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FOREWORD 
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reported herein was accomplished under Task 7071-01, Research in Mathemati- 
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of Aerodynamics.    Dr.  P.  R.   Krishnaiah of the ARL was the contract monitor. 
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ABSTRACT 

This report,  prepared in two parts,  deals with products and quotients 

of random variables.    In Part I,  the distributions of quotients of indepn .dent 

random variables are considered.    In Part II,  the distribution of the product 

of two (not necessarily independent) normally distributed random variates is 

investigated.    The tables of this distribution are given in the Appendix. 
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I, ON im QUOTIENT ÜF HANBüM VAKUBLES 

1,   Introduction 

In a study of distributions of products and quotients of random 

variables it is sometimes necessary to determine possible component 

distributiois when the composite distribution is known. Formally, at 

least, this involves a study of linear integral equations of the first 

kind. For the quotient, in particular, suppose x, and x are independent 

random variables with f(x.) and g(x-) their respective density functions. 

Setting y, - x\lxr>  ^ ??  ' xo» the density function for the quotient 

GO 

has the form  (Piy,) - /       fCy^yp)  «(y^) I y^ I ^o*    A derivation of this 

-co 

formula as well as a general discussion of results in this area is given 

in [20]. 

A number of authors     22 ,   23  f   51 ,     32,     53,     3\  and others 

have studied this problem in the case where the variates are assumed to 

be identically distributed.    Their  techniques,  which can be  called more 

or less '•claajical",  involved the use of various transform theories — 

Mellin,  Fourier,  and others —but  little was done to develop a general 

theory for the above equation.     It was  the original  intent of this paper 
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to view  this equation in operator form,  i.e.,   (O m ? & (asBumine; f given), 

where F is a compact operator on an I.    apace and attempt  to develop a 

theory for  linear integral equations of  the first kind from the  linea ' 

operator point of view that would be applicable to probability density 

functions.     We have not been too successful as far as fruitful results 

are concerned.     Some of the difficulties are discussed in Sec.   3 along 

with a possible application of a theory  that is presently being developed 

for pairs of operators acting between Banach  spaces. 

In Sec.   2 we generalize a few known results assuming identical 

distributions as mentioned above  (still   from the classical point of view) 

and discuss an existence  theorem.     Essentially,   the procedures and tech- 

niques of Laha have been followed here.     In Appendix A two theorems re- 

sulting from a side investigation are presented - one is apparently not 

new but  the proof  snems particularly  simple. 



2m    The Quotient of Independent Random Variablee 

Ve give here a few results and generalizations of known results 

involving the quotient of independent rundem variablss.  In parta of 

ii ii 

Seo. 2.1 and Seo. 2.2 identically distributed is also assumed. 

2.1. A Necessary Condition for a Solution to Exist 

Suppose x. and x are identically distributed random 

variables over the real line with density function f. Under the trans- 

formation y,« xi/xp an^ /p" xp ,8ee[20l » the density function for the 

quotient *■*/*■?  is given by 

oo 

(A)   ^(y^ - J    fCy^) f(y2) | y2 \ dy2. 
-00 

00 

Note then 

-oo 

that (f (M . J       f (y^) f(y2) | y2 | dy,,. For y^ 0 , letting 

*  '  -oo 

yVy-i» w so that dy <= y^dw this becomes 

-oo 

00 

- jy^2 f   f(w) fCy^) l^ldw 

- y 

-00 

2 /V. 



Note also thai   </{0)  = f(0) ^ | | y^ 11 • Viewing ^ as given in (A) above 

we have proved the following. 

Theorem 1» Under the conditions above, if (A) has a solution then for 

y ^ 0 it is necessary that*/1 — J = y, ^ (y,); if not, no solution f 

exists. Moreover, the "poarch" for possible solutions cm be narrowed 

down to those density functions f(x) such that J'{0)  -  f(0) El x  . 

It is interesting to note in this result that y, ^(y,) is actually 

the density function for the random variable  l/y,.  Note further ihat (A) 

cannot be solved if it is asaumed that (^ (y,) is the normal density function^ 

Referring to (A) again, suppose a symmetric solution is desired, i.e., 

f(z) « f(-z). The equation then has the form 

(B)    ifb^ - ? j   fly^) f(y2) y2 dy. 

It   is clear, first of  all,   that  f symmetric  implies^/  must also be 

symmetric.     Also  if </ is  given  symmetric   then 

OD oo 

/     | y2 jfC-y^) f(y2) ^2 = /     I y21 f^yiy2^ f^y2   iyi 
-OD -00 

which  implies that fl-y.yp)  =■ fly^y^) a.e.       Honce,  in  the a.e,   sense 

at   least,   we have   the  following for (A)   above. 



Leaaa 2i (p is aymmotric if an only if f is symnetr 

Changing the form of (B) above, 

ic. 

00 

f (y^  - 2/"    y^ f(y2) y2^ fly^) dy2 . 

Letting   y2    f(y2)  = g(y2) this becoaua 

oo 

t\    g(y2) y2   fCy^) dy2 

.o that for y1 > 0, y^^y^  = 2 ^      g(y2) y^ y^ fCy^) dy 

oo 

» i»e., 

oo 

«(yj) - y^fCy^ - 2^ g(y2) «(y^) dy. 
*o 

This is a form studied in    21  .    Solving the above equation for g will 

also furnish u symmetric solution to the original equation. 

It  should be mentioned that Fox    21    carries out an analysis on the 

above form for L    0,00) functions using Mellin and Fourier transform theory. 



2.2. Some Generalizations Dainfl Both Diatribution and Density 
Functiona 

Laha . .'  considers,  in particular, an integral equation of 

the form (A) abov?, where y , the quotient of two independent, identically 

diatributed random variables, is aaauaed to follow the Cauohy law. The 

general tectmique is to use diatribution functiona and Pc>urier tranafonna, 

the distribution functiona asaumed to bo everywhere oontinuoua to the right. 

This is a more general approach since the distribution function always 

exists. 

The distribution function F for the random variable y is said to be 

symmetric (abcat 0)   in case F(y) = 1 - F(-y-O). 

Lemma li  Given the nmdom variabie x with diatribution function F(x) 

symmetric (about 0; , the diatribution function G of |x  ia given by 

G( 
2 F(x) - I, 

0, 

x > 0 

elaewhere 

iroofi   for a -^ J, 

r.l Va;   Pr x  < a p Pr = F(a) - F(-a-O) - 2F(a)-l 

since P ib symmetric and the result follows. 

The importance oi the lemma ic that the distribution function of x can 

be determined knowing only that of x  and we ahall be able to relate this 

to the distribution of In 

following. 

.  Before doing this however we prove the 



Laauna 2t    Let u be a random variable following the Cauchy law,  I.e., 

f(u) - -    .    Then a - cot" u has a unifonn distribution. 
/r(uu2) 

a < a    - Pr    cot" u<a-l-Pru< cot a Proofi  Pr 

cot a 

. i - ^ry*        -^ du - i - ^ r (/r/2 - a) * rr/2\ 
-00 

so that the density function for a is equal to r=- , 0 < a < 77* and aero 

elsewhere« Using the above leona, since a has p uniform distribution, and 

since we know its closed form characteristic function» see 2^ for example, 

and moreover since the characteristic function of a function of a random 

variable, g(w) say, is the mean value of e  *"  we can evaluate the 

following integral, 

oo       . 
_1_ f       itcot"Si  .  1  .    iirr/2      sin XTTjZ  . 
rrj     * Um2*-  •     -TrrTT- 

-00 

Theorem 3»  Let x and y be independent, identically distributed random 

variables.  Let a - x/y and G(a)f the distribution function of a, be 

symmetric about 0. Suppose further that the square root of the charac- 

teristic function of In[a | is absolutely integrable. Then F(x), the 

distribution function of x (and y) is absolutely continuous and has a 

continuous density function f(x) - F,(x)>0. 



roofa By a r sul t of Laha [ 2] , F x) is syt~~~etric about the o igin. 

Consequently the distribut ion function for I xI is 
- l2F(x)-l, if x~ 0 

G( X ) -

0 , othervise 

by the above lean • Let E [ • i. t l n I z I) = 9;z t) . Then since ln I z I • ln I x I -
n I y j ve have 

h nee 

By sum tion/ 

-CX> 

. (-t ) - t l ( t ) 
x 7 z 

< oo s o that the ~ ar cteristio function 

o lnlz j , tfx( t ) , is bsolut l y i nte able . By a theorem of L ve l24] 
the di tributi on funot on of lnjx j is absolutely continuous and has a 

ont inUO ' S dens ty f unct "on. But s "nce F lnl X I) a G(!xl) it follows that 

x I h an b l ut y cont n ous d" tr "b t i on function and a oontinu~s 

dens · t funct on. rom a ov , th , so does x. 

It is known t t i z f ol lows the C chy lav, the characteristic 

f unction for l n jz j i s ch(f.Tt/2 ) , a functio which has a f i nite 1ntegral 

ov r th r 1 i n 80 tha t t e bov r lt hol 8 for this part i cular 

dis r i but i on . 
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Theorem j»i To the assuaptions in theorem 5 above add that arcot z haa 

a uniform distribution.  Then f, the density function for xf satisfies 

the integral equation 

oo 

/f (y) f(wy)y dy -   p , where k is a constant. 
1+w 

o 

Proofi  Our assumptions imply that f is also symmetric about zero and 

hsnce wo recognize the above integral as — g(w)f where g is the density 

function for w ■ x/y. Let u ■ arcot w. The density function for u, 

h(u) say, is 

b.(u) - 
Tp '  o < u < rr 

0»  elsewhere, 

so that for the distribution function H(u) we have 

cot a 

H(u) - Pr u < a - 1 - Pr w < cot a - 1 - /     «(«) d(«) - ^i 0 < a < /^, 

-00 

Hence cot a 
f | g(w) dw - ^ • ^ CrT- a) 
-00 

cot a cot a 
But f -^ dw « ^-a) 80 th^ A     -^ dw = —: {rf- a). 

-03 -OO 



Ik Thus - g(w) -.  und the result follows.    This can be generalized 
2 Uw 

as follows. 

Theorem 5«    Given the hypothesis of Theorem 5»  let w ■ x/y and h(u)»  the 

density function for u - aroot w, vanish outside the  interval    O,?^   .    Then 

the density function f for x satisfies the  integral equation 

-1 
/f(y) f(wy)y dy -  »*-r——* , k a constant. 

l>w 
o 

Proofi  Following the model and notation of the last proof we have 

cot a r       -. 

f ^g(w)dw--| 1 - H(a) , 0<R<rr. 
-00 

We need a function £ such that £(oot a^csc a - - h(a), 
cot a 

i.e.    i(w)  , | hL20tp}  9     Conaider    If h{oot-\] dwt 

1+w J 1+w 
^-00 

Letting   y = cot    w    this becomes 

. ij   h(y)dy . ~J h(y)dy - -i WlT) - H(a)] - ^ [l - H(a)J 

and the result follows. 

10 



). Some Commenta on the General Problem 

It haa already been noted that the density function for the quotient 

of two random variables x. and A with density functions f (x, ) and g(x ) 

respectively has the general form 

oo 

^(y^ 'f   | y2| fCy^) g(y2)dy2 
-00 

where y^ x^Xg and y2- x2. Writing the kernel k(y1,y2) - |y2| fCy^) 

this has the form of a linear integral equation of the first kind and ir» 

operator notation can le formally written as Kg - ^. It appears somewhat 

difficult to determine the proper domain and range for this operator so 

as to apply directly to probability functions. The set of density functions 

in C f a,bj or L [ &th]   for example, does not form a linear space.  If the 

equations could be modified to consider distribution functions, addition 

can be defined asP-»-G»P«G where • means convolution but scalar 

"multiplication" appears to move one off the intersection of the unit ball 

with the positive cone in the Banach space under consideration. 

Apparently then,the analysis should be done on some other space 

(as far as solutions are concerned) and a second analysis done to determine 

whether the solution or which of the solutions «re density functions.  If, 

for example, the kernel k vanishes outside the square {a,b) x [u,bj -  E 

2 2 
and kC L (E), then the operator & acting on L is compact (with range in 

2 
L ). The theory of compact operators could possibly be extended so as to 

11 



appl,y to equations ot the t,ype needed here. To this end it should be 

.. ntioned that S. Birnbaua, at the UniTerait,y ot Colorado and Martin-

Denver, is presentl7 de.aloping a theory tor pairs or operators acting 

between BaD&ch spaces. This theory appears to haw sa.e applications in. 

this area. We gi .a a brier discussion here aa t o the t7JMt or results to 

expect. The,y vill be called pretheoreas. 

We will be considering the spaoes L • LP [ 0 ,ll and C • C [o,l] , 

1 < p <ao, and an integral equation or the above tora It. a, laL __..c. 

With proper restrictions on tbe kel'llel k(s, t) deteraiDinc 1, I vill be a 

continuous operator ( na. k(s,t) cGDtinuous in s tor ewr,y t. aD4 

I I k(e,t) lp' d\ <• tor ... r;r • ( [ o,l] • wbere i + i· -1 1. Let 

0 

R I c--..LP be an iabeddiq, i.e •• tor 7 ( c, ~ • [ 7] ( Lp. ( ( 1 denotes 

an equivalence class). Then R is continuous and 1-1 and hence R-l • S 

exists as a closed operator S 1 LP~c and the dOII&in ot S is the set 

[ ( 7] f ] 7 f ( 7)• 7 £ C J • Usina th• above theor,y tor the pair (S,IC) 

the tollovtng can then be proved. 

Pretheorea1 It there is Jl (complex) suoh that (S -A I) is 1-1, the 

ranp or (s -A I) is c, and such that II s(s- A 1)-1 II< 1 then I 

restricted to the doaain or S is 1-1, has r&DI8 C, and baa a continuous 

inverse detiaed eTer,yvhere on c. 

It should be noted that ~other thinga this is a uniqueness theorea. 

Applied to the probl~ considered in this paper the solution would haft 

t o be examined to deteraine whether or not it is a denait,y function. Proa 

the tora of the aolutiOD, hoveTer, it appears that this aq be a dittioult 

12 



problem but it has not yet been investigated. It also appears promising, 

using the new theory, that it will be possible to characterize the null 

apaoe of K so that something can be said when multiple solutions are 

involved. Although the above result waa stated for the unit interval, 

it can be extended to more general settings. 
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II. NOTES ON THB PRODUCT OF TWO NORMALLY 

DISTRIBUTED RANDOM VARIABLES 

1.  Introduotion 

Let X. anc X follow a normal blvariate probability density function, 

p.d.f., with expected values^c., i^., standard deviations, 01, (Tl, and 

coefficient of correlation, />. Several forms of randoa variable products 

■ay be considered; two of which are the normalized product Z - (X.-X) - 

'  ^"/^Z0! ^2 and the Pro<luct Z " ^^o^l  ö2,  The latter pr^o^nts far 

greater application in that families of normal random variables X /ö' and 

X /öl may be characterized by the statistict v -y^./<r, i - 1, 2. These, 

of course, are the reciprocals of the respeoVive coefficients of variation. 

The joint p.d.f. of the normal random vtiriablea X./o: and X /<T1 is 

4^--.)'-^--)(^H^)']i 
x 1   2 2/r yi -^ 

With the  transformation W . X./cf.,  Z  . X. X./o:  01,   the marginal 

p.d.f.  of Z may be derived from 

(w-v  )2.2p(w-v  )(^-v  )  +  (^-v  )2]  | 

^C«) -   / Ldw 

l 2rrji.f>2  M 

- exp^^r7)L 
-00 

(II-l) 

1A 



The p.d.f.   (ll-l) may be expressed as  ^(z)  -  lAz)   -  IpU) where 

:i(z)   *   f 
exp {-^[(.-v/.^.-v^ v2).(|-.2)

2 

rr{ 
dw 

1   - /O        w 

and Ip(z)   is the sane function defined on (-00,0).     After the substitution 

w = -w into I_(z),   the marginal  p.d.f,   r{z) may be   expressed as 

f(.) 
rrji-c2 I 

exp< - 
2(1-/)  L 

(w-v^2-  2/o(w-v1)(f-v2) + (4-v2)
2 

exp< - -i-y- [(w^)2- 2(o(w+v1)(f + v2)+(f + v2)
2 

2(1-/) 
dv } 

(11-2) 

and by expanding these exponents and regrouping terms,   (11-2) becoo.'es 

exp <- 

fiz) 
2(1-/) 

/,   »   v     -  2ß   z + v v. 2 2 
1  + V2 

TO 

n| 1   - 
/ 

. ^l» > 

0      2 

2     Z 
2 

v ] 

r 2 

•   cosh 
w(l  - p2) 

dw . (n-5) 

15 



Several  speolal cases asy now be examined.     When v    - T    - 0,  the 

p.d.f.  of the "normalized"  product is obtained.    The p.d.f. of Z in this 

1                   fi case is '  

where K  (•)  is a ■edified Bessel  function of the second kind of zero 

order possessing a singularity at z - 0.    The product of two independent 

"normalized" variables by (II-4)  reduces to 

a result shown in [ 5 ] and [   ^ ] • 

The non-central product        Z - X.X /er.  &   in which each variable 

is characterized by its respective reciprocal of  the coefficient of variation, 

v   ^ 0, has undergone extensive study.    As yet,  however, no satisfactory 

method of obtaining numerical results for the cumulative distribution 

function of Z has been derived for all parao.eters values of (0 , v.,  and v.. 

The analysis by C.  C.  Craig [ 5 ], [ 6 I» Is perhaps the most notable con- 

cerning this product. 

J. Wlshart and M.S. Bartletti    The Distribution of Second Order Moments 
Statistics in a Normal System;  Proceedings of the Cambridge Philosophical 
Society, Vol. 28, 19?2, pp. ^55-^59. 
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In an effort to siaplify any numerical calculation, Craig refomulated 

(11-5) as an infinite series. The cosh function in (II-3) "ny bt. expanded 

so that it is possible to write ^(z) - I.Cz) - I?(z) where 

exp 

Ijlz)  I    exp    -    w ♦ — 

2rrf^7 J      I   2(1-f)L    w 

(1 - 9 ) 
(p T2- Y^w  +  (p  v1.  y2) f dw 

w (II-6) 

and I2(z)  is the integral of the same function over the interval   (-00,0). 

The infinite aeries expression is derived by substituting 

^ 

w  .     z  ■ ■ u    and     y into I,(z) and I2(z). 

!-(,' 

Under this transformation, I,(z) becomes 

ijCy) 
^ 

211 
exp    - 

2(1-p")   L 
2     2      r 

Vl  + V2  " 2P|y + VlV 4 I 
00   - - 

2 £ 
u^ 2 

u 

•  exp 
(p v2- v^ (p Vj- v2) 

V 
u + 

Vi 
exp 

1 - p        v-e 

u + 

The term VTV   "T  V^IQ2 

u 

u 

du 
u (II-7) 

u 
may be expanded in a Laurent 

17 



aeries in powers of u for all u, u ^ 0.    This expression is simplified to 

some extent by substituting 

(f) V O (p v^ v2) 
-— - H.     and ;      — R2. 

r-l Bl    V^ In the expansion,  the coefficient of u      , r >  1,  is ——7 /       (R.R^y) 
r 

in which 2_j    (*)» 

(R^y) - 1 * -^f- * 

the confluent hyper geometric function of order r, is 

RlR2y      (RlV)2 (RiH2y)) 

T2l (r+2)v<:;2!       (r+5)w;5 irir+ • • •» 

with (r+k)^k^- (r+k)(r+k-l) .   .  .  (r+l). 

By this expansion and a similar expansion for I2(y), the p.d.f. of 

2 
Y = X.X /öl   01  (1 - p ) may be expanded in an infinite series  involving 

confluent hypergeometric functions and powers y, v  ,  and v  .     This series is 

fit) L 
rr exp -1 

2(l-p ) 
Vl2+ V22- ^[^ V1V2] Z ^K^ 

* ^l2+ H22) W^   (ii
1V

)Kl(y)   +   (R1^ ^^ {IS     ^lR2y)K2(y) 

+ ^Rl6+ H26) ■^S(R1V
)K5^)  + '   *  * (II-6) 

wherei    K. (y)  -  the Bessel function of the second kind of  the i^ order 

These functions are diaqussed in detail  in Whitaker,  K,T>,  and O.N. 
Watson, A Course in Modem Analysis.  Cambridge University Press, 
Cambridge,  1958. 
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and   J2i (RlV) ■ "fj ( V/2   ^^ V Vl'2 y}    ^ ,'hi0h ^ , " the 

Bessel functijn of  the  first kind of the  jo order. 

When v.tn v - p >= 0,   the  p.d.f.   of Z = X.X /er.  ff    is  the simple Bessel 

function expressed by (II-5). 

Craig'a result has unfortunately proved  to  be  of  little uue compu- 

tationally for it may be ahown  that for large v    and v    (a frequent 

ocourrence in engineering studies)  the scries expansion converges very 

slowly;   in fact, for v    and v    as small as 2,  the expansion is unwieldy, 

L.A.  Aroian[ 1 ],[ 2    ] took up the problem of convergent   in Craig'3 

series expansion.    Using Craig* a notation,  he showed  that as v.   and v —► oo 

the p.d.f.   of Z B X.X /(T   <yi  approaches  the normal p.d.f.    In addition, 

he demonstrated that the Type lii function and the Gram-Charlier type A 

series afford excellent approximations to  the diatrioution of Z when /) = 0. 

The  characteristic function of Z =  X,X_/a".   &   is 

exp 

\|/(t). 

Cv1  +  v2  -  2t    v.Vo^-  * vlV21 

2[l-(l+p)itJ   [ I+0.-p)it] 

J[l-(Up)it]   [u(i-p)it] 
(II-9) 

Using properties of this function,   it is possible to show that £ 

v v ■♦• p    and the standard deviation is (T   «^/ v1   + v2  + 2p v1v2+ 1 + ^o 

=  z  = 

2~ 

[9 



Aroianf   1 Iproved  the following statementa • 

1) The  p.d.f.   of Z approaches   the  normal  p.d.f.   with mean 1 and 

variance  ö '   as v     and  v   *■ oo   (or -oo )   in  any manner whatsoever, 
Z X c 

provided  -14^   < /O < 1,  ^.^ 0. 

2) The   p.d.f,   of Z approaches   the  normal   p.d.f.   with mean  z and 

o 
variance  a      ^ v-i —»• 0°   and vn —•■ -00 t  provided -1 < ß < I - C f 

t -0. 

and       5)     The  p.d.f.   of Z approaches  a normal   p.d.f.   if  v     remains constant 

find  v   »-oo,  -1   +  £   < 0  ^li^^^O;   or  if v     remains  constant 

and   v^ ► -ou   for  -l<o<ri-£l£>0. 

2,     Numerical   Computation , 

2.1     Integration of the Guaulitive  Distribution Function!     The cumulative 

distribution   function F(z)  mfiy be  formulated directly  by  mai-.^n^ use  of  the 

fact  that  if   l^ (t )   is  the  characteristic  function  oi   random variable  Z, 

then  the   c.d.f.   of  Z  in /^iven  by 

00 

P(z)-.50+^/      —-"^  |^(-t)-y(t)|    +
£iS~5|^-t)+^(t)j    dt  . 

o 
(11-10) 

Thia   relation   has   been  proved  in[8   j and [   9  ]•     The   advantages   of  this 

form\ila  lie   in   the  fact  that  a separate  determination  of  ^(o)  need not  be 

made  and  a double  numerical   integration  is  avoided.     A.roian[2   lused  (II-IO) 
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to obtain numerical results when o » 0, In this case F(z) may be expressed 

as 

p(.) •50>7Tr/ 

oo    exp 

/     2        2U2 -(v1  + v2  )t 

2(1   ♦ t2) 

V t W 1 + t 

sin ) t 
I 

z - 
iu2 

dt. 

(II-11) 

This expression was numerloally  integrated from 0  to  t1,   t1   to t0,   .   .   ., 
'V   '1   '~   '2' 

ti to ti>l,  i " ^ 2' .,  where t.   are the   zeros of sin] t 
L     i+t 

Aroian's  tables of this c.tl.f,   include combinations of v.  and v    at inter- 

vals of O.k, 0 <v   < 'f,  0 < v   < k.    The values of z are given at  intervals 

of 0.1  for M    1 CT ;   at 0.2  for  (/v + (T )  to  (i^   +   5 (T.)  and for  (A/   -  ö" ) 
/   i        z s   z     z /   z c r z      z 

to (/^ -   } ff );  at intervals of 0.^ for (y^   *■  5 0" )   to  (/-<  + 4 cr )  and for 
f^% Z /    z z /    z z 

{yU  -3<y)to(//-if(r)  and  in intervals of 0.8  to  the extreme values 
/   z z /   * z 

In theory the c.d.f.   of  the correlated product may be denvüd from 

(II-10),    However,  the resulting expression is quite  complicated.     Its 

rather  cumbersome nature hinders  the derivation of a substantial quantity 

of numerical results using the  type of "intermediate"  computer dictated by 

the scope of  this study,    LsingZt (t) as given by  (II-9),  the c.d.f.,  F(z), 

of  the  correlated product  is 

F(z)   -  .50 + 
*/ 

oo   "P    -   2 

rt2(k^k1k5t
244pv1v2) 

2 5    2   ~ 
l+2t k2 + t k^ 2 k    2 l+2t k2+t k 1+t 1^ + 

1   2(l+2t2k2+  tN^2) 
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sin z  -f 

(k5t p-v^CUt^)) 

(U2t2k2  I  t\2) 

2 2        k    2 -1-t k1+      l+2t k2+t k^ 

\      2(l+2t2k2 + t\
2) 

•    COB z  + 
(k^2p - v^CUt2^)) 

(U2t2k2+  t\2) 
dt , (11-12) 

wherei     <1- (l-p ),  k2-  (l+p  ),  k^ (v1 + v2 - 2^ v^), 

In order to obtain  the  zeros of the sin and cos functions,  it is 

necessary to solve the fifth-order polynomial representing the arguments of 

the  trigonometric functions.     Numerical  integration from zero to zero of 

each of  these functions may be accomplished in B number of ways since all 

derivativen of these trigonometric functions are bounded.    The number of 

zeros  of both functions  is greatly increased however in comparison with 

(11-11).    In addition a bound for the   tail   area in  (11-12) is difficult  to 

obtain.     Due to these difficulties and the  limitations of the available 

computer,  no further consideration was given (11-12)  aa a method of 

generating a large volume of  tabular results. 

2.2.     Integration to Obtain the Probability Penalty Punctioni    An 

alternate approach  t-   obtaining F(z) is of course  a double numerical 

integration of (II-2).    A rearrangement of the exponents in this equation 

will  allow   d/{z) to be expressed as 
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«■/ 

00 2(1.^) V^(^vv2)) -^(^^vV-) 

fe(V^PV^)   .^(w2.2(pv2.v1)w 
2(l-pC) 

dw , 

(11-15; 

where K(z)  - exp ( - 
2(1^) 

2 2 v    + v 
1 2 -  2p [^ z + v^J   ( /2 ^ ^  1-/D2 . 

In turn,   (ll-l)) may be expressed as  the sum of the  integrals of the two 

functions of the  integrand.    Thus,  let 

co 00 

4$-/    V-Mw*  f   I2(w)d.   . (Il-li.) 

where I^w)  and I9(w)  axe the respective   terms of (I1-15). 

In order to bound  the tail  areas of   (II-lU) by £. , £   <   10~    say,  it 

is sufficient to require that 

00 00 

I    l1(w)dw +  f     i2(w)dw < €1 + €2 < C , 

u. ur 

(11-15) 

where u.     and u.     are  the upper limits of  the numerical  integrations of 
^1 ^2 

I1(w) and Ip(w), respectively, end  £1  and ^     are defined by (li-16) and 
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(11-16).  It is possible to bound each of these integrals by the nornal 

probability integral, i.e., it is possible, for I,(w) say, to write 

JO 00 

f  I1(w)dw - f    i 

Wi(f ^^^^("^^vV") 
-S dw 

\ 

JL 

oo    2 
(11-16) 

J     e  dw =ei 
'n\ 

The signs of »,(p Vi-Tp)» (9 vo"vi) lia^ co«bine to produce either 

positive or negative terms in the exponents of (II-16). In an error 

analysis, the selection of an appropriate v to insure, for all w > w , that 

"prn—T^J,— )\ 
 —— <  and 
w 27r 

2    ,.     ._    w2 

i  1 / %    '  "   ^ ezp ■KH^->;T 

represents one method of satisfying (11-16). Similarly, the tail area 

of I?(v) may be bounded by 

24 



CO 

/ 
I2(w)dw 

firr 

no 

f 
2 w 

.' 2 d. . 
■   ^2 

\ \ 

(ii-ie) 

provided w Is chosen so that 

1  i / fllfJ^PvVii ^ 
and 

2 7r 

l-KH1^)!--'' •xp 

P 

for all v > v • 
o 

For all wo> J 217 ,  the seta of inequalities (II-17) and (11-19) 

hold when the signs within the exponents of these two sets are positive. 

In tnis case, the upper limits u,  of nuaerical integration of I,(w) end 

l-(w) may be chosen as T.> T « k,k2t  respectively. In this case £.- £_ and 

from an appropriate table each is computed to be less than 3 x 10~ • The 

total tail area £ is then less than 10 • 

The other ^extreme" oase arises when the pair of signs in either one 

of the sets of inequalities, say (11-17)) is negative. The first inequality 

of (11-17) then requires that 
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In most cases there will be two sets of values of w satisfying this 

inequality.  An approximation to the least upper bound of the upper range 

of these values, &   , may be obtained by a numerical iteration of 

2(1-p2) log]  p } w2-|2 z(p v -v )|w + z
2> 0. 

\ 2 1T 
(11-21) 

The set of w satisfying the second inequality of (11-17) ia easily 
I'M 

p  VP"VI 7/° •  ^n every case the tail area of (11-16) 
1 2 

CD i_ 

1 /*       "   2 -6 
may be bounded by —; /       e dw«i^1<5xl0      provided the 

277    Tj-U.fe V" 

numerical  integration  is performed over the  interval  (0, u. ) where 

u    a max ^,   2 |p  Vg-Vj |/p2,  T^ k,k2   (   . 

The upper limit  given by  (11-21)  ie  qu: 

(11-22) 

te obviously an upper limit 

of integration for I„(w) by the same argument. Thus, the tail area estimate 

of (11-15) «ay be restricted by ^. < £i,+ ^? < 10"'} provided the upper 

limits of the numerical integration for both I,(w) and I_(w; are determined 

by (11-22). 

2.3 Methods of Nuaerical Integration!  Several formulas such as 

Weddel's formula, the trapezoidal rule, the Gregory-Newton formula, and the 

simple rectangular formula 2 , 5 have been suggested for the numerical 
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integration of 

4^ -   f 1    I1(w)dw +      f2  I2(w)dw. (11-25) 

o o 

The magnitude of the error bounds for these  nnd moat other nuaeric.U 

integration methods depends directly or indirectly on values of a given 

derivative of the integrand within the interval of  integration.    The first 

derivatives of I,(w) and I„(w) nay be written in the form of a rational 

function, 

t V") ■ V") 
2/   , \i+l   ( v     ,,     2X  2,   ,Ni+2, s   5    k Z   (-1) z(p   V1-V2)w-Un(0    )w    (-1) (p   V2-V1)wy-W 

(1-p  )w 

(ll-2if) 

where J,(w),  i^l, 2,  are the exponential functions of the I.(w).    Alter- 

nately,   (11-2^) may be expressed as 

d Ji^) 
f T   (w)  -      i ,     ■       .   P(v)   . (11-25) 
dw     1 (l-p2)wn==4 

where P(w) representa the polynomial of (11-2^), 

All derivatives of I.(w) «ay be expressed in the form (11-25) with 

the order n of the polynomial P(w) increasing accordingly. The terms of 

P(w) in the second and highr-order derivatives are various powers and 

cross-products of the parameters s, (p v2"vi)» (f Ti~vp)» an* Cl-f> )• 
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The error estiaate  for a given aethod of nuaerioal integration  is 

a function of the oaziraum value within the interval of integration of 

the derivative aesociated with that method.    For ezaaplet  the error bound 

of the trapezoidal rule is a function of the second derivative, Weddel's 

fonaula involves the sixth derivative,  etc.    The actual error,  of course, 

may be much smaller than  indicated by the error bound. 

In order to calculate the maximum values of the given n-  derivative 

within the  interval of integration,   it  is necessary  to derive and  solve for 

st 
the roots of the polynomial of the (n+l)   ' derivative.    This task becomes 

increasingly difficult  to do analytically as  the order of P(w)  ir .reases. 

A numerical  iteration method must be used to solve for the  roots of P(w)  in 

the higher-order derivatives. 

The values of each derivative are functions of the values or  the 

parameters and  their signs.    Thus,  for appropriate sets of parameter values, 

the derivatives are large  in the neighborhood  of w = 0,  or more generally 

in  the  interval  (0,1).     As yet,  no method of characterizing the derivatives 

within the  interval of  integration as functions of the parameter values has 

proved satisfactory.    Because of these difficultioa,  other numerical 

methods which are not functionally dependent of  the derivatives are believed 

to be more expedient for this problem. 

The  c.d.f.'s of z appearing in Appendix B   were obtained using a double 

numerical  integration of  (11-25) by the  simple upper and lower sum rectangular 

formula.     In order to obtain f{z),  the real   roots,  R, , R    .   .   .,  of P(w) 
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for the first derivative of both I,(w) and I2(w), (11-24), were estimated 

by numerical methods to within five significant digits. For eaoh integrand 

I.(w), an upper and lower sum, U and L , were computed in the intervals 

(o to B. A  . • .,(R. to u.) with a normal increment A w •> 0.01. The increment 

was reduced as necessary to insure that U -L < 10 J  in all interv.. e. In 

many cases, the functions I.Cw) are quite steep in the interval (0, R,) with 

R1< < I.  In these cases, very small A w's were required to obtain a 

satisfactory estimate in this interval« 

As compared with other numerical methods, the rectangular formula 

provides greater accuracy but generally requires a much larger number of 

computer calculations. The actual computer time required to obtain P(s) 

is dependent upon the shapes of I^w), I?(w), and d?{z).    The "average" 

computer time required to approximate the double integration within the 

desired accuracy was approximately 5b  minutes . The computer time required 

for this integration program can be reduced to approximately 1.23 minutes 

using a high-speed computer such as an IBM 709^ • Considering both com- 

puter costs and the time required to generate the desired volume of 

tabular results, the use of an IBM JOSk  or its equivalent is recommended 

for future work.  The cout of using a computer on this scale prohibited its 

use in the investigation which was intended and funded as a "preliminary 

study". 

Based on the use of on IBM 1620 computer. 

As estimated by members of the Martin Company Data Systems Division. 
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AFPSWDIX A 

We give two results here that were obtained in a "side" investi- 

gation involving the quotients of random variables.  One is probably 

not new but an easy proof is given. 

Theorem!  Let f(a) - }     b. « ~ be a complex polynomial, b ^ 0. 

i-o 

Then the zeros of f(z) are in disk |z j < I + p where p - sup 

X  a X f   m    •    •    f     Ho 

Prooft  Write f(z)=.b g(z) where 

/ v   n  V^    n-1 
gU) - z + > ^ z 

i-l 

and 

Then 

o 

gU; - * 
v i-l      / 

n > U Z'i**''? I'nl-SKIM-
1
- 

i-l i-l 

Let p B sup [a. |   and suppose  I z | >> 1 ♦ p,then from the above 

.n 
z! - p 

i-l 

ri in i"! 

1 |z|- M 

Hn(M-i-f>W 
t -1 

But |z|-l-p>l+p-l-p-0 and hence for | i | > ^ ♦ |0#    |g(z) I ^ 0 # 
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Consequently fC«) | » | b | |g(z)|>0 for thiu range of z and the reoult 

follows. 

The question aroae in a utudy of mappings between various topo- 

logicai ppaces, wnen the arbitrary union of closed sets is closed.  As a 

partial answer we give the following. Notationally for the space Y, let 

2 -< ECYJ £ is closed and non-empt^? . A mapping f, from a space X into 

Y 
2 is said to be upper eemi-continuoub in case x C X, U open in Y and 

f(x )c U implies that there is an open set V in X, x € V, such that x £ V 

implies that f(x)C L   the above to hold, of course, for each x £ X. 

Thecremt  Let X be a compact, Hausdorff space, Y regular, and let f be 

an upper semi-continuous function from X—*2  . Then ~\ fCx) 

is closed in Y. 

Proof t  Let B = ^v  ^x) an^ a88"1116 y ^ ^i y ^ B where B denotes the closure 

of B in Y.  Clearly then y ^. f(x) for any x. This implies that for each 

x there are two disjoint open sets in Y, W / \ and 0 _/ \ such that 

f(x)c wf/ x and y C Qyf^y  0yf(x)^ Wf(x) " ^'    3ince f is Upper 8emi" 

continuous, for each x € X there is an open V in X, x £ V , such that 

f(x) o W / s for iach x C V , Hence <V > is a cover for X, a compact space. 

n 
Consequently a finite munter will do» say X = ^J V  • Then 

i-1 xi 
n n 

yd   Z -     U wf , ^ ^ U f(x) - B* Now © - H 0^^ ) iB  a*1 0Pen 8et 
i.l IvXi;  x£X y   i-1 ^1^xiJ 

containing y, and 0 D Z =. 0 so that Ö D b »= 0.  But this is a contradiction 

since y was assumed to be in B and the theorem is proved. 
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APPENDIX B 

TABLES UF THE PRODUCT OF 

TWO NORMALLY DISTRIBUTED 

RANDOM VARIABLES 
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1.       The c.d.f.'B of the  random variable Z ■ 'k^kjctr^    for various 

paraneter values were obtained by a double numerical  integration of (ll-2J>). 

In this preliminary study, only positive parameters, ^ ,    v., v , were 

considered. 

2.      Tail ASSfl Bounds.    Denoting the p.d.f.  of Z in the correlated case 

as f(a ,    ^>0), it is easily shown that f(a,  ^> 0)< ^ (z » ^ =• 0) for 
z z 

z<0.    Thug,    f      f (z, o > 0) dz <    r p   (z, ^-0) dz a  X    , for z   < 0. 

-00 -00 

« 
The vslue  z   may be chosen so that   X.   is arbitrarily small .    In addition, 

it may be shown that fU, ^>0) < (Dfmax j (x^ 0^)^ (x2/ <r2)
2 J j  for all  z> z^O, 

Here the symbol d)( max   J (x,/ <r ),  {xj <r„)   I jdenotes the p.d.f.  of the 

square of the largest of the random variables x../ <r    and x / (T, This 

2 
random variable follows  the x    p.d.f. with one degree of freedom.  Thus  for 

some v,1>0,  it follows that /     f(z, ^>0)dz     <       Hpi max Uxi/ ^i^ 

(x?/ (T ) (Jl( • )  - ^p.     The values z    and z    may be chosen so that  the  sum, 

9,  of the probabilities X     and X    as determined by  their respective c.d.f.'s 

is arbitrarily small.  The integral value I of f(z  , o ) for positive ^ 

may be estimated for  the neighborhood ( A    < Ü<A  ) containing the point 

of discontinuity,  z=0,   from the relation 

I = 1 -   (       T1 f(z  , o>0)dz +    f   i f(z, ^>0)dz  f    eV 

^   Zo A 2 / 

The estimate I may be accurately ajproximated simply by reouiring that 9 

be made small. 

r 

This function has been tabulated by L. A. Aroian[2j 
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5.  Checks. Tables B-I to B-mmay be oompared with Aroian'a results [2] 

Those data points noted with an asterisk vary by 10      with his results. 
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B -   I . 

Parameter Values; 

^   - 0., V1  - 0., V2  - 0.4 

z f(«) F(0 z f(z) F(z) 

-7.60 .OOC'IU .00011 .10 82755 .6029^ 
-6.80 00028 .00025 .20 .55167 .66551 
-6.00 .0006U .00057 •30 .U3129 .71327 
-5.20 .0008U .00128 .hO ■ 35191 •75177 
-h.hO .00287 .00290 • 50 •29379 .78369 
-k.00 .00U68 .00'4 39 .60 .2^888 .81053 
-5.60 .00715 .OO665 • 70 .21301 .833^ 
-3.20 .01027 .01011 .80 .19370 .85313 
-3.00 .01332 .012U9 90 .15955 .87OI8 
-2.80 .01658 .015^14 1.00 .13^89 .88500 
-2.60 .02067 .01912 1.20 .10770 .90931 
-2.U0 .0285U .03371 l.UO .08356 .92809 
-2.«) .032U0 .029U6 1.60 .O6560 •9^273 
-2.00 .0^076 .03667 1.80 .05171 .95^2U 
-I.80 .05171 .OU576 2.00 .OU076 .96333 
-I.60 .06560 .05727 2.20 .032U0 .9765^ 
-1.U0 .08356 .07191 2.U0 .0258U .97629 
-1.20 .10770 .09069 2.60 .02067 .98088 
-1.00 .13U89 .11500 2.80 .OI658 .98U56 
-  .90 .15925 .12982 3.00 .01552 .98751 
-  .80 .18370 .II1687 3.20 .01027 .98989 
-  .70 .21301 .16656 3.60 .00715 .99335 
-  .60 .2U888* .189^8 u.oo .00U68 .99561 
-  .50 •29379 .2163U h.kO .00287 •99710 
- .uo • 35191 .2U823 5.20 .001^5 .99872 
- .30 .U3129 .28672 6.00 .0006U •999^3 
-  .20 .55167 .33^9 6.80 .00028 .99975 
-  .10 .82755 .39706 7.60 .OOOlh .99989 

.00 00 .50000 
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B - II  . 

Parameter Values; 

0., v1 . oAt v2 . Q.k 

z f(z) F(z) Z r(t) F(z) 

-8.00 .00005 .00004 .20 

\  

•5^599 .61086 
-7.20 .00011 .00010 •30 .^3713 .65678 
-6.UO .00026 .00022 .40 . 3647J4 .69828 
-5.60 .OOO63 .00053 • 50 ■ 51109 .73173 
-U.80 .00129 .00124 .60 .26905 .76050 
-U.40 .0021,6 .00192 .70 .2349I4 .78551* 
-U.OO •00337 .00297 .80 .20661 .807^9 
-3.60 .00530 .00462 • 90 .18268 .82686 
-3.20 .00777 .00721 1.00 .16221 .841*03 
-3.00 .01021+ .00903 1.10 .14453 .85930 
-2.80 .01292 .01131 1.20 .12915 .87293 
-2.60 .0163^ .01^20 1.30 .11569 .88513 
-2.k0 .02070 .01785 l.UO .10135 .89607 
-2.20 .02633 .02248 1.60 .08453 .91^74 
-2.00 .03359 .02838 1.80 .0687»4 .92989 
-1.80 .01*303 .03592 2.00 .05615 .9^2214 
-1.60 .055^3 .04556 2.20 .0^600 .95231' 
-1.U0 .07187 .05809 2.40 •03775 .96063 
-1.20 .09398 .07434 2.60 .03106 .967^ 
-1.00 .11913 .09568 2.80 .02560 •97305 
-0.90 .lk2kk .10884 3.00 .02118 .97768 
-0.80 .I6U76 .12407 3.20 .01746 .98151 
-0.70 .19295 .14180 3.4C .01444 .98467 
-0.60 .226U6 .16256 3.60 .01148 .98728 
-0.50 .26920 .18709 1+.00 .00834 .99124 
-O.UO • 32^65 . 2l640# I4.40 .00574 .99396 
-0.30 .U00U8 .25204 »4.80 .00370 .99583 
-0.20 .51533 .29650 5.60 .00201 .99801 
-0.10 . 77595 .35509 6.40 .00095 .99905 
0.00 00 .45169 7.20 .00045 99955 

.10 • 79584 .54958 8.00 .00028 .99978 

39 



B-II1. 

Parameter Values; 

^   = 0., V1 = 0.kf V2 =  1.2 

z ,      r(0 F(t) z f(«) F(z) 

-11.00 .00001 .00001 .30 .36887 • 53983 
.10.00 l      .00002 .00002 'k0 .33000 .56»* 51 

1   - 9.k0 .oooou • OOOOli .50 .29967 .5958U 
- J.60 .00009 .00009 1        .60 .27002 .63UUU 
- 7-80 .00019 .00021 .70 .25287 .6507U      ! 
- 7.00 .ooouo .000U2 I        .80 .23380 .67502 

i   - 6.20 .00069 .0008U .90 .21672 .69750 
- 5.60 .oonu .00121 |      1.00 .20116 .718U6 

1   - 5M .00166 .00176 I      1-1° .18775 •73775 
- 5.00 .002U1 •00255 1.20 .17U18 .75579 

i   - U.60 .00350 .00369 1.30 .16223 .77259 
- U.20 .00U59 .00535 i.ko .15116 7882U       | 

1   - U.00 .00581 .006UU 1.50 .1U089 .80282 
- 3.80 .00725 .00775      1 1.60 .13137 .816U2 
- 3.60 .00827 .0093^ 1.70 .11999 .82909 
- 3.^ .01059 .01126 1.80 .11170 .8U091 
- 3.20 .01279 .01358 1.90 .IO6U9 .85195 
- 3.00 .015U8 .OI638 2.00 .09930 •86221 
- 2.80 .0187U .01977 2.10 .09258 .87180 

|   - 2.60 .02272 .02388 1        2.20 .08U89 .88073 
- 2.U0 .02759 .02886 2.U0 .07517 .89682 
- 2.20 .03856 .O3U92 2.60 .06527 .91080       1 
- 2.00 .0UO91# .0U229 I        2.80 .05666 .92293       1 
- 1.80 .05002 .05129 3.00 ,(*9lh 

.OU256 
.933U5       1 

- 1.60 .06137 .06229 3-20 .9^257 
1   - 1.U0 .07666 .07583 3. ^O .C3685 .950U8 

- 1.20 .09096 .09256 360 .032,4l4 .95732 
i - i-io .lOUlU .10239 >        3.80 .02758 .96323 

- 1.00 .11659 .11338 1     ^.00 .02383 .96835 
-  .90 .13589 .12570 !        U.20 .02058 .97277 
-    .80 .1U7U8 .13955 1        h.UO .01776 1   .97658 
-    .70 .16702 .15519 1        U.60 •01531 1   -97987 
-    .60 .19030 1   .17295 U.80 ■m .98271 

1  *    -5° .21865 1   .19325 5.00 .98515 
-   .uo .25U25, .21669 5.20 .0097U .98726 
-  .30 .30128 .2Ukll 5.U0 .00881 .98907 
-    .20 36983 ; .2769U 6.20 .0059U 99197       1 
-    .10 •51705 .31807     | 7.00 .00263 1  .99^11       i 
-    .00 00 .38035 |        7.80 .OOlkl .99569       1 

.10 .55191 Mkto 8.60 .00075 .99685 
1         .20 .U2U97 A9073 1       9.U0 .OOOUO 1  .99911       1 
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B- IV. 

Parameter Values; 

^ = 0., v1= 0.5,    v2= 0.5 

z f(z) F(z) Z f(z) F(z) 

-9-60 .00001 .00000 .10 .68106 .U7012 
-8.80 .00002 .00001 .20 • 519U7 ■53312 
-8.00 .0000^ .oooou .UO .36322 .61139 
-7.20 .00010 .00009 .80 .21768 • 72757 
-6.U0 .00023 .00022 1.20 .1U230 .79956 
-5.60 .0005^ .00053 1.60 .09621 .8U726 
-U.80 .00128 .00126 2.00 .08589 .88368 
-U.00 .00311 .00302 2.U0 .0661U .91^09 
-3.60 .00U3Ö 0O«*69 2.80 .OU589 .93650 
-320 .00769 .0371.7 3.20 .022U1 .95116 
-2.80 .01221 .CL108 3.60 .01571 .95778 
-2.M) .0195* .0x7^^ u.oo .0U03 .96313 
-2.00 .03164 .02765 U.80 .005U5 .96815 
-1.60 .05123 .0UU2U 5.60 .00269 .97206 
-1.20 .J8806 07210 6.U0 •00133 .97U67 
-  .80 .15568 -12087 
- .uo .30U23 .21286 
-  .20 .U7388 .28U65 
-  .10 .6U993 .3UO8U 

.00 00 .U2666 
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B-V. 

Paraaeter Values; 

=  0.3, V,= 0.15.     V0= O.'* 

z re«) F(0 z f(z) F(0 

-6.8»» .00001 .00002 .09 .80128 .U560I4 
-6.12 .00003 .00006 .18 .5521U .51638 
-5.M) .00008 .00010 .27 .'4U57O .56189 
-U.68 .00025 .OOOlU • 36 ■ 375'49 .598814 
-3-96 .00065 .OOOUl M .32367 .62030 
-3.60 .0012? .00138 .5U .28311 .65760 
-3.2U .00212 .00272 .63 .25018 .68179 
-2.88 .003U6 .00373 .72 .22277 .70237 
-2.70 .OOU79 .00537 .81 .19953 .72189 
-2.52 .00635 .00673 .90 .171*39 .73872 
-2.31* .OOdhh .00773 1.08 .3U5 75761 
-2.16 .012U3 .00950 1.26 .12278 79271 
-1.90 .01501» .01237 1.U1» .IO276 .81239 
-1.80 .02017 .01523 1.62 .O8636 •82975 
-I.62 .02729 .01953 1.80 .07257 .85317 
-IM .03690 .02525 1.98 .O61U9 .85397 
-1.26 .05012 •03309 2.16 .05229 .86603 
-I.08 06887 .OU382 2.31* .Oi4l46o .87371 
- .90 .09195 .55739 2.52 .03813 .88228 
- .81 .11209 ,06ll»9 2.70 .03267 .88866 
- .72 .13350 .07762 2.88 .0268»4 .891*01 
- .63 .1598U .09682 3.2U .02125 .89761 

::£ .19283 .10637 3.60 .01580 .90933 
.23503 .12593 3.96 .01101 .91^15 

- .36 .29068 .1U957 U.68 .00723 .917W 
- .2? .3678U .1792U 5.U0 .OOUlO .92039 
- .18 .U858O .21765 6.12 .0023U .92286 
- .09 .752UU .27337 6.8U .OOI5I4 .92831 

.00 00 .36359 
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B-   VI. 

Parameter Values; 

% = 0.3,        V^ 0.55,    v2= 0.55 

1       z 
f(«) F(0 Z 

r        -       ■ ■ ■■               ■ — -^ 

f(0 nt) 

-7.18 .00000 .00000 1       .09 .7220»* .37697   | 
-6.»^ .00000 .00000 .18 .511U7 .1*1*612 
-5.7»* .00003 .00000 .27 .1*2280 .1*8066 
-5.02 .00009 .00001 • 36 .36U26 .52U20 
-»♦.30 .0002U .00002 M .32079 .56513 
-3.9U .0001*6 .00017 .5U .2861*5 • 5821*5 
-3-59 .00082 .00039 .63 .25827 .60697 
-3.23 .001U7 •00079 .72 .23U51 • 62911» 
-2.87 .002U5 .0013k .80 .211*09 .65110 
-2.69 .003UU .002U7 .89 .19629 .66780 
-a.M .00U63 .00302 .98 • 18058 .67032     1 
-2.33 .0062U •00391 1.07 .16661 .68595 
-2.15 .OOQhU .00U90 1.16 .151*10 .70038 
-I.97 .OUUU .OO669 1.25 .13939 .71359 
-1.79 .01556 .00811    | iM .12395 .72865 
-I.61 .02125 .012U3 1.61 .1071*6 .71*938 
-I.U3 .02919 .OI696 1.79 .09358 .77621 
-1.25 .0»*O3»4 .02323 1.97 .08172 .79198 
-1.07 .0562U .03190 2.15 .07150 .80578 
-  .89 .07601 .OU382 2.33 .06272 .81786 

1    - .80 .0938U .051U6 2.51 .05511 .82837 
- .72 .11207 .06073 2.69 .01*860 .83779 
- .63 .13552 .07187 2.87 .01*271 .81*601 
- .5U .16U22 .O8U36 3.2»» 03093 .85926 
- .U5 .20157 .10181 3.59 .02062 .86851* 
- .36 .25100 .13219 »♦.30 .01511 .68016 
- .27 .31969 . l»*787 5.02 .01060 .89066 
-  .18 A2U75 .18137 5.7»* .00652 .89682 
- .09 .66035 .23020 6.U6 .001*02 .90061     i 

.00 .297U7 7.18 

J  

.00320 •90322     | 
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B-VII. 

Parameter Values; 

^ = 0.3, V^ 0.7,      V2= 0.7 

f(.) F(0 f(«) F(z) 

-8.60 
-7.90 
•7.20 
.6.U5 
•5.75 
•5.00 
.U.30 
• 3.60 
•3.25 
.2.88 
.2.52 
•2.16 
.1.80 
•l.kk 
•1.08 
■ .72 
- .36 

.00000 

.00000 

.00000 

.00000 

.00002 

.00007 

.00023 

.00072 

.00129 

.00232 

.00U19 

.00763 

.01'»05 

.02586 

.05052 

.10151 

.225U5 

.00000 

.00000 

.00001 

.00002 

.00003 

.0000^ 

.00006 

.00009 

.OOU37 

.00727 

.008UU 

.01057 

.01U147 

.02165 

.035^0 

.06277 

.12163 

- .18 
- .09 

.00 

.09 

.18 

.36 

.72 
1.08 
l.UU 
1.80 
2.16 
2.52 
2.88 
3.25 
3.60 
u.30 
5.00 
5.75 

• 37^39 
•53018 

00 

.59228 

.U66U5 
• 3^770 
.23683 
• 17597 
.13521 
.13720 
.12008 
.09'+70 
.05256 
.OI4I87 
.033^3 
.02135 
.01363 
.OO871 

.1572? 

.19792 

.26839 

. 3U65 

.38929 

.U6256 

.56770 

.6I4208 

.69809 

. 7^721 
■ 793^3 
,83107 
.85&»7 
,87560 
.88908 
,89105 
,89211* 
90100 
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B- VIII. 

Parameter Values; 

^    .  0.1*5,      V1= 0.2,     V2= 0.^45 

2 f(t) F(z) 

1 
I         z f(«) r{z) 

-6.10 .00000 .00000 •08 .76179 .hUTQO     \ 
-5.U6 .00001 .00001 1       .16 .53068 .U9950 
-U.82 .oooou .00002 .2U .i*335U •53807 
-U.i8 .00023 .00010 .32 .36966 .57175 
-3.52 .00036 .00029 1     .uo .322U9 • 59788 
-3.20 .00070 .000l*5 .U8 .285U8 .62220 
-2.88 .00129 .00078 i       -56         ' .25533 .6U383 
-2.56 .00221 .0013^    | .6U .23009 .66325 
-2.U0 .00313 .00185 • 72 .20858 .68079 

|        -2.2U .00U26 .00256 .80 .18U5O .69652   ! 
-2.08 .00580 .00316 .96 .16087 .70U59   1 
-I.92 .OO87U .OOU32 1.12 .13628 .71315   i 
-I.76 .0108U .00589    1 1.28 .1168U .733U0 

i    -1.60 .OIU89 •00795 IM .10057 .75080 
1    -i.kk .02063 .01079 1.60 .O8656 .76577 

-1.28 .02858 .01U73 1.76 .0751U .813U7 
-1.12 .03975 .02019 1    1.92 .O65UU .82U72   1 

1    - .96 .05595 .02785 2.08 .05717 .83U53   | 
!       - .80 .07652 .038J+5 2.2U .05007 .8U310 
1       - -72 .09UU1 .OU529 2.UO .OU39U .85063   ! 

- .6k .11380 .05362 2.56 .03698 .85710   | 
j       - .56 .13790 .06368 2.88 .03071 .85795 
j       - .U8 .16837 .07593 3.20 .02397 .85806 

" •Uo .20769 .09098 I    3-52 .01752 .85972   1 
- .32 .25997 .10968 U.18 .01266 .85997 

I        -   -2^ .33295 • 133^9 li.82 .00791 .86003   1 
-  «16 .4U50U .16U52 1    5.U6 .OOU98 .86117 
-   .08 .69762 .21023 j   6.10 .00361 .86203 

.00 00 . 31101* 
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B- IX. 

Parameter Values; 

^ = 0.^5,  V ,=0.8. V2= 0.8 

z f(0 F(«) z f(z) F(0 

-7.75 .00000 .00000 - .08 .1*5891 .15255 
-7.10 .00000 .00000 .00 OD .20720 
-6.U5 .00000 .00000 .08 .52512 .26550 
-5.00 .00000 .00000 .16 .1*1855 .30221* 
-5.15 .00001 .00001 .32 .31957 .36129 
-U.50 .00003 .00002 .61* .22838 .1*1*751 
-3.85 .00011 .00006 .96 .17803 .51239 
-3.22 .00039 .00022 1.28 .m53 • 56398 
-2.90 .00073 .000^41 1.60 .15279 61139 
-2.58 .00138 .00073 1.92 .11*030 .65029 
-2.25 .00262 .00128 2.25 .11609 69931 
-I.92 .00501 .00259 2.58 .06760 .72873 
-I.60 .00968 .001492 2.90 .05650 .7^857 
-1.28 .01369 .009^6 3.22 .01*733 .76518 
- .96 .03832 .01860 3.85 .03327 .79137 
- .61» .08078 .03766 U.50 •02339 .80910 
- .32 .18825 .08071 5.15 .0161*1* .82181* 
- .16 .32020 .12139 
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B-   X. 

Paraaeter Values; 

^ = 0.5,      V^ 0.. v2= 0. 

z f(«) F(«) Z fit) F(0 

-5.250 .00000 .00000 .075 .70335 .1*9978 
-^.650 .00001 .00001 .150 .53396 .5'*327 
-I1.05O .00005 .00003 .225 .1*1*158 .58262 
-3.U5O .00018 .00015 • 300 .37526 .61370 
-2.85O .00055 .00031 .375 .32720 .63959 
-2.550 .00m .00083 .1*50 .28931 .66271 
-2.25O .00205 .00105 .525 .25838 .68325 
-2.100 .00297 .00173 .600 .23250 .70166 
-I.95O .OOU08 .00210 .675 .2101*2 .71837 
-I.8OO .00528 .00259 .750 .19135 .7331*7 
-I.65O .00827 .00332 .900 •15997 .76391 
-I.5OO .01155 .00U17 1.050 .13526 .78235 
-1.350 .01635 .00569 1.200 .11531 .80111» 
-1.200 .02328 .OO76U 1.350 .09895 .81683 
-1.050 .03335 .010l»9 1.500 .08535 .83021 
- .900 .OU818 .OlUOl 1.650 .07U69 .81*211 
- .750 .07039 .0292i* 1.800 .061*26 .85208 
- .675 .08555 .03217 I.95O .051*99 .86203 
- .600 .10UU6 .Oktfk 2.100 .01*899 .86983 
- .525 .12831 .05816 2.250 .Ohljh .87660 
- .»»50 .15878 .07253 2.550 .031*32 .88372 
- .375 .198U6 09039 2.850 .021*77 .89681* 
- .300 .2515k .11238 3.'♦50 .01793 .936^ 
- .225 .32713 . 11*183 U.050 .01108 95717 
- .150 .1»3717 .17001* U.650 .00692 .96259 
- .075 .636U2 .18215 5.250 .(»1*90 .96653 

.000 00 .2357*» 
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B-XI. 

Parameter Values; 

^ =  0.5. V^ 0.2,       V2=  O.^ 

z f(z) F(0 Z f(z) F(z) 

-5.700 .00000 .00000 .075 .73360 • 39832 
-5.100 .00000 .00000 .150 .51^11 .I43256 
-U.500 .00001 .00001 .225 .U225U . 5076'4 
-3.900 .00002 .00002 .300 . 362I4U .53708 
-3.300 .00026 .oooou .375 .31810 .56260 
-3.000 .00053 .00026 .U50 .28329 .57515 
-2.700 .00099 .00039 .525 .25U89 .60533 
-2.U00 .OOUh .00080 .600 .23108 .62357 
-2.25O .00250 .00122 .675 .2107*4 .6U013 
-2.100 .OOlkk .00156 .750 .18753 .65506 
-I.95O .OOU75 .00218 .900 .16UU8 .67626 
-I.8OO .0072U .00308 1.050 .II4I89 .70031 
-I.65O .00909 .00U03 1.200 .12311 .72019 
-I.5OO .0126U .00593 1.350 .10725 . 736I46 
-I.35O .01772 .OO836 1.500 .093^2 .75151 
-1.200 .02U85 .011U2 ■v. 650 .08207 .75^67 
-I.O5O .03^96 .01587 1.800 . 07231* .77626 
-  .900 .0U98U .022814 1.950 .06379 .786I48 
-  .750 .06899 .03139 2.100 .05670 .80I458 
-  .675 .08562 .03321 2.250 .05036 .8088I4 
-  .600 .^0383 .03679 2.1« 00 .014 289 .81583 
-  .525 .1^57 .OU5U3 2.700 .036^8 .83106 
- .U50 .155»*? .05601 3.000 .02917 .814009 
- .375 .19293 .06809 3.300 .021814 .8I4665 
- .300 .2U295 .Ob^;2 3-900 .01656 .85117 
.  .225 .31302 .1062? U.500 .01085 .86939 
- .150 .U2092 .13369 5-100 .00717 .87279 
- .075 •66379 .173^ 5.700 .005146 .87859 

.0» GO .26058 
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B-XI1. 

Paraaeter Values; 

^ • 0.5,      V1= 0.7,      V?= 0. 7 

z f(t) F(0 i    z 
f(«) F(«) 

-6.000 .00000 .ooooc .075 .617U2 .29582 
-5.^00 .00000 .0000c !       .150       ! .1*1*530 • 33567 
-U.80) .00000 .ooooc •225    ! .371*79 .356U3 
-U.200 .00002 .00001 300    | .32876 .38280 
-3.60() .00006 .00001 • 37? .291*78 .1*0161    j 
-3.300 .00017 .00007 |      .'♦50      1 .26801 •l*3729 
-3.000 .00033 .00013 .525 .21*603 A5657 
-2.TOO .00061* .00017 .600 .2271*6 .1*7369 
-2.U00 .00115 .00021* .675 .2111*3 .1*9007 
-2.250 .00166 .0031*3 1      .750       1 ■19737 50611 

1       -2.100 .00235 .00577 .825       1 .18U87 .52061 
-1.950 .00328 .00610 .900       1 .17366 • 53389 
-1.800 .001*60 .00677 • 975 .16351* . 5U65I* 
-1.650 .0061*6 .00762 1.050 .15062 .55832 

i       -1.500 .00811 .00879 1.200 .13881* .57619 
-I.35O .01291 .0101*3 1.350 .121*78 .600UO     1 
-1.200 .01838 .01279 1.500 .11265 .61760     1 
-I.050 .02633 .0159** 1.650 .10198 .63370 
-  .900 .03806 .02312 1.800 .09250 .6U829 
-  .750 .05332 .01*006 1.950 .081*12 .66151* 
- .675 .06702 .05U57 2.100 .06662 .67112     \ 
- .600 .08150 .06015 2.250 .07005 .68U59 
- .525 .10031* .06697 2.1*00 .06382 .69U63 
- .1*50 .12380 .07537 j   2.550 .05833 •70379 
- .375 .15U71 .08582 2.700 .01*877 .71183 
- .300 .19615 .09895   1 3-000 .OU552 .7211*6 
-   225 .251*38 .11586 3.300 .03823 .72998 
- .150 .3^11 .13829 f   3.600 .03012 .73513 
- .075 .5^*70 . 17162 U.200 .021*1*0 • 7511*9 

.000 00 .21881* U.800 .01731» • 761*01 
j   5.MX) .01231* .77290 

6.000 .on 36 .78003     1 
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B-XIII. 

Parameter Values; 

^ = 0.5,      V^ 0.85,       V2= O.85 

f(*) F(z) f(z) F(0 
1 

-7.2OO 
-6.6OO 
-6.000 
-5.HOO 
-u.aoo 
-U.200 
-3600 
•3.000 
-2.700 
•2.U00 
•2.100 
•1.800 
■1.500 
•1.200 
.900 

• .600 
• .300 

.00000 

.00000 

.00000 

.00000 

.00000 

.00002 

.00007 

.00028 

.0005h 

.ooiou 

.00203 

.00397 

.00785 

.01552 

.03259 

.07038 

.16799 

.00000 

.00000 

.00000 

.00000 

.00000 

.00002 

.00003 

.oooiu 

.00026 

.00052 

.00099 

.00198 

.00362 

.0071U 

.01U3U 

.02980 

.06556 

- .150 
- .07'^ 

.000 

.075 

.150 

.300 

.600 

.900 
1.200 
1.500 
1.800 
2.100 
2.1+00 
2.700 
3.000 
3600 
U.200 
U.800 

.28920 

.U1698 
00 

.U8290 

.38721 

.29921 

.21902 

.17U88 

.Ikkkl 
• I'lhl 
.1U811 
.12553 
.07^88 
.061+10 
.05^99 
.0U056 
.02992 
.02207 

.09971 

.15167 

.17293 

.22211* 

.251+77 

.30625 

. 38216 

.141*297 

.1+9086 

.53617 

.58198 

.6231^ 

.65319 
, 67I+OI+ 
,69191 
.72056 
7^171 
757^5 
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