-axis 

zero.    The delay of the poles is made constant by the ten all-pass poles and 

zeros and their conjugates. 
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Fig. 55    A possible arrangement for realizing in the frequency domain a filter having 
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Fig. 56    Frequency response modulus (a) and group delay (b) of a linear phase, single 
pole filter. 
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As a third example consider an all-pass network that has the group 

time delay characteristic, shown in Fig. 60, which closely approximates an 

inverse-tangent function.   A pole-zero configuration which gives the inverse- 

tangent group delay is shown in Fig. 61.   There are 38 positive frequency 
[ 411 poles and zeros.    Guillemin has shown that an indefinitely long array of 

poles equally spaced on a line parallel to the j axis has a group delay which 

goes very nearly as the inverse tangent near the end of the string.    The 32 

equally spaced poles and zeros give inverse tangent shape.   The remaining 6 

poles and zeros compensate for the truncation of the string. 

One may proceed by any of a number of methods to synthesize 

networks having the required pattern of singularities, but, in general, it will 

be convenient to synthesize the networks in the manner in which they have been 

organized in Fig. 55, that is, realizing the amplitude-shaping networks and 
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Fig. 59    Pole-zero configuration which gives the frequency response of Fig. 58. 
(Courtesy of R.D. Haggarty of The MITRE Corporation.) 
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Fig. 60    Inverse-tangent group time delay characteristic. 
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Fig. 61     The all-pass pole-zero arrangement whose delay approximates the inverse- 
tangent curve of Fig. 60. 
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delay equalizers separately.   We will not discuss here the amplitude networks 

but will confine ourselves to some remarks regarding the realization of all- 

pass networks.   All-pass transfer functions are of the form 

F(S) - ^~     , (194) 

where   P(s)   is a polynomial in the complex-frequency variable   s.    The roots 

of  P(s)   are all in the left half of the   s  plane.    The roots may be real or, if 

complex, they must occur in complex-conjugate pairs; likewise, the roots of 

P(-s)  are in the right half  s  plane opposite the corresponding roots of  P(s). 

The polynomial  P(s)   and likewise   P(-s)   may then always be factored into a 

product of two types of factors:   first order factors in   s   and quadratic factors, 

thus: 

2 2 
(s - a )(s - a )....(s   -b  s + c)(s   -b  s + c )... 

F(s)   =    i 2- —i 1      2         £        .        (195) 
(s + a1)(s + a2)....(s   +b1s + ci)(s   +b2s + c2)... 

Two types of networks suffice to realize any all-pass transfer function of the 

type shown by Eq. (195).    They are   F (s)   and   F (s),   where 

F (S) = £—2_ (196) 
V '      s + a y      ' 

and 

2     , 
x, s   - bs + c 

2(S) = ~  ' (197) 

s   + bs + c 
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F (s)   and   F (s)   may be realized as constant-resistance structures; such 

structures may be cascaded to produce over-all transfer functions of the form 

of Eq. (195). 

Realization of transfer functions of the form of  F (s)   and   F (s)   as 

constant-resistance lattices and the equivalent bridge-tee networks is discussed 
[44] [4l] [42] 

by Bode, Guillemin, Van Valkenburg and many others.   We 

will outline the synthesis procedure for the transfer function   F (s)   to set the 

stage for some remarks bearing on the construction of the physical networks, 

compensation for parasitic losses, and alignment procedures. 

When the series and shunt arms,    z    and   z     respectively, of the 

lattices of Fig. 62 are reciprocal, the image impedance,    Z.,    is 

Z.   =   /zazb   =   l       , (198) 

and the transfer impedance,    Z       is 

E 1 - z 
Z
T"T-"1T7-    • <199> 

1 a 

The all-pass quadratic transfer function may be written 

as 

ZT  = 

2 
s   - as + 1 

2 
s   + as + 1 

s2 + 1 

s   + 1 

(200) 
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Fig. 62    The symmetrical constant-resistance lattice. 

By comparison of Eqs. (199) and (200), we see that we may write 

as 

s   + 1 
1 1 

— s + — 
a as 

(201) 

Therefore, 

1 1 z,   = — s + — 
b      a as 

(202) 

and we have the lattice of Fig. 63(a).   But because of dissipation,   z    will 

assume the form 

as 
\   =-2 

(203) 
s    + d s + 1 

a 
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Fig. 63    (a)The all-pass, constant-resistance lattice; (b) the constant-resistance 
network of (a) with equalized parasitic losses. 

where  d    may be shown to be   1/Q ,   the   "a"   network quality factor.   The 
3. cl 

shunt arm,   z, ,   likewise because of losses, will be 
b 

s   + 
zb = 

"b 
S + 1 

as 
(204) 

and the lattice may be made constant-resistance if  d,    is made to equal   d . 

In other words, to obtain a constant-resistance lattice in the presence of 

parasitic losses, the losses in the series and shunt arms must be equalized. 

It is important that the networks be made constant-resistance, because success 

in cascading the networks and in obtaining the desired overall transfer func- 

tion hinges on the termination of each network in its image impedance.   With 

z     given by Eq. (203), the expression for   Z     becomes 
3. X 
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2 
„ s   - (a - d) s + 1 

T =   ~2  ' (205) 

s   + (a + d) s + 1 

The transfer function, with element losses, is no longer all-pass but has a 

notch near the critical frequency which, in this case, is one radian per second. 

The minimum value of  Z     occurs at about  s = jl,   where 

i + — 
a 

If the ratio  d/a   is of the order of 0.1, the minimum value of   | Z   |   is about 

0. 82, a loss of about 1. 8 db. 

The constant-resistance lattice with losses is shown in Fig. 63(b). 

The pole-zero patterns of the lattice with and without losses are shown in 

Fig. 64(a) and (b) respectively.   Without losses, the singularities lie on the 

perimeter of the unit circle; zeros and poles are equidistant from both  a and 

jcu   axes, as shown in Fig. 64(a).   With losses, the singularities still lie on 

the unit circle, but all have been shifted to the left a distance equal to  d/2. 

(The zeros move toward the  jo;   axis and up in frequency; the poles move away 

from the  ju>   axis and down in frequency.)  When the angle between the real 

axis and a radial line drawn to the singularity is large, most of the motion of 

the singularities is toward or away from the  jw  axis.    The delay fillet due to 

the zero consequently gets narrower and higher, that due to the pole lower 

and broader, than in the lossless case; thus the motion of the pole tends to 

compensate for the motion of the zero, as far as the group delay is concerned. 
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Fig. 64    Pole-zero plot of (a) all-pass constant-resistance network of Fig. 63 (a), 
and (b) loss-equalized, constant-resistance network of Fig. 63 (b). 

Construction of the balanced network of Fig.  63(b) would prove 

awkward for a number of reasons, such as part tolerance requirements, re- 

quirement of a drive balanced to ground, lack of a common terminal for input 

and output, the problem of balancing strays to ground, and so forth.    For con- 

struction, an unbalanced network is more convenient.   The networks of Fig. 63 

have a number of unbalanced equivalents; two possible such equivalents are 

shown in Fig. 65 with and without provision for losses.    Networks of Fig. 65(a) 

and (c) serve for  a < 1;   for  a > 1   the capacitor in the shunt arm becomes 

negative.    Networks of parts (b) and (d) of Fig. 65 are for a > 1.   A unity 

coefficient of coupling is shown for the upper coil in the figure, but the circuit 

may be modified to account for couplings of less than unity if desired. 

We will use the network type of Fig. 65(c) to illustrate some remarks 

on network construction and alignment.    Figure 66 shows a single bridged-tee 
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Fig. 65    (a) and (b) Unbalanced bridged-tee equivalents of the constant-resistance 
lattice of Fig. 63 (a); (c) and (d) Bridged-tee equivalents of lattice of 
Fig. 63(b). 
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Fig. 66    Bridged-tee delay network of Fig. 65 (c). 
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network designed to operate at about 200 kc/sec.   The inductors consist of a 

winding on a spool inside a ferrite cup-core which has, in the center, an air 

gap.   A ferrite slug may be moved in the center to vary the dimensions of the air 

gap and hence the inductance.    The capacitors are of the moulded, silvered 

mica type, and are within 1/2 percent of the calculated values.   At the bottom 

of Fig. 66 may be seen protruding the end of a small adjustable resistor which 

is in the shunt arm and is used to introduce losses.    The impedance level of the 

network shown is 200 ohms. 

An alignment procedure which gives good results for the network of 

Fig. 66 is the following:   First, the terminating resistor (not shown in the 

figure) is disconnected.   Then a balanced voltage drive at the correct frequency 

is connected across the top tank circuit and, with the shunt arm effectively out 

of the circuit, the top inductor is adjusted to resonate the top tank.   This pro- 

cedure is illustrated in Fig. 67(a).   When the tank in Fig.  67(a) is adjusted to 

resonance, the voltage from point "a" to ground will be in phase with the voltage 

from point "b" to ground.   One may observe the voltages with a 2-channel 

oscilloscope and thus set the resonance very accurately.   Observing the voltages 

at points "a" and "b" with the oscilloscope puts a few picofarads capacity from 

the points to ground.    To preserve balance of the drive, the proper capacities 

are connected from points "a' " and  "b'  "   to ground.   Since the capacity from 

points "b" and   "b' "   to ground will appear across the tank, the tuning frequency 

must be adjusted so the circuit will resonate at the proper frequency with the 

drive removed.    Next the balanced drive is removed, and the proper termination 

is connected across the output terminals of the network.   A sweeping oscillator 

is connected to the input as shown in Fig. 67(b).    The voltage from point "c" 

to ground is observed vs. frequency.   The inductor and resistor in the shunt arm 

are alternately adjusted until the voltage at point "c" is constant over the band 
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Fig. 67    Alignment of bridged-tee network; (a) method of setting frequency of top 
tank; (b) method of adjusting shunt elements. 
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of frequencies of interest.   In this way, the network is made constant resistance. 

The bottom inductor obviously must initially have a higher quality factor, or 

"Q, " than the top inductor; should it be otherwise, some damping must be put 

across the top tank before the top tank is tuned. 

Figure 68 is a photograph of 10 networks in cascade mounted on an 

aluminum plate of dimensions 7 inches by 12 inches.    Ten more networks are 

mounted on the other side of the plate.   In this way, a great many networks 

may be assembled in a relatively small space. 

4. 5 Ultrasonic Delay Lines 

Sonic waves propagate in solid cylindrical rods and ribbons in a number 

of ways.   The waves can be longitudinal, shear, flexural, or torsional.    There 

are an infinite number of modes by which waves of each type may propagate, 

and in nearly every case the velocity of propagation varies with frequency. 

Exceptions are the lowest torsional mode in a rod and the lowest shear mode in 

a strip, both of which have a nearly constant velocity of propagation, independent 

of frequency.   The theory of the propagation of sinusoidal waves in infinitely 
[ 45] long cylindrical bars was originally developed independently by Pochhammer 

and Chree. A summary is given by Love. One can make an elec- 

trical delay line utilizing the ultrasonic propagation effects by placing suitably 

designed electro-mechanical transducers on the ends of a cylindrical rod or 

ribbon.    The transducers and the rod or ribbon must be of the proper size for 

the frequency employed, and the transducer must be designed to excite only the 

specific mode of propagation desired.   A great deal of work aimed at the 

development of useful ultrasonic delay devices has been carried on at the Bell 

Telephone Laboratories. *   Lines of constant delay have been constructed using 

*A recent paper by May, Ref. 48, summarizes some of the Bell 
Laboratories work on ultrasonic delay lines. 
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the lowest shear mode in an aluminum ribbon, 
[49] 

and dispersive delay lines 

have been realized by use of the first longitudinal mode in both cylindrical 

rods and ribbons. While both kinds of delay lines are potentially 

useful in the design of filters to generate and receive signals, we will confine 

our remarks here to the dispersive lines.   Of the two shapes considered, rods 

and ribbons, apparently the ribbon is to be preferred because spurious responses 

are less troublesome with that shape. 

Figure 69 shows the group time delay vs. frequency obtained by using 

the first longitudinal mode in an aluminum ribbon.   V    is the free space shear 
s 

wave velocity (which for aluminum is 0.1259 inches/microsecond),   L  is the 

length, and h   is the thickness of the ribbon. 

Fig. 69   Comparison of theoretical and experimental frequency dependence of 
delay for first longitudinal mode in a strip.   (Taken from Meeker, Ref. 
51, with permission.) 
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Figure 70 shows how the transducers are affixed to the ends of the 

ribbon.   It should be possible to use any one of a number of ceramic crystals 

for the transducers.   Barium titanate has been used by Bell Laboratories. 

Other materials give broader or narrower pass-bands and higher or lower 

impedance levels. 

Figure 71 shows the loss vs. frequency curve for the dispersive line 

when barium titanate transducers are employed.   At midband the loss is about 

13 db and it increases slightly on either side.    The loss is almost entirely due 

to the transducers for lines of reasonable length. 

50 

40 

30 

tn 
a 

20 

10 

TRANSDUCERS   TUNED AT MIDBAND 
FREQUENCY 

-ATTENUATION  OF  LINE  MEASURED 
BETWEEN   SYMMETRICAL 
TERMINATIONS 

0 
0.90 0.93 1.00 

f/f 
1.09 1.10 

Fig. 71 Insertion loss for a typical dis- 
persive longitudinal strip delay 
line with a center frequency of 
about 2 megacycles and a mid- 
band delay about one millisecond. 
(Taken from Meeker, Ref. 51, 
with permission.) 

The line whose delay is shown in Fig. 69 may be used as it is or it 

may be used as a building block for the synthesis of other group delay curves. 

Notice that the group delay curve of Fig. 69 has an inflection point 

at  hf/ V    s 0. 68.   If the center frequency is taken at the inflection point, tl 

group delay curve is a reasonable approximation to a straight line over an 
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interval equal to about 15 percent of the center frequency, and the device can 

be used as a component in the frequency domain realization of a filter designed 

to generate and receive linear FM signals. *  An experimental line described 
.[si; 

by Meeker has the parameters given in Table 3. 

Table 3 

Center frequency 2 Mcps 

Midband delay 1000  jxsec 

Insertion loss                       = 15 db 

Change in delay (over 
15% bandwidth) 400 usec 

Discrimination to un- 
wanted responses 
(over a 10% bandwidth)     = 40 db 

Maximum departure 
from linearity (over 
15% bandwidth) 12 usec 

Figure 72 shows a photograph of an experimental Bell Laboratories 

ultrasonic delay line.    The electrical matching networks may be seen near the 

ends of the aluminum ribbon.   The top and bottom edges of the ribbon are 

covered with a tape which serves to absorb sonic waves that strike the edges 

of the line. 

Let us consider how the delay line whose delay curve is given by 

Fig. 69 might be used in the synthesis of delay curves of other shapes.   We 

view the elemental delay line and its delay curve of Fig. 69 as a building block; 

*An ultrasonic delay line was used in the apparatus described in Ref.  13. 
System performance is shown in Figs. 26 through 28. 
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Fig. 72 Photograph of a strip ultrasonic delay line. The line contains 43 feet of strip 
and is mounted on 7-inch square plate. (Taken from Meitzler, Ref. 55, with 
permission.) 

we can scale the delay by scaling the physical length of the ribbon, and shift 

the delay curve in the frequency direction by scaling the ribbon's thickness. 

Other delay curves can then be obtained by arranging delay lines of varying 

length and thickness in cascade.   In order to realize a different delay curve 

one must first express the desired delay curve as a sum of appropriately 
[ 52] 

weighted and frequency-shifted delays of the shape of Fig. 69.    Fitch has 

reported a method of making such an expansion which uses the methods of 

linear programming.   With ribbon lengths and thicknesses determined, the 

delay line is made as a single ribbon.   With specially designed equipment the 

ribbon is rolled for length   L    with appropriate thickness  h ;   then the spacing 

of rolls is changed to  h    and the ribbon is rolled for the appropriate length 

L ,    and so on.   When the rolling process is finished, a transducer is attached 
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to each end of the ribbon, and the delay line is complete.    The measured loss 

and delay of such a delay line are smooth functions; apparently changing the 

thickness of the ribbon at points along its length does not cause noticeable re- 

flections.    Fitch also describes a chemical milling process in which the ribbons 

are withdrawn from an etchant at a non-uniform rate.   In this way a continuous 

taper of the ribbon thickness can be achieved. 

[ 52] 
Fitch describes the construction by the thickness tapering method 

of two ultrasonic lines with parabolic delay vs. frequency characteristics:   one 

with delay that increases with increasing frequency, and the second with delay 

that decreases with increasing frequency.   Other shapes can be achieved, 

particularly those that have a group delay that increases (or decreases) mono- 

tonically with frequency. 

4. 6 Tapped Delay Lines* 

The technology of delay lines has developed enormously in recent 

years.    Low-pass delay lines exist in distributed parameter form (e.g. delay 

cables) and as lumped element devices.    Bandpass delay lines are available in 

the form of acoustic devices.   All of the above types are commercially available 

and suitable for generating waveforms with duration-bandwidth products of 

several hundred.   We will not try in this section to give a technical discussion 

on delay lines themselves.    The subject is much too vast.   Rather we will 

consider some ways in which delay lines can be used to generate and receive 

signals. 

* An excellent discussion of the use of tapped delay lines in generating 
signals is given by Turin in Ref. 53. 
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As a first illustration of the use of tapped delay lines let us consider 

the low-pass, 13-code waveform of Fig. 19(a).   We would like to use the tapped 

delay line in conjunction with a linear filter in such a way that the impulse 

response of the over-all device is the 13-code signal.   Furthermore, for 

simplicity we would like the time delay between successive taps of the lines to 

be constant.   The general filter configuration we have in mind is shown in Fig. 

73.   Just what the delay between successive taps should be we can deduce by 
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< 

Fig. 73    Block diagram of a filter employing a tapped delay line, 

two methods. First, inspection of the 13-code waveform shows that the shortest 

interval between alternations is T, and therefore, if the taps are to be uniform, 

the tap spacing should probably be T. Alternatively, inspection of the spectrum 

of the waveform Fig. 19(c) shows that its bandwidth,   W,   is approximately 
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1/2T  and that, therefore, in accordance with sampling theory, to describe the 

waveform we should take samples at intervals in time,    A t,   given approximately 

by 

or 

At £   T    . 

We next ask what the impulse response of the filter in Fig. 73 should be.   An 

obvious choice for the impulse response, in this case, appears to be a rec- 

tangular pulse of duration  T.   Such a filter has a frequency response of the 

form   sin7rTf/7rTf   . 

With the weights,   a ,   of the filter in Fig.  73 set to correspond to the 

values of the 13-code waveform taken at intervals of  T, an impulse applied at 

the input terminal of the filter (terminal 1) will produce at the summing bus 

a train of impulses like that shown in Fig. 74(a).   The response of the 

sin 7rTf/7rTf  filter, which appears at the output terminal of the filter (terminal 

2), to the train of impulses is shown in Fig. 74(b).    It is, not too surprisingly, 

the 13-code waveform.    It is interesting to note that an impulse applied to 

terminal 1'   of the filter in Fig. 73 produces at terminal 2   the 13-code wave- 

form inverted in time, and that therefore, if the 13-code waveform is applied 

to terminal 1' ,   the filter serves as a matched filter.   This can be true of 

tapped delay line filters in general, as we shall see. 

We have labored this example somewhat to stress the useful point 

that tapped delay line techniques of generating signals can be viewed as 

implementations of sampling notions. 
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Fig. 74    Sketch to illustrate the method of generation of low-pass waveforms by 
use of tapped delay lines. 
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When signals are realized at bandpass by tapped delay line methods, 

the tap weighting required will be in general complex, corresponding to an 

amplitude and phase.   A useful type of delay line for realizing signals at band 

pass is the magnetostrictive acoustic wire delay line developed at Lincoln 

Laboratory.   The delay line and a matched filter system in which it is used is 
[ 54] described by Lerner. The delay line consists of a thin rod of magnetic 

material to one end of which is affixed a ceramic piezo-electric crystal and 

acoustic transformer; around the rod center, tapped coils are placed at regular 

intervals to make the taps.   Each tap has supplied a magnetic bias field.    The 

arrangement is shown in Fig. 75.   The ceramic transducer converts electrical 

signals to sound waves which travel along the rod.   As the sound wave propa- 

gates along the rod, it alters the local magnetic properties, and the corresponding 

changes in flux due to the bias field induce voltages in the output coils.   Plus or 

minus weights can be had from the opposite ends of the center-tapped output 

coil; changes in phase can be effected by moving the coil along the rod. 

The configuration of the bandpass tapped delay line filter is the same 

as that of the low-pass device of Fig.  73 except that now, as noted above, the 

weights   a    are complex and the filter with impulse response  u(t)   is at band- 

pass.   If care is taken to make the elemental signal   u(t)   have even symmetry 

about its center, then the signal generated by applying an impulse to terminal 1' 

is the inverted-time replica of the signal generated by applying an impulse to 

[ 54] terminal 1.    Lerner gives analysis of the delay line matched filter system 

and shows how the one delay line together with a suitable resistor matrix can 

make a matched filter not only to the signal but to the signal with a wide range 

of Doppler shifts as well.    The interested reader is referred to the paper by 

Lerner. 
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Fig. 75    Sketch of the magnetostrictive acoustic wire delay line developed at Lincoln 
Laboratory.   (Taken from Lerner, Ref. 54, with permission.) 
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