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VOREWORD

. 'The material contained in this report was prepared originally under USAF Contract No. AF 33(616)-6460,
under Task Ne. 821902 of Project Nr. 8219, as part of a USAF Stability and Control Handbook development.
It is publisiied seperately as a Technical Documentary Report in keeping with the Air Farce policy
to restrict the handbook to basic stability and control data. The work was conducted under the cognizance
of the Control Criteria Brench, Air Force Flight Dynamics Laboratory, Research and Technolegy Division,
with Mr. D. E. Hoak serving as project engineer.

The contribution of Dr. M. J. Abzug as advisor, consultant, and critic is gratefully acknowledged.
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ABSTRACT

This report is a compilation of coordinate aystems, equations, and general relations ueed in aircraft-
motion analysis. The information presented is useful for comperative evaluation and for preliminary-design
work. Simplified and approximate solutions are given for special flight conditions. The material is defined
and preseated in a form suitable for direct application. Derivation and theoretical development are not
emphasized, but sources thereof are named.

This technical documentary report has been reviewed and is approved.

Colonel ,USAF
v Chief, Flight Control Division
AF Flight Dynamics Laboratory
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SECTION 1. INTRODUCTION

Datz and information are presented in this report for use in the analysis of aircraft motion. This report, which
was originally intended to be a part of the USAF Stability and Control Handbook published in October 1960, is a
compilation and condensation of the coordinate systems, equations, and generai information related to aircraft-
motion analysis. The original form remains essentially unchanged.

The purpose of the Handbook was to provide the data, equations, and relatione necessary to analyze the mo-
tions, the stability and control characteristica, and flying gualities of aircraft in concise, consistent, and readily
usable form. In keeping with this purpcse, emphasis is placed on description, definition, and application rather
than on derivation and theoretical development. Problems of unusual nature and unconventioaal configurations
may require special cnalysis and development of particular equations from the fundamentai theory cited in the
references.

The basic kinematic and dynamic relations for particle and rigid-body motion are inclnded. Several convenient
coordinate systems arc. lefized, and coordinate transformation rclations are given. Force and moment components
are developed, and a ccmpilation of conventional stability derivatives is presented. The rigid-body equations of
motion are simplified for specia! flight conditions, and some approximate solutions are given. Some material is
presented pertaiving to instrunent readings and fuel slosh.

‘Symbols and nomenclature are listed and defined in the sections to which they apply. Consistency in symbols
and notation is maintainsd, except in cases where established usage dictates otherwise. A complete list of sym-
bols is not considered to be necessary and is not given.

Manuscript released by the nuthor June 1964 for publication as an FDL Technical Documeatary Report.
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SECTION 2. COORDINATE SYSTEMS AND EQUATIONS OF MOTION

In order to describe the motion of a dynamic system it is necessary to define a suitable coordinate system and formulate
equations for the motion in accordance with the physical laws governing the system.

The diagrams and discussion that follow consider the motion of a particle (point mass) and the more complicated
motion of a rigid body. '

PARTICLE MOTION

Coordinate systems and equations that conveniently describe the motion of a point mass are presented in the following
pages. Rectangular, spherical, and cylindrical coordinate systems ars presented. Preferred axis orientation and notation
‘indicated and used are consistent, insofar as possible, with the reference literature.

RECTANGULAR-COORDINATE SYSTEM (FLAT NONROTATING EARTH)

The familiar Cartesian or rectangular coordinate system has many applications in the analysis of vehicie motion. For
instance, it may be used to describe the flight path (trajectory) of a body with respect to a given starting point on the
earth’s surface. A typical case is suggested in the description of the coordinate system below. Generalization to any

specific problem is self-evident and requires no further discussion.

Description of Coordinate System

Origin of rectangular coordinates x, y, z: arbitrary, often a point on the surface of the earth.

Fundamental plane: usually the XY-plane; tangent to the surface of the earth at the origin.
Positive X-axis: arbitrary, often selected along initial heading or direction of motion.
Positive Z-axis: arbitrary, often oriented in sense to denote altitude above the surface of earth or the XY-plane.

Positive rotation in fundamentel plane: from X-axis to Y-axis; i.e., right-hand system.

BASE VECTORS
(UNIT VECTORD

FIGURE | GENERAL RECTANGULAR-COORDINATE SYSTEM




NOTATION

Lk orthonormal bass (wait) vectors alsag X-, Y-, and Z-axes, respectively

or position vector of point P (rectangular coordinstes x, y, 2)

%52 position coordinates of P; also components of OP slong coordinate axes, Lo, OP=xi + yj + =%
v velocity vector of point P

Vo V5, V. components of velocity V along the coordinate-axis directions, ie., V = Vui + Vyj 4+ Vok

m mass of particle at point P

" denotes differentiation with respect to time

Equations of Motion
Vector form:
F= md-v- = mﬁ 1)
dt
Component form:
Fr=m V.. = mx
Fr=m‘.’y=m.7. (2)

F.=mV,=ms

SPHERICAL-COORDINATE SYSTEM

The analysis of motions witkin the inertial frame fixed to the center of the earth is most convemiently trested in
spherical coordinates. This section considers both rotating and nonrotating spherical coordinates. In order to distinguish
between these two systems, primedguantities refer to nonrotating coordinates and umprimed quantities refer to
rotating coordinates. Since it is customary to refer our position and velocity to the earth, the rotating coordinates
are generally used.

Flight-path coordinates are introduced because aerodynamic forces are frequently considered in the analysis of a
vehicle flight path. Aerodynamic forces are most conveniently related to the velocity of the vehicle through the air,
which rotates with the earth. Thus the rotating-earth flight-path coordinates may be used in the amalysis of missile
and supersonic- or hypersonic-vehicle flight paths whenever aerodynamic forces are included.

The basic development of the equations of motion in this Section is given in veference 1.

Description of Coordinate Systems (reference 2)
Origin of spherical coordinates 1, ¢, 0: conter of the earth.
Fundamental plane: equatorial plane.
Reference direction in fundamental plane: arbitrary, eg., Greenwich Meridian wsed for longitede reference.
Polar-axis positive direction: toward the North Pole.
Positive rotation in fundamental plane: esstward, ie., a right-hand system.

NOTATION
0 origin of rowting spherical courdinate system, conter of the earth
P particle under consideration
-
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or position vector of P (spherical coordinetes r, ¢, )

r radial distance from originte P

é angular inclination of P to polar axis :

) angular displacement of P from reference meridian plane {referonce plane rotates with the earth)

a angular velocity of rotating coordinate system about the polar axis

kn 1,1, orthonormal base (unit) vectors at P along spherical-coordinate directions

v velocity vector of P with respect to rotating coordinates

v magnitude of velocity vector V

Ve, Vo, Vo components of velocity V along the coordinate directions, ie, V = V1. 4 V,1, + Vil

€uy oy &y orthonormal base (unit) vectors at P aloag flight-path coordinates (ey is alignad slong the velocity vector V; e.and e.
are oriented normal and sidewicz, respectively, to the fiight path)

] flight-path heading — the angle between the meridian plane through P and the flight plane determined by ihe radius
vector OP and velocity vector V. The sngle § is measured clockwise from the mol.r sxis.

5 flight-path attitude — the angle between the velocity vector V and the local horison at P

» roll angle ~ the angular displacement of the base vector e. from the flight plane coataining OP and V. The angle o
is positive in the sense of a right-hand rotation about e.. :

F real force vector applied at P :

F.F.Fs components of F slong spherical-coordinate directions, i.e., F = F.1, 4+ F,14 + Folo

F. F.,F. componeats of F along fight-path-coordinate directions, ie., F = F.e. + F.e. 4+F.ov

m mase of particle P

) déhotes differentiation with respect to time.

Notes: 1. Notation for nonrotating spherical coordinates is the same as sbove with the addition of a prime.
2 0P=rl, .
3 V=Ve

The equations of motion for a particle mass moving in the inertial frame fixed at the center of the earth are given below.
These equations are derived from the basic vector equation for the motion,

F_4v

dv
el @axv

It is important to note that V’ is the inertial velocity messured with respect to nonrotating coordinstes, and that
V is the relstive velocity measured with respect to the rotating-coordinate system.

The equations of motion in nonrotating coordinates may be obtained by simply considering the angular velocity 0 to
be zero in the equations for the rotsting-coordinate systedn (in which case V =V’).

The relation between spherical coordinates and flight-path coordinates is given by the following rotation of the base
vectors L, ly, L at P. (refer to figure 2).
a. Rotate I, about 1, through angle 90—8 to the flight plane determined by OP and V.

b. Rotate in the flight plane through an angle y nchdutlhqbaem!oi‘ 1¢ . w coincides with the velocity V.
- This base vector is then noted as e,.

" ¢ Rotate in roll about e, through an angle y to the final orientstion of the fight-path base vectors
Gy On Oy
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1. ROTATING-EARTH SPHERICAL COORDINATES (REFERENCE 1)

=¥—r(§)?—r(d+0)

B _ g _Yet (Vi Oreing)® i]
r

2 .in2¢

tan ¢ § (3)

_F_'_..__ Ve Vo (Vo4 rQsing)?

m _"’¢+ r r
=r$+2i¢'—r(3+0)’sin¢eos¢

Fo_ 3 (Vo4 2rQsing)

m =Vt r
=r8sing + 214 (040

Ve | -
(s +v)

) cos ¢ + 2 (6 + 0) sin ¢ |

2. ROTATING-EARTH FLIGHT-PATH COORDINATES

L [Vie Yooy —r0tsing conysing

——20Vsinhin¢] cosy + [vieo.

—~r(2sindsindcosp —20V (cuycoa¢—ninycm83in¢)] sin y

— cosycos¢) — rsin ¢

+[¥cosy—Vi+20Vsin83in¢

+r02sin¢ (couysin¢+sinycosScos¢)] sin »

%:[\.’+r03ﬁn¢(cmycos3°°l¢—3i“7

l;‘l‘ =[Vioosy—-r0’sin8ﬁn¢eos¢+2ﬂv(sinyoos&sin¢

coo’ysin&eos¢] cosy

-+ sin y cos 8 cos $)

V2 .
7—;;;;008’7!“1800&#

1 (4)

sin ¢)]

o

Note: The equation for F, (side force) may be solved for the roll angle » such that F,=0. The equations
then become the equations for motion in coordinates similar to symmetric wind axes. The angle 5 is then

the bank angle (in aircraft terminology)

required for flight with zero sideslip.

3. NONROTATING-EARTH SPHERICAL COORDINATES

F_y (Ve V) : ]
m ) ¢
=F—r(¢)?—r(f')sin’ ¢

vr' ' N vli

v
o =Vet
=14+ ¢ — ¢ (#)*sin dcos ¢

VI"VI' vr . v;'
r + rtan ¢

T

r run¢ » 5)

—r@sing+2réFcos ¢+ 25 sing |




4. NONROTATING-EARTF FLIGHT-PATH COORDINATES

Fl' V3 ’ ’ 1
}-_-.[v' "—n—;—m-y']eoup +[v § cosy — "mqbeo.*y :ml’eoup]smq
Be [y b oony — —Y conty sin c0s ¢ Joon
m - co.y rsin¢c“ 7 ¢ . . (6)
\ i .
+[—r—c°67'—v'7']sinv'
F_v
m 4

CYLINDRICAL-POLAR COORDINATE SYSTEM

Cylindrical coordinates have limited applications in particle-motion analysis. They are however coaveniently used
in many problems of planar motion where perturbations perpendicular to the fundamental plane are considered.

The general cylindrical-coordinate system is defined and illustrated in figure 3. Two-dimensional poler coordi-
nates are a speciai case of cylindrical coordinates where the 2-coordinate is held constaat.

‘ Description of Coordinate System
Origin of cylindrical coordinates r, 8, s: arbitrary.
Fundamental plae: the reference plane normal to the polar (Zxis.
Reference direction in the fundamental plane: arbitrary.
Polar (Z)axis positive direction and rotation in the fundamental phne right-hand system.
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NOTATION

0 origin of coordinate syatem

P denotes particle under consideration

or position vector sf P (cylindrical coordinates 1, ¢, 2)

r radial distance of P from polaz axis

’ angular displacoment of P about polar axis from reference direction
z displacement of P from the fundamental plane

1,, 15, 1.  orthonormal bese vectors at P along cylindrical-coordinate directions
v velocity vector of P with respect 1o coordinate-axis system

V., Vs,V.  componeuts of velocity V along cylindrical-coordinate directions, i.e., V = V.1, 4 Volo 4 V.1,

F resi force vector applied at P

F.,Fo F. componentsof F along cylindrical-coordinate directions, i.e, F =F.1: 4 Fuls + F.l.
m mass of particle P

" denotes differentiation with respect to time

Note: OP=rl,+13l.

For a pu'hcle moving in an inertial frame the equations of motion expressed in cylindrical coordinates are as follows:
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As was noted previously, the first and second equations above may be used for planar motion (z = constant).

RIGID-BODY MOTION

The coordinate aystems and equations generally used in the analysis of the motion of a rigid body are presented
in the Sections that follow. The preceding Sections have coneidered the motion of a point mass in several co-
ordinate systems where position coordinates, as functions of time, are sufficient to describe the motions. For the
more nearly complete case of rigid-body motion, it is necessary to consider the rotational motion of the body. In
most cases, it is convenient to refer translation and rotation to the body center of gravity. This reference center
is used in the cases that follow, unless specifically noted otherwise. The notation and coordinates used are con-
sistent, insofar as possible, with the reference literature and current usage.

This Section describes various coordinate systems and gives equations of mouoh for a rigid body moving with
respect to & flat, nonrotating reference frame. The origin of each coordinste system is located at the vehicle center
of gravity, These conditions are those most commonly used in analysis of aircraft motion.

The general notation and terminology of established sircreft usage are used in this Section. A basic notation is
established without subscripts. Various specialised axes systems and corresponding equations are denotod by
subecripts added to the basic notation,

Limiting the reference frame to a rectanguler, noarotating system eliminates cousideration of Coriolis-type forces
in the equations of this Section.

*In &bmhwmamwﬂoﬂrd“mwm. e dintisatine ip snimportast for agpifostions.




All axis systems in this Section are right-hand and orthogonal.

A general notation for the force, velocity,and inertia terms used in the equatione for motion of a rigid body are
given below. These items refer to a rectangularcoordinate system having axes designated by X, Y, and 2,
respectively. The origin of the coordinate system is at the center of gravity of the vehicle. The symbols below are used
as listed for vehicle body axes and with subscripts for special axis systems.

NOTATION
Lk orthonormal base (wmit)vectors along X, Y, and Z coordinate axes, respectively
F external force vector applied at vehicle center of gravity; includes aerodynamic, thrust, and gravity forces
Fx,Fy,F: external force vector components along coordinate axes, i.e., F = Fxi + Fyj + Fik
G external moment vector applied at vehicle center of gravity
Gx, Gy, Gz external moment vector components along coordinate +xes, i.e., G = Gxi + Grvj + Gk
\ 4 total velocity vector of vehicle center of gravity (translation of origin with respect to a remote fixed point)
Uv,w total velocity vector components slong coordinate axes, i.e., V= Ul + V} + Wk
- total angular-velocity vector of vehicle sbout its center of gravity
P,Q,R angular-velocity vector components don&'eoordmle axes, ie., w=Pi+Qj 4+ Rk (Note: P is the angular velocit'y of
rotation about the X-axis according to right-hand rule of vector representation for moments and angular velocity.)
mg gravity or weight vector of the vehicle
InIv,In mass moments of inertia of the body about the X, Y, and Z coordinate axes, respectively
Irs, Ixx, Ixy mass products of inertia of the body with reference to the X, Y, and Z coordinate zxes, respectively

Subecripts used with the above symbols denote axis systems as follows:
Subeeript Coordinate Axes System

] carth axec

s stability axes

P principal axes

w wind axes
wi wind-tunnel axes

Various axis systems used frequently in the analysis of vehicle motion are described and sketched in the pages that
follow. All of the coordinate systems presented are right-hand orthogonal systems with the origin located at the vehicle
center of gravity.

Each axis system is defined and illustrated in vehicle notation,and terminology is outlined in reference 3. Special
notation is defined as required anid equations of motion are listed for the axia systems commonly used in stability
and control analyses.

EARTH AXES

Earth azes ave used primarily o3 a reference system for the gravity vector, altitude, horisontal distance, and vehicle
orientation. Fixed earth axes provide a reference for reckoning the flight path, altitude, and horisontal distance. Earth
axes moving with the aircraft are sufficient to define the gravity vector and orientation of the vehicle. Both fixed and
moving axes are illustrated below with the preferred sequence of rotstion to define the orientation angles. (Sec

reference 4).
Description of Coordinate System
Origin location: arbitrary for fixed earth axes. The origin of moving carth axes is usually placed st the vehicle
center of gravity.




Z-axis. along the gravity vector mg. Thus Z, is positive downward, i.e., toward the center of the earth.

Orientation of the X.-axis: may be fixed arbitrarily. Fixed earth axes often have X. directed toward the North
polar axis. In moving earth axes the X.-axis may be directed along the vehicle’s initial azimuth heading.

Ye-axis: oriented to form a right-hand orthogonal axes system.
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The axes in figure 4 are defined as follows:
X.Y.,Z. fixed earth axes

X, Yo, Z, moving earth axes paraliel to fixed earth axes :
X, Y, Z, intermediate axes used in defining orientation of vehicle

X., Y-_.,’Z_. “intermediate axes

X, Y,Z vehicle body axes

The sequence of rotations defining the orientation angles of the body axes with respect to moving earth axes is as follows:
Rotate moving earth axes X, Y., Z, throagh azimuth angle ¥ about Z.-axis to intermediate axes X, Yy, Z,.

Rotate axes X, Y,, Z. through bank angle ¢ about X.-axis to vehicle body axes X, Y, and Z.

Rotate axes X,,_ Y:, Z; through elevation angle © about Y,-axis to intermediate axes X, Yy, Z..

With the above rotation sequence the body-axes orientation angles may be defined in the following terms:
¥  Azimuth or yaw angle of body axes from reference direction of earth axes. “
e elevation or pitch angle of body X-axis from the horizontal or X, Y.-plane.
* bank cr roll angle of the body Y-axis about the body X-axis from the X, Y.-plane.
Note: Theangles % and © are not necessari'y the same as the flight-path heading and the flighi-path angle, respectively.

BODY AXES

The body axis system is the moot genzral kind of axis system in which the axes are fixed to a rigid body. The
use of axes fixed to the vehicle insures that the ineriia terms in the equations of motion are constant and thet
aerodynamic forces and momeuts depend only upon the relative-velocity orientation angles « and 8. The orienta-
tion of body axis with respect to earth axis is defined in the preceding paragraph.

The general body axis system is delined and illustrated below. Special body axis systems, namely, the stability
axis system and the principal axis system, are given on pages 13 and 14, respectively, of this Section.

Description of Coordinate System
Origin: vehicle center of gravity.
Reference plane: XZ, usually a plane of symmetry.
Positive X-axis: forwaxd along a reference line fixed to the vehicle.
Positis » Z-axis: toward bottom of vehicle.
Positive rotation: about Y-axis from Z t¢ X, i.e., right-hand system.

11
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FIGURE 5 VEHICLE BODY AXES

The angles a and B in figure 5 define the orientation of the velocity vector V with respect to the body axes X,Y,
and Z. The angle of attack a and the angle of sideslip 8 are shown in the preferred yaw-pitch rotation

sequence. (See page 41.)
Comglete equations of motion referred to body axes are given below. The general notation defined on page 9 is
used. These equations are applicable to any rigid body, sirce there are no simplifying conditions of symmetry

used.

F, =m (U—-RV4+QW)
F,=m(V—PW+RU) @)
F, =m(W—QU4PYV)
G, =Plx ——ler—nlxz—QR(li‘*Ir) ~PQlx; — (G —R?) f3z + PR Ixy
G, = +Qly—erz—Pln+PR(lx—lz) —QRIxy — (R?—P?) Ixx+ QPlyy 9
G, = +klz—.Plxz“—Q]rz—‘PQ(Iv— Ix) =RPlyz — (P2 — Q%) Ixy + RQlIgx

Notes: 1. In most instances a vehicle has a plane of symmetry, the XZ-plane. The product-of-inertia terms Ixyr and Ivs are sero with this

syminetry, and the cquations may be simplified accordingly.
2. Gyroscopic terms resuiting from cotating .asses in the vehicle are not included.

12




Positive rotation: about Y,-axis from Z,to X,, i.e., right-hand system.

STABILITY AXES

Stability axes are specialized body axes (see preceding paragraph) in which the orientation of the “body axes” is
determined by the initial flight condition. The X,-axis is selected to be coincident with the velocity vector V, at the
start of the motion. Consequently, the moment-of-inertia and product-of-inertia terms vary for each mitial flight condi-
tion. However, they are then constant in the equations of motion.

The use of stability axes is limited to symmetric initial flight conditions and small-disturbance motions

Description of Coordinate System

Origin: vehicle center of gravity.
Reference plane: X.Z,, a plane of symmetry.
Positive X,-axic: coincident with velocity vector at start cf motion.

Positive Z,-axis: toward bottom of vehicle.

VEHICLE REFERENCE LINE, OR

BASE VE.CTORS
Is {UNIT VECTORS i,

PLANE OF BYMMETRY

FIGURE ¢ STARLITY AXES

The initial angle of attack . is the angle botween the body X-axis and the sieady relative velocity vector V, at the
start of motion.

Equations of Motion

The equations of motion referred to the stability axes of a vehicle symmetric about the XZ-plane are given below.
Symbols are as defined on page 9.

13

i
¥V
g
.
i
%
{
!
i
:




AT B TV vy

AR, T T

, =m (U, +Q.W.—R.V,)
Fr, —_-m(v..+n.u.—-1>.w.)
Fo, =m(W,-QU, 4PV,
G, =P, Ix, — R Ixs, — QR (I5, —15) — P, Q. Ixz,
G,, = O Iy, — R, P, (I, L 1x,) — (R2— P2) Ixs,
G, = + R Ig, — B, Ixs, — P. Q. (I, — It,) + QuRuIxr,
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PRINCIPAL AXES

A special set of bady axes (see preceding paragraph) aligned with the principai axes of the vehicle and therefore called

principal axes is used for certain applications. The convenience of principal axes results from the fact that all of the
product-of-inertia terms are reduced to zero. The equations of motion are thus greatly simplified.
Description of Coordinate System

Origin: vehicle center of gravity.

Reference plane: X,Z,, a plane of symmetry.

Positive X-axis: forward along principal axis nearest the direction of motion.

Positive Z,-axis: in plane of symmetry, toward bottom of vehicle, normal to X,.

Positive rotation about Y,-axis: from Z, o X, i.e., right-hand system.

The angle ¢ denotes the angle between the principal axis X, and the body X-axis.

VERICLE REFERENCE
LINE, OR BODY X-AXI8

BASKE VECTCRS

i (UNIT VECTORS)

PLANE OF
SYMMETRY

FIGURE Y PRINCIPAL AXES
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The equations of motion referred to the principal axes are listed below. Symbols are defined on page 9.

Fi, =m (U, — R, V, + Q, W)

F,, =m(V,— P,W,+R,U,) | (12)
F., =m (W,—Q, U, + P, V,)

G, =Py lx,— Qu R, (I, —Iz)) ]

G,, = {), Iy, — Ry P, (I, —Ix,) } a3)
Gr, =Ryl — P, Q, (5, — Ir,)

GENERAL WIND AXES

General wind axes use the vehicle translstional velocity as the reference for the axis system. Wind a~es are thus oriented
with respect to the flight path of the vehicle, i.c., with respect to the relative wind.

The relation between general wind axes and vehicle body axes defines ihe angle of attsck « and the sideslip angle $B.
These angles are convenient independent variables for use in the expression of serodynamic force and moment
coeficients.

Wind axes are not generally used in the analysis of the motion of a rigid body, because, as ia the case of earth

axes, the moment-of-inertia and product-of-inertia terms in the three rotational equations of motioa vary with time,
angle of attack, and sideslip angle.

The general wind-axis system is defined and illustrated below. A special case of symmetric wind axes follows
on page 16.

VERICLE REFERENCE LINE , OR
BODY X-AXIS

BASE AXES

FICUREB ¢ OGBNERAL WBID AXBS




Description of Coordinate System
Origiii: vehicke conter of gravity.
Reference plame: X Zypisne.
Positive X,-axis: along the velocity vector V.
Positive Zo-axis: in the vehicle plane of reference XZ and toward the bottom of the vehicle.
Positive rotation abost Y,-axis: from Z, to X,,i.c., right-hand system.

The angles « and 2 in figure 8 are shown in the yaw-pitch rotation sequence. The orientation relations between
the body axes end the graeral wind axes are given in Section 3.

" The oqeations of motion of a rigid body referred to general wind axes are identical in form to the equations of mo-
tion referred %o body axes. Thus the equations in general wind axes may be obtained from the equations given on
page 12. The momeat-cf-inertie. and product-of-inertia terms become very complex in the general wind axes system
and thus peacticaily preclude the use of these axes in the analysis of vehicle motion.

SYMMETRIC WIND AXES

The symmetric case of the preceding general wind axes may be usefully applied in the anelysis of symmetric vehicle
motion, e.g., dive recovery. Symmetric wind axes are obtsined from the general wind axes when the sideslip angle g
is sero. Thus the preceding description ard illustration for the general case may be used directly with 8 = 0.

The equations of motion for the symmetric, unbanked flight of a vehicle with a plane of symmetry are given below.

Fx, =mU,

: Fy, = r (14)
Fo, =—mQ. U, |
Gx, = ¢ ]
Gy, =QuIy, : (15)
C.‘ =0 )

WIND-TUNNEL STABILITY AXES

Wind-tunnel stability axes are wsed as a reference system for measuring and reducing serodynamic data in wind-tunnel
tests. This se2 of axes differs from the previous stability axes in that the Z,.-axis is aligned normal to, and remains
normal to, the relative wind, wherzas the general stability axes are boc'y axes determined by the initial flight condition.

Since it is not convenient to use wind-tunnel stability axes in analysis of the motion of a vehicle, the equations of
motion are omitied for this case.

Description of Coordinate System
Origin location: in the reference plane of the vehicle at the point corresponding to the vehicle center of gravity.
Reference plame: the X,.Z,.; plane.
Positive Z,-axis: in the reference plane of the vehicle perpendicular to the relative wind V.
Positive X c-axis: toward the forward part of the vehicle, slong the projection of the relative wind V upon the

vehicle reference plane.
Positive Y,c-axis: oriented to form a right-hand orthogonal axer system.
16
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VERICLE REFZRENCE *.IN E,0R
BODY X-AXIS

FIGURE $ WIND-TUNNBL STABILITY AXES

In the above figure the angle of attack ~ and the sideslip angle 3 give the orieatation of the relative-velocity
vector to the vehicle body axes. Wind-tunnel stability axes use the yaw-pitch rotation sequence (page 46).

NONROLLING AXES

The problem of formulsting equations of motion for a symmetric rolling body may be simplified by using a nonrolling
axis system. Nonrolling axes are a special set of body axes having the Y-axis always horisontal and the XZ-plane
always vertical. This axis system may be wsed even though the body rotates about the X-axis. It is necessary, however,
thet the inertia parameters and the serodynamic forces, moments, and derivatives be constant with respect to the
nourolling reference frame. Thus the body must have rotational symmetry sbout the X-axis. Applications of noarolling
axes to the motion analyses of aircraft, projectiles, and missiles are given in referemce S.

17




SECTION 3. COORDINATE-SYSTEM TRANSFORMATIONS

In vehicle»mouon analysis it is ﬁequently necessary or expedient to transform coordinates, vector components, inertia
varameters, & stability derivatives from one coordinate system to snother. The {ollowing section gives the relations
mosi frequently used in such transformations.

Equations are used to express the transforming relations whenever these relations are simple and not often repeated.
Matrix notation is used in the more complex transformations, and a tabular presentation is given when the forms of a
transformation relation are similar for several cases.

PARTICLE-MOTION TRANSFORMATIONS

The transformations between the coordinate systems useful in the analysis of particle motion are given in the pages
that follow. Notation and definitions of terms are consistent with those used in the preceding sections.

RECTANGULAR COORDINATES

Cartesian or rectangular coordinates are perhaps the most commonly used coordinates. The following pages give
relations for translation of the origin and the rotation of rectangular-coordinate systems about the origin. Composite
changes involving translation and rotation of the coordinate axes may be accomplished by successive application of
these two basic transformations.

? .
The equations relating spherical coordinates to rectangular coordinates and the equations relating cylindrical coordinates
to rectangular coordinates are also included in this section.

Symbols and notation are defined when first used or as required.

Translation of the origin in rectangular coordinates is illustrated in the figure below.

TRANSLATED
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X FIGURE 10 TRANSLATION OF ORIGIN




NOTATION
0 origiz of rectangular coordinate system with axes X, Y, and Z
X,y,5 position coordinates of point P |
x, 1,5 components of the vector OP

a,b,c positior coordinates of translated origin O’ in initial coordinate reference system. (These coordinates
are considered as constants.)

( )’ denotes coordinates and quantities referred to the translated coordinate system

From figure 10 the relation between coordinates in the initial and in the translated coordinate system is

Y=x—1a
y=y—b
":—l—c -—

Since there is no rotation of the coordinate axes with a pure translation, the components of a vector at P referred to
the axes X, Y, and Z are identical to the components referred to the axes X’, Y’, and Z'. Consequently, components of
vectors such as force and moment vectors are unchanged by a translation of the origin. Velocity- and acceleration-vector
components are unchanged also, except when the translated axis system becomes & moving reference system.

Rotation of rectangular-coordinate axes about the origin is very often useful and sometimes quite necessary. A general
rotation of an orthogonal-axes system may be accomplished by three successive planar rotations; hence a simple planar
rotation is considered first and then extended to the general case. Also included in this section are the direction-cosine
relations for defining a general rotation of rectangular-coordinate axes. The relations given in the following pages are
developed in many standard msthematics and engineering texts, such as referencer 6, 7, and 8. The tabular presentation
of the transformation relations is adapted from reference 9. /

l

1. PLANAR ROTATION

The roiation given below corresponds te a rotation in the XY-plane about the Z-axis. The subecript 1 denotes the
rotated axes and components in the coordinate system that has been rotated through an angle y.

Y, Y

| 4
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s&S, FIQURE i ROTATION IN THE X-Y PLANE:
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The components of the vector OP in the preceding figure are transformed from x, y, and z to x,, y;, and 2z;,
respectively, by the following equations:

X3 ==Xco8y - ysiny

y1= —xsiny 4 ycosy

=2

These equations may conveniently be expressed in matrix form.

Xy cosy siny O x X
yi |=| —siny cosy 0 v |=wi|y
2 0 0 1 Z 1

The components of any vector in the XY-plane may be transformed by the above relations.

Since the transformation matrix is orthogonal, the inverse transformation [¢]~? e given by the transpose of [y].
Since the transpose of a matrix is obtained by interchanging the rows and the columns, in this case the inverse trans-

formation matrix [“—1 is defined as

cosy —siny O
[p) =y =| siny crsy O
0 ‘o 1
whence
X X1
y = W' ln
Z

Note that this procedure is equivalent to replacing the angle y by —y and interchanging the subscripted and unsub-
scripted components in the first form of the equations.

It is convenient to introduce a tabular presentation for the transformation matrix and its inverse. Table 1 gives
the transformation matrix array with initial position coordinates at the head of each column and the rotated co-
ordinates in froat of each row. From this array the transformation und inverse-transformation equations are written
by using the matrix elements as coefficients of the appropriate vector components in the transforming equations.
TABLE 1.
VECTOR TRANSFORMATION MATRIX
INITIAL AXES TO ROTATED AXES

COMPONENTS IN INITIAL COORDINATE SYSTEX:
X Y ’ Z
£
e Y, —siny cos y 0
[74]
g2
P
0 0 1
82 4

Direct transformation equations are obtained by summing horisontally along ~ach :ow.
x; = (cosy) x+ (siny) y 4 (0) =
yi = (—sing) x 4 (cosy) y 4 (0) z
n=(0)x+(0)y+(1)s
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Inverse transformation equations are obtained by summing vertically down each column.

x = (cos y) x; + (—siny) y: + (0) 2,
y = (siny) x1 4 (cos¢) y1 + {0) 2,
2 =(0) x; +-(0) yy +(1) 2,

2. SENERAL ROTATION

The general rotation of a rectangular axes system may be accomplished by successive planar rotations of the type
described in the preceding paragraph. In making a general rotation, however, the sequence of rotation is important.
‘The basic order of rotation is described and iilustrated below. This sequence of rotation and the terminclogy have

been used extensively in aircraft motion analysis (re/erences 4 and 7).

)
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The transformation zuatrices are given in tabular form for the basic sequences and for several other sequences of axis
rotation. These transformations may be applied to position, velocity, force, moment, and acceleration vectors to obtain
their components in the rotated-axes system. Both the direct- and inverse-transformation relations are obtained from
the tabular preseutation as shown in the sample problem.

In the preceding skeich the coordinate axes are designated by capital letters (X, Y, Z) and the position coordinates by
lower case letters (x, y, z). The Greek symbols ¢, 0, and ¢ ave used to refer to angular rotation about the X-, Y-,
and Z-axes, respectively. Subscripts refer to the various rotated-axes systems. Thus the subscript 3 denotes the final
axes and coordinates. Similer subscripts are used with the rotation angles tc indicate the reference axes for the
particular angle. The basic order of rotation is

1. “Yaw” about Z.axis through the angle y.
2. “Pitch” about Y,-axis through the angle 6.
3. “Roll” about X.-axis through the angle ¢..

General transformations for rotation of rectangular-ccordinate systems wre tabulated in table 2. Both direct and in-
verse transformations are given, as illustrated in the sample problems on this page. Also included in this table

ure the =quatioes for the instantaneous angular velocities ¢,, 03, and ¥s about the final coordinate axes in terms
of the orientation engles and their rates of change.

The first case listed is the most commonly used order of rotation. Cases 1 and 2 may be considered as fundamental
rotations. The remaining cases may be obtained from cyclic permutations of the initiz! coordinate and angle notation.
It st.2nl4 be noted that changing the sequence of rotation changes the definition of the orientation angles. Consequently,
anizler itk differsnt subscripts are not interchangeable, i.e., generally ¢, 5= ¢o 5= ¢s. Also, the orientation angle
rabis ) change, i, §, 6;, @2, arenot orthogonal.

Use of table 2 is iliustrated by the sample problems below.

Example 1. Direct Transformation

Given: Velocity-vector components Vx, Vy, V,.

Rotation order: yaw, pitch, roli (¢ to 6, to ¢, asin Case 1 of table 2).
Find: Velocity-vector component along Zs-axis (Vz,).
Solution: Write equation for Vy, by summing terms along the Z;-row of the vector transformation wmnatrix.

Vy, = (cos $q 8in 6; cos y + sin ¢ sin y) Vx
+ (cos ¢z 8in 6, sin ¢ — sin ¢pacony) Vy
+ (coe ¢z cos 6;) Vg

Example 2. Inverse Transformation

Given: Acceleration ;ector components axg, ay,, 3z, along final coordinate axes.
Rotation order: yaw, pitch, roll (y to 6; to $2, as in Case 1 of table 2)

Fird: Acceleration vertor component along X-axis (ax).

Solution: Write equation for ay hy summing terms down the x-column of the vector transformation matrix.

22
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ax = (cos 6; cos y) ax,
4 (sin ¢ sin 0; cos y — cos ¢2siny) ay,

+- (cos ¢2 sin 6, cos y - sin ¢ sin y) az,

- A general rotation transformatic- of vector components from one coordinate-axes system to another may be interpreted

in terms of direction cosines. The direction cosines are defined as the cosines of the angles between each of the final
coordinate axes X3, Ys, and Z; ané each of the original coordinate axes X, Y, and Z. Thus there are nine angleu
required to describe a general rotation of rectangular-coordinate axes. Direction angles that locate the Xj-axis with
respect to the original X, V-, and Z-axes are illustrated in the figure below. Similarly, direction agles are defined

for the Y;- and Z;-axes.
‘Z

N\

FIGUR!, 18 GENERAL ROTATION ABOUT ORIGIN = DIRECTION-COSINE DESCRIPTICN OF ROTATION
(DIRECTION ANGLES FOR Xy AXIS)

The direction-angle notation used is as follows:

(X, X3) = Angle between X- ard Xy-axes.
(Y, X3) == Anglc between Y- and X -axes.
(Z, X3) = Angle between Z- and X;-axes, etc.
The cosines of the direction angles may be arranged as a vector transformation matrix and us.d, exactly as in the

preceding Section, to transform vector compenents. The vector transformation matrix of direction cosines is shown
in table 3.

TABLE 3
VECTOR TRANSFORMATION MATRIX OF DIRECTION COSINES
INITIAL VECTOR COMPONENTS
X Y Z
= —
azl X cos (X, Xs) cos (Y, Xs) cos {Z, Xs)
g
SO+ —f - —
% . \
EO Y, cos (X,Y,) cos (Y.Ys) cos (Z.Y,)
WS e —_
E S —- e ]
I‘E> Za cos (X, Z) cos 1Y, 7,) cos (Z, Z,)
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Relations for the direction cosines in terms of the orientation angles ¢, ¢, and ¢ may be obtained by equating
corresponding elements of the above matrix and the appropriate matrix of table 2. For example,

cos (Y,2) = o8 $2 8in 0, sin ¢ — sin ¢, cos
for axis-orientation angles defined by the rotation sequence of Case 1 and
cos (Y,Z;) = —sing,
when the orientation angles are defined as in Case 3.
3. RECTANGULAR COORDINATES TO CURVILINEAR COORDINATES

The transformation of rectangular space coordinates to a curvilinear-coordinate system involves a monlinear co-
ordinate change. The relations used to change from rectangular coordinates to spherical coordinates are given as
equation 16 and those used for the transformation to cylindricul coordinates are given as equatior 17. In both

cases it can be seen (figures 14 and 15) that the transformation equations are statements of simple trigonometric
relationships.

X, Y, 8¢ RECTANGULAR COORDINATES
2, ¢, 6 BPEERICAL COORDINATRS

FIGORR i4¢ RECTANGULAR - SPEERRICAL OOORDINATES

Rectangular to spherical coordinates:
¢ =tan"! X
)

— a1 Y
¢ =tan"! - (16)

Spherical to rectangular cocrdinates:
X=—"resin¢cosd
y==rsingdiné

g==rcos¢
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) (17)
Cylindrical to rectangular coordinates:
x ==Trcosf
y=rsiné

]
‘ X,Y. Z {RECTANGULAR COORDINATES
1, 8, T CYLINDRICAL COORDINATES

FIGURE 18 RECTANGULAR - CYLINDRICAL COORDINATES

It is important to note that base vectors at each point in the preceding curvilinear-cocrdinate systems are defined as
orthogonal. Consequently, at a given point, transformation of vector components from rectangular to spherical (or
cvlindrical) coordinstes is a traasformnation between rectangular axes and corresponds to s rotation of the axes system
at the point. Thus appropriate transformation matrices from table 2 may be uwed directly to transtorm vector com-
ponents from rectangular to spherical (or cylindrical) coordinates at a point.

For example, at a point the voctor
V= Vxi + Vyj + Vak
= Vele + Valp + Vo

may be changed from rectangular components (Vx, Vy, Vy) to spherical components (V,, V4, Vi) by a linear
transformation correspouding to one of the transformation matrices given in table 2. This method is used in the

following paragraph to transform from spherical to flight-path coordinates.

SPHERICAL COORDINATES

The relations used to change from rectangulsr to spherical coordinates are given in equation 16. As is noted
there, this is a noalinesr transformation. However, at any point in a space described by spherical coordinates, a
rotation of local base vectors is accomplished by s rotation of rectangular axes.

In this Section, pr3sentation of vector transformations is limited to the change from local spherical-coordinate
axes to flight-path axcs. These axes are defined and illustrated in Section 2. This traneformation serves to further
illustrate the use of rectangular-coordinatc transformations (table 2).
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The rotation of the local base vectors at point P from a spherical-coordinate orientation to flight-path axes is de-
fined in Section 2 on page 5. It is noted that this rotation corresponde to the roll-pitch-yaw sequence (Case 6 of
table 2) of the rectangular-coordinate transformations. Thus by identifying quantities of the transformation (Case
6, table 2) with the notation defined for spherical and flight-path coordinates in Section 2 the desired transforma-
tion matrix is obtained. The correspondence between terms ie given in table 4.

TABLE 4

CORRESPONDENCE BETWEEN RECTANGULAR-COORDINATE TRANSFORMATION
AND SPHERICAL — FLIGHT-PATH-COORDINATE TRANSFORMATION

- Item in Rectangular-Coordinate Transformation Corresponding item in Spherical — Flight-Path-Coordinate System
(Case 6, Table 2) (Section 2)
X G,
. : Vector Components
Initial Vector ~ A
Y Ge A Spherical-
Compoanents Cmiute Directions
Z Ge
Transformed Xe G " Vector Components
Vector Ys G. Along Flight-Path
Components Coordinate Directions
Z Gy
¢ (903)
Orientation Flight-Path Orientation
Andes b Y Andu
1<) ]

A general vetor G may be expressed as follows:
G =G, + Gyly 4G, (spherical coordinates)
G =G, -+ Goeg + Grey (Bight-path coordinates)

Substitution of the above items in the vector transformation matrix of table 2, Case 6, results in the transformation
skown in table 5.

Note: sin (90 — 8) = cos 8 and cos (90 — 8) —sin 8

TABLE §

VECTOR TRANSFORMATION MATRIX
SPHERICAL COORDINATES TO FLIGHT-PATH COORDINATES

COMPONENTS ALONG SPHERICAL COORDINATES
r' s
G, ¢ Ge
° sln Ssiny condsiny
g G. cos v cO8 ¥ 4-cos S ain ycoey ~uin § sin vy cO8
W
£ . :
. sin § cos § 008 § Cos ¥
23 G. ~-008 7 WMy —cos dsin v oin +eindoinysiny
§s2
8!"'E G. e vy —cos § 098 Y sins & coe y
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Bage (mit)vectors 1,, 14, 1, are sligned along spherical-coordinate directions.
Base (mit)vectors e,, e,, ¢, are aligned along the flight path ( e, is along the velocity vector of the point P ).

DIRECTION TO
NORTH POLAR
AXIS IN THE

15 14 PLANE

FIGURE 1§ ROTATION OF BASE VRCTORS FROM
SPHERICAL TO FLIGHT-PATH COORDINATES

CYLINDRICAL COORDINATES

Equations relating rectangular and cylindrical space coordinates are given on page 26. This coordinate change is
nonlinear, as is the change to spherical coordinates. The discussion conceming rotation of local base vectors for
spherical-coordinate systems also applies to cylindricai-coordinate systems. A similar procedure may be usedto
obtaiu the transformation matrix for a rotation of the local base vectors.




RIGID-BODY TRANSFORMATIONS

Transformations useful in the analysis of rigid-body motion follow directly from the rotatior of rectangular-coordinate
axes. The translation of a rigid body may be considered as the motion of a particle concentrated at the center of
gravity of the body, and the foregoing Sections may then be applied. Rotation of a body about its center of mass,
however, introduces additional degrees of freedom that depend upor the inertia characteristics of the body.

The transformation relaticns useful in the analysis of rigid-body motion are given in this Section. First the general
transformation of vector components and inertia parameters is discussed. Then specialized transformations such
as those used in conventional aircraft-motion analysis are given.

GENERAL AXES TRANSFORMATIONS

The transformations of this Section are limited to rotations of rectangular-coordinate systems. As is noted previously
for spherical and cylindrical coordinates, the rotation of a rectangular axis system about its origin may be utilized
for local orthogonal axis systems even though the origin of this system may be defined with respect to a curvilinear
coordinate system.

Vector components are transformed in the case of rigid-body motion in the same manner as vector components are
transforzed for particle motion. Thus the transformation matrices and method given on psge 23 are directly appli-
cable to the rigid-body case. )

General transformations of the inertia paremeter, which are important in rigid-body rotational motion,do not have
the simple form of the vector transformation. This transformation is presemted for a gemeral rotstion of the
coordinate axes.

The general transformation for moment-of-inertin and product-of-inertia terms may be obtained from the vector
transformation matrix and its inverse. This procedure, given in reference 10, is outlined below.

Rotational motion of a rigid body is expressed by the fundamental relation

t=[le ' a8)

where § is the angular momentum vector »zd e is the angular velocity vector. The inertis matrix [i] is defined s
follows:

Ix —Ixy —Ixx
(l ] = —-lxy ly -'-l\-z
—-ln -!“ lg

In this matrix Iz, Iy, and I are the mass moments of inestia and Iyx. Ixs, aad Ixy are the mass prod-
ucts of inertia with reference to the X, Y, and Z  axes, respoctively.

The above vector equstion for rigid-body rotstion is independent of the coordinste system slocted to represent
the vectors. Henoe, if the subscript o deniotes reference to the original and 3 to the transforme i coordinste system,
the equation for rigid-body rotation may he written

.= (Ll ort,=[hLje

“ g9




Vector tranaformations from table 2 may then be used 0 change the vectors £, and e, from the original to the
new coordinats system. These transformation relations may be expressed as follows:

£ = [F} 4

oy =[T]en ore,==[T] lay

where th;oveaor transformation matrix [T'] and its inverse [T']—! denote a general rotation of axes as given
on page 20.

Combining the transfc:med vectors with the body-rotation equation results in the desired transformation relation
for the inertis matrix. Thus

8 = [I] (L)oo =[] [L][T] ey =[I,]
Hence
(1] =[r]) [Lilr])— 19)

Expansion of this transformation relation for a general rotation defined by three orientation angles results in a
complex expression having a large number of terms. This is a straightforward procedure using matrix muitiplication,
but in most cases it is impractical and unnecessary. Body symmetry usually reduces two of the product-of ‘nertia
terms to zero, and in many cases a simple planar rotaticn is sufficient to define the axes rotation. These practica.
considerations simplify the expansion of the inertia transformation relations used later.

In order to illustrate the transformation of a matrix, the foregoing procedure is expanded below for a planar rotation.
This particular case provides a general form that is subsequently useful in the transformation of airplane stability
derivatives.

If [A] and [A] represent the original and the transformed matrices, respectively, the matrix transformation
relation is

(A]=I[r](A][r]

where
N e A b |
[A] = 8: 8y & | and [X] = | & &, &,
I W A A

If the vector trancformation matrix [I'] corresponds to a simple rotation about the Y.sxis, the above equation
may be written as follows:

cosd 0O —gin @ By B85y Oy cos § O ssin @
(AJ=] 0 1 o & 8 B 0 1 0
sin § O cos 0 By By B —sin § O coe d

Note that the matrix [T] may be obtained from table 2. For example, using the vector rensformation matrix for
case 1 of this table, substitution of ¥ =0, & =8 cald ¢; =0 results in the above matrix.

Expansion of the matrix multiplication above gives the iransformed matrix. Thus




" [8xx cO82 8 + 8, 8in2 0 [asycos 0 —a,8in 0] [(a, — a) sindcos 7
— (8xx + 84¢) 8in 0 cos 8] + a5, cos? 0 — a, sin? 0]
[A]= [25x cos 6§ — a5, sin ] (a5} [ayx sin @ 4 a,, cos 0]
[(agy — 844) 8in @ cos @ [agy 8in 0 + a;;cos 0]  [ay, 8in® 0 - a, cos? 0
L+ 85, cos? 0 — ay,8in’ 4] + (axs + axx) 8in 9 cos 0]

The elements of this matrix are readily identified with the elements a;,, a,,, 3. of the transformed matrix (X).
The equations transforming the quantities represented by the matrix elements sre given below. These relations are
limited, of course, to a simple planar rotation about the Y-axis.

Bz = 8557082 0 + 8 8in2 0 — (85 -+ 84x) 5in 0 o8 §
‘8xy = 8,5 C08 0 — 8y sin §

"By == {@xx — 8xe) 5iD 0 €06 § + 8y CO82 § — By, 8in% 9
Byx = 8y; C08 0 — 8,5 8in §

8 = a8,y

L (20)

‘5z = 8y 8in 0 + a,, co8 §

~

8 = (8 — 8g) 8in 6 cos 0 4 a,, cos? @ — ay 8in?d

By == ay; 51 0 + a,; cos 4

B == 85y 8iN% 0 + 202 €082 0 + (8gs + 8y) 8iNOcOB G

These equations are used in subsequent Sections for the transfcrmation of vebicle inertia parameters and stability
derivatives.

VEHICLE TRANSFORMATIONS

Transformations of vectors, inertia parameters, and stability derivatives used in vehicle motion analysis are sum-
marized in this Section. These transformations refer to the vehicle axes systems defined in Section 2 and use
established aircraft notation and terminology.

It is convenient to consider the vehicle transformations in two groups. The first group involves single rotations
about the lateral (Y) axis. A change from body axes to siability axes is a single rotation of this type. The second
group comprises cases of general rotation such as a change frova earth axes to body axes.

The inertia-parameter and stability-derivative transformations are not given for the second group. The general ro-
tation cases are used principally to define orientation of axes fixed on the wvehicle, with respect to the carth or
the relative wind. As is noted peeviously (page 16), the i-:.:": ;arameters become functions of the orientation
angles and the analysis of the motion is then unnecessarily complicated. The transformation of the inertia matrix
for & multiple rotation may be developed from the general relationship given by equation 19.

1. SINGLE ROTATION

The pitch rotations used to change from stability or principal axes to body axes, and vice versa, are illustrated in
figure 17. These axes and the nolation are defined in Section 2. Both stability axes and principal axes are fixed
to the vehicle and are therefore simply special “body” axes. The angles between these various axes systems are
measured as rotations about the Y-axis.

k3

v —— i—— . o e i e - B g T L PSRy




o,

T,

a, = MNte
ragles are poaitive
as shown
X, Y, Z: VEAICLE RODY AXES
X, Y Z i BTABILITY AXES
Xo Yo zp: PRINCIPAL AXRB
FIGUKE 17 BODY - STABILITY - PRINCIPAL AXES ROTATION — PITCH
TABLE 6
VECTOR-TRANSFORMATION MATRICES
BODY-STABILITY-PRINCIPAL AXES
STABILITY AXES VECTOR COMPONENTS - - STABILITY AXES
TO BODY AXES Ty T -
X. Y., Z.
. n Y 2
VECTOR X o S s
COMPONENTS Y 0 1 4]
BODY AxES s e e o g .
Z sid ae [ 0 cos ao
PRINCIPAL AXES | VECTOR COMPONENTS — PRINCIPAL AXES
TO BODY AXES X, Y, 2.
VECTOR X cos ¢ o 1 eine —
COMPONENTS Y 0 1 0
BODY AXES - -
A sin ¢ ¥ cnae
STABILITY AXES VECTOR COMPONENTS —STABILITY AXES
TO PRINCIPAL AXES X. Y. | 7.
VECTOR X cosy v _TEns
COMPONENTS Y, 0 1 I
PRINCIPAL AXES |- = PRt St
Z, siny @ €08 v

DIRECT TRANStORMATION — Sum horizontally along cach row.
INDIRECT TRANSFORMATION — Sum vertically down each coluion.
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Vector transformation matrices may be obtained directly from those in table 2 by letting ¢y =0, y, =0, and
8 = an, ¢, or 7. These vector transformation matrices are given in table 6. Examples of the use of these matrices
may be found on page 20,

Transformation of the inertia matrix for a general rotation is discussed on pages 20-31. However, for the vehicle
axis systems used in this Section the XZ-plane is a plane of symmetry* and unly rotations about the Y-axis are
considered. These conditions greatly simplify the inertia matrix and its transformation.

!

The inertia matrices 6f an aircraft referred to body, stability, and principel axes are given below.

( Ix 0 —Ixz 7
Body Axes (1]= 0 Iy 0 21
—Ixz 0 I, |
Iy —Ixzg
1 — 0 I. 0 (22)
Stability Axes (1] = Yy
[y O 0
Priacipal Axes®* [IJ={ O Iy, 0 (23)

The transformation relations for tl.e elements of the -.bove matnicee are given in table 7. These equatious are ob-
tained by identifying zlements of the inertia matrices with the corresponding ~lements of the general matrix trans-
formetion on pagss 30 and 31. The app-opriate augle substitution may b« determined from figure 17,

Some additional reletions pertinent to irertia-parameter transformations are listed elow.

1. ao‘.::'q+¢
_ 2lxs
2. tan 2 — m’z-—«h
21
3. tan 2 == s
IXS—"IEB

Stability derivatives are used extensively [n the analysis of aircraft motion. They are introduced with the linearization
of the acrodynamic foroe rid moment relations. These derivatives may be conveniently arranged in matrix form;
hence it is {requentiy necessary to transform them from one axez system to another. Transformations relating stability
derivatives in terms of body and siability axes are given in this Section. This involves a simpls rotation of the axes
system about the Y-axis and follows directly irom the matrix transformation on page 30,

The notaticn for stability derivatives is confused in existing literature. It is therefore appropriate to reiterate here
the statement on page 129 of reference 4 reminding the reader 1o exercise extrene care in using the literature tha:
involves stability derivatives. This is necessary to insure that the definitions of the symbols used are fully understood
and that comparisons and results will be correctly interpreted. {Alse see reference 2.)

Notatioa in this report is consistent with that used in references 3 and 4. This notation, defined in Section 4, im-
plies differentiati~» of direct forces and moments with reapect to perturbation quantities.

* By syrametry about the XZ-plane, Ixy and Iy, are zero.
** Principal axes are defined by the condition Ixy, = lyz, = Ixz, = 0
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TABLE 7

INERTIA MATRIX ELEMENT TRANSFORMATIONS

BODY — STABILITY — PRINCIPAL AXES

Angles are positive as ahown on Page 32

STABILITY TO BODY AXES

PRINCIPAL TO BODY AXES

Write equations for inertia parameters hy suraming across the row.

Exemple: 1;,=Ix #in® a0+ Iz cos® @0+ 2lxz sir ao cos a0+ (0) 1
Tey= lxp sin® 4 [zp cos® 9 4 (0) sin a. 208 a4 (0) 1

INERTIA
PARAMETERS Coefficient of Element Coeflicient of Element
BODY Transformation Equation Transformation Equation
AXES
sin® ao cos® oo nin @, €OS a0 1 sin’e cos'e sinecos e 1
Ix Iz, Ix, 2lxz, 0 Izp Ix, 0 0
Ir 0 0 0 Iy, 0 0 0 Ir,
Is Is, Iz, —2 sz, 0 pr Izp 0 0 1
1
Ixz —Ixz, Ixz, I —Ix, 0 0 0 Izp—lxp 0 I
INERTIA BODY TO STABILITY AXES PRINCIPAL TQ STABILITY AXES
PARAMETERS Coefficient of Element Coefficient of Element
STﬁI}S’(Ié.éTY Trans{ormaticn Equation Transformation Equation
sin®a, cos® o, sili a0 COS @y 1 cin’y cos®y sin 7 cos 9 1
Ix, Iz Ix —2xz 0 Izp pr 0 0
I, 0 0 0 I 0 0 0 Iy
Iz. Ix Iz 2Ixz 0 pr Izp 0 0
Ixz, —Ixz Ixz Ix—1I 0 0 0 pr—Iz.p 0
INERTIA BODY TO PRINCIPAL AXES STABILITY TO PRINCIPAL AXES
PARAMETERS Coefficient of Element Coefficient of Element
PRIN’%PAL Transformation Fquation Transformation Equation
AXES
}_ sin’ e cos’ e sin e cos e 1 sin" g cos® 9 sin 9 cos 9 1
i pr Iz Ix - -2Ixz 0 Iz, Ix. 2xs, 0
pr 0 0 0 I: 0 0 0 Iy,
Ilp Ix II ZIXZ 0 Ix' Il' _2Ixz. o
0 . —IXZ IXZ Ix-'lz 0 —IXZ. Ixz. Iz.—lxﬂ o
* Ixzp =0
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The basic stability derivatives may bc arranged in the six matrices listed below. With the assumption of vehicle sym-
metry about the XZ-piane, these matrice: have been simplified to the form shown. Derivatives of symmetric forces
with respect tu asymmetric variablcs are neglected and certain negligible derivatives are taken to be zero. These
considerations are cicussed further in Section 4.

Matrix Type Matrix Symbol

f Xa O Xu ]

Force-Velocity (Fy]l= 0 Y, O (24)
. Z, © Z, |
- 0 X, 0 7

Force-Rotary [Fol = Y, O Y. (25)
L 0oz, o |
C 0 X5, 0 ]

Force-Control (Fs] = Ys, O Ys, (26)
| 0 Zs, 0
F 0 L 0 ]

Moment-Velocity [GV] — M. O M. (27)
0 N, 0
"L, 0 L

Moment-Rotary (Ge] = 0 M, 0 (28)

N, O N: |

[ Ls, O Ls,

Moment-Control (Gs] = 0 M;, O (29)
L Ns, © Ns, ]

As was the case with clements of the inertia matrix, elements of the velocity and rotary matrices may be trans-
formed according to the relations on page 31. The control-derivative matrices, however, require specialized treat-
ment because the control displacements are independent of the stability and body axis systems. .
A procedure similar to that used for transformation of the inertia matrix (page 29) may be used to find the trans-
formation relations for the control-derivative matrices. Consider a vector relation of the form

f=[B}&
in which the compenents of the displacement § are independent of the coordinate system used to define the

components of €. Components of the vector f may be transformed from one coordinate system (subscript o)
to ancther (subscript 3), which has been rotated about the origin. The vector relation above may be expressed as

fo=[B,]8 or f3=[Bs]é

One of the vecter iransformation matrices [T'] from table 2 may be used for a general rotation. Thus

fo=[r}f,=[r] [B.]8=[B;] 3

The transformaticn relation for the matrix [B] is then
[Bs] = [r][B.]

Expension of this equation for a planar rotation about the Y-avi: results in the general form used in transforming
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the stability derivatives that involve control variables. If the initial and transformed matrices are denoted by [B]

and [E], respectively, and the transformation matrix by [6], the transformation relation becomes

[B]= (0] [B]

or
L h 'y —si b'x bxv bn
bee by bu cos 0 0 sin 0 : \
[E] = i;:x g;‘y i;;'l = 0 1 0 b by  bu
b by  ba sin@ O cosf be by b

Expanding the right side of this equation results in the transformed matrix (B].
(bgx 08 8 — byy sin 8)  (beycos 6 — b,y sin @)  (by, cos § — by, sin )
[E] = b,x by by,
(byg 8in 6 + by o8 0)  {byy sin § 4 byycos )  (byg sin @ + by, cos 6)

Finally, identifying elements of [ ﬁ] with the above expansion of [#] [B] gives the equations transforming
the elements of the matrix [B] to the elements of [B). These equations are

t

Y

o

xx = byxcos 6 — b, sin @

l

b., = by cos § — b,, sin 0

bye = byy cos 6 — by, sin 0

Byx==byx; byy = byy; by = by + (30)
E, = byx sin § 4 b,y cos 8

~

sy = byy sin 6 + b,; cos §

~

bgy = b,y sin § 4 b,; cos §

o

The foregoing equations are used to transform the force-control and moment-control matrices. Special trans-
formations may be devised as required by using the method of the preceding development or that used for the

inertia matrix on page 30.

Stability dsrivative transformations between stability and body axes are tabulated in tables 8 and 9. The angle a,
is defined in figure 17. A prime (') is used in these tables to designate the derivatives along body axes. In sub-
sequent Sections the prime notation is deleted and the reference axes are as noted (see table 17).

The following example illusirates the use of the stability derivative iransformation relations.
Given:  Stability derivatives with respect to stability axes.
Find:  The derivative of rolling moment with rcspéct to relling velocity L’, referred to body axes.

Solution: Write equation from table 8 by summing terms along the row of L',

L, =N sin? a, 4 L, cos? a, — (L, + N,) sin o, cos a,
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TABLE 8

STABILITY-DERIVATIVE TRANSFORMATIONS ‘
STABILITY AXES TO BODY AXES

MATRIX MATRIX BODY- COEFFICIENT OF ELEMENT-TRANSFORMATION EQUATION
TYPE SYMBOL AXES
FOR.M Sin’ao cm’an Sin Qo CO8 o 'in @xo COS Qe l
X' Y ) ~Xu—Ze 0 0 )
FORCE x" _Z! xv x-—z' 0 0 0
VELOCITY (Fv) Y'v 0 0~ 0 0 0 Yv
z, —Xw Z. X—Z, 0 0 0
Z, X. Z. XvtZe 0 0 0
X' 0 0 0 -7, X, L
FORCE — (Fo) Y, 0 0 ()} -Y. Y, 0
ROTARY b Y, 0 0 0 Y, Y. o
Z. 0 0 0 X, yA 0
Xi, 0 0 0 —Z, X, 0
FORCE — (F)) Y, 0 0 0 0 0 Y.,
Z, 0 0 0 X, Z, )
L, 0 0 0 —N, Le 0
{ | MOMENT — o) M. 0 ()} 0 ~M. M. 0
i | VELOCITY v M. 0 0 0 M. M. 0
i N’y 0 0 0 L, N, 0
v, N. L. —L.—N, (i 0 ()}
. L. —N, L. Ly—N, 0 0 0
k{gﬁ%g B (Gy) M’ 0 0 0 0 0 M,
N 'I _Ll' Np Lp—N [ 0 0 0
N': L, N. L.+N, ()} 0 0
i L"a 0 0 0 -—Na‘ Ll. 0
: L, 0 0 0 ~N,, L, ()
i | MOMENT — )
CONTROL (Go) M, 0 0 0 0 ()} M.,
N'a. 0 0 0 L.‘ Na. 0
N’s, 0 0 0 l‘r N'r 0

@, is positive as shown on page 32

Wind-tunnel stability axes are used as reference axes for most wind-tunnel data. It is therefore necessary to trans-
form these data to vehicle stability axes (or body axes) before using them in analysis of the motion of an aircraft.
These axes are defined in Section 2. The transformation is a simple pitch rotation about the lateral (Y) axis. The
rotation angle { is the angle between the wind-tunnel-axis (or body-axis) angle of attack o and the stability
axis reference angle ao (reference 12). -

Wind-tunnel axes may also be considered as general wind axes. In this case the transformation from wind-tunnel _
axes to wind-tunnel stebility axzes is a simple yaw rotation about the Z.axis through an angle y.
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TABLE ¢

STABILITY-DERIVATIVE TRANSFORMATIONS
BODY AXES TO STABILITY AXES

MATRIX MATRIX STABILITY- COEFFICIENT OF ELEMENT-TRANSFORMATION EQUATION
TYPE SYMBOL FORM sin'an ' cos'am sin ay €08 o sin a cos as 1
X. 2y X' Xe+Z. 0 0 0
. Xw -2 X'w Zy—-X\ 0 0 0
ORCE — .
R Y (Fy) Y. 0 0 0 0 0 Y,
z‘ —'x" Z'- Z" - X'- 0 0 0
Z' X'. Z" "—x' —L 0 0 0
X, 0 0 0 Z, X' 0
FORCE - (F.) Y 0 0 0 Y Y’ 0
ROTARY @ Y. 6 0 0 . Y. 0
A 0 0 0 —X’s Z, 0
X, 0 0 0 Z, X', 0
FORCE.— (F) Yo, 0 0 0 0 0 Y,
CONTROL Yo, 0 0 0 0 0 Y,
Zs, 0 0 0 =X, Zs, 0
Ly 0 0 0 N, L 0
MOMENT — ( G’V ) M., 0 0 0 My M, 0
VELOCITY M. 0 ] 0 -M, M'w 0
N. -0 0 0 -~L' N, 0
L, N, L, L.+ N, 0 0 0
A | —N' L. N.—-L, 0 0 ]
MOMENT — .
ROTARY (Guy M, 0 0 0 0 0 M,
Np '—L'r N" N'r - L’. 0 0 0
N r L'p N'r "-L'r —N” 0 0 0
Lo, 0 0 0 N, L, 0
L‘r 0 0 0 N"r L'y 0
MOMENT — (Go) M, 0 0 0 0 0 M,
CONTROL Ne, 0 0 0 —Ls, N, 0
Ne, 0 0 0 ~L's, Ny, 0
a, is positive as shown on page 8 3 ’ TABLE
B 10

WIND-TUNNEL AXES TO WIND-TUNNEL STABILITY AXES TO VEHICLE STABILITY AXES
WIND-TU¥(I;IEL AXES

WIND-TUNNEL STAB.
AXES

VECTOR TRANSFORMATION MATR]CES

VECTOR COMPONENTS — WIND-TUNNEL AXES

Xw Yw Zw
VECTOR X i 0
COMPONENTS il ooe ¥ un ¥
WIND-TUNNEL | Ywr —sin ¥’ cos ¥ 0
STABILITY
AXES Zwr 0 0 1

WIND-TUNNEL STAB.
AXES

VECTOR COMPONENTS — WING-TUNNEL STAB. AXES

A X Y Z
VEHICLE STABILITY AXES wr wr we
VECTOR Xe cou § 0 —aing
COMPONENTS
VEHICLE Ys 0 1 ()
STABILITY
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The relations between wind-tunnel axes and vehicle axes (stability and body) are illustrated in following figure
Table 10 gives the vector transformation matrices in tabular form.

WIND-TUNNEL
/ VELOCITY

PLANE OF 8SYMMETRY

¢ X,Y,.Z : VEERICLE BODY AXES
x Y % : S8TABILITY AXES

Xoa Yot - 2.t : WIND-TUNNEL BTABILITY AXES
Xew: Yu: 8 ¢ WIND-TUNNEL AXES
(S8AME A8 GENERAL WIND AXES)

FIGURE 18 ROTATION FROM WIND-TUNNEL TO VEHICLE AXES« YAW-PITCH SEQUENCE

2. MULTIPLE ROTATION

There are several transformations used in the analysis of vehicle ,motion that involve multiple rotations of an axis
system. Transformations are given in this Section that facilitate the changing of vector components between earth
and body axes and between wind end body axes. The relations between these axis systems define the orientation
of a vehicle with respect to the earth and the relative velocity or flight path.

The axes and notation used are defined in Section 2, and the specific vector transformation matrices are obtained
from the general cases in table 2.

Only transformations for vector components are included in this Section. As is noted previously, earth and wind
axes are not convenient reference axes for rigid-body moticn analysis. This results from the fact that the inertia
parameters become unnecesearily complex functions of time and the orientation angles (see page 16),

Earth axes are used primerily as a reference for the gravity force and the description of vehicle motior over a
long period of time. The orientation angles between moving earth axes and body axes are defined on page 11 and
are shown in figure 19. The rotation sequence corresponds 1o Case’ 1 of table 2. Hence the vector transformation
matrix is obtained by substitution of y =¥, 9, =0, and ¢ = @ i in the matrix for Case 1. Is the angular-velocity
relations he body-axis notation, P, Q, and R, is weed instead of és, b5, and ¥,, respectively.
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°

FIXED EARTH AXES
TABLE 11

VECTOR TRANSFORMATION MATRIX
EARTH TO BODY AXES

COMPONENTS ALONG EARTH AXES
X. Y. y
E cos © cos W cos O sin ¥ —gin ©
g siss  sin © oos ¥ sin @ sin O sin ¥
N —cos # sin ¥ +008 @ cos ¥ sin & cos 6
§§ 08 & sin © ovs ¥ cos & sin © sin ¥ v 6
8 +sin @ sina ¥ —sin @ cos ¥ cos & cos

S e e O D KT ATRIPEN T

¥
(UNIT VECTORS®) |




TABLE 12

ANGULAR-VELOCITY RELATIONS
EARTH TO BODY AXES

P=#—¥sin0 ¥=Qsin®secO+ R cos dsecO

Q:écos0+\i'sin0m0 0=Qcos®—Rein®

R=—0Osin® 4 ¥ cos  cos O $=P-+Qsindtan0+Rcos#tan ©
General Wind Axes to Body Axes

Ceneral wind axes are oriented with respect to the relative wind. The orientation angles relating general wind
axes to vehicle body axes are therefore convenient variabies to use in expressing the aerodynamic characteristics
of a vehicle. General wind axes are defined in figure 8. The yaw-pitch definition, the preferred ~finition, of angle
of attack o and sideslip angle £ is illustrated in figure 20. The pitch-yaw sequence is illustrated in figure 21.
Vector transformation matrices corresponding to these definitions are given in tables 13 and 15, respectively.
The angular-velocity relations are given in tables 14 and 16, respectively.

VEHICLE REFERENCE LINE, OR
B BODY X-AXIS

PLANE OF SYMMETRY

TOTAL VELOCITY

ﬁ is considered poaitive
in the sense of & *’left-hand**

rdtation about the Zyaxis

BASE AXES

X, Y, 8 : YRBEIOLE BODY AXES
Xo Yoo 5,1t GRNXRAL WIND AXES

FIGURE 30 ROTATION FEOM WIND TO BODY AXES — YAV - PITCH SBQUINCSE
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TABLE 13

VECTOR TRANSFORMATION MATRIX
GENERAL WIND TO BODY AXES

COMPONENTS ALONG WIND AXES
Xw Y. Z.
a% X cosacos B —cos a sin B —sina
:§ Y sin g cos 8 0
8=
88 A sin a cos B —sin a sin g cosa
TABLE 14

ANGULAR-VELOCITY RELATIONS
GENERAL WIND TO BODY AXES

P::ﬁsina §— — Rseca= Pcsc a
Q=a a=Q
R=—fcoea 0 =P+Rtana

Note: The zhove matrix ard equations result from substitution of — 8, a,and 0 for ¢, 6, and ¢,
respectively,io Cas¢ 1 of Table 2

TABLE 15

VECTOR TRANSFORMATION MATRIX
GENERAL WIND TO BODY AXES

COMPONENTS ALONG WIND AXES
g N L d - “~p
ag X ose T oo B ] —sin 8 — i X cos f
:g Y coe T sin § cos 7 —sia Tain §
f=] T - —_ —
88 N 4 sin € 0 cor &
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ﬁ is considered positive

TABLE 16

ANGULAR-VELOCITY RELATICNS
GENERAL WIND TO BODY AXFS

P=—%sinF T=Qsec F==-Pecsc ¥
Q=':i'cos 'E.'-_-—R
R=-7 0=P+Qta?P

Note: The above matrix and equations resuit from substitution of a, —p,and 0,
respectively, for 0,¥), and ¢,, respectively, in Case 4 of table 2.

TOTAL VELOCITY
v

PLANEK OF SYMMETRY

X, Y. 5t VEHIOLE BODY AXES

In the semee of & *“left-hand** Keys Vo St UERNBRAL WIND AXES

rotatios about the E-axis

FIGURE 21 ROTATION FROM WIND TO BODY AXRS—PITOR - YAW EEGUENCE
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SECTION 4. REAL FORCES AND MOMENTS*

The preceding Sections contain equations of motion and transformations useful in the analysis of particle and rigid-body
motion. Real force and moment components are indicated in these equations by a general notation for forces and
moments, In the following Section the force and moment ccmponenis are presented more specifically. The general com-
ponent exprezsions are expanded to show contributions of gravity, aerodynamic force, and direct thrust force. Aero-
dynamic force and moment components are then further =xpanded for the case of small disturbances.

Stability derivatives for airpiane-type vehicles are summarized .

GENERAL FORCE AND MOMENT DESCRIPTION

The particular flight path or motion of a rigid body is the result of the external forces and moments that are applied.
Thus the applied forces and moments may be considered as the “driving functions” to be used with the equations of
motion of the vehicle. Solution of these equaiions then proviics the motion or response of the vehicle to the applied
forces and momesis. Inversely, the problem may be formulated to find the force and moment input required to
accomplish a specified motion.

The real forces and moments involved in the motion of a body through the atmosphere, in the gravitational field of the
earth, may be separated into contributions of gravity, aerodynamic force, and direct thrust. In the case of pasticle
motion, moments about the center of mass are zero, and only the force vectors need to be considered.

Components of the external force and moment vectors are usually resolved along vehicle body axes. Relations trans-
forming these vector components to the body axis system, or any other desired reference axis sysiem, may be obtained
directly or derived from the preceding Section .

Seperation of the force and moment vectors inte gravity, aerodynamic, and direct thrust contributions is autlined below.
For illustrative purposes the general force vector F and general moraent vector G are resolved into components along
vehicle body axes. Body axes are usually the most convenient reference axes.

The general vectors are resolved into components along the reference axes.

Thus

(31)

F=Fi+Fj+Fk -
6=G,i+G,j+Gk

Separation of the several components into gravity, acrodynamic, and direct thrust contributions results in the following
equations:

Fo = Xg+ X4 Xy ]
Fy =Y, +Y+ Yr ¢ " (32)
Fo=Z+Z+2 |
Ge=Ly +L + Lr |
G: =M, +M+ My, (33)
G.=N;+N+ Ny

where
Xo Yo 2y are comporents of gravity force along reference axes
Ly Mg, N, are moment components akout referecre axes due to gravity force. (These are wsuslly sero.)

—

* The term “reul” is used to designate nominertial ferces snd moments. Thus the apparent forces such as centrifagal foree or Carielis force
are excinoed. Gravitational or electromagmetic forces. propulsive system thrast. and serodynamic force are examplos of “resl” forces




XY, 2 are components of aerodynamic force along reference axes

LM,N are moment ccmponents about reference axes due to aerodynamic force
X1, Y, Zp are compcnents of direct thrust force aloag reference axes
Ly, M1, Nx ere moment components about reference axes due to direct thrusi force

Note: Yq, Ly, cud N7 are usually zero because of vehicle symmetry.
GRAVITY- FORCE COMPONENTS

The gravitational force upon a vehicle is most naturally given in terms of earth axes. With respect to earth axes
the gravity vector mg is directed along the Z_-axis (page 10). Components along vehicle body axes are readily
obtained by using the transformation given in table 11. The gravity-force components are th-

X; = —mgsin 8 l

Y,; = mg cos © sin & (34)

Zy = mgcosOcos @ ]
along the vehicle body axes X, Y, and Z, respeciively.

There are no moments resulting from the gravity farce whan the origin coincides with the vehicle center sf gravity.
However, ii the origin is displaced from the coziz: of gravily, the same transfuanation (table 11) may be applied
to the components of the gravitatioaal moment about the origin o obiain L, M_, and N_.

The components of grsviteizonal force upes % vchicle are functions of the vehicle pitch and roll attitudes only.
Heading angle does not affect the resolution of the gravity force to body axes.

AERODYNAMIC FOECES AND MOMENTS

The contributions of aercdynamic ferce to the general force and moment vector components ar outlined in this
Section. These components are referred to vehicle body axes (Section 2, pages 11 and 12) and sircraft teminology
and notation are used. Lift and drag forces are thus introduced and transformed to the body axis system. The
geneml form for expansion of aerodynamic terms for small disturbances is included in this Scction alsc.

It is convenient to use dimensionless coefficients to describe the behavior of aerodynamic forces and moments.
Theae coefficients, defined according to established usage, are discussed and analyzed in aerodynamic texts and
in reference 13. The acrodynamic parameiers and their derivatives should be evaluated from experimental data,
i.e., wind-tunnel or flight-test data, or estimated from the appropriate data given in refereace 13 or a simila:
source. Mach number and Heynolds number effects upon serodynamic parameiers are assumed to be included.

Induced effects of the propulsive system are assumed to be included in the serodynamic coefficients, since these
effects are normally included in compiete-model wind-tunnel data. Direct thrust forces and moments arc discussed
later, on page 50.

Aerodynamic coefficients depend upon the vrientation of the relative wind or velocity vector with respect to the body.
The angles of attack o« and sidedip 8 whick define this orientation, are thus convenient independent variables {c:
expressing the variations of the serodynamic characieristics of & body. These angles slso determine the velocity com-
ponents U, V, and W along the vehicle reference axes X. Y, and Z, respectively.

The angles of attack and sideslip are shown in figure 22 with the velocity components alonk the reference uxes.
Both the yaw-pitch rotation (a, B) and the pitch-yaw rotatios (a. B) are given: however, the iormer is the preferred
votation. The relations for the velocity components U, V, and ¥ fo'low directly from the trnsfomations from
general wind axes to vehicle body axes in tables 13, 14, 15, and 16.




TOTAL VELOCITY ¥

BASE VECTORS
] (UNIT VECTORS)

i A PLANE OF SYMMETRY
K ' '

YAW-PITCH ROTATION

a ¥
a = tan kil

,8 = ain”! -%—
Y

TOTAL \)

PLANE OF SYMMETRY
VELOCITY

XYZ ~ Vehiole Body Axes

XW’ General Wind Axis
V- Total Veloolty Vector
Vovui+viewm ~
Uz Voos acon f=V oos 8
Ve=yanpf = Yoos asin 8
W=V gin acos =Y sin ¥

PITCH-YAW ROTATION

o

a = sln'll.
~
ﬁ = gan-1

v
v

FIGURE 22 ANGLES OF ATTACK AND S8IL _SLIP
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The resolution of the totul aeodynamic force in the vebicle plane of symmetry is shown in figere 73. Lift, L., and
drag, D, are the familiar aerodynamic forces aormal and perallel, respectively, to V cos £, the component of the
total veiacity in the vehicle plane of symmetry. Alternatively, iift and dmg may be defiued as the serodynamic
force componeats in the plane of saymmetry along *instantaneous® stability axes, symmetric wind axes, or wind-
tunnel siability axes. It should be noted that !ift and drag are defined to be positive as illustrated. Thus these
quantities have a negative sknse with respect to the usual vehicle axis systems.

The relations for the aerodyramic force components along body axes are included with figure 23. These equations

may be obtained directly from this figure or from the vector transformation from stability axes to body axes
(table 6).

~

‘ \ VIEW SHOWN IN VEHICLE
\ ‘ PLANE OF SYMMETRY

TOTAL AERDDYNAMIC

|
FORCE IN X-Z PLANE | \

‘ .
| \\ \\ o X=-Doosat+L sina
| . Y=C
} \ \‘ =.D sin a- L cos &
} .

D\ - D®=.X cos & Z sin &
\ X \_ C=Y

/ 7 axic V cos 3 L= Xsina- Z cos a

FIGURE 23 AERODYNRAMIC-FORCE RESOLUTION

Aerodynamic forces and moments are usually gizen in terms of basic serodynamic coefficients. These coeflicierts are
defined by the following relations: . ;

L* = Cy;$ lift force L* = CigSh rolling moment about X-axis
D = CpqS drag force ‘ M = CnqSc " pitching momient about Y-axis
C =CgqS cross-wind force N =CqSh yawing moment about Z-axis
X = xqS aerodynamic force along X-axis

Y =CqsnS aerodynamic force along Y axis

Z =CyxS aevodynamic force along Z-axis ’

where the quantities in the above expressions are dofined as follows:

Cr, Cp, C,Cx, Cy, Gz werodynamic force coefficients Vv totai velocity
Ci, Ca, G moment coeflicients S reference area (vsually wing area)
. vz .
q= _2_2_ dynamic pressure b reference length (usually wing span)
c reference length (usually wing M.AC.)
P atmospheric density

’ The force coefficients Cy, Cy, and C, are expressed in terms of lifi, drug, and cross-wind coefficients by the

same egquetions that relate the forces in figure 23. Thus

mqplicntion of the symbol L for lift and rolling moment has persisted throughout the sivcraft industry since early times. However, since
coefficients are usually used, this ambiguity is avoided by tsking L as the subscript in the Lift coefficient and { ay the subecript in the
rolling-moment coefficient.
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Cy=Croma—Cpcoea G =-"Cene—Coinea }
C'g =CC and ccch (35"
Cg =-—-Crcosa—Cpsina CL =Cxsina ~Cgconn

The moment components, as treated in this Section, are defined with respsct to the body axis system and as such may be
used directly. However, it shculd be noted that moments and moment coefficients may be defined with respect to
stobility or wind-tunnel axes and that in thess cases the appropriate transformation from Section 3 must be used to
obtain the desired aerodynamic moment components.

A word of caution is in order concerning the transformation of moment coefficients. The reference lengthe and areas
used ir defining the moment coefficients may be different and, if so, this difference must be accounted for in the
transformation of the moment coefficients from one axis system to another. Thus, although the transformation is
appropriate for the vector components, it does not directly transform these components when expressed in coefficient
form. Another important item relative to moment coefficients ic the location of the moment reference center. In any
particular case this must be checked to assure that the moment-of-inertia and product-of-iriertin terms on the right side
of the equations of motion, e.z., equation 9 , are consistent with the center of reference for the external moments.

The aerodynamic forces and moments are involved functions of many variables. Test data are the best source of -
aerodynamic force and moment characteristics; however, in many instances a particular configuration may be in the
preliminary design stage and test data may not yet be available. When it is required to estimate aerodynamic charac-
teristics of a configuration, data and techniques such as those contained in reference 13 should be used.

A summary of the major variables that affect the aerodynamic characteristics of a rigid body or a vehicle is given below.

Velocity, temperature, and altitude: These variables may be considered directly or indirectly as Mach numbers,
Reynolds numbers, and dynamic pressures. Velocity may be resolved into components U, V, and W along the
vehicle reference axes.

Angles of aitack and sideslip: Angle of attack o and angle of sideslip 8 may be usea with the magnitude of the
total velocity V to express the ortl.ogonal velocity components U, V, and W. It is more convenient to express
variation of force and moment characteristics with these angles as independent variables rather than the
velocity components.

Angular velocity: The angular velocity is usuelly resolved into components P, Q, and R about the vehicle refetence
axes. ' .

Control-surface deflection: Control surfaces are used primarily to change or balance ierodynamic forces and moments.

Since the above variables are identified with a cteady motion, the variation of aerodynamic forces and moments
with time is assused to be negligible. Asis noted in references 4, 11, and 14, this assumption is reasonable for -
most problems in analysis of vehicle motion in the atmosphere. However, acrodynamic forces and moments are the
result of the pressure of the air exerted on the body and this pressure depends upon the flow field about the body.
Because air has mass, the flow field cannot adjust instantaneously to sudden changes in these variables, and .
transient ccuditions exist. In some cases, these transient effects become significant. Analysis of certain unsteady
motions may therefore require consideration of the time derivatives of the variables listed above.

Two typical functional-dependerice relations for the aerodynamic force component along the body X-axis are expressed
below. Similar expressions fo: Y and Z force components and the aecrodynamic moment components L, M and N
could be written:

X=X, (U,V,W,U,V,¥,....,P,Q,R,P,Q,R, ..., 3,80 308, 8.3n....p.M,R,..0) }
(36)

=X, (V,a,B,{W,&,é,...,P,Q.R,P,Q..R,---Jn&y%éusa éh-"!P9M’Ri“')

M=MAUH NUMBER
R=REYNOLDS NUMBER
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It is apparent that in the practical case of solving engineering problems much simplification of the above functional
relations is required. Fortunately, it is possible to make certain assumptions that simplify the mathematics considerably,
while still permitting solutions of practical significance. Expansion of the aerodynamic components for small disturbances

is illustrated in subsequent paragraphs, and the simplifications of the equations of motion for practical solutions are
discussed in Section 5.

There are many cases of practical interest in the analysis of aircraft motion in which the disturbance from a steady-flight
condition is small. In these cases it is permissible and convenient to express the aerodynamic force and moment com-
ponents in a Taylor s~1ies expansion. This expansion is formed in terme of perturbations from a reference steady-flight
condition. The use of the expansion is limited to problems where the perturbations are small and where the second- and
higher-order derivatives of the variable quantities and the products of the perturbation quantities are therefore negligible.
Thus they may be omitted in the simplified expressions for the aerodynamic force and moment components. Of course,
this type of expansion requires the first derivatives of the aerodynamic force and moment components with resp-ct to

the aerodynamic variables that affect these forces and moments. These derivatives, commonly referred to as “stability
derivatives,” will be discussed in detail later.

The general procedure for expanding the aerodynamic force and moment relations for small disturbances from steady
flight may be found in many places in the literature, e.g., references 4 and 11 . The notation for small
disturbances from a reference flight condition is as follows. Lower case symbols are used to designate the perturbations
of velacity and orientation varisbles. Upper case symbols with subscript zero are used to denote the reference values
of these quantities. For example, U = U, 4+ u, P = P, + p, and & = &, + ¢. The incremental changes in the aero-
dynamic force and moment components are indicated by the prefix A. Thus X = X, + aX, Y=Y, + sY, M =M,
+ AM, etc. The control deflection angles 8,, 8., and 3, are used just as they are and are interpreted as the control
perturbation angles from the steady-state trimmed-flight condition. To illustrate the general expansion of the aerodynamic

force component along the body X-axis the first functional relation for X on page 47 may be expressed as follows:

X =X, 4 aX = Xo + Xau + Xov + Xow + Xga + Xev + Xaw + ... +
Xop + Xaq + Xer + Xip + Xeg + Xir . 0. 4+ X, 8 + (37)
X, 8 + Xs, 8, + Xi, 8 + ...+ (higher order term.s) *

where X, = 39X/ du, etc.

Varisbles may be added to represent additional serodynamic effects such as occur in higher order unsteady aerodynamics.

\
[}
B

* Just the second-order terms ia the expansion would require a page or more to write out. The expension would have the fnllowing form:
1/2 [(Xeat® + Xoo® 4 oo Xati' 4 .o+ Xonp* 4 oon o Xe3p" + ..+
Xagrght! + -0 4 Xigpgh' +...) + 2 Xowtrv 4 ... + XUv 4 ... +
Xeop¥ + oot Xy + oot Xondo¥ .+ XidV 4 ..) +
2(Xwtw 4 ...+ Xegpw + ...+ Kespw + . 4 Xeodow +..) +
2078 + oo+ X o) H oo b 2 Kag 8o o0 4+) +...]
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TABLE 17
AERODYNAMIC FORCE AND MOMENT INCREMENTS

FOR SMALL DISTURBANCES ’
{Components Along Vehicle Axes)

DISTURBANCE Force Components Moment Components
VARIABLES : AX AY JaY A AL AM AN
Linear u x., Yu. Zu Lu * Mu Nn *
Velocity v X,** Y. 2 L, M,* N,
Components w X. Y.* Z, L.* M, N,*
Linear u Xi*** Y:' Z;*** Li® M N
Acceleration v X:** ) O Z’ L; M’ N;
Components w ) Ca Y.' Z,*** L.* M; N:°
Angular p X, v, Y /A L, M N,
Velocity q ) Sy Y.' L’ M, I\
Components r X.** Y. Z°" L, M. N.
Angular p X;** Y; e Z.0° L;°°* M’ N;°°*
Acceleration q ) Chis Y;* A L’ M N;*
Components i' xl'... Y,'- e Z;.‘ L;." M;... Nl.I oo
Control 3 Xe, © Ys, Z L, M.’ Ns,
Deflection 3 Xs, >t Ya: Zs, La: M. . N :
81’ xo: ’ Ybr ZGr‘ ) I"Gr Mar ) Nor
Control , By X:.* Ys* 75 L ‘Mi, T
Deflection 8¢ Xe** YJ; Zé;' * Ls,* M;2** N3 °
Rate i R i L .

Asymmetric foroe and moment composnent derivativea with respeot to symmetsrio disturbanoe variablea.
*¢  Symmetrio force and moment component derivativea with respeoct to asymmetrio disturbance variatles.
(Both sets of terms are identically zero for disturbances from a state of steady symmetric motion, i.e.,
V, P, R, and their derivatives are all seyo, of an airoraft with an XZ-plane of symmetry.)
*se Terms tha® ars usnslly negligidble.

THRUST FORCES AND MOMENTS

The propulsive system of a vehicle generally produces both a direct thrust force and indirect or induced effects upon the
aerodynamic forces. These contributions of the propulsive system to the furce and moment components are presented
and discussed in reference 13.

Direct thrust force and moment components should be used in accordance with the force-moment component resolu-
tion of equations 32 and 33 on page 44, i.e., X1, Yr, Zq, L, My, and N These components may be developed
directly from the geometrig relation between the direct-thrust line of action and the moment reference center of the
vehicle.

Induced-thrust and propulsive-system effects are conveniently included in the aerodynamic components. Wind-
tunne! and flight-test aerodynamic data usually include the indirect effects of the jet flow or runniug propellers
upon the aerodyuamic characteristics of a vehicle configurstion. Methods for esvimating these induced propulsive-
system effects are included in reference 13.
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STABILITY DERIVATIVES

\

The partial derivatives that occur in the expansion of aerodynamic force and moment components are commonly referred
to as “Stability Derivatives.” These quantities are useful in general ind most applicable in the analysis of smail-
disturbance motions from a steady reference flight condition. In this Section the derivatives and notation are defined.

Several systems of notation and definition for stability derivatives and/or parameters have been developed and are
found in the literature. The reader should be forewarned and reminded to be thorough and alert when using published

works — including the present report — to check the notation and definitions used (see page 129 of reference 4 or page
IV-2 of reference 11). The notation in this report is selected to be consistent, insofar as possible, with that used
by NASA and in references 3 and 4.

A summary of the stability derivatives and notation used in vehicle stability and control analysis is presented in
this Section. Since symmetry of the vehicle and initial flight condition is assumed throughout, the number of de-
rivatives is reduced, as indicated in table 17. Unusual configurations and special probiems may require deriva-
tives that are not included in this Section.

Data precented in reference 13 include gen- al and detailed information on stabilit; derivatives and methods for
estimating values of these derivatives. Also, general and apecial methode and analyses for evaluation of these
derivatives are found in many places in the literature. References 4, 7, end 15 are typical general references and
reference 17 is a typical special investigation.

Three types of stability derivatives are used in airplane stability and control analysis. The following paragraphs
discuss each type. Notation for these derivatives and other items used in connection with stability analysis are
given in table 18. Table 19 contains the relationships used to define the nondimensional derivatives along body
axes and expresses them in terms of stability axis derivatives. Nondimensional derivatives along stability axes
are presented and identified in table 20. This is the most familiar form of the stability derivatives.

1

DIMENSIONAL DERIVATIVES —BODY AXFS

The derivatives used in the development of small-disturbance expansions for aerodynamic force and moment rela-
tions (see page 49) were defined as dimensional derivatives. These partial derivatives of the force and ‘moment
components are takea with respect to perturbations of the significant velocity, acceleration, and control variables®.

® Consider the following for the case of small disturbance from a steady Sight condition:

It U=U,+u and P=P,+p

X _ X oV, X w _ X
U — U, U ow U T du

N _oN 9k, , N 3 _ N
aP — aP, oP ap P  op

since %l—ljf-md-%gl-,’- areeach.peiromd g;} and g% each equal 1

N




The general notztion uses upper cese symbols with a subscript denoting the variable of differentiation, and body axes
are specified. In this case, however, body axes may refer to any axis system fixed to the vehicle and thus include the
special cases of stability and principel axes. This, st least in part, is the origin of much of the confusicn in stability
derivative notation. Also, it is the reavon for using the prime to denote the difference between body and stability reference
axes in the transformation of stability derivatives (tables 8 and 9).

Dimensional derivatives are used as =lemepts of the matrices shown in equations 24 through 29 and in various
equations throughcu® subsequent Sections. Some examples of these derivatives are

X oM N az
X, = du’ M ow’ Ny = ap’ Lo, = 28,

The dimensional derivatives are listed in table 17, with the notaliion given in table 18.

NONDIMENSIONAL DERIVATIVES — BODY AXES

The use of nondimensional equations is usually convenient when aerodynamic forces and moments are invoived in a
problem. Hence it is useful to define nondimensional stability derivatives along body axes. As in the preceding case, these
axes may be considered as general body axes that include the stability and principal axes as special ca

Lower case basic symbols are used to designate the nondimensional body-axis derivatives. This introducgs some additional
possibilities for confusion and ambiguity in the notation. For example, m,’ is a stability derivative an(ﬁl m without any
subscript denotes the vehicle mass. Although this is not a desirable situation, ultimately it is less confusing to maintain the
system of notation and be wary of the pitfalls of ambiguity in the notation thgn to revise the familiar and established
symbols. In this instance the mass m is frequently incorporated in the parameter r ana thus the confusion is prevented.

Several examples of the nondimensional derivatives along body axes are given below. A more nearly complete
listing of these derivatives and the notation used is given in table 19. The equations relating stability-axis de-
rivatives to the derivatives along body axes are given in this table. The relations given in table 19 also serve to
transform the derivatives based upon wind-tunnel axes to stability axes (ay = 0). A

=9X 1 _y w1
Ta 0 qS ~ 7 9 qS
o =N 1 N 8v 1
B =98 qSb — 7 3f q.Sh
]
Y 1 1 E e
YI' - ap q "-YD qos CY, 2v
M 1 1
M =738, q —Mf" q.5¢

Note that in the above examples the divisor changes and the linear velocity disturbance variables w and v are
converted to nondimensional variables o’ and g’, respectively.

NONDIMENSIONAL DERIVATIVES — STABILITY AXES

To many individuals the term “stability derivatives” means the nondimensional derivatives of aerodynamic coefficients
with reference to stability axes. These are the familiar parameters C,,, C.’. C.‘, ctc. that are used in aircraft stability
and control analysis. Lift and drag are the Z- and X-force components. Wind-tunnel data are usually reduced to stability
axes and provide experimental values for many of these stability parameters.

® The nondimensional rotary derivativés retain the dimension of time in the case of body axes, vhile in the case'of stability axes the

nondimensional rotary velocities are used, i.c., _;i'b-' -gvg. -% .
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There is much literature containing anelytical and experimental investigations of stability derivatives and parame-
ters. Reference 13 includes methods and reference material for evaluating these quantities. Chapter 5 of reference
4 contains a comprehensive discussion of airplane stability derivatives.

The nondimensional stability derivatives referred to stabilisy axes are listed in table 20. The general notation
used is given in table 18. These derivaiives are grouped into the longitudinal stability derivatives or parameters
and the lateral derivatives.

Included in table 20 are sketches of typical variations of the stability parameters with Mach number. This infor-
mation was adapted from reference 16. Also included in the tabulation of nondimensional stability derivatives ave
some specialized parameters such as C,; and Cig. The effects and importance of these two derivatives are dis-
cussed in reference 18.

TABLE 18
SYMBOLS AND NOTATION
STABILITY DERIVATIVES AND RELATED PARAMETERS

SYMBOL DEFINITION
b wing span
C (i) basic symbol for aerodynamic force and moment cocfficients
(ii) aerodynamic cross-wind force
C., Cp lift and drag force coefficients, respectively, (stabiiity axes;
=L =L
C]-—-qs 'CD—-qS !
Cx, Cr, Cs longitudinal, side-force, and nhormal force coofficients, respectively,
(body axes)
X Y Z
Cx=~=>,Cr=—,Cg =~
x=—gbr=1g Cs S
C, C.C. rolling-, pitching-, and yawing-moment coofficients, respectively
L M N '
Ci= . Ca = ’ =
' qu L) qsé_ C‘ qu ]
Cog, Cryp Cap nondimensional stability derivatives with reference to stability axes
C g etc. (see table 20)
Cix, Ciy moment-of-iaertia coeficients and product-of-inertis coefficient
Clz. Cl‘z Clx = Ix CI' = "'!L_':
o aSh q.Sc
=h_ = laa
Note: 1. The divisor of Ciy containe T instead of b. l
2. The inertia parameters musk correspond 10 the axis system
’ used in a particular snalysis, i.e., body stability, or principal
axes. )
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TABLE 18 Continued

I w0,

fe mm,

F.QR

SYMRBOL DEFINITION

c wing mean aerodyuamic chord

D aerodynamic drag — the aerodynamic force in the plane of symmetry
along the prejection of the relative wind on the plane of symmetry.
Drag is positive in the negative X (Jdownstream) direction.

g gravitational acceleration constant

H. engine momentum , countsroloockwise viewed from r:ar

Ix, In, I moments of inertiz about X-, Y-, an’ Z-axes, respectively

T product of inertia with respect to X- and Z-axes
Note: Moment-of-inertia and product-of-inertia terms must correspond

to the ax{s system being used.

it incidence of thrust line with respect to XZ-plane of body reference
system. Thrust incidence is posmve for Tsin iz acting in the negative
Z (lift) direction.

L serodynamic lift - the aerodynamic force in the plane of syminetry
perpendicuiar to the projection of the relative wind on the plane of
symmetry. Lift is positive in the negative Z {upward) sense,

LM, N aerodynamic rolling., pitching-, and yawing-momeats about X-, Y-, and
Z-axes, respectively
Note: Lift and rolling momeat use the same symbol, 1,

Lo ..M¢ N, basic symbols for dimensinnal moment derivatives; aubscript desiotes
variable of differentiatior: (8ec tabie 17)

AL, AM, AN in:remental changes in serodynamic nonments used in small-disturhance
anctys’s

AM~ pitching-moment compunent of direct thrust force

Note: When dim:t‘ thrust is iecluded in the serodynamic or toisl
moment, AMy should be drieted.

basic symbols for nondimensions! momeni derivatives about body
a4cs; subscript denotes variable of differentiation {sce table 19)

direction cosines between body axes and the gravity vector

Mach aumber
Note: M is also uscd as pitching moment

Note: m i aieo vwod s the hasic symhol for the mondimensional
piwn;-nnmt derivatives sbocs body axen.

rolling, pitcking, and nviq velocity components (ssgular) about
X, YM
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TABLE 18 Continued

SYMBOL DEFINITION
P, g small-disturbance angular velocity componeuts about X-, Y-, and Z-
' axes, respectively
q dynamic pressure
- £Y
=7
Note: ¢ is also used as the small-disturbance pitching velocity.
S wing area or reference area for aerodynamic coefficients
T net direct thrust force
1! thrust coefficient, T == -—T;-—
qad
Ty sT
¥ av
t time
Uv,w linear velocity comuponents along X-, 7-, and Z-axes, respecti-ely
uv,w small-disturbance linear velocity components slong X-, Y-, and Z-axes,
respectively
'y small-disturbance nondimensional fongitudinal vsiocity varishle, « = -5—-
:
A\ toial linear velocity of vehicle c.g.
XY 2 seredynamic force components along X, Y-, and Z-axes, respectively
) CUET PR S basic symbols for dimensional force derivative; subecript denotes vari-
able of diffeccntiation (see table 17). For example,
). ). S ).
x; - au ® XJ' —-— ) 3 - - "'_""8'
aX, AY, AZ incremental changes in serodynamic force companents used in amall-
disturbance analyss
Xy, Zy componcnts of direct thrust force along A- and Z-axes, respectively

Xe »Yo b

Note: When direct thrust 1s included in the serodynamic foree com-
ponents, these terma should be deleted.

basic symbols for nondiumensional force derivatives along bedy axes;
subscript denotes the variable of differentiation (see table 19)

distance parallel to Z-axis from vehicle c.g. to the projection of the
thrust line in the plane of symmetry (positive for c.g. above thrust

line)

angle of attack (see figure 22)
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TABLE 18 Continued

SYMBOL DEFINITION
o small-disturbance velocity variable, o’ = ~—
az angle of attack of thrust line, ar = a + ir
B sideslip angle (see figure 22)
8 small-disturhance velocity variable, 8’ = -
¥ 3 ’ flight-path angle, the angle between the velocity vector and the plene

of the horizon

3, 82, & change in deflection of ailerons, elevator, and rudder, respectively
P dir density
. m . vo m
L 4 time ameter, r = - ——
' par PSSV,  24q.S
¥,0,9¢ orientation angles of vehicle body axes in vaw, pitch, roll sequence
(see page 11)

Note: In some special cases using stability axes the flight-path angle
v is used in place of the pitch orientation angle ©. When
this is done, the yaw and pitch angles, ¥ and ¥, should be
used as referring to stability axes also (see page 77).

0,0,y perturbations of vehicle axes orientation angles ®, O, ¥, respectively.
In the small-disturbance approximation ¢ = [pdt, 8 = [qdt, y =
[xdt, respectively.

Qg, Oy, Oy angular velocities of wind axes; prime is used 10 denots small-angle

approvimations { see page 77).

- o

General Notes:
1. All angles and angular velocities are in radian measure.
2. Fundemental units are used throughout, i.e., slugs, fest, seconds.

3. Taroughout this tabls the symbol q denotes dynamic pressure when multiplied by
the wing area (¢S).

4. The subscript o denotes steady-state reference condition for smasll-disturbance
analyses.
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i » TABLE 19
NONDIMENSIONAL STABILITY DERIVATIVES
! (BODY AXES)
Direct thrust terms included
! Expanded Form in Terms of stability
Symbol Derivative Axis Derivatives
Force X X 1 - cos® ao + Cz. sin' au
Velocity o g.S Cxy cos” + Fq ST e
+ (—~Cx, —~ Czy) 008 a. sin a
+ 2 Ty cos iz cns ao
m
wo | X | g ata - Cosira
da’ qos
+ (Cryq — Cs,) €08 an 8in o
+20 Ty sinirsin
m
b oY 1 I
aﬁ' Qns 8
Lo Sz Cop 08" a0 — Cxy tin" 00
(”l'.‘0 f,os
- (an -_— c) cos a. 8in e
—27 T, sinir cos @
m
Lo 92 1 Csz, cos’ a0 + Cx, sin’ as
0 QoS
+ (Cxq + Cey) €03 a0 8in as
m
Furce X .S . T
Rotary 3q q.S (C“I“""‘—C"I““’)_T
Y 1 : : b
» _..a.p_ ::S- (Cy'eota.—CI,ﬁm&)"zT
v % ';lg (Cr,eola.+Cr,¢in¢.)-z-vl~'—'-
= az 1 sin @) —o—
! Force X, X 1 - ,
j Control ‘5%“0 oS | G — Cag uine
T4y ) S C
9%, @S "
Yo Y 1
F] T Cur
zZ 1
Sy —é%e-w E C‘G. 008 &, 4 c“. sin &
57
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TABLE 19 Continued

NONDIMEMSIONAL STABILITY DERIVATIVES

(BODY AXES)
| Expanded Form in Terms of Stability
Symbol Derivative Azes Derivatives
Moment Iy oL _1 v
Velocity 3% 3.0 Cig c08 a@r — Cag sin a0
Mo %% q_nls"é: [Cmu + %Tv % o— 2 Tco ‘!g-] COS8 oo
— Cug sin as
bl 2 no %-l lin (.23
(34 -
e %} ;:lsr Cnp cos a, 4 Ctﬁ sin ao
Moment oL 1 * oos® Co. 60® we— /Cyy + Cor)
Rm, lﬂ ap q"Sb [ Llpco -2 + P.‘n e \ 153 C.D
. [3)
COos & 8N ﬂo] 2V,
L . 2
I or q.Sb [ C.rcos a.—-C.psma.-{-( lp_Qf)
3 o 8i b
€79 @ 81N d.] 2v.
M 1 r T
T dq q.5T i_c"“l] nA
N .
no | s | [ SeenmCntat (©-C
©08 &, $iD ay JE%:
-QﬁN- - L‘ r ~ '] [ ]
Er 3t 20b L Cop 008’ as + Cip sin® ae + (Cip + Cop)
€08 a 8iD @, ]_2%._
Moment oL 1 ; )
Control le, 3% oSo | Cia, omae— Gy, sine,
a
L. '5}""";}5'5- Cig, cor a0 — Cop sip a0
M|
e a3, q;S? u‘i
OoN 1
s, "3, Sb G, cos a0 + Cyy #in o
aN_ 1 .
B, 3, .8h Cg,co 0 + Cip_sin es
i
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TABLE 19 Censinned

NGNDIMENSIONAL STABILIT{ DERIVATIVES

{PODY AXES)
Expanded Form in Terms of Stability
Syrebol Derivative Axes Derivatives
Momont M 1 4
me, 7 Ta Cas) ——
Acc+deration ‘ da QSE ( 2v,
Notes:

1. The symbol q. is the reference dynamic pressure.

2. The symbol g (without subscript) denotes pitching velocity about the Y-axis.

3. The stability axes derivatives are defined in table 20

4. The subscript zero denotes a stendy-state reference flight condition.

5. Symbols and notation are given in table 18

TABLE 20
NONDIMENSIONAL STABIL:TY DERIVATIVES
STABILITY AXES
Direct thrust effact: not included
I. LONGITUDINAL DERIVATIVES
Symbol Derivative Typical Variation with Mach No. (ref. 16) Remarks
. -s’(cn)o
Cx, e oy, W Cr=— 22 M. - 2000
a T Q)" \.. l l I l i Il
0 H M, H ' |
o5, ' SICH
oCu ! . e Ce 0y
Ca, . ~— Cay 1= — g Ma = 2(C),
v. | ] v
0 1 M 3
-c-‘
C-s = =3 1
Y. subject to seroelasiic effects
0 Hi - !
o x
Cx, x a Ca = (C)e — 2
»

f ..
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TABLE 20 Continned

Symbol Derivative Typiml Variation with Mach No. Bemarks
4
-Cy \‘r;_’-—l_ Co = — G . :
aC a. \ e~ da + (CD). :
Cs, a_’ ~
a o~ approximately the negative of the -
v L 1
0 - ; lift-curve slope
. static stability derivative that
aC, c‘a fixes the stick-fixed neutral point;
Ca, —é—! this derivative is a basic static-
a stability parameter
T T
o M, 2
“Omg C.; is important in damping of
GC., L PO mn ping o
Cu; A . ' shorc-period mode; this parame-
: 0( at ) o ter is subject to high-speed aero-
2v, 4.:.._. elastic effects
o M, 3
Cx, a&;— usually not significant
LT [
(&%)
c 9Cs usually neglected; howevar, aero-
o of 28 elastic effects may become signi-
2v, ficant at high speads
3Co “Cmq pitch-damping derivative; this
Cang RYi parameter is significant in the
a zv. .bon'mm m
2 1 4 L
0 1 M, 2
Cxa( _%C.! usually negligible . '
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Syinbol Derivative Typical Variation with Mach No. Remarks
-Cg !
Cas 3G 5§ 1 usually small, except for ‘tailloss
FY) aircraft
Y ——
0 1 M, 2
<Cas i
! c. 3Ca : control -effectiveness derivative
| G =
: | } LJ
', 0 1 M, 2
|
I. LATERAL DERIVATIVES
-1
-c ALY
aC: Up | s AN damping in roll — C., is an
C b important parameter in lateral
» @ W: ~ dynamics
) 1 M 3
- (Cy)
-Cp \ L’y
» ~ —_— parameter in lateral
_Jsb.._. < dymamics; pesitive valaes in-
G ,(_’_..) ~NS~——— crease damping of the Dutch roll
w. “
|
0 M, 1 )
| coually negligible
3 Cr, ’ ..!."_)
i AN ©p,
! [ c, < 4 ssoendsry parsmeter in offect en
Cip Y ' \\)c-\ loteral dynamic metion; infle-
9 N — onces spival wade significantly
L J
° 1 M, 9
-—'S‘b— ., damping io yaw — Ca, s dg-
C. ,(_:_) " /\ sificant in Dutch-rell and spiral
. wedes
0 M, L! I
6l
e e e

TABLE 20 Continned
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TABLE 20 Continued

Symbol Dezivative Typical Variation with Mach No. * Remarks
C;
Cr —_':— asually uegligible
[ 4
()
C:p dihedral effect ——Cu, is im-
Cip 3G, portant in latersl-dynamic-stabil-
Lad ity analyais %
I T
o M, 1 2
Ca 8 weathercock static stability par-
Cyp K.Y ameter; important effects upon
ap lateral dynamics
| T Y
o N, | 2
. -C side-force damping derivative ~—
oC ¢ 'ﬂ Crp contributee to damping of
Crp 23 Dutch roll
s
! -7
o ;
aC special derivative that is signifi-
Cy Y cant at high angles of attack on
3(2‘, hig: 'y swept and delta-type wings
. (reference 18)
Gy % see note above for C:,

aileron eflectiveness — important
factor in establishing mazimwm
rate of roll




TABLE 20 Continned

R T o T S i A v A

Symbol Derivative Typical Variation with Mach No. Remarks
=Ce, adverse-yaw derivative — an im- _
Cas, G portant item in lateral-directional
83. control
r T
0 M, 1 2
Cr; 8C almost always negligible
. a8,
Cis, ususlly has a small but signjfi-
Cis aC, cant effect upon control snd
* 98, ‘ynamic-stability analyses
o, 1 3

rudder effectiveness — important

-Cus
.. r 10 lateral-directionsl control
Co, TR
8.
T T
. usually negligible in dynamic
1)

3Cy CYQ'

aa, ——/\\
r
]

*

Notes:
. L. The subscript o denotes a steady-state reference flight condition.
2, The typical variation with Mach number is adapted from reference 16.
3. Methods of evaluating stability derivatives are given in reference 13.
4. Symbols and notation are given in table 18.

5. See reference 18 for additional discussion of typical variaiions of stability derivatives with

Mach numbers.
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SECTION 5. SIMPLIFICATION OF THE EQUATIONS OF MOTION

The general equations of motion may usually be simplified for many cases of practical interest. Certain terms become
negligibly small or reduce to zero as a result of practical considerations and selection of appropriate reference axes.
The methods used to simplify these equations are outlined in the paragraphs that follow.

g s g pn e
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Equations describing the motion of a rigid body are given in Section 2. In the following pages the real force and :
moment expressions from Section 4 are used to form equations of motion for an aircraft operating in the atmos- |

phere. Vehicle symmetry and the assumption of small disturbances from reference flight conditions are then used
to reduce the equations to simpler forms. The restricted equations of motion are given in nondimensional

form also.

Steady equilibrium flight and linearization based upon steady and maneuvering initial flight conditions are discussed as
special cases.-

GENERAL SIMPLIFICATION OF RIGID-BODY EQUATIONS

Complete equations of motion for a body moving in the atmosphere are quite complex. Consequently, it is of practical
interest to simplify them in order to facilitate analysis of the motion of a body. Vehicle symmetry and restriction of the
motion %o small disturbances from a reference flight condition are used to reduce certain terms to zero and to linearize

the equations.

Initial flight conditions are referred to frequently in subsequent paragraphs. Terms pertaining to these conditions are
defined below, as given in reference 19.
STEADY FLIGHT — Motion with zero rates of change of the linear and angular velocity components, ie.,
fJ:‘}:W?:l.’:Q‘::‘I.{:O.
Steady sideslips, level turns, and helical turns are possible steady flight conditions. Steady pitching flight is a

“quasi-steady” condition because U and W cannot both be zero for an appreciable time if Q is not
equal to zero.

STRAIGHT FLIGHT — Motion with zero angular velocity components, P, Q, and R = 0.
Steady sideslips and dives or climbs without longitudinal acceleration are straight-flight conditions.

SYMMETRIC FLIGHT~ Motion in which the vehicle planc of symmetry remains fixed in space chroughout the

maneuver.

The asymmetric variables P, R, V, ®, and ¥ are all zero in symmetric flight. Some symmetric flight con-
ditions are wings-level dives, climbs, and pullups with no sideslip.

ASYMMETRIC FLIGHT — Motion in which any or all of the above asymmetric variables may have non-zero values.
Sideslips, rolls,and turns are typical asymmetric flight conditions.

The full set of equations for the motion of a rigid body is given below. These equations are “Eulerian” in that they are
referred to axes fixed on the body. Because the coordinate axes rotate with the body, the gravity-vector components
depend upon the orientation of the body with respect to a fixed inertial reference (Earth Axes). Relations are thus
included to express the kinematic angular-velocity component relations in terms of orientation-angle rates of change.




The equations of motion vith reference to general* body axes ((8) and (9}) a:e combined with the real force and
moment components (equations (32) and (33)). The gravity-force components along body axes are then obtained
from the set of equations (34). Angular velocity relati. ns are found in table 16. Collecting and combining these
relations give the following sets of uynamic and kinemsatic equations for the motion of an arbitrary rigid bodv.

X+ Xr—mgsin®=m (U— RV -+ QW)
Y+ Y-;-+mgcos®sin<l>=m(\7—?W)+RU (38)
Z+ Zr+mgcosecos¢:m(w-—QU+PV) J

~

L+ Lr= lslx - .QIXY - iuzx — QR (Iy — Iz) — PQIL;x
— (Q* —R?) Iyy -+ RPlrx

M+ Mr= + Qly — Rlys —Plgy —RP (Iy —Iy) — QRIxx | 39
~ (R? = P?) Ipx + PQlzy )

N + N{l- =+ Rlz —l.,lzx-— {jlyz—- PQ (Ix - Iy) '—Rplyg
- (P —Q) Ly + QRIXZJ

=P+ Qsin®tand+ Rcos dtan ®

é:Qcostb—Raint f (40)

¥ = Qsin®sec® + Rcos®sec®
The moment equations (39) become significantly simpler when consideration is limited to bodies having symmetry
about the XZ-planc. As a consequence of this symmetry, the product-of- inertia terms Iy yand Iyg are zero. The

thrust components Y, Ly, and Ny are zero except for special asymmetric-thrust conditions. The dynamic equa-
tions for a symmetric body are then the following (references 3 end 4):

X+ Xr—mgainazm(ﬁ-—RV+QW)

Y + mgcos@sin® =m (V—PW + EU) ’ 41

Z+ Z:+mgcos@cos®=m (W— QU PV) |

L =PIz — (R + PQ) Ixs — QR (Iy — I)
(42)

) 4

M+ My=OQly— (R*—P*) Iys —RP(Is — Iy)

N =Rl — (P — QR) Ixs — PQ (Ix — Iy)

(The angular-velocity relations are unchanged from (40)).

Equations of motion in the form above may be modified to use direction cosines of the gravity vector instead of the
orientation angles. The functions of the angles ®, ©, and ¥ are replaced by the direction cosine. 4y my, 03 of the
gravity vector from the vehicle body axes. Relaticns betwsen the direction cosines and the orientation angles are listed
below (see page 24).

*The present discassion is given in terms of general body axes. However, general body axes may be interpretod as suy of the sxis systerns
fixed to the vshicle, Le., body axes, stability azes, or principal axes.




f; =cos (mg,X)= —sin®
mg = cos (mg, Y) = sin ®cos ®

(43)

ng = cos (mg,Z) = cos ®cos @

Substitution of the direction cosines into equations (40) and (41) results in an alternate set of equations of motion
for a symmetric body. These equations, which can be found in reference 3, are especially convenient for use with
an analog computer. Equations of motion using the direction cosine form are as follows:

X4 Xr+ gy, =m (U—RV+QW)
Y -+ mg m, =m (V—~PW+ RU) (44)
Z+ Zy+mgny =m (W— QU4 PV)

L=Plx — (R + PQ) Ixs — QR (Iy —I5)

M+ Mr=Qly — (R* — P?) Iz —RP (Ig — Iy) (45)
N=RI, — (P — QR) Ixy — PQ (Ix — Iy)

is =m3R'_n8Q

me =mP— 1, R (46)
ng = 1sQ — myP

Nondimensional forme of the foregoing equations of motion may be obtained by simply dividing through by an ap-
propriate divisor. For the forcc equations (41) and (44) the divisor is the reference dynamnc pressure times the
reference area 1v2_ S . The moment equations (42) and (45) are divided by -ﬁ—-Sb or f.vo gz - The latcer value

is used only with the equation for pitching motion. Further use of non-dimensional equations occurs in subsequent
Sections, after small-disturbance approximations are introduced.

Many problems of aircraft moticn involve only small disturbances from a steady reference flight condition. Thus the
approximations compatible with restriction of the motion to small disturbances allow further simplification of the
symmetric-body equations (40}, (41), and (42).

General notstion for small-disturbance analysis is as follows. Perturbations of velocity and orientation variables are
designated by the lower case symbols for these quantities, i.e., u, v, w, p, q, r, ¢, #, and y. Upper case symbols are used
with a subscript zero to denote the reference values of these variables. Thus U,, W,, Q., 9,, etc. are reference or initial
values for velocity components and orientation angles. Incremental changes in aerodynamic force and moment com.
ponents are denoted hy the pervinent symbol with a prefix A, e.g., AX, AZ, AM, etc.

Expansion of the serodynamic force and moment components for the small-disturbance approximation is discussed in
Section 4 and summarized in table 17.
In addition to the perturbation quantities, the approximations noted below are used in the trigonometric relations used
with the condition of small disturbances.
sin (@, 4 ) == sin @, cos 8 -} cos O, sin §
~siu®, 4 Jcos®,

cos (8, 4 £) = cos @, cos § — sin O, sin §
~ cos @, — Ogin O,

47

Note: These relstions are typical and are applicable to small-disturbance approximations of any regular variable.
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If small-disturbance notation and the above approximation for trig.aometric functions in equations (40) and (42) are
used, the dynamic equations for small-disturbance motion expand to the set of equations below. Products of per
turbation quantities are neglected.

Xo+aX + Xr— mg (sin®, + 0cos @) =m (U, + u— RV, — Ry — Vor
+ Qowo '+' Qow + Wuq)

Y.+ AY 4+ mg (cos ®, — 03in ®,) (sind, + ¢ cos &,) =m (v.,—}-;'-{»-R..U.. ’

+ Ru + Uy — P,W, — Pow — Wp) (48)

Z,+ A2+ Z;+ mglcos ® — 0sin@,) (cosd, — ¢8in $,) =m (\‘V..+v'v

—_ QoUo - Qou —_ qu - povo +P°V + Vop)

L«)+AL=(150+I;’lx-“ko+;+PoQo+Poq+Qop)lxz \
— (QoRo+Qor+Roq) (Ir — 1)

M.+ AM + aMr= (Qo + q) Iy — (R? + 2Ror — P —2Pp) Iys |
— (PR, + Por + Rep) (I — Iy) (49)

N, + aN = (R, + r) Iz — (P, + p — QR, — Qir — Roq) Ixs
- (Po o + Poq+QoP) (Ix—l!) /

Many of the terms in the above equations are zero for initia! conditions of steady, straight, and/or symmetric
flight. Linearization of thess equations for straight, symmetric flight and mancuvering flight is presented in the
following paragraphs.

SIMPLIFICATION OF EQUATIONS OF MOTION FOR STEADY.FLIGHT CONDITIONS

Steady-flight conditions provide the reference values for many analyses of vehicle motion. The terms used to de-
scribe various flight conditions are defined on page 64. The equations of motion are reduced for several steady-

flight conditions in the following paragraphs. These relations for steady flight are used subsequently to eliminate
initiel forces and moments from the equations of motion.

STEADY, STRAIGHT FLIGHT

This is the simplest case of steady flight. All time derivatives are zero and there is no angular velocity of the body about
its center of gravity. Thus, setting all of the time derivatives and the angular-velocity components P, Q, snd K equal to
zero in equations (41) and (42) results in the following equations for steady, straight flight:

X+ Xr— mgsin®@=0

Y+ mgcos ®sind® =0 (50)
24 Zy 4+ mgcosBcoad =0

L=0

M+ Mp=0 (51)
N=0

Note that these equstions are.applicable to the steady sideslip. The velocity components ¥V and W and the bank angle
are not necessarily zero. When the motion is restricted to symmetric flight, the bank angle is sero. The force equations
for steady, straight,symmetric flight are then
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x+ Xg-——mgsinezo
=0 (52)
Z4 Zr+ mgeos® =0 .

T R TR kg . % .

The momerts are again all zero (51),

STEADY TURNS

In the case of steady tuming flight the dotted quantities in equations {41) and (42) are zero, as in the preceding

o R T T At

case.
Also the orientation sarle rates of change Cand & are zero and the rate of turn ¥ is constant. With these

conditions applied to the dynemis and kinemati: equations for rigid-body motions, the relations for steady turning flignt
may be developed. However, in mec~ cases it is convenicnt and practical to ccnsider only small elevation ang.es or

shallow climbing and diving turns.
Applying the above conditions to the anguiar-velncity relations in table 12 results in the following angular-velocity 5
components for a steady turning maneuver. The approximation for small elevation angle (#) is indicated. :

P——¥sin® = —¥§
Q::iirsindtcose =~ ¥ sin & (53)

R:\ilcosi'cosez\i'cos@

For most cases of inerest ¥ may be considered as a small quantity, so that the products of the angular velocity
components P, Q, and . may be neglected. In addition, for coordirsted shallow turns, the side force Y is zero
and the velocity coronents V and W are small. The equations for a steady, coordinated, shallow turn become

(see reference 4)

mgsin«b:m\ierostb (54)
Z+ Zr4mgcos®=—m¥Usind

L=0
N=0

Solution of the second relation of (54) for the rate of tum ¢ results in the following equation: [

.__g_ :
b= Gnd (s6)

STEADY PITCHING FLIGHT

Symmetric flight of an aircrait along & curved flight path with a constant pitching velocity Q results ir & quasi-steady
fight conditicn, The linear veloci / components U and W must necessarily vary with time in this cese. Thus with

the asymmetric velocity components V,P,and R and the bank and yaw angles ® and ¥ all equal to sero, the equations
of motion for a symmetric bedy (41) and (42) reduce to the following:

¢

2

§
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X+ Xr—mgsin8=m(l.]+QW)‘
Y=0

Z+ Zr+ mgeos® =m (W — QU)
L=M+4 Mi=N=0 )

q (57)

P

The above relations may be used to evsluate initial conditions for a smali-disturbance analysis. The values of U, and W,
may be inken as instantaneous values end the variation wiih time as disturbance quantities u and w, respectively. For
reasonable values of pitching velocity the linear accelevstions i and W may be neglected, so that the X and Z relations
above become initial conditions

(X + x’l‘)o‘-mg gin eozleoWo g (58)

(Z + 7n)o -+ mg cos @, = —m QoUo

*

Solutior. of the s:cord equation above provides a relation between the initial pitching velocity Q, and the initial load
factor uz, aloag the reference Z-axis:

o=y (P —cne )= (o)
0 / -]

STEADY ROLLING OR SPINNING FLIGHT

In the preceding examples the steady-flight equations readily reduce to simple forms of the equations of motion. However,
the equations for steady rolls cr spins cannot be simplified without considerabie oversimplification of the physical relation
describing the motion.

The procedure outlined in references 20 and 21 vtilizes only the mon.snt equations to evaluate the perturbed motion
from steady roll and spin, respectively. In such ca:s the steady conditior. then becomes that of moment equilibrium

(L=M+ M;p)=N=0).
LINEARIZATION FOR STEADY, STRAIGHT, SYMMETRIC INITIAL FLIGHT

Simplification of the equations of motion for small disturbences from a reference steady-flight condition results in
the sets of equations (48) and (49). These equations, when combined with the expansion of aerodynamic force and
moment components from table 17, form the lincarized dypamic equations of rigid-body motion.

lu the present case many tems of the equations of motion are zero, and the steady, straight, symmetric flight
equations (52) are used to simplify the equations further.

For the stsady, streight, symmetric initial flight condition the quantities V,, Py, Q,, R, #,, ¥., U Ve, and W,
are all zero** Also, from the steady-flight equations (54), the initial morrents (Lo, M, + My, N,) and side force
(Y,) are zero. The initial equilibrium in the X and Z directions is expressed by the relations

X.+ X, — mgsin®, = 0
and

Z + zr°+n‘8°“eo= 0

. _ —-(Z+ Za)e
M= mg

#° The subscript acro denotas initisl condition.
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The ir'tial velocity components U, and W, are related to the initial velocity V, and angle of attack o, by the
equations below

U=V, cos a

Wo = v° Sin [+ 73

Application of the foregoing conditions ai.d relations to the small-disturbance equations, (48) and (49), reduces
them to the equations below. These are the rigid-body dynamic equations of motion for small disturbances from
steady, straight, symmetric flight. Body axes are used with this form of the equations.

3

AX —mg 0 cos ® — m (|;+qV.,oina.,)

AY 4+ mgy sin8,+mg¢cose.,=m(\;-+rvecosao—1z;vosinao) 3 (60)
AZ — mg 0sin ®,=m (w — q 'V, cos a,)

AL=ply —rlxz |

M= I | 61)
AN=rl—plxy |

The equations containing AX, AZ, and AM are commonly referred to as the symmetric or longitudinal equations of
motion. The equations for AY, AL, and AM are then the asymmetric or lateral equations of motion. In the above equa-
tions the thrust contributions tu the force and moment component increments should be included in AX, AZ, AM, etc.

The expansions of the force and moment component increments for small disturbances are summarized in table 17.
The expansion outlined in the table applies to any orthogonal reference axes fixed to the vehicle; nuwever, once
axes are cstablished, the components and derivatives may not be interchanged from one axis system to another.
The transformation relations necessary to change the derivatives to different reference axes are given in tables
8 and 9.

Within the restriction of small disturbances, the perturbation angular velocities are given by the following relations:
P=¢ q=0,r=y 62)

Linearised equations referred to stability axes are readily obtained from the foregoing set of equations. Stability axes
are oriented with the velocity V, at the initial flight condition (see page 13). Hence U, = V, and W, = 0.
The initial elevation angle of the stability axes is the initia! flight path angle y,. These conditicns are equivalent to
replacing ®, by y, and a, by O in the linearised body-axis equations. It is important to note, however, that all of the
velocity, force, and moment components in the new set of equations are referred to stability axes. The lincarized equatione
of motion referred to stability axes are given below. These equations are restricted to small disturbances from steady,
streight, symmetric flight.

AX — mgfcosy,==m u 1

aY + mgysiny, + mgpcosy,=m (v+rVo) (63)
AZ—mgOsinn:m(\;——qV.)
AL =plx, —rlx, 1
aM = q1s, s (64)
AN::i'l;.-—[')lm.

7o
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(aX, aY,..., AN, ¢,0,¢,u,v,w,;;, q, and r nre-refermdtoﬂbili!ymintbeneeqmﬁom.)

Aerodynamic forces and moments are usually reduced to nondimensional coelicient form. Hence it 'is convenient to
express the foregoing equations of motion in nondimensional form. First the ferce and moment compenent increments,

"AX, AM, etc., are expanded ae indicated in table 17. The resulting equations are theh reduced to acadimonsional
form and taxbulawd in tables 21 and 22. The equations are regrovped into the lmgzwdmal and lateral equations.

The tabular presentation of these equations is takea from reference 3. Coeflicients of the small-disturbance variables are
arrayed so that the desired cquation is obtained by setting the sum of the preducts of the coefficients and appropriate
variables horizontally across each row equal to sero. The appropriaie variable is given at the head of each column. For
example, the force equation along the body X-axis is the following:

Xy dy ,, xJ 'Xq . d) ¢f X8 4

(2-;-— dt)u+Ta/+(-§;—nnao)T—-v-:cm8°+—1.—8 =0
d

Netz that the operator r is included in the coefficient of the variable. Notation used in the nondimensional equations is

summariged in table 18.

TABLE 2]

NONDIMENSIONAL EQUATIONS GF MOTION FOR SMALL DISTURBANCES
FROM STEADY, STRAIGHT, SYMMETRIC FLIGHT

BODY AXES
Disturbance Variable Coollicients
Longitudinal Equations ——
g a [ )
Xq d
Force Equation x_d o ("’T"")ﬁ{ 1 X
Along X-axis r & 2r _#_“9. L
: i
e 4 oss @ d "
Force Zquation ol w_4 * & /- 2
Along Z-axis 2y 2 & ~__v',.d.9. y 2r
VMnmtEqution ’ ’ d _!__ &
Disturbance Varidble Coolicionts
Lateral Eqoations
4 ¢ v [ § &
L 4 Y _ KN
Fore Equation w4 (z,*"““)a ( ""') N Xy
Along Y-axis % dt +-#‘Ql0. +.§_*‘. [ &
Moment Equetion , . d 4 _c . & 4 K
Abow. X-axis '+ b3 = g tln b b
Moment Equation Y | 4 K '_!_._ ®
About Zaxle W+SGw| g tCug e ™ o

Symbols and aetation are given in abls 18 .
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TABLE 2

NONDIMENSIONAL EQUATIONS OF MOTION FOR SMALL DISTURBANCES

FRCM STEADY, STRAIGHT, SYMMETRIC FLIGHT

STABILITY AXES

(SIMPLIFIED FORM)

Disturbance Varisble Coeficients
Longitndinal Equations
o o [ [ ]
2(Co)s
Force Equation , d —(C)e+ Coy Cogs -+ (C) Cos
Along X-axis +2r g * N, & e
, Cu, + (Co)e
Force Equation e L _ay'd
mm 2(C)s +,,% Cqqy 2 5 Ces
+ (Co)otan v,
C, *
Meoment Equation L] d &
About Y-axie 0 +Cur v 3 Ci 3y, & ~Cr Cag
Disturbance Variable Coelicients
Lateral Equations
[ 4 ¢ v [y s
b d
me C"—’fi c" N, & (c'l‘.wb.- — ) % c" CY.
Along Y-axis d 4+ (C)e +(Co)etanye ‘ '
® | ]
b o4 |
Moment Equation s, Cov. & Ceqv. @ ¢ c
Abest X-axis » e & +ou e ‘s, 3,
X g &
® [ ]
S 4 h 4
Mement Equation G N, & & V. &
About Zaxis c., G, G,
+ Coxy $ ~Ca %

Symbels and nstatisn are gives in table 18.
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* Ciy, Cipn Cigy and Cigy west be determined with respect to the stability ance and hane are net the same os in iable 21.
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LINEARIZATION FOR STEADY MANEUVERING FLIGHT

There are certain types of problems in analysis of vehicle motion in which the sssumption of small disturbences from a
steady maneuvering flight condition is the most efficient method of approach. The limitation to a steady, straight,
symmetric initial flight condition is unnecessarily restrictive.

General equations for small-disturbence motions from steady flight ere derived and summarized concisely in ref-
erence 22. These equations are equations of motion for small disturbances from steady turning, pitching, rolling,
or longitudinally accelerating flight. Table 23 gives the general dimensional equations for small-disturbance mo-
tion. The next table (24) summarizes the conditions to be used in the general equations of table 23 for the severai
types of steady initial flight conditions.

These equations readily reduce to those used in special cases treated in the literature, e.g., references 20 and
23. Also, the small-disturbance equations of the preceding Section for steady, straight, symmetric flight may be
obtained from table 23. Stability axes are the reference axes for this case and the notation is defined in table 18.

TABLE 23
GENERAL EQUATIONS OF MOTION FOR SMALL DISTUKBANCES FROM STEADY FLIGHT
- STABILITY AXES
Coalficient of Disturbance Varishle
] v w p q r
%-{-(—;‘!—).:ﬂ‘—‘-h-l. Q. 0 gossv.coed, f( ) & —gossy.sind, f( )&
AY =1 R, LUFU—P. ~gosty.co8d §( )t 0 v'-'[""'-'.
- (5150
-A.! =|-Q. P. Fﬂ gossvy.siad. §( )& F-v'+[;7'+ 0
(£).yo
AL =slofofo| 3 l-0lm | R(n-t)-Pln Hodllio -1t
AM =l o) o] o] R(le—Is)+2PIn, l',-“-.—)- P. (Ix, — Ia)) — 3 R Ixx,
aN =lolofe -1..,!15-1+o.(h,-|.,) P. (v, — Is,) + ReIus, 1.,11;-’-+o.1..,
Nete: ¢ = (p @
0= fqa
*= fré

Symbels snd notation defined on toble 18
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TABLE 24
INITIAL OONDITIONS FOR GENERAL SMALL-DISTURBANCE BEQUATIONS OF MOTION
STABILITY AXES
(Conditions for use with table 23
Initial Value of
Initial Flight Velocity Components aud
Condition Orientation Angles Remacks
Msn::h U.=V=;V.=W.=(-%Y-) =0 Same as preseated on page 70
’ P.=0Q.=R.=0 * {sce equations (63) and (64)).
Ye=Y; =0
Seeady Turnirg Flight —v.V —w 49V _ Steady-turn conditions alee in
U._v..v._w._.(d‘)__o ' o
n=—."¢.h1. "=-‘-.-’.
Qu:’.m"o.h’o v.
L:i,cu-v.uo‘.
Yo = Yo; € = &a;
Standy Rolling Flight U=V V.= .=(%) =0 m'rh-m-&h:‘m-dh
. 2 9
P.=P;Qu=R.=0
Yo = Yo; P == O;
Swady Plaching Flight U.:V.'Vzv—(ﬂ) =0 e or Qu may be wead te specify
' U U A the initial conditions. This is euly
quesi-stendy conditisn.
P.=I.=0:O.=~v‘-(l!-ﬂ7.) * s
Yo=Y, ® =0
Sieedy Longitudinal Ue=Vo; Vo= W. =0 This Sight conditien is ales quael-
Acoslorstien P.=Q.=R=0 stendy, dnse U ¢ 0.
Yo = Yu: € =0
(50). = cometem

Note: @ and & arv erientation sngles of stability aves. Symbele snd notation are defined ou table 18.

* The symbel u in this expression denctes joad facter.
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In addition to the equations of motion given in table 23 there are other speciaiized forms of these equations. The
study of small disturbances from steady pitching flight may be conveniently mede with vebicle body axes for ref-
ereace. Below are the equations for analysis of small-disturbance motios from “steady” pitching flight* as given
in reference 3. Body axes are used and notation is defined in table 18.

.AX — #mg cos 8, = m (u + q V, sin a, + w Q,)
AY 4+ \"mgsino..-i-«pmgoooo.:m(v.+rv.eos¢°—pv.ain¢.)
AZ — O mgsin @ = m (w — q V. cos 2 — u Q)
. . 65)
AL =Ixp — Ixgr + Qor (Iz — Iv) — Qup Ixz
AM:lyé

AN = Ior — Ixgp + Qup (Ix — Ix) + Qur Ixs ' }

Note: These equations mey be developed from (48) and (49).

Uy=V,cosa; Vo =0; W, =V, sin a,

aso P, R, 9, =0
(66)

The steady pitching velocity is given by

S _
Q= Voo (e, — c08 8,)

In the above relation either the initial pitching velocity Q, or the initial load factor n,, may be specified

Aqddbdwofmﬂdiﬂrhmﬁma“dyﬁgheﬂﬁumhdnndyﬁdhqhﬁqnoﬁmbfn
MhndyﬁofdndymhadnbﬂkyduqinhmhhdhMu-enﬂ.mdthqnddhul
md&MﬂMthMuhbdemhmmmwm

ADDITIONAL SPECIALIZED FONMS OF THE EQUATIONS OF MOTION

WmﬂmofWMMWdWhmqﬂcﬂMthom
bas been made to collect them all here. However, soms generally weciul forms of these oquations are summarised in

this Section.

¢ Sou defimisien: of steady fight on page 04
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LARGE DISTURBANCES FROM STEADY, STRAICHT, SYMMETRIC FLIGHT. (References 3 and19)

In the equations of motion presented below, the approximation of small disturbances has been limited to the linear
velocity components U, V, and W. The remaining orientation angles and angular-velocity components are not rest:icted
to small values as in the case of general small-disturbance motion. Many practical problems in aircraft motion may be

analyzed under these conditions.

The initial condition used is steady, straight, symmetric flight; hence V,(8,), P,, Qo R,, and &, are zero. The small,
nondimensional linear velocity disturbances are denoted by v’, 8, and o/, and the reference axes are the vehicle body
axes. These equations are developed from the symmetric rigid-body equations (41) and (42) and put in nondimen-

sional form. Special notation used in these equations is defined in table 18.

(%_%)u'+-§a+(-§-m%)Q+ﬂ'n—a'o

+ ’2‘: a.-% uin8+—%sin8.,=0

(Ed)rs (fboom) P (JomnJuovsar
BN

RATS B _
+3 bty sin ®cos ® =0

-2:-:'""" (—;,‘:——-:T a’+(%‘+°°°ao)0+“'0—m’

v _.‘L__ d H,sin iy b, Ixs d_
C.'x'p'+(clx 4’)?+ Ix Q+(C'x+ Ix &)R

Coy

-Es;';‘!_&.n+(!s.:!x)m—_‘n(r'—m)+%éa,=o
Iy Iy | 1y

1 In d d Iy —1

L. By 4, B2 4 H, cos iy - TN x=%
c.,‘”‘(c.,‘* Is ")P+ ::. Q+(Cl- d‘)k+( Is )PQ

P . T
— 7, R +EI=0
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Note: 1. Engine angular momentum, H,, is included in this set of equations.
Note: 2. Symbols and rotaticn are defined in table 18. ,
Note 3. Reference axes are vehicle body axes.

EQUATIONS OF MOTION ALONG WIND AXES

Generally the dynamic equations of motion along wind axes arc too cumbersome for use in vehicle-motion analysis. The
variation of inertia parameters with orientation angles precludes any extensive exploitation of the simplified aerodynamic
terms along wind axes. The dynamic force equations and kinematic relations are sometimes useful, however, and are
therefore given here (equations (68) and (69)). These are taken from reference 3, but they may be developed di-
rectly from equations (40) and (41). (Symbols and notation are defined in table 18.)

T-—D—mgsiny:mv.'
—TB+ C+ mgsindcosy:==mV (8§ + R — Pa)

=mV () - : (68)
—T(e+is)— L+ mgcoe®cosy =mV (;—- Q+ Pp)
=mV (—0y) J

=0’y + (ysin®+ Wscos®) tany = Wy + ¥siny

.:0, _ .
Y ycw @ ﬂ'.un@ (69)

¥ = (y sin @ + (¥ cos @) sec y

From the second and third equations above, the following relations for the rates of change of angle of attack and of
sideslip angle are obtained.
a=Q—Pg— Y
§=Pa R + s (70)

A practical application of the above equations occurs in the siroplified analysis of imertisl cowpling, eg., that of
reference 24. In this cose it was desired to develop a simplified analysis that Lrovided a quick and simple method for
surveying the dynamics of a rolling aircraft. Problem areas could subsequently Le more thoroughly and rigorously
investigated. The simplified analysis was then made by using the above force equations along wind sxes and the moment
equations along priacipal axes (equation (13)).




SECTION 6. SOLUTION OF THE EQUATIONS OF MOTION

The equations developed and presented in the preceding Sections describe the motion of a particle mass and that of a
rigid body. Solutions of the complete equations are not always possible or may be impractical for the problem under
consideration. Several methods of simplifying these equations are given in Section 5.

Methods for solving diffcrential equations found in many standard mathematics texts may be applied to find solutions
of the equations of motion. Some general methods for solving the equations of motion are outlined in the paragraphs
that follow. Included in this Section is a brief discussion of computer methods and of some approximate solutions. The
approximation formulas are useful for preliminary estimates of dynamic stability characteristics.

ANALYTICAL METHODS

Solution of the simplified equations of motion by analytical methods is possible in many cases. The simplified equations
are generally a system of ordinary linear differential equations having constant coefficients.

Use of the direct method of solution is outlined for the linearized small-disturbance equations. The Laplace transform
method is also outlined and a matrix method noted.

Analytical methods for solution of nonlinear systems of differential equations are not included. References 25 and 26
present analytical methods for obtaining solutions of the motion in nonlinear dynamic systems.

DIRECT METHOD OF SOLUTION

The direct method of solution for a system of ordinary linear differential equations, such as the small-disturbance equa-
tions of motion, is described and illustrated in Chapters 6 and 7 of reference 4. This procedure is reviewed below with

the longitudinal equations of motion as an example.

Equations of motion for awall disturbances are separated into a set of longitudinal equations (symmetric) and a
set of lateral equations. Theae equations are given in nondimensional form in tables 21 and 22. The longitudinal
equetions from table 22 are wsed below to illustrate the direct method of solution.

If the control remains fixed, 3 is sero and the longitudinal equations reduce to a system of simultaneous ordinary homo-
genoous differential equations. These equations then have the dependent variables u’, a’, and 8 as functions of time, the

independent varisble.
The solution for the dependent variablee is then assumecd to be
U - u’, et ‘

o’ wma’ et
§ =0, ‘ (71)

Substituting these relations into the longitudinal equations of table 22 results in the set of equations below.

[2(Co)e 4+ 2nA] wie* + [Co, — (Cu)s] aie* + (Cr) et =0 O
2(CL). n:e‘“ + [CL‘ + (CD)n + 27)! G:,CA( -_ 2YA One“ bad 0 (

[C...'_c_& i%: A] o e+ [C.,‘ ?s,-:x— Ciy A"] gt =0 s
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Note: Cp, and C,,_ are assumed negligible. Steady level symmetric fiight is assumed (y, ~= 0). Notation is given in table
18.

The factor e** is common to alltermsintﬁeaboveeqmtiona and may be divided out.* The result is then a set of lin=ar
simultaneous algebraic equations in the varisbles u’,, a’,, and 8, witk a parameter A to be determined. The condition
upon A required for nonzero values of the dependent variables is that the determinant of coefficients of equations

(72) be zero.** Thus,

[2(Co)o + 2rA] [Co, — (Cr)o] (Cu)o
2(Cu), [Cr, + (Co)o + 27A] — 2rA -0 (73
[ €
0 [c,.., + C"”-'fv_.,‘] [c,.q v A — Ci p]

Expansion of this determinant results ir. the characierisiic squation for the solution. This is 2 fourth-degree polynominal
in the parameter A.

ANM+Be+C+ DA+ E=0 (74)
where:

A= _47-,CIY

B x-27C; (3Cp, + Cy) + 473(_2%10_‘. ¢ C_a)

C =-2C;, (Cp Cr,- Cu Coy) - 2 ? Crp=2€, 2 C,, +47 |Gy EV Ca* TV, c.&)J
. _
D - 2("l‘oa(-zv‘., C“q + v C-é)+ x:Do CLG( Woc-.) M mno’(% C‘g -ml‘ocpc( %C‘q)+ 4TCDoC-a

The roots of this equation are the values of A corresponiding to the modes of motion.

The roots of (74) may be real or complex. The complex roots necessarily occur ia conjugate pairs and denote an
oscillating mode of motion. Each real root corresponds to & pure convergence or divergence without any oscilla-
tion*** Convergence or divergence of cach mode of motion is established by the sign of the real root or the real
peart of the oom;xlex conjugate roote. Four types of motion are possible, as illustrated in figure 24, for the funmc-
tion 0=~ 6,¢ :

*The solution et == 0 is trivial.

*¥Note that the solution for any of the varisbles in equation (72).  would have the determinant in the numerator equal 10 sero. Thus for
s variable to have & nonzero value the denominator determinent must be 3c79. The resulting indeterminate form may then have nonzero
values. Also it should be noted that the general solution of the loagitudivel equaticns involves a {orcing functivn such 3 & control pulse,
00 that the right side of equation (72) is not ail zero.

® v Whenever the characterisiic equation is of an odd degree. it must have a1 leset one real root.




, The bebavior of the dependent variablee u’, o, and 6 may be determined, once the roots of the characteristic
: squation (values of A) ere known. The variation of these quantities with time is then given by equations (71)
for each mode of motion of the system, with additional constant multiplying factors depending upon the input.

fr addition to the time history of each dependent variable, several quantitative parameters that describe the mo-
tion may be determincd from the roots of the characteristic equation. These items are the period and the time to
halve (or double) the initia} amplitude. The cycles to halve (or double) the amplitude of oscillatory motion are
also of interest. Table 25 lists these items for both real and complex conjugate roots of the characteristic
squaticn.

6 =6, oAt
0 ok
0 . 0 .
hY __*, ——-—’
(s) PURE DIVERGENCE (b) PURE CONVERGENCE
A 18§ REAL AND POSITIVE A 18 REAL AND NEGATIVE

ENVELOPR ' ENVELOPE
9'000)\" Booﬂ(h)ml ' 0'—'0@0)\" \\{/_

(o) DIVERGENT OSCILLATION (d) CONVERGENT OSCILLATION

. I8 IMAGINARY WITH A 18 IMAGINARY WITH
POSITIVE KEAL PART K {A) NEGATIVE REAL PART K{A)

¥iGURE 34 TYPES OF MOTION FOR DIFFERENT ROC IS OF THE OEARACTERISTIC EQUATION
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v TABLE 25
QUANTITATIVE CHARACTERISTICS OF MODES OF MOTION

Characteristic of the Motion Real i Complex A
Time to halve or double a;nplitude 0.693 0.693
[A] |R(X)]
Period Not Applicable 2
Wl
Cycles to halve or double amplitude Nct Applicable A
0.110 IR0

LAPLACE. TRANSFORM METHOD OF SOLUTION

Use of the Laplace transformation in the solution of linear differential equations has seversl advantages when compared
with the direct method of colution. This method of solution of the small-disturbance equations of mution is explained
and illustrated in references 4 and 1. There are numercus texts that contain the mathemstical development of the
Laplace transform, such as references 27 and 28. These references also provide additional exampies and tables of
Laplace transforms.
The primary advaniages of using Laplace transiormations to obtain solutions of systems of linear differential equations
are:

1. Initial conditions arz introduced directly into the solution in order to avoid the evaluation of the constants of

integration reanired by direct metheds. '

2. In problems involving several dependent variables the solution for one variable may be obtained indepeadently.
. The literature provides detailed treatment of the Laplace transform method. Examples ard discuseion of this
method applied to vehicle motion analysis are found in references 4 and 11. Included in these references arc

methods of presentation and interpretation of results in terms of both the basic variables and the transformed
variables.

To illustrate the correspondence between the Laplace transform method and the direct method, the loagitudinal
small-disturbance equations from table 22 are transformed beluw. A bar is used over the symbol to denote the
transformed variable. For example,

W(a)m= Lu'lt)]
Applying the Laplace transfurm to the longitudinal equations from table 22 results in the followiag transformed

equations. The derivatives Cp, and Cy, are again aasumed negligible und initial lovel flight is used (Yo == 0).
The control is considered to be fixed so that 5 = 0.
[2(Co)o + 28] W + [Co, — (Ci)a) & + (Ci)o 8 = 2r u’(0)
2(Cu)o v’ 4 [Cy, + (Cplo+ 2r8] @° — 2re § = 2r [+'(0) — 0(0))
< ]
[C-‘*'rcu;?'co s];’+[c..-§-‘;-:a—c.r.']l— ; (75)
Ca =" 0) + Cay 5o 00) — G,y [4(0) + »0(0)]

(Notation in the above equations is definod in table 18.)

* O is the real part of the complex namber A and is related to the modulus or smplitude of the vacter representation of the number in
the complex plane.

() is the imoginary part of the complex number M and is related 1o the azgular velocity of the vecior reprencntrtion of the nuwder in
the complex plane.

R D ST Cae e mbramenas———




Note the similarity beiween these e@aﬁms and those in the preceding Section (equation (72)). The coefficients
of the transformed variables are the same as those obtained with the direct method when Ais replaced by s.

For an undisturbed steady-state condition the terms on the right side of equations (75) are all zero and the trivial
case exists. However, if a disturbance such as a control pulse or a gust io int  uced, a dynamic motion problem
is generated.

Suppose an aircraft in steady level flight encounters a gust. The term a’ (0%)* is then different from zero, and
the solution of equations (75) for the pitch angle may be expressed in determinant forms. Thus,

{2(Cp) o + 28] [Cn, — (Cu)s] 0

oy [2(Cu] [Coo+ (Codot 28] [20]
0 [C"‘« +Coigy ] Coigy
8(s) = (76)
[2((:0)0 + 2"‘] [CDG - (CL)o] [Cb)o]
— [2(Ch)o] [CL. + (CD) + 2"'3] [—‘ 273}
-c. ¥
0 [um,—f-cm.zv ] [Cm,‘-zfv:s-—cx‘.s]

Expansion of the above determinants results in a quotient of two polynominals in the transformed indeperdent variables.
The denominator determinant expands to the characteristic equation of the direct method (see equation (74))..

The solution for the pitch angle 8 as a function of time requires application of the irverse transforraation of ¢(s). Thus,
B(t) = L [6(s)]

In order to simplify the inverse transformstion, it is usually expedient to separate the expansion of equation (72)
into partial fractiors. This procedure then requires finding the roots of the denominator or characteristic equatica.

The zeros (roots) of the densminator of equation (76) have the same significance as the roots of the characteristic
equation (74) in determining the modes of motion as shown in figure 24.

MATRIX METHOD OF SOLUTION

A method of solving the equaticns of motion using matrices is presented in reference 29. This is & procedure more
readily adapted to machine computation methods thar to analytical methoda.

Briefly, the proceduve consists of a stepwise integration of the differential equations with a Maclaurin series expansion
used in each corputetion step to achieve any Jesired degree of eccuracy. This method is a rather specialised technique,
and the reader is referred to the cited reference for the detailed explanation of the method.

COMPUTER METHODE GF SOLUTION

The development of modern machiie-computing eguipmeot has opened the way for many new and varied analyses to
be undertsken. Probleras thst are impractical to solve by lengthy bsnd-computation methods are readily computed by
high-spoed digits! computers. Problomw that involve nonlinear equations may be solved quickly on an analog computer.
The use of machine computation metitods also permits mare variables (degrees of freedom) to be comsidered and
reduces the number of approximations or am-:mptions that must be made in order to facilitate solution of a problem.
Machine compuiation imethods thus provide a large increase in the mmount, scope, and sccuracy of analysis possible in
many problems

It is beyoud the acope f this report to present a complete Jiscourse on machine-computing methods. The para-
graphs that follow provide some general background informaticn and references for detailed troatment of the subjact.

“ ATl of the saitial conditions cach 82 4 (0), w'{0), e, vccwring oa the right side of equations (78) shewd be imterpreted s» the value
a6+ e wlt, :
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DIGITAL COMPUTER

Electronic digital computers have been developed to a very high degree as fast, automatic computing systems. The
digital computer is a device that automatically performs the basic operations of arithmetic. It performs these operations
in a sequence prescribed by the program for a given problem. Since the digital computer functions as a mechanical
desk-type calcalator, it is capable of very precise computation (many significant figures). Any problem that can be set
up for hand computation can, in principle, be programed for an automatic digital computer.

Reference 30 offers a thorough presentation of the principles and features of digital computers and data proc-
essing. The matrix method and the sclution of the characteristic equation in the preceding Sections are examples
of calculations that may readily be programed for a digital computer. Iterative processes and decision-making

routines may be incorporated into a digital program.

The digital computer can perform very complex calculation routines that involve comparison with previously computed
or reference data and can then choose a procedure according to one of several aiternate subroutines. This is accomp!lished
very rapidly and very precisely. The digital computer is used most advantageously in stability and control calculations
for making large numbers of calculations of a given type, such as the responsc to arbitrary control functions or the
dynamic behavier of a flight vehicle with a well-defined automatic control system.

ANALOG COMPUTER

Analog computers are a combination of electrical and mechanical components. These components are selected and
arranged so that the differential equations of the analog system are duzl to® the differential equations for the problem
being studied. Electrical components are used in most analog computers. Reference 4 gives a resume of analog compo-
nents and their basic function. References 30, 31, and 32 are comprehensive texts or handbooks covering the design and
xpplicat\ion of analog computer systems.

Certain features of analog computers are quite different from those of digital computers. The electrical analog system
operates with either the current or the potential in a component circuit representing a variable of the problem being
studied. Thus data are continuous and all operations are simultaneous, while the digital computer must follow a pre-
scribed sequence of operations (program) on distinct pieces of data. The accuracy of an anslog computer depends upon
the precision and quality of its components. Analog computers are generally less accurate than digital computers.

The analog computer has been used extensively in airplane stability and control analysis. It is readily adapted to solving
the equations of motion when nonlinear characteristics must be included.

A very useful application of analog computers is the-flight simulator, since it can calculate in real time. This device
extends the anaiog simulation to include duplication of the cockpit, controls, and flight instruments. Simulators have
been built ior many different types of aircraft and used for flight research and for familiarizsation and training of pilots
and Right crews.

APPROXIMATE SOLUTIONS

Frequently approximate solutions of the equations of motion are useful. Preliminary estimates and quick evaluation
of flying qualities often require drastic simplifications of an analysis. The paragraphs that follow present some useful
approximate solutions of the equations of vehicle motion.

*Of the same form as.
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APPROXIMATE FORMULAS FOR SMALL-DISTURBANCE MOTION

Relations resulting from approximate solutions of the equations of motion are listed in table 26. These formulas
are developed from the small-disturbance equations of motion along stability axes in table 22. Approximate quan-
titative values for the characteristics of the normal modes of motion are provided by these relations. The informa-
tion in table 26 is adopted from a similar tabulation in reference 3 and utilizes the notation of table 18.

TABLE 26
APPROXIMATE FORMULAS FOR SMALL-DISTURBANCE MOTION
Period (sec) Damping Ratio Time Constant (sec)
‘ Low Frequency 0.138 V, (fps) C
{Longitudial]  Root Pair or Aol —_—
; or (Phugoid) 0.234 V., (knots) V2 (Cﬁ..
| Symmetric
1 Modes High Frequency C,,. < 2y,
: Root Pair 2x / : T CiCry —2r -Z_VT(C"“ +C'"‘E—')F
§ (Short-Period —Cy — C"‘q 2V, C., o —-—__——E_- _
Mode) \/ ¢ 2J 2:C,, (270.., ~ G, Cn, -2-‘,—)
- Smla{l:(:eal (g‘r'((:;:’clé — CJ(?C..C" :
(Spiral Mode) hinTmg e T g e
Large Real . G
Lateral Root — —_— - ‘—.i—-—
; Asymmetric | Subsidence) !
' Modes proimemest—— o C
! Root Pair 2x _____S‘_'_z______ —C,, % e e
2 (Dutch Roll) Co 4+ Sxn i L _
. ng C'z 9 C C C'XZ C]z c'ﬁ
ag G, + —G.
(this {s a relatively poor approximation)

Notation is deﬁnet‘i in table 18.

-tability axes are the axes of reference.

Jamping ratio is the ralio of damping to critical damping,.

APPROXIMATE FORMULAS FOR RESPONSE TO CONTROL INPUT

Approximate solutions for the response to control input and for maximum accelerations are useful for preliminary esti-
mation and checking of vehicle mation. Several items are included below that provide estimates of response to centrol
deflection, maximum acceleration, and roll rates. Notation for the relations in this Section is given in table 18.

1. LOAD FACTOR DUE TO CONTROL DEFLECTION

In horizontal symmetric steady flight the derivative of normal acceleration (load factor) with .respect to control deflec-
tion is given approximately by

dn V. Gl -GG

ds 4 CZ,, Cmq 2'-‘— - Cm' (Cl,‘ __26_ + 2r)

L] o

(77)
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2. MAXIMUM ROLL VELOCITY

The maximum-rolling-velocity approximation is obtained from the linearized equation for moments about the X-axis,
which is solved for the steady-state, single-degree-of-freedom case. The approximate equation for maximum steady

rolling velocity is then

Pb Cis, C
2vy) T -

ok,

3. MAXIMUM ANGULAR ACCELERATION

(78)

Maximum angular accelerations resulting from control actuation are sometimes needed in aircraft design work. A simple
relation for maximum angular acceleration is given below.

First it is assumed that the applied moment coefficient is represented by the function illustrated in the sketch below.

A single-degree-of-freedom approximation may be used; however, static stability is neglected in the case of yawing and
pitching motion. Under these conditions the maximum angular acceleration occurs at t == t, and is given for the rolling

case by the equation

N Clu Cl' s
Puax = C]’tl [e C'X -1

Similarly, the equations for maximum pitching and yawing accelerations are

¥

. C"o c"' t
. ‘qmn + - —qu t, [ e C|‘. —1 ]

'- - C-, C-,. G
Taax == Gt [c Cy, — 1]

TIME, t (seo)
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SECTION 7. SPECQIAL PROBLEMS

INSTRUMENT READINGS

In the analysis and the automatic control of vehicle motion it is frequently desirable — or even necessary — to utilize
several types of instrumentation. Instruments may be used to indicate the attitude of a vehicle or to measure volocity

and acceleration components.

The following Sections present relations and equations that are useful in the resolution and interpretation of instrument

readings. These relations are adapted from references 9 and 19.

ATTITUDE-MEASURING INSTRUMENT READINGS

Vehicle attitude is usually determined from a system of gyro instruments. The rotation angles of the instrument about
the inner and outer gimbal axes are related to the vehicle orientation angles ¥, ©, and ®. The conventional free

vertical and directional gyro system is shown in figure 25.

Gp

VERTICAL GYRO X DIRECTIONAL
INNER GIMBAL GYRO OUTER
o GIMBAL

) - VERTICAL GYRO
- OUTER GIMB AL

™~ .
o N

VERTICAL GYRO yA

DIRECTIONAL GYRO

FIGURE 25 CONVENTIONAL FREE VERTICAL AND DIRECTIONAL GYRO SYSTEMS

DIRECTIONAL GYRO
SPIN AXI8

X

~

K DIRECTIONAL
GYRO INNER
/ GIMBAL

%

YA

VERTICAL GYRO / x \ Y
SPIN AXI8 Gp,

From the above figure and the relations for the orientation of vehicle body axes, figure 19 and table 11, tie gyro

equations below are developed.
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Vertical Gyro

Gy, == sin™! (cos ¢ sin O + sin ¢ cos P cos B)

Gv — tan-! sin ® cos O (82)
Vo " cos ¢ cos & cos O — sin ¢ sin O
Directional Gyro
Gy, = sin™ [cos ¢ (cos W cos @ sin © + sin W sin ®) + sin ¢; cos ¥ cos o]
G o sin W cos ® — sin ®sin O cos ¥ (83)
p, == lan cos ¢ cos O cos ¥ — sin ¢ (sin ¥ sin ® + cos W cos®sin O

where
Gy, Gp, are rotation angles about the inncr gimbal axes of the vertical and directional gyros, respectively.
Gy, Go, are the rotation angles about the outer gimbal axes of the vertical and directional gyros, respectively.

« is the angle between the outer gimbal axis of the vertical gyro and the vehicle X-axis (this is also the
‘ angle between the vehicle Z-axis and the directional gyro outer gimbal axis). The subscript I denotes
reference to instrument axes.

Y, 0,P are the orientation angles of the vehicle body axes as defined on page 11.

The gyro systems shown in figure 25 and analyzed in equations (82) and (83) are for the most simple form of free
gyro. More complex attitude- and direction-sensing instrumentation is used in many advanced vehicles. The output
indicaticns of gyro-instrumented stable platforms in terms of vehicle attitude are derived in reference 33. The
attitude output eignals of other fire-control and navigational devices are discussed in references 34, 35, and 36.

VELOCITY-MEASURING INSTRUMENT READINGS

Velocity components are generally measured by instruments that are not located at the vehicle center of gravity. In
addition, the orientation of these instruments may not coincide with the vehicle-orientation reference axes (body axes).
Thus, even after instrument e.rors and position errors (sidewash, upwash, etc.) are accounted for, the velocity com-
ponents of the vehicle center of gravity are not given directly by these instruments.

A general set of instrument axes may be used having its origin located by a vector r from the vehicle center of gravity.
These axes may be oriented with respect to the vehicle body axes system by the angles ¥;, 0, and ¢, as indicated in
figure 26. ‘

The velocity vector on instrument axes is given by the equation
V1 b v 'f‘ N X r (84)

_In this equation the separate vectors are given by the relations

V, =Uri; + Vi ji + Wik, (Instrument vcldcity)

V = Ui+ Vj -+ Wk { Vehicle linear velocity)
@ = Pi-+4 Qj 4 Rk { Yehicle angular velocity) (85)
r =xi-+yj+ik { Instrument location vector)
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The general notation in these equations is defined on page 9, and the subscript 1 denotes instrnnent axes.

Expressing equation (84) in Cartesian form and applying the trensformation matrix for Case I of table 2 to de-
scribe the orientatior of the instrument axes results in the equations below for the velocity components along
instrument axes. ' ]
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1 & #H

FIGURF. 26 GENRRAL INBTRUMENT AXES

Uy = (U — Ry + Qz) cos#; cos y; + (V — Pz + Rx) con 6, sin y; — (W — Qx 4 Py) sin &

Vi= (U — Ry + Qs) (coe y; sin ¢; sin §; — sin y, cos ¢) ‘

+ (V — Pz 4 Rx) (sin ¢ sin ¢ sina §; + cos y; cos ¢;) ;

(W — Qx + Py) sin ¢ cos 8y ©86)

W; = (U -~ Ry + Qz) (cos y; cos ¢ sin 6; + sin y, sin ¢;) g

<+ (V —~ Pz 4 Rx) (sin ¢y cos * sir §; — cos ¢, sin ¢;)

+ (W — Qx 4 Py) cos 6y cos i

The foregoing equations can be greatly simplified for most cases of interest. Usually ¢: and ¢:1 will be zero and

certain of the distances X, y, aud z may be negligible. Also the limitation to small disturbances permits the following |
simplification of the expressions for the angies of attack and sideslip, respectively.




o ()~

AYRA
B1 = tan (fU—l)wUlf

ACCELERATION-MEASURING INSTRUMENT READINGS

The acceleration-measuring instruments are located and oriented in much the same way as the velocity instruments,
i.e., displaced from the vehicle center of gravity. Therefore the instrument accelerations must be related to the vchicle
center-of-gravity acceleration.

Linear accelerations along instrument axes are given by the equation
\.Vx-V"+~.XV+5><t+uX(~Xr) (88)
The vectors, in addition to those given in equation (85), are expressed below.
‘.I'; - I}, i+ ' i+ & k; (Instrument acceleration) !
V= l’Ji + \‘/'j + ﬁ'k (Vehicle linear acceleration)
i w Pf + éj +Rk  (Vehicle angular acceleration)

(89)

Acceleration components along insirument axes are expressed below. These equations are sbtained from equation
(88) and Case 1 of table 2. The general notation is defined on page 9, and the subscript 1 denotes quantities
referred to instrument axes.

Uy om [0 — RV + QW — x (R + Q") +y (PQ — R) + 2 (RP + Q)] cos 4y coa
4 [V—PW+RU+x(PQ+R) —y P*4-R?) + 2 (QR—P)] cos by sin vy
—[W—QUAPV4x(PR—Q) +y (QR+F) —2(Q*+P)jsine,

Vi [0 — RV + QW — x (R* 4+ Q) 4y (PQ — R) + 1 (RP 4 Q)] {c0s g1 sin ¢ sin &, — sin ¢ c08 $1)
+[V—PW+RU+x(PQ+R) —y (P +K) + 1 (QR — P)7 (sin g sin ¢y sin & + cosjrooeg,) »  (90)
+W—QU4PV+x(PR—Q) +y (QR+ T —5(Q"+P*)] sinycon by

W, = [0 — RV 4 QW — x (R4 Q) + y (PQ — ) + 5 (RP + Q) (cos g cos by sin 6; -+ sin th sin 41)
4 [V— PW +RU + x (PQ + R) —y (P* + R?) + 1 (QR — P)] (sin 1 c0s ¢x sin 8; — cos r sin 1)
4IW—QU+PV+x(PR—Q) +y (QR+P) — 5 (Q* + P')] costh cos g

Tbenboverclniomcanbesimpliﬁedinmouimunees,uwuthecanwithdnpmﬁomvdmhyoompmtoquuiou
There are, however, additional factors to be considered in acceleration-measuring devices. These factors are

1. Effect of gravity force on suspended or pivoted mass (seismic element).
2. The dynamics of the device itoelf; the instrument hus spring and damping forces acting on the suspended mass.

3. maﬂwtofmgnhrwceleruionohheinmmmtmou&ng.vhnapimnd mass is used.*

Detailed analyses of the above items are beyond the scope of the preseat repart. The reader is referred to the
presentations in references 19 and 37 for these details.
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FUEL SLOSH

Fuel slosh within partially filled tanks is known to affect the dynamics of manned aircraft and missiles. Fuel
slosh introduces additional degrees of freedom, cwing to the relative motion of the fuel mass and the airframe.
This Secticn of the report is concerned with the effects of fuel slosh on the rigid-body modes of vehicle motion.
The literature on fuel slosh contains numerous references to the effect of fue! slosh on the flutter problem. The
iatter is not treated here. Furthermore, in some applications, such as flexible boosters for large ballistic missiles

or space vehicles, fuel-slosh, rigid-body, and body-bending effects may all be inseparably coupled. The approach
described in this Section would obviously require exteasions to include the effects of structural flexibility in
such cases.

CONDITIONE UNDER WHICH FUEL SLOSH HAS BEEN FOUND TO BE SIGNIFICANT

The addition of fuel-slosh degrees of freedom to the equations of vehicle motion complicates the analysis, as may
be scen subsequently. As a guide to the nced for this complication, a brief summary is presented in table 27 of
conditions under which fuel-slosn effects have been found to be significant.

TABLE 27

SOME CONDITIONS UNDER WHICH FUEL SLOSH HAS SIGNIFICANT
EFFECTS ON VEHICLE RIGID-BODY MODES OF MOTION

Fucl-Slosh Vehicle
Fuel Mass. Fuel-Tank Fuel-Tank Natural Rigid-Body flode®
Total Mass Location Shape Froquency Affected Remarks Ref
> 025 Forward of Any Approximately | Lateral-directional The mode damping is
Vehicle c.g. equal to { Dutch-Roll) reduced in this case.
rigid-bady 1node | oscillation Unstable roots can 38
appear, leading to
a limit cycle (snaking)
>0.10 Any Large spanwise Not applicsble | Spiral mode, in Spiral divergence
dimension horizontal flight occurs, ae if the vehicle
had negative dihedial. 38
The long-term response to
directional control is
reversed
> 010 Any Large Approximately | Long-period The mode damping is
tongitudinal equa! to {phugoid) reduced in this case 3
dimension rigid-body mode | oscillation, in 9
horizontal flight
>025 Forward of Any Approximately { Yaw or pitch The mode damping
vehicle c.g. equal to oscillation in is reduced
rigid-body mode | low-speed vertical
flight, as {or rocket
take-off
*See page 84,

As is implied in table 27, fuel-slosh coupling with the short-pericd longitudinal mode of rigid-body motion is
usually negligible in horizontal flight. Fuel-slosh effects may be negh cted in studies of this mode. Coupling
exisis, of course, for this mode of motion in vertical flight, as in the take-off phase of many liquid-fueled, '
rocket-powered vehicles.




The steady-state relationship between fuel mass center shift and fuel-tank acceleration for clesed-top rectangular fuel
tanks is given in reference 38, These results show that only slight tank accelerations can produce near-maximum fuei mass
center shifts, in many practical cases. As an example, for a typical height-to-length ratio of 0.08 for & wing fuel tank,
80 percent of the maximum possible fuel mass shift is attained for a lateral acceleration of 0.1 g. with the tank half full.

It is concluded that the coupled motions of the airframe and sloshing fuel masses are generally significant for small
disturbances. For large vehicle disturbances, involving large values of fuel-tank acceleration in a horizontal plane. slosh-
ing fuel tends to act as an off-center fixed mass, without dynamic coupling to the airframe, or with discontinuous coupling.

MOTION OF SLOSHING FUEL

In the analysis of fuel-slosh effects on vehicle flight dynamics, sloshing fuel masses are generally represented as mass-
spring-damper single-degree-of-freedom dynamic elements. The natural frequenci®s of the analog elements correspond
to the lowest or fundamental modes of fuel slosh.

More complex analogs could be constructed to represent higher frequency fuel-slosh modes in addition to the funda-
merital mode. The forces applied to the airframe by the higher freqyuency modes of fuel slosh cre relatively small. As a
general rule, only the fundamental mode is represented in practice.

Available data on the fundamental-mode natural frequencizcs for several tank-shapes are summarized in figure 28.
The date in this figure are in dimensionless form. For convenience, an auxiliary chart is presented as figure 29,
tor the fondamental-mode natural frequencies of open-top -ectangular tanks, in terms of physica! dimensions.

Availeble data on the forces applied to the airframe by sloshing fuel is more limited at present than the corre-
sponding data for natural frequency. For the purpose of this report, the applied-force data are presented in terms
of the “effective” fuel mass. The effective fuel mass m, is defined in relation to the single-degree-of-freedom
analog of figure 27. If the actual fuel tank and the anslog are given the same horizontal and rotational motions,
the effective fuel mass m,, equal to the concentrated mass in the analog, provides the same reactions on the
contairer (acting through the spring and damper} as the reactions on the fuel tank applied by the sloshing fuel.

For reference, open-top rectangular data of figure 30 were developed from the equivalent pendulum concept of
reference 40. Evaluation of the transfer function relating applied force to linear and rotational input tank motions
showed that the effective fuel mass m, is equal to the equivalent pendulum mass of reference 40.

LINEAR FREEDOM ONLY
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