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ABSTRACT 

The objective of the project was to develop broader formulations 
of the mathematical (statistical) theory of decisions.     This final report 
presents two broad scope generalizations which have resulted from the 
project. 

The first generalization discussed is a decision-making model 
which applies to the case of a not-well-informed decision maker with 
independent data sources.    In this model,   the inference about the prior 
distribution is determined from the solution of an adjunct decision 
problem,   which specifies the minimum risk hypothesis in the light of 
the available information. 

The second generalization presented is a model of multi-period 
decision making for both stationary and Markovian environments.    In 
contrast to the model discussed in the above paragraph,   this model 
does not assume independent data sources,   i. e. ,   that the observation 
processes are not affected by the actions of the decision maker. 
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SECTION I 

INTRODUCTION 

The objective of the project was to develop broader formulations of 
the mathematical (statistical) theory of decisions.    This final report 
presents two broad scope generalizations which have resulted from the 
project. 

The first generalization discussed is a decision-making model 
which applies to the case of a not-well-informed decision maker with 
independent data sources.    In this model,   the inference about the prior 
distribution is determined from the solution of an adjunct decision 
problem,   which specifies the minimum risk hypothesis in the light of 
the available information.    This model,   together with the corresponding 
averaging model of Reference 1,   has been programmed and debugged so 
that in future work it will be possible to obtain information about the 
behavior of the model. 

The second generalization presented is a model of multi-period 
decision making for both stationary and Markovian environments.    In 
contrast to the model discussed in the above paragraph,   this model 
does not assume independent data sources,   i. e. ,   that the observation 
processes are not affected by the actions of the decision maker.    Stated 
in another way,   in this generalization we are dealing with strongly 
sequential decision tasks in which the decision maker's actions can 
redesign the information system. 

In addition to the decision-making models discussed in this report, 
the present contract has resulted in an additional report which has been 
separately submitted for publication as a Technical Documentary 
Report.     This report is entitled "The Karhunen-Loeve Expansion and 
Factor Analysis" and was written by Dr.   Satosi Watanabe of Yale 
University. 

The remainder of this report is divided into three sections. 
Section II discusses the decision-making model for the not-well- 
informed decision maker in a stationary environment with stationary 
and independent data sources.    Section III discusses the multi-period 
decision-making model for both stationary and Markovian environments. 
In Section IV,   problem areas uncovered by the research and potential 
areas for future research are discussed. 



SECTION  II 

DECISION  TASKS  WITH INDEPENDENT  STATIONARY 
DATA  PROCESSES  AND STATIONARY  ENVIRONMENT 

2. 1      Case I:   Known Environment and Known 
Data Processes 

This,   of course.,   is a well known case and is presented here as 
background.     Let us assume that a decision maker has to select an act 
out of a collection of arts  [A   }  so to pursue some rational objective. 
The rational objective being the maximization of the expected utility of 
his decisions. 

Let us assume that the utility of an act is a function of the state of 
nature X1,   i. e. ,   that for each ordered pair (A  :, X1) there is a utility 
scalar u(A  , X1).    Let us assume further that the decision maker is 
equipped with an observation (or information) system which outputs 
messages belonging to the collection {Y1}.     The information system 
will be characterized by the collection of conditional probabilities 
{P^IX1)}. 

We will also assume that the environment can be characterized by 
a probability distribution over the states  iPlX1)}.    We are assuming, 
furthermore,   that {PfY-JlX1)} is not affected by the action of the decision 
maker (i. e. ,   the decision maker is not redesigning his information sys- 
tem during operation) and that both (P(X1)} and {P(Y^|X1)] are stationary. 

The problem we wish to solve is to obtain the decision rule 

A*j = D(Yj) 

where. A J is the act which maximizes the expected utility conditional on 
receiving the message Y^ from the information system.     But we have 
that 

E|Yj(Ak) =£u(Ak   X1) P(X*| YJ) 

i 

*i Then A J is given by: 

* i        V1        *ii iii V        ki iii 
*(A   J) -  ) u(A  J, X ) P(X  | YJ) - max   ) u(A ", X ) P(X  | YJ) 

i i 
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by Bayes rale we have that 

r(x*lYj) - p(yJlxl)p(xl) 
P(YJ) 

y(AVj) = max    ) u(Ak, X^PfX1) P(Yj|xX)       1   . 
k       . P(YJ) 

Let us define the matrices U,   D,   Q as follows: 

tU}k.    =   u(Ak,X1) 

fD}.. = 0      . i # j 
1J = PCX1) i = j 

[Q}.. - P(Yj|x2) 
J 

Then 

*j\         7   fTTT^I        fiM  L l^(A,J) = max    /   {UD^JQL. 

i k  ru ''"* "ij P(Y
j) 

That is, 

*j*    _        1 V{A J)    =  — max   UD [Q] . 
p(Y^) row                   J 

where t-QJ.   is the i-th column of Q,   and 
J 

V(A^) =   ^-7— max   [UDQ]. =  l—r-  [UDQJ* 
p(Y^) row                  J         P(Y^)                   * 

where the # indicates that the largest component of the included vector 
is to be taken. 
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Since the decision rule yields the value of the index *j for each 
possible observation Y^,   it is readily seen that a convenient represen- 
tation of the decision rule is 

6[Y] =   [UDQ] + 

where Y is the row vector listing all possible observations and the 
operator +  substitutes each column of the matrix inside with the row 
number of its largest component. 

The performance of the decision maker will then be modeled (in 
the long run) by 

l>(U, D, Q) = £p(Yj)y(A"j) = 2,[UDQ]* =  [UDQ]* § 
J 

j j 

where § is a column vector of all ones conformable to the row vector 
[UDQ]*. 

The function y(U, D, Q) allows us to set up a measure of effective- 
ness for information systems,   in fact,   if QQ  is the system characterized 
by: 

PfY^X1) = P(Yj) 

i. e. ,   the null system,   the effectiveness of Q is given by 

H(Q) - i/(U,D, Q) - l/(U,D, Q0) 

In utilizing statistical decision theory to evaluate decision behavior, 
attention must be paid to the fact that the assumptions underlying the 
formal model in use should be empirically valid.     This in turn generates 
an incentive to develop the formal theory for the assumptions of as many 
systems as possible. 

Of the assumptions of the traditional model presented above,   the 
two which are most likely not to be verified in the experimental situation 
are: 

that the decision maker knows the prior distribution 

that the decision maker knows the statistical proper- 
ties of his observation processes. 
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We are then interested in developing the theory so as to remove one or 
both of these assumptions substituting them with weaker ones. 

A decision task which results from weakening one or more of the 
assumptions of another decision task will be said to be a degradation of 
the original task (Ref. 1). 

This note is concerned with the degradation of the decision task 
presented above which occurs when the decision maker is assumed to 
know a density function over the space of priors rather than the prior 
itself.    In other words,   the decision maker is assumed to have some 
uncertainty on which prior actually prevails.    We first consider this 
degraded task from the viewpoint of Reference 1,   generalizing its 
approach to include any independent stationary data generating process 
and any density over the space of priors.    Next,   we introduce a new 
formal model for the same degraded task; in this model the uncertainty 
about the prior distribution of the basic decision task is not eliminated 
by averaging over the space of priors,   but is eliminated by selecting 
that prior distribution which minimizes the subjective risk of mis-inference. 
This model should predict behavior which is more conservative than the 
averaging model when the decision maker performance is strongly sensi- 
tive to the prior distribution assumed. 

2. 2      Case II:   Known Data Sources,   Known g/.77) 

2. 2.1  Averaging Model 

Let us indicate with 77 the vector OlX1), P(X2), . . . , P(Xn)} and 
with gt(77) the density function which prevails at time t over the space 
of 77 distributions (N-dimensional simplex).    Instead of assuming that 
the decision maker knows which 77 applies,   we shall assume that he 
knows gt(77) over the space of 77- distributions,   g^( 77)   of course will be 
transformed from instant to instant to reflect the learning the decision 
maker undergoes by observing the environment.     The problem,   then,   is 
to find the decision rule under these circumstances. 

In this case,   we can compute the expected utility of an act A 
given that Y^ has been observed and that 77 is assumed to be the prior 
distribution as follows: 

"(Ak)YJ; w =   Ej yjj ff(A
k) =   £u(Ak  X1) PfX1! Yj, IT) 
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By Bayes rule we have 

P(YJ|x\ TT> P (X1) 
p(x |Y

J
, TT) = — 

Pff(Y
J) 

where 

P^x1) =    n. 

P (Y ) =     the marginal probability of Y   when 
77 is assumed to be the prior distri- 
bution. 

P(YJ|x\ 77) = P(YJ|X1) since the data sources are 
independent from the characteristics 
of the environment. 

Then 

UlA\)   77   =   Zu(Ak'Xi)P77(xi)P(YJ|xi)  l—T 1 ' P (YJ) 
l 77 

If in addition to the matrices U and Q defined above,   we define the matrices 
DJJ. and A- as follows: 

{D   }..   =    0 i 4- j 
77   11             ^   .„1. . J    =    P     X  ) = 77.                       1  =  J 

TT l 

CA,}     -   0 i # j 
J   =   Pff(Y

J) i = j 

We have 

'YJ, 77 ^ 77   kl 77      11 77       77    Jkj 

i. e. ,   the expected value of the act A  ,   given that Y^ is observed and 
the prior 77 is held,   is the kj-th element of the matrix 

UD  QA'1 

77 77 
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The decision rale is a transformation of the message Y^ into an optimal 
aqt,   thus it requires the specification of one input; namely,   Y^ and not 
YJ and 77.    It follows thus that in order to compute the decision rule,   we 
have to eliminate 77.    In the averaging model,   one computes the quantities 

I/(A  U   =   Elu[A  )vj   J >YJ YJ, 77" 

i. e. ,   by expecting over 77 and then uses these quantities as the basis for 
the computation of the decision rule. 

The optimal act upon receipt of Y^ is given by 

*i k 
^(A  J) = max  V(A   ). = max 

k J k 
gt(irMA )yj v d77  = max 

row 

1 1 
g(77)[UD QA    ].dir 
t 77       77      J 

If 

g (77) [UD  QA^jdTr =   E [UD  QA"1] t 77       77 t 77        77 

the   decision rule is simple 

6(Y) - IE^UD^QA"
1
]!* 

The learning of the decision maker would be reflected by his updating the 
g (77),   using Bayes rule,   i. e. , 

gt+l
(77)  = 

Pr(YJ|77)gt(77) 

/P^Y^Jg^W 

where gt+ll77) *s tne posterior density on the 77-distributions after having 
observed Y^.    Pr(YJ|77),   i. e. ,   the probability of Y^ given that the prior 77 
holds, is nothing else but the marginal probability of Y^ computed using 
that 77 as the prior.     That is, 

P (Yj|77) =   YpfY^X1) 77. =   YQ..77. =  {T7Q}. r Li i       /__,   ij  1 j 
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i. e. ,   the j-th component of the row vector   77 Q,    77 being a row vector. 
Thus, 

{7TQ}. {T7Q). 

St + i(77) =T7 J   gt(7r) = -J^öT gt(7° t + 1 /U'Q}. gt(rr')d77 * ^Qjj     t 

J 

where 77 is the mean vector W. R. T. g (77) of the population of 77 vectors. 

2.2.2  Double Decision Task Model 

Let us consider the decision task in this case to be composed of 
two parts:   a) make a decision about which 77 prevails in the environ- 
ment; b) make a decision about which act is optimal in the light of the 
so chosen 77,   the utility structure and the data source characteristics. 
The first decision,   the one about 77,   has also to be optimal in a Bayesian 
sense. 

Let us,   then,   formalize the first decision.    For simplicity,   we 
will assume that there is a discrete population of TT'S and 77m represents 
a generic member of such a population.     The {7Tm} is then the collection 
of states of the world for the first decision task.     The messages about 
the world are still the YJ since the decision maker has to use the same 
data sources for both decision tasks.   The acts are the   [ &n] where oc 
is the act of selecting 77n as the value of 77 to be used in the second 
decision task (the basic task). 

In order to obtain the decision rule for the first task,   we have to 
have: 

A prior distribution over  {T7    } 

A utility structure for the ordered pairs (a  , 77    ) 

A model of the information system which supports 
the first task. 

Let's begin with the model for the information system.     The relevant 
information system is represented by the set of conditional probabilities 
{P(YJ|77m)}  since the 77m,s  are the states and the Y-J's are the available 
messages.    We have seen above that P(YJ|77m) is the marginal probability 
of Y^ computed assuming that 77 = 77m and that 

_.„„11   m.        r   m_-| 
P(YJ|7T    ) =  lit     Q]. 

J 
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If n is the matrix such that its m-th row is the vector 77    ,   then we have 
that 

{Q}   .= 7 {n}     {Q} . = Y7rmP(Yj|xe) 
mj       t->        me ej       Z_i    e 

thus, 

o, = riQ 

Thus the model for the information system of the first task is obtained 
by premultiplying the model for the basic observation processes by a 
matrix whose rows are the various possible priors of the basic decision 
task. 

The suitable prior distribution for the first task can be obtained 
from the density function gt(77).     For example,   if the state 77m is said 
to obtain in the region Rm,   then the prior probability of the state 77     is 

-> 
g.(7r)d7T= G(77m) 

JR  Z 

m 

This distribution can reflect the learning of the decision maker from one 
instant to the next through the simple Bayesian learning process discussed 
above in connection with the averaging model. 

Finally,   we can determine which is the proper utility structure for 
the first decision task.     Let us indicate with JL(ocn, 77m) the utility of 
assuming that 77n is the case when actually 77m is true.     This utility can 
be computed by considering the difference which assuming 77    instead of 
the true 77m will make in the expected return of the decision maker in 
connection with the basic decision task.     Clearly 

n 
L(an, 77m) = ([UD mQJ*77  -  [UD mQ]V) § 

7T 77 

r i*^n 
where the operation L J selects the column components which would 
have been the largest in the expression UD^nQ.    Since in general these 
components will not be the largest of their column for the expression 
UD mQ>   the quantity L.(<Xn, 77m) is zero or negative. 

- 9  - 



Then the decision rule is to select 77n according to 

G 

(The rows of the LDQ^matrix being associated with the various 77m's 
and the columns with the various messages. ) 

The 77n so obtained would then be used to select the act for the 
basic decision task according to the decision rule 

[UD^nQ]+ 

2.2.3 Computer Programs of the Models 

A general purpose FORTRAN model which incorporates the formal 
models discussed in Sections 2. 2. 1 and 2. 2. 2 has been written.     To 
clarify the computations required by the two models,   a brief description 
of the control structure of the computer program is presented in the flow 
chart presented as Figure 1.    As it can be seen from the flow chart,   one 
can select between the two formal models by operating the console switch 
No.   1.    A comparison of the behavior of the two models in the face of the 
same observation series can be carried out quite easily.     The program 
and all its subroutines have already been written and debugged and listings 
of the computer programs are presented in the Appendix.     Data will be 
collected on the behavior of these models for a very simple decision task. 
The task which will be used in exercising the models is described in the 
next section. 

2.2.4 A Numerical Example 

Assume that an object (for example,   an enemy ship) is in an area 
divided into four regions,   as illustrated in Figure 2. 

10 11 

00 01 

w 

Figure 2 
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START) 

Read      No.  States 
No.   Acts 
No.   Messages 
No.   Distributions 
No.   Observations 

Read Initial gt(ir) 

Read Utility Structure for 
Basic 

Decision Task 

Read List of Observations 
Which Constitute 

Experiment 

Construct the Q Model of 
the Basic Observation 

Process 

Produce the List of 
Alternate Priors the Decision 

Maker Hypothesizes 

Compute the Cc Model of 
Observation System in 

Support of Inference Making 

Compute Loss 
Matrix L for 

Inference Task 

Select Next 
Observation 

Update gt(tf) to 
Account for Last 

Observation 

T: Console Switch 
No. 1 

Select Prior 
Which Mini- 
mizes Risk of 
Mis-inference 

Compute 
Average 

Prior 

^ 

A 

Console Switch 
No.  2 

Type Out 
Prior Used 

Compute Optimal Act for 
Basic Decision Task 

If Last Observation 

Type List of Optimal 
Acts and All 

Inputs to Program 

Figure 1.     Flow chart of computer program. 
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Let us assume that the sensors available are capable of identifying 
which intervals on the z and w axis "contain" the ship.     The w-axis 
sensor is assumed to give a correct response with probability q    and 
the z-axis sensor with probability q  .     The action of the decision maker 
is to place a weapon (bomb) in one of the four regions. 

From the above,   it is clear that there are four states of the world: 

X     =   Ship is in 00 region. 
2 

X      =   Ship is in 01  region. 
3 

X      =   Ship is in 10 region. 
4 

X      =   Ship is in 11 region. 

and four messages: 

Y =   Ship is reported in 00 region. 
2 

Y =   Ship is reported in 01  region. 
3 

Y =   Ship is reported in 10 region. 
4 

Y —   Ship is reported in 11  region. 

and four acts: 

A      =   Place bomb in region 00. 
2 

A      =   Place bomb in region 01. 
3 

A      =   Place bomb in region 10. 
4 

A      =   Place bomb in region 11. 

The utility structure which we will assume models the destructive 
capabilities of the weapon specifies a return of two units of utility if the 
bomb is placed in the same region where the ship is located.    If the bomb 
is placed in a region adjacent to where the ship is located,   the utility is 
only one-half the previous value.    Finally,   if the bomb is placed in a non- 
adjacent region,   the return is null.    The utility matrix is then: 

X 
1 

X" X 

A' 2 1 1 0 

1 2 0 1 

1 0 2 1 

0 1 1 2 

=  u 
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by: 
The information system used by the decision maker is modeled 

X 

ql   q2 

q2(l-qi) 

qx(l-q2) 

(l-q1)d-q2) 

X 

q2(i-qa) 

ql   q2 

d-q1)(i-q2) 

qi(i-q2) 

x' 

d-q^d-q^ 

qi   q2 

q^l-q^ 

X 

d-qjXi-q^ 

qi(l-q2) 

qi   q2 

= Q 

The above Q model reflects the assumption that the two axis sensors are 
mutually statistically independent. 

If we now characterize the collection of alternate prior distributions 
that the decision maker is willing to consider and a distribution over them, 
we will have all the inputs for both decision-making models. 

To take the simplest case we can assume that the decision maker 
characterizes the environment weakly,   i. e. ,   ignoring any statistical 
dependency which may exist between the two coordinates of a ship loca- 
tion.    In such a case,   the prior distributions that the decision maker may 
entertain are of the form: 

P(XX) = 

p(X2) = 

P(X3) = 

4 
P(X  ) = 

(l-Pl)(l-p2) 

d-P2)Pl 

d-Pl)p2 

P1P2 

where p\ and P2 are respectively the probabilities that the ship w 
coordinate and z coordinate fall in the second interval of the corres- 
ponding axis. 

We will allow the number p,  and p£ to assume four equidistant 
values obtaining 16 different priors.     The 16 priors will be assumed at 
the onset to be equally likely.    Thus we have defined the matrix II and 
the vector G(77m) which were the only two missing inputs for our models. 
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It should be pointed out that the structure of the computer program 
described in Section 2. 2. 3 allows extremely flexible redefinition of the 
decision task.     Thus,   one could easily modify the sensor model to repre- 
sent,   for example.,   two isotropic sonar buoys placed in the region 00 and 
11 by simply utilizing the following Q matrix: 

X 
1 

X x~ X 

2 
r 

2 
q 

2 
q 

2        2 
l-(q    +  r   ) 

2 
q l-2q2 l-2q2 2 

q 

l-(q2+ r2) 
2 

q 
2 

q 
2 

r 

=   Q 

Here the sensors are assumed to have three distinct readouts:    same 
region as that of buoy; one of the two regions adjacent to buoy; region 
furthest from buoy.    Also we are assuming that a misreading between 
adjacent readouts can occur with probability q and between non-adjacent 
readouts with probability r; furthermore,   multiple mis readings are 
assumed to occur in a mutually independent manner. 
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SECTION III 

A MODEL  OF MULTI-PERIOD  DECISION MAKING 

We will begin this section by considering multi-period decision 
making in stationary environments.     These are environments described 
by probability distributions which are time invariant.     Let Xm be a 
state of the world,   A1 an act,   0^ an outcome.     Then the environment can 
be described by the three-dimensional array of probability numbers 

CWIA'.X
111

)} 

The problem we want to solve is given:   A prior distribution at some 
time t over the states of the world {pt(X

m)} and a set of utility numbers 
tuii ~ ^(A1, 6^)}>   which indicate the utility which accrues to the decision 
maker if (his) act A1 is followed by the outcome 6^,   determine the optimal 
act for the present time which will lead to maximizing present and future 
payoffs. 

The approach followed is to reduce the sequential decision-making 
problem to a static one by computing an "equivalent" utility matrix 
U1 = U f V,   where U =  {u—},   and V = {VJJ} is the maximum expected 
utility return over the remaining decision points which can accrue once 
the initial act A1 is followed by the outcome 6^.    In other words,   vy is 
the maximum expected future return which could ensue if at the initial 
instant the pair (A1, 6^) obtained. 

Once the equivalent utility matrix has been obtained,   one can 
select the optimal act as follows:    The expected value of the i-th act is 

v<Ai)= VpieVV; 

j 

where p (9  | A ) is given by 

P^IA
1
^ £P(eJ|A\xk)pt<xk) (l1) 
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Then one selects the act which maximizes such value,   i. e. ,   the A ° 
such that 

l 

Yp(eJ|A°)u; . = max YpfeVV (i) 

would solve our problem if the quantities  i^-li} where available. 
J 

Let us illustrate,   then,   how to compute {u^} .    For simplicity,   we 
will consider a case in which only two periods need be considered.    In 
applying this formulation to a specific problem,   one has to determine 
the value n such that the {uij} computed over n steps,   as well as over 
n +1  steps,   are "sufficiently" equal.    Such n is the minimum amount of 
future which needs to be considered for the specific sequential problem 
on hand. 

If two periods need to be considered, then since UJJ 
= u^: + v — , 

vjj represents the maximum expected return in the second step given 
that in the first step (A1, 0J) obtained.    But such a quantity is simply 

[i'j)    k.    1      .    1 V   l1» J/     k,    1 Ik 
=   max   £pt+1   (6   | A  ) u(A  ,6   ) (2) v.. 

1J 

where the quantity p^_J^(6k| A  ) is the probability of 9k(at t+1) given 
A    (at t + 1) given that at t,   (A1, 6^) occurred.     This probability is com- 
puted as follows: 

U» j) ,„k.    1,       V   . Jc,    1      m.   (*• J) " 
Pt + 1 (ek|A1)^p(e^A\xm,p;1;J

1(xm) (3, 
m 

where pt + j (X    ) is the posterior distribution of the states after the 
occurrence of the (A1, 6^) pair and p(9   | A  , Xm) is a member of the 
original three-dimensional array which describes the environment. 

rmx The distribution pK ' J/ (X    ) is in turn given by: 

v1'.])     rn. /vmi J      i. .... 
pt + 2(X    ) = pt(X     |6J, A ) (4') 
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where 

m p(e
j|Ai,xm)pt(x

m) 
pj^le^A1)^ ■=—T—i—r-S—j— (4) 
t 

^PO^A'.X^P^X1) 

1 

Thus the complete solution of the two-period sequential decision problem 
in a stationary environment proceeds as follows:    Using (4) and (41) 
(Bayes Theorem),   one obtains the posterior distribution over the states 
after observing the outcome of the first act (thus this model accounts 
for the learning performed by the decision maker upon acting and 
observing the consequences (outcome) of his act). 

Next,   using (3) and (2) one is in a position to compute the "optimal- 
future-return" v^ of the pair (A1,P-J).    Finally,   using (1) and (1'),   one 
can select the optimal act A ° for now.    This process can be repeated as 
soon as the outcome is observed by simply replacing pt(X  ) with the 
p* ' Y (X  ) where i and j correspond to the act that was chosen and the 
outcome which actually occurred.     Thus we obtain the selection of the 
optimal act for each decision point in time,   each selection taking into 
account only the returns to be expected at the decision point and the one 
just beyond it. 

Extensions of this schema to futures of more than two adjacent 
decision points is conceptually straight forward, but computationally 
cumbersome. 

3. 1      Markovian Environments 

If the multi-period decision making takes place in a non-stationary 
environment,   it is no longer possible to describe the environment with 
the probability array {p(0J|A1, Xm)} since this array is independent of 
time.    Let us consider the special class of Markovian environments.    An 
environment is said to be Markovian if the probability array which con- 
trols the outcomes depends only on the act and outcome which took place 
in the previous instant.    It then follows that a Markovian environment is 
described by the array 

hi    k 
(p(<iCi>ALi'4xr» 

whose individual entry represents the probability that given that the 
present (time t) act and state are respectively A^ and Xm and given 
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that the previous instant (time t-1) was characterized by act A1 and 
outcome 9  ,   the outcome 0" will occur at t (now). 

If one realizes that the only difference which is introduced by the 
environment being Markovian is that one can no longer talk about a fixed 
model of the environment [p(0   | AJ, Xm)} but has to model the environ- 
ment instant by instant with an array 

{p<k'VlAj,Xm)} 

where 

where the brackets around k and i indicate that these indices are fixed 
in the array,   then it is extremely easy to generalize the procedure given 
for stationary environments to the case of Markovian environments.     The 
generalized procedure is given briefly below: 

To solve completely the two-period decision problem in 
a Markovian environment,   one proceeds as follows, using 

(j, h)|(k, i) m     h      i     k i 

.h, _k 

rm|0
h       AJ     Ok J p<e>;^;-r4x>t'xm» 

P(X   le.A,e    ,A    )= ———T — — (4b) 

l 

one obtains the posterior distribution over the states. 

Equation (4bi which is Bayes Theorem,   models the learning process 
of the decision maker who observing the datum 0J1 under the conditions 

"-l* Aj_j, A^   learns how to better discriminate the hypothesis  {Xm}. 

The optimal future return for the pair (A^, 0£) is computed as 
follows: 

-  18 - 



First obtain 

- 

r,hiq            r      r     .   h        iq           m       (j,h)|(k, i) 

«\J°fAl-Ali> = I*dUX' 4 AtV xm*tfl <xm) 

m 

(3b) 

Notice that in (3b) one is using the array 

IP(6F+1|^.A«>.AJ+1.^+1)J 

and not the array 

This of course is due to the time variant character of the environment. 
Once (3b) is used,   one can compute vjh with: 

v     =   max   I p(8t
r
+ j 1 eh

t, A
J

t> AJ+ ,M8*. Aq) 
q      r 

(2b) 

Finally using 

u'u   =   uu   +   v-u Jh         jh        jh db") 

and 

P<3>r-r<i,4=Xp<0<-r<i4x>t<xm> <»>•> 
m 

and 

Ip(9>"-rA!-rA!0,^h = maxIp(<l<-rA;-i'AH <lb> 
h J  h 

Jo 
we can select the optimal act A      for the time t which is optimal when 
its expected consequences are considered over only two future decision 
points.    Again extensions to more than two future decision points are 
quite straightforward but become very cumbersome computationally. 
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SECTION IV 

PROBLEM  AREAS   UNCOVERED BY  THE  RESEARCH 
AND  POTENTIAL  EXTENSIONS 

The decision-making model presented in the first part of this 
report is concerned with extending decision theory to the case where 
the decision maker does not know the statistical properties of the 
stationary environment in which he is assumed to operate.     The model 
replaces the prior distribution with an ensemble of hypothetical distri- 
butions   i. e. ,   with a space of prior distributions and an associated 
density function. 

This density function represents the state of knowledge of the 
decision maker concerning the statistical properties of his environment. 
Thus a uniform density function would reflect a state of no information 
and a Dirac's density function would correspond to the state of perfect 
statistical information.     Traditional decision theory is concerned only 
with the above two extreme cases.     This information state is,   of course, 
subject to modification under the impact of empirical evidence supplied 
by the observation system.     The model incorporates empirical evidence 
by a suitable Bayesian learning submodel.     The learning model used is 
appropriate for a stationary environment. 

A natural extension of the theory is the incorporation of learning 
models for time-variant environments.    In the following paragraphs,   we 
would like to briefly describe how such an extension could be obtained in 
the case of the piece-wise-stationary environments,   which are used in 
the experiments reported by A.   Rapoport in Reference 2.    An environ- 
ment is said to be piece-wise-stationary if its statistical properties 
change only at a discrete instant in time,   such points in time will be 
referred to as time markers. 

Let us assume the simplest piece-wise-stationary environment, 
namely,   an environment with a single time marker.     The ensemble of 
hypotheses for such an environment is the collection of vectors  {17^, t, 7Ta} 
and a suitable density function over them.     The symbol 77^ indicates the 
prior distribution which holds before the marker,   while 7Ta is the prior 
distribution which applies after the marker and t is the value of the time 
marker. 

The empirical information will update the density function on the 
hypothesis space via the mechanism of Bayes rule.     The selection of the 
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appropriate hypothesis has to be done by solving a decision theoretic 
schema which incorporates the differential cost structure for pairs of 
hypothesis.    It is through this kind of mechanism that a more rapid 
discounting of past observations should result in time-variant environ- 
ments.    Mechanisms which rely on modifications of Bayes theorem 
suggested on intuitive grounds are not acceptable because there is no 
guarantee that they will result in an internally consistent formal system. 
We recommend that the above sketched out extension of the theory be 
developed in order to derive a normative theory for the experimental 
situations presented in Reference 2. 

The multi-period decision-making model discussed in Section III 
can also be formulated for time-variant environments with a finite 
history.    For decision tasks with an invariant utility structure and a 
well-informed decision maker,   the multi-period model is the most 
general decision-making model.     Consequently,   further work on this 
model should not be concerned with generalizing it,   but rather with the 
discovery of specialized cases which yield powerful algorithms for the 
exercise of the model. 
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APPENDIX 

This appendix contains listings of the executive routine and the 
subroutines for the computer program described in the flow chart pre- 
sented as Figure 1 in the report. 
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C    DECISION MODELS 1,2   16 DEC 1964 
C    PARTIALLY INFORMED DECISION MAKING MODELS 1,2 EXECUTIVE PROGRAM 
C    THIS PROGRAM ALLOWS THE COMPUTATION OF THE OPTIMUM STRATEGY 
C    FOR DECISION MAKING IN A STATIONARY ENVIRONMENT WITH STATIONARY 
C    AND INDEPENDENT DATA SOURCES AND NOT WELL INFORMED DECISION MAKER 

COMMON l,N,NA,ND,NM,NO,DG,G,PL,KACT,NY,OME,PIAV,PI,PR,Q,U 
C    DIMENSION DG(ND,ND),G(ND),PL(ND,ND),KACT(NO-1),NY(NO),OME(ND,NM) 
C   1PIAV(N),PI (ND,N),PR(N),Q(N,NM),U(NA,N) 

DIMENSION DG(16,16),G(16),PL(16,16),KACT(19),NY(20),OME(16,4) 
1PIAV(4),PI (16,4),PR(4),Q(4,4),U(4,4) 

99 FORMAT (51 4) 
READ 99,N,NA,ND,NM,N0 

98  FORMAT (8 F6.3) 
READ 98, (G(IG),IG-1,8) 
READ 98,(G(IG),IG«9,16) 
READ 98,((U(IU,JU),IU=1,4),JU«1,2) 
READ 98, ((U(IU,JU),IU»1,4),JU-3,4) 

C97  FORMAT (NO 12) 
97  FORMAT (20 12) 

READ 97, NY 
CALL QSUB 
CALL PI SUB 
DO 100 IPI«1,ND 
DO 100 JQ=1,NM 
OME(IPI,JQ)»0 
DO 100 KQ»1,N 

100 OME(IPI,JQ)«OME(IPI,JQ)+PI (I PI ,KQ)*Q(KQ, JQ) 
IF (SENSE SWITCH 1)311,312 

311 CALL CSUB 
312 DO 104 l-1,NO-1 

CALL UPDATE 
IF(SENSE SWITCH 1) 110,111 

110 CALL PRIOR 
GO TO 113 

111 DO 112 IPR-1,N 
112 PRCIPR)-PIAV(IPR) 
113 IF(SENSE SWITCH 2) 102,103 

C101 FORMAT ($SELECTED PRI0RS/NF6.3) 
101 FORMAT($ SELECTED PRI0RS/4F6.3) 
102 TYPE 101,PR 
103 CALL DEC IS 
104 CONTINUE 

C202    FORMAT($PROGRAM   INPUTS$///$N-$,l2,3X,$NA-$,l2,3X,$ND-$,l2,$NM-$, 
C I2,3X,$N0-$,I2//$Q MATRIX$//NM(N  F6.3)//$PI   MATRIX$/ 
C N <ND/2F6.3/6X,ND/2F6.3//)//$0RIGINAL  G DISTRIBUTIONS/ 
C ND/2F6.3/6X,ND/2F6.3//$LIST  OF OBSERVATIONS $/NOI2/) 
202    FORMAT «PROGRAM  INPUTS$///$N-$,I2,3X,$NA«$,l2,3X,$ND-$,l2,$NM-$, 

1I2,3X,$N0-$,I2//$Q MATRIX$//4(4F6.3/)//$PI   MATRIX $/ 
14( 8    F6.3/6X,   8    F6.3//)//$0RIGINAL  G DISTRIBUTIONS/ 
18      F6.3/6X,   8    F6.3//SLIST  OF OBSERVATIONS S/20I2/) 
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TYPE 202,N,NA,ND,NM,NO,Q,PI,G,NY 
C313    FORMAT   (/$UTILITY MATRIX$/N(NA  F6.3/)) 

313    FORMAT(/$UTILITY MATRIX$M(4 F6.3/)) 
TYPE 313,U 

C203    FORMAT($DECISION MAKER STRATEGY$///$LAST OBSERVATIONS,6X,N0-1I2/ 
C $PRESENT 0BSERVATI0N$,3X,N0-1   I2/$SELECTED  ACT$,10X,NO-1     12) 

203    FORMAT($DECISI ON MAKER STRATEGY$///$LAST OBSERVATIONS,6X,   1912/ 
1$PRESENT OBSERVATIONS,3X,   19    I2/SSELECTED  ACT$,10X,     19     12) 
TYPE 203, (NY (I), I -1,NO-1), (NY (I), I-2,NO), (KACT (I), 1-1, NO-1) 
END 

SUBROUTINE  QSUB 
C THIS   IS THE  Q MODEL OF  EXAMPLE  1 

COMMON   l,N,NA,ND,NM,NO,DG,G,PL,KACT,NY,OME,PIAV,PI,PR,Q,U 
C DIMENSION DG(ND,ND),G(ND),PL(ND,ND),KACT(NO-1),NY(NO),OME(ND,NM) 
C 1PIAV(N),PI (ND,N),PR(N),Q(N,NM),U(NA,N) 

DIMENSION DG (16,16),G (16),PL(16,16),KACT (19),NY(20),OME(16,4) 
1PIAVOO,PI (16,JO,PR(iO,Q(4,it),Ue*,JO 

150    FORMAT   (2F6.3) 
READ   150,  Q1,Q2 
Q(1,1)«Q1*Q2 
Q(1,2)-Q2*(1.0-Q1) 
Q(1,3)»Q1*(1.0-Q2) 
Q(1,4)-(1.0-Q1)*(1. 0-Q2) 
Q(2,1)«Q2*(1.0-Q1) 
Q(2,2)-Q1*Q2 
Q(2,3)-(1.0-Q1)*(1. 0-Q2) 
Q(2,JO«Q1*(1.0-Q2) 
QG,1)-Q1*(1.0-Q2) 
Q(3,2)-(1.0-Q1)*(1. 0-Q2) 
QG,3)«Q1*Q2 
Q(3,4)«Q2*(1.0-Q1) 
Q(J*,1)«(1.0-Q1)*(1. 0-Q2) 
QU,2)»Q1*(1.0-Q2) 
QU,3)«Q2*(1.0-Q1) 
Q(4,i+)-Q1*Q2 
QSUB   INPUTS 

201    FORMAT   (// $  Q1  AND Q2 V 
207    TYPE 201,Q1,Q2 

RETURN 
END 

VALUES $//F6.3,3X,F6.3) 

SUBROUTINE PI SUB 
DISTRIBUTION THAT RESULTS   IF TWO   INDEPENDENT PROB AXIS ARE 
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C    ASSUMED TO ACQUIRE 4 EQUAL PROBABILITIES 
COMMON l,N,NA,ND,NM,NO,DG,G,PL,KACT,NY,OME,PIAV,PI,PR,Q,U 

C    DIMENSION DG(ND,ND),G(ND),PL(ND,ND),KACT(NO-1),NY(NO),OME(ND,NM) 
C   1PIAV(N),PI (ND,N),PR(N),Q(N,NM),U(NA,N) 

DIMENSION DG(16,16),G(16),PL(16,16),KACT(19),NY(20),OME(16,4) 
1PIAVOO,PI (16,4),PR(4),Q(4,4),U(4,4) 

C DIMENSION P1(NPV),P2(NPV) 
DIMENSION P1(4),P2(4) 

128    FORMAT   (8F6.3,   13) 
READ   128,P1,P2,NPV 
ND-NPV*NPV 
DO  130   IPI«1,ND 
DO  130 JPI-1,N 

130 PI (IPI,JPI)-0 
DO  131   IP2-1,NPV 
DO  131   IP1-1,NPV 
IPI-IP1+NPV*(IP2-1) 
PI (IPI,1X1.0-P1(IP1))*(1.0-P2(IP2)) 
PI (IPI,2)-P1(IP1)*(1.0-P2(IP2)) 
PI (IPI,3)«(1.0-P1(IP1))*P2(IP2) 

131 PI <IPI,iO-P1(IP1)*P2(IP2) 
C          PISUB   INPUTS 
C200    FORMAT (//$P1  AND P2 VALUES  $//NPV  F6.3/NPV  F6.3) 
200    FORMAT   (// $ P1  AND P2 VALUES $/MF6.3MF6.3) 

TYPE 200,P1,P2 
RETURN 
END 

SUBROUTINE  CSUB 
C THIS  ROUTINE  COMPUTES THE LOSS  RESULTING FROM HYPOTHESIZING PI 
C RATHER THAN PJ AS THE PRIOR 

COMMON   l,N,NA,ND,NM,NO,DG,G,PL,KACT,NY,OME,PIAV,PI,PR,Q,U 
C DIMENSION DG(ND,ND),G(ND),PL(ND,ND),KACT(NO-1)*NY(NO),OME(ND,NM) 
C 1PIAV(N),PI (ND,N),PR(N),Q(N,NM),U(NA,N) 

DIMENSION DG(16,16),G(16),PL(16,16),KACT(19),NY(20),OME(16,iO 
1PIAVU)tPI (16,4),PR (4),QU,if),U(^,4) 

C DIMENSION DPI (N,N),DPJ(N,N),C(NA,N),CJ(NA,NM ,CI(NA,NM),EI(NM),EJ(NM) 
DIMENSION DPI (4,4),DPJ (4,4),C Wf 4),CJ(4t4)fCI (*,4)fEI (^),EJ W) 
DO  11   IPL-1,ND 
DO  11  JPL-1,ND 
DO  12 L-1,N 
DO  12 K«1,N 
DPI (L,K>0 
DPI (L,L)-PI(IPL,L) 
DPJ<L,K)-0 

12      DPJ(L,L)-PI CJPL,L) 
DO  1 M-1,NA 
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DO 1 K-1,N 
C(MfK)-l 
DO 1 L-1,N 

1 C(M,K)«C(M,K)+U(M,L)*DPJO.,K) 
DO 2 M«1,NA 
DO 2 K-1,NM 
CJ<M,K)-§ 
DO 2 11-1,N 

2 CJ(M,K)«CJ(M,K)+C(M,I1)*Q(I1,K) 
VJ-0 
DO 5 K-1,NM 
EJ(K)-CJ(1,K) 
DO 4 L»2,NA 
IF(EJ(K)-CJ(L,K)) 3,3,1* 

3 EJ(K>CJ<L,K) 
4 CONTINUE 
5 VJ-VJ+EJOO 

DO 6 M-1,NA 
DO 6 K-1,N 
C(M,K)-0 
DO 6 L-1,N 

6 C(M,K)-C(M,K)+U(M,L)*DPI (L,K) 
DO 7 M«1,NA 
DO 7 K»1,NM 
Cl (M,K)-0 
DO 7 11-1,N 

7 Cl <M,K)«CI (M,K)+C(M, I1)*Q(I1,K) 
VI-0 
DO 10 K-1,NM 
El (K)-CI (1,K) 
EJ(K)«CJ(1,K) 
DO 9 L-2,NA 
IFCEI (K)-CI (L,K))8,8,9 

8 El (K)-CI <L,K) 
EJ(K)*CJ<_,K) 

9 CONTINUE 
10 VI-VI+EJOO 

IFCSENSE  SWITCH 4)301,11 
301 TYPE 300,DPI,DPJ,C,CJ,VJ,CI,VI 
300    FORMAT ($  DPI$/4C4F6.3/)//$DPJ$/4C4F6.3/)//$C$/4C4F6,3/)//$CJ$/ 

14C4F6,3/)//$VJ-$,F6.3//$CI$/4C4F6.3/)//$VI«$,F6.3) 
11 PLCIPL,JPL)«VI-VJ 

IFCSENSE  SWITCH 3)303,304 
C302    FORMAT($COST OF MlSINFERENCE$///  ND(ND/2F6.3/6X,ND/2F6.3//)) 
302 FORMAT ($COST OF Ml SINFERENCE$///  16(    8 F6.3/6X,     8  F6.3//)) 
303 TYPE 302,PL 
304 RETURN 

ENO 
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SUBROUTINE  UPDATE 
C THIS  SUBROUTINE  UPDATES THE DISTRIBUTION GCPI) TO  ACCOUNT FOR 
C THE  RECEIPT OF THE MESSAGE   IDENTIFIED  BY  NYU). 

COMMON   l,N,NA,ND,NM,NO,DG,G,PL,KACT,NY,OME,P1AV,PI,PR,Q,U 
C DIMENSION  DG(ND,ND),G(ND),PL(ND,ND),KACT(NO-1),NY(NO),OME(ND,NM) 
C 1PIAV(N),PI CND,N),PR(N),Q(N,NM),U(NA,N) 

DIMENSION DG(16,16),G(16),PL(16,16),KACT(19),NY(20),OME(16,4) 
1PIAV(4),PI (16,4),PR(4),Q(4,4),U(4,4) 

C DIMENSION  QJ(N),   PIQJ(ND) 
DIMENSION  QJ(4),PIQJ(16) 
JQ-NY(I) 
DO 50   IQ-1,N 

50 QJ(IQ)-Q(IQ,JQ) 
DO  51   IPI-1,ND 
PIQJ(IPI)«0 
DO 51  KPI«1,N 

51 PIQJ(IPI)-PIQJCIPI)  + PI (IPI,KPI)*QJ(KPI) 
DENO0 
DO 52 JG«1,ND 

52 DENO-DENOG(JG)*PIQJ(JG) 
DO 53   IPI-1,ND 

53 G (I P I)- (PIQ J (I PI) *G (I PI) )/DENO 
DO  54   IDG-1,ND 
DO 54 JDG«1,ND 
DG(IDG,JDG)=0 

54 DGCIDG, IDG)-G(IDG) 
DO  55 JPI -1,N 
PIAVUPD-0 
DO  55   IPI-1,ND 

55 PIAV(JPI)-PIAVUPI)+G(IPI)*PI (IPI,JPI) 
IFCSENSE SWITCH 3)306,307 

C305 FORMAT($LAST OBSERVATION-$,I2//$G NEW DISTR$//2(ND/2F6.3/)/ 
C   1/$AVERAGE PRIOR$/N F6.3) 
305 FORMAT($LAST OBSERVATION«!,I2//$G NEW DISTR$//2( 8 F6.3/)/ 

1/$AVERAGE PRIORS/4 F6.3) 
306 TYPE 305, JQ,G,PIAV 
307 RETURN 

END 

SUBROUTINE PRIOR 
C    THIS SUBROUTINE SELECTS THAT COLUMN OF THE MATRIX PL-DG-OME 
C    WHICH CORRESPONDS TO THE NEXT OBS MESSAGE AND SELECTS THE PRIOR 
C    WHICH CORRESPONDS TO ITS LARGEST ENTRY 

COMMON l,N,NA,ND,NM,NO,DG,G,PL,KACT,NY,OME,PIAV,PI,PR,Q,U 
C    DIMENSION DG(ND,ND),G(ND),PL(ND,ND),KACT(NO-1),NY(NO),OME(ND,NM) 

- 28 - 



C 1PIAV(N),PI (ND,N),PR(N),Q(N,NM),U(NA,N) 
DIMENSION  DG(16,16),G(16),PL(16,16),KACT(19),NY(20),OME(16,JO 

1PIAVOO,PI <16f'0>PR('OfQ<4,'OfU(M> 
C DIMENSION DL(ND,ND),DLOJ(ND) 

DIMENSION  DL(16,16),DL0J(16) 
DO 21   IL«1,ND 
DO 21 JD-1,ND 
DL(IL,JD)-0 
DO 21  KLD«1,ND 

21 DL(IL,JD)»DL(IL,JD)+PL(IL,KLD)*DG(KLD,JD) 
DO 22   IL-1,ND 
JOM-NYCI+1) 

C JOM SELECTS COLUMN OF OMEGA  THUS OF L-DG-OMEGA,   NY(I) LISTS 
C THE   IDENTIFIERS OF THE MESSAGES  MAKING UP  A GIVEN  EXPERIMENT. 
C NYCI+1)   IS THUS THE   IDENTIFIER OF TH PRESENT OBSERVATION. 

DLOJCID-0 
DO 22  JD-1,ND 

22 DLOJ(IL)»DLOJ(IL)+DL(IL,JD)*OME(JD,JOM) 
AMAXlL-DLOJCI) 
DO 25  IP-1,N 

25 PR (IP)-PI (1,IP) 
DO 24  IL«2,ND 
IFCAMAXIL-DLOJ (IL))23,23,24 

23 AMAXIL'DLOJ (ID 
DO 26   IP-1,N 

26 PR(IP)-PI (IL,IP) 
24 CONTINUE 

IFCSENSE  SWITCH 3)309,310 
C308    FORMAT($PRESENT OBSERVATION'S,I2//$C0ST OF   INF$/2(ND/2F6.3/)) 
308 FORMAT(SPRESENT OBSERVATION'S,I2//$C0ST OF   INF$/2(    8  F6.3/)) 
309 TYPE  308,JOM,DLOJ 
310 RETURN 

END 

SUBROUTINE  DEC IS 
C THIS SUBROUTINE  COMPUTES THE DECISION  RULE   (UDQ)+ AND THE 
C OPTIMAL  ACT  FOR THE  ACTUALLY OBSERVED  Y.IT CAN OUTPUT  DECIS     RULE 

COMMON   l,N,NA,ND,NM,NO,DG,G,PL,KACT,NY,OME,PIAV,PI,PR,Q,U 
C DIMENSION  DG(ND,ND),G(ND),PL(ND,ND),KACT(NO-1),NY(NO),OME(ND,NM) 
C 1PIAV(N),PI (ND,N),PR(N),Q(N,NM),U(NA,N) 

DIMENSION DG(16,16),G(16),PL(16,16),KACT(19),NY(20),OME(16,*O 
1PIAVU),PI (16,4),PROO,Q(4,4),U(4,4) 

C DIMENSION  D(N,N),UD(NA,N),UDQ(NA,NM),AMAX(NM),KRULE(NM) 
DIMENSION D(4,4),UD(4,4),UDQ(4,4),AMAX(4),KRULE(4) 
DO 30   ID-1,N 
DO 30  JD-1,N 
D(ID,JD>0 
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30 D(ID,ID)«PR(ID) 
DO 31   IU-1,NA 
DO 31 JD-1,N 
UD(IU,JD)-0 
DO 31  KU«1,N 

31 UD(IU,JD)-UD(IU,JD)+U(IU,KU)*D(KU,JD) 
DO 32   IU-1,NA 
DO 32 JQ«1,NM 
UDQ(IU,JQ)«0 
DO 32   KD«1,N 

32 UDQ(IU,JQ)«UDQ(IU,JQ)+UDCIU,KD)*Q(KD,JQ) 
DO 34 JQ-1,NM 
KRULE(JQ>1 
AMAX(JQ)-UDQ(1,JQ) 
DO 34   IU«2,NA 
IF(AMAX(JQ)-UDQ(IU,JQ))33,33,34 

33 AMAX(JQ)-UDQ(IU,JQ) 
KRULE(JQ)-IU 

34 CONTINUE 
IFCSENSE  SWITCH 3)36,37 

35 FORMAT ($COST OF ACT$/  4( 4  F6.3/)//$KRULE$/ 4   12) 
C35      FORMAT($COST OF ACT$/NM(NA  F6.3/)//$KRULE$/NM  12) 
36 TYPE 35,UDQ,KRULE 
37 JQ-NYCI+1) 

C KACT(I)   IS TAKEN OBSERVING  NY(I + 1) 
KACTd)-KRULE(JQ) 
RETURN 
END 
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