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ABSTRACT 

Consideration is giver to a mathematical analysis of a special 

case of seismic wave phenomena.  In particular, the mixed boundary value 

problem of Love wave propagation in a solid layer over a solid half- 

space is investigated where the layer undergoes an abrupt change in 

thickness. Both the layer and half-space are considered to be homogene- 

ous elastic media. Theoretical background for the physics of the problem 

is provided by presenting the fundamentals of elastic wave propagation 

with specialization to the love wave case and by a statement of the 

physical nature and mathematical form of applicable boundary conditions. 

Interest is focused on the amplitudes of the transmitted and reflected 

Love waves relative to the magnitude of the excitation, i.e., the trans- 

mission and reflection coefficients, for a range of both the "strength" 

of the discontinuity (magnitude of change in thickness relative to layer 

thickness) and the layer thickness. The analysis employs scattered 

fields in the form of integrals in the complex plane; boundary conditions 

are applied to the total fields. To satisfy the resulting equations for 

the boundary conditions, the nature of some of the unknown coefficients 

in the scattered field integrals is postulated and a function-theoretic 

argument is employed to determine these coefficients. The transmission 

and reflection coefficients are then extracted by a standard appeal to 

the calculus of residues and the anergy contained in the diffracted 

fields is evaluated. Both displacement amplitude and energy coefficients 

are displayed graphically as a function of the parameters h and H. The 

results presented show that the reflected energy constitutes less than 

one percent of the incident energy for all crust thicknesses considered 
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here. The amplitude transmission coefficient relating the relative 

magnitude of the displacements of the transmitted and incident waves 

is shown co take on values greater than unity for low frequency and 

an energy analysis shows that this behavior does not violate the prin- 

ciple of energy conservation, A comparison reveals that the results 

shown here are in close agreement with those given by Knopoff and 

Hudson (reference 8). However, a discrepancy does exist for inter- 

mediate values of crust thickness and is discussed in son« detail. 

s- 

: - 

iii- 



LIST OF FIGURES 

FIGURE PAGE 

1. Geometry of the Problem  47 

2. Modified Geometry of the Problem  48 

3. Roots of the Period Equation (24)  49 

4. Fundamental Love Wave Phase Velocity  50 

5. The complex u - Plane  51 

6. v - Plane Contour for Transmitted Fields  52 

7. v - Plane Contour for reflected Fields  53 

8. The Transmission Coefficient |T2|  54 

9. The Reflection Coefficient JRj  55 

10. Percentage of Incident Energy in the Transmitted Love Wave .... 56 

11. Comparison of |TT| with the Results of Knopoff and Hudson  57 

12. The Coefficient |T2| via the Method of Knopoff and Hudson  58 

13. Percentage ot  Incident Energy in the Transmitted Love Wave 
via the Method of Knopoff and Hudson  59 

14. Comparison of Approximate |TT| with the Results of 
Knopoff and Hudson. , • . . 60 

-vi- 



TADLE OF CONTENTS 

CHAPTER PAGE 

I.   INTRODUCTION .......     I 

II.  FUNDAMENTALS OF ELASTIC WAVE PROPAGATION   4 

Boundary Coaditions ,   8 

III. 

Love Waves » . . «  t . • •  8 

CONSTRUCTION OF THE SOLUTION 12 - 

IV.  TRANSMISSION AND REFLECTION COEFFICIENTS 21 

Evaluation of the Total Fields    21 

Energy Considerations. ............*... 

Graphical Results  

V.  CONCLUSIONS. . . . a   

BIBLIOGRAPHY   

APPENDICES o . , o  

A, Factorization of £(u) . .   

25 .■"-1 

.~. 
-" 

29 
. _■■■ 

-"•■.' 

36 : 
^;- 
-:-: 

39 
- 

40 r 

40 

-V- 



INTRODUCTION 

Recently, considerable progress has been made in the theoreti- 

cal analysis of wave characteristics of various complicated structures 

that approximate seismic discontinuities. Deyond the results that they 

can supply, these analyses are important both as an indication of their 

usefulness in examining other problems, and as groundwork for an in- 

sight into more physically realistic situations. The problem considered 

here is that of Love wave propagation in a surface layer over a half- 

plane substratum. The osj£ct of the analysis is the determination of 

the amplitude coefficients and energy associated with the transmitted 

and reflected Love waves which occur when a Love wave is incident upon a 

discontinuity in the layer. The topic is of considerable geophysical in- 

terest because it is an approximate model of seismic wave interaction 

with the continental margin and other discontinuities in the earth's 

ciust. Although the problem has been considered by other authors, e.g., 

references 8 and 13, in most cases these analyses lack graphical results 

or include approximations which limit the range of accuracy. 

A geometrical model for the problem is shown in Figure 1; a 

fundamental mode Love wave, propagating toward the right in the surface 

layer, or crust, of thickness h, encounters a discontinuity where the 

surface layer thickness becomes h + H, Rigidities, densities, and ve- 

locities of shear waves are taken as |i., p., 0. in the surface layer and 

^2, p2, So in the semi-infinite substratum or mantle. The region above 
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the crust is taker to be free space.  It will be shown later that, in 

order for a Love wave to exist in this crust-mantle structure, 62  and ii« 

must be greater than S, and lij, respectively. The origin cf coordinates 

is taken at the lower edge of the step change in crust thickness, the 

positive x direction being the direction of propagation and the z-axis 

pointing into the mantle. 

Unfortunately, the geometry of Figure 1 leadr> to a difficult 

boundary value oroblenu  In order to facilitate a solution, a modifica- 

tion of the geometry identical to that used by Kane (reference 7) is 

appUed to the structure.  It is felt that this modification alters the 

problem only slightly for small changes in layer thickness. The free 

surface boundary x-o,-H^2^0is extended back to x - - « as shown 

in Figure 2.  In ;,rder to preserve the free surface of the layer for 

x < 0, this extension is performed in such a fashion that there is in- 

finitesimal separation between the newly introduced waveguide and the 

surface layer ot thickness h, i.e., a thin fissure along the negative 

x-axis that prevents transfer of radiation across that boundary. 

Since the wavelengths of seismic vibrations associated with 

the problem are very long, it is felt that the addition of the new 

acoustic duct introduces at most only minor perturbations into the pro- 

blem.  Indeed it is to be expected that very little energy would propa- 

gate into this duct because the frequencies are in many cases below the 

cut-off, and because the duct is in the backscattered direction of the 

assumed excitation. 

Finally, the media of both crust and mantle are taken to be 

Isotropie elastic solids.  In this case the number of elastic constants 

i 



(which in the. generalized form of Hooke's law is 36) degenerates to two 

(page 5 of reference 5), greatly simplifying the stress-strain relations. 

In Chapter III, the case of slight damping is assumed, but this is solely 

for temporary mathematical convenience and should not be considered an 

indication of imperfec. elasticity. 



II 

I 
FUNDAMENTALS OF ELASTIC WAVE PROPAGATION 

1 
Is 

The problem being considered concerns the propagation of 

elastic waves in isctropic media. Therefore, an outline of the theory 

of motion in elastic solids and the concomitant equations of motion ia 

pertinent. A classic treatment of the material that follows is found 

in reference 14. 

Consider a point P in a deformabic body with retangular 

coordinates x» y, z being displaced to a now position x+ufy+\,z
+w. 

It is assumed that the displacements are small enough so that second and 

higher order terms occurring in the stress and strain components may be 

neglected. Then the general form of the stress-strain component relations 

becomes linear (reference 14). 

From the theory of elasticity, the arrays 

(1) 

and 

(2) 

e 
XX 

e 
xy e 

xz 

V e 
yy 

e 
yz 

e zx 
e 
zy 

e 
zz 

p rxx p rxy Pxz 

V p fyy Pyz 

Pzx Pzy Pzz 

represent the strain and stress tensors at P, respectively.  Since 

e  - e .... and p  - p , ..., these arrays are symretrical. 
xy   yx'        rxy  ryx' 



If the coordinate system coincides with the principal pxes, the shear 

components of stress and strain vanish. Then the deformation &Z  P is 

completely specified by the corresponding extensions (neglecting higher 

order t'rr^ 

/•N du öv dw 
(3)      e  "T~»  •  "IT" i  •  "^- XX  Sx '   yy  oy '   zz oz 

and the stress at P is specified completely by the principal stresses 

Pvv» P » P- corresponding to these axes. 
«wv  yy  BS 

Consider a minute portion of the watter enclosing P which 

undergoes deformation. The cubical diaiation 6 is defined (reference 3) 

as the limit, as the surface area approaches zero, of the proportion- 

ate increase in the volume of this matter and is equal to the sum of 

the principal extensions associated with this deformation: 

(4)      8-e  +e  +e  -l~+T" + ^~ XX   yy   zz  ox  oy  dz 

For a derivation of the equations of motion, consideration 

is given to the stress components (2) across the surfaces of a volume 

element with oimensions Ax, Ay, and Az. The equations are obtained by 

adding the forces acting on the element and the inertia terms 
d2 

-p —r AxAyAz,..., for each component. This summation yields: 
dt 

as iLü   Pxx . pvx ^ pzx 

dt    dx    oy    dz 
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do)     p H - U + ^ + ^ 
at 

P  .2  ^  ~öy 

2 
(u)    p i-S - (x + n)|§ + ^v2w 

at2      dz 

d2 a2 
Note that -s-r has been replaced by —r in the left-hand side of (9)-(11). 

dtZ ' at 

- 

.2   dp    dp    dp 
(6) ^JL-JZL + JZL + JZL 

dt    dx    dy    dz 

,2 dp dp    ap 
/t\ d w   rxz .  rvz ,  rzz 
(7) p —2 -    —     

dt    dx    ay    dz 

In these expressions, body forces are assumed to be absent and p is the 

density of the medium. 

Assuming that the media involved can be represented by Iso- 

tropie elastic solids, the stress-s-rain relations may be written in 

terms of two elastic constants (in this case the Lame constants X and \x 

are arbitrarily chosen) in the following manner (refe^-^e b)'. 

-.«  « au / au ^ av * 
p  -Xe+2KiT-        P  -H(T" + T') *xx       ax      *xy   ay ax 

(8)     p - xe + 2n |^      p - u( I1 + Is ) *yy ^ dy ^yz      dz   dy 
I 

p  - xe + 2^ |H       p  - ^( |H + |ü ) rzz dz        rzx     dx  dz 

Using (8) in '5)-(7) results in the equations of motion in terms of the 

deplacements u, v, and w of a point in an elastic solid: 

■ 

2 
(9) p 2-5 - a + tff- + nv2u 

dt      x 
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The justification for this has already been mentioned, i.e., that the 

second powers and products which constitute -7ic difference between the 

expressions are assumed to be small - ignoring these products linear- 

izes the differential equations. The theory developed on this basis 

has been called "infinitesimal strain theory" (reference 3). 

It is convenient to express the displacements in terms of a 

scalar potential 0 and a vector potential itiii,,$2*^'J  aS foU0«3! 

(12)      s(u,v,w) - grad 0 +  curl iK*]^'^»^) 

Substitution of (12) into (4) yields: 

(13)     9 - v2* 

An expansion of (12) gives displacement components in terms of 0  and $.■ 

Substitution of the expression for u from (12) and 0 from (13) into (9) 

gives; 

2 2 

^( p^)+^(pPl)"^(p17) 

(14) 

/i ,  \ ö „2^ A   d _2^     d ..2L      d  2 - (X ♦ H)^ V * + ^ V * + ^ - * *3 - H ^ V ^ 

This equation and the two others that result from the substitution of 

(13) and the appropriate component from (12) into (10) and (11) are 



satisfied if the functions 0 and #. are solutions of 

F 

(15)    v2,.^'   A-^^T' 
a öt^        *  0^ öt

Z 

where 

i « 1,2.3 

"«     --7^.  B-V k 

provided that p is independent of the coordinates x, y, and z. Equa- 

tions (15) are the reduced wave equations, and «-hey indicate that the 

existence of two types of waves with velocities a and 8 is possible in 

an isotropic elastic solid. 

BOUNDARY CONDITIONS 

Since the problem deals with bounded media, some special 

conditions expressing the behavior of stresses and displacements at 

boundaries must be included. Xn particular, at the free surface of a 

solid, all stress components must vanish and, assuming that solid media 

are joined perfectly at the surface of contact, all stress and dis- 

placement components are continuous across the Interface between two 

media. 

LOVE WAVES 

Under the assumptions of small displacements and the absence 

of body forces the first section of this chapter has shown that two types 

of disturbances, governed by the vave equations (15) and with velocities 

given by (16), can travel in a homogeneous isotropic elastic solid. 



In addition, the previous section states the conditions that the 

stress components (8) and/or the displacemsnts are subject to at 

the boundaries ox the «nedia. 

The waveform of these disturbances is influenced by the 

particular geometry of the physical environment. For the stratified 

structure of this problem, Love (reference 10) has shown that one of 

the possible disturbances consists of horizontally polarized shear (SH) 

waves which, in the notation of Figure 1, means that displacements are 

in the y-direction (v component). Although other types of disturbances 

are possible in this structure, the concern here is with these SH waves 

which are called Love waves after the person who provided their explana- 

tion. 

For monochromatic vibrations, a time factor of e"   can be 

suppressed. With u - w - o and the displacements independent of the 

coordinate y, the equations of motion (5)-(7) reduce to 

(17)      (72+ kl  )v, - 0 
81 i 

for the layer and to 

(18)      (V2+ kl  )v9 - 0 B2 z 

for the substratum, where 

tu UJ 

8^  8j      82  83 
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the shear wave velocities 3. and 02 being given by the second expression 

in (16) with v and p subscripted appropriately. For a crust thickness 

t overlying a halfspace and the coordinate system oriented as in 

Figure 1, with origin at the free surface, assume displacements of 

the form 

(20)     v. - V A(v) cos (s.z) eivx,    0 < z s t 
i   o. 1      ' 

(21)     v -Ve-S2(a-t)+lvX. z>t 2o 

where 

(22)     s^ VYl- V,/l|-)
2.l -^2 . „2 

(24)      ta^s.t) - -« - -2-2 
1    *l*i       ^lsl 

The real values of v that satisfy this period equation are the 

- 

. 

c - phase velocity of the Love wave 
1 

and V is an arbitrary amplitude constant. The boundary conditions 

require that the stress p  vanish at the free surface z - o and that 

^Zy\  " ^pzy^2» vi " v2 at the interfac« « - t. By (8), with w - o, 

(20), and (21), application of these conditions results in A(v)-sec(s t) 

and, for a non-trivial solution, the period equation 

- 

; 
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propagation constants v ■ — of the Love wave (Note that  -v are also 
n  c ti 

t\ 
roots of (24) by virtue of its evenness in y). Figure 3 shows a plot of 

the curves representing the right and left hand sides of (20 as a func- 

tion of the parameter s.t. The intersections shown by the circles de- 

fine the values of v   which are real roots of the period equation and 

correspond to the various possible modes in the crust, where c is the 

phase velocity of the n— mode. In practical seismology, where much of 

the total energy is associated with the smaller values of v (longer 

wavelengths), the fundamental mode (s.t < IT/2) is of prime importance. 

For this problem, the excitation will consist of only this mode. Although 

the constructed solution will be in general a superposition of all possible 

diffracted modes, transmission and reflection coefficients for the higher 

order modes will not be calculated. 

The appearance of the radicals s and s in the displacements 

(20), (21), in the light of (22), (23), and (24) requires that k <v <k 
$2   n  Pi 

or $1 < c < ß , Also, it can be shown that $2 < ßl produces no relevant 

solutions. From this fact and the expression for 0 in (16) it is estab- 

lished that the existence of a Love wave is contingent upon p., li« > g. ,1^. 

respectively. 

The phase velocity c is a function of the layer thickness t. 

Figure 4 shows this functional dependence by a semi-log plot of c/ß, vs. 

the parameter vt for the case iWl-1! " ^•^» ^M^l * ^'29, where c is the 

first mode phase velocity. The parameter vt is a measure of crust thick- 

ness. As t -♦ es, c/8, -• 1, i.e., as the crust becomes a half plane the v. 

portion of the Love wave approaches a plane wave traveling with velocity ßt. 

On the other hand, as ut -• o, c/fl. - 32^1 and tlie v2 Portion of t^e wave 

approaches a plane wave with velocity ß?* 

V 
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I 

III 

CCWSTRUCTION OF THE SOLUTION 

Now that the form of the elastic disturbance, the stress rela- 

tions, and the boundary conditions for the problem at hand have been es- 

tablished it is possible to assume a fundamental Love wave excUatlon and 

proceed with the solution. 

For the structure of Figure 2, this excitation takes the form 

(omitting e"1^) 

iax vil " Ai(a) cos C3!^^ e  :  0 i z s h 

(25) 

Vi2.e-s2(a)(Z-h) +1«   z>h 

06 < X < 08 

where 

(26) sl(v) "^ß - v2'     s2(u) "7^ " k0 .     AjCtO-secU^tOh] 

The root u - a of the period equation 

^o so  (w) 
(27) tanCs.dOh] --i-^ 

1 ^ s1 (u) 

for x < 0 is the propagation constant tor this first mode incident wave. 

As a matter of referenc this incident field is assumed to have unit 

displacement magnitude at the interface z - h. Transmitted and reflected 

■ 
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wave amplitudes will be compared with this unit reference. 

It should be noted tb-'t the period equation (27) for x < 0 

arises from the stipulation that solutions of the boundary condition 

equations are non-trivial and is thus an essential aspect of Love wave 

formulation. Therefore, the transmitted Love wave has a propagation 

constant K - w/c' which is a root of the period equation for the region 

x > 0 where this equation is identical to (27) with h replaced by h + H. 

As the initial step of the procedure one seeks to add scatter- 

ed fields v ., v « in the crust and v « in the mantle such that the 
si  s3 si 

total fields 

(28)     v - v _, - H ^ x i 0, all x 3   S3 

(29)     v1 - vil + vsl, 0 < z S h, all x 

(30)     v2 - vi2 + vs2, z > h, all x 

satisfy the homogeneous wave equations 

(31) (V2 + kf ) v. - 0, - H * z * 0, all x 
n    J 

(32) (V2 + k* ) v - 0, 0 < z s h,  all x 
n    L 

(33) (V2 + k2 ) v9 - 0, z > h,  all x 
h     l 

and comply with the dem-nds of the boundary conditions 

(34) (pzy)1 - (pzy)2 , z - h, all x 

(35)    v ■ v , z » h, all x 
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(36)     (p ), - 0,  z - - H,  all x 

(37) 

(38) 

(p_)3 - 0,  z - 0, x < 0 
zy 

^z^l - 0, z - 0, x < 0 

(39)     (p )3 - ip   )v    z  - 0, x > 0 

(40)     ^'i " vl» z " 0, x > 0 

- 
l 
I 

Also, except for the incident fields, v., v2, and v« should represent out- 

going waves and be bounded and continuous at the origin or edge of the 

fissure. 

Arbitrary solutions of the reduced wave equations (31)-(33) can 

be written as follows: 

i    r r c(v) 8in ^si(z-h^ . P(V) cos tsi<*-h)3 -i ivx i 
(41) vsl " 2^1   J L  T% cos s^  s, sins.h f       dy 

C 1 i 11 

(42) 

(43) 

where 

v        . -L.   f    lÜl e-82(z.h)   +   iWX 
s2      2TTi J    6(v) c 

dv 

1   p  B(u)  cos Cs^z+H)]      iux 
Vs3"-2^J    s,  sins^    e        dv 

ell 

(44) 6(u) - Sj sin Sjh - ~ ^2 co8 slh 

and s  , s    are given by (26).    The coefficients B(v), C(u), D(y), and F(v) 

are unknown functions of u and C is some contour in the complex v-plane. 
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At first it seems that the form of (41)-(43) introduces undue complexity 

into the mathematics but it will be seen that these expressions lead to 

simple boundary condition equations, thus facilitating solutions for the 

unknown coefficients. 

It is mathematically convenient to assume a small imaginary 

ie 
part, proportional ^o e , in the propagati .\  constants k , k  and in 

81  02 
the roots a, K associated with the regions x < 0 and x > 0 respectively; 

that is, 

PI  PI       P2 h 

(45) 

a - |a|ei€   ,    K - |K|e 
ie 

This assumption causes the fields to possess a slight attenuation in the 

direction of propagation; in the final analysis e will be set equal to zero. 

Vertical branch cuts from the branch points ± k  are so chosen that the 
P2 

cut v-plane shown in Figure 5 represents that sheet of the Riemann surface 

2 .2 
for which Re / i/- k* > 0. v    ß2 - 

By (8) with p  ■ p , application of the boundary conditions (34) 
y  yz 

(40) to the total fields (28)-(30) yields, from (34): 

,. - ».Civ)        v 30  F(y) -, 

c     i 
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from (35); 
"' 

■ 

(47)       i r r   m   . m i ^ du - o. .«<<.< • 
2ni . L s.sin s.h  6(u) J          ' 

C    1     i 

■: 

The form of v  is such that (36) is identically satisfied. 

- 
From (37): 

-' (48)    an J ^i B(w) eiVX ^ " 0' *<0 
c 

- 

i from (38); 

■- 

f 

i 

(49) 

from (39): 

^ J Hj [c(v) + D(u)] eiwx du - 0,  x < 0 

(50)     ^ J [B(V) - C(u) - D(u)] eivX du - 0,  x > 0 
c 

Finally, the condition that expresses continuity of displacement at 

z - 0, x > 0 includes a non-zero contribution from the incident Love 

wcve. For x positive, this excitation can be written 

C       U-Q, 

(52)      vi2-äuJ —r:—e   du 
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by the C  hy Integral Theorem. The boundary condition (^0) yields: 

. r    B(y)cot s.H     A (a)      C(u)tan s.h - D(vOoot s h-, 
(53)^r J [- —T~ - -^T + ~, ^J'  du ■0- C i 1 

for x > 0. 

A beginning toward satisfying the above integral equations 

(46)-(50) and (53), is found by postulating the nature and behavior of 

some of the coefficients in certain regions of the u-plane. Equation (48) 

if*  satisfied if B(y) is analytic for Imu < Ik | sin e and is of the order 
-e, ..  ,   ,_ ^2    _     ... 

v      (e.> 0) as |v| •« « in the specified half-plane of analyticity. Then 

the integral will vanish by Jordan's Lemma (reference 9). This postu- 

lated behavior is denoted by writing B(v) as B"(v). Equations (49) and 

(50) are satisfied if 

(54)     C(u) + D(v) - B"(v) 

Consider next (46) and (47) which hold for all x. Equating the integrands 

to zero and solving for C(v) and D(u) yields: 

H9 s cos s h <55)      CM ' ■ ^ -hnr1-FM 

s.sin s.h 
(56)     Dd;) - i f—    F(u) 

Inserting the expressions into (54) with 6(v) given by (44) results in: 

(57)     Ku) - i"(u) 
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THUS, F(y) has the same behavior as B~(v) for liny < |k | sin e, 

i.e., F(v) A F"(y). The last equation to be satisfied is (53). 

With F(u) - B"(y) and C(u) and D(u) given by (55) and (56), (53) then 

becomes 

(58)      2^rIG(u)eiWXdv " 0'  x > 
c 

where 

A.(a)  r cot s.H  |JI s_ sin s.h  cos s.h - 
(59)     G(V)= - -*  + -  i- - 2 Z .. / -  .,  }    V(u) 

v-a   L    s.     II.S 6(u)      6(u)  J 

This last boundary condition equation is satisfied if G(u) is analytic 

"e2 
for Iray > - |k | sin e and is of the order v  (e0 > 0) as jvj -♦ « in 

P 2 ^ 
this half plane. This behavior is denoted by writing G(v) as G (v). 

Now the problem becomes that of solving for the unknown co- 

efficients of the scattered fields, particularly B"(y) which has the 

postulated behavior. 

Since (59) is the only expression available for the extrac- 

tion of the unknowns it becomes necessary to introduce a function- 

theoretic argument based on the Wiener-Hopf technique (reference 12). 

For convenience let 

cot s.H   |i s„ sin s.h  cos s.h 
(60)      E(u) - -  - rj .  * -  ., ! 

Sj      lijSj 6(y)      6(u) 

Provided that it has certain properties, E(y) may be expressed as 

(references 2, 11, 12, and 16,) 
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(61) E(V) - 2-ll2l 
a "  (y) 

where 

1. a     (u) is regular and zeroless for Imu > -  jk    | sin e. 
92 

2. j * (v)    is regular and zeroless for Imu < |k0 | sin e. 

3. ja  (v)j,|a " (y)| lie between positive bounds in their 

respective domains of regularity as juj becomes large. 

Consequently, (59) can be rewritten, on dividing through by CT 
+ (u), as 

A (a) 
Subtracting  *—^  from each side gives 

(v-a) a      (a) 

(63,      s^i.li^ir--i_ ._L_i.Oa.._VfL_ 
CT  (v)    " aLr+ (u)  CT 

+ (nlJ  CJ'CV)  (v-a) cr+(a) 

An inspection of (63) reveals that the left hand side is 

regular for Imv > - |k j sin f and the right hand side is regular 
e2 

for Imtf < |k j sin e.  In addition, because of the assumed growths of 

+       . 2 
G (v) and B (u) for large Jy|, these functions tend to zero as |vj -« • 

in their respective half planes. 

By the previous paragraph and the overlapping regions of 

regularity shown in Figure 5, each side of (63) is the analytic continua- 

tion of the other (reference 15) and thus defines an entire function. 

Invoking the Liouville Theorem (reference 4) in the light of the prescribed 

5 

<M)        G^it_V!i 2^1 
a  (v)  (u-a) a     (w)  CT"(V) 



20 

behavior at Jvj - •, each side of (63) can be equated to zero, giving 

(64) G+M .t^r^^i 
a (a) 

A. (a) a"(v)  cr+(p) A. (a) 
(65)      B'(y) - -*— ; ^  

(v-a) a ^a)  a (a) (v-a) E(v) 

The diffracted fields can now be specif ed completely via 

substitution of (65) and (55)-(57) into (41)-(43), and the total fields 

(28)-(30) become 

.  . a+(v) A (a) cos IsAz + H)] . 
(6«?) v.- - r^r  — * * e1WX dy, -H s z ^ 0 

-*   ffl Jca(a) (v-a)E(v)s1 sin s^ 

(67) V Vil+ 2^7 J 4^ (V-Xt)HjCOsLsiiz-h)l ' ^7 sinCs^z-h)]}1^, 

0 s z s h 

1 r-r^u)    Ai(ct)     -s2(z-h)+iyx (68) V Vi2+ -k J ^ft (y-a)I(v)a(y) e d- 
CCT (a) 
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IV 

THE TRANSMISSION AND REFLECTION COEFFICIENTS 

Evaluation of Total Fields 

The integral expressions for the total fields (66)-(68) can, at 

least in principle, be evaluated by a standard method. For the Love waves, 

depending on whether the transmitted (x > 0) or reflected (x < 0) field is 

being considered, the contour C along the real axis is closed in the appro- 

priate half plane by an infinite arc with due regard being taken not to 

cross the branch cuts emanating from the branch points ±k . By Jordan's 
2 

Lemma the integral along the infinite arc makes no contribution so that by 

the Residue Theorem (reference 4) the closed contour integral can be ex- 

pressed as follows: 

- 

(69) " I  + I branch cut - ± 2*1 E residues. 
Closed   Jc    J 

contour 

The branch cut integral can be evaluated by the method of saddle points. 

The resultant field is the SH cylindrical body waves that are scattered 

into the mantle and will not be discussed. Therefore, by (69) the scattered 

surface waves of interest are obtained as the residue fields of the closed 
: 

contour integral. 

For the transmitted field, application of Jordan^ Lenma re- 

I 
quires that the contour be closed in the upper half plane. Letting e 

shrink to zero, the contour C is deformed below singularities for Reu > 0 
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and above these singularities for Rev < 0 as shown in F'gure 5. 

This contour and the upper half-plane with both Reimann sheets displayed 

is shown in Figure 6. The period equation for the region x > 0 is in- 

cluded in E(v)(see equation 3, Appendix A) and produces a pole of the in- 

12    2 
tegrands of (66)-(68) at v - ± K provided that the radical s2 ' J v  'kfl 

is positive real. Therefore, the poles i K lie on the sheet that ex- 

12      2 tends from the upper left to lower right of Figure 6 where Re I y -k  > 0 
  V     Po 

/ 2 2 in general, and where / w -k   is for positive real for v real and 
\ 02 

greater than k . 
e2 

The integrand in (66) has no other poles, but those in (67) 

and (68) have poles at v - ± a provided that s, has the same sign as before, 

as can be seen from the period equation (27) for the thinner layer. That 

these poles at ± a exist is shown as follows: Expressing 6(v) as 

^ S2  ,    J 
uTT" ■ tan sihJ (70)      6(v) - - s. cos s.h ; 

1 Ui, s. 

from (44) and considering the product (v-a)E(v)6(v), one sees that there 

is a cancellation of the period equation in h between the denominator of 

E(»)(see equation 3, Appendix A), and 6(v), leaving the linear factor (v-o), 

thus giving a pole at v - a. For the pole at v- - a, consider E(v) as the 

quotient ? "^ . Then, 
a"(v) 

+/.N A.(a) -, .        A/a) 
(71) g W j sllsL  L 

(aj     (v-a)E(v)6(v)        +(a)    (v-a)6(w) 

and 6(v)  contains the pole at u - - a . 
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The pole at v - - a is associated with the reflected wave. 

In this case, the application of Jordan's Letr <* requires that the contour 

be closed in the lower half u-plane. This suitably indented contour, 

both Rietnann sheets of the lower half v-plane, and the pole at v ■ - a 

are shown in Figure 7. The sheets in this figure are oriented as in 

Figure 6, i.e.. Re s.Js 0 on the sheet extending from upper left to lower 

right. This orientation does not inply that the two sheets have the en- 

tire branch cut in common.  In fact, only the branch point is common to 

both sheets. 

It must be noted that no mention has been made of the singulari- 

ties of a (v) and a~(v). Although both these factors contain singularities, 

they are used in the integrals so that these singularities are not included 

within the contours of Figures 6 and 7. The transmitted field integrand 

contains a (v) which is regular and zeroless in the upper half v-plane, 

which is the region enclosed by the contour of Figure 6. For the re- 

flected field, the integrand may be altered by use of (71) and the term 

a'(w) presents no singularities within the contour of Figure 7. 

The specification of contours and location of poles makes it 

possible to extract the residue fields. Noting that the residue associated 

with the pole v - + a serves only to cancel the incident Love wave in the 

region x > 0 (which is to be expected since the Love wave cannot propagate 

undisturbed pasc the discontinuity), the transmitted fields are 

(72) vtl-t1(k ,k0 ,h,H)fcosCs1(K)(2.h)]- /s (K) sin[s1(K)(Z-h)]3e
1MC

1 

0 s z <: h 
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. 

(73) vt2- T2(k , k , h, H) e 2 , z > h 

iKx 
(74) v.» - T,(k , kQ , h, H) cos [3.(^(2 + H)] e1^,  -H s z ^ 0 

where the transmission amplitude coefficients T., T-, T«, can be calculated 

as 

(75)     T -T -SJJQ. i  
1   2  a+(a) (K-a) ^ E(v) | 6(K) 

(76,     T3 - - ^ j 5?  
J    a (a) (K-a) ^j E(v) | s^.K) sin [s^^H] 

v-K 

withs^K)-^ - K2  , s2(K)-^
2-k2 

The reflected fields are 

(77) vrl- R^kg , k h, H){cos [s1(-a)(2-h)]- /s (.q) sinCs1(-a)(2-h)]}e"
laX, 

0 5 z s h 

(78) vr2 - KAK  , k , h, H) e-^^^^"^ -ooc.  z > h 
^ ^l  e2 

where, by virtue of equation 15, Appendix A, the reflection amplitude 

coefficients R., R0 are: 1' "2 

(79) R1 - R2 - 2 
^a+i  lk32lsine    [/(cO]2    2a^6(V)| 
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12      2 12      2 
with s^-a)  " ./kg -a    ,      s^-a)  - Ja - k8 . 

The derivatives  in (75),  (76), and  (79)  are as follows! 

I 
S2 h „   2  „     ,   u        vh — cos s.h-sin s, -i- . f _ wH cos s.H   cot s.H -  n -   s.    1     1 y0 (80> Ä ^ ■ ^ K r^- +—^J^irf  —'—-—2—2* : 

v        Yi Vi       l si  6(v)/v 
•■ 

d      1 
sin s.h LY, T~ 6Cv)- — 6(u)]      u      u 

s«     1 fcTl dv     Yi     "I  r vh sin sih 

+ sT 2r.r rrr 2 J ■ L    HVHT 
+ 

1       Y1l6(u)J /v 

■7~ 6(v) cos s.h 
+ ^  

C6(U)]
2/y

2 
r]} 

d          f 1 ^2^2 
(81) — 6(w) - - i yh cos s.h + — sin s.h +  vh sin s.h + 

dv        L       1 y 1        ^isi       * 

|i2 cos s.h , 

where Yi» YO are given in (22) and (23). 

Energy Considerations 

For a Love wave in the fundamental mode, the rate of energy 

which passes a plane perpendicular to the x-ixis, per unit area, per unit 

time is (reference 13) 

ox  dt 

where the minus sign is used for propagation in positive x direction and 

the plus sign for propagation in the opposite direction. For a certain 
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with s^.a) -^Cg-a2 ,  s2(-a) -Ja2- k^. 
^2 

The derivatives in (75), (76), and (79) are as follows: 

52 h ,.u „2  „        u        vh — cos s,h-sin s, — vH cos 3,11   cot s^ n  ji,, p   a,     1      1 Y2 d       , f ^ vn cos s.n   cot s.H -  u0 r '" 8, 

V V, Y,    J  ^1 L Yf        Yf  J  ^J. "      s1 6(v)/u
2 

a sin s.h [v, --  6(u). -L 5(y)] s2     l   l  dv     Y,   ^T r vh  sin s^ 
+ 

*    wtr y. •. >•    Kit    Olli    a . ll 

T" ß(u)  cos s.h ^ . 

C6(V)]2/u2      J ^ 

d f I ^2S2 
(81) -r: S(v) - - ■   wh cos s.h + — sin s.h + -=-= vh sin s.h 

dv I 1        Yl 1        Vl l 

|i2    cos s,h , 

1^ 1      v2 

'1" \  ^ 

where y ,  Yo are giv£ri in (22) and (23). 

Energy Considerations 

For a Love wave in the fundamental mode, the rate of energy 

which passes a plane perpendicular to the x-axis, oer unit area, per unit 

time is (reference 13) 

(82)     E -Xu 2v öv 
ÖX  dt 

where the minus sign is used for propagation in positive x direction and 

the plus sign for propagation in the opposite direction. For a certain 

+ 
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period T-Zrr/u) the energy flow i» 

■/. 
(83)     E -   Sdt 

!0 

and the total flux across a vertical plane of unit breadth in a period T is 

(84)      CT.F.3 - 1 E dz 
^0 

Expressing the incident field as the real part of (25) with 

the time factor e" * included yields: 

(85) v . - A cos s.z cos(-u>t ♦ coc), 0 ^ z ^ h 

(86) vi2 - e"
82(z'h) cos(-u)t + ax) , z > h 

where s1 and s2 are understood to be sAcd  and s2(a), respectively, and 

A - A (a) (see (26)). The energy rate per unit time and area of the 

incident wave is then 

2       2       2 
(87)     E  - A a»«^ cos s1 z sin (-tut + ax) 

for the crust, and 

-2s2(z-h)  , 
(88)     Ei2 - a^^2 e  '    sin (-«« t + ax) 

for the mantle. Integrating over a period T gives 
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(89)     Eil -"a^ A^cos^z 

and 

-2s (z-h) 
(90)     Ei2 - n a ^2 e 

Finally, integration aver the vertical coordinate z results 

In an expression for the total incident flux crossing a vertical plane 

of unit breadth in time T: 

0 ,      sin 28.11 
(91) CT.F.]il.VA2aC| + -_i-3 

(92) CT.F.]i2.^2^ 

(93) CT-F-Jinc. " ^'F^ii + CT«F^i2 

The expression (77) for the reflected field in the crust can 

be simplified by substituting the right hand side of (27) with v - - a 
^2s2(-o[) 

for the quantity  r—r . This substitution simplifies (77) to 

(94)     v , - R.A cos s.z e"iax 
rl   1 i    1 

A comparison of (94) and (78) with (85), respectively, with real parts 

considered, K^  - R2, s^ s^-a) - s^a), and s2(-a) - sAa),  shows that 

the reflected fields differ from the incident fields by the coefficient 

R. _ and the sign of a» The sign is accounted for by the sign selection 
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in (82). Therefore, it is seen that the reflected energy is equal to the 

2 
incident energy times, say, R- , or 

(95) ' rgf1-- R^ 

This concise expression (95) is true only for the case where 

the incident and reflected fJelds in question are the same mode. 

The analysis (82)-(84) as applied to the transmitted fields 

is facilitated by agai:'. employing the period equation for the region 

x > 0 to simplify (72) to 

(96)     vti - T^oos CsjU + H)3 e
iKx 

wherp. 

(97)     At - At(K) - sec [s^KKh + H)] 

The end result of this energy r.nalysi- on (96), (73), and (74) is as 

follr 3? 

, 9   .   . sin[2 s^h ♦ H)]-sin 2 s.H] 
(98) [T. F.]cl - ^ Tj A2t K{ | + i ä-^- ä- ) 

(99) [T. F.]t2 - i ,2n T2 f- 

9   „  . sin ^s.H 
(loo; Cl. ?.]t3 . ^ „ T

2 Kf f . i ——i- ] 
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and the total flux transmitted is equal to the sum of (98),(99), and 

(100).  In these transmitted flux expressions, s. , s2 are understood 

to be 3,(10, s (K), respectively. 

Of interest here are the energies contained in the reflected 

and transmitted Love waves as a fraction of the energy in the incident 

Love wave. This ratio for the reflected wave is given by (95), The 

rati^ for the transmitted wave is readily obtainable from the above ex- 

pressions and is not written here due to th» space involved. 

Graphical Results 

Up to this point, the theory, its application, and the re- 

sulting expressions for amplitude coefficients of end flux contained 

in the various fields can have at most a pseudo-importance and conjectured 

validity.  It may be impressive to display the analysis, concluding with 

a t-crempt^ry statement such as "these expressions are the —", but the 

work is neither practical nor believable until the magnitudes of the 

coefficients and energy ratios are known as a function of the physical 

parameters h and H. 

The proceeding graphs display the quantities that are felt to 

be of prime importance. All major calculations were performed on the 

IBM digital computer at the University of Rhode Island. Numerical cora- 
M2 82 

putation requires that the values of — ard r- be specified. For the 
^1 91 

purpose of    future comparisons with other authors, the values stated 

in Figure 4 are used. 

The calculations of T , i - 1,2,3, f id R., i - 1,2 requires 

that consideration be given to magnitude only, phase being oramitted, for 

the expressions representing these coefficients contain terms which are 
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is in the shadow zone of the incident wave. Also, for the trans- 

mitted wave in the fundamental tnode,s. (K) (h+H) < TT/2, SO that one 

is inclined to believe that s.(v)H will remain less than rxfl  at least for 

fairly small H. This would restrict the value of n in (102) to zero, 

i.e., the propagation would be analogous to the TEM electromagnetic wave 

in a parallel plate waveguide. Therefore, it is felt that any propaga- 

tion along the duct for small H will constitute only a very s^ail per- 

centage of the energy associated with the original problem of Figure 1. 

Indeed, no unusual behavior is observed in T9 for k H > 3, although 

there is no criterion to determine either the accuracy of the results 

for large discontinuities or the dividing line between valid and invalid 

ranges k H. 
31 

Note that |T | takes on values greater than unity when the 

crust thickness for x < 0 is small (k h - .05"). Howaver, this unusual 
Bl 

behavior is justified by a plot of the "atio of transmitted to incident 

flux TFT/TFI shown in Figure 10 for the smaller layer thicknesses of 

Figure 8. This figure verifies the fact than coefficients larger than 

unity are not necessarily in violation of conservation of energy.  In 

fact, Knopoff and Hudson (reference 8) have «"hown that the rate of energy 

transmission in a Love wave is inversely proportional to layer thickness 

for small frequencies (k h » -— -» 0).  It follows that a coefficient 
h      h 

associated with transmission from a thin layer to a slightly thicker one 

which is greater than unity is consistent with energy conservation prin- 

ciples for this range of small frequencies. 

Figure 10 indicates that for k h > 2.040, the rate of change 
31 
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of the transmitted to incident energy ratio is at first rapid and then 

diminishes to an almost constant value. 

Since |R2| is small, the normalized reflected energy is 

negligible (< 1 percent) and will not be displayed. 

Knopoff and Hudson have presented an approximate solution to 

the problem dealt with here (reference 8). Their results are plotted as 

a function of the crust thicknes k (h+H) fot x > 0 with the ratio of 

1 h 
crust thickness for x < 0 to crust thickness for x > 0 (rrr) held con- 

stant. The incident Love wave in their paper has unit amplitude at the 

free surface of the crust and the coefficient calculated is the free 

surface amplitude of the transmitted Love wave. In this thesis the 

equivalent quantity is readily obtained as JT | divided by A (a), and 

will be denoted by JTT|. The method of plotting is as follows: The 

growth of the crust is such that the ratio of thin to thick layers re- 

mains constant, and the curves are shown as a function of the crust thick- 

ness k (h+H) for x > 0, Figure 11 is a comparison of the results of Knopoff 
31 

and Hudson and this author for ratios of incident to transmitted layer 

thickness r^j? of 0.9, 0.8, and 0.7. Note that the results agree with 

10 percent for kQ (h+H) > 5, and that the limiting values as k (h+H) -» 0 
31 Bl 

are coincident. For k (h+H) > 9, the curves become asymptotic to the 

dashed lines shown in the figure. 

In order to profit from this comparison it is necessary to be 

aware of any aspumptions and the corresponding errors involved in the 

method of knopoff and Hudson. Only then can the comparison become a gauge 

to measure the quality of the results of this thesis. 
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First of all, the displacements along the aperture plane x - 0, 

0 i z « • were assumed, by Knopoff and Hudson, to be thise due to the in- 

cident wave alone. This assumption is accurate as long as the discontinuity 

is negligible with respect to the wavelength of incident field. A small 

or '•weak'1 discontinuity neither converts appreciable energy to SH body waves 

nor needs to create evanescent modes to effect the transition from incident 

to transmitted Love waves. Also, from Figure 9, the reflected wave is too 

small to introduce appreciable error. Therefore, the dashed line curves of 

Figure 11 can be considered very accurate as k (h+H)-» 0, for k H-« 0 
ei ßl 

simultaneously. 

The quantitative effect of the above-mentioned assumption for 

large crust thickness is not so easily determined. Of all the distur- 

bances associated with the problem, i.e., reflected wave, SH body waves, 

and evanescent modes, only the first can now be considered negligible. It 

is suspected that there is some conversion to body waves, but the magni- 

tude and direction of these body wave displacements exe  unknown. The 

existance of evanescent modes is also suspected, and again, the magni- 

tudes of these modes are unknown. An indication of a smooth transition 

from incident to transmitted Love wave is obtained from Figure 4. This 

figure shows that the Love wave phase velocity is practically invariant 

*ith crust thickness for large thicknesses, inferring that the Love wave 

is relatively unaffected by the discontinuity. Nevertheless, the above 

statements lead one to be skeptical about the accuracy of Knopoff's and 

Hudson's results for k (h+H) > 6. On the other hand, it is felt that 
h 

the dashed curves of Figure 11 are a fair approximation to the desired 

coefficient for large crust thickness. 
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Finally, the assumption under consideration is probably least 

valid for intermediate crust thickness. In addition to the existance of 

evanescent and body wave disturbances al' ig the aperture plane, Figure 4 

shows that the phase velocity changes considerably for a snuil change in 

crust thickness, thus indicating a rough and complex transition from in- 

cident to transmitted wave. These conditions imply that the intermediate 

crust thickness coefficients of Knopoff and Hudson are only rough approxi- 

mations. 

The second assumption of Knopoff and Hudson is that the dis- 

placements along the surface x-0, -H^zO are negligible. This heuristic 

judgement is felt to be valid for at least the small discontinuities asso- 

ciated with Figure 11, 

The above discussion and the comparison of Figure 11 establishes 

the accuracy of the calculated values of this work as k (h+H) - 0 and 
31 

provides a measure of the accuracy of these calculated values for large 

kQ (h+H). 
01 

Figure 12 shows the coefficient |T-| in the same manner and 

for the same values r-r;   as Figure 11. The limiting values as k (h+H)-* 0 

are the same as those for |TT| curve of Figure 11, finally approaching the 

dashed lines shown for k (h+H) > 9. 
01 

Again, the validity of the values of |TTJ and JTj in Figures li 

and 12, at least in terms of energy conservation, can be established by a 

plot of the fraction of energy contained in the transmitted Love wave vs. 

k (h+H). Figure 13 shows that the coefficients |TT| and JT | do satisfy 
el ^ 

these energy limitations and that the portion of energy transmitted approaches 

a "onstant value for large crust thickness. 
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A final and interesting comparison with the results of Knopoff 

and Hudson is shown in Figure 14. Calculations were performed on |TT| 

with the factor 
g-KK) 

assumed to have the value unity, and the results 
c+(a) 

were compared with those of the authors mentioned above for tho same values 

of T-JTT as in Figure 11.  It is obvious that there is an almost exact corres- 

pondence between the results. The above authors have plotted curves for 

r-r: - .9, .8, .... .1, and although it is not shown here, the equivalence 

displayed in Figure 14 remains undiminished for each and every value of the 

ratio of crust thicknesses. 

-- 

i 
s 
= 
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V. 

CONCLUSIONS 

The conclusions drawn here will be presented in the order 

of decreasing generality. 

Although the first of these conclusions cannot be drawn from 

the material in this thesis alone, it is included as an indication of 

the efficacy of the Wiener-Hopf technique. 

In the preliminary research connected with this work, exposure 

to literature including references 1, 4, 6, 10 and 11 has shown that the 

type of problem amenable by the Wiener-Hopf Technique often contains com- 

plicated mixed boundary conditions. The range of this complicated problem 

is a significant extension beyond that of the simpler problem for which 

solutions can be obtained by the method of separat^   * v^iables. Appli- 

cation of the Wiener-Hopf theory is facilated by variations within the 

technique and modifications such as the one shown in Figure 2. A typical 

mixed boundary value problem is that of satisfying the steady-state wave 

equation in free space when semi-infinite boundaries are present. 

The geometry of the problem considered in this thesis is such 

that the Wiener-Hopf technique is most appropriate for obtaining the trans- 

mission and reflection coefficients. Aside from the limitation of absolute 

values imposed on the coefficients anJ the ostensibly negligible energy 

lost via'r, propagation down the duct of Figure 2, the analysis produces 

accurate results for a large range of crust thicknesses and discontinuity 
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sizes. A solution by Sato (reference 11) and a modified Green's Theorem 

approach by Knopoff and Hudson (reference 7) both entail assumptions which 

either limit the range of results or make them approximate. 

A key to evaluation of the results of this thesis l.<es in the 

comparisons of Figures 11 and 14. Deviations from the dashed curves of 

Figure 11 are not important in themselves, for as is shown in the discus- 

sion immediately following the introduction of this figure, these curves 

are approximate. Furthermore, it is suspected that the results of Knopoff 

ana Hudson are too large for intermediate crust thicknesses. As a check, 

a calculation was performed of TFT/TF1 using the amplitude coefficients 

jl-l and JT j corresponding to Knopoff s and Hudson's approximation 6fith 

+ 

"+\ *  assumed to be unity). Since the form of the transmitted Love wave 
a (a) 

in the work of Knopoff and Hudson is equivalent to (72)-(74), this calcu- 

lation is a test of the accuracy of their results. The resulting values 

of the energy transmission coefficient TFT/TFI were larger than unity for 

.05 < k (h+H) < .38, thus labeling Knopoff»s and Hudson's amplitude 
h 

transmission coefficient as too large for at least this small range of 

crust thickness. 

The approximate nature of Knopoff's and Hudson's results creates 

the possibility that they are too large for k (h+H) > ,38. Strengthening 
ßl 

this possibility is the fact that oversize coefficients may not violate 

energy restrictions for increasing intermediate crust thickness due to the 

decreasing behavior of TFT/TFI, Therefore, the fact that the coefficients 

of Knopoff and Hudson are larger than those of this analysis for k (h+H)< 6 
01 

must in the main be attributed to error on their part. 
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The solution to the problem considered in this thesis is in- 

complete insofar as the SH body waves associated with the branch cut 

integral in (69) have not been discussed. A knowledge of the energy 

contained in this scrntered field would provide an absolute check on the 

graphical results presented. Although the comparison with Knopoff and 

Hudson reveals the accuracy of these results, knowledge of this radiated 

energy completes the picture of energy apportionment. This picture would 

be a criterion for determining to what degree the modified problem of 

Figure 2 approximates the original problem, and would establish the 

maximum H that could be considered. 
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APPENDIX A, 

FACTOR1ZAT1ÜN OF r(u) 

Introductory Remarks 

The integral formulas (66)-(68) are as yet unable to produce explicit 

expressions for the total field for they contain the arbitrary factors 

of Z(w). There is a general method of factorization (reference 11) which 

allows a determination of c (u) and a (v) at least as a product of ex- 

ponentials (with arguments in integral form) and algebraic terms. If 

the absolute value of these factors is all that need to be determined, 

then the expressions representing them can be reduced to a form suitable 

for numerical evaluation. 

The method is based on the theorem that a function q(v) analytic 

in the strip jlmvj < b is the sum of two functions, one being analytic 

for Imv > - b, the other for Imv <  b, and the procedure adopted is the 

application of Cauchy^ Integral Theorem to the boundary of the strip. 

The integral breaks up into two integrals representing the functions 

mentioned above.  In general, the representation is as follows: 

(A-l)     q(v) - q "(v) - q+(v) 

where 

+      j  JB-ia q(p) 
q (V) " 2^" J     V^    dp 

-»- ia 
(A.2) 

*+ia  o - v 

q(p) 
do 
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+ 
q Cy) is analytic for Imü>-a, while q (w) is analytic for Imv<a, and 

thus q(p) is analytic in the sf-.p jlniv|< b since a can be chosen as 

near b as desired 

Application to £(v) 

Equations (A-l) and (A-2) can be employed to represent Z'v) 

as " ^ '   rs  stated in (61). Sine the method produces a sum rather than 

a product, this is equivalent to  breaking up In Tiv)   into in a  (v)- ^n u'iv) 

This may be done as long as In E(u) has no singularities in the strip. 

Since EUv is analytic In this region by virtue of restriction to the 

Reimann Psaetwhere Be /v - k. > 0, Xa r(v) possesses the same property 
2 

there provided that XKv) has no zeros for |linv|<jk jsin e. Manipula- 
02 

tion of (60) results in a form which facilitates the location of the roots 

of E(v). This form is as follows^ 

1- tan s.H tan s h    r M-JS, -\ 
(A-3)    E(v) = •   'tan [s^h + H)]--^ 

s, tan s.nl—— - tan s.h 
1    1 ^1s1      I J 

Roots 1 - tan s,H can s h = 0 imply that 

(A-4)    SjCh + H) - IT/2,3IT/2,,,.. 

which is inconsistent with the restriction that the nature of the pe-iod 

equation places upon this parameter. From Figure 3 it is e' ident that 

for a finite layer thickness s.dt + H) must be less than -jr , n - 1,2 ... 

for v " v (period equation roct), n « l,2y,.., respectively. Roots K»—r 

of the period equation 



(A-5)    tau Is (h + H) I - -~ - 0 
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for the thicker layer have been assumed to lie on the edge of the ana- 

lytic s'rip. Therefore TÄv)  has no zeros in the strip. 

In order to insure the convergence of the integrals (A-2) , 

i i q   must be zero. For the case being considered, this requiretuent 
IP! -' * 

takes the form ^im I(v) = +1. From (60), with s , s2 behaving as iv, v 

respectively, as jvj -♦ <», it can be shown that 

(A.6)    Z(v)| «^ 

jvj-. «a jvj-»«» 

is long as s^ is not equal to zerc 

By virtue of (A-6), the function q cannot be the logarithm of E(u) 

alone, but factors can be introduced to develop a function that does satisfy 

the necessary limit condition. Consider the function 

(A-7)    P(v) -7,/u2 + |kD l2sin2e E(v). 

1/2      2  2 
Obviously, the term - / v + jk j sin e serves a two-fold purpose; it 

t\ b2 

cancels the limiting 1/v dependence of E(v) without introducing singularities 

in the strip llmvj<jk | sin e and brings the magnitude of P(v) to unity 

a. Jyj-» oo. Therefore, the method can be applied to 'n P(^) as follows: 

(A-8)     q(v) - £n 0(v) - q"(v) - q+(v) 

«  -  ia 

(A-9) q
+(v)=-i7r iiiJlfildv 0<a<|k    (sine 

2 
- co - ia 
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50 + ia 

(A-10) q"(v)-^7    f tn F  ^  do 0<3<|k     |sine 
-as + ia L 

so that 

(A.ll)   P(V) = e
q (V)" q (V) - K/A |kQ |2sin2e E(v) 

or 
+ 

(A-12)   E(v) -      2       eq (V) " q (V) 

2 
^/v + |k9 I sin € 

By (61), (A-9), (A-IO), and (A-12), 

+ 2 r -i  i*0' ia in P(p)  1 

^u + i|k |sin e 
-ao - ia 

1 s 1 n r 
B2 

         IP00* ia in ?^)        ^ 
(A.14)   a'(v) - >-i |k |sln e  exp { ^-        , „  dp | 

The functions a (v) and a'(v) are regular and teroless in the 

half planes Itnv > - a and Imv < a respectively, and it can be shown that 

ja (v){ and |a (v)j lie between positive bounds as jvj becomes large in 

their respective half planes of regularity. Thus a (v) and a (p) satisfy 

the propert es listed it (61). 

A calculation of the exponentials in (A-13) and (A-14) is un- 

likely due to the cosnplexity of the integrals. In order to benefit from 

the factorization, the integrals in (A-13) and (A-14) must be reduced to 

forms that are solvable, either analytically or nunwrically. 

A formal manipulation of or iv)   including a substitution p'■-o, 
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and a reversal of limits of integration yields: 

f-v-i|k jsin e 

(A-15)   a'i-v)  - 2 /  rrrr 2  • -r V y+i|k9 pin e ^( c  (v) 

In the expressions (75), (76), and (79), all ter^is are real 

/-a-i|k |sin c 
2 

—rr i, r^  . Therefore, to obtain the a + ijk- jsin e ' 
82 

magnitude of the transmission and reflection coefficients, one needs to 

take the absolute value of only these factors, all others presenting no 

difficulty. It is obvious that the magnitude of the above radical is 

unity. As for ja (K)|, the analysis is as follows: By (A-13), 

(A-16) |a+(K)| 

jVK + i|k    jsin e| 
-pfer;8^«} -oo -   ia 

U + i|kQ  |sin e| 
- {- [iLJ'lai7^ *>1 }• 

Letting the V7idth of the analytic strip approach zero (e-* 0) such that 

(A-17)   y K + i |k jsin e -.,/K , P(v) ^ | v S(w) 

and the contour of integration becomes the real axis with suitable indenta« 

tions around P - ± K, i a, and ± k , and noting that P(p) is even yields: 

inC4 P SCP)] I +  .   2     f   r -K (^ *nL2 P L^;J  1 1 
(A^8)   |a (K)l = -£: exp {  Im  ~ |  %   -  dP] \ 

/K     ^   L   J0   p^ . KZ 
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An inspection of (60) shows that, for D > k , 0 real, E(P) 

is real, so that the integration in the region ka < p < <» produces no 

imaginary part. For 0 s P < k , E(p) is complex,with 
B2 

^2  S2 
cot  s H      ~ s     Sin Slh  lm ^6(P)^-  cos slh Ret6(P)] 

(A.19) ReCECp)]'-   ■ s—-   + -i—i 

{Re[6(c)]]"2 + {lmCe(0)]}2 

and _ 

sin Sjh Re[6(P)]  + cos s h  ImCf(p)] ^2S2 
W S 

U-20)  ImCE(P)] - -^ 
{ReC6(p)]}2 + {lm[6(P)]}2 

where 

1^ 2 - 

^1 
fteCöCp)] «■ s sin s.h  , ImCßCp)] = — s    cos s.h 

(A.21) 

y~2     2 n z   - 
kg -   P ,     s2 = s2(p)  - -i^/k       -  p —is 

! ^        > >   B2      ^      -2 

Expressing XnCr pZ(p)] as inCjy pE(p)|] + i*(p),where 

<*-">    *-"""l{iM} 

(A-18)  can be written 

U..3, |/(K)|.Xexp{.|fB2    ^dp} 

^/K 0 p -K 
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This form of the factor is still generally unsolvable, for 

the values of k  and K are usually unknowns, and, even if they were 
h 

available, the complexity of the integrand makes any attempt at formal 

integration futile. 

It is possible to make a change of variable that surmounts 

these difficulties. Let o " kD ^ which results in 

where 

2 „2 1- —   n 

B, 
(A.25)   5, - »,(!!) - k^ ^ )- ^ ,  ?2 - r2(T) - k^ JZT1 

The ratios of propagation constants can be obtained from the period 

equation and knowledge of the value of the ratio of the shear wave 

velocities 3. and 3_, making calculation of the real and imaginary 

parts of E(T!) possible. Although analytical integration is still 

fairly impossible, (A-24) is of a form such that ja (K)j can be 

evaluated numerically. 

By a similar procedure the factor |cr (a)| is represented by an 

expression  Identical to (A-24), except that a replaces K. Thus the 

expressions (75),(76), and (79) for the transmission and reflection 

coefficients can be programmed on a digital ccxnputer, the integration 

in (A-24) being approximated numerically. The end results of these 

calculations are in principle the coefficients desired. 
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FIOÜRE   3       ROOTS   OF   THE  PERIOD   EQUATION (24) 



SO 

^1f oflot UJ 
K 



Ill z 
< 
-I 
Q. 
I 

O 
u 

UJ 
X 

UJ 
QC 



SI 

in a 

u. 

o 
u 

<n 

a: 

O 
U. 

ft 

o 
H 
Z o u 

< 
-j 
a. 
i 

tu 
ft: 



Yi 

a 
LJ 
tZ 

o 
Ul 
H u 
UJ 
-I 
y. 
ui 
AC 

o 
b. 

O 
I- z o u 
tu z 
< 
-I a. 

UJ 
K 

O 
SU 



3 

1 
X 

(M 

UJ 

LÜ 
O 
O 

o 
CO 

2 
CO 
z 
< 

UJ 

00 

UJ 
cc 
o 
Ü. 



S5 

M 

— 
Ü 
\L 
ik 
ui o u 

♦- u 
lil 
-I 
u. 
kJ 

UI 
X 

UJ 
cr 

«£ 

-« 1^1 



56 

: 

s 

t 
X 

-: ■ 

>- UJ o > 
K < 
Ui ^ 
z 
Ui UJ 

> 
H- o 
Z -1 
Ui 
o Q 
Ü 
z 

UJ 

«■•> 

u. s 
o w 

z 
UJ < 
O tc 
< H 
K 
z 
UI Ul 
u 
UJ 
0. 5 
o — 

UJ 
a: 
3 
o 
U. 

i 
I 
I 
i 
I 

{Ui/lJl) 



1 
i    ' 

1       l!            ■               ' 
i     i i 

i i i 
i 

1 
1 

- i    | 
i 
i 1 

m N' 
o 
H 

ol - 

z 
-c + 

£ 

- 

' 

i 
/ 

/ 

/ 

/ 

/ / E
D
  

V
A

LU
E

S
 

A
N

D
 

H
U

D
SO

N
 

i V A                    5 ^ 

m    ii 
'/? /// 1 

/// /// 1 
1 

<^ 

«\i CO 
Ö 

<0 
O 

f 
X 

00      + 

- f- 

u> 

to 

- fO 

■z o 
(/) 

t < 
   u. 
h- O 
K Q- 
—   O 
U. z 
O    ^ 

-  C\J 
bL'    O) 
O 

2 
o o 

UJ 
Q: 

CD 

3 
in 
UJ 

O 
(Ni 
d 



^8 

-':■- 

1 

o 
UJ    w 

f § 
X 

I  9 >   z 
< 

c 
z 9 
o * 
^ Ji; u. o 

o o 
UJ H- 
X UJ 

CSI 

UJ 
(r 

LL 

I 



S9 

■f 
JZ 

■JC 

z O 

< Q 
>- 3 
o > X 
Q: 
ÜJ UJ i 
2 > 2 
ÜJ i < 

K U. 
2 UJ U- 
UJ > o 
o o Q. 
o 
z 

-J 

o 
UJ 

O z 

u. K u. 
o K O 
UJ i Q 
o CO O 
< 2 X 
K < t- 
2 Q: UJ 
UJ h- 2 o 
o: UJ UJ 
UJ X X 
Q. H- 1- 

ro 

UJ 
o: 
z> 
o 

(Ul/Idl) 



bO 

4 

r~~""n 

<Ti 00 r- 
C 0 o 

t\ JZ 
[* 1 

M i 1            UJ 1 /   2     2 

Uli 
i   1  // 

M    // V s*- a 

j ///r § M r«. f 
MS t t  =>. 

Jr 2 ^ ^ 
ÄsTi Z     H-     P 

ffi «    £1    H 
i              1 

f 11 1 

1 

\\. 

1 
—A. 

a> 

oo 

4 

+ 
JC 

- r^- 

- vo 

- »o 

ro 

- CVi 

CJ 00 
Ö 

(0 
d 

t o 

  3 
H I 

Hi  < 

< Ü. 
2 u. 
X 
o 
cc 
a. 
a. 

o 
a. 
o 
z 

< U- 
u. O 
o CO 
z 
o 
V) 

1- 

cr UJ 
< Q: 
GL 

o 
o 

UJ 

UJ 

O 

0<X'iN3W30VndSia 3DVddnS 33kid 


