FEBRUARY, 1965

DIVISION OF ENGINEERING RESEARCH AND DEVELOPMENT

DEPARTMENT OF ELZCTRICAL ENGINEERING

Love Wave Diffraction In A Variable

Thickness Surface Laver ey
'h{' ‘/’ J-JA. 1
] : I e & W
b p—— P S S

DAVID JOSEPH DEFANT| = e
and ) o .

JOHN E. SPENCE . . L7

Contract No. AF19 (628) - 319
Project No. 8652
Yask No. 865203
Scientific Report Neo. 5

Prepared

or
AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

WORK SPONSORED BY ANYYANCED RESEARCH PROJECT AGENCY
PROJECT VELA - UNIFORM
ARPA Order No. 180 - 62 and 292 - 62

Project Code No. 31828 Task 2

UNIVERSITY OF RHODE ISLAND

KINGSTON, RHODE ISLAND

I
lﬁ\mxw b v LC buUJh



NOTICES

The following information shall be displayed inside the front cover of
all reports except those containing top secret matcrial:

Requests for additional copies by agencies of the Depart-
ment of Defense, their contractors, or other government
agencies should be directed to:

Defense Documentation Center (DDC)
Cameron Station
Alexandria, Virginia 22314

Department of Defense contractors must be established
for DDC services or have their “need-to-know™ certified by
the cugnizant military agency of their project or contract. t

Unclassified reports, OTHER THAN REPRINTS OF JOURNAL
ARTICLES USED AS SCIENTIFIC OR FINAL REPORTS shall dispiay
the following additional information under the above notice:

All other persons and orgaunizations should apply to the:

Clearinghouse for Federal Scientific
and Technical Information (CFSTI)
Sills Building
5285 Port Royal Road
Springfield, Virginia 22151




ABSTRACT

Consideration is giver to a mathematical analysis of a special
case of seismic wave phenomena. In particular, the mixed boundary value
problem of Love wave propagation in a solid layer over a solid half-
space is investigated where the layer undergoes an abrupt change in
thickness., Both tlhe layer and half-space are considered to be humogere-
ous elastic media, Theoretical background for the physics of the problem
is provided by presenting the fundamentals of elastic wave propagation
with specialization to the Love wave case and by a statement of the
physical nature and mathematical form of applicable boundary conditiens.
Interest is focused on the amplitudes of the transmitted and reflected
Love waves relative to the magnitude of the excitation, i.e., the trans-
mission and reflection coefficients, for a range of both the "strength"
of the discontinuity (magnitude of change in thickness relative to layer
thickness) and the layer thickness. The analysis employs scattered
fields in the form of integrals in the complex plane; bLoundary conditions
are applied to the total fields. To satisfy the resulting equations for
the boundary conditions, the nature of some of the unknown coefficients
in the scattered field integrals is postulated and a function-theoretic
argument is employed to determine these coefficients. The transmission
and reflection coefficients are then extracted by a standard appeal to
the calculus of residues and the energy contained in the diffracted
fields is evaluated. Both displacement amplitude and energy coefficients
are displayed graphicaliy as a function of the parameters h and H. The
results presented show that the reflected energy constitutes less than

one percent of the incident energy for all crust thicknesses considered
-ii-
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here. The amplitude transmission coefficient relating the relative
magnitude of the displacements of the transmitted and incident waves
is shown co take on values greater than unity for low frequency and
an energy analysis shows that this behavior does not violate the prin-
ciple of energy conservation. A comparison reveals that the results
shown here are in close agreement with those given by Knopoff and
Hudson (reference 8). However, a discrepancy does exist for inter-

mediate values of crust thickness and is discussed in some detail.
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I
INTRODUCTION

Recently, considerable progress has been made in the theoreti-
cal analysis of wave characteristics of various complicated structures
that approximate seismic discontinuities. [Leyond the results that they
can supply, these analyses are important both as an indication of their
usefulness in examining other prcblems, and as groundwork for an in-
sight into more physically realistic situaticns. The problem considered
here is that of Love wave propagation in a surface layer over a half-
plane substratum. The o“izct of the analysis is the determination of
the amplitude c:efficients and energy associated with the transmitted
and reflected Love waves which occur when a Love wave is incident upon a
discontinuity in the layer. The topic is of considerable geophysical in-
terest because it is an approximate model of seismic wave interaction
with the continental margin and other discontinuities in the earth's
crust, Although the problem has been considered by othe; authors, e.g.,
references 8 and 13, in most cases these analyses lack graphical results
or include approximations which limit the range of accuracy.

A geometrical model for the problem is shown in Figure 1; a
fundamental mode Love wave, propagating toward the right in the surface
layer, or crust, of thickness h, encounters a discontinuity where the
surface layer thickness becomes h + H, Rigidities, densities, and ve-
locities of shear waves are taken as Hl’ Pys 51 in the surface layer and

Hos Py 82 in the semi-infinite substratum or mantle. The region above
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the crust is taker to be free space. It will be shown later that, in
order for a Love wave to exist in this crust-mantle structure, 82 and M,
must be greater thkan El and H;» respectively. The origin cf coordinates
is taken at the lower edge of the step change in crust thickness, the
positive x direction being the direction of propagation and the z-axis
pcinting into the mantle,

Unfortunately, the geometry of Figure 1l leads to a difficult
boundary value nroblem. In order to facilitate a solution, a modifica-
tion of the geometry identical to that used by Kane (reference 7) is
applied to the structure. It is felt that this modification alters the
problem only slightly for small changes in layer thickness. The free
surface boundery x = 0, - H < 2z < 0 is extended back to x = - « as shown
in Figure 2. 1In crder to preserve the free surface of the layer for
X < 0, this extension is performed in such a fashion that there is in-
finitesimal separation between the newly introduced waveguide and the
surface layer ot thickness h, i.e., a thin fissure along the negative
X-axis that prevents transfer of radiation across that boundary.

Since the wavalengths of seismic vibrations associated with
the problem are very long, it is felt that the addition of the new
acoustic duct introduces at most only minor perturbations into the pro-
blem. Indeed it is to be expected that very little energy would propa-
gate into this duct because the frequencies are in many cases below the
cut-off, and because the duct is in the backscattered direction of the
assumed excitation.

Finally, the media of both crust and mantle are taken to be

isotropic elastic solids. In this case the number of elastic constants



(which in the generaiized form of Hooke's law is 136) degenerates to two

(page 5 of reference 5), greatly simplifying the stress-strain relations,
In Chapter 1IIIL the case of slight damping is assumed, but this is solely
for temporary mathematical convenience and should not be considered an

indication of imperfec. elasticity,
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FUNDAMENTALS OF ELASTIC WAVE PROPAGATION

The problem being considered concerns the propagation of
Therefore, an outline of the theory

elastic waves in isctropic media,
of motion in elastic solids and the concomitant equations of motion 13

pertinent, A classic treatmeant of the material that follows is found

in reference 14,
Consider a point P in a deformable body with retangular

cocrdinates X, y, z being displaced to a now position X +u, y +v, z + w.
It is assumed that the displacements are small enough so that second and

higher order terms occurring in the stress and strain components may be
neglected. Then the general form of the stress-strain component relations

becomes linear (reference 14).
From the theory of elasticity, the arrays

®xx xy xz
(1) e e e
yx yy yz
€2x €2y €22
and
pxx pr px z
(2)
Pye  Pyy Py
P2x Py P22

represent the strain and stress tensors at P, respectively.
, e+, these arrays are symmetrical.

e =e
xy

y +eo and pxy = pyx

Since




If the coordinate system coincides with the principal axes, the shear
components of stress and strain vanish. Then the deformation at P is

completely specified by the corresponding extensions (neglecting higher

order trv- &)

3 e, = e =N e = N
x o’ yy oy’ zz oz

and the stress at P is specified completely by the principal stresses
Pyex? pyy’ P, corresponding to these axes,

Consider a minute portion of the matter enclosing P which
undergoes deformation. The cubical dialation 8 is defined (reference 3)
as the limit, as the surface area aporoaches zero, of the proportion-

ate increase in the volume of this matter and is equal to the sum of

the principal extensions associated with this deformation:

du ., ov _ dw
- + + - — o e—
(4) ® xx eyy €2z T o dy 2z
For a derivation of the equations of motion, consideration
is given to the stress components (2) acress the surfaces of a volume
element with uimensions 4x, 4y, and Az. The equations are obtained by
acding the forces acting on the element and the inertia terms

2

-0 Q_% AxAyAz,..., for each component. This summation yields:
dt

2 dp dp dp
(5) o §_§ - XX, _¥X , _2ZX
it oy ez

il

IR e
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(6) P =

(7) pd;- xi‘l- !£+ =
dt ox dy 9z

In these expressions, body forces are assumed to be absent and p is the

density of the medium,

Assuming that the media involved can be represented by iso-

tropic elastic solics, the stress-s~vain relations may be written in

terms of two elastic constants (in this case the Lame’ constants A and 1]

are arbitrarily chosen) in the following manner (refer---e 5):

du

= +
Po = A8 * 2 5o

v
- A0 + 2u —
Yy a oy

)
Pz © X9 @ oz

(8) P

du ov
pxy = u( oy + dx
ov dw
Pyz (3, * 3y
dw du
Pzx © u( X * 9z

Using (8) in (5)-(7) results in the equations of motion in terms of the

deplacements u, v, and w of a point in an elastic solid:

2
(9) L.+ i
e 2 ax
ot
2
d
(10) R RN R L
it y
2
) .} 2
(11) p2E -+ vy
ot

2
Note that JLi has been replaced by
dt

2

atz

in the left-hand side of (9)-(ll1).
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The justification for this has already been mentioned, i.e., that the

second powers and products which constitute .he difference between the
express ions are assumed to be small - ignoring these products linear-
izes the differential equations. The theory developed on this basis
has been called "infinitesimal strain theory" (reference 3).

It is convenient to express the displacements in terms of a
scalar potential ¢ and a vector potential E(wl,wz,WB) as follows:
(12) ;(u,v,w) = grad ¢ + curl E(&l,w2,$3)

Substitution of (12) into (4) yields:

(13) 0=V

An expansion of (12) gives displacement components in terms of ¢ and Qi.

Substitution of the expression for u from (12) and 6 from (13) into (9)

gives:
2 2
2 ey, lh 2 h
x - P2 oy © P .2 0z - P2
(14)

d .2 d .2 d .2 d 2
= (A + “)ax Vg +p ™ Vg +u 5 v @3 -B3 VY

This equation and the two others that result from the substitution of

(13) and the appropriate component from (12) into (10) and (11) are

ety s by o L . eee—— W
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satisfied if the functions ¢ and iy are solutions of

2 a2
(15) V2¢ - _li'a—% ’ v2¢i - Lz'_zi ’ i=1,2,3
a ot g ot
where
. [ . JE
(16) R LWL

provided that p is independent of the coordinates x, y, and z. Equa-
tions (15) are the reduced wsve equations, and rhey indicate that the
existence of two types of waves with velocities ¢ and B is possible in

an isotropic elastic solid.

BOUNDARY CONDITIONS

Since the problem deals with bounded media, some special
conditions expressing the behavior of stresses and displacements at
boundaries must be inrcluded. In particular, at the free surface of a
solid, all stress components must vanish and, assuming that solid media
are joined perfectly at the surface of contact, all stress and dis-
placement components are continuous across the interface between two

media.

LOVE WAVES

Under the assumptions of small displacements and the absence
of body forces the first section of this chapter has shown that two types
of disturbances, governed by the wave equations (15) and with velocities

given by (16), can travel in: homogeneous isotropic elastic soulid.



In addition, the previous section states the conditions that the
stress components (8) and/or the displacemants are subject to at
the boundaries or the media.

The waveform of these disturbances is influenced by the
particular geometry of the physical environment. For the stratified
structure of this problem, Love (reference 10) has shown that one of
the possible disturbances consists of horizontally polarized shear (SH)
waves which, in the notation of Figure 1, means that displacements are
in the y-direction (v component), Although other types of disturbances
are possible in this structure, the concern here is with these SH waves
which are called Love waves after the person who provided their explana-
tion.

iwt
can be

For monochromatic vibrations, a time factor of e~
suppressed., With u = w = 0 and the displacements independent of the

coordinate y, the equations of motion (5)-(7) reduce to

2, .2
a”n (v7+ kel)v1 0

for the layer and to

2

(18) (v2+ 'kg W, =0

2

for :he substratum, where

(19) k == k, =
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the shear wave velocities Bl and 52 being given by the second expression
in (16) with p and p subscripted appropriately. For a crust thickness
t overlying a halfspace and the coordinate system oriented as in

Figure 1, with origin at the free surface, assume displacements of

the form

(20) v, " VO‘A(v) cos (slz) eivx’ Oszc<t
(21) v, = voe-sz(z-t)+ivx’ z>t

where

(22) 8;) = vy, "V ,/ ‘Ec;)z-l -‘/kgl -

(23) s, = pyz-vjl - (Ei')z'Jvz -k;,z

¢ = phase velocity of the Love wave
and Vo is an arbitrary amplitude constant., The boundary conditions
require that the stress pzy vanish at the free surface z = o and that

(p ) = (pz

2y’ 1 93 V) ™ V, at the interface z = t, By (8), with w = o,

)
y
(20), and (21), applicaticn of these conditions results in A(u)-sec(slt)

and, for a non-trivial solution, the period equation

TR H,8
(26) tan(s v) = -2 . 22

The real values of v that satisfy this period equation are the
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propagation constants vy -'fL of the Love wave (Note that -anare also
n
roots of (Z4) by virtue of its evenness in y). Figure 3 shows a plot of
the curves representing the right and left hand sides of (2.) as a func-

tion of the parameter s.t. The intersections shown by the circles de-

1
fine the values of vy which are real roots of the period equation and
correspond to the various possible modes in the crust, where c, is the
phase velocity of the n-t-h mode. In practical seismology, where much of

the total energy is associated with the smaller values of vn(longer
wavelengths), the fundamental mode (Slt<:ﬁ/2) is of prime importance.

For this problem, the excitation will consist of only this mode. Although
the constructed solution will be in general a superposition of all possible
diffracted modes, iransmission and reflection coefficients for the higher
order modes will not be calculated.

The appearance of the radicals s, and s, in the displacements

1 2

(20), (21), in the light of (22), (23), and (24) requires that kB <\a<:k
2

or Bl <c< 52. Also, it can be shown that BZ < B produces no relevant

By

solutions. From this fact and the expression for B in (16) it is estab-
lished that the existance of a Love wave is contingent upon 32, My > Bl’“l
respectively.
The phase velocity ¢ is a function of the layer thickness t.

Figure 4 shows this functional dependence by a semi-log plot of c/a1 Vs,
the parameter vt for the case “2/“1 = 1,8, 52/31 = 1,29, where ¢ is the
first mode phase velocity. The parameter wt is a measure of crust thick-
ness, As t - o, c/_s1 -1, i,e., as the crust becomes a half plane the vy
portion of the Love wave approaches a plane wave traveling with velocity Bye

On the other hand, as vt - o, c/B1 ~- 52/81 and the v, portion of the wave

approaches a plane wave with velocity 82.
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II1
CONSTRUCTION OF THE SOLUTION
Now that the form of the elastic disturbance, the stress rela-
tions, and the boundary conditions for the problem at hand have been es-
tablished it is possible to assume a fundamental Love wave excitation and

proceed with the solution,

For the structure of Figure 2, this excitation takes the form

(omitting e 1¥f)

v - Ai(a.) cos [81(0.)2] eiax: 0zsh

(25) =< X<
v, - e-sz(a)(z-h) + 1a'.<, z>h
where
(26) sl(v) -Jkgl- uz, sz(u) - Jvz - kgz, Ai(v) -seCEsl(v)h]

The root v = o of the period equation

My 8y (v)

27 tan[sl(u)h] - m

for x < 0 is the propagation constant tor this first mode incident wave.
As a matter of referenc this incident field is assumed to have unit

displacement magnitude at the interface z = h., Transmitted and reflected
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wave amplitudes wiil be compared with this unit reference,

It should be noted th-t the period equation (27) for x < O
arises from the stipulation that sclutions of the boundary condition
equations are non-trivial and is thus an essential aspect of Love wave
formulati.n., The:efore, the transmitted Love wave has a propagation
constant K = w/c' which is a root of the period equation for the region
X > 0 where this equation is identical to (27) with h replacad by h + H,

As the initial step of Lhe procedure one seeks to add scatter-

ed fields Ve1® Va3 in the crust and Va2 in the mantle such that the
total fields

(28) Va = Vgar - H< x <0, all x

(29) Vi TV YV 0<z<h, all x

(30) Vo ® Vg V. Z>h, all x

satisfy the homogeneous wave equations

(31) (VZ + k; ) vy = 0, -Hsz<0, all x
1
2 2
(32) (V" + kB ) v, = O, 0<z<h, allx
1
2 2
(33) (V- + kB ) v, =0, z>h, allx
2

and comply with the dem-nds of the boundary conditions

(34) (p,)

291 " (pzy)2 y 2=h, allx

(35) V=V, z= h, all x
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(36) (sz)S =0, z=-H, allx
37 (pzy)3 =06, z=0, x<0
(38) (pzy)l =0, z=0, x<0
(39} (pzy)S = (pzy)l’ z=0,x>0
(40) Vg m Vs Z® 0, x>0

Also, except for the incident fields, Vi Voo and Vq should represent out-
going waves and be bounded and continuous at the srigin or edge of the
fissure.

Arbitrary solutions of the reduced wave equations (31)-(33) can

be written as follows:

C(y) sin [s (z-h)] p(v) cos [s (z-h)]

ivx

(41) s Zni j [ s cos slh * s1 sin s h ]e

1 F(y) -s (z-h) + ivx
(42) Vo2 T 7mi L s(v) & 2 B

B +H
(43) - o = [ () cos [si(z . eV gy
s3 2mi s, sin s.H
c i 1
where
2

(44) §(v) = s, sin slh o ;I s, cos slh
and s,, s, are given by (26), The coefficients B(v), C(v), D(v), and F(y)

are unknown functions of v and C is some contour in the complex y-plane,

[
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At first it seems that the form of (41)-(43) introduces undue complexity
into the mathematics but it will be seen that these expressiosns lead to
simple boundary condition equations, thus facilitating solutions for the
unknown coefficients,

It is mathematically convenient to assume a small imaginary

part, proportiuvnal “o eie, in the propagsati a constants kB . kB and in
1 2
the roots a, K associated with the regions x < 0 and x > O respectively;
that is,
ie ie

k =k |le k= {k_|e
(45)

a=|afel® K= |K|e!®

This assumption causes the fields to possess a slight attenuation in the
direction of propagation; in the final analysis ¢ will be setrequal to zero.
Vertical branch cuts from the branch points % kB2 are so.chosen that the
cut v-plane shown in Figure 5 represents that sheet of the Riemann surface

for which Re/ ”2_ k2 >0,
A/ Bz

By (8) with Pay = Pyz application of the boundary conditions (34) -

(40) to the total fields (28)-(30) yields, from (34):

(46)

zﬂi I [ pIC(U) “282 F(v)

ivx -
cos s h 6(v) ] S o b els B

. e




from (35):

(47) —L[r—'_g'!)_" w]e dv = 0, - o <o <=

2mi J L slsins h = 6(v)

The form of v_, is such that (36) is identically satisfied.

s3
From (37):
(48) ey jc b B ey a0, x<O
from (38):
(49) it_er ch My [C(v) + D(u)] elV* gy - 0, x<0O
from (39):
(50) -2-11!_1 ch[n(v) - C(v) - D(v)] el gy - 0, x>0

Finally, the condition that expresses continuity of displacement at
z = 0, x >0 includes a non-zero contribution from the incident Love

wcve, [For x positive, this excitation can be written

eiux

N W (o)cos[s (D z]
(51) Vil " Il f

dv
v-a

-8, (a) (z-h)
e "2 ipx
(52) Vi2 " 7m ch L

v-Qa

16
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by the ¢ hy Integral Theorem., The boundary condition (¢0) yields:
= W)
(53)_l_ ( r‘ B(vw)cot slu ) Ai(c) . C(u)tan slh D(y)cot slh]eivxdv- .
2my 1 s Ve 2 s J '
c 1 1
for x > 0.

A beginning toward satisfying the above integral equations
(46) -(50) and (53), is found by postulating the nature and behavior of
somc of the coefficients in certain regions of the y-plane. Equation (48)
is satisfied if B(v) is anaiytic for Imy < ]kezl sin ¢ and is of the order
v- 1(el> 0) as |v| == in the §peéigiéé haIéQpi;hg of analjticify; Then
the integral will vanish by Jordan's Lemma (reference 9). This postu-
lated behavior is denoted by writing B(v) es B (v). Equations (49) and

(50) are satisfied if
(54) C(v) + D(y) = B (v)

Consider next (46) and (47) which hold for all x. Equating the integrands

to zero and solving for C(y) and D(v) yields:

pz szcos Slh

(55) Clo) = - 5 i FW)
s.sin slh
(56) D(v) = == F(v)

Inserting the expressions into (54) with 6(v) given by (44) results in:

(57) Fiv) = &7 (v)
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Tnus, F(v) has the same behavior as B (p) for Imy < lkszl sin €,
i.e., F(v) 8 F (v). The last equation to be satisfied is (53).

With F(v) = B (v) and C(v) and D(y) given by (55) and (56), (53) then

becomes
(58) -Lfc(n“% =0, x>0
511 . v v ,
where
(59 o - Ai(cb . [_ cot SIH ) oSy sin slh ) cos slh -b'(u)
' v-a s, 184 6§Cv) §Cv)

This last boundary condition equation is satisfied if G(v) is analytic

for Imy > - IkB ] sin € and is of the order v 2(e > 0) as lv[ - = in

2
this half plane. This behavior is denoted by writing G(v) as G+(v).

Now the problem becomes that of solving for the unknown co-
efficients of the scattered fields, particularly B (y) which has the
postulated behavior.

Since (59) is the only expression available for the extrac-
tion of the unknowns it becomes necessary to introduce a function-
theoretic argument based on the Wiener-Hopf technique (ref:rence 12),
For convenierice let

cot s B sin s.h cos s.h

1 Ha%2 1 1
(60) E(v) S o Sl = “_151 §(v) - 5(\))

Provided that it has certain properties, Z(v) may be expressed as

(references 2, 11, 12, and 16,)
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+
61) 2(v) = S—fu) |
¢ (v)
vhere
1. ot W is reguiar and zeroless for Imy > - Ik‘3 I sin €.
2
2. s (v is regular and zeroless for imy < IkB I sin €,
2
3. lo * (W|,le ~ (v)| lie between positive bounds in their

respective domains of regularity as lul becomes large.

Consequently, (59) can be rewritten, on dividing through by o + (v), as

+ A () -
6 W, T P
e (W) (-dda (v o (v)
A1(°‘)
Subtracting S from each side gives
(v-2d 0 (a)

@ W Ji“”[,l ] A4
| ) o'«

A NS P (W (- o @

An inspection of (63) reveals that the left hand side is
regular for Imv > - |k82| sin ¢ and the right hand side is regular
for Imv < lkB l sin €. In addition, because of the assuned growths of
¢ (») and B”(v) for large |v|, these functions tend to zero as |v| = o °
in their respective half planes.

By the previous paragraph and the overlapping regions of
regularity shown in Figure 5, each side of (63) is the analytic continua-
tion of the other (reference 15) and thus defines an entire function.

Invoking the Liouville Theorem (reference 4) in the light of the prescribed
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behavior at Ivl = ®, each side of (63) can be equated to zero, giving

A (D .+
(64) () « ATz ) 1]

v-oa *‘c+(0.)
Ald T 0w A (
(-0 0@ o' (D (-0 T(v)

(65) B (v) =

The diffracted fields can now be specif’ed completely via
substitution of (65) ard (55)-(57) into (41)-(43), and the total fields
(28)-(30) become

+
o (v) A () cos [s,(z +H)] |,
i 1 - elVX dv, -H<2<0

(6F) v = - =
3 2mi cc+(a) (v-c:r.)Zi(u)s1 sin s H

1
+ A (2 M8
: . Ao g i r 272 ivx
(67) Vit Vot I Ic;(a) (‘,_Q‘)E(‘:')Mu),cosl_'si(z-h)]-Mls1 sin[sl(z-h)]} dv,
' O z<h
+ A (@ -5 (z-h) +ivx
- A Tz (v i 2
(68) v,= vio* 7m f + . (v-DT(ms(w) © a2

o(w
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v

THE TRANSMISSION AND REFLECTION COEFFICIENTS

Evaluation of Total Fields

The integral expressions for the total fields (66)-(68) can, at
least in principle, be evaluated by a standard method. For the Love waves,
depending on whether the transmitted (x > 0) or reflected (x < 0) field is
being considered, the contcur C along the real axis is closed in the appro-
priate half plane by an infinite arc with due regard being taken not to

cross the branch cuts emanating from the branch points tk By Jordan's

52'
Lemma the integral along the infinite arc makes no contribution so that by
the Residue Theorem (reference 4) the closed contour integral can be ex-

pressed as follows:

(69) I - I + I branch cut = + 2mi T residues,
closed c
contour
The branch cut integral can be evaluated by the method of saddle points.
The resultant field is the SH cylindrical body waves that are scattered
into the mantle and will not be discussed. Therefore, by (69) the scattered
surface waves of interest are obtained as the residue fields of the closed
contour integral.
For the transmitted field, application of Jordan's Lemma re-

quires that the contour be closed in the upper half plane. Letting ¢

shrink to zero, the contour C is deformed below singularities for Rev > O
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and above these singularities for Rev < 0 as shown in Figure 5.
This contour and the upper half-plane with both Reimann sheets displayed
is shown in Figure 6., The period equation for the region x > 0 is in-

cluded in I(vj)(see equation 3, Appendix A) and produces a pole of the in-

tegrands of (66)-(68) at v = + K provided that the radical 5, = uz-kg
2

is positive real. Therefore, the poles + K lie on the sheet that ex-

tends from the upper left to lower right of Figure 6 where Re J vz -k2 >0

By

in general, and where‘J vz-k2 is for positive real for v real and

B,
greater than k

By
The integrand in (66) has no other poles, but those in (67)

and (68) have poles at v = £ a provided that s, has the same sign as before,

2
as can be seen from the period equation (27) for the thinner layer. That

these poles at * g exist is shown as follows: Expressing 6(v) as

s
M2 %2
(70) 6(v) = - 8, cos Slh L“1 5 - tan slh]

from (44) and considering the product (v-@T(v)6(v), one sees that there

is a cancellation of the period equation in h between the denominator of

Z(v) (see equation 3, Appendix A), and 8(v), leaving the linear factor (v-d),

thus giving a pole at v = a. For the pole at v= - a, consider I(v) as the
+

quocient Q:SBZ . Then,
o (v)

+(v} Ai(°‘) i " (») Ai(o.)
- (v-2)z(v) 8(v) + (v-) 8(v)
c (@ o (a)

(71)

and 8(v) contains the pole at v = - a .
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The pole at v = - g is associated with the reflected wave.

In this case, the application of Jordan's Ler s requires that the contour
be closed in the lower half y.plane. This suitably indented contour,
both Riemann sheets of the lower half v-plane, and the pole at v = - a
are shown in Figure 7. The sheets in this figure are oriented as in
Figure 6, i.e., Re 5,2 O on the sheet extending from upper left to lower
right. This orientation does not irply that the two sheets have the en-
tire branch cut in common. In fact, only the branch point is common to
both sheets,

It must be noted that no mention has been made of the singulari-
ties of o (v) and o (v). Although both these factors contain singularities,
they are used in the integrals so that these singularities are not included
within the contours of Figures 6 and 7, The transmitted field integrand
contains c+(v) which is regular and zeroless in the upper half v-plane,
which is the region enclosed by the contour of Figure 6., For the re-
flected field, the integrand may be altered by use of (71) and the term
o (v) presents no singularities within the contour of Figure 7.

The specification of contours and location of poles makes it
possible to extract the residue fields. Noting that the residue associated
with the pole v = + g serves only to cancel the incident Love wave in the
region x > O (which is to be expected since the Love wave cannot propagate

undisturbed pasc the discontinuity), the transmitted fields are

“252(K)

(72) vfl-Tl(k ;I;ITET

b, 1) {cos[s, (K) (2-h)]- sinls (K) (z-h) ])e*™,

K
By B,

0<z<h
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-sZ(K)(z-h) + iKx

(73) Ve~ 1‘2( h, H) e , 2>h

k , k
B’ By’

Kx

(74) Viq = T,( h, H) cos [sl(K)(z + 1)) e , -Hs<sz<o0

k
3 Bl, kBZ,

where the transmission amplitude coefficients Tl’ TZ’ TS’ can be calculated

as
+ A (2
(75) T, -1, - LK -
o (0 (K- 3= E(w)| 8(K)
v=K
+ A (
(76) T, - . 25K 1

M@ ®-2 £ W] s, ® sin [s; K]

v=K
2 2 2 2
with sl(K) = J&Bl - K%, sZ(K) Jk - sz

The reflected fields are

uzsz(-u)

22— sials (-0 (z-m)] e,
171

an v Rl(ke , ka h, H){cos [sl(-ab(z-h)]-

1 1 2

O0<z<h

-5, (- (z-h) -ax

(78) Ve, = R (k h, H) e z>h

k
y y
where, by virtue of equation 15, Appendix A, the reflection ampiitude

coefficients R R2 are!

-a-ilk, |sin ¢
-3 / B2 1 e

ati TkBZTSin € [c+(a)]2 Za.ﬁ% é(v)l
ve-q,

l,

(79) Rl - R2
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2
8 L]

2 2 2
with sl(~o) - J&BI-Q s sz(—oD \ﬁ: - k )

The derivatives in (75), (76), and (79) are as follows:

3
vh 2 cos s, h-sin s 5

2
d 1 vH cos slﬁ cot slﬂ oy s, 1 1 Y,
(80) 3= =) = <5 {- 3 * 3 G e 3 *
vo o Y, Y H1 s, 6(v)/v”

- d 1
sin s h Ly, 35 8(v)- ” 5(w)] r vh sin s b

S ————————
6(v) /v

I 7]
N

72}
Pt

vile(n1%/v? = L

é% §(v) cos slh ] }

2
ONH
d 1 HoS
(81) — &(v) = - { vh cos s,h + <= sgin s.h + vh sin s, +
dv 1 Y1 1 151 1
“2 cos slh 5

S W
where vy, y, are given in (22) and (23).

Energy Considerations

For a Love wave in the fundamental mode, the rate of energy
which passes a plane perpendicular to the x-ixis, per unit area, per unit

time is (reference 13)

Jdv  dv
{92) E = ov o
{82) + 3x ot

where the minus sign is used for propagation in positive x direction and

the plus sign for propagation in the opposite direction. For a certain
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2 2 2 2

with s (- J&Bl-a » 5,0 -ﬁla - ksz.

The derivatives in (75), (76), and (79) are as follows:

S
. vH cos2 s.H

d i r 1 cot SIH “2 vh ;I ceos slh-sin s, ;;
du “ 2 [ 2 3 “'1 6( )/ 5

’ 1 Y - s, 8(v)/v

L2 _d_ ‘l_
) sin s,h [Yl 35 8- Y é(u)]] o sia s b
v, - | —— 4
3 - [
°1 Ylfé(v)lz/u‘ d 5(v) /v

d
" 8(v) cos s,h 4

[8(v)1%/v° 1}

(81) £l §(v) = - { vh cos s.h 4--L-sin s.h + ' vh sin s .h +
dv 1 Y, 1 B8, 1
M, cos s .h .
+ —2 ————1-
B Y

where v,, v, are given in (22) and (23),
Energy Considerations

For a Love wave in the fundamental mode, the rate of energy

which passes a plane perpendicular to the x-axis, oer unit area, per unit

time is (reference 13)

dv v
(82) E=zxp 5x 3t

where the minus sign is used for propagation in positive x direction and

the plus sign for propagation in the opposite direction. For a certain

+
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period T=2r/w the energy flow is

(83) E = r Bdt
0

and the total flux across a vertical plane of unit breadth in a period T is

(P
(84) {T.F.] = 1 E dz
Y0

Expressing the incident field as the real part of (25) with

jwt

the time factor ¢ = included yields:

(85) v,, = Aicos s,z cos(-wt + x), O<z<h

il

- e-sz(z-h)

(86) v cos{-wt + ax), 2z >h

i2

where s, and s, are understood to be sl(a) and sz(o), respectively, and
A= Ai(o) (see (26)). The energy rata per unit time and area of the

incident wave is then

(87) Eil - Af awiy 0032 s, 2 sinz(-wt"* ax)

for the crust, and

-2s8,(z-h) 2
(88) 812 = awp, e sin"(-w t + ax)

for the mantle. Integrating over a period T gives
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- =T qH A2 cos2 s.2
(89) Eil 1 i 1
and
- -ZSz(z-h)
(90) EiZ =Tap,e

Finally, integration over the vertical coordinate z resuits
in an expression for the total incident flux crossing a vertical plane

of unit breadth in time T:

2 h sin ZSlh
(91) [T'F']il - uln'Ai a [ 5t -——ZEI-_ ]
1 2
(92) [T.F.Ji2 =g H, T s,
(93) [T'F']inc. - [T.l.-‘.]il + [T.F.]iz

The expression (77) for the reflected field in the crust can

be simplified by substituting the right hand side of (27) with v = - g
K8, (-

for the quantity ——=—= . This substitution simplifies (77) to
l-llsl(-a)

-igx
(94) v RIAiCOS s,z e

A comparison of (94) and (78) with (85), respectively, with real parts
considered, R, = Rz, 8= sl(-u) - sl(oD, and sz(-a) - sz(q), shows that

the reflected fields differ from the incident fields by the coefficient

R1 2 and the sign of a. The sign js accounted for by the sign selection
.
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in (82), Therefore, it is seen that the reflected energy is equal to the

incident energy times, say, Rg y OT

(1. F.]
(95) - rcfl. R§
(r. F']:nc.

This concise expression (95) is true only for the case where
the incident and reflected f‘elds in question are the same mode.

The analysis (82)-(84) as applied to the transmitted fields
is facilitated by agai: employing the period equation for the region

x > 0 to simplify (72) to

(96) Ve T TlAi:os [sl(z + H)] e IKX
wvhere

— - e (W)
(97) A, At(x) sec [,1\x,(h + )]

The end result of thi:z energy cnalvsic on (96), (73), and (74) is as

follc 3:

sin{2 Sl(h + H)]-sin 2 slﬂ]

s

- - 2,2 h 1
(98} [T. F']tl Hy" T At K{ 5+ Z )

1 2 K
(99) [T. F‘]tz =2 KW Tz 5
in 2s.H
_ 2. .H 18 1
‘s 1 - — — .e
(100 [T. Fig =k "Tg K{ 5t 4 3 ]
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and the total flux transmitted is equal to the sum of {98),(99), and

(100). In these transmitted flux expressions, s s, are understood

1’
to be sl(K), sz(K). respectively,

Of interest here are the energies contained in the reflected
anc transmitted Love waves as a fraction of the energy in the incident
Love wave. This ratio for the reflected wave is given by (95). The

rati> for the transmitted wave is readily obtainable from the above ex-

pressions and is not written here due to th: space involved.

Graphical Results

Up to this point, the theory, its application, and the re-
sulting expressions for amplitude coefficients of and flux contained
in the various fields can have at most a pseudo-importance and conjectured
validity. It may be impressive to display the analysis, concluding with
a p<remptory statement such as "these expressions are the ---", but the
work is neither practical nor bslievable until the magnitudes of the
coefficients and energy ratios are kaown as a function of the physical
parameters h and H,

The proceeding graphs display the quantities that are felt to
be of prime importance. All major calculations were perfurmed on the

IBM digital computer at the University of Rhode Island, Numerical com-
M 8

putation requires that the values of ;Z ard EZ be specified. For the
1 1
purpose of future comparisons with other authors, the values stated

in Figure 4 are used.
The calculations of Ti’ i=1,2,3, ¢.d Ri’ i = 1,2 requires
that consideration be given to magnitude only, phase being ommitted, for

the expressions representing these coefficients contain terms which are
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is in the shadow zone of the incident wave. Also, for the trans-
mitted wave in the fundamental mode,s, (K)(h+H) < w/2, so that one
is inclined to believe that sl(v)H will remain less than mw/2 at least for
fairly small H, This would restrict the value of n in (102) to zero,
i.e., the propagation would be analogous to the TEM electromagnetic wave
in a parallei plate waveguide. Therefore, it is felt that any propaga-
tion alceng the duct for small H will constitute only a very srail per-
centage of the energy associated with the original problem of Figure 1.
Indeed, no unusual behavior is observed in T2 for kBIH > 3, aithough
there is no criterion tc determine either the accuracy of the results

for large discontinuities or the dividing line between valid and invalid

ranges k_ H,

By

Note that |T2| takes on values greater than unity when the
crust thickness for x < 0 is small (kslh = ,057). However, this unusual
behavior is justified by a plot of the vatio of transmitted to incident
flux TFT/TF1 shown in Figure 10 for the smaller layer thicknesses of
Figure 8. This figure verifies the fact tha* coefficients larger than
unity are not necessarily in violation of conservation of energy. In
fact, Knopoff and Hudson (reference 8) have chown that the rate of energy
trensmission in a Love wave is inv;rsely proportional to layer thickness

for small frequencies (k_ h = G 0). It follows thai a coefficient

B, B
associated with transmission from a thin layer to a slightly thicker one
which is greater than unity is consistent with energy conservation prin-

ciples for this range of small frequencies.

Figure 10 indicates that for kB h > 2,040, the rate of change
1
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of the transmittec to incident energy ratio is at first rapid and then
diminiches to an almost constant value.

Since |R2| is small, the normalized reflected energy is
negligible (< 1 percent) and will not be displayed.

Knopoff and Hudson aave presented an approximate solution to
the problem dealt with here (reference 8). Their results are plotted as
a function of the crust thicknes k_ (h+H) for x > O with the ratio of

B
crust thickness for x < O to crust éhickness for x > 0 (E%ﬁ) held con-
stant. The incident Love wave in their paper has unit amplitude at the
free surface of the crust and the coefficient calculated is the free
surface amplitude of the transmitted Love wave. In this thesis the
equivalent quantity is readily obtained as |T3| divided by Ai(c), and
will be denoted by |TT|. The method of plotting is as follows: The
growth of the crust is such that the ratio of thin to thick layers re-
mains constant, and the curves are shown as a function of the crust thick-
ness kﬁl(h+ﬂ) for x > 0. Figure 11 is a comparison of the results of Knopoff

and Hudson and this author for ratios of incident to transmitted layer

thickness B of 0.9, 0.8, and 0.7. Note that the results agree with

h+H
10 percent for kB (h+H) > 5, and that the limiting values as kB (h+H) =« O
1 1
. are coincident, For kB (h+H) > 9, the curves become asymptotic to the
1

dashed lines shown in the figure.

In order to profit from this comparison it is necessary to be
aware of any assumptions and the corresponding errors involved in the
method of knopoff and Hudson. Only then can the comparison become a gauge

to measure the quality of the results of this thesis.
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First of all, the displacements along the aperture plane x = O,

0 < z < ® were assumed, by Knopoff and Hudson, to be thuse due to the in-
cident wave alone., This assumption is accurate as long as the discontinuity
is negligible with respect to the wavelength of incident field, A small

or "weak" discontinuity neither converts appreciable energy to SH body waves
nor needs to create evanescent modes to effect the transition from incident
to transmitted Love waves. Also, from Figure 9, the reflected wave is too
small to introduce appreciable error. Therefore, the dashed line curves of
Figure 11 can be considered very accurate as kel(h+ﬂ)« 0, for k 1H« 0
simultaneously,

The quantitative effect of the above-mentioned assumption for
large crust thickness is not so easily determined. Of all the distur-
bances associated with the problen, i.e., reflected wave, SH body waves,
and evanescent modes, only the first can now be considered negligible. It
is suspected that there is some conversion to body waves, but the magni-
tude and direction of these body wave displacements ere unknown. The
existance of evanescent modes is also suspected, and again, the magni-

tudes of these modes are unknown. Ap indication of a smooth tramsition

from incident to transmitted Love wave is obtained from Figure 4. This
figure shows that the Love wave phase velocity is practically invariant
vith crust thickness for large thicknesses, inferring that the Love wave
is relatively unaffected by the discontinuity, Nevertheless, the above
statements lead one to be skeptical about the accuracy of Knopoff's and
Hudson's results for kel(h+ﬂ) > 6., On the other hand, it is felt that

the dashed curves of Figure 11 are a fair approximation to the desired

coefficient for large crust thickness.
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Finally, the assumption under consideration is probably least
valid for intermediate crust thickness, In addition to the existance of
evanescent and body wave disturbances al‘ 1g the aperture plane, Figure 4
shows that the phase velocity changes considerably for a sm:il change in
crust thickness, thus indicating a rough and complex transition from in-
cident to transmitted wave., These conditions imply that the intermediate
crust thickness coefficients of Knopoff and Hudson are only rough approxi-
mations,

The second assumption of Knopoff and Hudson is that the dis-
placements along the surface x = O, - H £ z O are negligible. This heuristic
judgement is felt to be valid for at least the small discontinuities asso-
ciated with Figure 11,

The above discussion and the comparison of Figure 11 establishes
the accuracy of the calculated values of this work as ksl(h+H) ~ O and
provides a measure of the accuracy of these calculated values for large
kBI(h+H).

Figure 12 shows the coefficient ITzl in the same manner and
for the same values ﬂ%ﬁ as Figure 11, The limiting values as ksl(h+H)q o
are the same as those for lTTI curve of Figure 11, finally approaching the
dashed lines shown for ksl(h+H) > 9,

Again, the validity of the values of ITTI and |T2| in Figures 11
and 12, at least in terms of energy conservation, can be established by a
plot of the fraction of energy contained in the transmitted Love wave vs,
ksl(h+ﬂ). Figure 13 shows that the coefficients ITTI and ITZI do satisfy
these energy limitations and that the portion of energy transmitted approaches

a ~onstant value for large crust thickness,
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A final and interesting comparison with the results of Knopoff

and Hudson is shown in Figure 14, Calculations were performed on ITT[

g+(K)
c+(a)

were compared with those of the authors mentioned abuve for the: same values

with the factor assumed to have the value unity, and the results

of E%E as in Figure ll. It is obvious that there is an almost exact corres-
pondence between the results. The above authors have plotted curves for

P
F%F = .9, .8, +.v.. .1, and although it is not shown here, the equivalence

displayed in Figure l4 remains undiminished for each and every value of the

ratio of crust thicknesses.
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v.

CONCLUSIONS

The conclusions drawn here will be presented in the order
of decreesing generality,

Although the first of these conclusions cannot be drawn from
the material in this thesis alone, it is included as an indication of
the efficacy of the Wiener-Hopf technique,

In the preliminary resesrch connected with this work, exposure
to literature including references 1, 4, 6, 10 and 11 has shown that the
type of problem amenable by the Wiener-Hopf Technique often contains com-
plicated mixed boundary conditions. The range of this complicated problem
is a significant extension beyond that of the simpler problem for which
solutions can be obtained by the method of separati € wveriables, Appli-
cation of the Wiener-Hopf theory is facilated by variations within the
technique and modific=tions such as the one shown in Figure 2, A typical
mixed boundary value problem is that of satisfying the steady-state wave
equation in free space when semi-infinite boundaries are present.

The geometry of the problem considered in this thesis is such
that the Wiener-Hopf technique is most appropriate for obtaining the trans-
mission and reflection coefficients, Aside from the limitation of absolute
values imposed on the coefficients ar.J the ostensibly negligible energy
lost vial. propagation down the duct of Figure 2, the analysis produces

accurate results for a large range of crust thicknesses and discontinuity
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sizes. A solution by Sats (reference 11) and a modified Green's Theorem
approach by Knopoff and Hudson (reference 7) both entail assumptions which
either limit the range of results or make them approximate.

A key to evaluation of the results of this thesis lies in the
comparisons of Figures 11 and 14, Deviations from the dashed cu:ves of
Figure 11 are not important in themselves, for as is shown in the discus-
sion immediately frllowing the introduction of this figure, these curves
are approximate. Furthermore, it is suspected that the results of Knopoff
and Hudson are too large for intermediate crust thicknesses. As a check,
a calculation was performed of TFI/TFI using the amplitude coefficients

I'I‘ZI and |'1‘3| corresponding to Knopoff's and Hudson's approximation with
+
g (&) assumed to be unity). Since the form of the transmitted Love wave

o ()

in the work of Knopoff and Hudson is equivalent to (72)-(74), this calcu-
lation is a test of the accuracy of their results. The resulting values
of the energy transmission coeificient TFT/TFI were larger than unity for
.05 < kBl(h+H) < .38, thus labeling Kiopoff's and hudson's amplitude
transmission coefficient as too large for at least this small range of
crust thickness.

The approximate nature of Knopoff's and Hudson's results creates
the possibility that they are too large for ksl(h+H) > .38, Strengthening
this possibility is the fact that oversize coefficients may not violate
energy restrictions for increasing intermediate crust thickness due to the
decreasing behavior of TFT/TFI, Therefore, the fact that the ccefficients
of Knopoff and Hudson are larger than those of this analysis for kB (h+H)< 6

1
must in the main be attributed to error on their part.
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The solution to the problem considered in this thesis is in-
complete insofar as the SH body waves associated with the branch cut
integral in (69) have not been discussed. A knowledge of the energy
contained in this scettered field would provide an absolute check on the
gravhical results presented. Although the comparison with Knopoff and
Hudson reveals the accuracy of these results, tnowledge of this radiated
energy completes the picture of energy apportionment. This picture would
be a criterion for determining to what degree the modified problem of
Figure 2 approximates the original problem, and would establish the

maximum H that could be considered.
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APPENDIX A.
FACTORIZATION OF £(v)

Introductory Remarks

The integral formulas (66)-(68) are as yet unable to produce explicit
expressions for the total field for they contain the arbitrary factors
of Z(v). There is a general method of factorization (reference 11) which
allows a determination of ¢ (v) and o™ (v) at least as a product of ex-
ponentials (with arguments in integral form) and algebraic terms. If
the absolute value of these factors is all that need to be determined,
then the expressions representing them can be reduced to a form suitable
for numerical evaluation,

The method is based on the theorem that a function q(v) analytic
in the strip |Imv| < b is the sum of two functions, one being analytic
for Imv > - b, the other for Imv < b, and the procedure adopted is the
application of Cauchy's Integral Theorem to the boundary of the strip.
The integral breaks up into two integrals representing the functions

mentioned above, In general, the representation is as follows:

(A-1) q(v) = q (v) - q+(v)
where
. -ia q(p)
q(v)-'iﬂ—1 0_uda
-®-ig3
(A-2)
+ia
() = — q(p)
q (v) o do

-ot+ig D - v
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+ -
q (v) is analytic for Imv> -a, while q {v) is analytic for Imv<a, and
thus q(v) is analytic in the st~.p |Imv|< b since a can be chosen as

near b as desired.

Application to ¥(v)

Equations (A-1) and (A-2) can be empluyed to represent T’ v)
+

as g:SBL s stated in (€1). Sin‘e the method produces a sum rather than
o (v) + o
a product, this is equivalent to breaking up fn £(v) into 1 o (v)- &n o (V).

This may be done as long as ln ¥{v) has no singularities in the strip.

Since (., is analytic in this region by virtue of restriction to the

2

)

there provided that L(v) has no zeros for llmvl<|kB Isin €. Manipula-
2

Reimann s-eetwhere k\/vz- k. > 0, £a £(v) possesses the same property

tion of (60) results in a form which facilitates the location of the roots

of (v). This form is as follows:

1- tan s . H tan s.h M,S
(A3 z(v) = 1 1 rtan {s.(h + H]- 2xl ]
M.S 1 M.S
s, tan s ”r 2z - tan s H] "1
1 1% 1. s an s

171 -

Roots 1 - tan SiH tan s.h = 0 imply that

1

{A-4) Sl(h +R) =w/2,35u/2, ...

which is inconsistent with the restriction that the unature cf the pe-iod

equation places upon this psrameter. From Figure 3 it is e ident that

.1
2

w
for v = u“(period equation roct), n = 1,2 ,.,, respectively. Roots Ko;T

for a finite layer thickness sl(h + H) must be less than —,n = 1,2 ...

of the period equation
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)
M%)

(A-5) tan [sl(h + H)W -

=0

for the thicker layer have been assumed to lie on the edge of the ana-
lytic s-rip. Therefore Z(v) has no zeros in the strip.

In order to insure the convergence of the integrals (A-2),

f;? 3(:) must be zero. For the case being considered, this requirewent
takes the form fim %(v) = +1, From (60), with s;» S, behaving as iv, v

vy °®

respectively, as lv[ - o, it can be shown that

(A-6) z(v)

: ]
~\.’
lol=» [v}~e

as long as s.,H is not equal to zero.

1
By virtue of (A-6), the function q cannot be the logarithm of I(y)
alone, but factors can be introduced to develop a function that does satisfy

the necessary limit condition. Consider the function

@1 R =3 b Ik |%sinZe (v).
2

Jbviously, the term %,/ v2+ ’kb lzsinze serves a two-fold purpose; it
~2
cancels the limitirg 1/v dependence of ¥(v) without introducing singularities
in the strip lImv|<|kB ] sin ¢ and brings the magnitude of P(v) to unity
2

e. ||+ «. Therefore, the method can be applied to fn P(v) as follows:

(A-8) q(v) = 4n °(v) = q (v) - q+(v)
& - ia
*(v) = Ly P(8) 4,
@9 ' =5 I EL0). 4y 0<ax< |k [sine

2

- B e ia
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o *+ ig
- 0
(A-10)  q (v) = == J. 2,8 D R 0<a<|ky |stne
mioJo 34 PV 2

su that

- +
(A-11) P(v) = et ()~ q () %'J@2+ 13 lzsinze Z(v)
52

or

o + 3
(A-12) £(y) = 2 o4 (v) - q (v}

2 22
,\,Iv + |k82| sin’e

By (61), (A-9), (A-10), and (A-12),

+ 2 -1 rn - ia 4n P(p)
(A-13) g () = exp { i o = dp }
J& + ilk_ |sin ¢ Te oo i
B2
+ ia In P(p)

- -1
(A-14) o (v) =,fv-1]k_|sin e exp { o [
«/ 82 2mi do + ia

4 )

The functions c+(v) and o (v) are regular and zeroless in the
half planes Imv > - a and Imv < a respectively, and it can be shown that
|c+(v)i and |a.(v)| lie between positive bounds as |v| becomes large in
their respective half planes of regularity. Thus o (v) and o (v) satisfy
the propert es listed i+ (61).

A calculation of the exponentials in (A-13) and (A-14) is un-
likely dve to the coinplexity of the integrals. In order to benefit from
the factorization, the integrals in (A-13) and (A-14) must be reduced to
forms that are solvable, either analytically ¢or numerically.

A formal manipulation of ¢ (v) including a substitution p~.g
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and a reversal of limits of integration yields:

-v-i|k lsin €
. 8, 1
(A-15) o () =2 [ —T% :

1)"‘1|kB y3in € +

c (v)

In the expressiors (75), (76), and (79), all terms are real

-a-ilk_ |sin ¢

8,
a+ ilk, |sin € °
8y

+ +
except ¢ (K), 0 (), and Therefore, to obtain the

magnitude of the transmission and reflection coefficients, one needs to
take the absolute value of only these factors, all others presenting no
difficulty. It is obvious that the magnitude »f the above radical is

unity. As for |c+(K)|, the analysis is as follows: By (A-13),

- ia
(a-16) o w| = 2 Ie’“’ {z_"an r Lp f Q g }
|J& + ilk |sin el "= - la
B2
5 = - la, R(P)
= exp{lm E'—nf 1 r‘;-K D]}.
Lk~ e o ol .
B2

Letting the width of the analytic strip approach zero (e= 0) such that

(A-17) JK + 4 IkB |sin ¢ = /K, P(v) -»%v z(v)
2

and the contour of integration becomes the real axis with suitable indenta-

tions around 0 = + K, + a, and * k8 y and noting that P(p) is even ylelds:
3

lan[l p £(p)]
2 -K 2

(A-18) lU (K)l = —— exp Im = , dp 1
/K { \_ “ Lc 92 - KZ ] ’
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An inspection of (60) shows that, for @ > k_ , p real, I(P)

8
2
is real, so that the integration in the region k, < p < @ produces no
*2
imaginary part. For 0 < ¢ < kS s £(p) is complex,with
2

My S.
[ ] cot slH ;1_ s_. Sia S1
(A~19) Re Z(D) " . + r
5) {rel(2)1}? + {1nlo()1}?

h Im [6(P)]- cos s,h Re[8(p)]

1

and

Hy ;2
sin slh Re[6(p)] + cos Slh Im(6(p)]

{rels(®1}? + {mls(0)1}?

B 3

(-20) Im[T(p)] =

where
uz -
Re[6(p)] = s.sin s.h , Imls(p)] = = s, cos s,h
1 1 “1 2 1
(A-21)
2 2 -
$; = Sl(p) ks -0, s, = sz(p) = -1,Jl:8 - p =-is,

Expressing lln[% pZ(p)] as ln[l’% pT(p)|] + 1®¥(p) ,where
- -1 [ Imi3i( 3

a2 @ ot { HEAE ]

(A-18) can be written

(A-23) |c+(K)| 2 exp{ I B2 }

K
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This form of the factor is still generally unsolvable, for

the values of kB and K are usually unknowns, and, even if they were
"2

available, the compiexity of the integrand makes any attempt at formal

integration futile.

It is possible to make a change of variable that surmounts

these difficulties. Let p = ka T which results in

2
kB 1

(A-24) |c+(i()|- L expid ZJ. @M dn

&E n K o k 2

B
" 2 2
1- X n
where
(A-25) s, =s. () =k /(ﬁ)rz s =5.(T) =k [1-7°
- 1 1 82 51 - H ’ 2 2 i e -

2

The ratios of propagation constants can be obtained from the period
equation and knowledge of the value of the ratio of the shear wave

velocities 51 and 32, making calculation of the real and imaginary

parts of Z(T) possible. Although analytical integration is still

fairly impossible, (A-24) is of a form such that |c+(K)| can be

evaluated numerically,

+
By a similar procedure the factor |o (a)| is represented by an

expression 4identical to (A-24), except that a replaces K, Thus the

expressions (75),(76), and (79) for the transmission and reflection

coefficients can be programmed on a digital computer, the integration

in (A-24) peing approximated numerically. The end results of these

calculations are in principle the coefficients desired.







T ._.z.q_z

M.W.f , & r ///
e .




FIGURE 3

ROOTS OF THE PERIOD EQUATION (24)
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