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FOREWORD

The material on radar signal design in this report was presented by the
author in lectures given during the two-week summer course on radar conductcd
at MIT in 1961. The lecture material was afterward expanded and prepared in
written form for inclusion as Chapter 3 of a book entitled ""Elements of High-
Power Radar Design, ' edited by J. Freedman and L. Smullin of MIT. Now, in
June 1965, it appears that plans for the book have been abandoned. Therefore,
it seems desirable to make this material more generally available by issuing

it as a technical report.

The ideas on signal design contained in this report have come from many
sources, and these sources are acknowledged with care insofar as they are
known to the author. The author is indebted to many of his colleagues; in
particular, it is a pleasure to acknowledge many stimulating discussions with
E. L. Key, R. Manasse, J. A. Sheehan, and R. D. Haggarty, of the MITRE
Corporation, and with E. J. Kelly and R. C. Yost, of MIT Lincoln Laboratory.



A

ABSTRACT

This report discusses the design of radar signals. 1t is
assumed that the radar receiver is matched to the signal so that
the receiver output waveform, in the presence of signal Doppler
frequency shift, is characterized by Woodward's two-dimensional
signal correlation function. The signal correlation function is
discussed, and certain of its properties are collected together.
The problem of the detection of a target in the presence of many
nearby targets is discussed, and an expression for the target capac-
ity of a radar is developed in terms of the signal correlation
function. There follows a discussion of the general problems of
signal design for multiple target resolution and for detection of
single targets in clutter. Signal waveforms are classified according
to the type of modulation, and the design of waveforms of each type
is considered in detail. The two-dimensional correlation function
is given for each type of signal. Finally, the subject of techniques
for generation and reception of signals is discussed.

REVIEW AND APPROVAL

Publication of this technical report does not constitute Air Force
approval of the report's findings or conclusions. It is published
only for the exchange and stimulation of ideas.

Y.

HARRY ¥i. BYRAM
Project Officer
MITRE Project 750
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1.0 INTRODUCTION

Central to the discussion of radar signal design is the signal correla-
tion function and the related ambiguity function. It is recognized that the
ambiguity function characterizes the degree to which a signal can be located in
time and frequency. In Section 2.0 the subject of signal design is considered
primarily from the standpoint of the signal correlation and ambiguity functions.
First, we will collect some properties of the two functions. Then we will con-
sider the problem of resolution and develop an expression for the target capacity
of a radar in terms of the ambiguity function of the radar waveform and the
target parameters. Three different idealized ambiguity function shapes — the
ridge, the thumbtack, and the bed-of-spikes — are considered, and their utility

and method of use in a multi-target environment is discussed.

In Section 3.0 signals are classified as to the type of modulation
employed — amplitude modulation, phase or frequency modulation, and a
combination of the two — and some aspects of the design of each type of signal
are discussed. In every case some idea is given of the kinds of ambiguity

function shapes that are possible with the various kinds of waveforms.

In Section 4.0 a number of the most important, well-developed tech-
niques for the generation and reception of signals are considered, each in some

detail.

Section 5. 0 contains the list of references and, for convenience, a

bibliography listing the referenced documents in alphabetical order.



2.0 THE SIGNAL CORRELATION FUNCTION AND THE PROBLEM
OF RESOLUTION

20l Introduction

In this section we will tabulate some of the properties of the signal
correlation function and the related ambiguity function and proceed then to
discuss the problem of resolution in the context of the signal ambiguity function.
Then we will develop an expression for the target capacity of a radar which
depends upon, among other things, the ambiguity function of the radar signal.
The specific dependence gives some insight as to how the signal ambiguity
function ought to be shaped for various kinds of measurements and for various
distributions of radar targets. Then the broad problem of signal design to
achieve high target capacity is considered. The ideas developed for the problem
of resolving multiple targets are then applied to the problem of detecting targets
which are immersed in a clutter background.

22 Some Properties of the Signal Correlation Function and
Related Ambiguity Function

The significance of the signal correlation function and the ambiguity
function, and the manner in which these two functions enter the subject of
®Y (2] ,
number of properties of the two functions have been collected by Siebert;[ 3]

since these are not too readily accessible in the literature, it seems worth

detection theory has been discussed by Woodward and Siebert.

while tabulating them here for easy reference.

Several notations are used in writing the signal correlation function.

[ 1]

Woodward calls the signal correlation function x (7, v), where*

*The Notation u(x) denotes the complex conjugate of u(x).



5 _ -jervt
T ) = S u(t) u(t+ 7)e dat (1)

—00

[ 4,5]

while Siebert and others have used the symmetrical form, ©6(7, w),

with

e(T,w)=§ u(t-%)ﬁ(t+— dt - (2)

In Eq. (1), v is Doppler frequency in cycles per second; in Eq. (2), w is
Doppler frequency in radians per second. The relation between the two
functions, x and ©, is simple. If we write 27 v = w andput t=1t"-7/2

Eq. (1) becomes

jﬁ o0
L T u(t-—;-)ﬁ(ug-)e'wtdt : (3)
- 00
or
.WT
17
X('T,(U)':e e(T’w) * (4)

The functions x and © thus are seen to differ only by a phase factor. Notice

that

lx(m,0)] = |0(7, w)]

The squared modulus of x (7, v) or alternatively of © (7, w) is usually

referred to as the ambiguity function, ¢ . We have

g

Y2
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2
¥(r, v) = | x(r, v)| (5)
or

2
¥(r, w) = o, w)]” . (6)

The ¥ notation of Woodward occurs naturally in analysis and is perhaps the
most common in the literature, and for this reason the ¥ notation is used in
this report. Because of its symmetry, however, manipulation of the © function
yields neater results. Thus the properties of the signal correlation function
are tabulated below in terms of the © function. The theorems on © functions

[1]

changes. Proofs of the theorems are given only when the method of proof is

are taken directly from Siebert with permission and with only minor

not obvious.

We have the signal correlation function 6(7, w), Eq. (2), repeated

here as Eq. (7).

o0

o(r, w) = 5 u(t - %)ﬁ(t-{-%)e_

- 00

ot g . )

Definitions

1. We assume that u(t) is a reasonably well-behaved, complex-
valued function of the real variable t. In particular, any integrals involving

u(t) are assumed to exist.

2. We define

== 1 -jwt
Uw) = S‘ u(t) e dt (8)
var =00



so that

u(t) = \/;11? g Ty et d - (9)

3. We shall call a eomplex function 6( 7, w) of two real variables,
7 and w, a O function if and only if there exists a function u(t) which is such

that © (7, w) may be represented as in Eq. (7).

4. We shall call a real positive funetion ¥(r, w) of two real variables,

7 and w, a ¥ function if and only if there exists a funetion u(t) which is such

that
)
2 * W —-jwt )
Y(r, w) = |o(r, w)| = (g ut-F)t+3)e Yral . o
Theorems
1. O(r, w)=6(-1, -w)
2. If ©(t, w) is a Ofunction, it has the additional representations
A T
o(T. w) = g Uu-3)Tu+g)e 7 du (11)
and
. Wt
L -jup )2
(T, w) = up- 1) U - w) e e du dp . (12)
van -

\
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3. If 6(r, w) is a ©function corresponding to u(t), then (1/a)

;6[ at, (w/a)] % is a O function corresponding to u(a t).

4. If ©(1, w) is a O function corresponding to u(t), then ©(T, w + 2k T)
is a © function corresponding to exp [ jktz] u(t) .

5. If (7, w) is a©function corresponding to U(w), then

O (T + 20 w, w) is a O function corresponding to exp [ jo w 2] U (w).

6. If ©(1, w) is a®© function corresponding to u(t), then
cos ¢ ©O(w sin ¢ + T cos ¢, w cos ¢ - Tsin ¢)isa © function

corresponding to the time function

2 2
5 t tan ¢ - LW tan ¢ . wt
e - L 5 —I_J(w) e 2 e e dw
V2r v

In other words, the property of being a © function is independent of a rotation

in the coordinate axes.

7. If ©6(7, w) is a ©function, then, along any straight line through the
origin,’ Lo, w)y] /[ &0, 0)] 2 has the properties of a characteristic function;
for example,

-jwT

O (tTcos ¢, - Tsin ¢) e dr = 0 (13)

forall 7 and w.

8. A necessary and sufficient condition that © (7, w) bea

6 function is that



ZS‘ O(r, w-u)e dr (14)

shall factor in the form f(u) _f-(w). It this condition is satisfied, then U(w)

can be identified with f(w).
Proof:

Necessity follows directly upon substituting Eq. (11) into Eq. (14).
To prove sufficiency, assume that Eq. (14) factors and set u = ¢- (p/2) and
w= @+ (p/2). Then we have

20| _ o 1 0 0 . r
§ f(w—%)f(¢+%)e Jo4 do=—>=" {S\ e('r,p)e]wd'r} e ngqo

— 00

= e(&) p) r

which is valid if f(w) is identified with U(w).

9. An equivalent necessary and sufficient condition that 6(7, w)

be a © function is that

- O(r - p, w)e dw (15)

factor in the form

f(p) ()

If this condition is satisfied, then u(t) may be identified with f(t).



10. If 61(1', w) and 62(1', w) are both O functions and neither is
identically zero, then O(7T, w) = el('r, w) + 62 (T, w) is a O function if and only

if 61(1', w) = Cez('r, w), where C is a constant.

Proof:

The sufficiency of the condition is obvious. Necessity follows from
Eq. (14) because we must have U(u) E(w) = Ul(u) I_Jl(w) + Uz(u) I—Jz(w) for
all p and w. It is easily shown that this can be true only if Ul(u) is

proportional to Uz(u); that is, if 61 (T, w) is proportional to 62 (T, w).

11. If el(T, w) and 62(7, w) are both 6 functions, then both

o0

o' (T, w) = S‘ Gl(t, w) 62('1' -t, w)dt (16)
and
e”(T’ w) = S\ el(T9 2 ) 62(7’ w - IJ') d,U. (17)

are also © functions. In the case of Eq. (16)

U (w)

Ul(w) Uz(w) )

and in the case of Eq. (17)

u'' (t) ul(t) uz(t)



Theorems 3, 4, 5 and 6 also apply, with obvious modifications, to
¢ functions in place of © functions. In particular, the property of being a

Y function is independent of a rotation in axes. Other theorems are:

12, If (7, w) is a ¥ function, then ¥ (7, w) is its own two-

dimensional Fourier transform, i.e.,

[>e]
1 i 3
e §§ i, wye F eI Pardw =y p) - (18)
-0
13. If ¥(7, w) is a ¥ function, then
[>e]
1 ‘s
o ‘SS\ (1, wydrdw = Y0, 0)= Y(1, w) - (19)
-0
14, If ¢(r, w) satisfies condition 12, and a fortiori, if

Y (1T, w) is a ¢ function

[ o]
S\S“S § Y(rg=T1s Wy~ wp) BT, 0) BTy, ) d7y 7, dw) dwy =0

-0

(20)
for any function g(7, w).
150 If ¢'1(T, w) and zl)o('r, w) satisfy condition 12, and, a fortiori,
if ¢1(T, w) or ¢2('r, w) are ¥ functions, then
[~ o]
U(r, w) = S ¥ (t, ) Yylt - 7, @) dt (21)
-0

also satisfies condition 12 but is not necessarily a ¢ function.

10

|
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Necessary and sufficient conditions for ¥(t, w) to be a ¥ function

have not yet been discovered.

2.3 The Resolution of Two Nearby Targets

It frequently happens that radar targets are close enough together in
range and radial velocity so that their echoes overlap. When the echoes over-
lap significantly, the detection and parameter estimation problems become
considerably more complicated than is the case for isolated targets. The
problem of determining whether there is one echo or more than one in an
interval is called the resolution problem. In this section we will consider
the problem of two nearby targets. In the next section the problem of many

targets will be discussed.

Let us first consider the two-target problem in a qualitative way.
Assume that we have a radar whose receiver is matched to a known signal,
the echo from a stationary, point target. The input to the matched filter
consists of noise and possible signals. At the filter output a threshold is set.
When the filter output exceeds the threshold, we say a signal exists. The
probability of noise alone exceeding the threshold is the so-called probability
of false alarm. Let us assume that we are trying to decide whether there is
a target at a range corresponding to to . We ask: What is the effect on
detection at to of a possible second target at to +7? We assume 7T is
small enough so that the matched filter response to a target at t0 + 7 would
extend past the point to. It is obvious that the possible second target has the

effect of increasing the probability of false alarm, P at the point of

F H
observation, to. We can keep PF constant by raising the threshold. Raising
the threshold, however, reduces the probability of detection, PD. Increasing

the probability of the occurrence of the second target or reducing the separation,

7, would further reduce PD, if PF were held constant. So we see that

11



when the signal processing is predicated on isolated targets there is a loss in

detection when the targets cease to be isolated.

One possible approach to the problem of resolving two nearby targets

[ 6]

targets is exactly known and that the signal echo amplitudes are unknown. To

in noise is given by Helstrom. Helstrom postulates that the range of both
resolve the signals, one constructs a separate filter to give 2 maximum-
likelihood estimate of the amplitude of each signal. In the two-target case,
two such filters are required. When taken at the proper time, the estimates
of the amplitudes of the two signals are independent, and the estimates may

be compared to a threshold. If the threshold is exceeded by the output of filter
number one, for example, signal number one is said to be present, and so
forth. The probabilities of false alarm and detection may be calculated for
this process. If A* is the estimate of actual amplitude A of one signal and

if b is the threshold, we have for the probability of false alarm, PF

P, =P [[|a*]|>b/a =0] = 2erfe[b| 20 -2%/N] (22)
where
" =3} —t2/2
f = e d
erfc x m S‘ e t

X

N is the noise power per cycle and A is a parameter which depends on the
amount of overlap of the two signals, being zero for no overlap and one for
complete overlap. As the amount of overlap increases, the parameter A

increases and the probability of false alarm increases.

12



The probability of detection of one signal is given by Helstrom

= * =1-
PD Pr[ |A*| >b/A 2 o] 1-erfcy, + erfc ¥y (23)
where
/ 2
¥ = 21 -A27)/N (A +Db)
and

Vg /2(1—x2)/N (A - Db)
We can hold the probability of false alarm constant by setting the threshold
b in Eq. (22)

K
b = 1 : (24)

V2@ - 7\2)/N

where K1 is a constant. With the above value of b the probability of

detection becomes

PD =1 - erfc y2 + erfe y1 ) (25)
where
28 |/ 2
y. = /[— Vi-A + K
1 N 1
and

_f2E2 2
y2 = N 1 A Kl ’

13



where we have written E = Az, the energy in the signal. The probability of
detection is the shaded area in Fig. 1. As A approaches 1, the unshaded
region moves toward the origin, and its area increases, thus reducing the
probability of detection. If the signal-to-noise ration,

22 _ %
N

’ (26)
1- }\2

where K2 is a constant, the probability of detection will be kept constant. The

signal-to-noise ratio, then, must be increased as the overlap of the signals

increases, to maintain a certain probability of detection when the probability of

false alarm is held constant.

1A— 13,446

Fig. 1. Sketch to illustrate the effect on probability of detection of an overlap of
the two echoes and of signal-to-noise ratio. Probability of detection is
given by shaded area.
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Thus we see that, even when elaborate signal processing methods are
employed, a loss in detection occurs when two signals overlap. In the case
considered, the range of both was assumed known exactly. As additional quanti-
ties are allowed to vary, for example, the range to the first target, the target
separation, frequency shift, carrier phase and so forth, the processing required
to make maximum-likelihood estimates of the unknowns becomes very complex.
Detection is apparently impaired by each successive estimate of an unknown

parameter made in the presence of noise.

The problem of the resolution of echoes from two nearby targets can
be approached, alternatively, from the standpoint of signal design. To obtain
the best probability of detection for a given probability of false alarm one
should design the radar signal so that the responses from the expected targets
do not overlap significantly. Not only does this approach give the best detection,

but it results in the simplest signal processing as well.

2.4 The Resolution of Multiple Targets*

In the last section, the maximum-likelihood processing of the echoes
from two targets was considered and expressions for probability of detection
and false alarm were given. We saw that the probability of detection of either
of the two targets decreased as the overlap of the echoes increased when the
false alarm probability was held constant. Similar expressions could be
developed for the three-target situation. It is clear that addition of a third
target whose echo overlapped the first two echoes would have the effect of

reducing further the probability of detection of any one target. As the number

* An excellent qualitative discussion of the multiple-target detection problem
is given by Applebaum and Howells in Ref. 7.
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of targets becomes large, it is clear that the probability of dctection of any one

target is going to be small if thcre is a significant amount of overlapping of the
echocs. One should approach the multiplc-target resolution problecm, then,

from the standpoint of signal design. The decsigner should find a signal which
would optimize, as nearly as possible, the probability of detection of the
individual targets. The ideal signal would be such that the echocs did not overlap
at all. The optimum way (from the detection standpoint) to solve the multiple-
target resolution problem is to avoid it, for when the signal is designed so that
the echoes do not overlap, thc multiple-target problem disappcars. The signals

are isolated and the receiver consists of an array of singlc target processors.

To design the signal so that the echoes do not overlap significantly,
one must define some measure of total ovcerlap of responses in a way which
takcs into account the number of targets, their cross scctions, thcir probable
distribution in time and Doppler frequency, and the dectailed characteristics of
the radar signal. Fowle, Kelly and Sheehan[ 8] have defined as "interfercnce"
the mean energy from a complex of n objects with average cross scction b,

distributed according to a probability density function P(t, f). Thcy get

2 _
E |c(t, v)| = an‘ g (T - t, v - f) P(t, f) dtdf (27)

where Y (1, v) is the single-target ambiguity function, Eq. (5), and the

signal u(t) is normalized to havec unit energy so that ¥ (0, 0) =1 and

o0
S‘S‘ Y(t, f) dtdf = 1. Here (7, v) is the point in the time-frequency plane
_oo 2
at which the output of the single-target processor is obscrved. E [e('r, V) l

is a noisy background against which the detector must look for objects of interest.
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If now at the point (7, v) we insert a target of energy b, we may

form a signal-to-interference ratio, S/I,

s _ b
i ~ (28)
& nb §§ (T - t, v -f) P(t, f) dtdf
- 00
where I = E le('r, v)lz . Or, solving for n, and using the fact that S =b,
n = 1
o (29)
(b/1) gj Y(r -t, v-f)P@, f)dtdf
- 00
We note that from Eq. (29) that b/I need not be greater than unity.
: An upper bound for n, N , may be obtained as
max
1
N = % ) (30)
max _
®/M S‘S‘ Y(r -t, v - f) P(t, f) dtdf
-0

and this will be the maximum number of objects (in addition to the target of

interest) which may be tolerated, subject to the constraints of a given P(t, v),

i a given (1, v) and a given minimum (mean signal)-to-(mean interference)

>

ratio.

If we write

G-, e



(since S =Db), wec sec that the ratio (-l;/I)min may be partitioned into the produet
of an extremum of signal-to-interference ratio, and an extremum of dynamic

range, either (but not both) of which is arbitrary.

A more careful treatment of this problem recognizes the fact that the
integration in Eq. (27) through (30) should be extended only over that region
of the t, f plane which is external to a small area which includes thc point
(T, v), since echoes from objects very near (7, v) should properly be inter-
preted as targets of interest to the filter '""tuned'" to (7, v). We should rewrite

Eq. (30) for Nmax thus:

1

§ § Y(t -t, v-f) P, f)dtdf
Rl

N =

— ) (32)

(b/1)

min

where R' is the T, v plane less an area centered at (71, v).

It will frequently be true that the target distribution function, P(t, f),
will not be known. In that case, it is interesting to assume the objects uniformly

distributed over a region in the t, f plane of area TTWT' Then, if we take

15 w
1 T T
T W o] < TR £ | < =
P, f) = (33)
0 , otherwise,
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I2q. (32) becomes

'Y
= TTT

Nmax =< A : (34)
<_. "X—> gg Y(r - t, v - f) dtdf
b . AL .
min

mi R

The integration in Eq. (34) is now over the region R, which is given by

[t [= TT/2 and |f | = WT/2 with a small area excluded at t=f=0.

Since n itself will usually be of a statistical nature, Nmax should

be viewed as the average number of targets that the radar could separately

detect (or resolve), That N varies inversely with b/b_ ., the dynamic
max min

range of range of target sizes, and (S/I)min’ the minimum tolerable signal-

to-interference ratio, appears quite plausible. The dependence of Nmax on

2

TTWT and on the double integral of [x[ is more interesting, however.

We have the facts that the dimensionless quantity TTWT is a measure of the

intrinsic capacity of the target space. The target capacity of the radar can

be increased over the intrinsic capacity by appropriate design of the radar

signal.

2] Signal Design for Multiple Target Resolution

In the preceding section an expression for interference power was
taken as a measure of the total overlap of the echoes from the multiple-target
complex. From the expression for interference an expression was developed
for Nmax’ the average maximum number of targets that a radar can accommodate
on an isolated target basis. In this section we investigate techniques of signal
design which make it possible to reduce thé interference (or to increase Nmax)'
The discussion will be cast in terms of several idealized signal ambiguity
function shapes. The subject of the design of actual signals whose ambiguity

functions approximate the ideal shapes will be reserved for Section 3. 0.
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We repeat the expression for interference E le (T, V)l 2

b

Ele(r, u)]2 = Tnsv SS P(r-t, v-f)dtdf . (35)
T g

The integration in Eq. (35) is over the target space, which is assumed to have
its center at the origin of the (7, v) plane. The interference will tend to be
worst when the point of observation (7, v) is at the center of the target space,

that is, at 7=v = 0. Let us consider that case. Then we have

2 b ("
Ele(0, 0)]° = — BS (t, f)dtdf (36)
TTWT
R
n, S and TT in Eq. (36) are characteristics of the target complex and are

beyond our control. The Doppler frequency spread of the target space, WT’
is proportional to carrier frequency; thus the interference may be reduced by
increasing the carrier frequency. But generally the most promising way to
reduce interference, and certainly the most interesting way, is to shape the
ambiguity function, ¥(r, v), in such a way as to reduce the value of the

integral in Eq. (35).

We recall that (0, 0) =1 and that

S‘\S Y(t, f)yddf =1 , (37)

-0
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beeause of the normalization of the signal, u(t). While the total volume under

¥(t, f) is thus constrained, the value of the integralg g Y (t, ) dtdf may be

R
reduced by shaping ¥(t, f) to cause some of the volumc under ¥ to lie outside

the target space, that is, outside the region R.*

Accuracy requirements in the measurement of range and radial velocity
will determine the shape of the ambiguity function near its peak. For example,
if accurate estimates are required of both range and radial velocity, the central
response of the ambiguity function must have the shape of a narrow spike. In
addition, if the interference is to be low, the spike should be surrounded by a
clear space, that is, a region where ¥ is zero or very small. A signal
consisting of a train of equally spaced pulses has an ambiguity function of the
correct general shape. The pulse train signal and its ambiguity function are
sketched in Fig. 2. The ambiguity function is identically zero except in strips
oriented in the Doppler direction. The spacing of the strips is, of course, the
spacing between pulses, A, and the strips have a width of 26 where ¢ is the
pulse length. In the strips where ¥ has value, the volume is primarily con-
centrated at points spaced at intervals of 1/A in Doppler frcquency. As shown
in Fig. 2, the central peak has significant value over a region, the area of
which is approximately equal to 6/mA, where mA is the total time duration
of the train of pulses. Noticethat the central response is surrounded by an

approximately clear space of dimensions A in range by 1/A in Doppler.

We should use the pulse train signal in the multiple-target problem

by scaling the radar parameters to cause echoes from objects in the target

* A very good general discussion of signals and the shapes of their
X functions is given by Siebert in Ref. 9.

21



APPRECIABLE VALUE
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8 DIMENSIONS OF REGION
l r | WHERE SPIKES HAVE

Fig. 2. Sketch of a pulse-train signal and its ambiguity function.

space to fall within the clear space surrounding the central response in Fig. 2.
To scale the radar parameters properly, we would set A, the interval between
pulses in the train, equal to TT, the time extent of echoes from the multiple
targets. Next we select the carrier frequency, fo’ to spread the objects in
Doppler frequency sufficiently to fill the dimension 1/A in Fig. 2. To do this
we would set

1

e ) 38

T C 0 A (55)

where V_ is the total spread of the multiple-target complex in radial velocity,

R
and C the velocity of light. This would yield for the carrier frequency fo
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¢ (39)
o 2VRA

The required range and radial-velocity accuracies can be achieved by making

6 sufficiently small and mA sufficiently large. The region R in Eq. (36) by

the above discussion consists of the space A by 1/A about the origin in Fig. 2.

We can estimate the volume under ¥ in R. The volume under the central

response is roughly

volume = height at origin x area of base
0
~ ] —_
o X
e , (40)
signal time-bandwidth product

and the volume under ¥ in R will be of the same order of magnitude. Then

the interference is approximately

nb
; (41)
(T W) (TgW)

E|e (0, 0)]2

where TSWS is the signal time-bandwidth product. The interference is thus

-4 -
reduced by a factor 1/TSWS , which can be of the order of 10 "~ or 10 2 when
the signal is a properly designed pulse train.

If the requirements of the radar system do not include estimation of
both range and Doppler frequency simultaneously, other signal designs may be

employed to reduce the volume under ¢ inside the target space. For example,
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if it is sufficient to detect the targets and measure their range only, then one
may choose a signal whose ambiguity function has the shape of a thin ridge
oriented in the Doppler direction. The volume under ¥ in R may be reduced,
by making the ridge extend in Doppler far beyond WT, the Doppler extent of
the target.complex. A signal whose ambiguity function has the general shape

of a thin ridge oriented in the Doppler direction is the short, constant-frequency
pulse. A pulse of length 6 has an ambiguity function having a width in the
range direction of about 6 and an extent in the Doppler direction of about 1/6.
The pulse length & would be chosen so that the ridges corresponding to the

objects in the multiple-target complex would not overlap significantly.

If the simple pulse signal is made to have a large duration, thc
signal ambiguity function assumes the shape of a thinridge oriented in the range
direction. If the duration, ¢, is made much greater than TT, the extent
of target echoes in time, the volume under ¥ in R, and hence the interference,
is reduced. Targets may then be separated by their differences in radial

velocity. This is the CW radar case.

Another type of signal which may be useful in multiple-target situations
is the large time-bandwidth product, frequency-modulated signal whose frequency
variation is uni-directional with time. Such signals tend to have ambiguity
functions of the shape of a thin ridge, except in this case the ridge is at an angle
to both the time and frequency axes. An example of this type of signal is the
so-called '"tangent FM" signal described by Key, Fowle, and Haggarty.[ 10}
Another such FM signal is the familiar linear FM or '"chirp' signal described

[ 11] [ 12] [ 13] [ 14]

by Cook, Klauder et al. Fowle et al, Jacobus, and others.

In the discussion up to this point we have explicitly assumed that the
dense target complex was bounded in time and Doppler frequency. When the

target complex extends so far in time and Doppler that it is not practical to
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design the signal to cause any of the volume under ¥ to lie outside the target

space, we have

g S‘ P(t, f) dtdf =~ (signal energy)2 =1 , (42)
R

and N becomes
max

(43)

Now it is meaningful to speak of target capacity in terms of a density or target
capacity per unit area in range-radial velocity space. To do this we may

write for TT

R
T = =
313 C ’
d for W
an or T
2V
W=7 £

where RT is twice the extent of the target complex in range, V the spread
in radial velocity, fo the radar carrier frequency, and C the velocity of
propagation. Then we have Nma.x per unit area in the range-radial velocity

plane given by
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N 9 fo
max _ . (44)

R .V 2 T
T C (b/bmin) (S/I)min

The target capacity per unit area may only be increased by increasing the
carrier frequency when the target complex is of large extent in range and radial

velocity, as shown by Eq. (44).

2.6 Detection of a Target in Clutter*

In the situation that exists when an isolated target is imbedded in clutter

at T =v =0, itis meaningful to speak of the signal-to-interference ratio, S/I

S _ b , (45)
I

ngg § O(t, f) P(t, f) dtdf

—00

where n is very large and b very small so that the product (nf)) is finite.
If the clutter is assumed to be uniformly distributed over time Tc and Doppler

frequency shift Wc’ the expression for the signal-to-interference ratio becomes

T W
TS= G ¢ , (46)
(o/b)g g Y, f)dtdf
R

* This section follows Fowle, Kelly, and Sheehan, Ref. 8. For a treatment
of the problem of the detection of a target in clutter distributed in range
only, see Manasse, Ref. 15.
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where we have written ¢ = nb to signify an "average clutter cross section, "
The region R now includes the entire clutter space. Quite obviously, all the
commentary about the problems of detection in the multiple-target situation
apply to the case of a target in clutter. In addition, it is possible that the clutter
cross section, ¢, may be reduced by appropriate choice of carrier frequency.
As previously mentioned, once the interference is lowered to a point where
targets of suitably small cross section can be detected, there is little motivation
for going farther and exploring the structure of the clutter, even if that could

be done. When the clutter is of very great extent in time and Doppler, as in

the unbounded multiple-target situation, the only method available for reduction

of interference is that of increasing the radar carrier frequency.
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3.0 WAVEFORMS
3.1 Introduction

As a preliminary to a discussion of the design of radar waveforms, it
is most appropriate to assert that no one waveform is ideal in all operating
situations. A particular waveform can be very useful in one situation and less
than optimum in another. Hence, in the design of a versatile radar it is con-
ceivable that provision should be made for the transmission, at the option of the

operator, of any one of several waveforms.

For example, the radar operator might want to perform with a long-

range, high-power radar a sequence of operations somewhat like the following:

(1) Search a given region of space for targets with potentially
large velocity toward or away from the radar; upon detection

of an echo, measure coarse range and velocity.

(2) Following reception of an echo, determine whether the target

is single or multiple.

(3) Measure with increased accuracy the range and radial velocity

of the object (or objects).
(4) Distinguish between genuine signal echoes and bogus echoes.

In the search mode, because of the possible large velocities and
correspondingly large Doppler frequency shifts, it is necessary to provide in
the radar receiver a bank of matched filters spaced uniformly in frequency
over the anticipated Doppler band. Many filters may be necessary in some
cases. In the search mode the only important parameter of the signal is the
energy it contains (all signals of equal energy received in matched filters give

the same probability of detection of isolated targets). The radar operator,
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looking for possible distant targets, would thus begrudge a waveform design
which made his transmission inefficient. Also, the waveform should be simple.
Simple signals generally have simple matched filters, and simple matched
filters are desirable when a large number of them must be built, paid for, and
maintained. For the search mode a signal consisting of a rectangular burst

of constant frequency sinusoid might serve well. With the flat-topped signal

the transmitter can be operated in the saturated mode at maximum efficiency.

When an echo is received, the coarse range and radial velocity of the
object are measured. To determine whether there is one object or several
nearby objects the operator might switch to a different signal — one of large
bandwidth with an autocorrelation function having a very narrow central peak
and very low sidelobes. In general, echoes somewhat more widely separated
in time than the duration of the central part of the autocorrelation function may
be resolved, and the lower the sidelobes, the greater the permissible ratio of
the cross sections of the resolvable nearby objects. Signal-to-noise ratio is
always important, but to answer the question of whether there is one or many
objects, ultra-low sidelobes are important, too, and one might use a less
efficient signal than that employed in Operation 1 to get the low sidelobes. For
example, one might use an amplitude- and phase-modulated signal, say, a linear
FM signal with a Gaussian envelope or a simple amplitude-modulated, pulse-
burst signal. The former would provide high resolution in range and the latter

high resolution in both range and Doppler.

To perform Operation 3, that is, to measure with greater accuracy
the range and radial velocity of an object, the operator might transmit a very
complicated signal having an ambiguity function of the thumb-tack shape. Such
a signal, as we shall see, might have a symmetrical (about the center of the

pulse) frequency sweep and more or less constant envelope. The matched filter
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for such a signal can be very complex to design, build, and align and, hence,
very costly. One would not want to make a filter bank consisting of many such
filters. However, one might make, say, three such filters tuned to different
frequencies so that their responses overlapped at the minus 1- or minus 2-db
points. One could steer the bank of three filters to the approximate frequency
of the echo (measured in Operation 1) and refine the measurement of frequency
(and hence of radial velocity) by interpolating between the filter outputs and at

the same time, refine the measurement of range made in Operation 1.

Finally, the operator, by hypothesis, has the problem of distinguishing
between genuine and bogus echoes. There are a number of things the operator
could do. For example, he could detect certain kinds of bogus echoes by trans-
mitting several highly structured signals in succession and observing the output
of the respective matched filters. If the output waveform did not have the shape
of the signal autocorrelation function in each case, the operator should suspect

that the echoes were not genuine.

It should be clear, of course, that there are other equally valid signals
and procedures for solving the operating problems postulated in the example.
The reader can invent his own. The above discussion serves to illustrate,
however, the point made earlier that no one signal solves all radar operating
problems in an optimum way and that it is not unreasonable in the design of a
radar to provide several signals to serve various purposes. In fact, this is

frequently done.

In the preceding section we classified signal correlation function (and
the related ambiguity function) shapes and gave a discussion which indicated
something of the utility of the various shapes in regard to the accuracy of
target parameter estimation and to the resolution of multiple targets. It

would be pleasant if there were a method of synthesizing a signal to have a
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[5 [ 16]

have studied the general problem of signal correlation function synthesis but

specified two-dimensional correlation function. Sussman and others
have not produced useful general methods. In the last analysis the signal de-
signer must choose a signal, calculate its two-dimensional correlation function,
and continue the process until he finds a satisfactory signal whose X function
is also satisfactory for his purpose. In this process he may, of course, be

guided by experience.

In this section we will classify signals by type of modulation, that
is, whether amplitude modulation, phase modulation, or a combination of the
two. We will try to see what kinds of X- function shapes are possible with the
various kinds of modulation in the signal and, where possible, see how to
control the X-function shape, at least over a limited region. For purposes of
convenience we will distinguish between "compact' signals (energy concentrated
into one time interval) and "distributed" signals. An example of the former is
a single rectangular pulse; an example of the latter is a burst of pulses spaced
at intervals in time. Compact signals are treated in the first 12 sub-sections,

and distributed signals are treated in the 3 sub-sections which follow,

In the discussion which follows we will assume that the signal s(t) is

s(t) = u_(t) cos [or ft+ o)) (47)

where ue(t) is called the envelope and ¢ (t) is called the phase modulation.
We will assume that narrow band conditions apply and represent s(t) as the

real part of sc(t) where

4

s(t) = R_ ! 5, (V) f

(48)

Re 3ue(t) expjo(t) expj2m fot z
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We let

u(t) = u (t) expjo(t) - (49)

The function u(t) is usually referred to as the complex modulation of the signal.
Notice that u(t) completely defines the signal except for the carrier frequency
which is, at this point, of no particular concern. For simplicity, then, we
shall refer to u(t) as the signal in the material which follows, unless otherwise

noted. The Fourier transform of u(t) will be U(f) where
u@) = U_(Dexpjo(f) - (50)

The two-dimensional signal correlation function x (7, v) has the two representa-

tions, one in terms of u(t) and the other in terms of U(f) thus:

X(t, v) = S\ u(t) u(t + 7) exp(-j2r vt) dt (51)
= g V() U + v) exp(-jorfr) df - (52)

The complex conjugate of u(t) is denoted by u(t). Notice that along the 7

axis
x(t, 0) = S\ u(t) ﬁ(t+'r) dt (53)
- Sw U2 (0 exp (-j2rtr) df - (54)
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The first Eq., (53), shows x(7, 0) to be the complex signal autocorrelation
function, and the second line, Eq. (54), shows x(r, 0) to be the Fourier
transform of the square of the modulus of the signal spectrum. From the

latter relation we may deduce that the effective duration of (7, 0) is inversely

proportional to the bandwidth of the signal. Along the v axis

x(0, v) = g U(f) U(f + v) df (55)
= S‘ ue (t) exp(-j2rvt) dt . (56)

x(0, v) is given by the complex autocorrelation of the signal spectrum and,
alternatively, by the Fourier transform of the square of the signal envelope,
ue(t). The extent of x(0, v) is thus inversely proportional to the duration of
the signal. It should be noted, however, that the function x(r, v) is not in

general determined in the 7, v plane by its behavior on the 7 and v axes<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>