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SECTION 1. INTRODUCTIONI' 17Data and information are presented in this report for use in the analysis of aircraft motion. This report, which

was originally intended to be a part of the USAF Stability and Control Handbook published ;n October 1960, is a
c otocmpilation and condensationh offorthere ncoordinate systems, equatiouts, and general information related to aircraft-

motion analysis. The original form remains essentially unchanged.

The purpose of the Handbook was to provide the data, equations, and relations necessary to analyze the mo-
tions, tho stability and control characteristics, and flying qialities of aircraft in concise, consistent, and readily
usable form. In keeping with this purpose, emphasis is placed on description, definition, and application rather
than on derivation and theoretical development. Problems of unusual nature and unconventional configurations
may require special &enalysis and development of particular equations from the fundamentai theory cited' in the
references.

The basic kinemratic and dynamic relations for particle and rigid-body motion are included. Several convenient

coordinate systens an, Jei-,ed, and coordinate transformation relations are given. Force and moment components

re developed, and a ccmpilat~on of conventional stability derivatives is presented. The rigid-body equations of

motion are simplified for special flight conditions, and some approximate solutions are given. Some material is

presented pertain•ing to ina",nent readings and fuel slosh.

Symbols and nomenclature are listed and defined in the sections to which they apply. Consistency in symbols

and notation is maintained, except in cases where established usage dictates otherwise. A complete list of sym-

bols is not considered to be necessary and is not given.

Waanuscript released by the nuthor June 1964 for publication as an FDL Technical Documentary Report.
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SECTION 2. COORDINATE SYSTEMS AND EQUATIONS OF MOTION

In order to describe the motion of a dynamic system it is necessary to define a suitable coordinate system and formulate
equations for the motion in accordance with the physical laws governing the system.

The diagrams and discussion that follow consider the motion of a particle (point mam) and the more complicated
motion of a rigid body.

PARTICLE MOTION

Coordinate systems and equations that conveniently describe the motion of a poirt mass are presented in the following
pages. Rectangular, spherical, and cylindrical coordinate systems are, presented. Preferred axis orientation and notation
'indicated and used are consistent, insofar as possible, with the reference literature.

RECTANGULAR- COORDINATE SYSTEM (FLAT NONROTATING EARTH)

The familiar Cartesian or rectangular coordinate system has many applications in the analysis of vehicle motion. For
instance, it may be used to describe the flight path (trajectory) of a body with respect to a given starting point on the
earth's surface. A typical case is suggested in the description of the coordinate system below. Generalization to any
specific problem is self-evident and requires no further discussion.

Description of Coordinate System

Origin of rectangular coordinates x, y, z: arbitrary, often a point on the surface of the earth.

Fundamental plane: usually the XY.plane; tangent to the surface of the earth at the origin.

Positive X-axis: arbitrary, often selected along initial heading or direction of motion.

Positive Z-axis: arbitrary, often oriented in sense to denote altitude above the surface of earth or the XY-plane.

Positive rotation in fundamental plane: from X-axis to Y-axis; i.e., right-hand system.

k

Vs

p p

'V

I~BASK VZC TOitS
jt 0(UNIT ViCTOlIu

1IOU11l1 I GENERAL MECTANOULAR-COORDINATIC SYSTlM
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NOTATION

,4 , k orthobormal basswmit) vectors hmg X., Y-, md 7.es, respectivel

OP position vector of point P (rectangular coordinates x, y, a)
x, y, z position Coordinates of P; alo components of OP alms COoEd e aim, i~e., Or= if + + sk

V velocity vector of point P

V., V", V. components of velocity V along the coordinate-arsi directions, i.e., V = VA + Vs + V.k

m mass of particle at point P

(C) denotes differentiation with respect to time

Equations of Motion
Vector form:

F-mdV =mi (1)

dt

Component form:

F. = m n;
F,-- m V,--- myr,=m!,=m' (2)

F. = mV - ;

SPHERICAL-COORDINATE SYSTEM

The analysis of motions within the inertial frame fixed to the center of the earth is meot convwmently treated in
spherical coordinates. This section considers both rotating and nourotating spherical coordinates. In order to distinguish
between these two systems, primedquantities refer to nonrotating coordinat and unprinmd qmwtiies refer to
rotating coordinates. Since it is customary to refer our position and velocity to the earth, the rotating coordinates
are generally used.

Flight-path coordinates are introduced because aerodynamic forcm are frequently considred in the analysis of a
vehicle flight path. Aerodynamic forces are most conveniently related to the velocity of the valide dtrough the air,
which rotates with the earth. Thus the rotating-earth flight-path coordinates noy be weed in the amlysis of nmimile
and supersonic- or hypersonic.vehicle flight paths whenever aerodynamic forces m included.

The basic development of the equations of motion in this Section is given in reference 1.

Description of Coordinate Sysum (regm 2)

Origin of spherical coordinates r, #, 0: aenter of the earth.

Fundamental plae: equatorial plane,

Reference direction In fundamental plane: arMbitrary, e.., Grsumwi Meridia need for lomglsh rofernce

Polar-axis positive direction: toward the North Pole,

Positive rotation in fundamental plane: eotward, Wa, a rig4ht-hmd sytem.

NOTATON

0 sWia of rotating spherical osordinate sydema, am of the ear*

P particle uader co"derstioa

3
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OP position vector of P (spherical coerdiateo r, #, )

r radial distance from origin to P

, angular inclination of P to polar axis

* angular displacement of P from reference meridian plane (efermee ple rotat Oth the earth)

a angular velocity of rotating coordinate system about tkie polar axis

It 1., is orthonormal base (uant) veutors at P aloig spberlcal-cosodiate directisms

V velocity vector of P with respect to rotating coordinates

V magnitude of velocity vector V

V1, V,, V, components of velocity V along the coordinate directions, Le, V = V., + Vo1, + Vol.

e, e Oe, orthonormal base (unit) vectors at P along flight-path coordinates (eis aligd along the velocity vector V; e. and e.
are oriented normal and sidewikr, respectively, to the light path)

flight-path heading - the angle between the meridian plane through P and the light plant determined by the radius

vector OP and velocity vector V. The angle S is measured clockwie from the *.- W ais.

7 flight-path attitude - the angle between the velocity vector V and the local horimz at P

roll angle - the angular displacement of the base vector e. from the flight plane containing OP and V. The anglei
is positive in the sense of a right-hand rotation about eo.

F real force vector applied at P

F., F., F. components of F along spherica-cordinate directions e.L, F = F., + F7.1 + F.I.

F., F,., F, components of F along flight-path-coordinate directions, i.e., F = F.e. + F.e. +F..,

m nmu of particle P

(') dhotes differentiation with respect to time.

Notes: 1. Notationjfor nonrotating spherkal coordinates. is the - as above with the addition of a prime.

2. OP=rl,

&. V=Ve,

The equations of motion for a particle mawe moving in the inertial frame fixed at the center of the earth are given below.

These equations are derived from the basic vector equation for the motion,

F dV' dV.m- d- + (CXV)

It is important to note that V' is the inertial velocity nmeated with reqset to nonrotating coordinates, and that
V is the relstive velocity measured with repect to the rotating-coordinate s.751w.

The equations of motion in nonrotating coordinates may be, obtained by simpdy cokdierig the angular velocity ID to
be zero in the equations for the rotating-coordinate syde& (in which cam V V').

The relation between spherical coordinates and flight-pa coordnates is givw by the following rotation of the base
vectors I, 1# at P. (refer to fure 2).

a. Rotate 16 about I, through angle 90-8 to the fight plane deemined by OP and V-

b. Rotate in the flight plane through an angle I ggck that the bse vector Is , w coincidem with the velocity V.

This bnm vector is then noted as e,.

c. Rotate in roll about e, through an angle V to the final orea Of the Ight-path base vetors
emo,.-.'-

S• ' - ° . . .. . .. I I I I I H
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1. ROTATING-EARTH SPHERICAL COORDINATE, S (REFERENCE 1)

F, =! _ + (V,+or I6)
m r

=Y--r(j)'- r (i+ O)* sin2#

F. _ +V, V. (V,±rOsin#)
m r r-tan # (3)

=r +2i-- r(I+fl)2sin#cos9

Fe+(Vo +2 r 0hin #)ItY + V,
n v= + + r (vtanm

=risin#+24(i+Q)cos#+2i (i+) sin#

2. ROTATING-EARTH FLIGHT-PATH COORDINATES

-F--= [ -- oy-- roUsinf (coysyin 4 + sin -ces~os#)

In r

-2OVsinlsin4] cos,+ [Vhcos -,•-.2 co-y sin 8cos#

-r 0hsinasincoo#--2 aV (cos y cos u - sin y cos 8 sin.)] sin,7

F. =[Vicos roj2singasin #cos# + 20V(sin-tcosgsin #
InI • " ( 4 )

co - cos ) V -
-rsin4co'in~cos] coI

[ -y-- cos V + 2 V nsinasin #

+ r O= sin # (cos y sin "+ sin -y cos A coe 0) sin]

F_, + r O2uin # (cosy cos .3 c- sinv sin )]

Note: The equation for F. (side force) may be solved for the roll angle I such that F.- 0. The equations
then become the equations for motion in coordinates similar to symmetric wind axes. The angle 17 is then
the bank angle (in aircraft terminology) required for flight with zero sideslip.

3. NONROTATING.EARTH SPHERICAL COORDINATES

F, j._ (V"#+ V"r)
In r

F - r(j)2 - r(4')1 sin'#

F= + vr'., v",.

m r r tan (5)
= r# + 2t - •" (I)' sin 4coo

F., V',.V'. V'. V',.
m r rtan#

=r#'uln#+2r*Vcos *+249'sinj

6



4. NONROTATING.EARTP FLIGHT-PATH COORDINATES

In____ r'jrain#

In r~ mS' vs-in (6)
rV,2

•=r,
m

CYLINDRICAL-POLAR COORDINATE SYSTEM

Cylindrical coordinates have limited applications in particle-motion analysis. They are however cowmniendy used
in many problems of planar motion where perturbations perpendicular to the fundamental plane are considered.

The general cylindrical-coordinate system is defined and illustrated in fipure 3. Two-dimemaioeal polar coordi-
nates are a special case of cylindrical coordinates where the z-coordinate is held constat.

Imc*do of Coordinate System

Origin of cylindrical coordinates r, 0, z: arbitrary.

Fundamental plane: the reference plane normal to the polar (Zkxis.

Reference direction in the fundamntal plane: arbitrary.

Polar (Z)axis positive direction and rotation in the fundamin plane: right-hand sydw.

POLAR AXI8IS
Ve 

J6V. 1

Vx

\ / "" I (""NSFURS02 WPLA2N0

IN IUNDAM3NTAL PLANS

IFIOUSS 8 OYLIMDSIOAL-COOO3IDATE WTiU

7



NOTATION

0 origin of esnlassystem

Pdeotesu Widl~eD under consideration.

OP poitio wedt afP (cylindrical coornates r, 0.z)
r rslow disanceof Pfrom polar axis

* ~angular displcoeaet of P about polar axis from reference direction

z displacement of P from the fundamental plane

I., Is, 1. ortbooorsmal base vectors at P along cylinidrical-4coordinate directions

V velocity vecitor of P with respect to coordinate-axis system

V,, Va V. components of velocity V along cylindrical-coordinate directions, iLe., V =VI + Vol. + V.I.

F real force vector applied at P

*F,, Fe. F. components of F along cylindrical-coordinate direction*, iLe., F =Flr + Felt + Fl.I

Tom mass ofpartice P

C) denotes diffrentiation with respect to time
Note: OP =r 1.+ 2 .

For -% particle moving in an inertial frame the equations of motion expressed in cylindrical coordinates are as follows:

-, V20

_= V#+ -E = r 0+ 2 (7)
In r

As was noted previously, the first and second equations above may be used for planar motion (z =constant).

RIGID-BODY MOTION

The coordinate systems and equations generally used in the analysis of the motion of a rigid body are presented
in the Sections that follow. The preceding Sections have coneidered the motion of a point mass in several co-
ordinaite systems where position coordinates, as functions of time, are sufficient to describe the motions. For the
more nearly complete case of rigid-body motion, it is necessary to consider the rotational motion of the body. In
most cases, it is convenient to refer translation and rotation to the body center of gravity. Ilis reference center
is used in the cases that follow, unless specifically noted otherwise. The notation and coordinates used are con-
sistent, insofar an possible, with the reference literature and current usage.

This Section describes various coordinate systems and gives equations of motion for a rigi$4 body moving with
respect to 0a flat, nonrotating reference frame. The origin of each coordinate system is located at the vehicle center
of gravity. These conditions are those modt commonly used in analysis of aircraft motion.

Tile general notation and terminology of established aircraft uamp &Me used in this Section. A basic notation is
established without subscripts. Various specialised axes syuteswa and 0orepndn eqations are denoted by
subscripts added to the basic notation.

Limiting the reference frame to a rectangular, noomroehaig isynesteemdnewmaftaomidutio. of Coriolis-type forces
in the squatines of this Section.

*bi this report tese 6631 ofm~r amavity and osess ofm -us wes 0" -- ulsef 00 peIe ip, I m I w f~iorseosfa.



All axis system in this Section are right-hand and orthogonul.

A general notation for the force, velocity, and inertia terms used in the equations for motion of a rigid body are
given below. These items refer to a rectangular-coordinate system having axes designated by X, Y. and Z,
respectively. The origin of the coordinate system is at the center of gravity Qf the vehicle. The symbols below are used
as listed for vehicle body axes and with subscripts for special ax-is systems.

NOTATION

i, J, k orthonormal bo.te (usityvectors along X, Y, and Z coordinate axes, respectively

F external force vector applied at vehicle center of gravity; includes aerodynamic, thrust, and gravity forces

Fx, FY, Fz external force vector components along coordinate axes, i.e., F = FA + Fvj + Fzk

G external moment vector applied at vehicle center of gravity

G1, Gy, G2 external moment vector components along coordinate qzes, i.e., G = Gxl + I.•rj + Gsk

V total velocity vector of vehicle center of gravity (translation of origin with respect to a remote fixed point)

U, V, W total velocity vector components along coordinate axes, Le., V = Ui + VJ + Wk

' total angular-velocity vector of vehicle about its center of gravity

P, Q, R angular-velocity vector components along coordinate aies, i.e., w = Pi + QJ + Rk (Note: P is the angular velocity of
rotation about the X-axis according to the right-had inle of vector representation for moments and angular velocity.)

Me gravity or weight vector of the vehicle

Ix, IT, Is mass moments of inertia of the body about the X, Y, and Z coordinate a-s, respectively

ITv, lxv. Ir mans products of inertia of the body with reference to the X. Y, and Z coordinate axes, respectively

Subscripts used with the above symbols denote axis systems as follows:

Smhsw* Cot rlisate Axes Sysm
e earth aes

a stabilityaxes

p principal axes

w wind axes

wt windtunnel axes

Various axis systems used frequently in the analysis of vehicle motion are described and sketched in the pages that
follow. All of the coordinate systems presented are right-hand orthogonal systems with the origin located at the vehicle
center of gravity.

Each axis system is defined and illustrated in vehicle notation~and terminology is outlined in reference 3. Special
notation is defined as required and equations of motion are listed for the axis system commonly used in stability
and control analysme

EARTH AXES

Earth axes ai'e used primarily as a reference system for the gravity vector, altitude, horizontal distance, and vehicle
orientation. Fixed earth axes provide a reference for reckoning the flight path, altitde and horizontal distance. Earth
axes moving with the aircraft are sufficient to define the gravity vector and orientatiom of the vehicle. Both fixed an,
moving axes are illustrated ibdow with the preferred sequence of rotation to define tbe orientation angles. (See
reference 4).

Description of Coordinate System

Origin location: arbitrary for fixed earth axes. TIh origin of moving earth axes is usually piaced at the vehicle
center of gravity.

9



Ze-axis. along the gravity vector mg. Thus Z, is positive downward, i.e., toward the center of the earth.

Orientation of the X,-axis: may be fixed arbitrarily. Fixed earth axes often have X, directed toward the North
polar axis. In moving earth axe the X.-axis may be directed along the vehicle's initial azimuth heading.

Y.-axis: oriented to form a right-hand orthogonal axes system.

X, X2

0 REFERENCE
HEADING

HORIZONTAL PLANE /X

x* Y, Z,. MOVING2
EARTH,
AXES .

X Y 2 VEHICLE 
0BODY*

AXES

FIXED EARTH AXES
BlASE VICCTOR8

(NIT VNCTOR11

IPIGURIR 4 RELATIOX(SHIPS 8ETWEE214 MOVING AND FIXED EARTH AXES. AND VEHICLE BODT AXES
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The axes in figure 4 are defined as follows:

X',. Y'", Z' fixed earth axes

X•, Y., Z' moving earth axes parallel to fixed earth axes

X,, Y1, Z, intermediate axes ubed in defining orientation of vehicle

X.,, Y', Z2 intermediate axes

X, Y, Z vehicle body axes

The sequence of rotations defining the orientation angles of the body axes with respect to moving earth axes is as follows:

Rotate moving earth axes X" Y,., Z4 ihroagh azimuth angle 4+ about Z,-axis to intermediate axes X1, Y1, Z1.

Rotate axes XI, Yh, Z, through elevation angle e about YI-axis to intermediate axes X2, Y2 , Z2..

Rotate axes X2, Y2, Z2 thrugh bank angle # about X2-axis to vehicle body axes X, Y, and Z.

With the above rotation sequence the body-exes orientation angles may be defined in the following terms:

,I, Azimuth or yaw angle of body axes from reference direction of earth axes.

o elevation or pitch angle of body X-axis from the horizontal or X. Y,-plane.

* bank or roll angle of the body Y-axis about the body X-axis from the X, Y,.plane.

Note: The angles * and e are not necessari'y the same as the flight-path heading and the Right-path angle, respectively.

BODY AXES

The body axis system is the moot general kind of axis system in which the axes are fixed to a rigid body. The
use of axes fixed to the vehicle insures that the inerija terms ir. the equations of motion are constant and thet
aerodynamic forces and momenta depend only upon the relative-velocity orientation angles a and P. The orienta-
tion of body axis with respect to earth axis is defined in the preceding paraffsph.

The general body axis system is deA'Ined and illustrated below. Special '-dy axis systems, tamely, the stability
axis system and the principal axis system, are given on pages 13 and 14, respectively, of this Section.

Description of Coordinate System

Origin: vehicle center of gravity.

Reference plane: XZ, usally a plane of symmetry.

Positive X-axis: iorwa--d along a reference line fixed to the vehicle.

PositiN," Z-axis: toward bottom of vehicle.

Positive rotation: about Y-axis from Z to X, i.e., right-hand system.

ii



TOTAL V~ELO CITY V

X

T .

BASE VECTORS
(ULT VZCTOR8

PLANE OF SYMMETRY

kz

FIGURE 5 VEHICLE BODY AXES

The angles a and fiin figure 5 definie the orientation of the velocity vector V with respect to the body axes X,Y,
and Z. The angle of~ attack a and the angle of sideslip #i are shown in the preferred yaw-pitch rotation
sequence. (See page 41.)

CornFlete equations of motion referred to body axes are given below. The general notation defined on page 9 is
used. These equations are applicable to any rigid body, since there are no simplifying conditions of symmetry
used.

F. = in(U RV+ QW)1

F-rn (V-PW + R) 10 (8)
F. =m(*-Q U+PV)

G =Pi. -- Q 1xy - kRI xz - Q R (1; - ly -P Q IXZ - (Q2 - 11) 1fZ + P R JXY

C = +QIy I Tz-P1xT + P R(O1-1z) - Q RIxy - (112 -_P2 ) zx-+- Q PIS' (9)
G + iz.Pixz~Iz - Q(IyZ Q l -x)RP- R(P2.-.(. -Q2) -y + RQ Izx j

Notes- 1. in most instances a vehicle has a plane of symmetry, the XZ-plane. The pioduct-of-iner-tia terms Ixy and lyz are amr with this
symme~try, and the oquations may be simplified accordingly.

2. Gyroscopic terms resulting from rotat'~ng aswes in the vehicle are not included.
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STABILITY AXES

Stability axes are specialized body axes (wee preceding paragraph) in which the orientation of the "body axes" is
determined by the initial flight condition. The X.-axis is selected to be coincident with the velocity vector Vo at the
start of the motion. Consequently, the moment-of-inertia and product-of-inertia terms vary for each initial flight condi-
tion. However, they are then constant in the equations of motion.

The use of stability axes is limited to symmetric initial flight conditions and small-disturbanice motions

Description of Coordinate System

Origin: vehicl~e center of gravity.

Reference plane: X.4Z, a plane of symmetry.

Positive X.-axis: coincident with velocity vector at start of motion.

Positive Z.-axis: toward bottom of vehicle.

Positive rotation: about Y.-axis from Z. to X., i~e, right-hand system.
VEHICLE REFERENCE LINE, OR

BODY X-KAWM

T, 
X

BASS VECTORSI
Ja (UNIT VECTORS 1,

PLANS OF SYMPT&T

k,

zig

FiGURE 0 STARILMT AX3S

The initial angle of attack o,. is the anglt ebweom the body X-axis and the steady relative velocity vector V0 at the
stArt of motion.

Equastions of Motion

The equations of motion referred to thne stability axes of a vehicle symmetric about thne XZ-plaa. are given below.
Symbols are as defined on page 9.
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Fz.=m(tU+Q.W.-R.Va)1

Fy. = m (1.+ R.U - P. W) F(10)
F. =m(W, -Q.u.+P.V.)J

G" P. Ix. -R. Ix - Q. R.(Ira Iz120 -P. Q. x;,.

G =4 QITJ. - R. P. (ON .Ix.) - (R.' - P.1) I'{7  j (11)

cgs =+Rk. IN -I.IxY.-P.Q. x.(Ix,1r) + Q. R. I~xz

PRINCIPAL AXES

A special set of body axes (aee preceding paragraph) aligned with the principai axes of the vehicle and therefore called
principal axes is used for certain applicatio ns. The convenience of principal axes results from the fact that all of the
product-of-inertia terms are reduced to zero. 1he equations of motion are thus greatly simplified.

Description of Coordinate System

Origin: vehicle center of gravity.

Reference plane: XAZ,, a plane of symmetry.

Positive Xp-axis: forward along principal axis nearest the direction of motion.

Positive Z4.axis: in plane of symmetry, toward bottom of vehicle, normal to X,.

Positive rotation about Yp.axis: from Zp to X,,, i.e., right-hand system.

The angle c denotes the angle between the principal axis Xj, and the body X-axis. VEIL FSBC

LINE, OR BODY X-AXIS

Yp

B3ASK VECTORS
(UNIT VECTORB) L

FIGURE T PRINCIPAL AX19S
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The equations of motion referred to the principal axes are listed below. Symbols wre defined on page 9.

F1, -m (Up-RVp-+QpWp)

F,, =m(V.-- PW+R,Up) (12)

F., -=m (Wp-Q,U, + PVp)
G. p = P.p Ix, -- Qp RP (Irv -- Iz1

Gyp =QIy,-R.P,(Ip -Ix,) (13)

G., =R , Ip - P, Q, (Ix, - Ir,)

GENERAL WIND AXES

General wind axes wue the vehicle translational velocity as the reference for the axis system. Wind a-m ar thus orieujed
with respect to the flight path of the vehicle, ie., with respect to the relative wind.

The relation between general wind axes and vehicle body axes defines tie angle of attw* a and dhe sidulip angle P.
These angles are convenient independent variables for use in the expression of aerodynamnic force and moment
coefcients
Wind axes are not geuerally used in the analysis of the motion of a rigid body, because, as is t2e case of earth
axes, the moment-of-inertia and product-of-inertia terms in the three rotational equations of motion very with time,
angle of attack, and sideslip angle.

The general wind-axis system is defined and illustrated below. A special case of symmetric wind axes follows
on page 16.

VEuIOLS 3373n330 LOXE. 03
BODY IXrA3=

S'r~~OTA~L •IBLOCITIY

V

kw

aw

SWPzUMAS OWNRAL 112D ANU=

is



Domeiptim of Coordinate Sysm

OrigW: v&d. m of gavky.

Reference p1smm: XjvZtine.

Positive X,.4x: alhu the Velocty vectr V.

Positive Z-axzis: in te vehicle plow of lere XZ and toward the bottom of the vehicle.

Positive rotation about Yw-axis: fram n ,, to X, ie., right-hand system.

The one* a and in figre 8 are shown in the yaw-pitch rotation sequence. lihe orientation relations between
the body axes ad the gnaral wind axes are given in Section 3.

The equstisem of motion of a rigid body referred to general wind axes are identical in form to the equations of mo-
tion rehered to body axes. TWin the equatioms in general wind axes may he obtained from the equations given on
page 12. TMe mmeamt-of-inertir, and product-of-inertia term become very complex in the general wind axes system
and than practically preclude the mae of these axes in the analysis of vehicle motion.

SYMMETRIC WIND AXES

The symmetric cue of the preceding general wind axes may be usefully applied in the analysis of symmetric vehicle
motion, e4g, dive resovery. Symmetric wind axes are obtained from the general wind axes when the sideslip angle p
is zero. Thus the preoeding description and illustration for the general case may be used directly with ft = 0.

The equatioms of motion for the symmetric, unbanked light of a vehicle with a plane of symmetry are given below.

Fx,mU =In6

Fy -- 0I (14)

F2 , = --m Q. U,
0o j

Grw =- 4.1, ~ (15)

C., = 0

WIND-TUNNEL STABILITY AX

Wind-tunnel stability axes are used as a reference system for meamsring and reducing aerodynamic data in wind-tunnel
tests. This set of axes differs from the previous stability axes in that the Z.,t-axis is aligned normal to, and remains
normal to, the relative wind, whereao the general stability axes are body axes determined by the initial flight condition.

Since it is not convenient to wue wind4unnel stability axes in analysis of the motion of a vehicle, the equations of
motion are omited for this case.

Description of Coordinate System

Origin location: in the reference plane of the vehicle at the point corompouding to the vehicle comr of gravity.

RefRence plw: the X1 z.s pIo

Positive Z-axis: in the reerome plane of the vel peipswdicular to do re ve wind V.

Positive Xra•ls: toward the forward pantof the vehicle, akeg the projetion of the relative wind V pou the
voehcfe r e plao

P tosive Yrasis: oriented to fama rabt.aund or•,ogmal mse s••km.
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YIMICLZ lgxFfiRlggNG'r'WMg•t~t
BODY X-AIMB

"-V

a

FIOURN 9 WIIID-"JrNRL STABILITY AXUS

In the above figu the angle of attack - and the sideslip mug0 8 give the o 101atin of the relativ-velocity
vector to the vehicle body axes. Wind-tannel stbility axes se the yaw-piteh rotation sequence (Pag 46).

NONROLLING AXES

The yablm of formulating equatioes of motion for a symmetric roling body my be uumpliied by wing a nonrolling
axis sy,'u. Nosrof1ing axes are a special aot of body axes having the Yazsn always borinmtal and the XZ-plane
always verticaL This axis syote may be aed evea though the body rotates about the Xaxis. It is neemsmay, however,
tha the IWtia parameter and the aerodynamic forces, momen, and derivatives be constim with respew to the
nmmarlg relerence frame. Thus the body muot have rotabokW symmetry about the X-as. Appliecdos of nonrolling
axe to tde motion analyses of aircraft, projectiles, and missiles are given in reference S.
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SECTION 3. COORDINATE -SYSTEM TRANSFORMATIONS

In vehide metion analysis it is frequenly necessary or expedient to transform coordinates, vector components, inertia

Parameters, s ftability derivatives from one coordinate system to another. The following section gives the relations

most frequently used in such transformations.

Equations are used to exprem the transforming relations whenever these relations are simple and not often repeated.
Matrix notation is used in the more complex transformations, and a tabular presentation is given when the forms of a
transformation relation are similar for several cases.

PARTICLE-MOTION TRANSFORMATION S

The transformations between the coordinate systems useful in the analysis of particle motion are given in the pages

that follow. Notation and definitions of terms are consistent with those used in the preceding sections.

RECTANGULAR COORDINATES

Cartesian or rectangular coordinates are perhaps the most commonly used coordinates. The following pages give

relations for translation of the origin and the rotation of rectangular-coordinate systems about the origin. Composite

changes involving translation and rotation of the coordinate axes may be accomplished by successive application of

these two basic transformations.

The equations relating spherical coordinates to rectangular coordinates and the equations relating cylindrical coordinates
to rectangular coordinates are also included in this section.

Symbols and notation are defined when first used or as required.

Translation of the origin in rectangular coordinates is illustrated in the figure below.

TRANSLATED

ZI REFERENCE
S•YSTEM

INITIAL 
|

REFERENCE

9Y3TEMW

z

/~J 00"" *,/
Kb

___/

7~ - - /
X IFIGUIRm 10 TIIANSLATION OF ORIGIN



NOTATION

0 origin of rectangular coordinate system with axem X, Y, and Z

x, y, z position coordinate of point P

x, r, s components of the vector OP

a,, c position coordinates of translated origin 0' in initial coordinate reference system. (These coordinates
are considered as constants.)

( )' denotes coordinates and quantities referred to the translated coordinate system

From figure 10 the relation between coordinates in the initial and in the traslated coordinate system is

1' =xI- a
y'=y--b
21=1 C -

Since there is no rotation of the coordinate axes with a pure translation, the components of a vector at P referred to
the axes X, Y, and Z are identical to the components referred to the axes X', Y', and Z'. Consequently, components of
vectors such as force and moment vectors are unchanged by a translation of the origin. Velocity- and acedleration-vector
components are unchanged also, except when the translated axis system becomes a moving reference system.

Rotation of rectangular-coordinate axes ahout the origin is very often useful and sometimes quite necesary. A general
rotation of an orthogonal-axes system may be accomplished by three successive planar rotations; hence a simple planar
rotation is considered first and then extended to the general case. Also included in this section are the direction-cosine
relations for defining a general rotation of rectangular-coordinate axes. The relations given in the owing pages are
developed in many standard mathematics and engineering texts, such as referencer 6. 7, and & The tabular presentation
of the transformation relations is adapted from reference 9. /

1. PLANAR ROTATION

The rotation given below corresponds to a rotation in the XY-plane about the Z-axis. The subscript I demnotes the
rotated axes and components in the coordinate system that has been rotated through an angle .

T Y

S & 5| 110533M II SOT&TlOR 13 TEEIS -V IVLIMU

1P

Sa"I9



The componet of the vetor OP in the preceding figure are transformed from x, y, and z to xj, yi, and Zi,

respectively, by the following equations:

Xl = x COS + y sin

yl = -x sin4 + y cos 4

Zi =-Z

Themeeqan may conveniently be expressed in matrix form.

[Xcoi sin4 0 [ X
S2-- sin cos4 0 I = [01

z•0 0 1z

Ilhe comonents of any vector in the XY:plane may be transformed by the above relations.

Since the transormtion matrix is orthogonal, the inverse transformation [1]-1 it given by the transpose .of [].

Sine the mumq)(m of a matrix is obtained by interchanging the rows and the columns, in this case the inverse trans-

formationmatrix [(]-'is3efinedas [Cos*' -siii4 0
, 0[,1, , €1 = sin* CO*• 0

0 0 1

y = [#1-l y[
z ZI

Note that this procedure is equivalent to replacing the angle 0' by -- , and interchanging the subscripted and unsub-
scripted components in the first form of the equations.

It is convenient to introduce a tabular presentation for the transformation matrix and its inverse. Table 1 gives

the transformation matrix array with initial position coordinates at the head of each column and the rotated co-

ordinates in front of each row. From this array the transformation md in4erse-transformation equations are written

by using the matrix elements as coefficients of the appropriate vector components in the transforming equations.

TABLE 1.

VECTOR TRANSFORMATION MATRIX

INITIAL AXES TO ROTATED AXES

"COMPONENTS IN INITIAL COORDINATE SYSTEIJ "

X Y z

X, coo ' sin P 0

Y, -sin coo, 0

8o74 0 0 1

Direct transormation equations are obtained by summing horizontally along ech i -,•w.

x1 = (cos #) x + (sin ) y + (0) z

Y,= (-sin #) x+ (cos 0) y+ (0) 3

2, = (0) x+ (0) y + (1)3
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Inverse transformation equations are obtained by summing vertically down each column.

x = (cos) x- + (-sin 0) yl + (0) zi

y = (sin) x1 + (cos j) yi + (0) zt

z = (0) x1 +(0) y, +(G) Z,

2. ZGENERAL ROTATION

The general rotation of a rectangular axes system may be accomplished by successive planar rotations of the type
described in the preceding paragraph. In making a general rotation, however, the sequence of rotation is important.
The basic order of rotation is described and illustrated below. This sequence of rotation and the terminology have
been used extensively in aircraft motion analysis (re~erences 4 and 7).

Z8 Z2 9 i

N -

Y1 T

XT/ & T

n0033i 3 0UNMUAL ROT&TAION ABOUT ORIGQ- OWMUTASIO -AM•L i nPTIOM OP KUAJIIC

21



The tranoformation aiatrices are given in tabular form for the basic sequences and for several other sequences of axis
rotation. These transformations may be applied to position, velocity, force, moment, and acceleration vectors to obtain
their components in the rotated-axes system. Both the direct- and inverse-transformation relations are obtained from
the 11bular presentation as shown in the sample problem.
In the preceding sketch the coordinate axes are designated by capital letters (X, Y, Z) and the position coordinates by

lower case letters (x, y, z). The Greek hymbols #, 0, and #t are used to refer to angular rotation about the X-, Y-,
and Z-axes, respectively. Subscripts refer to the jiarious rotated-axes systems. Thus the subscript 3 denotes the final
axes and coordinates. Similar subscripts are used with the rotation angles to indicate the reference axes for the
particular angle. The basic order of rotatio3n is

1. "Yaw" about Z-axis through the angle €.

2. "Pitch" about Y1-axis through the angle 01.

3. "Roll" about X2-axis through the angle #2.

General transformations for rotation of rectangular-coordinate systems ze tabulated in table 2. Both direct and in-
verse t-unsformations are given, as illustrated in the sample problems on this page. Also included in this table
.re the equatiocs for the instantaneous angular velocities ý, 43, and ý3 about the final coordinate axes in terms

of the orientation eagles and their rates of change.

The firt.t case li,.ed is the most commonly used order of rotation. Cases 1 and 2 may be considered as fundamental
rotationn. 7he remaining cases may be obtained from cyclic permutations of the initial coordinate and angle notation.
It s" 1vb aoted that changing the sequence of rotatioir changes the definition of the orientation angles. Consequently,
arvt •t' , different subscripts are not interchangeable, i.e., generally 101 9/ 41 # *.. Also, the orientation angle
ra .,;' change, i.e., ', 9•, , are not orthogonal.

Use of table 2 is illustrated by the sample problems below. N4

Eimple 1. Direct Transformation

Given: Veocity-vector components Vx, Vy, Vz.

Rotation order: yaw, pitch, roli (0 to 01 to ;, as in Case 1 ot table 2).

Find: Velocity-vector component along Zs-axis (Vz 3 ).

Solution: Write equation for Vv,• by summing terms along the Z3-row of the vector trarnsfrmation inatrix.

V,,. = (cos #2 sin 01 cos• sin , sin 0) Vx

+- (cos 4# sin 01 sin j - Din , coS ,) VT

+ (cos #2 cosB 1) Vz

Example 2. Inverse Transformation

Given: Acceleration vector components ax, , aT3 1 a7 3 along final coordinate axes.

Rotation order: yaw, pitch, roll (#, to 01 to #2, as mn Case I of table 2)

Fird: Acceleration vetor component along X-axis (ax).

Solution: Write equation for ax by summing terms down the x-column of the vector transformation matrix.
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ax -- (cos 01 cos ) ax3

+ (sin 012 sin 01 cos 0 - cos 4.2 sin 0) aY3

+ (cos ._2 sin 01 COs 0 + sin -02 sin 0) az3

A general rotation transformatic- of vector components from one coordinate-axes sy3tem to another may be interpreted
in terms of direction cosines. The direction cosines are defined as the cosines of the angles between each of the final
coordinate axes X3, Y.1, and Z3 and each of the original coordinate axef X, Y, and Z. Thus there are nine angleA
required to describe a general rotation of rectangular-coordinate axer. Direction angles that locate the X3-axis with
respect to the original X-, Y-, and Z-axes are illustrated in the. figure below. Similarly, direction ai~gles are defined
for the Y3- and Zaj-ayes.

z

Z3\

(Z.X3) --o

(X, X3) - e-d

1X3
FIGURI. 18 GENERAL ROTATION ABOUT ORIGIN -DIRE( iON-COSINE DESCRIPTION OF ROTATION

(DIRECTION ANGLES MOR X3 AMI)

The direction-angle notation used is as follows:

(X, X.1) Angle between X- ard X~.axes.

(Y, X.1) Anglc between Y- and X3-axes.

(Z, X3) - Angle between Z- and X3-axes, etc.

The cosines of the direction angles may be arranged as a vector transformation matrix and us&J, exactly as in the
preceding Section, to transform vector components. The ,ector transformation matrix of direction cosines is showii

in table 3. TABLE 3

VECTOR TRANSFORMATION MATRIX OF DIRECTION COSINES

INITIAL VECTOR COMPONENTS

X Y z

. , cos (X, X.) Cos (Y,.X) cos (Z, )

Cos M XA) Cos , 7") Cos (, Z.)
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Relations for the direction cosines in terms of the orientation ngles #, 0, and # my be obtained by equating
corresponding elements of the above matrix and the appropriate matrix of table 2. For ezamye,

cos (Y, 74) = cos 2 sin 01 sin # - sin * cos

for axis-orientation angles deined by the rotation sequence of Case 1 and

cos (Y, Z) =-sin.01
when the orientation angles are defined as in Came 3.

3. RECTANGULAR COORDINATES TO CURVILINEAR COORDINATES

The transformation of rectangular space coodinates to a curvilinear-coordinate system involves a nonlinear co-
ordinate change. The relations used to change from rectangular coordinates to spherical coordinates are given as
equation 16 and those used for the transformation to cylindrical coordinates are given as equatioa 17. In both
cases it can be seen (figures 14 and 15) that the transformation equations are statements of simple trigonometric
relationships.

X, Y. So RECTANOULAR COORDINATMs
r, *L 9 SPHRIUCAL COORUIMATUS

II

VIOuan 14 suCTANGULAR -UEPNiCAL COORUSS ATl

Rlectangular to qpbsical coordinates:

#=tan-

O tan-I y
e (16)

Sphe to rectangular coordinates:

x = r sin * con

yzn: r sin din I
I =- r coo#$

25
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Redtak- to cylindrical coordinits:

z = ta-I LK

U "(17)

Cylindrical to rectanglar coordinates:

x = r cos0

y = r sin9

X = 5

X. Y. Z "MICTANOULAR COORDINATSO

0. 9, Z "CYLEIDMACL cOORDINAT3S4/'

Py

x0

F1GUV•8 KI CTANOULAR- CYthIDRICAL COORDIAT"*

It is imporan to note thst base vectors at each point in the preceding curvilinear-r'oirdiate systems are defined as

S~orthogoul. Consequeutly. at a given point, transformation of 7ector components from r-*tangular to spherical (or

cylindrical) coordinates is a tra-sformation between rectangular axes and corresponds to a rotation of the axes system
at the point. 'Mae appropriate transoanation matrices from table 2 may be need directly to transform vector com-
ponesto frow rectangular to spherical (or cylindrical) coordinates at a point.

For exam*le, at a point the vector

V = Vxi + VJ + Vsk
= vX + vj# + W6

may he changed from rectangular components (V., Vv, V,) to spherical componenta (V., V#., V) by a linear
trausfowmation correspouding to ome of the transformation matrices given in table 2. This method is used in the
following puleaph to transform from spherical to flight-path coordinates.

SPIMMICAL COORDINAIS

The relations used to change from rectangular to spherical coordinates are given in equation 16. As is noted
them, this is a nonlinear trasformation. However, at any point in a space described by spherical coordinates, a
rotation of local base vectors is accomplished by e rotatioe of rectangular axes.

in this Section, Foasentstios of vector transformations is limited to the change from local spherical-coordinate
axes to fliht-path axes. These axes are defined and illustrated in Section 2. This transformation serves to further
illustrate the use of rectangular-coordinate transformations (table 2).
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le rotation of the local base vectors at point P from a apberical-coordinate orientation to flight-path axes is de-
fined in Section 2 on page 5. It is noted that this rotation coarmponds to the roll-pitch-yaw sequence (Case 6 of
table 2) of the rectangular-coordinate trauformations. Thus by identifying quantities of the transformation (Case
6, table 2) with the notation defined for spherical and flight-path coordinates in Section 2 the desired transforna-
tiom mtrix is obtained. The correspondence between terms is given ii table. 4.

TABLE 4

CORRESPONDENCE BETWEEN RECTANGULAR-COORDINATE TRANSFORMATION

AND SPHERICAL - FLIGHT-PATH-COORDINATE TRANSFORMATION

Item in Rectangdla-Coordinate Transformnauion Corresponding item in Spherical - Flight-Path-Coordinate System
(Case 6, Table 2) (Section 2)

SVector G" Vector Components
CompGom Coordinate Directions

Z G.

Transformed Vector Components
Vector YS G. Along Flight-Pad
Components & GI Coordinate Directions

* (904)

Orientation Flight-Path Orientation
Angles __ Angles

A general vetor G may be expressed as follow.:

G = G.1 , + G4• +G.I (spherical coordinates)

G = Goe. + Ge. + G^ (flight-adh coordinates)

Substitution of the above items in the vector transformation matrix of table 2, Cae 6, results in the transformation

shown in table 5.

Note: sin (90-- 8) =coo8 and cos (90-- 8) = sin A

TABLE 5

VECTOR TRANSFORMATION MATRIX

SPHERICAL COORDINATES TO FLGHT-PATH COORDINATES

COMPONENTS ALONG SPHERICAL COORDINATES

G, G.

G+. $m -a -f c" Vc -sim a, -- in'y am

-c"-Y W i -w Isi~n fsin auimla 0 ,7sk.y

sin am - Yes s skiaan o Y
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Bale Wmt) vectors 1. 1#, 1#., ar ligned along spherical-coordinate directions.

Base(mkt)vctnr ., ei., e, are aligne aong the Right path e, isalong the velocity vector of the point P)

DIRECTION TO

NORTH POLAR

AXI3S IN THE

'e~PLANE

nlouns is NOTA72ON OF RAS3 VUCTORB FROM

SPHERICAL TO FLIUT-PATH COOR3DIN4ATES

CYLMINDCAL COORDINATES

Eqnations relating rectangular and cylindrical space coordinate* we given on page 26. This coordinate change is
nonlinear, as is the change to spherical coordinates. Ile discussion concerning rotation of local base vectors for
spheri cal-coordinsate systemse also applies to cylimirica i-coordinate system.. A similar procedure may be used to
obtain the transformation matrix for a rotation of the local base vectors.
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RICII.DODY TRANSFORMAITO

Transformations useful in the analysis of rigid-body motion follow directly from the rotatioc of rectangular-coordinate
axes. The translation of a rigid body may be considered as the motion of a particle conc rated at the center of
gravity of the body, and the foregoing Sections may then be applied. Rotation of a body about its center of mass,
however, introduces additional degrees of freedom that depend upon the inertia characteristics of the body.

The transformation relations useful in the analysis of rigid-body motion are given in this Section. First the general
transformation of vector components and inertia parameters is discussed. Then specialized transformations such
as those used in conventional aircraft-motion analysis are given.

GENERAL AXES TRANSFORMATIONS

The transformations of this Section are limited to rotations of rectangular-coordinate systems. As is noted previously
for spherical and cylindrical coordinates, the rotation of a rectangular axis system about its origin may be utilized
for local orthogonal axis systems even though the origin of this system may be defined with respect to a curvilinear
coordinate system.

Vector components are transformed in the case of rigid-body motion in the same manner as vector components are
transformed for particle motion. Thus the transformation matrices and method given on page 23 ae directly appli-
cable to the rigid-body case.

General transformations of the inertia parnmeter, which are important in rigid-body rotational motion, do not have
the simple form of the vector transformation. This transformation is presented for a general rotation of the
coordinate axes.

The general transformation for moment-of-inertia and product-of-inertia term may be obtained from the vector
transformation matrix and its inver This Uprocedure, given in reference 10, is outlined below.

Rotational notion of a rigid body is expressed by the fundamental relation

£ =([], (108)

where I is the angular momentum vector es is the angular velocity vector. The inertir• isrix [i] i dis ned as

SIx --IXr --I11z'

[I)= L-Ix 2 2 -ITJ--IZZ -- I" is

this matrix Ix, IT, and l are the m oom i of inertia and I. Ix& end Ix anr the mwass prod.
ucts of inertia with reftrence to the X, Y, and Z axe, resjpeti•v.y.

TIe above ,elor equation for rigid-body rotation is iudependet of the coordinale sysbEm *Jeocbd to represent
the vectors. Hene, if the subscript o demota reference to the original and 3 to the trumformes coordinat Sydow,
the equation for rigid-body rotation may be written

(i. ).. ott=[l,] so



Vector tratdsomations from table 2 may then be used to change the vectors Ao and a. from the original to the
new coordiuste system. 'nese transformation relations may be expressed as follows:

Js = [r] to
-, = r]., or-o =(r]-1 ..s

where the vector transformation matrix (r] and its inverse [r] -1 denote a general rotation of axes as given
on page 20.

Combiinng the transfixmed vectors with the body-rotation equation results in the desired transformation relation
for the inertia matrix. 'lkm.

Hence

[13] = [r) [i1o (ri-' (19)

Expansion of this transformation relation for a general rotation defined by three orientation angles results in a

complex expression having a large number of terms. This is a straightforward procedure using matrix multiplication,

but in most cae it is impractical and unnecessary. Body symmetry usually reduces two of the product.of "nertia

terms to zero, and in many cases a simple planar rotatien is sufficient to define the axes rotation. These practic...

considerations simplify the expansion of the inertia transformation relations used later.

In order to illustrate the transformation of a matrix, the foregoing procedure is expanded below for a planar rotation.

This particular case provides a general form that is subsequently useful in the transformation of airplane stability
derivatives.

If [A] and [A] represent the original and the transformed matrices, respectively, the matrix transformation
relation is

[ii =J(ri [AL] (ri-i

where

[A [ a,1  a,. a nd 1 A ay, Sr y ,, 1

If the vector transformation matrix (r] corresponds to a simple rotation about the Y-axis, the above equation

may be written as follows:

[_, aWS a ,, 1 cos , 0 sin , 1
(A] = 0 1 0 a& , ay, 0 1 0

sin 0 0 COS a,, a.a -sint 0 cos$-

Note that the matrix [r] may be obtained from table 2. For example, using the vector transformation matrix for

case 1 of this table, substitution of • 0, Gt = t0 aal 0 = 0 results in the above matrix.

Expansion of the matrix multiplication above gives the iransformed matrix. Thus
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[a.. cos2 0 + a. sin 2 0 [a.. coo 0 - a, sin 1 [(a,. - a,.) sin 0 cos 0
- (a. + a.) sin 0 cos 01 + a.cos 0 - a. sin2 61

(A] - [a., cos 0 - a,, sin O [a..] [a,. sin 0 + a., cos1

[(a.. - a..) sin 0 cos 0 [a. sin 0 + a, cos 0 [a. sin + 0 + acos. 0

L + a.. cos2 0 - a.sin2 0] + (a+. a.) sin 9 cos 0]

The elements of this matrix are readily identified with the elements a=1, a37, a of the transformed matrix (A).
The equations transforming the quantities represented by the matrix elements are giveni below. These relations are
limited, of course, to a simple planar rotation about the Y-axis.

=ax 3 os2 0 + a. sin2 0 - (a., +-- a) sin 0 eos 0

au - a. cos 0 - a, sin 0

a,•= (ax - a.- sin 0 cos 8 + a. cos02 0 - ax sin2 0

ax = a. cos 0 - a,: sin 0

a,- = a. (20)

IT.= ay,. sin 0 + ar- cos 0

1•x - (ax. - a..) sin 0 cos e + ax co62 - a. sin2 0

a= = a. , sin 0 + a., cos 0

= - a, sin2 0 + ý. cos62 0 + (a.. + a,.) sin 0 cos 9

These equations are used in subsequent Sections for the tronsfcrmation of vehicle inertia parameters and stability
derivatives.

VEHICLE TRANSFORMATIONS

Transformations of vectors, inertia parameters, and stability derivatives used in vehicle motion analysis are sum-
marized in this Section. These transformations refer to the vehicle axes systems defined in Section 2 and use
established aircraft notation and terminology.

It is convenient to consider the vehicle transformations in two groups. The first group involves single rotations
about the lateral (Y axis. A change from body aues to stabii•y axes is a single rotation of this type. The second
group comprises cam of general rotation such as a change frot) earth axes to body axes.

The inertia-pammeter and stability-derivative transformations are not given for the second group. The general ro-
tation cases are used principally to define orientation of axes fixed on the vehicle, with respect to the -.arth or
the relative wind. As is noted previously (page 16), the 1-, --. ifmetera become functions of the orientation
angles and the analysis of the motion is then unnecesarily complicated. The transfommstion of the inertia matrix
for a multiple rotation may be developed from the general relationship given by equation 19.

1. SINGLE NOTATION

The pitch rotations used to change from stability or principal axes to body awes, and vice versa, am illustrated in
figure 17. These axes and the notation are defined in Section 2. Both stability axes and principal axes are fixed
to the vehicle and aem therefore simply special 'body' axes. The angles between these various axes systems are
measured an rotations about the Y-.xis.
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rmales are poitive PLANE OF vSMMETRY

as abowa

X, Y, Z: VEEHICLE BODY AXES
91 Ys' FFTAHILITY AX-

XV Y, Z. PRINCIPAL AXES

FIGURE IT BODY - STABILITY - PRINCIPAL AXES ROTATION - PITCH

TABLE 6

VECTOR-TRANSFOBPWA TION MAT RICES
BODY-STABILITY-PRINCIPAL AXES

STABILITY AXES VECTOR COMPONYNT• STABiLITY AXES

VECTOR .

COMPONENTS Y 0 0
BODY AXES [L -,1

i L O a. 0 cOs a.

PRINCIPAL AXES VECTOR CON1N O)NENTS - PRINCIPAL AXES
TO BODY AXES Y. Z. 1
VECTOR - coo_ - - i --4

COMPONENTS Y 0 1 1 0BODY AXES Zi,: ! c

VECTOR, COMPONENTS -STABR! LTY AXESSTABILITY AXES • •

TO PRINCIPAL AXES X. Y t Z.

VECTORX, cow J -inPRI CI TLOXR ... .. .. 1.. .... . .
COMPONENTS Y, 0PRINCIPAL AXES ,si woco

DIRECT TRANSCORMATION Sum hori, malUy along each row.

INDIRECT TRANSFORMATION- Sum vertically dowu each rolu~mn.
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Vector transformation matrices may be obtained directly from those in table 2 by letting #-- =0, 0, = 0, and
, = a,,, e, or ij. These vector transformation matrices are given in table 6. Examples of the use of Iese matrices

may be found on page 20.

Transformation of the inertia matrix for a general ,rotation is discussed on pages 29-31. However, for the vehicle
axis systems used in this Section the XZ-plane is a plane of symmetry* and only rotations about the Y-axis are
considered. These conditions greatly simplify the inertia matrix and its transformation.

The inertia matrices of an aircraft referred to body, stability, and principal axes are given below.

Ix 0 -- Xz!

Body Axes [ ]= 0 (21)
S--lIxz 0 lz

IxM -- !Xzs 1

Stability Axes [Is] 0 I-s (22)
--xZ8 0 17.

F Ixi 0 0 1
Pri-acipd Axes"• (1p] - [ 0 IyI' 0 (23)S0 0 Ize

The transformation relations fisr tie elements of the :.bove viatncec are given in table 7. These equatijoas are ob-
tained by identifying elements of the inertia matrices with the corresponding Adements of the general matrix trans-
forne'ion on pages 30 and 31. The appopriate a.igle substitution may be. dete.,nined from figure 17.

Some additional rekt.ons petinent to inertia-parameter transformations are listed Liow.

1. o-,1-+e

2. tan 2e =-2- x
lz -- 1X

I2 Ixz#
3. tan 2,7i _ -

Stability derivatives are used etenaivedv in the analysis of aircraft motion. They are introduced with the linearizatuon
of the acrodynamnc force aw womntnt rPWi;,-ns. These derivatives may be conveniently arranged in matrix form;
hence it is frequentiy necessary to tran;form them from one ax". system to another. Transformations relating stability
derivatives in terms of body ard slabisty axes are given in this Section. This involves a simp!• rotation of the axes
system about tihe Y-axis and follows directly 'ro'•i the matrix transformstion on page 30.IThe notatcin for stability derivatives is confused in existing literature. It ;s therefore appropriate to reiterate here
the statement on page 129 of reference 4 reminding the reader to exercise extreme care in using the literature tha;
involves stability derivativcs. This is necessary to insure that the definitions of the symbols used are fully understood
and that comparisons and results will be correetly interpreted. (Also wee referetce 2.)

Notation in this report is oonsistent with that used in references 3 and 4. This notation, defined in Section 4, im-
plies differentiati-P of direct forces and momenta with respect to perturbation quantities.

By synmetry about the XZ.plane, Ixy and 47 are zero.
Principal axes are defined by the condition Ixv1 -- lrrITt- = lxp 0
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TABLE 7

INERTIA MATRIX ELEMENT TRANSFORMATIONS

BODY - STABILITY - PBINCIPAL AXES

Angles are positive as shown on Page 3 2

STABILITY TO BODY AXES PRINCIPAL TO BODY AXES
INERTIA

PARAMETERS Coefficient of Element Coefficient of Element
BODY Transiormation Equation Transformation EquatioL
AXES

sinm a cose o n ao cos ao 1 sinl e cos e sin e ose 1

I IzS 1x. 21 0 Izp Ixp 0 0

IT 0 0 0 ITS 0 0 0 IT_

Is Ix, I7, -21... 0 Ix I7p 0 0

Ixz -Ixz. I.z. Ih,-Ix8 0 0 0 Izp-lxp 0

BODY TO STABILITI AXES PRINCIPAL TO STABILITY AXESINERTIA -- ____________________ ___

PARAMETERS Coefficient of Elemcnt Coefficient of Element
STABILITY Transformation Equation Transformation Equation

AXES A- in"ao Cos a, Sill ao cCOS5 1. I tin'tC oe 7ost Sin 71 coS 7 1

Ix8 Iz Ix -2Ixz 0 Izp Ixp 0 0

Its 0 0 0 IT 0 0 0 ]y

I.. Ix Iz 21 0 IXP I-P 0 0

iXz, -Ixz Ixz Ix--z 0 0 0 IXP-IIp 0

BODY TO PRINCIPAL AXES STABILITY TO PRINCIPAL AXES
INERTIA

PARAMETERS Coefficient of Element Coefficient of Element
PR:NCIPAL Transformation Equation Transformation Equation

AXES
sin#e cos' e sin e cos e 1 sin' , cose 1 sin i cost• 1

IXP Iz Ix - .2Ixz 0 hx, Ixs 2Its 0

ITp 0 0 0 Iz 0 0 0 ITS

Izp Ix Iz 2Ixz 0 Ix, I,, --21x 0

0* -Xz lxz Ix--I 0 -IxZs IsZ IZ--Ix. 0

*Ixzp=O

WFf:e equations for inertia parameters by summing across the row.

Example: I.-, Ix Fin' ao + iz cos' ao + 21xz sir ao cos a. + (0) 1

-' Sin'* v + hp cos v + (0) sin a. -os a.+ (0) 1
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The basic stability derivatives may be arranged in the six matrices listed below. With the assumption of vehicle sym-
metry about the XZ-plane, these matricer have been simplified to the form shown. Derivatives of symmetric forces
with respect to asymmetric variab!•s are neglected and certain negligible derivatives are taken to be zero. These
considerations are dL,,ussed further in Section 4.

Matrix Type Matrix Symbol

X. 0 X, ]
Force-Velocity [Fv] 0 0 0 (24)

0ZI 0 ZW

0 0

Force-Rotary [F.,] Y= 0 Y ] (25)
0 4,, 0[ 0 e 0

Force-Control [Fs] -- Y6A 0 Y6, (26)
0 Zae 0

0 I, 01
Moment-Velocity [Gv] = ML 0 M.J (27)

0 N] 0
L• 0 I•

Moment-Rotary [Go] 0 Mq 0 (28)
Np 0 N,

[14" 0 14r]

Moment-Control [G6 1 0 Mae 0 (29)

Nad 0 Nar

As was the case with elements of the inertia matrix, elements of the velocity and rotary matrices may be trans-
formed according to the relations on page 31. The control-derivative matrices, however, require specialized treat-
ment because the control displacements are independent of the stability and body axis systems. A

A procedure similar to that used for transformation of the inertia matrix (page 29) may be used to find the trans-
formation relations for the control-derivative matrices. Consider a vector relation of the form

f- =[BJ8

in which the components of the displacement 8 are independent of the coordinate system used to define the
components of f. Components of the vector f may be transformed from one coordinate system (subscript o)
to another (subscript 3), which has been rotated about the origin. The vector relation above may be expressed as

f.--[Bo]$ or f3=[831&

One of the vector transformation matrices [r] from table 2 may be used ior a general rotation. Thus

f3 =[r] f -[r] [(B] S = [B,] S

The transformation relation for the matrix [B] is then

C[B] [r] [B.]

Exprnsion of this equation for a planar rotation about the Y-wi: rsults in the general form used in tiansforming
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the stability derivatives that involve control variables. If the initial and transformed matrices are denoted by [B]

and [B], respectively, and the transformation matrix by [0], the transformation relation becomes

[B]---(0] [B]

or [ 1  ~ 1  Cos 6 0 -si [ b.;x bx bx 1
[B] = 0 = 1 0 b, b,. b.

9bx b,•, b. -_[sin 0 0 cos 0 b.. b,., b,.,j

Expanding the right side of this equation results in the transformed matrix [B].

[(bxx cos 0 - b.. sin 0) (b1 y cos 0 - b:y sin 6) (bz cos 0 - bz, sin 0) 1
[B] =y b,1  ba,,

_ (b11 sin 0 + bz cos 0) (b, sin 0 + bzy cos 0) (bz sin 0 + bz,. cos 0)

Finally, identifying elements of [B] with the above expansion of [0) [B] gives the equations transforming
the elements of the matrix [B] to the elements of [B]. These equations are

bxx = bxx cos 0 - b. 1 sin 0

bx. -- bx- cos 0 -- b3y sin 0

9 =. = b. cos 0 - bz sin 0

byx= byx;byy = byy; byx = bys (30)

b,. = bxx sin 0 + bzx cos 0

ha, = bxy sin 0 + bz, cos 0

9= b- • sin 0 + b. cos 0

The foregoing equations are used to transform the force-control and moment-control matrices. Special trans-

formations may be devised as required by using the method of the preceding development or that used for the

inertia matrix on page 30.

Stability d&rivative transformations between stability and body axes are tabulated in tables 8 and 9. The angle a,,
is defined in figure 17. A prime (') is used in these tables to designate the derivatives along body axes. In sub-
sequent Sections the prime notation is deleted and the reference axes are as noted (see table 17).

The following example illustrates the use of the stability derivative transformation relations.

Given: Stability derivatives with respect to stability axes.

Find: The derivative of rolling moment with respect to rolling velocity L', referred to. body axes.

Solution: Write equation from table 8 by summing terms along the row of L'V,

L= Nr sin2 aC + l,1 cos 2 a4 _ (L1 + Np) sin ae coo a.
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TABLE 8

STABILITY-DERIVATIVE TRANSFORMATIONS

STABILITY AXES TO BODY AXES

MATRIX MATRIX BODY- COEFFICIENT OF ELEMENT-TRANSFORMATION EQUATIONAXES
TYPE SYMBOL FORM sinsa. cos'ea sin a. cos &. sin a. cos a. 1

X'. Z" X. -X,,-7Z 0 0 0
x-f Z. X. X.-z. 0 0 0

FORCE - WV) Y" 0 0 - 0 0 0 Y,
VELOCITY (F. Y', 0 0' 0 0 0 0

Z'. -X. Z. X.-z& 0 0 0
zx z.. x~.4-z, 0 0 0

0 0 0 -Z. X, 0

FORCE - Y', 0 0 0 --Y Yp 0ROTARY (Fm)
Y', 0 0 0 Y, Y, 0

Z'4 0 0 0 Xq 0

0 0o X,. oea

FORCE - ()Y' 0 0 0 0 0 Yo,CONTROL ZWEe 0 0 0 0 0TY,

z'.0 0 0 y'% Z% 0

L', 0 0 0 -N, L6 0

MOMENT- M'" 0 0 0 -M' M. 0
VELOCITY (Gv) M'. 0 0 0 M. M. 0

N', 0 0 0 L, N, 0

L4 N, L, -L,-N, 0 0 0

MOMENT- L', -N, L, L--N, 0 0 0
ROTARY (GO) M', 0 0 0 0 0 M4N', -L, N, I,-N, 0 0 0

N'7  L N, L,+N, 0 0 0

0 0 0 -Nea L. 0

L'e 0 0 0 -No, Lr 0
MOMENT- (G.) M1% 0 0 0 0 0 M.,
CONTROL

N'.a 0 0 0 L.a No, 0

N' 0 0 0 Lo, No, 0

a. is positive as shown on page 32

Wind-tunneL stability axes are used as reference axes for most wind-tunnel data. It is therefore necessary to trans-

form these data to vehicle stability axes (or body axes) before using them in analysis of the motion of an aircraft.
These axes are defined in Section 2. Ile transformation is a simple pitch rotation about the lateral (Y) axis. The

rotation angle C is the angle between the wind-tunnel-axis (or body-axis) angle of attack a and the stability

axis reference angle ao (reference 12).

Wind-tunnel axes may also be considered as general wind axes. In this cawe the transformation from wind-tunnel
axes to uwud4urtr4 swbily avs is a simple yaw rotation about the Zsxis through an angle *.
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TABLE 9
STABILITY-DERIVATIVE TRANSFORMATIONS

BODY AXES TO STABILITY AXES

MATRIX MATRIX STABILITY- COEFFICIENT OF ELEME WT-TRANSFORMATION EQUATION
AXES

TYPE SYMBOL FORM sin• . sin ftoan bcS.,. sin fto CoO as

X. Z'E. X. X', + Z'. 0 0 0
X, -Z'. X'r Z', - X'. 0 0 0

FORCE- (FV) Y, 0 0 0 0 0 ",
VELOCITY

Z._ -X'X Z. Z, - X. 0 0 0
Z, X'. Z'l -X, -Z 0 0 0

X, 0 0 0 Z'q X'. 0
FORCE - Y, 0 0 0 Y', Y', 0ROTARY (Fm) Y, 0 0 0 -- l Y', 0

S0 0 0 -X', Z'1  0

Xfe 0 0 0 Z'.. X'.e 0

FORCE-- ()Y. 0 0 0 0 0 Y'.
CONTROL Y() 0 0 0 0 0 Y's

Z6. 0 0 0 --X'. Z.e 0

.0 0 0 N', L', 0
MOMENT- (GV) 0 0 0 M' M'. 0
VELOCITY 0 1 0 -M'. M'w 0

N, 0 0 0 -L'. N', 0

N', 1!, L', + N', 0 0 0
-N', L'. N', - L', 0 0 0MOMENT- (G Mq 0 00 0 0 Mq

ROTARY NR --L'A N', N', -L', 0 0 0
N, L', N'r -L', -N', 0 0 0
L. 0 0 0 N'ja L'". 0

Ldr 0 0 0 N'.. L'. 0
MOMENT- (GO) M. 0 0 0 0 0 M'.
CONTROL Nea 0 0 0 --L'. N'.a 0

Nr 0 0 0 --L'. N's, 0

ao is positive as shown on page 3 2
TABLE 10

VECTOR TRANSFORMATION MATRICES
WIND-TUNNEl, AXES TO WIND-TUNNEL STABILITY AXES TO VEHICLE STABILITY AXES

WIND-TUNNEL AXES VECTOR COMPONENTS - WIND-TUNNEL AXES
TO

WIND-TUNNEL STAB.
AXES Xw YZ

VECTOR Xw-r coo i sin # 0
COMPONENTS

WIND-TUNNEL Ywi -sin ' Cog ÷ 0
STABILITY

AXES ZwT 0 0 1
WIND-TUNNEL STAB. VECTOR COMPONENTS -WIND-TUNNEL STAB. AXES

AXES_______
TO

VEHICLE STABILITY AXES X1 , Y,. ZwT

VECTOR XS co, f 0 -- im I
COMPONENTS

VEHICLE Ye 0 1 0
STABILITY

AXES Zm si r :J
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The relations between wind-tunnel axes and vehicle axes (swbihy and body) are illustratid in following figure
Table 10 gives the vector transformation matrices in tabular form.

Xw

VELOCITY

xW

TYe Y5 t

PLANE OF SYMMETRY

X. Y. Z : VEHICLE BODY AXES

X , f . r : STABILITY AXES
Xw. Yf, :wt WIND-TUNNEL STABILITY AXES

Z 5 wt Xw' Yw' Z w I WIND-TUNNEL AXES
(SAME AS GENERAL WIND AXES)

FIGURE 18 ROTATION FROM WOND-TUNNEL TO VOUCLE AXES--YAW-PITCQ SEQUENCE

2. MULTIPLE ROTATION

There are several transformations used in the analysis of vehicle ,motion that involve multiple rotations of an axis
system. Transformations are given in this Section that facilitate the changing of vector components between earth
and body axes and between wind and body axes. The relations between these axis systems define the orientation
of a vehicle with respect to the earth and the relative velocity or flight path.

The axes and notation used are defined in Section 2, and the specific vector transformation matrices are obtained
from the generml cases in table 2.

Only transformations for vector components are included in this Section. As is noted previously, earth and wind
axes are not convenient reference axes for rigid-body motica analysis. This results from the fact that the inertia
parameters become unnecessarily complex functions of time and the orientation angles (see page 16).

Eareh axes we used primarily as a reference for the guavity force and the description of vehicle motion over a
long period of time. The orientation angles between moving eath axes and body axes are defined on page 11 and
are shown in figure 19. The rotation sequence cors ponds to Case' 1 of table 2. Hence the vector transfonmation
matrix is obtained by substitution of € = *, #I = %, and #x =* in the matrix for Case 1. In the angular-velocity
relations As body-axis notation, P, Q, and R, is used instead of a , ,.d 0. respectively.
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HORIZONTAL PLANE xi Xe

ye.

BASE VECTORS
(UNIT VECTORS)

X* Y, Z, MOVING2
EARTH
AXES eI

X Y Zi VEHICLE
BODY
AXES

FIGURE 19 ROTATION FROM 'I&RTB TO BODY AXES-

YAW - PITCH - ROLL SEQUENCE

FIXED EARTH AXES

TABLE 11

VECTOR TRANSFORMATION MATRIX

EARThI TO BODY AXES

COMPONENTS ALONG EARTH AXES

XY. Z.

Xh#o ~ .0 oft ai #s~in -sisin
si500iaecsin wo~iaun

c..9u~m* Wa so~meilk

+.ia aia* -ula Cos osa
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TABLE 12

ANGULAR-VELOCITY RELATIONS

EARTH TO BODY AXES

P =4- 4, sinO 0 i'=Qsintsece+Rcws~uee

Q = cos *+ i*sin 0cose 0=Qos*-R sin#
R = -esin - + 4,co# o P+Qsm ~tane+Rcoestan6

General Wind Axes to Body Axes

General wind axes are oriented with respect to the relative wind. The orientation angles relating general wind
axes to vehicle body axes are therefore convenient variables to use in expressing the aerodynamic characteristics
of a vehiclie. General wind axes are defined in figure 8. The yaw-pitch definition, the preferred 2finition, of angle
of attack a and sideslip angle 9~ is illustrated in figure 20. The pitch-yaw sequence is illustrated in figure 21.
Vector transformation matrices corresponding to these definitions are given in tables 13 and 15, respectively.
The angular-velocity relations are given in tables 14 and 16, respectively.

PLANE OF SYMMETRY VEHICLE BZFERZNCE LIN, OR
BODY X-Alag

a TOTAL VEKLOCITY

,Bin considered positive

in the son** of a If1ott-hand" '~

rdtation about the ZW-axie

BASE AXES

WS

FIGUES 90 DOTATUON PSOM WUD TO OODY AXES T AW - 2C 8UWUUOU
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TABLE 13

VECTOR TRANSFORMATION MATRIX

GENERAL WIND TO BODY AXES

COMPONENTS ALONG WIND AXES
S x. Yý zý

xCO coaCOS p -cos asin ~ -sin a

Y sing PCos P

2 Z sin a coso -sin asinP cos a

TABLE 14

AN(,ULAR-VELOCUTY RELATIONS

GENERAL WIND TO BODY AXES

P s"ina A-=-- R seca Pcsc a

R= -coea 0 = P+R tan a

Nose: The above matrix and equations result from substitution of -- p a,and 0 for ., #, and
reopectivell, in CA4 1 of Table 2

TABLE 15

VECTOR -TRANSFORMATION MATRIX

GENERAL WIND TO BODY AXES

COMPONENTS ALONG WIND AXUS

Xw Yw zw

y 7ss7im co, p -&is 7sin

28 z ow 0 to-
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TAB12 16

ANGULAR--VELOCITY RELATIOM~S

GENERAL WIND TO BODY AXFS

40.

R0 P+ Q a

Note: The above matrix and equations result from substitution of a, -fand 0,
respectively, for 0, #j, and #2, respectively, in Case 4 of table 2.

X

TOTAL VECLOCITY

V

1.~~~~~ .o.de~ .otv ... ' V.H.CLE.ODY
h the e~ ee of a'i~f-haa~ 

X. ' 100,00000000 Ge NE A E D A E

Tw~t. YEW te5-ri

T lUS3 OAINPO EDT OYAE-IO A Q3C
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SECTION 4. REAL FORCES AND MOMENTS*

The preceding Sections contain equations of motion and transformations useful in the analysis of particle and rigid-body
motion. Real force and moment components are indicated in these equations by a general notation for forces and
moments. In the following Section the force and moment components are presented more specifically. The general com-
ponent expreesions are expanded to show contributions of gravity, aerodynamic force, and direct thrust force. Aero-
dynamic force and moment components are then further txpanded for the case of small di.3turbances.

Stability derivatives for airplane-type vehicles are summarized.

GENERAL FORCE AND MOMENT DESCRIPTION

"The particular flight path or motion of a rigid body is the result of the external forces and moments that are applied.
Thus the applied forces and moments may be considered as the "driving functions" to be used with the equations of
motion 4-f the vehicle. Solution of these equailons then provi.1ý the motion or response of the vehicle to the applied
forces and momews. Inversely, the problem may be formulated to find the force and moment input required to
accomplish a specified motion.

The real forces and moments involved in the motion of a body through the atmosphere, in the gravitational field of the
earth, may be separated into contributions of gravity, aerodynamic force, and direct thrust. In the case of particle
motion, moments about the center of mzss are zero, and only the force vectors need to be considered.

Components of the external force and moment vectors are usually resolved along vehicle body axes. Relations trans-
forming these vector components to the body axis system, or any other desired reference axis system, may be obtained
directly or derived from the preceding Section -

Separation of the force and moment vectors into gravity, aerodynamic, and direct thrust contributions is iuidined below.
For illustrative purposes the general force vector F and general morment vector G are resolved into components along
vehicle body axes. Body axes are usually the most convenient reference axes.

The general vectors are resolved into components along the reference axes.

Thus

F =F~i +FJ -i- F.k

G = G•i+ GjGk (31)

Separation of the several components into gravity, aerodynamic, and direct thrust contributions results in the following
equations:

F. =X,+X+XT

F, =Y,+Y+ YT (32)

F. = +Z +-Z} Zr j

G. =L +L + L4

G., =M 5•M+ MT (33)

G. = Ng + N + N•,

where

XV, Yo 4 are compor.ents of gravity force along reference axes

L, Me N6  ami mcmiie compoists aAow refere-e axes due to gravity force. (These are umslly emo.)

"The term -rvJ i reed to desipme umimsW $eown sad mmm Ths the splmmI felt such n ce•ut • fWaV or Cwtob. 'am
are .xcitood. Gravitatimul s e6leasaic [grcw pfesupnve Witem dtha. sad aerodnamic fre. sue euamph of resn IN
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X, Y, Z are components of aerodynamic force along reference axes

L, M, N are moment cemponents about reference axes due to aerodynamic force

XT, YT, Zr are compr.nents of direct thrust force al(,g reference axes

LT, MT, NT rure moment components about reference axes due to direct thrust forze

Note: YT, ii1,, ia PqT are usually zero because of vehicle symmetry.

GRAVITY- FORCE COMPONENTS

The gravitational force upon a vehicle is most naturally given in terms of earth axes. With respect to earth axes
the gravity vector mg is directed along the Z.*-axis (page 10). Components along vehicle body axes are readily
obtained by using the ti-ansformation given in table 11. The gravity-force components are tI-

Xg = -mg sin6 1
Y9 =mg cm 0sin~ 0 (34)

9= mg coeoc J C64

along the vehicle body axes X, Y, and Z, repe-aivelv.

There are no m~oments resulting f rom the gr~zitly f..re %% hr~n the origin ci ncides with the veh icle (enter 3f gravity.
However, ii the origin is displaced from die ve!ý- tA gruviLy, the same transfonnation (table 11) may be applied
to the components of the gravitatiofualirt;'iýn-wt about the origin to obtain Lg9 M.~, and N.

The components of er;itstýonaal force, up,;n .chicle are functions of the vehicle pitch and roll attitudes only.
Heading angle does not affect the cc 1 W-'ui- of the gravity force to body axes.

AERODYN-AMIC FORUS AIND MOMENTS

The contributions of aerodynamic fcrce to the generall force and moment vector components ar-e outlined in this
Section. These components arc referred to vehicle body axes (Section 2, pages 11 and 12) and aircraft terminology
and notation are used. Lift and drag forces are thus introduced and transformned to the body axis system. The
ageneml form for expansion of aerodynamic terms for small distuzrbances is incizided in this Section Ulso.

It is convenient to us,- dimensionless coefficients to describe the behAvior of aerodynamic forces and moments.
T'hese coefficients, defined according to established usage, are -discussed and analyzed in aerodyntamic texts and
in reference 13. The aerodynamic parameters and their derivatives should b4- etaluated from experimental data,
i.e., witid-tunnel1 or flight-tteat date, or estimated from the appropriate data given in reference 13 or a simila:
source. Mach number and lPeyuolds number effects upon aerodynamic parame~ers are assumed to be included.

Induced effects of the propulsive system are assumed to be included in the aerodynamic coefficients, since these
effects ame normally included in complete-madel wind-tunnel data. Direct thrust forces amnd moments are discus'sed
later, on page 54.

Aerodynamic coedicients depend upon the orientation of the relative wind or velocity vector with rejtbse to the body.
The angles of attack a and sideaip # which defne this oriegtation, are thus convenient andepenckent variablles f,:r
expressing the variations of thme aerodynamic cliaracteriatics of a body. These anglos atso datenmine the velority com-

ponents U, V, and W along the vehicle referemaoe axe X. Y. and 7Z, respectively.

The angles of attack and sideslip are shown in figure 22 with the velocity ~icomt~rv alorK the reftrence axs
Both the yaw-pitch rotation (a, P)asnd the pitch-yaw rotation ýZ P) are glvco. however. the ioirmer is the prefired
rotahiou. 7%e rplatiosa for the velocity componcents U1. V, and % folo directly from the transfomiations from
SeneWo ivind aws to vehicle body axes in tables 13. 14. 15. and 16.
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Te usoluties o e teedl aevumic force is the vehicle plase of symeeray is sboswm in figre 23. Lift, t., aa
dra, D, ewe ike hmiliar aerodynmic forces mormi and pamllel, respectively, to V coin , the component of the
total velocity in the vehicle plane of symmetry. Alternatively, ift and drag my be defined as the aerodynamic
force components in the plane of symmetry along 'instantaneous' stability ares, symwetric wind axes, or wind-
tunel stability axes. It should be noted that lift and drag are defined to be positive as illustrated. Thus these
quantities have a negative sn-nse with respect to the usual vehicle axis systems.

The relations for the aerodynamic force components along body axes are included with figure 23. These equations
may be obtained directly from this figure or from the vector transformation from stability axes to body axes
(table 6).

Z L

VIEW SHOWN IN VEHICLE
I \ ,PLANE OF SYMMETRY

TOTAL AER,)DYNAMIC
FORCE IN X-Z PLANE I .- Voos a+L sin a

Y =C
Z -D sin a. L 0o0 a

D D* -X 00c 4- Z 8i1 aC Y

ZAXIE /3 V =L X sin a- Zoos 8a

FIGURE 28 AERODYNAMIC-FORCE RESOLUTION

Aerodynamic forces and moments are usually gi' cn in terms of basic aerodynamic coefficients. These coefficie,•s are
defined by the following relations:

L* = Ct'iS lift force L* = CiqSb rolling moment about X-axis

D = CDqS drag force M = C~qSc pitching montent about Y-axis

C = CcqS cross-wind force N = CaqSb yawing moment about Z-axis

X C wxqS aerodynamic force along X-axis

Y = CTqS aerodynamic force along Y axis

Z =CzqS aerodynamic force along Z-axis

where the quantities in the above expressions are dcfined as follows:

Cz,. CD, C-,Cx, CY, CZ aerodynamic force coefficients V torsi velocity

Cl, C., C. moment coefficients S reference area (usually wing area)

q dynamic pressure b reference lekgth (usually wing span)

c reference length (usually wing M.A.C.)
S uaatmospheric density

The ferce coefficients Cx, Cy, and Cz are expressed in terms of lift, drug, and cross-wind coefficients by the
same equations that relate the forces in figure 23. Thus

* [hplication of the symbol L for lift and rolling moment has persisted thrmouehut the aireraft industry since early times. However, since
coefficients are usually uded, this ambiguity is avoided by tsking L &s vhe subscript in the lift, owAidest sAd I av the uebcript in the

rolling-moment eoeacient.
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C1 = -~ N - COSC cZn -CW*'

C, = CC 1 Cec= Cmd (35)

Cs = -- CLCo0°-Chia a CL = Cx 4 a -- Cscoes

The' moment components, az treated in this Section, are defined with respect to the body axis system and as such may be
used directly. However, it should be noted that moments and moment coefficients may be defined with respect to
stability or wind-tunnel axes and that in these cases the appropriate transformation from Section 3 must be used to
obtain the desired aerodynamic moment components.

A word of caution is in order concerning the transformation of moment coefficients. The reference lengths and a'!s
used in defining the moment coefficients may be different and, if so, this difference must be accounted for in the
transformation of the moment coefficients from one axis system to another. Thus, although the transformation is
appropriate for the vector components, it does not directly transform these components when expressed in coefficient
form. Another important item relative to moment coefficients is the location of the moment reference center. In any
particular case this must be checked to assure that the moment-of-inertia and product-of-iniertia terms on the right side
of the equations of motion, e.g., equation 9 , are consistent with the center of reference for the externdl moments.

The aerodynamic forces and moments are involved functions of many variables. Test data are the best source of
aerodynamic force and moment characteristics; however, in many instances a particular configuration may be in the
preliminary design stage and test data may not yet be available. When it is required to estimate aerodynamic charac-
teristics of a configuration, data and techniques such as those contained in reference 13 should be used.

A summary of the major variables that affect the aerodynamic characteristics of a rigid body or a vehicle is given below.

Velocity, temperature, and altitude: These variables may be considered directly or indirectly as Mach numbers,
Reynolds numbers, and dynamic pressures. Velocity may be resolved into components U, V, and W along the
vehicle reference axes.

Angles of aitack and sideblip: Angle of attack a and angle of sideslip 68 may be usei with the magnitude of the
total velocity V to express the ortLogonal velocity components U, V, and W. It is more convenient to express
variation of force and moment characteristics with these angles as independent variables rather than the
velocity components.

Angular velocity: The angular velocity is usually resolved into components P, Q, and R about the vehicle refetence
axes.

Control-surface deflection: Control surfaces are used primarily to change or balance aerodynamic forces and moments.

Since the above variables are identified with a steady motion, the variation of aerodynamic forces and moments
with time is ansu~ned to be negligible. Asia noted in references 4, 11, and 14, this assumption is reasonable for
most problem in analysis of vehicle motion in the atmosphere. However, aerodynamic forces and moments are the
result of the pressure of the air exerted on the body and this pressure depends upon the flow field about the body.
Because air has mass, the flow field cannot adjust instantaneously to sudden changes in these variables, and
transient conditions exist. In some cases, these transient effects become significant. Analysis of certain unsteady
motions may therefore requirv consideration of the time derivatives of the variables listed above.

Two typical functional-dependeoce relations for the aerodynamic force component along the body X-axis are expressed
below. Similar expressions f Y and Z force components and the aerodynamic moment components L, M and N

could be written:

X--X, (1U, V, W, , ... ,P, Q, R,,Q,R,...,84,8.,8- ia8,, "i .. ,p,M,R,9--.) R } (36)-- X2 (yV ,/, V, 4, P9..., P, Q,RP 1,Q, R, ... ,40, ,, 3., 8o, 8n, •...,% p,M, R, .. •(6

M=MA(jV NUMBER

RaRSTNOLD8 NUMDDi

43



It is apparent that in the pructicadl cae of solving engineering problems much Wm liication of the above functional
relations is required. Fortunatv4y, it is poosible to make certain assumptions that simplify the mathematis considerably,
while still permitting solutions of practical significance. Expansion of the aerodynamic components for small disturbances
is illustrated in subeequent paragraphs, and the simplifications of the equations of motion for practical solutions are
discussed in Section 5.

There are many cases of practical interest in the analysis of aircraft motion in which the disturbance from a steady-flight
condition is small. In these cases it is permissible and convenient to express the aerodynamic force and moment com-
ponents in a Taylor s,- its expansion. This expansion is formed in terms of perturbations from a reference steady-flight
condition. The use of the expansion is limited to problems where the perturbations are small and where the second- and
higher-order derivatives of the variable quantities and the products of the perturbation quantities are therefore negligible.
Thus they may be omitted in the simplified expressions for the aerodynamic force and moment components. Of course,
this type of expansion requires the first derivatives of the aerodynamic force and moment components Aith resp-ct to
the aerodynamic variables that affect these forces and moments. These derivatives, commonly referred to as "stability
derivatives," will be discussed in detail later.

The general procedure for expanding the aerodynamic force and moment relations for small disturbances from steady
flight may be found in many places in the literature, e.g., references 4 and 11 . The notation for small
disturbances from a reference flight condition is as follows. Lower case symbols are used to designate the perturbations
of velocity and orientation variables. Upper case symbols with subscript zero are used to denote the reference values
of these quantities. For example, U = U. + u, P = Po + p, and 4= = 4'0 + l. The incremental changes in the aero-
dynamic force and moment components are indicated by the prefix A. Thus X - X + AX, Y = Y. + AY, M = M.
+ AM, etc. The control deflection angles 8., 8, and 8, are used just as they are and are interpreted as the control
perturbation angles from the steady-state trimmed-flight condition. To illustrate the general expanotion of the aerodynamic
force component along the body X-axis the first functional relation for X on page 47 may be expressed as follows:

X= X.+AX=X.+X.u+X,v+ X,,w+X.;+X,;*+ X ;;+...+

xp, + X rq + Xr + Xi + + X >+ + .+ (37)

X6. a. + xa, 8, + X. s. +.. + (higher order tern3)"

where X, = OX/ au, etc.

Variables may be added to represent additional aerodynamic effects such as occur in higher order unsteady aerodyna-ucs.

* Just the second-order term lb the expansion would require a page or more to write out. The expesehm would have the fWowwlg form:
1/2 [(X~us + X,,Yl +.,..+ Xwý' +..,- + X.pV +... + X;;;'+... +

+,€ +... + x1W.1 +...) + 2,M. + ... + x Utim +...) +

2(X,,tw + ... + X.,pw +... + X.jiw + ... + XGo..w + ... ) +

2(Xu + .. ,+ ; + ... ) + ... , +20(4,o,,M. +4... +) +.
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TABLE 17

AERODYNAMIC FORCE AND MOMENT INCREMENTS

FOR SMALL DISTURBANCES

(Components Along Vehicle Axes)

DISTURBANCE Force Components Mowrint Components
VARIABLES AX AY AZ AL AM AN

Linear u Xu Z, L,, M,, Nil
Velocity v X" Y, Z1." L, M" N,

Components w X,, Y ,. Z, Lo, " M, N,,

L inear u , Y Z "4 L * M ;," " N 11
Acceleration v X" Y;" Z;" L; M;" N;

Components w X;, Y," L,; M; N;"

Angular p Xpo 0 Yp -Zpo Lp Mpso Np
Velocity q Xq*"o Yq" Zq L1[ Mq Nqi

Components r Xr"" Yr Zr " Lr Mr** N,

Angular P Xj'" Y;"00 L7"" M P* N;*""
Acceleration 4 X "" Yi" Z'" L0" M;"" N;"

Components i X." Y; see Z;O" L-,"'" M;"" N;"

Control 8a Xat oo. Ma" Na.
Deflection Xe Z, LMa Na

ar X6"$ Y.5' 7,6: 1M6, Na,

Control . .a 0A" Y6,0 7:"• U"'••• M. Ni:••
Deflection X.e XgA" Ys . Wo L;I£• Mi."• Ni"

Ratta 8So•

* Asynsmotyo foroe mad moment component derivativem with respeot to sylmmetrio disturbmaoe variables.
•0 o ymmotAo force and moment component derivati~oe with roapeot to seymmetrio disturbsaoo variables.

(Both sets of torus are identically nero for disturbanoes from a state of steady "ymetrulo motion. i.e..

V, P, R, and their derivatives are all nero, of a. aircraft with an XZ-plaoe of symmetry.)

o0n Terms tha a&to usually negligiblo.

THRUST FORCES AND MOMENTS

The propulsive system of a vehicle generally produces both a direct thrust force and indirect or induced effects upon the
aerodynamic force. These contributions of the propulsive system to the force and moment components are presented

and discussed in reference 13.

Direct thrust force and moment components should be used in accordance with the force-moment component resolu-
tion of equations 32 and 33 on page 44, i.e., XT, YT, ZT, LT, MT, and NT. These component^ may beý developed
dir•ctly from the geometril relation between the direct-thrust line of action and the moment reference center of the
vehicle..

Induced-thrust and propulsive-system effects are conveniently included in the aerodynamic components. Wind-

tunnel and flight-test aerodynamic data usually include the indirect effects of the jet flow or runniag propellers
upon the aerodyuamic characteristics of a vehicle configuration. Methods for estimating these induced propulsive-
system effects are included in reference 13.
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STABILITY7 DER ATIMVES

The partial derivatives that occur in the expansion of aerodynamic force and moment components are commonly referred
to as "Stability Derivatives." These quantities are useful in general And most applicable in the analysis of smai-

disturbance motions from a steady reference flight condition. In this Section the derivatives and notation are defined.

Several systems of notation and definition for stability derivatives and/or parameters have been developed and are

found in the literature. The reader should be forewarned and reminded to be thorough and alert when using published

works - including the present report - to check the notation and definitions used (see page 129 of reference 4 or page
IV-2 of reference 11). The notation in this report is selected to be consistent, insofar as possible, with that used
by NASA and in references 3 and 4.

A summary of the stability derivatives and notation used in vehicle stability and control analysis is presented in
this Section. Since symmetry of the vehicle and initial flight condition is assumed throughout, the number of de-
rivatives is reduced, as indicated in table 17. Unusual configurations and special problems may require deriva-

tives that are not included in this Section.

Data presented in reference 13 include genr al and detailed information on stability derivatives and methods for
estimating values of these derivatives. Also, general and special methods and analyses for evaluation of these
derivatives are found in many places in the literature. ,References 4, 7, and 15 are typical general references and
reference 17 is a typical special investigation.

Three types of stability derivatives are used in airplane stability and control analysis. The following paragraphs

discuss each type. Notation for these derivatives and other items used in connection with stability analysis are

given in table 18. Table 19 contains the relationships used to define the nondimensional derivatives along body

axes and expresses them in terms of stability axis derivatives. Nondimensional derivatives along stability axes

are presented and identified in table 20. This is the most familiar form of the stability derivatives.

DIWNSIONAL DERIVATIVES--BODY AXES

TIe derivatives used in the development of small-disturbance expansions for aerodynamic force and moment rela-

tions (see page 19) were defined as dimensional derivatives. These partial derivatives of the force and moment

components are taken with respect to perturbations of the significant velocity, acceleration, and control variables*.

"Comaider the f•owing for the came of small disturbmane fom a steady Bight coaditioa:

Let U=U.+u and P=P.+p

ax ax au. + x au ax
"aU - Uo-+ O U-

aN ON a ON
~P OP. aP a p OP ap

sn and *P areeachxeroand-2--and each equal 1

51



The general notition uses upper case symbols with a subecript denoting the variable of differentiation, and body axes
are specified, in this case, however, body axes may refer to any axitv system fixed to the vehicle and thus include the
special cae of stability and principal axes. ThIi, at least in part, is the origin of much of the confusicn in stability
derivative notation. Also, it is the reaon for using the prime to denote the difference between body and stability reference
axes in the transformation of stability derivatives (tables 8 and 9).

Dimensional derivatives are used as elemepts of the matrices shown in equations 24 through 29 and in vtrious
equations throughout subsequent Sections. Some exampleo of these derivatives are

aX aM apN aZ

The dimensional derivatives are listed in table 17, with the notaiion given in table 18.

NONDIMENSIONAL DERIVATIVES- BODY AXES

The use of nondimensional equations is usually convenient when aerodynamic forces and moments are invoived in a
problem. Hence it is useful to define nondimensional stability derivatives along body axes. As in the preceding case, these
axes may be considered as general body axes that include the stability and principal axes as special cases.

Lower case basic symbols are used to designate the nondimensional body-axis derivatives. This introducýs some additional
possibilities for confusion and ambiguity in the notation. For example, in,,' is a stability derivative anin m without any
subscript denotes the vehicle mass. Although this is not a desirable situation, ultimately it is less confusing to maintain the
system of notation and be wary of the pitfalls of ambiguity in the notation then to revise the familiar and established
symbols. In this instance the mass m is frequently incorporated in the parameter T ano thus the confusion is prevented.

Several examples of the nondimensional derivatives along body axes are given below. A more rýearly complete
listing of these derivatives and the notation used is given in table 19. The equations relating stabiility-axis de-
rivatives to the derivatives along body axes are given in this table. The relations given in table 19'also serve to
transform the derivatives based upon wind-tunnel axes to stability axes (ao = 0).

ax 1 0w 1
8OW qoS X O. ' qoS

aN 1 yv 1

n ff q.Sb q.Sb

8Y 1 1
YP ap q.S -- Ypq 0S --

OM 1 M .1
r - M8. qS9 M,6, qO

Note that in the above examples the divisor changes and the linear velocity distur'bance variables w and v are
converted to nondimensional variables a' and ft, respectively.

NONDIMENSIONAL DERIVATIVES - STABILITY AXES

To many individuals the term "stability derivatives" means the nondimensional derivatives of aerodynamic coefficients
with reference to stability axes. These are the familiar parameters CL., Cao, C.., etc. that are used in aircraft stability
and control analysis. Lift and drag are the Z. and X-force components. Wind-tunnel data are usually reduced to stability
axes and provide experimental values for many of these stability parameters.

The nondlmensional rotary derivatives retain the dimension of time in the can of body axes, wrhile in the case'of stability axes the

nondimensional rotary velocities are used, ie, Pb "r rb
2V' 2V' IV
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There is much literature containing analytical and experimental investigations of stability derivatives and parame-
ters. Reference 13 includes methods and reference material for evaluating these quantities. Chapter 5 of reference
4 contains a comprehensive discussion of airplane stability derivatives.

The nondimensional stability derivatives referred to stability axes are listed in table 20. The general notation

used is given in table 18. These derivatives are grouped into the longitudinal stability derivatives or parameters
and the lateral derivatives.

Included in table 20 are sketches of typical variations of the stability parameters with Mach number. This infor-

mation was adapted from reference 16. Also included in the tabulation of nondimensional stability derivatives a-e

some specialized parameters such as Cni and Cli, Th( effects and importance o! these two derivatives are dis-

cussed in reference 18.

TABLE 18

SYMBOLS AND NOTATION

STABILITY DERIVATIVES AND RELATED PARAMETERS

SYMBOL DEFINITION

b wing span

C (i) basic symbol for aertdynamic force and moment .oefficieau

(00) aerodynamic cross-wind force

CL, CV lift and drag force coefficients, respectively, (stauiIty axes/

C'. = -L's c. =-R

qS qS

Cx, CT, CZ longitudinal, side-force, and txormal.force corlcients, respectively,
(body axes)

CX _ Y =
qS qS' *qS

Cl, C., C. rolling-, pitching-, and yawing-moment ccefficicnt%, respectively

_ L C.= M C.- N
qSb qSc qSb

C 5,, C,.U, C.0, nondimensional stability derivatives with reference to usability axo.
C,,etc. (se table 20)

CIx, Cly moment-of-inertia ooefcinta and product-oW-inerti coedcimat

CI5, Cayx -Ix C=' = IT
q.Sb q.Sc

CI = IsC'.' = X
q.Sb q.Sb

Note: 1. The divisor of Ct. contains F indead of b.

2. The inertia parameters must correspond to the axis sysem
used in a particular analysis, i.e., body mtabiity, or principal

es.. .
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TABLE 18 Continued

SYMBOL DEFINITION

c wing mean aerodynamic chord

D aerodynamic drag - the aerodynamic force in the plane of symmetry
along the projection of the relative wind on the plane of symmetry.
Drag is positi.e in the negative X (downstream) direction.

g gravitational acceleration constant

H. engine momentum . oountorolookwite viewed from r,. r

lx, IT, Iz moments of inertia about X-, Y-, a.' Z-axes, respectively

"IxZ product of inertia with respect to X- and Z-axes

Note: Moment-of-inerti, and product-of-inertia terms must correspond
to the axis system being uscd.

iT incidence of thrust line with respect to XZ-plane of body reference
system. Thrust incidence is positive for Tain iT acting in the negative
Z (lift) direction.

L aerodynamic lift -- the aerodynamic force in the plane of syminetry
perpcndicuiar to the projection of the relative wind on the p!ane of
symmetry. Lift is positive in the negative Z (upward) sense.

L, M, N aerodynamic rolling-, pitching-, and yawing-moments about X-, Y-, and
Z-axes. respectively

Note: Lift and rolling moienat use the same symbol, l,

L( ,, N,1 , Nt basic symbols for dimensional moment derivatives: "ubacript denotes
variable of differentiation (see table 17)

AL, AM, AN in,!remental changes in aerodynamic woments used in mlat~disturhance

'AMT j:itching-moment compunent of direct thrust force

Note: When direct thrust is itceluded in the aerodynam'!c or total
inoment, AM, should be d,-leted.

It 1, W4  a,nt basic ytny•bolh for nondimnesional moment derivatives about body
sacs; subscript denote. variable ot differtiation (see table 19)

1.. ni a. dirction cosines bet'wen body axes asnd the gravity vector

1K Mach number

Note: M isalsouIAdasphchingmo tieut

Nowt: m s .6 wed a the d ba skrhol for doi amd'memaioeaa
PiaAhls-oivwen dati'vadrea *bow' bo'dy .zi

. Q. R r d yevig vwiocity ompmo (uagWar) about
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TABLE 18 Continued

SYMBOL DEFINITION

p, q, r small-disturbance angular velocity components about X-, Y-% and Z-
axcs, respe-tively

dynamic pressurm

q AL_
2

Note: (! is also used as the small-disturbance pitching velocity.

S wing area or reference area for aerodynamic coeficients

T net direct thrust force

Tf thrust coefficient. ", = T
qS

Tv aT
av

t time

U, V, W linear velocity conmponents along X-., Y-, and Z-azes, respecti -ely

u, v, w small-disturbance fine*r velocity components along X-. Y., and -aies,
respectively

U' small-disturbance nondimensional longituainal .voc~ily v-rale, n " -

V tozal linear velocity of vehicle c4g,

X. Y, Z aerodynamic force components along X., Y., and Z-azea, respectively

X( ), Y( 7, basic symbols for dimensional force derivative; subseript denotes vari-
able of djfferr.mtiatioa (see table 17), Foe example,

X. "- X" _"L- JX
x= ' a.

IAX, Y, AZ incremental changes in aerodynamic force compoanent used in smul-
disturbance aaalr-•

Xv. Zr components of direct thrust force along X. and Z-azes. respectively

Note: When direct thrust is included in the aerodynamic fome oom-

pornents, these terms should Le deleted.

1( y, ,. Z( basic symbols for noudiumsaional force derivatives slug brdy axes;
subacript dentines the variable of diffeirstiatia '(see table 19)

s distance parallel to Z-azis from vehicle c.g. to the projectios of the
thrust line in the plaoe of symmetry Ipositive for c.& above thrmy
line)

J angle of attack (see figure 22)
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TABLE 18 Continued

SYMBOL DEFINITION

a' small-disturbance velocity variable, a' w
V.

angle of attack of thrust line, aT ý a + iT

sideslip anglt (see figure 22)

ir small-disturbance velocity variable, f' vV.

flight-path angle, the angle between the velocity vector and the plane
of the horizon

8., 8., 8, change in deflection of ailerons, elevator, and rudder, respectively

p air density

time parameter, r - _ V. m
pSVo 2 q.S

'4', 0,. €orientation angles of vehicle body axes in yaw, pitch, roll sequence

(see page 11)

Note: In some special cases using stability axes the flight.path angle
"y is used in place of the pitch orientation angle 0. When
this is done, the yaw and pitch angles, *1, and 4', should be
used as referring to stability axes also (see page 77).

0, 0, 4 perturbations of vehicle axes orientation angles 4t, 0, 4', respectively.
In the small-disturbance approximation 0 = Jpdt, 0 - fqdt, # =
frdt, respectively.

fix' fly, alz angular velocities of wind axes; prime is used to. denote small-angle
approv•.,.ations (see page 77).

General Notes:

1. All angles and angular velocities are in radian measure.

2. Fundamental units are used throughout, i.e., slugs, feet, seconds.

3. Tu'oughout this table the symbol q denotes dynamic pressure when multiplied by
the wing area (qS).

4. The subscript o denotes steady-state reference condition for small-disturbance
analyses.
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TABLE 19

NONDIMENSIONAL STABILTY DERIVATIVES

(BODY AXES)

Direct thrust terms included
Expanded Form in Terms of .4tability

Symbol Derivative Ax is Derivatives

Force x., 3X 1 Cx. cog' a- ± Cz. sin' a,
Velocity du' q.S

+ (-Cxa-~ •s) cos u.sin a

+ Ž_ Tv~ yos iT c's a.
m

x., OX 1 Cx .Coss ao.- C % s wn a -
8a' qoS

+cs z. a.) cog a. s .

+ 2r Tv sin iT sin .t.

yo, aY 1
a#, q.S

Z., ý7 1 Czý os a. - C sin' a.

+ ~Cx. -Ca.)coosa. sin.

2,r TV sinfiTcoaU.
m

Z..Z 1 Cz. coo a. + Cx, in'
&"q.S

+ (Cx,.+ Ca) Coa .. in f.

_2 TV in iT sin a.
m

Fo•rce xq OX 1

Rotary -q q.S C ON a. -- Cs OWa.jr)2

y.°OY 1 (CP a a. -- C.Tf ah,)

Op q.S

aY I (Cyrc am•, + CT, sOn a,.)
qr q.S

8Zro I, (Co% ON. + C,•, SiS ,.)

€Saq q.S C'aok 
I

831 q.S Ca

z8 -L C66 acm0. + Cs. gin.
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TABLE 19 Continaad

NONDIMENISIONAL STABIUTY DERVA'IVES

(BODY AXES)

E.xpanded Form ir Term3 of Stability

Symbol Derivative Axes I)rivatives

Monient 4., 8L 1Homeat lp, •CIA C• os a. -- CPi sin P.o
Velocity aj' q.Sb

M., aM 1 TC,.+2V,, 2 C.8u"--TC.I +o-- kf " - aV "• - 2 L.o 4 Cos alo
au' q.Sgr In TJ

-- sin a.
in., 3M 1 C.mcosd.--.+ C.t+-uT•-A

Oa' q.SI

-2 V0 asin a

-. -,

np 3 N I
, ON q.Sb C.0 Cos ao + (4t, sin ao

Moment _L r
Rotary -L Op qoSb Cp coso .+ C., SWn . LC-,a CmP)

2V.
S t C o 1
dr q.Sb . Circos'-Caphin~'o".-(ClpChr)

C-3 a. sin a.] --

m4 Oq qa

nP ON IP cp eO%' - C', sip'sa. + (Cap - C.t)
Op q.Sb I

" b

Zr r c~~~~.w a. + ,sin a. + (C, -P
ON. I F csa
Or q.Sb L .+ C.Pin'a.+ (C,.+ C.,)

coo. ae sn .

Control 4. , q C, a. - Sin a.

aL I
' o. 0.Sb1 COP,, a* - C". sia

c(MSb

ON III ' Or q.Sb C.S cos a. + C, aV.,
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TABLE 19 Cairad
NONDIMENSIONAL STABILITf DERIVATIVES

(BODY AXES)

Expanded Form in Term of Stability
Syw•bol Derivative Axes Deriatives,

Moment aM 1 I

Ac.|eration 2,. q.

Notes:

1. The symbol q. is the reference dynamic pressumre.

2. The symbol q (without subscript) demotes pitching velocity about the Y-auia.

3. Thc stability axes derivatites are defined in table 20

4. The subscript zero denotes a steady-state reference flisht conditiou.

5. Symbols and notation are given in table 18

TABLE 2P•

NONDIMENSIONAL S3TABILTY DERIVATV'ES
STABILITY AXES

Direct thrust effec not included

L LONGITUDINAL DERIVATIVES

Symbol r Derivative Typical Variation with Mach No. (ref. 16)

C ,cx C .C- M.- 2(C.).

V. w d dmpbg dmeaive
0|o 3 o

-C-
a v__________"___'____

V.

V, subjec 141O asmoldassl eecta

o 1 MO 2

Cxi, O(C 4G ).
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TABLE 20 C.,iaed
_________ ___________________ _ i ____i_______________________

Symbol Arivative Typied Variation with Mach No. Remarks

Cu I cIII'IiII I ic..1 ACc. -- +, • . .
" ,approximately the negative of the

S3lift-curve slope

static stability deriva!ive that
t -cfixes the stick-fixed neutral point;

CKr 8- this derivative is a basic static-
Sua •tmbility paIanet-or

1 1 Mo 2

a_-__., C.= is important in damping of
C.i shore-period mode; this parame-

(;__) / ter is subject to high-speed aero-
8( 1u elastic effects'• ~0 2 o 1

8II

•': O~xusually not significant

-aCs usually neglected; howevar, ae-

, (q.) elastic effects nmy become s6gni-2 •, fieant at high speeds

ac.Oa pitch-damping derivative; this

c~q •..hort-perio mode

C16 usually ne"ebl
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TABLE 20 Com"iWad

Symbol Derivative Typical Variation with Mach No. Remiar

a_ C" 8  usu•l maOl, ezoep for'mtak

CE- K Ka aircraft

C.8

0 1 Mo  2

11. LATERAL DERIVATIVES

"a... '' I damping in ril- c., isn

CIP i~mporan paramter inc uroll

C.,p

S- (CL)°

Opb- cr €meadunpiog of the Dtcý roll

I

0 Mo 2•

<C' mmmdii wmdmm h, dus -

o a u, 9
ac dCih~ -C. isofets

C.inmt Dtbiulm iu

CO. , b j(•.w s• -- n ee"; __dpql. -m bdSjý

* II IIs
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TABLE 20 Cone-d-

SYnW Daivative Typical Variation with Mach No. Remarks

usually negligible

CIO dihedral effect - C,0 is in.

CIP A-a. portant in lateral-dynamic-stalil-
ity analysis

0 U0  1 2i

ca weathercock static stability par-

i 8. •ameter; important elects upon
ap •lateral dynamics

o0 1

CY side-force damping derivative-
y - P CT, contributes to damping of;•CT, .L MONOO Dutch roll

o aUo

SCI special derivative that is sip*6-

C.; (aj_) cant at high angles of attack on
2 his ly swept and deta-type wing

(reference is)

-C"--- see woe above fer Cij

C 1 - . ailmen eletleem s - impoutan"t
4 flactw in establishing mailmu

rame of roll

rI I I

21
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TABLE 20 Comansed

Symbol Derivative Typical Variation with Mach No. Remarks

adverse-yaw derivative - an Ju.
ac. portant item in lateral-directional88,a 

control

C Cy almost always negligible
88.

Clar usually has a small but sipjl-

Cla acl cant effect upon control and
8, ' . 'rnaimic-stability aalyses

0 do 
S

-Caar •rudder effectiveness - important
to iateral-directionul control

II
0 U0

usually negligible In dynamic
ora a, Fq "*ua3MC,8 r 8C--- Cvraay

O MO 2

Notes:

i. The subscript o denotes a steady-state reference light ooditim.

2. The typical variation with Mach number is adapted from reference 16.

I Methods of evaluating stability derivatives an given in reference 13.

4. Symbols and notation aregivenuintable 18.
5. See reference 18 for additional discussion of typical variadons of stability derivatives with

Atkch numbers.

63



SECTION 5. SIMPLIFICATION OF THE EQUATIONS OF MOTION

The general equations of motion may usually be simplified for many cases of practical interest. Certain terms become
negligibly small or reduce to zero as a result of practical considerations and selection of appropriate reference axes.
The methods used to simplify these equations are outlined in the paragraphs that follow.

Equations describing the motion of a rigid body are given in Section 2. In the following pages the real force and
moment expressions from Section 4 are used to form equations of motion for an aircraft operating in the atmos-
phere. Vehicle symmetry and the assumption of small disturbances from reference flight conditions are then used
to reduce the equations to simpler forms. The restricted equations of motion are given in nondimensional
form also.

Steady equilibrium flight and linearization based upon steady and maneuvering initial flight conditions are discussed as
special cases..

GENERAL SIMPLIFICATION OF RIGID-BODY EQUATIONS

Complete equations of motion for a body moving in the atmosphere are quite complex. Consequently, it is of practical
interest to simplify them in order to facilitate analysis of the motion of a body. Vehicle symmetry and restriction of the
motion to small disturbances from a reference flight condition are used to reduce certain terms to zero and to linearize
the equations.

Initial flight conditions are referred to frequently in subsequent paragraphs. Terms pertaining to these conditions are
defined below, as given in reference 19.

STEADY FLIGHT - Motion with zero rates of change of the linear and angular velocity components, i.e.,

Steady sideslips, level turns, and helical turns are possible steady flight conditions. Steady pitching flight is a

"quasi-steady" condition because t and W cannot both be zero for an appreciable time if Q is not

equal to zero.

STRAIGHT FLIGHT - Motion with zero angular velocity components, P, Q, and R = 0.

Steady sideslips and dives or climbs without longitudinal acceleration are straight-flight conditions.

SYMMETRIC FLIGHT-Motion in which the vehicle plane of symmetry remains fixed in space throughout the
manenver.

The asymrmetric variables P, R, V, 0, and # are all zero in symmetric flight. Some symmetric flight con-
ditions are wings-level dives, climbs, and pullups with no sideslip.

ASYMMETRIC FLIGHT - Motion in which any or all of the above asymmetric variables may have non-zero values.
Sideslips, rollsand turns are typical asymmetric flight conditions.

The full set of equations for the motion of a rigid body is given below. These equations are "Eulerian" in that they are
referred to axes fixed on the body. Because the coordinate axes rotate with the body, the gravity-vector components
depend upon the orientation of the body w'th respect to a fixed inertial reference (Earth Axes). Relation! are thus
included to express the kinematic angular-velocity component relations in terms of orientation-angle rates of change.
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The equations of motion w,iLh reference to general* body axes ((8) and (9)) are combined with the real force and
moment components (equations (32) and (33)). The gravity-force componento along body axes are then obtained
from the set of equations (34). Angular velocity relati, is are found in table 16. Collecting and combining these
relations give the following sets of uynamic and kinematic equations for the motion of an arbitrary rigid body.

X+ XT-mgsin@=m(U-RV+QW) 1
Y+ YT+--mgcos@sin =: m(V-PW)+RU (38)

Z+ Zr+mgcoscos,=m(W-QU+PV)

L + Lr =•PIx - Qlx -QRlzx -- QR (Iy - Iz) - PQIzx
- (Q2 - R2 ) In + RPITx

M + MT-- +[ (oly-- lhIz --PXy--RP ( Ix--lx) -- QRlxx

- (R2 - P2 ) IZx + PQIZT (39)

N + N - -+ AZ -P-Ix-- QTz-- PQ (Ix - Iy) -- RPIZ
- (P2 - Q2) I]y + QRIxZ

-= P + Q sin tan•- + R cos 0 tan 0

= Q coso - - R in* 1 (40)

= Q sin 0 sec -+ Rcos 0sea 0

The moment equations (39) become significantly simpler when consideration is limited to bodies having symmetry
about the XZ-plane. As a consequence of this symmetry, the product-of- inertia terms Ixy and Iys are zero. The
thrust components YT, LT, and NT are zero except for special asymmetric-thrust conditions. The dynamic equa-
tions for a symmetric body are then the following (references 3 end 4):

X+ XT-mgsin -=-m(U--RV+QW)

Y+mgcososin -=m(V-PW +RU) (41)

Z+ Z 1 -mgcoscos*=m (W*-QUA- PV)

L = PI. - (* + PQ) Ixs - QR (y - Ix)

M + MT = 0QI - (R2 - P) Ixs -- R P (Is - Ix) (42)

N =lAIz - (P - QR) x. - PQ (Ix - I)

(The anplur.velocity relations we uchanged from (40)).

Equations of motion in the form above may be modified to use direction cosines of the gravity vector instead of thc
orientation angles. The functions of the angles 4, 0, and *" are replaced by the direction couine.• I, N, n3 of the
gravity vector from the vehicle body axes. Relations betwaen the direction cosines and the orientation angles are listed
below (see page 24).

STh pesmm dIacasou is gi ins Wsas of genea body an&. Hoevm, generd body -a my be ie as say of the axis syast
fixed to the vehid, L, bdy axme s, bdy &ase. or pial ae..
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8  -cos (mg, X) = - sin 0

=s = cos (mg, Y) = sin t, cos 0

na = cos (rag, Z) = cos 41 cos 0 (43)

Substitution of the direction cosines into equations (40) and (41) results in an alternate set of equations of motion
for a symmetric body. These equations, which can be found in reference 3, are especially convenient for use with
an analog computer. Equations of motion using the direction cosine form are as follows:

X-+- XT+nggs=m(U--RV+QW) 1
Y+mgms =m(0-PW+ RU) (44)

Z+ Zr+mgns-m,(--QU+PV)

L =fI--( + PQ) I.z -- QR (lIr -I.)

M + MT = Q04 - (R2 -- P2) IXZ -- RP (Iz -- Ix)I (45)

N = RI2 - (P - QR) IT, - PQ (IX - I1)

,= m&R- asQ

= naP - is R (46)
is "- Q -- map

Nondimensional forms of the foregoing equations of motion may be obtained by simply dividing through by an ap-
propriate divisor. For the force equations (41) and (44) the divisor is the reference dynamic pressure timeo the
reference area • S • The moment equations (42) and (45) are divided by SVo2Sb or £'2S." The lat'er value

2 2 2
is used only with the equation for pitching motion. Further use of non-dimensional equations occurs in subsequent
Sections, after small-disturbance approximations are introduced.

Many problems of aircraft motion involve only small disturbances from a steady reference flight condition. Thus the
approximations compatible with restriction of the motion to small disturbances allow further simplification of the
symmetric-body equations (40), (41), and (42).

General notation for smal-disturbanct analysis is as follows. Perturbations of velocity and orientation variables are
designated by the lower case symbols for these quantities, i.e., u, v, w, p, q, r, #, A, and 0. Upper case symbols are used
with a subscript zero to denote the reference values of these variables. Thus U., W., Q,, 0., etc. are reference or initial
values for velocity components and orientation anglee. Incremental changes in aerodynamic force ard moment com-
ponents axe denoted by the pertinent symbol with a prefix A, e.g., AX, 6Z AM, etc.

Expansion of the aerodynamic force and moment components for the small-disturbance approximation is discussed in
Section 4 and summarized in table 17.

In addition to the perturbation quantities, the approximations noted below are used in the trigonometric relations used
with the condition of small disturbances.

sin (S. + 0) W in0. ON0 + Cm . sin 0 (sin 0, + a Cos 0. (47)
co (0. + 0) coo s. coo - siu 0.sin 0

C*& sO. - 0 sin  J
Note: These relations are typical and are applicable to maldiAsturbaoce approximations of any regular variable.



If small-disturbance notation and the above approximation for trigtaometric functions in equations (40) and (42) are
used, the dynamic equations for small-disturbance motion expand to the set of equations below. Products of per-
turbation quantities are neglected.

X.-+-AX-+ XT-nmg(sineo+ecoo 0 ) =m(b,,+u-Ro.V. -R&v--Vj
+ Q,,wo 4- Qow + W.,q)

Y. + AY + mg (cos E) - 0 sin 0  in 4,, -+- cos ,j, m (V• + v + PJUJ

+ R,,u + Ur - P.W. - Pw - Wop (48)

Z,+AZ+ Z r+mg(cos0.--0sin o) (cos 4ýo -- sin 4,) =m(Wo+w

- QoU, - Qou - U.4 + PUo. +Pov + Vp)

L +AL ( )+p Ix -- (t+ r+ PoQo+ Poq+ Q.pJ Iz
- (Q.& + Qr + Rq) (IT - Iz)

Mo + AM + AMT + (Q - q) Iy - (112 + 2 Rr - P.1 - 2 P~p) Ixz
- (PP, + Pr + Lp) (Iz - Ix) (49)

N. + AN = ( ; +r) I. - (P. + p - QAR - Qor - Roq) Ixt
- (P.Qo + P.q + Q.p) (Ix - Iy)

Many of the terms in the above equations are zero for initia! conditions of steady, straight, and/or symmetric
flight. Linearization of these equations for straight, symmetric flight and maneuvering flight is presented in the
following paragraphs.

SIMPIFICATION OF EQUATIONS OF MOTION FOR STEADY-FUGHT CONDITIONS

Steady-flight conditions provide the reference values for many analyses of vehicle motion. The terms used to de-
scribe various flight conditions are defined on page 64. The equatiocs of motion are reduced for several steady-
flight conditions in the following paragraphs. These relations for steady flight are used subsequently to eliminate
initial forces and moments from the equations of motion.

STEADY, STRAIGHT FLIGHT

This is the simplest case of steady flight. All time derivatives are zero and there is no angular velocity of the bod€y about
its center of gravity. Thus, setting all of the time derivatives and the angular-velocity components P, Q, and k equal to
zero in equations (41) and (42) results in the following equations for steady, straight flight:

X+ XT-- gainO I=0

Y+ mgcot8sin'= 0 (50)

Z+ Zr+mgcoseco4*= 0

L=0

M+ MT=0 (51)

N=-O

Note that these equations are-applicable to the steady sideslip. The velocity components V and W awd the bank angle
are not necessarily zero. When the motion is restricted to symmetric flight, the beak angle is ero. The force equations
for steady, straightsymmetric flight are then
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X+ XT-Mgsin® =O

Y = 0 (52) 1

Z+ ZT+mgco•e=O

The mom'rts are again all zero (51).

"STEADY TURNS

In the coise of steady turning flight the dotted quantities in equations (41) and (42) are zero, as in the preceding

case.

Also the orientation aazle ratu of change C and i, are zero and the rate of tuni i is constant. Witi- these

corditions applied to the dynnmis. and kinematik, equationr for rigid-body motions, the relations for stevdy turnin, fligit

may be developed. However, in m&-. cape it is convenient and practical to consider only small elevation ang.e% or

shallow climbing and diving turns.

Applying the above conditions to the angular-velocity relations in table 12 results in the iollowingangular-velocity
components for a steady turning maneuver. The approximation for small elevation angle (0) is indicated.

P -- sin0 0 -*0

Q = sin -0 coo@ e ,sin .6 (53)

R=icostcos@O -cose

For most cases of iz,•erest 4, may be considered as a small quantity, so that the products of the angular velocity
components P, Q, and --.• may be neglected. In addition, for coordinated shallow turns, the side force Y is zero
and the velocity coir ;oncnts V and W are small. The equations for a steady, coorciinated, shallow turn become
(see reference 4)

X+ XT-mgO=O

mg sin 4, = m , U Cos . (54)

Z+ Z•4+Ug os$=-miUsin4'

L=O

M ' MT=O (55)

N=O

Solution of the second relation of (54) for the rate of turn , results in the following equation:

- tan - (6

STEADY PITCHING FLIGHT

Symmetric flight of an aircraft along a curved flight path with a constaxt pitching velocity Q results in a quasi-steady
aiight cznd'tien. The linear veloci i components U and W must necessarily vary with time in this crae. Thus with
the asymmetric velocity components V, P, and R and the bank and yaw angles 0 and all equal to sero, the equations
of motion for a symmetric body (41) and (42) reduce to the following: f
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X+ XT-mgsin -=m(t+QW)

Y=O (57)

Z+ ZT+mgcos -=m(W-QU)

L=M+ MT=N=0

The above relations may be used to evaluate initial conditions for a small-disturbance analysis. The values, of U. and W.
may be o'ken as instantaneous values end the v'ariation with time as disturbance quantities u and w, respectively. For
roasonable values of pitching vcloci+y the linear acceleretions fi and *, may be neglected, so that the X and Z relations
above become initial conditions

(X + XT). - mg sin 0 - m QoWo (58)

(Z+ 7,r)o +mgcos0o-m QoU.o

Solution of the soyiJ equation above provides a relation between the initial pitching velocity Q. and the initial load
factor nz, 3oiag the reference Z-axis:

Q.mg + r)- coo -- L nz." -- coseo) (59)

STEADY ROLLING OR SPINNING FLIGHT

In the preceding examples the steady-flight equations readily reduce to simple forms of the equations of motion. However,
the equations for steady rolls cr spins cannot be simplified without considerable oversimplification of the physical relation
deacribing the motion.

The procedure outlined in references 20 and 21 utilises only the mon.--nt equations to evaluate the perturbed motion
from steady roll and spin, respectively. In such cars the steady condition then becomes that of moment equilibrium
(L- =(M-+ MT) =N-=0).

LINEARIZATION FOR STEADY, STRAIGHT, SYMMETRIC INTAL FLIGHT

Simplification of the equations of motion for small disturbances from a reference steady-flight condition results in
the sets of equations (48) and (49). These equations, when combined with the expansion of aerodynamic force and
moment components from table 17, form the linearized dyvemic equations of rigid-body motion.

lu the present case many terms of the equations of motion are zero, and the steady, atraight, symmetric flight
equatme (52) are used to simplify the equations further.

For the steady, straight, symmetric initial flight condition the quantities V, P., Q., H, ,., R, V., and W,
are all oa**. Also, fromi the steady-flight equations (54), the initial mosents (L., M. + Mr,, N.) and side force
(Y.) are zero. Ile initial equilibrium in the X and Z directions is expre"ed by the relations

X.+ XT.-mguane.=0
and

Z.+ Z ,+anos.O= 0

+-7(Z+ Z,).

** The bcripI Sao deotes i&ita osditios'.
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The irltial velocity components U, and W, are related to the initial velocity V. and angle of attack 4, by the
equations below

Uo "- Vo cos U.

W. = V" sin a.

Application of the foregoing conditions a..d relations to the small-disturbance equations, (48) and (49), reduces
them to the equations below. These are the rigid-body dynamic equations of motion for small disturbances from
steady, straint, symmetric flight. Body axes are used with this form of the equations.

AXX- mg 0cos 0.m (u + q V. sin a)

AY+mg8 sinOo+mg cos o=m(v+rVecosao-pVosinao) (60)

AZ-mgOsineo=m (w--qocasa.)

AL = x- z

M-- q I(61)

AN=rlz-plxz

The equations containing AX, AZ, and AM are commonly referred to as the symmetric or longitudinal equations of
motion. The equations for AY, AL, and &M are then the asymmetric or lateral equations of motion. In the above equa-
tions the thrust contributions tv the force and moment component increments should be included in AX, a, AM, etc.

The expansions of the force and moment component increments for small disturbances are summarized in table 17.
The expansion outlined in the table applies to any orthogonal reference axes fixed to the vehicle; ,owever, once
axes are established, the components and derivatives may not be interchanged from one axis system to another.
The transformation relations necessary to change the derivatives to different reference axes are given in tables
8 and 9.
Within the restriction of small disturbances, the perturbation angular velocities are given by the following relations:

p =ý, q =i, r = (62)

Linearised equations referred to stability axes are readily obtained from the foregoing set of equations. Stability axes
are oriented with the velocity V. at the initial flight condition (see page 13). Hence U, = V. and W% = 0.
The initial elevation angle of the stability axes is the initial flight path angle y.. These conditicrns are equivalent to
replacing 0. by y. and a. by 0 in the linearzed body.axis equations. It is important to note, however, that all of the
velocity, force, and moment components in the new set of equttions are referred to stabiisy axes. The linearized equations
of motion referred to stability axes are given below. These equations mr restricted to small disturbances from steady,
straigla, mymmotric flight.

AX- mg 0 cos /o-- u.

AY + mg j sin y. +mg coo y. =m (v + rV.) (63)

AZ - mg 0 sin . = m (w-q V.)

AL = p Ix. - r lxN

q(64)

AN- I..-* p X%



(AX, AY, ... , AN, 0, A, #, u, v, w, p, q, and r are referrod to stability axes in thee equations)

Aerodynamic forces and moments are usually reduced to nondimensional coefficient form. Hence it is convenient to

express the foregoing equation. of motion in nondinamdoul form. FTat the force and moment component incremment,

AX, AM, etc., are expanded ar indicated in table 17. The resulting equations are theA reduced to aondimeusional

form and tabulated in tables 21 and 22. The equations are reprouped into the lomgiludinal and lateral equations.

The tabular praeetation of these equations is taken from referencc 3. Coeffirients of ihe ualldlsturbmoce variab• are
arrayed so that the desired equation is obtained by setting the sum of the products of the coeficients and appropriate
variables horizontally acrome each row equal to zero. The appropriate variable is given at the heW4 of each column. For
example, the force equation along the body X-axis is the following:

xdx q d(f) g

d
Noft that the operator -E- is included in the coefficient of the variable. Notation used in the nondimensiom equation is

summarized in table 18.

TABLE 21

NONDIMENSIONAL EQUATIONS OF MOTION FOR SMALL DISTURBANCES
FROM STEADY, STRAIGHT, SYMMETRIC FLIGHT

BODY AXES

Disturbance Vwi" Cdfelests_
Longitudinal Eq uations se0

ui' 0' 9O

Force Equation z. d t.
Along XAxis 2r dt -,L 0"

Force Zqado d 4. an d
Along Z-i* 2r 2 $It _ S. .L . 2,

V.

Mmu~ut Equationa, d t
About yRS ,- dY- - nt

i)gWmaaben Vui"ls Cosuioms
Latoral Equadasa -..... . . .. . . .-.. ...

P+ aim 8.

Forme Eqmaton (-+".).j
AlongYcd s, dit +- 5 -s +. +L o, s,.

V. +J i..

Mo.. n Equsiom 1d A. LAbout X-uia Tit4 ti adai

M onwat Equatio tof - C..-.

Alvest Z-ahis tAdos

Smn s ow a ses .mt o uam • •t"sb 18.
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TABUE 22

NONDIMENSIONAL EQUATIONS OF MOTION FOR SMALL DISTURBANCES

FROM STEADY, STRAIGHT, SYMMETRIC FUGHT

STABILITY AXES

r3UMPLUPECD FORM)

Disturbance V'riable Coefcienut
Longitudinal Equations

2 (CD).
Force Equation d
AloungXX-. +2v• C,, d. +(C.). C,,.

C', + (CO). ' .F~ore E ,quation 2 (CL). + ,.d20• • - , d ,

dt + (CL). um-t.

Mcmunt Equation 0 1 d Ud (
About Y-avis *vY 2y Cu4i.a 7W-CRT de C..8

Disturbance Variable Coeffcents
Lateral Eqations -1

C' A d (C ,- -16 So,
Flm Yquai* -l +C. +(CA). ta.

i I

;~I Cis C.,4i :, r
About Xaux a c.e,

S~de
A•=C. b a ..

-' - 06 f.2IaAbout Zezia C- C"

Symbsi and smaim we 61m IN aMl 18.

* C., Ci11. CIS, and Cx--•I beiul a with rompat isk l iam ad hlmm m wdsoml a is a"M 21.
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LUNARIION FOR STWADY MANEUVVIRING FUGT

There are certain types of problems in analysis of vehicle motion in which the asumption of small disturbances from a
steady maneuvering Right condition is the most efficient method of approach. The limitation to a steady, straight,
symmetric initial Right condition is unnecessarily restrictive.

General equations for small-disturbance motions from steady flight are derived and summarized concisely in ref-
erence 22. These equations are equations of motion for small disturbances from steady turning, pitching, rolling,
or longitudinally accelerating flight. Table 23 gives the general dimensional equations for smanl-disturbance mo-
tion. The next table (24) summarizes the conditions to be used in the general equations of table 23 for the several
types of steady initial flight conditions.

These equations readily reduce to those used in special cases treated in the literature, e.g., references 20 and
23. Also, the small-disturbance equations of the preceding Section for steady, straight, symmetric flight may be
obtained from table 23. Stability axes are the reference axes for this case and the notatiom is defined in table 18.

TABLE 23

GENERAL EQUATIONS OF MOTION FOR SMALL DISTURBANCES FROM STEADY FLIGHT
STABILITY AXES

Co. nt of l)urbIace VaraMe

U V w p q r

+ A .- R. Q. 0 gi-.e&4O J( )d -g-&, -k ( )at

at\ d. .J

.A- R. P.1 an g .an 0-V.+

A,- Q. P. L s'.i-i.sI. %( )o
.. Ix -16%4

AL - 0 0 0 Ix, ." L-Q.u LaIt-lw,)-P.Ix. - atL+Q -(.)

AM = 0 0 0 IL (It, - Ik) + P. Ix. IT.LL P. (Ilx- 1,) - 2 i i. .at

N= 0 0 * - in +Q. (hl. -. ) P.(h,.-Izj+L xu I% iAL Q.I+ ,

ke:$ - - N

S ihs --- I adds wr1
iw : 0 rIP
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TABLE 24

minTA WNDI1IoN FmR &JnIAL smAiLIA)LmIJBANcz EQUATIO)NS OF MOTION

STABBlITY AML

(cadith. for w~e with waM 23)

Imfti al V3. of
Initial 11I~SVeheiy Csmpmmets OW

CAONOrsautim Amch. Imukas

layU. = VzV. = W.=.) Sam as emooted on paeg70
sms&H&P. =9.=L = 0 (see equatinom (63) and (64)).

7. =,.;. =0

SNY 'W Fft U. V.; V. = W.( ) -0 Stmdy4umea odkis all. in

P. = $*.in 7.

Q. V.

AM a3~b FkbI U. =V.; V. W . =b -0am eM in

I. P.P.; Q. = L=0

S~~ody Ph Fkk U. V .; V. = W.;a *m e dt pf

- V., V@o W. thew intal hmaua Thb Isa6y
a qoad4Sady N& endith

V.

smwy Ia.Ibww U. =V.; V. = W. =0 ThIs M&~ emksa id.hs doqau-

Asodwadn P7. = a.;. =0Any mp

=0.-a

Nov: m d wen I an~ ofh 191- an& So 1s s ad numb. - dol an I"b16
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In addition to the equations of motion given in table 23 there are other speciaiized forms of these equations. Ile
study of small disturtances from steady pitching flight my he conveniently made with vehicle body axes for ref-
erence. Below wre the equations for analysis of small-disturbance motion frow 'steady' pitching flight* as given
in refereuce S. Body axes are used and notation is defined in table I&

.&X-#mgco@O.="m (u+qV.inae.+wQ,)

AY+ #mgsin .•-m•gcoe0.= m(v-+rV.co se-pVVsina.)

AZ-Omgmino.=m (w-qV.coe.--uQ.)
(65)

AL =lxP- lxSr + Q (Z - ly) - Q.p Iz

A&M =y

AN 1z; -xz; +Qp(IYIx) +-Q.IrIx)

Note: These equations may be developed from (48) and (49).

U, = V, oo .; V, = 0; W, = V. hin.

aboP.I.,.= 0

(66)

71e0eteady pitching Velocity is given by
Q. = 9 (n%.- coe.)

V. Cos a.

Is the Abom reltion either the initial pithin velocity Q, or the WWll load faector a% may be spectied.

A qiiuld ca e of smail &*Whom from a ueady Sg C ton o00e in the .nalyis Of OWthe uns modenm of -
akCraf An sagayss of the drunami and dablllt of 1W O a i. s contained is A so m e 2 1. Becasm of the epecialined
-aue of the swlyds and the l~ikeioad of confusion in tdo symbols snd notedca, the squatlmm arn not repealed here.

ADDrENORAL SVKCUA IA yOME OF I=NW QIAIIOI Or MUTfON

kigdbody squations of motion ,hve bhe devloped and Vae d for many Mod& and 9ee pr-Im1- No dmpt
ha bhe mde to Uclet dm al hem. Howsm, saw pmray uwAd imm of tbm equati ae s mmaried in

dds Sedio

SSM &hwdes ask Ie& an P, ea&

75



LARGE DISTURBIANCES FROM STEADY, STRAIGHT, SYMMETRIC FLIGHT. (References 3 and 19)

In the equations of motion presented below, the approximation of small disturbances has been limited to the linear
velocity components U, V, and W. The remaining orientation angles and angular-velocity components are not rest.-icted
to small values as in the case of general small-disturbance motion. Many practical problems in aircraft motion may be
analyzed under these conditions.

The initial condition used is steady, straight, symmetric flight; hence V.(P60), P., Q0,, k0, and *(. are zero. The smail,
nondiunensional linear velocity disturbances are denoted by u', ff, and a', and the reference axes are the vehicle body
axes. These equations are developed from the symmetric rigid-body equations (41) and (42) and put in nondimen-
sional form. Special notation used in these equations is defined in table 18.

( si2. Q+R- dt /

2r- V, V.

( yp'_ d yP + sina.co ( IR -- u'R+ WP

2w-a S ar 3,+-I si co0=0

-~u+ (2w-t>

a_) _-8e + cocs a. Q cos@.O K

d) + HasiniT Q /L 1  Ixi d )R (67)

C wV'\C 1  4t J Ix Ix d

Ix -1~~x j I

"d
mv.2, + u'j _WHii?+ A~ Q

C H "'R+I' 3P - 'L(s-R) (-no- ).
- IT5Q IT 0
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Note: 1. Engine angular momentum, H. is included in this set of equations.

Note: 2I Symbols and notation are defined in table 18.

Note 3. Reference axes are vehicle body axes.

EQUATIONS OF MOTION ALONG WIND AXES

Generally the dynamic equttions of motion along wind axes are too cumbersome for use in vehicle-motion analysis. The
variation of inertia parameters with orientation angla, precludes my extensive exploitation of the simplified aerodynamic
terms along wind axes. The dynamic force equations and kinematic relations are sometimes useful, however, and are
therefore given here (equations (68) and (69)). These we taken from reference 3, but they may be developed di-
rectly from equations (40) and (41). (Symbols and notation are defined in table 18.)

T- D- mgsiny-=-mV

-Tf+ C +mg sin coo y mV ('+ R - Pa)
-m V (O ) (68)

-T(s+i)-- L + mgcoo cosy = m V ( -- Q Pp)
= m V (-(Y4)

W='x + (t4sin *+ (z coo*) tan y = x + sin}

1Y'Y con - 'W sin 0 (69)

, = ( in # + l, coo *0) Mr.-Y

From the second and third equations above, the following relations for tb. rates of chano of anl& of attack and of
sideslip angle are obtained.

PaP- R + ( Y (70)

A practical application of the above equations occurs in the sbuplif.d nalysis of uinial cospling eg., that of
reference 24t In this c it was daired to develop a simplified analysis that lprovided a quick and simple method for
surveying the dynamics of a rolling airerst Problem areas could subeequently Le more tboroughly and zigorously
i T hpted. 71e simplified analysis was then made by using the above force eqamios alon wind axm and the moment
equatiosa along principal axes (eqation (13)).
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SECTION 6. SOLUTION OF THE EQUATIONS OF MOTION

The equations developed and presented in the preceding Sections describe the motion of a particle mass and that of a
rigid body. Solutions of the complete equations are not always possible or may be impractical for the problem under
consideration. Several methods of simplifying these equations are given in Section 5.

Methods for solving differential equations found in many standard mathematics texts may be applied to find solutions
of the equations of motion. Some general methods for solving the equations of motion are outlined in the paragraphs
that follow. Included in this Section is a brief discussion of computer methods and of some approximate solutions. The
approximation formulas are useful for preliminary estimates of dynamic stability characteristics.

ANALYTICAL METHODS

Solution of the simplified equations of motion by analytical methods is possible in many cases. The simplified equations
are generally a system of ordinary linear differential equations having constant coefficients.

Use of the direct method of solution is outlined for the linearized small-disturbance equations. The Laplace transform
method is also outlined and a matrix method noted.

Analytical methods for solution of nonlinear systems of differential equations are not included. References 25 and 26
present analytical methods for obtaining solutions of the motion in nonlinear dynamic systems.

DIRECT METHOD OF SOLUTION

The direct method of solution for a system of ordinary linear differential equations, sich as the small-disturbance equa-
tions of motion, is described and illustrated in Chapters 6 and 7 of reference 4. This procedure is reviewed below with
the longitudinal equations of motion as an example.

Equations of motion for mall disturbances are separated into a set of longitudinal equations (symmetric) and a
set of lateral equations. These equations are given in nondimensional form in tables 21 and 22. The longitudinal
equations from table 22 are used below to illustmte the direct method of solution.

If the coantr remains fixed, A is mere and the longitudinal equations reduce to a system of simultaneous ordinary homo-
geneous dileremti equations. These equations then have the dopeident variables u', W', and 0 as funwtons of time, the
- daria

The solutio for the dependent variablee is then assumed to be

0' -- '. e" (71)
0 S. eo"

Substituting these relations into the longitudinal equations of table 22 results in the set of equations below.

[2(C,). + 2rA] u'el' + [CD. - (CL).] . + (C., ,.e' -- 0

2(CL). u.e' + [CL. + (CD). + 2,, I, ue, - 2,A te*' -- 0

. 7 A] . e+�' r+ , r 4) c, ,] - o
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Note: CD, and CL are assumed negligible. Steady level symmetric fight i Massmed (7 0--). Notation is given in table
18.

The factor et is common to all terms in the above equations and may be divided ouLs. The result is then a set of linear
simultaneous algebraic equations. in the variables u',, W., and 9, with a parameter A to be determined. The condition
upon A required for nonzero values of the dependent variables is that the determinant of coefficients of equations

(72) be zero.** Thus,

[L2(CD) + 2?A] [CD0 -- (C,)o] (C,).

2(CL)o [CL. + (CD)o + 2rAj -2-A 20 (73

0 C.6+ Cm.C'][ (' k21

Expansion of this determinant results ir, the character•mc equation fo" the solution. This is a fourth-degree polynominal

in the parameter.

A4 + &3 + U' ++D + EE- 0 (74)

where:

A = -4-r2C ,,

B -- 2C,, (3CD. + CL,) + 4 -T2(2. +

C=-2C 1 Y (CD CL,- CL.CDI) - 2CDO Cly -2C,,' C½v + 4-r [C4ý2VJ C1%~)

+ 2'rCD (4 C,) + 2,rCL.(- T Cu + ,2

D 2CL (-•V C + " . )+ IDo CLa(k.V ) L 42D0 (.• -u2CLCD.( -+Ctmq) 4r.Com

E 2CL2 Cna

The roots of this equation are the values of A corresponding to the modes of motion.

"7he roots of (74) may be real or complex. The complex moots necessarily occor i-4 conjugate pair. and denote an
oscillating mode of motion. Each real root coneapoada to a pure convergence or divergence without any oscills-
tioe.s"' Convergence or divergence of each maode of motion is established by the sign of the real root or the real
par of the comnlex conjugate roots. Four types of motion are possible, as illustrated in figure 24, for the func-
tine P. ex t,•

"The solution eýt = 0 is trivial.

-Nomw that the solution for any of the variables in equat. (72) would have the deermimmt in the numautor equal to sero. Thus for
a eaiable to have a noanro value the denominatoc determinsai must be we,. The resultiag indeterminate form may then have hontero
values. Also it so6WA be noted that the generl solutlion of the lol~tudive equtwtm involves, a ýoring function such as & control pulse.

so that the right aide of equation (72) is not ail zero.
"'Whenera the clhamucteruic equation is of an odd degme, it mm have at least ow rea too.
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The behavior of the dependent variabler u', a', and 9 may be determined, once the roots of the characteristic

Peq6atiou (values of x) are known. The variation of those quantities with time is then given by equations (71)

for each mao& of motion of the system, with additional constant multiplying factors depending upon the input.

le addition to the time history of each dependent variable, several quantitative parameters that describe the mo-

tion may be etewmincd from the roots of the characteristic equation. These items are the period and the time to

halve (or double) the initial amplitude. The cycles to halve (or double) the amplitude of oscillatory motion are

also of interest. Table 25 lists these items for both real and complex conjugate roots of the char:acteristic

-quation.

e 
xt

e = e, oX~t

0 -0

(a) PURE DIVERGENCE (b) PURE CONVERGENCE

X ; REAL AND POSITIVE 18 REAL AND NEGATIVE

ENVELOP 9 8,*Xt ENVELOPE8o.xt 00.R (,k)t "X'je= o°;t , e A ,

IV

(a) pIVERGENT OSCILLATION (d) CONVERGENT OSCILLATION

/ 18 IMAGINARY WITH X 1s IMA OINARY WITH
POSITIVE URAL PART S(X) NEGAT'VE REAL PART

piGURE 24 TYPES OF MOTION FOR DIFFEUENT ROO r' OF THE CKARACTEIISTIC EQUATION
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TABLE 25
QUANTITATIVE CHARACTERISTICS OF MODES OF MOTION"

Characteristic of the Motion Real• Complex A

Time to halve or double amplitude 0.693 0.693

ik

Period Not Applicable 2w

Cycles to halve or double amplitude Not Applicable - 0.110

LAPLACE TRANSFORM METHOD OF SOLUTION
Use of the Laplace transformation in the solution of linear differential equations has several advaitage wLen compared
with the direct method of solution. This method of solution of the small-disturbance equations of mation is explained
and illustrated in references 4 and H. There are numero&us texts that contain the mathematical deveopment of the
Laplace transform, such as references 27 and 2& These references also provide additional examples and tables of
Laplace transforms.
The primary advantages of using Laplace transformations to obtain solutions of systems of linear diferential equations
are:

1. Initial conditions z introduced directly into the solution in order to avoid the evahition of the constants of
integration reouired by direct methods.

2. In problems involving several dependent variables the solution for one variable may be obtaibd independently.
The literature provides detailed treatment of the Laplace transform snethod. Examples and discussion of this
method applied to vehicle motion analysis are found in references 4 and 11. Included in these refereaces are
methods of presentation and interpretation of results in terms of both the basic variables &ad the transformed
variables.

To illustrate the correspondence between the Laplace trnsform method and the direct method, the longitudinal
small-disturbance equations from table 22 are transformed below. A bar is used over the symbol to denote the
transformed variable. For example,

a,($)- L[u'(t )]
Applying the Laplace transform to the longitudinal equations from table 22 results in the following transfomied
equations. The derivatives C1N and C1 q are again assumed negligible Mad initial level flight is sed (v. - 0).
The control is considered to be fixed so that S - 0.

[2(C 0)o + 2,,] i' +[CD. - (CL). '+ (CL). -- 2r u'(0)

2(CL). T'+ [CL 4 (CD). + 2,0] ;' - 2r_ 2r [W'(0) - (0j]

C.+ c.;-- E ] a I+ [c.,. s- C,t I- (7s)

()+ C.,-(0 #~(i0) + 80(o))

(Notation in the above equations is defined in table 18.)

•,4X) is the real pat of the omplex wmaber ). and is Mated to the mduleM r amplitud of dt wo w to do aimber i m
the complex plane.
is the imury pan of the complex number X sad is related to the aagai vewl*y ef the venw rep dmo d ib- , h
the omsplex plase.
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Note the similarity between these equations and those in the preceding Section (equation (72)). The coefficients
of the transformbd variables are the same as those obtained with the direct method when kis replaced by S.

For an undisturbed steady-state condition the terms on the right side of equatiopi (75) are all zero and the trivial
case exists. However, if a disturbance such as a control pulse or a gust io Jut uced, a dynamic motion problem
is generated.

Suppose an aircraft in steady level flight encounters a gust. The term a' (0)* is then different from zero, and
the solution of equations (75) for the pitch angle may be expressed in determinant forms. Thus,

[2(CD)o+27s)] [CD, - (CL)o] 0

'(o) [2(C)o] [CL,. + (CD)o + 21s] [27]

I o [c. + .• -, sE-
0I. . V 2V.J

9(s) ,-(76)i

[2(C)o + 2,s] [CV. - (CL)o] [CL,)(]

[2(c,.] [CL. + (CD). + 2,s] [-- 2]

0 C[cM.+ C - ] 2V. 8 1CQN CIV 0

Expansion of the above determinants results in a quotient of two polynominals in the transformed independent variables.
The denominator determinant expands to the characteristic equation of the direct method (see equation (74))..

The solution for the pitch angle 0 as a function of time requires application of the inver transformation of 0(s). "Tus,
00t, - -- [06,)]

In order to simplify the inverse transfornmtion, it is usually expedient to separate the expansion of equation (72) 1
into partial fractions. This procedure then requires finding the roots of the denominator or charactmistic equation.

The zeros (roots) of the denu.minator of equation (76) have the same significance as the roots of the characteristic
equation (74) in determining the modes of motion as shown in figure 24.

MATRIX METIIOD OF SOLUTION

A method of solving the equations of motion using matrices is presented in reference 29. Thi is a procedure more
readiiy adapted to machine computation methods than to analytical methods.

Briefly, the procedume consists of a stepwise integration of the differential equations with a Maclaurin series expansion
used in each cowpawtiou st" to achieve any ieaired degree of iccuracy. This method is a rather speclalied technique,
and the readar is referred to the citel reference fer the detailed explanation of the method.

COMIU)TV MEIUOOKff 0F SOLUVON

The development of modemn mbchiie-computing equipment has opened the way for many new and varied analyses to
be undertaken. Problems that are impractical to solve by l•ngthy hand-computation methods are readily computed by
high-speed digital computers, Problem that involve nonlinear equatioas may b solved quickly on an nadog comnpter.
The use of ma4iaa computation methods &lso permit* more variables (degree of freedom) to be cosmiderd and
reduces the number of approximations or as.mptiona that must be made in order to facilitse solution of a problem.
Machine cn•mputation methods thus provide 4 large increme in t6- smount scope, and accuracy of analysis possible in
many problems.

It io beyoad Wte scope v- this reepart to present a complete Jiuco'rve on machiae-computian methods. The pas-
graphs ht follow provide some smendl background iafolmatioa and references for detailed treatment of the sa*ict.

"ADlof .the a dit tim ss. t 'o& as 4(0). %'(O), A-. oacetiag as the right sWe equatiose (75) skeid be p m p so 4, dw ve

at 46 + 4ý ae*.
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DIGITAL COMPUTER

Electronic digital computers have been developed to a very high degree as fast, automatic computing systems. The
digital computer is a device that automatically performs the basic operations of arithmetic. It performs these operatiorn
in a sequence prescribed by the program for a given problem. Since the digital computer functions as a mechanical
desk-type calculator, it is capable of very precise computation (many significant figures). Any problem that can be set
up for hand computation can, in principle, be programed for an automatic digital computer.

Reference 30 offers a thorough presentation of the principles and features of digital computers and data proc-
essing. The matrix method and the solution of the characteristic equation in the preceding Sections are examples
of calculations that may readily be programed for a digital computer. Iterative processes and decision-making
routines may be incorporated into a digital program.

The digital computer can perform very complex calculation routines that involve comparison with previously computed
or reference data and can then choose a procedure according to one of several alternate subroutines. This is accomplished
very rapidly and very precisely. The. digital computer is used most advantageously in stability and control calculations
for making large numbers of calculations of a given type, such as the response to arbitrary control functions or the
dynamic behavior of a flight vehicle with a well-defined automatic control system.

ANALOG COMPUTER

Analog computers are a combination of electrical and mechanical components. These components are selected and
arranged so that the differential equations of the analog system are dual to* the differential equations for the problem
being studied. Electrical components are used in most analog codiputers. Reference 4 gives a resume of analog compo-
nents and their basic function. References 30, 31, and 32 are comprehensive texts or handbooks cover.ng the design and
application of analog computer systems.

Certain features of analog computers are quite different from those of digital computers. The electrical analog system
operates with either the current or the potential in a component circuit representing a variable of the problem being
studied. Thus data are continuous and all operations are simultaneous, while the digital computer must follow a pre-
scribed sequence of operations (program) on distinct pieces of data. The accuracy of an analog computer depends upon
the precision and quality of its components. Analog computers are generally less accurate than digital computers.

The analog computer has been used extensively in airplane stability and control analysis. It is readily adapted to solving
the equations of motion when nonlinear characteristics must be included.

A very useful application of analog computers is the flight simulator, since it can calculate in real time. This device
extends the anaiog simulation to include duplication of the cockpit, controls, and flight instruments. Simulators have
been built ior many different types of aircraft and used for flight research and for familiarization and training of pilots
and Bight crews.

APPROXIMATE SOLUTIONS

Frequently approximate solutions of the equations of motion are useful. Preliminary estimates and quick evaluation
of flying qualities often require drastic simplifications of an analysis. The paragraphs that follow present some useful
approximate solutions of the equations of vehicle motion.

*Of the same form as.

83



APPROX!MATE FORMULAS FOR SMALL-DISTURBANCE MOTION

Relations resulting from approximate solutions of the equations of motion are listed in table 26. These formulas
are developed from the small-disturbance equations of motion along stability axes in table 22. Approximate quan-
titative values for the characteristics of the normal modes of motion are provided by these relations. The informa-
tion in table 26 is adopted from a similar tabulation in reference 3 and utilizes the notation of table 18.

TABLE 26

APPROXIMATE FORMULAS FOR SMALL-DISTURBANCE MOTION

Period (sec 1 Damping Ratio Time Constant (sec)

Low Frcquency 0.1.38 V. (fps) (C,,l.
ýLongitudir~al Root Pair or

or (Phugoid1 0.234 V. (knots) (C
Symmetric

Modes High Frequency C,C +C &2V()
Root Pair 22 C. -- CL.

(Short-Period C 2V. 2(C
Mode I 2

- Small Real 2r (C.,0CI, - CI'C.PI
Root

(Spiral Mode 
C

Large Real C'x
Lateral Root

or (Roll C,,
Asymmetric Subsidence)

Modes _ _ _ _

Root Pair 21rCz___ Cr 2V. 27i Dutch Roll i _.0 -+ ___
1, TXC'xz CIOC|

, c 1 2 C.0 C,- + CCx

(this is a rolatively poor approximation)

TNotation is defined in table 18.

iZability axes are the axes of reference.

narping ratio is the ratio of damping to critical damping.

APPROXIMATE FORMULAS FOR RESPONSE TO CONTROL INPUT

Approximate solutions for the response to control input and for maximum accelerations are useful for preliminary esti-
mation and checking of vehicic motion. Several items are included below that provide estimates of response to c<,ntrol
deflection, maximum acceleration, and roll rates. Notation for the relations in this Section is given in table 18

1. LOAD FACTOR DUE TO CONTROL DEFLECTION

In horizontal symmetric steady flight the derivative of normal acceleration (load factor) with -respect to control deflec-
tion is given approximately by

dn V. Cm. C,6 - C. C F.,
d g CZ C C.. (C7 .
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2. MAXIMUM ROLL VELOCITY

The maximum-rolling-velocity approximation is obtained from the linearized equation for moments about the X-axis,
which is solved for the steady-state, single-degree-of-freedom case. The approximate equation for maximum steady
rolling velocity is then

S(/.P,, •Cla C,":C (78)

W-.- - C,: ~-- C (78

3. MAXIMUM ANGULAR ACCELERATION

Maximum angular accelerations resulting from control actuation are sometimes needed in aircraft design work. A simple
relation for maximum angular acceleration is given below.

First it is assumed that the applied moment coefficient is represented by the function illustrated in the sketch below.

A single-degree-of-freedom approximation may be used; however, static stability is neglected in the case of yawing and
pitching motion. Under these conditions the maximum angular acceleration occurs at t - t3 and is given for the rolling
case by the equation

C-- Co , ,to (79)

Similarly, the equations for maximum pitching and yawing accelerations are

S c.. r c.. to (80)

r.- C.., e cz,

Cl 0 . C no or c o

C.

Co

ti TW, •t(aeo)
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SECTION 7. SPECIAL PROBLEMS

INSTRUMENT READINGS

In the analysis and the automatic control of vehicle motion it is frequently desirable- or even necessary- to utilize

several types of instrumentation. Instruments may be used to indicate the attitude of a vehicle or to measure vclocity

and acceleration components.

The following Sections present relations and equations that are useful in the resolution and interpretation of instrument

readings. These relations are adapted from references 9 and 19.

ATITUDE-MEASURING INSTRUMENT READINGS

Vehicle attitude is usually determined from a system of gyro instruments. The rotation angles of the instrument about

the inner and outer gimbal axes are related to the vehicle orientation angles W, 1, and 0. The conventional free

vertical and directional gyro system is shown in figure 25.

GDo

VERTICAL GYRO . X DIRECTIONAL
INNER GIMBAL GYRO OUTER

GIMBAL "DIRECTIONAL GYRO

VERTICAL GYRO SPIN AXIS
"OUTER GIMBAL X

DIRECTIONAL

VERTICAL GYROY
IISPIN AXISR

VERTICAL GYRO Z

DIRECTIONAL GYRO

FIGURE 25 CONVENTIONAL FREE VERTICAL AND DIRECTIONAL GYRO SYSTEMS

From the above figure and the relations for the orientation of vehicle body axes, figure 19 and table 11, t!:e gyro

equations below are developed.
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Vertical Gyro

G ,, -sin'1 (cos e sin 9 + sin el coo A cos 8) (82)

- sin 0 cos 0 )

cos t cos 4) cos -- sin e sin

Directional Gyro

G,,1 sin-' [cos I (cos 'V cosI sin e + sin ' sin -0) + sin el cos %P cos 03

S- t sin (cos0-sin 0 sin +os c (83)

cost cos 0 cos T i sine )sinT -+cos% cos(83)

where

G,,, G,, are rotation angles about the inner gimbal axes of the vertical and directional gyros, respectively.

Gv,, G,,. are the rotation angles about the outer gimbal axes of the vertical and directional gyros, respectively.

is the angle between the outer gimbal axis of the vertical gyro and the vehicle X-axis (this is also the

angle between the vehicle Z-axis and the directional gyro outer gimbal axis). The subscript I denotes

reference to instrument axes.

1, 0, 0 are the orientation angles of the vehicle body axes as defined on page 11.

The gyro systems shown in figure 25 and analyzed in equations (82) and (83) are. for the most simple form of free

gyro. More complex attitude- and d~rection-sensing instrumentation is used in many advanced vehicles. The output

indicatiens of gyro-instrumented stable platforms in terms of. vehicle attitude are derived in reference 33. The

attitude output eignals of other fire-control and navigational devices are discussed in references 34, 35, and 36.

VELOCITY-MEASURING INSTRUMENT READINGS

Velocity components are generally measured by instruments that are not located at the vehicle center of gravity. In

addition, the orientation of these instruments may not coincide with the vehicle-orientation reference axes (body axes).

Thus, even after instrument errors and position errors (sidewash, upwash, etc.) are accounted for, the velocity com-

ponents of the vehicle center of gravity are not given directly by these instruments.

A general set of instrument axes may be used having its origin located by a vector r from the vehicle center of gravity.

These axes may be oriented with respect to the vehicle body axes system by the angles #1, 01, and #1 as indicated in

figure 26.

The velocity vector on instrument axes is given by the equation

V, - V + o X r (84)

In this equation the separate vectors are given by the relations

V. -U, i, + V, j, + W. k • (Instrument velocity)

V -Ui + Vj + Wk (Vehicle linear velocity)

0) - Pi + QJ + Rk ('Vehicle arigular velocity)

r .xi + yj + zk IInstrument location vector)
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Ile general tiotation in these equtions is defined on page 9, and the subscript 1 denotes instrw,;ent axes.

Expreessag equeftion, (84) in Cartesian form and applying the transformation matrix for Case I of table 2 to de-
scribe the orientatiw of the imatrusmet axes results in the equations below for the velocity components along
instrausut axes.

EELDOY AXE PLNE

FIGIJUR BOD GEERLINTUMNAE

(W Qx Py) Zi4cs,(6

Uj- ~ ~ e. (U(U + z) -Ryios+Qz (V- s+ X1 c os~a~in sin~zi -(W-Qx P)sis

+ (V - Pz + Rx) (sin 3 cos sin r9, s -a0 coe *, sin#

+W W-Ox + Py) csin4ncos 0 (6

simnplification' of the expressions for the angles of attack and uideslip, respectively.



t- tan-' WI(N-( W,)

ACCELERATION-MEASURMG INSTRUMENT READIlNG

The acceleration-measuring instruments are located and oriented in much the same way as the velocity instruments,

i.e., displaced from the vehicle center of gravity. Therefore the instrument accelerations must he related to the vehicle
center-of-gravity acceleration.

Linear accelerations along instrument axes are given by the equation

ii, - + -,x V -Z X r +,, X (& xr) (88)

The vectors, in addition to those given in equation (85), are expressed below.

z -- Ux -l-+ V j,-+-W k, (Instrument acceleration)

_& UI + Vi + W (Vehicle linear acceleration) 8

i- t 1 + QJ + ik (Vehicle angular acceleration)

Acceleration components alonig instrument axes are expressed below. These equations are obtained from equation
(88) and Case I of table 2. The general notation is defined on page 9, and the subscript I denotes quantities
referred to instrument axes.

Uv'. [6U-RV +QW - x(Rs +Q 2 ) + y(PQ -) + z(RP + )cog 40;Cos *

+-[V--PW+ RU + x (PQ+ R) -y 'A- R) + z (QR-P)] cooIsinOk

- [* - QU + PV + x (PR-- ) - +y(QR+1) -- Z(Q*+P1)isinU,

r..[i_-RV+QWx (R2+Q,) +y(PQ--R) + (RP+O)] i

+ [V-PW+RU+x (PQ+R) - y (P3+ R) +z (QR-P)] (sin hinsin1in + cosueam#s ) (90)

+ _QU+ PV + x (PR - Q) + y (QR + T" - • (Q2 + P2)] in #ICOI

(- -RV + QW - x (R' + Q2 ) + y (PQ - ý) + I (RP + Q)J (coS #1 cos 1 Sin + Sin 1 I)

+ -PW + RU + x (PQ + ) - y (P2 + R2) + z (QR - I)] (sinI I coo 4sin Si - Vo S 1i OW#)

+ W- QU + PV+ x (PR--) + y (QR + P) - z (Qs + P2)] IOGs*COG5

The above relations can be simplified in most instances, as was the cas with the previous velocity oUpat equations

There ame, however, vdditionul factors to be considered in a-eeleraiion-neamur d&vcm These faMo ame

1. Effet of gravity force on suspended or pivoted man (aismic elenent).

2. TIe dynamics of the device itaelf; the instrument h14 spring and damping forces a - tW MVN d mass.

3. The edet of amgua acceleration of the inatrummat mounting, whae a pivoted num is osn&'

Detailed analyses of the above items are beyond the scope of the present report. The rea&e- is referred to the

presentatione in references 19 and 37 for these details.
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FUEL SLOSH

Fuel slosh within partially filled tanks is known to affect the dynamics of manned aircraft and missiles. Fuel
slosh introduces additional degrees of freedom, owing to the relative motion of the fuel mass and the airframe.
This Section of the report is concerned with the effects of fuel slosh on the rigid-body modes of vehicle motion.
The literature on fuel slosh contains numerous references to the effect of fuel slosh on the flutter problem. The
latter is not treated here. Furthermore, in some applications, such as flexible boosters for large ballistic missiles
or space vehicles, fuel-slosh, rigid-body, and body-bending effects may all be inseparably coupled. The approach
described in thi Section would obviously require extensions to include the effects of structural flexibility in
such cases.

CONDMTIONS UNDER WHICH FUEL SLOSH HAS BEEN FOUND TO BE SIGNIFICANT

The addition of fuel-slosh degrees of freedom to the equations of vehicle motion complicates the analysis, as may
be seen subsequently. As a guide to the need for this complication, a brief summary is presented in table 27 of
cvriditions under which fuel-slosh effects have been found to be significant.

TABLE 27

SOME CONDITIONS UNDER WHICH FUEL SLOSH HAS SIGNIFICANT
EFFECTS ON VEHICLE RIGID-BODY MODES OF MOTION

Fuel-Slosh Vehicle
Fuel Mass Fuel-Tank Fuel-Tank Natural Rigid-Body Mode*
Total Mass Location Shape Frcqueucy Affected Remarks Ref

> 0.25 Forward of Any Approximately Lateral-directional The mode damping is
Vehicle e.g. equal to (Dutch-Roll) red aced in this case.

rigid-body mode oscillation Unstable roots can 38
appear, leading to
a limit cycle (snaking)

> 0.10 Any Large spanwise Not applic&ble Spiral mode, in Spiral divergence
dimension horizontal flight occurs, as if the vehicle

had negative dihedal. 38
The long.term response to
directionm] control is

. 0.1O Any Large Approzximately Long-period The mode damping is

longitudinal equal to I phugoid) reduced in this case
dimension rigid-body mode oscillation, in 39

hrisntal flight

> 025 Forward of Any Approximately Yaw or pitch The mode damping- "
%ehicle e.g. equal to oscillation in is reduced

rigid-body mode low-speed vertical
flight, as for rocket
take-off

"5.s p, 6 4.

As is implied in table 27, fuel-slosh coupling with the short-period longitudinal mode of rigid-body motion is
usually negligible in horizontal flight. Fuel-slosh effects may be negit cted in studies of this mode. Coupling
exists, of course, for this mode of motion in vertical flight, as in the take-off phase of many liquid-fueled,
rocket-powered vehicles.
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The steady-state relationship between fuel mass center shift and fuel-tank acceleration for closed-top rectangular fuel
tanks is given in reference 38.,These results show that only slight tank accelerations can produce near-maximum fuel mass
center shifts, in many practical cases. As an example, for a typical height-to-length ratio of 0.08 for a wing fuel tank,
80 percent of the maximum possible fuel mass shift is attained for a lateral acceleration of 0.1 g, with the tank half full.

It is concluded that the coupled motions of the airframe and sloshing fuel masses are generally significant for small
disturbances. For large vehicle disturbances, involving large values of fuel-tank acceleration in a horizontal plane. slosh-

ing fuei tends to act as an off-center fixed mass, without dynamic coupling to the airframe, or with discontinuous coupling.

MOTION OF SLOSHING FUEL

In the analysis of fuel-slosh effects on vehicle flight dynamics, sloshing fuel masses are generally represented as mass-
spring-damper single-degree-of-freedom dynamic elements. The natural frequencifs of the analog elements correspond
to the lowest or fundamental modes of fuel slosh.

More complex analogs could be constructed to represent higher frequency fuel-slosh modes in addition to the fui~da-
merntal mode. The forces applied to the airframe by the higher frequency modes of fuel slosh cre relatively small. As a
general rule, only the fundamental mode is represented in practice.

Available data on the fundamental-mode natural frequenc;s for several tank-shapes are stmmarized in figure 28.
The data in this figure are in dimensionless form. For convenience, an auxiliary chart is presented as figure 29,
ior the fundamental-mode natural frequencies of open-top -ectangular tanks, in terms of physical dimensions.

Availeble data on the forces applied to the airframe by sloshing fuel is more limited at present than the corre-
sponding data for natural frequency. For the purpose of this report, the applied-force data are presented in terms
of the 'effective' fuel mass. The effective fuel mass mf izi defi-,ed! in relation to the single-degree-of-freedom
analog of figure 27. If the actual fuel tank and the analog are given the same horizontal and rotational motions,
the effective fuel mass mf, equal to the concentrated mass in t6e analog, provides the same reactions on the
contair.p.r (acting through the spring and damper) as the reactions on the fuel tank applied by the sloshing fuel.

For reference, open-top rectangular data of figure 30 were developed from the equivalent pendulum concept of

reference 40. Evaluation of the transfer function relating applied force to linear and rotational input tank motions

showed that the effective fuel mass mr is equal to the equivalent pendultsm mass of reference 40.

LINEAR iFREEDOM ONLY

.. .. .= ... .. .. . .... ....

....... .... SPRINGD idp R

SLOSHING 'FUL WNGLR-DZ3DORE-OIP-iREEgDOM ANALOG

FIGURE 21 8lNQL3-DIG33Z-OI-F3 i3DOM ANALOG TO SLOSIWO FURL
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