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ABSTRACT

This report, prepared in two parts, deals with products and quotients
of random variables. In Part I, the distributions of quotients of indep~ .dent
random variables are considered. In Part II, the distribution of the product
of two (not necessarily independent) 1.ormally distributed random variates is

investigated. The tables of this distribution are given in the Appendix.
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I. ON THE QUOTIENT OF HANLOM VAHIABLES

le  Introduction

In a study of distributions of products and quotients of random
variables it is sometimes necessary to determine possible componeant
distributims when the composite distribution is known. FPormally, at
least, this involves a study of linear integral equations of the first
kind. For the quotient, in particular, suppose x, and x, are independent
random variables with f(xl) and g(x2) their respective density functions.

Setting y, = x1/12 and Yo = X5 the density f{»nction for the quotient

Q@

has the form $I7(y1) -/ f(y1y2) g(yz) , y2, dy,. A derivation of this
-0

formula as well as a general discussion of results in this area is given
in [20] .

A number of authors [22 , 23, 31, 32 33 34 and others]
have studied this problem in the case where the variates are assumed to
be identically distributed. Their techniques, which can be called more
or less '"classical", involved the use of various transform theories -
Mellin, Fourier, and others — but little was done to develop a general

theory for the above equation. It was the original intent of this paper

1
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to vicw this equation in operator form, i.e., qp = F g (assuming f given),
where F is a compact operator on an P space and attempt to develop a
theory for linear integral equations of the first kind from the linear
operator point of view that would be applicable to probability density
functions. Wwe have not been too successful as far as fruitful results
are concerned. Some of the difficulties are discussed in Sec. 3 along
with a possible application of a theory that is presently being developed
for pairs of operators acting between Banach spaces.

In Sec., 2 we generalize a few known results assuming identical
distributions as mentioned above (still from the classical point of view)
and discuss an existence theorem. Essentially, the procedures and tech-
niques of Laha have been followed here. In Appendix A two theorems re-
sulting from a side investigation are presented - one is apparently not

riew but the proof scems particuluarly simple,



2. The Quotient of Independent Random Variables

We give here a few results and generalizations of known results
involving the quotient of independent random variables. In parts of

”" 1t
Sec. 2.1 and Sec. 2.2 identically distributed is also assumed.

2.1. A Necessary Condition for a Solutijon to Exist

Suppose X, and x, are identically distributed random
variables over the real line with density function f. Under the trans-
formation Y= xl/x2 and Y= X, , 8ee [20] y the density function for the

quotient 11/12 is given by

00
W e - [ ) 1) |y,
<00
Note then that(f (;%) =/ f'(yz/yl) f(y2) ‘y2 , dy,. For yl-,‘ 0, letting
~00

Yz/yl- w so that d.yza yldv this becomes

)
¢(%1)=/ f(w) f(ylv),yluv'lylldw
®
.ly . £(w) f(yv)ivldu
I f 1

= "1[2 “/‘(’1)-



Note also thut §/(O) = £(0) E[,y? ,] . Viewing 7 as given in (A) above

we have proved the following.

Theorem 1t Under the conditions above, if (A) has a solution then for
y.4 0O it is necessary that(/ L. y 21/(y ); if not, no solution f
i Yy 1 1
exists. Moreover, the "rearch" for possible solutions can be narrowed
down to those density functions f(x) such that 4/\0) = £(0) E['x |] .
It is interesting to note in this result that y12(f//(yl) is actually
the density function for the random variable 1/yl. Note further that (A)
cannot be golved if it is asgsumed that ({/ (yl) is the normal density function.

Referring to (A) again, suppose a symmetric solution is desired, i.e.,

f(z) = f(-2z). The equation then has the form

[0 0]

(8)  §(yy) - ?/ f(y,y,) fly,) ¥, dy,.

o

It is clear, first of all, that f symmetric implies (/ must also be

symmetric. Also if (f is given symmeiric then

03 QO
14 \
/ |y, | £C-y,) £(y,) ay, =/ |y, | £{yy5,) £(y, 4y,
- =00

which implies that f(-yly2) = f(yly2) a.e. Hence, in the a.e. sense

at least, we have the following for (A) above.



Lemma 21 90 is symmetric if an only if f is symmetric.
Changing the form of (B) above,

00

$(yy) = 2/ yzy" £(y,) yzy" £(y,y,) dy, .

o
Letting yZ” f(yg) — g(yz) this becomes

Qo

2 / 8(y,) yzyz £(y,y,) dy,

o

Q0

so that for y zo.yy" (y,) =2 g(y)y”y}?f(yy)dy.i-e-,
1 1 1 2/ 91 Y, 192/ WV

(o]

00
¥ .
oly;) = 5,7 ¢(yv) =2 [ aly,) &lyyy,) dy, .
o
This is a form studied in [2%]. Solving the above equation for g will
also furnish a symmetric solution to the original equation.
It should be mentioned that Fox [21] carries out an analysis on the

above form for L 'o,oo) functions using Mellin and Fourier transform theory.



2.2. Some Generalizations Using Both Distribution and Density
Functions

Laha [ZPJ considers, in particular, an integral equation of
the form (A) above, where y,» the quotient of two independent, identically
distributed random variables, is assumed to follow the Cauchy law. The
genoral technique is to use distribution functions and Fourier transforms,
the distribution functions assumed to be everywhere continuous to the right.
This is a more general approach since the distribution function always
exists.

The distribution function F for the random variable y is said to be

symmetric (abcut 0) in case F(y) = 1 - F(-y-O).

Lemma 13 Given the random variable x with distribution function F(x)

symmetric (nabout O), the distribution function G of lx |ia given by

2 F(x) -1, x> 0
G(!xl) =
0, el sewhere .

troof: for a > U,

G(a, bPr []x ,'§ a] = 'r [—a:; X <Ia] - F(a) - P(-a-0) = 2F(a)-1

since F iy symmetric and the result follows.
The importance of the lemma is that the distribution function of x can

be determined knowing only that of lx’ and we shall be able to relate this

to the distribution of ln ‘x « bBefore doing this however we prove the

following.



Lemmg 21 Let u be a random variable following the Cauchy law, i.e¢.,
L 5~ + Then z - cot lu has a uniform distribution.
1T (14u%)

f(u) =

Proofs Pr [z 53] = Pr [cot-lu Ea:l =1 - Pr[u < cot a]

cot a
1 1 i - £
1.k 4 "[(rr/?. a)+rr/2].ﬂ
-00

80 that the density function for z is equal to r—lr' y 0< 2z < 7T and zero
elgewvhere. Using the above lemma, since z has n uniform distribution, and
since we kncw its closed form characteristic funciione see [25] for example,
and moreover since the characteristic function of a function of a random

itgh)

variable, g(w) say, is the mean value of e wve can evaluate the

following integral,

m -
L/ eitcotlw S °1t.rr/2 sin t7/2 .
7 a2 L 17/2

-Q0

Theorem 3: Let x and y be independent, identically distribut~d random
variables. Let 3 - x/y and G(3), the distribution function of z, be
symmetric about O, Suppose further that the square root of the charac-
teristic function of lnlzl is absolutely integrable. Then F(x), the
distribution function of x (and y) is absolutely continuous and has a

continuous demsity function f(x) = P'(x) > 0.



Proofs By a result of Lana [22] , F(x) is symmetric about the oisigin.
2F(x)-1, if x>0
Consequently the distribution function for |x| is G( x ) =
0 , otherwise
by the above lemma. Let E[.1‘t1n|z|] = y;(t). Then since ln|z l- ln |x |-

lnly' we have

4 t) © g (b)) = g (¢)
and hence lyx(t) l : l‘Fz(t) l Yo .

@
By assumption/ l(fz(t) ly" it < 00 so that the -haracteristic function

-

of lnlz I. q;ﬂt), is absolutely integrable. By a theorem of Loeve l2h]
the distribution function of ln]xl is absolutely continuous and has a
continuo:s density function. But since F(lnlx.l) - G(Ix!) it follows that
| x 'has an absolutely continuous distribution function and a continuous
density function. From above, then, so does x.

It is known that if z follows the Cauchy law, the characteristic
function for lniz lis sech(/7t/2 ), a function which has a finite integral
over the real line so that the above result holds for this particular

distribution.



Theorem 431 To the assumptions in theorem 3 above add that arcot z has
a uniform distribution. Then f, the density function for x, satisfies

the integral equation

Q0

/ £(y) £(wy)y dy =

o

> vhere k is a constant.
l+w

Proofs Our assumptions imply that { is also symme“’ric about zero and
hence wo recognize the above integral as % g(w), where g is the density

function for v = x/y. Let u = arcot w. The density function for u,

n(u) say, is

» O<u< 77

* elsewhere,

80 that for the distribution function H(u) we have

cot a
H(u) = Pr[u Sa]- l-Pr[wgcot a] - 1-/ g(w) d(w) aﬁ, 0O<a<//.
~00
Hence Sotla
1 b
2 g(w) dv = 2 ff W‘ a) .
-
cot a cot a
But
u 1 dw = (/7-a) 8o that k dv_"-l—(f‘/'-a)
1 2 2 21T *
+w l4w
® -00



Thus % g(w) - and the result follows. This can be generalized

as follows.

Theorem 93¢ Given the hypothesis of Theorem 3, let w = x/y and h(u), the
density function for u = arcot w, vanish outside the interval [O,TT]. Then

the density function f for x satisfies the integral equation

Q0

-1
f f(y) f(wy)y dy = k h(co; u) , kK a constant.
l+w

o
Proofs Following the model and notation of the last proof we have
cot a

/ %E(V)d\i=l[1"ﬂ(a)] y 0<a<g/.

=00

n

We need a function [ such that {(cot alcscla - % h(a),

cot a
, -1 -1
ices M(w) = 1 h(cot _w) . Consider h{oot "w) dw.
2 2 2 2
l+w l+w
-
Letting y = cot"lv this becomes
a . 7 1 1
1/ ey -3 nay 3 [a0m) - ] - 41 - (o)
2
a

and the result follows.

10



3. Some Comments on the General Problem

It has already been noted that the density function for the quotient
of two random variables x, and i, with density functions f(xl) and 3(12)

respectively has the general form

Q) = [ [ vy £lryy,) alvy)ey,

=00

where y, = xl/x2 and y,= X,. Writing the kernel k(yl,yz) = |7, f(y1y2)
this has the form of a linear integral equation of the first kind and 1in
operator notation can e formally written as Kg - 7/ It appears somewhat
difficult to determine the proper domain and range for this operator so
as to apply direotly to probability functions. The set of density functicns
in C[a,b] or L2[ a,b] for example, does not form a linear space. If the
equations could be modified to consider distribution functions, addition
can be defined as F + G = F # G where # means convolution but scalar
"multiplication" appears to move one off the intersection of the unit ball
with the positive cone in the Banach space under consideration.

Apparently then,the analysis should be done on some other space
(as far as solutions are concerned) and a second analysis done to determine
whether the solution or which of the solutions are density functions, T'fs
for example, the kernel k vanishes outside tlie square [a,tﬂ b 4 [a,b] = E
and k € Lz(E), then the operator K acting on 1° 1s compact (with range in

Lz). The theory of compact operators could possibly be extended so as to

11



apply to equations of the type needed here. To this end it should be
mentioned that S. Birnbaum, at the University of Colorado and Martin-
Denver, is presently developing a theory for pairs of operators acting
between Banach spaces. This theory appears to have some applications in
this area. We give a brief discussion here as to the type of results to
expect. They will be called pretheorems.

We will be considering the spaces L = LP [O ,1] and C « C [0,1] ’
l1<p <o, and an integral equation of the above form Kf « g, KiL —C,
With proper restrictions on the kernel k(s,t) determining K, K will be a
corlxtinuoua operator [vis. k(s,t) continuous in s for every t and
J;
R 1+ C—LP be an imbedding, i.e., for y € C, Ry = [y] €LP, ([ ] denotes

k(s,t)lp' dt <oo for every s € [0,1] " vhero%+%, - 1]. Let

an equivalence class). Then R is continuous and 1-1 and hence R-l =S
exists as a closed operator S 3 L2—C and the domain of S is the set
{[ y] ' 3 y€[y]. y€ C} . Using the above theory for the pair (S,K)
the following can then be proved.

Pretheorem: If there is A (complex) such that (S - A K) is 1-1, the
range of (S - AK) is C, and such that “ S(s- A‘)-l ||< 1 then K
restricted to the domain of S is 1-1, has range C, and has a continuous
inverse defined everywhere on C.

It should be noted that emamgother things this is a uniqueness theorem.
Applied to the problem oconsidered in this paper the solution would have
tc be examined to determine whether or not it is a density function. From

the form of the solutiom, however, it appears that this may be a difficult

12



problem but it has not yet been investigateds It also appears promising,
using the new theory, that it will be possible to characterize the null
space of K 8o that scmething can be said when multiple solutions are

involved. Although the above result was stated for the unit interval,

it can be extended to more general settings.

13



II. NOTES ON THE PRODUCT OF TWO NORMALLY
DISTRIBUTED RANDOM VARIABLES |

1. Introduction 3

Let Xl anc X2 follow a normal bivariate probability density functionm,
p.def., with expected values/&l,/l2, standard deviations, o, 6'2, and
coefficient of correlation, - Several forms of randcm variable products
may be considered; two of which are the normalized product 2 = (Xl-/&) .
(xz-/(z)/tfl 6'2 and the product Z - Xlxz/a'1 6‘2. The latter presents far
greater application in that families of normal random variables xl/di and
xz/aa may be characterized by the statistice vy -/(i/oi, i =1, 2. These,

of course, are the reciprocals of the respective coefficients of variation.

The joint p.d.f. of the normal random variables )(1/0'1 and J(?/c!‘2 is
2 2

exp{-_l-— [(ﬁ-v) -2 /-xi-v)(x—‘?--v )+ x—z--v ]}
2(1-p2) L\ 1 Pko'l 1)\o," "2 s, "2

)

—
Sul'Ny

(=) Ve

With the transformation W = Xl/O' s 2= )(.L)(Z,/a‘1 G,, the marginal

pedef. of Z may be derived from

3 p: _L—[(“"’l)?'?f’(v-n)(f'vz) . (%-vg)z] }

2(1 -0°)
{ﬂ(')- / £ — dw .
2y 1 - e |l

=00

(11-1)

14



The p.d.f. (II-1) may be expressed as {(z) = Il(z) - 12(2) vhere

1 [(w-vl)z- 2‘o(w-v1)(-3'-v2)+(;z--v2)2]}

exp{ - 2(1 2)
Il(z) =f P dw
21T ¢y 1 -(02 w

o

and Iz(z) is the same function defined on (-oco,0). After the substitution

w = -w into Iz(z), the marginal p.d.f. f(z) may be expressed as

[CRREETICRN IR R }

i
p{ 2(1-0°)
P(z) = 1 £ +

w

+ dw
v

(II-2)

and by expanding these exponents and regrouping terms, (II-?) becones

1 2 2 g 1 2 g2
y( | exp{- 201 -Pz) [vl + v, - 2(0[2 + v1v2]]}/ e- 2(1.‘02)[\: + -33]
M VI -(02 o

["2(("'2‘ vy) + alpvy - Vz)J
* cosh dw . (11-3)

L

w(1 - p°)

15



Several special cases may now be examined. When V=V, - 0, the

p.d.f. of the "normalized" product is obtained. The p.d.f. of Z in this

case 551 © 2
1-‘02

2) » T——— 2 ’ -4

b 7T Y1-0° Ko(l‘Pz) e

vhere I(o(-) is a modified Bessel function of the second kind of zero
order posseusing a singularity at z « O, The product of two independent

"normalized" veriables by (II-4) reduces to

Pla) = K (2) (11-5)

a result shown in[ 5 Jand|[ 6 ]

The non-central product y Xl)(z/cr1 0, in which each variable
is characterized by its respective reciprocal of the coefficient of variationm,
vy -/ 0, has undergone extensive study. As yet, however, no satisfactory
method of obtaining numerical results for the cumuiative distribution
function of Z has been derived for all parameters values of P Vs and Ve
The analysis by C. C. Craig[ 5 ],[ 6 ], is perhaps the most nvtable con-

cerning this product.

1 J. Wishart and M.S, Bartletts The Distribution of Second Order Moments

Statistics in a Normal System; Proceedings of the Cambridge Philosophical

16



In an effort to simplify any numerical calculation, Craig reformulated
(II-3) as an infinite series. The cosh funotion in (II-3) may be expanded

so that it is possible to write fa(z) - Il(z) - Iz(z) where

I(Z)-

S S Z4+V.V ©
”{ 2(1-,,2)[1 %ol 12”}/ ¥ ]
exp | - ——— |v + +
27T |{1 P 4 2(1- o°)
1 dw
+m l:(e v,- vl)v + (p v,- VZ)%JT (11-6)

and Iz(z) is the integral of the same function over the interval (-o,0).

The infinite series expression is derived by substituting

—Y e .y and —&—
VI-pz 1-92

Under this transformation, Il(z) becomes

1
‘/ ® -3
1 2 2
Il(y = 2" xp |- [vl +v2-2p[y+v1v2]] / e

2(1 -92)

ey v)  (ov-v)

Vi@ J__

V-V) (p v,)

The term “ ‘ may be expanded in a Laurent

£ K
[=%
=

L ]

P
-
—
-3
p

* exp

c K

17



series in powers of u for all u, us O. This expression is simplified to

some extent by substituting

(e v,- v,) (p vi- v,)
2
-2 1" R oad —2_2_ _p.
1 2
2 2
l_p I_P

In the expansion, the coefficient of ur'l, r>1, ia =l E (R Rzy)

in which z (), the confluent hypergeometric function of order r, 18’

3
(Rlﬁzy)

2

RiRy  (R)R,y)
R.R =1 + + * - + o o o

Zr Sl t T (2) P (n3) B3

with (r+k)(k)- (r+k)(r+k-1) « « « (r+l1).
By this expansion and a similar expansion for Iz(y), the p.d.f. of
Y - XX /6‘ 6, (1 - p2) may be expanded in an infinite series involving

confluent hypergeometric functions and powers y, v and Voo This series is

¢(y) - ——&—Il'z exp —-1-—)- [v12+ v22- 2P[y + vlvz]:' Zo(Rley)Ko(y) +

m 2(1-‘02
2
O S PO RICUE D DR CUTAOR
3
NERINRY -I-g-!l-—z6(RlR2y)K}(y) b (11-8)

where: Ki(y) = the Bessel function of the second kind of the i order

These functions are disqussed in detail in Whitaker, E.T., and C.N.
Watson, A Course in Modern Analysis, Cambridge University Press,
Cambridge, 1958.

18



4

L RO\2 —
and ZJ (R1R2y) 5 —JR—J ( ——l-> IJ (2 Y% y) in which IJ(') is the
1

Bessel function of the first kind of the j2 order.

When v,= v,= p = 0, the p.d.f. of Z - X1X2/61 6, is the simple Bessel

function expressed by (II-9).

Craig's result has unfortunately proved to be of little use compu-

tationally for it may be shown that for large \f and v, (a frequent

ocourrence in engineering studies) the series expansion converges very

slowly; in fact, for \f and v, as small as 2, the expansion is unwieldy.

L.A. Aroian[ 1 ],[ 2 Jtook up the problem of convergencc in Craig's
series expansion. Using Craig's notation, he showed that as v, and V,—* ®

the p.d.f. of Z = X1x2/0'1 o, approaches the normal p.d.f. In addition,

he demonstrated that the Type 1Ili function and the Gram-Charlier type A
series afford excellent approximations t¢ the distrivution of Z when P = O.

The characteristic function of & - xl)(z/crl o, is

(v12+ v22- 2y v.lvz)tza-vlvzit

) 2 [1-(1+p)it 1:(1.-J)it
V() - ALY . (11-9)

\[[1-(l+p)it ] [l+(l-p)it ]

Using properties of this function, it is possible to show that E{z| =2 =

. 2 2
+0 and the standard deviation is O’Z -J '1 + v2 + 2p v1v2+ 1 +E .

exp

1%2

19



Aroinn[ 1 ]proved the following statements .
1) The p.d.f. of %4 approaches the normal p.d.f. with mean Z and

) 2
variance 6 ° as v, and v,—+00 (or -00) in any manner whatsoever,

provided -1 + ¢ < o<1, €> 0.
2) The p.d.f. of 2 approaches the normal p.d.{. with mean z and

variance 622 if v/ @ and v, —» =00, provided -1< 0 <1- €,

€ > o,

and 3) The p.d.f. of Z approaches a normal p.d.f. if i remains constant

and V,—> @, -1+ € <@ <1,€>0; or if vy remains constant

and V,—> - for -1 < <1-¢€ , € >0,

2o Numerical Computation,

2.1 Integration of the Cumulitive Distribution Functions The cumulative

distribution function F(z) may be formulated directly by mak.ug use of the
fact that if Wz(t) is the characteristic function or random variable 2,
tnen the cedefe of 4 i3 given by

(¢ 0]

F(z) = .50 + ?1”/ co?:z gl}’(-t)—Y(t)f +£r-‘—$—23),~(_t)+\((t) dt ,

o}

(11-10)

This relation has been proved in[ 8 ]fmd[ 9 J The advantages of this
formila lie in the fact that a separate determin.tion of F(O) need not be

made and a double numerical integration is avoided. Aroian[ 2 Jused (I11-10)
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to obtain numerical results when e - O. In this case F(z) may be expressed

as
2\,2
; -(v1 + v, )t z

0 exp 5

1 2(1 + t°) V.V, '
P(Z) = .50 + o Bin 5 t Zz - —_— dto

21 2 | 1.6 |4

(6] t 1 + ¢

(I1-11)

This expression was numerically integrated from O to tl’ t’l to t2, o o ey

V.V
t [z - l_g ; [ )
l1+¢
Aroian's tables of this c.d.f. include combinations of v1 and v2 at inter-

1 < L, 0 sz < 4, The values of z are given at intervals

of 0.1 for 4 4 0 j at 0.2 for (/,(z+ O‘z) to (/qz+ 3 0”2) and for (/uz- 6‘2)

t, to ti-r

i y L =1, 2, ¢« ¢ «, where ti are the zeros of sin

1

vals of O.4, 0 <v

to (/“(z- 3 O’z); at intervals of 0.4 for (/42+ 3 o‘z) to (/uz+ L d'z) and for
(/uz- 3 crz) to (/(z- L 6’2) and in intervals of 0.8 to the extreme values
/“z—t 7 0.
z

In theory the c.d.f. of the correlated product may be derivcd from
(II-10). However, the resulting expression is quite complicated. Its
rather cumbersome nature hinders the derivation of a substantial quantity
of numerical results using the type of "intermediate" computer dictated by
the scope of this study. Lsing/u.z(t) as given by (II-9), the c.d.f., F(z),

of the correlated product is

2 2
oxp | - 1 t (k5+k1kit #&pvlvz) =
(- e 1+2t2k2 - tukl2 1+t2k1+ 1+2t2k2+tukl?
P(z) = .50 + L
174 t 2 L 2
5 2(1+2¢ k2+ t kl )
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(i t%p-v, v, (1+¢°k,)) -t2k+ 14262 ottk 2

sin(t]|z + b 12 L i 2 1

* 2 1A
t

(1+2¢ k2 +

2 2 L o2
k) ) 2(1+2¢ k, + t'k) )

(k.t0 - v.v. (1+t%k,))

b ML W 1

* COB tlz + 5 5 2
(1+2t k,+ k) )

dt , (I1-12)

2 2 2 2
wheres «, = (1-07), ke (1+0%), k3u (v1 +v,5= 20 viv,).

In order to obtain the zeros of the sin and cos functions, it is
necessary to solve the fifth-order polynomial representing the arguments of
the trigonometric functions. Numerical integration from zero to zero of
each of these functions may be accomplished in & number of ways since all
derivatives of these trigonometric functions are bounded. The number of
zeros of both functions is greatly increased however in comparison with
(I1I-11). In addition a bound for the tail area in (II-12) is difficult to
obtain. Due to these difficulties and the limitations of the available
computer, no further consideration was given (II-12) as a method of

generating a large volume of tabular results.

2.2. Integraticn to Obtain the Probability Density Function: An

alternate approach t- obtaining F(z) is of course a double numerical
integration of (II-2). A rearrangement of the exponents in this equation

will allow ¢Kz) to be expressed as
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° 2(1-p°) \ v 2(1-p°)
z e e
K(z =/
) v
1 Z 22 1 2
3 - == (p v,-v - (u 2(p v.,-v )v)
2(1_92)( 2 S WP ) 2(1-62) P Yo"
, @ e dw ,
(11-13)
where K(z) = exp{- ;(_1—:3_2-)- l:v12+ v22- 2p [ z + vlvz]] 3 /[ ‘/ 1'P2 .
)

In turn, (II-13) may be expressed as the sum of the integrals of the two

functions of the integrand. Thus, ‘et

(00}

Q
%3 =/ Il(v)dv + / I2(v)dv : (iI-14)

(0]

where Il(w) and Iz(w) are the respective terms of (II-13).
In order to bound the tail areas of (II-14) by € ,€ < 1072 say, it

is sufficient to require that

a 00
/ Il(w)dw +/ 12(w)dw < €1 + 62 <€, (II-19)
uLl uLz

where u and u, are the upper limits of the numerical integratiwns of
1 2

Il(v) and Iz(w), respectively, end €1 and €2 are defined by (1i-16) and
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(I11-18). It is possible to bound each of these integrals by the normal

probability integral, i.e., it is possible, for Il(v) say, to write

2
o —1_"<15 & 25" (P'l"z)) e ( "2*2(? "2"'1)')

o 2(1-p%) \ w 2(1-p%)
/ll(v)dv ./ = = dw
)

u

Ly 2
2
"7 (11-16)
dw =€

1

=

(0 o]
EEad

The signs of 3,(p vl-vz), (o v2-v1) may combine to produce either
positive or negative terms in the exponents of (II-16). In an error

analysis, the selection of an appropriate v, to insure, for all w > L that

3 1 <1212lz(p vl-vz)lv )s
exp 2 '2(1‘92) - 1 .
v T 27T -
2
2 5 _ M
exp { - %( z;lpz)}‘ 1 )}S' 2 (I1-17)
o

reprosents one method of satisfying (II-16). Similarly, the tail area

of Iz(v) may be bounded by
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00 o o) '2
/ Iz(v)dv < 7!;% / o- AT €2 5 (11-18)
uLZ nL?

provided v, is chosen so that

2—
oxP;-l( eI 'L.vz)")f

\ " S
v - 1/277
vazlpv-v,v -ﬁ
oxpg-%( ( 2)2 1 >$§e 2 ) (II-19)
1-p

for all v > LA

For all w > 277, the sets of inequalities (II-17) and (II-19)
hold when the signs within the exponents of these two sets are positive.
In tnis case, the upper limits ul‘i of numerical integration of Il(v) and
Iz(v) may be chosen as T.» T,« L.,42, respectively. In this case El- €, and

from an appropriate table each is computed to be less than 5 x 10-6. The

total tail area € is then less than 10-5.
The other "extreme" case arises vhen the pair of signs in either one

of the sets of inequalities, say (II-17), is negative. The first inequality

of (II-17) then requires that

2
() T e
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In most cases there will be two sets of values of w satisfying this
inequality. An approximation to the least upper bound of the upper range

of these values, ‘J » may be obtained by a numerical iteration of

2(1-92) log | \f’_} v2-|2 z(p vl-v2)|w 5 =10, (I1-21)
21T

The set of w satisfying the second inequality of (II-17) is easily

shown to be w > 2|p v,-vy l/(o2. In every case the tail area of (1I-16)
2

® M
L f e ? dv.- €, <5110 provided the

vamt 1% bob2

numerical integration is performed over the interval (O, uL) wvhere

may be bounded by

L = max g, 2 I e V-V, I/pz, T, = b.y2 |y, (11-22)

The upper limit given by (II-21) ie quite obviously an upper limit
of integration for Iz(u) by the same argument. Thus, the tail area estimate
of (II-15) mey be restricted by € < €.+ €, <107 provided the upper
limits of the numerical integration for both Il(w) and Iz(u} are determined

by (1I-22).

2.3 Methods of Numerical Integrations Several formulas such as

Weddel's formula, the trapezoidal rule, the Gregory-Newton formula, and the

simple rectangular formula[ 2 ],[ 5 ]have been suggested for the numerical
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integration of

!

uLl ,
% ,/ Il(w)dv + / 12(V)dv. (11’25)

o

The magnitude of the error bounds for these and most other numerical
integration methods depends directly or indirectly on values of a given

derivative of the integrand within the interval of integration. The first

derivatives of Il(v) and Iz(v) may be written in the form of a rational

function,
d 22(-1)1*12(9 vl-vz)v-(lqoz)vz(-l)i*z(p v2-v1)v}-v“
v LW =30 2\ b
(1-p" )w

(11-24)

vhere Ji(w), iel, 2, are the exponential functions of the Ii(v). Alter-

nately, (II-24) may be expressed as

J, (w)
L1 (v) e —de— P, (11-25)
dw 1 (1_()2)"“ =4

where P(w) represents the polynomial of (II-24),

All derivatives of Ii(v) may be expressed in the form (II-25) with
the order n of the polynomial P(w) increasing accordingly. The terms of
P(w) in the second and high .r-order derivatives are various powers and

2
cross-products of the parameters 3, (p v2-v1), (e vl-vz), and (1-p°).
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The error estimate for a given method of numerical integration is
a function of the maximum value within the interval of iantegration of
the derivative associated with that method. For example, the error bound
of the trapezoidal rule is a function of the second derivative, Weddel's
formula involves the sixth derivative, etc. The actual error, of course,
may be much smaller than indicated by the error bound.

In order to calculate the maximum values of the given n® derivative
within the interval of integration, it is necessary to derive and solve for
the roots of the polynomial of the (n+1)et derivative. This task becomes
increasingly difficult to do analytically as the order of P(w) ir .reases.

A numerical iteration method must be used to solve for the roots of P(w) in
the higher-order derivatives.

The values of each derivative are functiones of the values of the
parameters and their signs. Thus, for appropriate sets of parameter values,
the derivatives are large in the neighborhood of w = O, or more generally
in the interval (0,1). As yet, no method of characterizing the derivatives
within the interval of integration as functions of the parameter values has
proved satisfactory. Because of these difficultiecs, other numerical
methods which are not functionally dependent of the derivatives are believed
to be more expadient for this problems.

The c.d.f.'s of z appearing in Appendix B were obtained using a double
numerical integration of (II-23) by the simple upper and lower sum rectangular

R, ..., of P(w)

formula., In order to obtain ff(z), the real roots, R , R,
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for the first derivative of both Il(v) and Iz(v), (II-24), were estimated
by numerical methods to within five significant digits. For each integrand
Ii(v), an upper and lower sum, Us and Lg, were computed in the intervals

(0 to Rll .o "(RJ to uLi with a normal increment Aw = 0.0l. The increment
wvas reduced as necessary to insure that US-LS:S 10"5 in all intervuis. In
many cases, the functions Ii(v) are quite steep in the interval (O, Rl) with
R1< < l. In these cases, very small A w's were required to obtain a
satisfactory estimate in this interval.

As compared with other numerical metliods, the rectangular formula
provides greater accuracy but gemerally requires a much larger number of
computer caloulations. The actual computer time required to obtain F(s)
is dependent upon the shapes of Il(w), Iz(v), and 77(2). The “average"
computer time required to approximate the double integration within the
desired accuracy was approximately 58 minutes’. The computer time required
for this integration program can be reduced to approximately 1.25 minutes
using a high-speed computer such as an IBM 709hh. Considering both com-
puter costs and the time required to generate the desired volume of
tabular results, the use of an IBM 7094 or its equivalent is recommended
for future work. The cost of using a computer on this scale prohibited its

use in the investigation which was intended and funded as a "preliminary

study".

3 Based on the use of an IBM 1620 computer.

4 As estimated by members of the Martin Company Data Systems Division.
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APPENDIX A

We give two results here that were obtained in a '"side" investi-
gation involving the quotients of random variables. One is probably

not new but an easy proof is given.

n
Theorem: Let f(z) = E b, =2 baia cumplex polynomial, bo./ 0.

i=0
°4
Then the zeros of f(z) are in disk |z|51 + o vhere p - sup e
o

iﬂl'ooo’no

Proof:t Write f(z) = b, g(z) where

n
g(z) « 2" + E a 5Bl
i=l

and b
o
Then
n n n
lg(z)l - zn'('zai zn-i)l >["| 'l Zai S Iznl 'Zl"‘i“zln-i°
iml ial il
Let p = sup lail and suppose lzl> 1+ P,then from the above
n n n
_ Izl-l l:l (l’l'l'f’)*f’
lg(z)l > lzln- P lzln 1. lzln- P o .
2 o
But lzl-l-P>l+P-1-p-Oand hence for|:|>‘_ + P, lg(z)|> 0,
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Consequently lf(z)l - ‘bo ||g(z)l>~0 for this range of z and the result
follows.

The question arose in a study of mappings between various topo-
logical =paces, wnen the arbitrary union of closed sets is closed. As a
partial answer we give the following. Notationally for the space Y, let
2Y -{ ECZYiE is closed and non-empty} o A mapping f, from a space X into

2Y 18 said to be upper semi-continuous in case xo€ X, U open in Y and

f(xo)cz U implies that there is an open set V in X, x € V, such that x € V

implies that f(x)< \ - the above to hold, of course, for each x € X.

Theoremt Let X be a compact, Hausdorff space, Y regular, and let f be
an upper semi-continuous function from X—s 2%, Then xE{X f(x)
is closed in Y,
Proofs Let B = xLGJx f(x) and assume y € E, y¢ B where B denotes the closure
of B in Y, Clearly then yqf_ f(x) for any x. This implies that for each
X there are two disjoint open sets in Y, wf(x) and Oyf(x) such that
f(x)< W and y € 6 e W = §. Since f is upper semi-
()< Ve(x) and ¥ € Opr(y) Oye(a) Vea) = 2 S upp
continuous, for each x € X there is an open Vx in X, x é,Vx, such that

x)< 2 x - v 5
£(x) wf(x) for :ach x € Vx Hence { x} is a cover for X, a compact space

n
Consequently a finite number will dorsay X = k) Vx e Then
i=1 i

n
> |J f(x) = B. Now Oy = N oyf(xi) is an open set

n
y Z - U w
¢ i1 Dy x€ X

containing y, and Oyf\ Z . @ 8o that Oyf) B « . But this is a contradiction

since y was assumed to be in B and the theorem is proved.
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APPENDIX B

TABLES OF THE PRODUCT OF

TWO NORMALLY DISTRIBUTED
RANDOM VARIABLES
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le The c.d.f.'s of the random variable Z = x1x2/51¢-2 for various
parameter values were obtained by a double numerical integration of (II-23).
In this preliminary study, only positive parameters, Q , Vi» V,y were

considered.

2. Tail Area Bounds. Denoting the p.d.f. of Z in the correlated case

as f(z, Q20), it is easily shown that f(2, Q> 0)« ¢ (2, Q=0) for

k4 rA
o
z €0. Thus, f r(z,g>o) dz < f¢ (z,@=0) dz = A s for z < 0.
-@® - Q0

*
The value z, may be chosen 8o that }‘1 is arbitrarily small . In addition,

it may be shown that f(z, »0)( ?(max g(xl/ 6,)% (x,/ 0'2)2$) for all z>z)0.

Here the symbolQ(max g (xl/ o-l)f (x2/ 0'?)2$)denotes the p.d.f. of the
square of the largest of the random variables xl/ d‘l and x2/ 0'2. This

random variable follows the x2 p.d.f. with one degree of freedom. Thus for

some zl) 0, it follows that 7I/‘DI‘(Z, Q)O)dz < Zﬁ( max 3(x1/ 6’1)3

(x2/ 6'2)201( ) - )\2, The values z and z, may be chosen so that the sum,
O, of the probabilities Al and )\2 as determined by their respective c.d.f.'s
is arbitrarily small. The integral value I of f(z , Q ) for positive Q

may be estimated for the neighborhood ( 4. < 0<A2) containing the point

1

of discontinuity, z=0, from the relation

A .
I=1- < fl f(z , Q)O)dz + /zl f(z, Q>O)dz + 9).
2 8%

(o)

The estimate I may be accurately ajproximated simply by requiring that O

be made small.

*
This function has been tabulated by L. A. Aroian[2].
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3. Checks. Tables B-I to B-II1Imay be compared with Aroian's results [2].

Those data points noted with an asterisk vary by 10”2 with his results.
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B-Io

Parameter Values;

@ = 0.V, =0, v, - O.h
Z £(z) F(z) Z £(z) F(z)
-7.60 .00014 .00011 .10 82755 60294
-6.80 00028 .00025 .20 .55167 .66551
-6.00 . 00064 .00057 .30 .13129 .T1327
-5.20 . 00084 .00128 b0 . 35191 CTSLTT
-L. Lo .00287 .00290 . 50 .29379 . 78369
-4.00 .00L68 .00l 39 .60 .2L888 .81053
-3,60 .00T15 . 00665 .70 .21301 .833h44
-3.20 .01027 .01011 .80 .19370 . 85313
-3.00 .01332 .01249 .90 . 15935 .87018
-2.80 .01658 .015L4 1.00 .13489 . 88500
-2.60 .02067 .01912 1.20 .10770 . 90931
-2.40 02854 .03371 1.40 .08356 .92809
2.0 .03240 .02946 1.60 .06560 .9L4273
-2.00 oLo76 .036€7 1.80 .05171 .95424
-1.80 05171 .04576 2.00 .0LOT6 .96333
-1.60 06560 .05727 2.20 .03240 .9765L
-1.40 08356 .0T191 2.L0 .02584 .97629
-1.20 10770 .09069 2.60 .02067 .98088
-1.00 13489 .11500 2.80 .01658 .98L56
- .90 15925 .12982 3.00 .01332 .98751
- .80 18370 .14687 3.20 .01027 .98989
- .70 21301 .16656 3.60 . 00715 .99335
- .60 24888* .18948 ;.00 .00L68 .99561
- .50 29379 .21634 L.Lo .00287 .99710
- .ko 35191 .24823 5.20 .001kL5 .99872
- .3 43129 28672 6.00 . 00064 .99943
- .2 55167 .33LkL9 6.80 .00028 .99975
- .10 82755 . 39706 7.60 .00014 .99989
.00 00 . 50000
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B-1II.
Parameter Values;

Q - O., Vl - O.L" V2 - O.h

—
Z £(z) F(z) 4 £(z) F(z)
-8.00 . 00005 . 00004 .20 .54599 .61086
-7.20 .00011 .00010 .30 43713 .65678
-6.40 .00026 . 00022 Lo .36L7h .69828
-5.60 .00063 .00053 .50 . 31109 L3173
-4.80 .00129 .00124 .60 . 26905 . 76050
-4.40 .00216 . 00192 .70 .23494L . 78554
-L4.00 .00337 . 00297 .80 . 20661 .807L9
-3.60 .00530 .00L62 .90 . 18268 . 82686
-3.20 .00TTT .00721 1.00 .16221 . 84403
-3.00 .01024 .0090% 1.10 .14453 .85930
-2.80 .01292 .01131 1.20 .12915 . 87293
-2.60 .01634 .01420 1.30 .11569 .88513
-2.40 .02070 .01785 1.40 .10135 . 89607
-2.20 .02633 .02248 1.60 .08453 L91LTh
-2.00 .03359 .02838 1.80 .06874 .92989
-1.80 .0L303 .03592 2.00 .05615 .9L224
-1.60 .05543 .0l556 2.20 .0L600 9523k
-1.40 .07187 .05809 2.L0 .03775 .96063
-1.20 .09398 L0743k 2.60 .03106 .96 Tk
-1.00 .11913 .09568 2.8 .02560 .97305
-0.30 L1h2Lh . 10884 3.00 .02118 .97768
-0.80 . 16476 .12407 3.20 .01746 .98151
-0.70 .19295 .1L4180 3.LC .01LLL .98L67
-0.60 . 22646 . 16256 3.60 .01148 .98728
-0.50 . 26920 . 18709 L.00 .00834 .99124
-0.Lk0 . 32465 : 216ho, L. un .005T4 .99396
-0.30 .Look8 . 25204 L.80 .00370 .99583
-0.20 .51533 . 29650 5.60 . 00201 .99801
-0.10 . 77595 . 35509 6.40 . 00095 .99905
0.00 00 .45169 7.20 .000k5S .99955
.10 . 79584 .54958 8.00 .00028 .99978
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B'III.

Parameter Values;

= O., V) = 0.b, V, = 1.2

2 £(z) r(z) yA r(z) F(z)
-11.00 . 00001 .00001 .30 . 36887 . 53983
-10.00 . 00002 .00002 Lo . 33000 . 56451
- 9.40 . 00004 . 0000k .50 . 29967 . 59584
- J.60 . 00009 . 00009 .60 . 27002 .63L4Y
- 7.80 .00019 .00021 .70 .25287 .6507h
- 7.00 .000L0 .000l42 .80 .23380 .67502
- 6.2 .00069 . 00084 .90 .21672 .69750
- 5.8 .00114 .00121 1.00 .20116 .T18L46
- 5.40 .00166 .00176 1.10 18775 .73T75
- 5.00 .002u41 .00255 1.2 .17418 . 75579
- 4,60 .00350 .00369 1.30 .16223 .T7259
- 4,20 .00459 .00535 1.40 .15116 . 78824
- 4,00 .00581 .0064L 1.50 .14089 . 80282
- 3.8 .00725 .00TT5S 1.60 .13137 .81642
- 3.60 .00827 .00934 1.70 .11999 . 82909
- 3.ko .01059 .01126 1.8 11170 . 84091
- 3.2 .01279 .01358 1.90 .10649 .85195
- 3.00 .01548 .01638 2.00 .09930 . 86221
- 2.80 .0187L .01977 2.10 .09258 .87180
- 2.60 .02272 .02388 2.20 .08489 .88073
- 2.ho0 .02759 .02886 2.40 .07517 . 89682
- 2.2 .03856 .03492 2.60 .06527 .91080
- 2.00 .0L091 , .04229 2.8 .05666 .92293
- 1.80 .05002 .05129 3.00 _oh91L .9334s5
- 1.60 .06137 .06229 3.20 .8’3256 94257
- 1.40 .07666 .07583 3.40 .03685 .95048
-1.20 .09096 .09256 3.60 .0324%4 .95732
- 1.10 .1041L .10239 3.8 .02758 .96323
- 1.00 .11659 .11338 4.00 .02383 .96835
- .90 .13589 .12570 4,20 .02058 97277
- .8 .14748 .13955 L. 4o .01776 .97658
- .70 .16702 .15519 L.60 .01531 .97987
- .60 .19030 .17295 4.8 .98271
- .50 . 21865 .19325 5.00 8H§9 .98515
- .bho .25425, . 21669 5.20 .0097L .98726
- .30 . 30128 .2hh11 5.40 .00881 .98907
- .20 J 6983 . 27694 6.20 .00594 .99197
- .10 .51705 . 31807 7.00 .00263 .99L411
- .00 oo .38035 7.80 .00141 . 99569

.10 «55191 Luu80 8.60 .00075 . 99685

- ¢ 42497 49073 9.40 . 00040 .99911
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B- 1v,

Parameter Values;

R = 0., v1= 0.5,

2 £(z) F(z) r(z) r(z)
-9.60 . 00001 . 00000 .10 . 68106 L7012
-8.80 . 00002 . 00001 .0 . 51947 .53312
-8.00 . 0000k . 00004 .40 . 36322 .61139
-7.20 .00010 .00009 .80 .21768 .T2757
-6.40 .00023 .00022 1.20 .1k230 . 79956
-5.60 . 00054 .00052 1.60 .09621 BuT26
-4.80 .00128 00126 2.00 .08589 .88368
-4.00 .0031. L0302 2.k . 06614 .91L09
-3.60 .00k 8 .ONLA9 2.80 .0Lks89 .93650
-3.20 .00769 OOTT 3.20 .022h1 .95116
-2.80 .01221 21108 3.60 .01571 .95778
-2.4o L0195 01743 k.00 .01103 .96313
-2.00 .0316L 02755 L.80 . 00545 .96815
-1.60 .05123 . olbL2l 5.60 .00269 .97206
-1.20 . J8806 07210 6.40 .00133 .9TL67
- .8 . 15568 . 12087
- .Lo . 30423 .21286
- .20 .47388 . 28465
- .10 .64993 . 3L08L

.00 ® L2666

al




B-v,

Parameter Values;

Q= 0:3, V= 0.15, V,= 0.4

1

2

Z r(z) P(z) z r(z) F(z)
-6.84 . 00001 .00002 .09 .80128 . 45604
-6.12 .00003 . 00006 .18 .55214 .51638
-5.40 . 00008 .00010 .27 L4570 . 56189
-4.68 .00025 .00014 .36 . 37549 . 59884
-3.96 . 00065 .00041 b5 .32367 .62030
-3.60 .00122 .00138 .54 .28311 .65760
-3.24 .00212 .00272 .63 . 25018 .68179
-2.88 .00346 .00373 .T2 . 22277 . 70237
-2.70 .004T9 .00537 .81 .19953 . 72189
-2.52 .00635 .00673 .90 .17439 . 73872
-2.34 .00844 .00T73 1.08 845 15761
-2.16 .01243 . 00950 1.26 .12278 . 79271
-1.93 .01504 .01237 1.L4 .102°76 .81239
-1.80 .02017 .01523 1.62 .08636 . 82975
-1.62 .02729 .01953 1.8 .0T257 .85317
-1.44 .03690 .02525 1.98 .06149 .85597
-1.26 .05012 .03309 2.16 .05229 . 86603
-1.08 06887 .04382 2.34 .0kL60 .87311
- .90 .09195 .55739 2.52 .03813 . 88228
- .8 .11209 .06149 2.7 .03267 . 88866
- .72 .13350 .0T762 2.88 .02684 . 89401
- .63 .15984 .09082 3.24 .02125 .89761
= 5 E:. .19283 .10637 3.60 .01580 .90933
- .bs .23503 .12593 3.96 .01101 .91415
- .36 .29068 .14957 L.68 .00723 L9174k
- .2 . 36764 17924 5.40 .00l410 .92039
- .18 .48580 .21765 6.12 .0023k .92286
- .09 . 7524k .27337 6.8 .00154 .92831

.00 0o .36359
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B- Vi,

Parameter Values;

R = 0.3, V,= 0.55, V,= 0.55

z £(z) P(z) z r(z) Nz)
-7.18 .00000 .00000 .09 - T2204 . 37697
-6.46 .00000 . 00000 .18 .51147 L4612
~5.7Th .00003 . 00000 .27 . 42280 . 418066
-5.02 .00009 .00001 .36 . 36426 .52420
-k.30 .00024 .00002 s .32079 . 56513
-3.94 .00046 .00017 .5k . 28645 .58245
-3.59 .00082 .00039 .63 . 25827 .60697
-3.23 .00147 .00079 .T2 .23451 . 62914
-2.87 .Q02U5 .00134 .80 . 21409 .65110
-2.69 .003L4 .00247 .89 .19629 .66780
-2.51 .00463 .0030?2 .98 . 18058 .67032
-2.33 .00624 .00391 1.07 . 16661 .68595
-2.15 .008u4 .00490 1.16 .15410 . 70038
-1.97 .011k4 . 00669 1.25 .13939 .T1359
-1.79 .01556 .00811 1.43 . 12395 . T2865
-1.61 .02125 .01243 1.61 .10746 .T4938
<1.h43 .02919 .01696 1.79 .09358 .T7621
-1.25 0403k .02323 1.97 .08172 .79198
-1.07 .05624 .03190 2.15 .0T150 .80578
- .8 .07601 .0L382 2.33 .06272 .81786
- .8 .09384 .05146 2.51 .05511 .82837
- .72 .11207 .06073 2.69 . 04860 .83779
- .63 .13552 .07187 2.87 .0k271 . 84601
- .54 .16u22 .08436 3.2h4 .03093 . 85926
- .h5 . 20157 .10181 3.59 .02062 . 86854
- .3 .25100 .13219 k.30 .01511 . 88016
- .27 . 31969 .14787 5.02 .01060 . 89066
- .18 L2475 .18137 5.Th .00652 . 89682
- .09 .66035 . 23020 6.46 . 00402 . 90061

.00 ® 297hT 7.18 .00320 .90322
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Parameter Values;

B" VII¢

Q = 0.3, V,= 0.7, V,= 0.7
Z £(z) F(z) A r(z) F(z)

-8.60 .00000 .00000 - .18 .37439 .15722
-7.90 . 00000 .00000 - .09 .53018 .19792
-7.20 . 00000 .00001 .00 0o .26839
-6.45 . 00000 .00002 .09 . 59228 . 34165
-5.75 .00002 .00003 .18 . L6645 . 38929
-5.00 .00007 . 00004 .36 .34770 .16256
-k.30 .00023 .00006 T2 .23683 .56770
-3.60 .00072 .00009 1.08 .17597 .64208
-3.25 .00129 .00L37 1.44 .13521 .69809
-2.88 .00232 .00T727 1.8 .13720 .Th721
-2.52 .00419 .00844 2.16 . 12008 .79343
-2.16 .00763 .01057 2.52 .09470 .83107
-1.80 .01405 .01LY4T 2.88 .05256 .85847
=1.h4Y4 .02586 .02165 3.25 .0L4187 .87560
-1.08 .05052 .03540 3.60 .03343 .88908
- .72 .10151 .06277 4.30 .02135 .89105
- .36 . 22545 .12163 5.00 .01363 . 89214

5.75 .00871 .90100
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B- VIII,
Parameter Values;

Q = 0."5. V1= 002| V2= O.L’S

£(z) P(z) 2 r(z) r(z)
-6.10 .00000 . 00000 .08 .76179 .uly780
L6 .00001 . 00001 .16 . 53068 .49950
.82 . 0000k .00002 .2k 43354 .53807
.18 .00023 . 00010 .32 . 36966 .5T1TS
.52 .00036 . 00029 .40 . 32249 . 59788
.20 .00070 . 00045 .Lu8 .28548 .62220
.88 .00129 .00078 .56 .25533 .641383
.56 .00221 .0013k4 .64 .23009 .66325
) .00313 .00185 .T2 .20858 .68079
.2k .00L26 .00236 .80 .18450 .69652
.08 .00580 .00316 .96 .16087 . T0L59
.92 .00874 .00l 32 1.12 .13628 .T1315
.T6 .01084 .00589 1.28 .11684 . 73340
.60 .01489 .00795 1.4k .10057 . 75080
Ll .02063 .01079 1.60 .08656 .T65TT
.28 .02858 .01473 1.76 L0751k .813u7
.12 .03975 .02019 1.92 .06544 .82uTt2
- .9% .05595 .02785 2.08 05717 .83453
- .8 .07652 .03845 2.24 .05007 .84310
- .72 .09LL1 .04529 2.ho .04 394 .85063
- .6k .11380 .05362 2.56 .03698 .85710
- .56 .13790 .06368 2.88 .c3071 .85795
- .18 .16837 .07593 3.20 .02397 .85806
- .bo .20769 .09098 3.52 .01752 .85972
- .32 . 25997 .10968 L.18 .01266 .85997
- .2 .33295 .13349 L.82 .00791 . 86003
- 416 .Lls0L .16L452 5.46 .00498 .86117
- .08 .69762 .21023 6.10 .00361 .86203
.00 () . 31104
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B" Ix )
Parameter Values;

@ = 0.45, V= 0.8, V,= 0.8

r(z) F(z) A r(z) F(z)
.00000 00000 - .08 45891 15255
.00000 00000 .00 ® .20T720
. 00000 00000 .08 .52512 . 26550
.00000 00000 .16 .11855 . 30224
.00001 00001 .32 . 31957 . 36129
.00003 .00002 .64 .22838 b5l
.00011 . 00006 .96 .17603 .51239
.00039 . 00022 1.28 .14353 .56398
.00073 .000k1 1.60 .15279 .61139
.00138 .00073 1.92 .1L030 .65229
.00262 .00128 2.25 .11609 .69931
.00501 .00259 2.58 .06760 . 72873
.00968 .00492 2.90 .05650 .Tu8s57
.01369 . 00946 3.22 .0l733 .76518
.03832 .01860 3.85 .03327 .T9137
.08078 .03766 L.s0 .02339 .80910
.18825 .08o07 5.15 .016L4 . 82184
. 32020 .12139
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B- x.

Parameter Values;

R = 0.5, V1= 0., V2= O.

2 r(z) P(z) A r(z) F(z)
-5.250 . 00000 . 00000 .075 .70335 .49978
-4,650 .00001 .00001 .150 .53396 .sk327
-4.050 .00005 .00003 . 225 44158 . 58262
-3.450 .00018 .00015 . 300 . 37526 .61370
-2.850 .00055 .00031 - 375 . 32720 .63959
-2.550 .00124 .00083 .450 .28931 6627
-2.250 .00205 .00105 .52% .25838 .68325
-2.100 .00297 .00173 .600 .23250 . T0166
-1.950 .00408 .00210 .675 .21042 .T1837
-1.800 .00528 .00259 .T50 .19135 .T3347
-1.650 .00827 .00332 . 900 .15997 .76391
-1.500 .01155 .00417 1.050 .13526 . 78235
-1.3%0 .01635 .00569 1.200 .11531 . 80114
-1.200 .02328 .00764 1.350 .09895 .81683
-1.050 .03335 .01049 1.500 .08535 .83021
- .900 .04818 .01401 1.650 .0TuW69 .8u211
- .T50 .07039 .02924 1.800 . 06426 .85208
- .675 .08555 .03217 1.950 .05499 . 86203
- .600 .10L446 .olssl 2.100 .0L899 . 86983
- .525 .12831 .05816 2.250 .0413k . 87660
- .450 .15878 .07253 2.550 .03432 .88372
- .375 .19846 .09039 2.8%0 .024TT . 89684
- .300 .25154 .11238 3.450 .01793 .93846
- .25 .32713 .14183 L.050 .01108 L95TLT
- .150 L3717 . 17004 4.650 .00692 . 96259
- .075 .63642 .18215 5.250 . 00490 .96653

.000 oo 23574
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B' XI.

Parameter Values;

Q = 0.5, V= 0.2, V5= 0.45

r(z) F(z) Z f(z) F(z)

=5. 700 . 00000 . 00000 .075 . 73360 . 39832
-5.100 . 00000 . 00000 .150 .51k11 .h3256
-4.500 . 00001 .00001 . 225 Jh22sh . 5076k
-3.900 . 00002 .0000Z . 300 . 36244 .53708
-3.300 .00026 . 0000k .375 . 31810 . 56260
-3.000 .00053 .00026 .us0 . 28329 . 57515
-2.700 . 00099 .00039 .525 .25489 .60533
-2.400 .001 7L .00080 .600 .23108 .62357
-2.250 .00250 .00122 .675 .2107hL .6L013
-2.100 .003L4 .00156 . 750 .18753 65506
-1.950 .00LTS .00218 .900 .16L48 .67626
-1.800 .0072h .00308 1.050 .14189 . 70031
-1.650 .00909 .00403 1.200 .12311 . 72019
-1.500 .01264 .00593 1.350 .10725 . 73646
-1.350 01772 .00836 1.500 .093L2 . 75151
-1.200 .02485 .01142 1.650 .08207 .T5467
-1.050 .03498 .01587 1.800 .07234 .TT7626
- .900 .oLo84 .02284 1.950 .06379 . 78648
- .750 .06899 .03139 2.100 .05670 .80L58
- .675 .08562 .03321 2.250 .05036 . 80884
- .600 .1N383 .03679 2.400 .04289 . 81583
- .525 .12557 .0L543 2.700 .0364L8 . 83106
- 450 .155L7 .05601 3.000 .02917 . 84009
- 375 .19293 .06809 3. 300 .02184 . Bu665
- .300 .24295 .0b5 .2 3.900 01656 .85117
. .225 . 31302 .10627 L. 500 .01085 . B6939
- .150 . 42092 .13369 5.100 .00717 .87279
.075 .66379 17304 5. 700 . 00546 .87859

.00 (0 4] . 26058
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B-XII.

Parameter Values;

@ =0.5, V,=0.7, V,= 0.7

A r(z) F(z) vA r(z) F(z2)
-6.000 . 00000 .00000 .075 .617L2 .29582
-5.400 . 00000 . 00000 .150 .Lus530 . 33567
-l . 800 .00000 . 00000 . 225 .37479 . 35643
-4.200 .00002 .00001 . 300 . 32876 . 38280
-3.600 .00008 .00001 . 375 .29478 .40161
-3. 300 .00017 .000C7 450 . 26801 L3729
-3.000 .00033 .00013 .525 . 2L603 .45657
-2.700 . 00064 .00017 .600 . 22746 47369
-2.400 .00115 . 0002k 675 .21143 . 49007
-2.250 .00168 .00343 . T50 .19737 . 50611
-2.100 .00235 .00577 .825 .18 487 . 52061
=1.950 .00328 .00610 . 900 .17366 .53389
-1.800 .00460 .006T7 .975 .16354 . 5L65L
-1.650 . 00646 .00762 1.050 . 15062 .55832
-1.500 .00811 .00879 1.200 .13884 .5T619
-1.350 .01291 .01043 1.350 .12u78 . 60040
-1.200 .01838 .01279 1.500 .11265 .61760
-1.050 .02633 .01594 1.650 .10198 .63370
- .900 .03806 .02312 1.800 .09250 .64829
- .T50 .05332 . 04006 1.950 .08412 .66154
- 675 .06702 .05L57 2.100 .0 6662 .6T112
- .600 .08150 .06015 2.250 .07005 .68459
- .525 .1003k 06697 2.400 .06382 .69463
- .b50 .12380 07537 2.550 .05833 . 70379
- .375 1547 .08582 2.700 .0L8T7 .T1183
- .300 .19615 .09895 3.000 .04552 . 72146
- .225 .25438 .11586 3. 300 . 03823 . 72998
- .150 L3411 .13829 3.600 .03012 . 73513
- .075 .Sk4 70 .17162 4. 200 .02440 . 75149
.000 00 .21884 L. 800 L0173k . T6L01
5.400 .01234 . TT290

6.000 .01136 . 78003
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Parameter Values;

B- X111,

Q = 0.5, V= 0.85, V= 0.85
e
2 r(z) F(z) 2 r{z) F(z)

-7.200 . 00000 . 00000 - .150 . 28920 .09971
-6.600 . 00000 .00000 - .07Y .11698 .15167
-6.000 .00000 .00000 .000 ® - 17293
-5.400 .00000 . 00000 .075 18290 . 2221k
-4,800 . 00000 .00000 .150 . 38721 L2547
-4, 200 .00002 .00002 . 300 .29921 . 30625
-3.600 .00007 .00003 .600 . 21902 . 38216
-3.000 .00028 .00014 . 900 .17488 .Lh297
-2.700 .00054 .00026 1.200 SIS . L9086
-2.400 .00104 .00052 1.500 LLoThT .53617
-2.100 .00203 .00099 1.800 .14811 .58198
-1.800 .00397 .00198 2.100 .12553 .6231L
-1.500 .00785 .00362 2.400 .07488 .65319
-1.200 .01552 L0071k 2.700 .06410 .6ThOL
- .900 .03259 .01434 3.000 05499 .69191
- .600 .07038 .02980 3.600 .0L056 . 72056
- .300 .16799 .06556 . 200 .02992 LThLT

L. 800 .02207 .T5T45
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