

ON PRODUCTS AND QUOTIENTS OF RANDOM VARIABLES

ROBERT S. DeZUR
JAMES D. DONAHUE
the martin company
DENVER, COLORADO

Office of aerospace research

United States Air Force

Anemic cop v

NOTICES

 have formulated, furmished, or in any was supplied the sad drawnes, pecolicatums, of wher date, is not to be regarded by implication or otherwise as in am mamer homane the holder or any wher
 invention that may in dav way be related thereto.

Qualified requesters may obtain copies of this report from the Defense Documentation Center, (DDC). Cameron Station, Alexandria, Virgimia.

The mpost has been released to the Office of Technical Sewices, U. S. Department of Commerce. W. 11 hingem 28, 1) (\therefore for sale to the general public.

Copmes of ARI. Techmicial Docomentary Reports should bot be returned to Derospace Researeh 1 . boratorim bules return is reguired by security consoderations. contactual ohligatoms or notices on a sper:fied document.

ON PRODUCTS AND QUOTIENTS OF RANDOM VARIABLES

ROBERT S. DeZUR
JAMES D. DONAHUE
THE MARTIN COMPANY
DENVER, COLORADO

APRIL 1965

Contract AF 33(615). 1023

AEROSPACE RESEARCH LABORATORIES

FOREWORD

This report was prepared by Dr. Robert S; Dezur and James D. Donahue, Electronics and Mathematics Laboratory, The Martin Company, Denver, Colorado, under Contract AF 33(615)-i023 for the Aerospace Research Laboratories (ARL), Office of Aerospace Reseasch, United States Air Force. The research reported herein was accomplished under Task 7071-01, Research in Mathematical Statistics and Probability Theory, of Project 7071, Mathematical Techniques of Aerodynamics. Dr. P. R. Krishnaiah of the ARL was the contract monitor.

Abstract

This report, prepared in two parts, deals with products and quotients of random variables. In Part I, the distributions of quotients of indepr dent random variables are considered. In Part II, the distribution of the product of two (not necessarily independent) normally distributed random variates is investigated. The tables of this distribution are given in the Appendix.

TABLE OF CONTENTS

I. ON THE QUOTIENT OF RANDOM VARIABLES

1. Introduction 1
2. The Quotient of Independent Random Variables 3
2.1 A Necessary Condition For u Solution to Exist 3
2.2 Some Generalizations Using Both Distribuiion and Lensity Functions. 6
3. Some Comments on the General Problem 11
II. NOTES ON THE PRODUCT OF TWO NORMALLY DISTRIBUTED RaNDOM Variables
4. Introduction 14
5. Numericas Computation. 20
2.1 Integration of the Cumulative Distribution Function. 20
2.2 Integration to Obtain the Probatility Density Function 22
2.3 Methods of Numerical Integration 26
REFERENCES 30
Appendix A. TWO AUXILIARY THEOREMS 33
Appendix B. TABLES OF THE PKODUCT OF T'WO COHRELA'fED NORMAL KANDOM ViRIABLES 35

I. ON THE GUOTIENT OF RANLOM VAKIABLES

1. Introduction

In a study of distributions of products and quotients of random varisbles it is sometimes necessary to determine possible componeat distributions when the composite distribution is known. Formally, at least, this involves a study of linear integral equations of the first kind. Por the quotient, in particular, suppose x_{1} and x_{2} are independent random variables vith $f\left(x_{1}\right)$ and $g\left(x_{2}\right)$ their respective density functions. Setting $y_{1}=x_{1} / x_{2}$ and $y_{2}=x_{2}$, the density function for the quotient has the form $\varphi\left(y_{1}\right)=\int_{-\infty}^{\infty} f\left(y_{1} y_{2}\right) g\left(y_{2}\right)\left|y_{2}\right| d y_{2}$. A derivation of this formula as well as a general discussion of results in this ares is given in $[20]$ 。

A number of authors $[22,23,31,32,33,34$, and others $]$ have studied this problem in the case where the variates are assumed to be identically distributed. Their techniques, which can be called more or less "classical", involved the use of various transform theories Mellin, Fourier, and others - but little was done to develop a general theory for the above equation. It was the original intent of this paper

1
Samucridt relessed by tic cutnois beconver lót ror publication us an ARL techicil rivit.
to vicw this equation in operator form, i.e., $\varphi=F g$ (assuming fiven), where F is a compact operator on an L^{p} space and attempt to develop a theory for linear integral equations of the first kind from the inea:operator point of view that would be applicable to probability density functions. We have not been too successful as far as fruitful results are concerned. Some of the difficulties are discussed in Sec. 3 along with a possible application of a theory that is presently being developed for pairs of operistors acting between Banach spaces.

In Sec. 2 we generalize a few known results assuming identical distributions as mentioned above (still from the classical point of view) and discuss an existence theorem. Essentially, the procedures and teahniques of Laha have been followed here. In Appendix A two theorems resulting from a side investigution are presented - one is apparently not now but the proof snems particularly simple.

2. The Quotient of Independent Random Variables

We give here a few results and generalizations of known results involving the quotient of independent random variables. in parts of Sec. 2.1 and Sec. 2.2 "identically distributed" is also assumed.

2.1. A Necessary Condition for a Solution to Exist
 Suppose x_{1} and x_{2} are identically distributed random

variables over the real line with density function f. Under the transformation $y_{1}=x_{1} / x_{2}$ and $y_{2}=x_{2}$, see [20], the density function for the quotient x_{1} / x_{2} is given by
(A) $\quad \phi\left(y_{1}\right)=\int_{-\infty}^{\infty} f\left(y_{1} y_{2}\right) f\left(y_{2}\right)\left|y_{2}\right| d y_{2}$.

Note then that $\&\left(\frac{1}{y_{1}}\right)=\int_{-\infty}^{\infty} f\left(y_{2} / y_{1}\right) f\left(y_{2}\right)\left|y_{2}\right| d y_{2}$. For $y_{1} \neq 0$, letting $y_{2} / y_{1}=w$ so that $d y_{2}=y_{1} d w$ this becomes

$$
\begin{aligned}
\varphi\left(\frac{1}{y_{1}}\right) & =\int_{-\infty}^{\infty} f(w) f\left(y_{1} w\right)\left|y_{1}\right||w|\left|y_{1}\right| d w \\
& =\left|y_{1}\right|^{2} \int_{-\infty}^{\infty} f(w) f\left(y_{1} w\right)|w| d w \\
& =\left|y_{1}\right|^{2} \varphi^{\prime}\left(y_{1}\right) .
\end{aligned}
$$

Note also that $\varphi(0)=f(0) E\left[\left|y_{2}\right|\right]$. Viewing ϕ as given in (A) above we have proved the following.

Theorem 1: Under the conditions above, if (A) has a solution then for $y_{1} \neq 0$ it is necessary that $\psi\left(\frac{1}{y_{1}}\right)=y_{1}^{2} \psi^{\prime}\left(y_{1}\right)$; if not, no solution f exists. Moreover, the "search" for possible solutions an be narrowed down to those density functions $f(x)$ such that $\psi(0)=f(0) E[|x|]$. It is interesting to note in this result that $y_{1}{ }^{2} \psi\left(y_{1}\right)$ is actually the density function for the random variable $1 / y_{1}$. Note further that (A) cannot be solved if it is assumed that $\psi\left(y_{1}\right)$ is the normal density function. Referring to (A) again, suppose a symetric solution is desired, i.e., $f(z)=f(-z)$. The equation then has the form
(B) if $\left(y_{1}\right)=2 \int_{0}^{\infty} f\left(y_{1} y_{2}\right) f\left(y_{2}\right) y_{2} d y_{2}$.

It is clear, first of all, that f symetric implies if must also be symmetric. Also if ψ is given symmeiric then

$$
\int_{-\infty}^{\infty}\left|y_{2}\right| f\left(-y_{1} y_{2}\right) f\left(y_{2}\right) d y_{2}=\int_{-\infty}^{\infty}\left|y_{2}\right| f^{\prime}\left(y_{1} y_{2}\right) f\left(y_{2} \cdot d y_{2}\right.
$$

which implies that $f\left(-y_{1} y_{2}\right)=f\left(y_{1} y_{2}\right)$ a.e. Hence, in the a.e. sense at least, we have the following for (A) above.

Lemen 2: $\mathscr{4}$ is symmetric if an only if f is symmetric.
Changing the form of (B) above,

$$
\psi\left(y_{1}\right)=2 \int_{0}^{\infty} y_{2}^{1 / 2} f\left(y_{2}\right) y_{2}^{1 / 2} f\left(y_{1} y_{2}\right) d y_{2}
$$

Letting $y_{2}^{1 / 2} f\left(y_{2}\right)=g\left(y_{2}\right)$ this becomes

$$
2 \int_{0}^{\infty} g\left(y_{2}\right) y_{2}^{y_{2}} f\left(y_{1} y_{2}\right) d y_{2}
$$

so that for $y_{1} \geq 0, y_{1}^{1 / 2} \varphi\left(y_{1}\right)=2 \int_{0}^{\infty} g\left(y_{2}\right) y_{1}^{y_{2}} y_{2}^{y_{2}} f\left(y_{1} y_{2}\right) d y_{2}$, i.e.,

$$
\theta\left(y_{1}\right)=y_{1}^{y_{2}} \dot{\psi}\left(y_{1}\right)=2 \int_{0}^{\infty} g\left(y_{2}\right) g\left(y_{1} y_{2}\right) d y_{2} .
$$

This is a form studied in [21]. Solving the above equation for g will also furnish a symmetric solution to the original equation.

It should be mentioned that Fox [2l] carries out an analysis on the above form for L ' $0, \infty$) functions using Mellin and Fourier transform theory.
2.2. Some Generalzzations Using Both Diatribution and Density Functions

Laha [$2 ;]$ considere, in particular, an integral equation of the form (A) abov', where y_{1}, the quotient of two independent, identically distributed random variables, is assumed to follow the Cauchy lay. The genaral technique is to use distribution functions and Pourier transforma, the distribution functions assumed to be everywhere continuous to the right. This is a more general approach since the distribution function alvays exista.

The distribution function F for the random variable y is said to be symmetric (abcut 0) in case $F(y)=1-F(-y-0)$.

Lemma 1: Given the random variable x with distribution function $F(x)$ symmetric (about 0), the distribution function G of $|x|$ is given by

$$
G(|x|)=\left\{\begin{array}{cl}
2 P(x)-1, & x \geq 0 \\
0, & \text { elsewhere } .
\end{array}\right.
$$

rroof: for $a \geq u$,

$$
G(a) \quad \operatorname{Pr}[|x| \leq a]=\operatorname{Pr}[-a \leq x \leq a]=F(a)-P(-a-0)=2 F(a)-1
$$

since F is symetric and the result follows.
The importarice of the lema is that the distribution function of x can be deteruined knowing only that of $|\mathbf{x}|$ and we shall be able to relate this to the distribution of $\ln |x|$. Before doing this however we prove the following.

Leama 2: Let u be a random variable following the Cauchy law, i.e., $f(u)=\frac{1}{\pi\left(1+u^{2}\right)} \cdot$ Then $z=\cot ^{-1} u$ has a uniform distribution. Proof: $\operatorname{Pr}[z \leq a]=\operatorname{Pr}\left[\cot ^{-1} u \leq a\right]=1-\operatorname{Pr}[u \leq \cot a]$ $=1-\frac{1}{\pi} \int_{-\infty}^{\cot a} \frac{1}{1+u^{2}} d u=1-\frac{1}{\pi}[(\pi / 2-a)+\pi / 2]=\frac{a}{\pi}$
so that the density function for 2 is equal to $\frac{1}{\pi}, 0 \leq 2 \leq \pi$ and zero elsewhere. Using the above lema, since 2 has n uniform distribution, and since we know its closed form characteristic funcriong see [25] for example, and moreover since the characteristic function of a function of a random variable, $g(\sigma)$ say, is the mean value of $e^{i t g(w)}$ we can evaluate the following integral,

$$
\frac{1}{\pi} \int_{-\infty}^{\infty} e^{i t \cot ^{-1} w} \cdot \frac{1}{1+w^{2}} d w=e^{i t \pi / 2} \frac{\sin t / /^{\prime 2}}{t \pi / 2}
$$

Theorem 3: Let x and y be independent, identically distributcd random variables. Let $z=x / y$ and $G(s)$, the distribution function of z, be symetric about 0 . Suppose further that the square root of the sharacteristic function of $\ln |z|$ is absolutely integrable. Then $P(x)$, the diatribution function of x (and J) is absolutely continuous and has a oontinuous density function $f(x)=P^{\prime}(x)>0$.

Proof: By a result of Lana $[22], F(x)$ is symmetric about the origin. Consequently the distribution function for $|x|$ is $G(x)=\left\{\begin{array}{cl}2 F(x)-1, & \text { if } x \geq 0 \\ 0, & \text { otherwise }\end{array}\right.$ by the above lemma. Let $E\left[e^{i t \ln |z|}\right]=\psi_{z}(t)$. Then since $\ln |z|=\ln |x|-$ $\ln |\mathbf{y}|$ we have

$$
\psi_{x}(t) \cdot \psi_{x}(-t)=\psi_{z}(t)
$$

and hence

$$
\left|\psi_{x}(t)\right|=\left|\varphi_{z}(t)\right|^{1 / 2} .
$$

By assumption $\int_{-\infty}^{\infty}\left|\varphi_{z}(t)\right|^{1 / 2} d t<\infty$ so that the characteristic function of $\ln |z|, \Psi_{x}(t)$, is absolutely integrable. By a theorem of Loeve $[24]$ the distribution function of $\ln |x|$ is absolutely continuous and has a continuous density function. But since $F(\ln |x|)=G(|x|)$ it follows that $|x|$ has an absolutely continuous distribution function and a continuous density function. From above, then, so does \mathbf{x}.

It is known that if z follows the Cauchy law, the characteristic function for $\ln |z|$ is $\operatorname{sech}\left(/ \Gamma_{t} / 2\right)$, a function which has a finite integral over the real line so that the above result holds for this particular distribution.

Theorem 4: To the assumptions in theorem 3 above add that arcot z has a uniform distribution. Then f, the density function for x, satisfies the integral equation

$$
\int_{0}^{\infty} f(y) f(w y) y d y=\frac{k}{1+w^{2}} \text {, where } k \text { is a constant. }
$$

Proofs Our assumptions imply that fis also symmetric about zero and honce wa recognize the above integral as $\frac{1}{2} g(w)$, where g is the density function for $v=x / y$. Let $u=\operatorname{arcot} w$. The density function for u, $h(u)$ say, is

$$
b(u)= \begin{cases}\frac{1}{\pi}, & 0 \leq u \leq \pi \\ 0, & \text { elsowhere }\end{cases}
$$

so that for the distribution function $H(u)$ we have
$H(u)=\operatorname{Pr}[u \leq a]=1-\operatorname{Pr}[w \leq \cot a]=1-\int_{-\infty}^{\cot a} g(w) d(w)=\frac{a}{\pi}, 0 \leq a \leq \pi /$

Hence

$$
\int_{-\infty}^{\cot a} \frac{1}{2} g(w) d w=\frac{1}{2} \cdot \frac{1}{\pi}(r-a)
$$

But

$$
\int_{-\infty}^{\cot a} \frac{1}{1+w^{2}} d w=(\Pi-a) \text { so that } \int_{-\infty}^{\cot a} \frac{k}{1+w^{2}} d w=\frac{1}{2 \pi}(\Pi-a)
$$

Thus $\quad \frac{1}{2} g(w)=\frac{k}{1+w^{2}}$ and the result follows. This can be generalized as follows.

Theorem 5: Given the hypothesis of Theorem 3, let $w=x / y$ and $h(u)$, the density function for $u=$ arcot w, vanish outside the interval $[0, \pi]$. Then the density function f for x satisfies the integral equation

$$
\int_{0}^{\infty} f(y) f(w y) y d y=\frac{k h\left(\cot ^{-1} w\right)}{1+w^{2}}, k \text { a constant. }
$$

Proof: Following the model and notation of the last proof we have

$$
\int_{-\infty}^{\cot a} \frac{1}{2} g(w) d w=\frac{1}{2}[1-H(a)], \quad 0 \leq a \leq \Pi
$$

We need a function ℓ such that $\ell(\cot a) \csc ^{2} a=\frac{1}{2} h(a)$,
i.e. $\ell(w)=\frac{1}{2} \frac{h\left(\cot ^{-1} w\right)}{1+w^{2}}$. Consider $\frac{1}{2} \int_{-\infty}^{\cot a} \frac{h\left(\cot ^{-1} w\right)}{1+w^{2}} d w$.

Letting $y=\cot ^{-1} v$ this becomes

$$
-\frac{1}{2} \int_{\Pi}^{a} h(y) d y=\frac{1}{2} \int_{a}^{\pi} h(y) d y=\frac{1}{2}[H(\Pi)-H(a)]=\frac{1}{2}[1-H(a)]
$$

and the result follows.

3. Some Comments on the General Problem

It has already been noted that the density function for the quotient of two random variables x_{1} and x_{2} with density functions $f\left(x_{1}\right)$ and $g\left(x_{2}\right)$ respectively has the general form

$$
\varphi\left(y_{1}\right)=\int_{-\infty}^{\infty}\left|y_{2}\right| f\left(y_{2} y_{2}\right) g\left(y_{2}\right) d y_{2}
$$

where $y_{1}=x_{1} / x_{2}$ and $y_{2}=x_{2}$. Writing the kernel $k\left(y_{1}, y_{2}\right)=\left|y_{2}\right| f\left(y_{1} y_{2}\right)$ this has the form of a linear integral equation of the first kind and 14 operator notation can le formally written as Kg - \mathcal{F}. It appears somewhat difficult to determine the proper domain and range for this operator so as to apply directly to probability functions. The set of density functicns in $C[a, b]$ or $L^{2}[a, b]$ for example, does not form a linear space. If the equations could be modified to consider distribution functions, addition can be defined as $F+G=F * G$ where * means convolution but scalar "multiplication" appears to move one off the intersection of the unit ball with the positive cone in the Banach space under consideration.

Apparently then, the analysis should be done on some other space (as far as solutions are concerned) and a second analysis done to determine whether the solution or which of the solutions are fensity functions. If, for example, the kernel k vanishes outside the square $[a, b] x[a, b]=E$ and $k \in L^{2}(E)$, then the operator K acting on L^{2} is compact (with range in L^{2}). The theory of compaot operators could possibly be extended so as to
apply to equations of the type needed here. To this end it should be mentioned that S. Birnbaum, at the University of Colorado and MartinDenver, is presently developing a theory for pairs of operators acting between Banach spaces. This theory appears to have some applications in this area. We give a brief discussion here as to the type of results to expect. They will be called pretheoreme.

We will be considering the spaces $L=L^{p}[0,1]$ and $C=C[0,1]$, $1<p<\infty$, and an integral equation of the above form $K f=G, K_{8} L \rightarrow C$. With proper restrictions on the kernel $k(s, t)$ determining K, X will be a continuous operator [vis. $k(s, t)$ continuous in s for every t and $\int_{0}^{1}|k(s, t)|^{p^{\prime}} d t<\infty$ for every $s \in[0,1]$, where $\left.\frac{1}{p}+\frac{1}{p^{\prime}}=1\right]$. Let $R: C \rightarrow L^{p}$ be an imbedding, i.e., for $y \in C, R y=[y] \in L^{p}$, ([] denotes an equivalence class). Then R is continuous and 1-1 and hence $R^{-1}=S$ exists as a closed operator $S: L \xrightarrow{p} C$ and the domain of S is the set $\{[y] \mid \exists y \in[y], y \in c\}$. Using the above theory for the pair (S, K) the following can then be proved.

Pretheorem: If there is λ (complex) such that $(S-\lambda K$) is 1-1, the range of $(S-\lambda K)$ is C, and such that $\left\|s(S-\lambda x)^{-1}\right\|<1$ then K restricted to the domain of S is $1-1$, has range C, and has a continuous inverse defined everywhere on C.

It should be noted that angother things this is a uniqueness theorem. Applied to the problem considered in this paper the solution would have to be examined to determine whether or not it is a density function. From the form of the solution, however, it appears that this may be a difficult
problem but it has not yet been investigated. It also appears promising, using the new theory, that it will be possible to characterize the null space of \mathbf{X} so that something can be said when multiple solutions are involved. Although the above result was stated for the unit interval, it can be extended to more general settings.

II. NOTES ON THE PRODUCT OF TWO NORMALLY

 DISTRIBUTED RANDOM VARIABLES .
1. Introduction.

Let X_{1} anc X_{2} follow a normal bivariate probability density function, p.d.f., with expected values μ_{1}, μ_{2}, standard deviations, σ_{1}, σ_{2}, and coefficient of correlation, ρ. Several forms of randce variable producte may be considered; two of which are the normalized product $2=\left(x_{1}-\mu_{1}\right)$. - $\left(x_{2}-\mu_{2}\right) / \sigma_{1} \sigma_{2}$ and the product $2=x_{1} x_{2} / \sigma_{1} \sigma_{2}$. The latter presents far greater application in that families of normal random variables X_{1} / σ_{1} and X_{2} / σ_{2} mey be characterized by the statistice $\mathbf{v}_{i}=\mu_{i} / \sigma_{i}$, i-1,2. These, of course, are the reciprocals of the respective ooefficients of variation.

The joint p.d.f. of the normal random veriables X_{1} / σ_{1} and X_{2} / σ_{2} is

$$
f\left(\frac{x_{1}}{\sigma_{1}}, \frac{x_{2}}{\sigma_{2}}\right)=\frac{\exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x_{1}}{\sigma_{1}}-v_{1}\right)^{2}-2 \rho\left(\frac{x_{1}}{\sigma_{1}}-v_{1}\right)\left(\frac{x_{2}}{\sigma_{2}}-v_{2}\right)+\left(\frac{x_{2}}{\sigma_{2}}-v_{2}\right)^{2}\right]\right\}}{2 \pi \sqrt{1-\rho^{2}}}
$$

With the transformation $W=x_{1} / \sigma_{1}, z=x_{i} x_{2} / \sigma_{1} \sigma_{2}$, the marginal p.d.f. of 2 may be derived from
$\varphi(z)=\int_{-\infty}^{\infty} \frac{\exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(w-v_{1}\right)^{2}-2 \rho\left(w-v_{1}\right)\left(\frac{z}{w}-v_{2}\right)+\left(\frac{z}{w}-v_{2}\right)^{2}\right]\right\}}{2 \pi \sqrt{1-\rho^{2}}|w|} d w$.

The p.d.f. (II-1) may be expressed as $\phi(z)=I_{1}(z)-I_{2}(z)$ where

$$
I_{1}(z)=\int_{0}^{\infty} \frac{\exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(w-v_{1}\right)^{2}-2 \rho\left(w-v_{1}\right)\left(\frac{z}{w}-v_{2}\right)+\left(\frac{z}{w}-v_{2}\right)^{2}\right]\right\}}{2 \pi \sqrt{1-\rho^{2}} w} d w
$$

and $I_{2}(z)$ is the same function defined on $(-\infty, 0)$. After the substitution $w=-w$ into $I_{2}(z)$, the marginal p.d.f. $\varphi(z)$ may be expressed as

$$
\begin{equation*}
+\frac{\exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(w+v_{1}\right)^{2}-2 \rho\left(w+v_{1}\right)\left(\frac{z}{w}+v_{2}\right)+\left(\frac{z}{w}+v_{2}\right)^{2}\right]\right\}}{w} d w ; \tag{IIT}
\end{equation*}
$$

and by expanding these exponents and regrouping terms, (II-2) becomes

$$
\begin{gather*}
\varphi(z)=\frac{\exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[v_{1}{ }^{2}+v_{2}^{2}-2 \rho\left[z+v_{1} v_{2}\right]\right]\right\}}{\Pi \sqrt{1-\rho^{2}}} \int_{0}^{\infty} \frac{e^{\left.-\frac{1}{2\left(1-\rho^{2}\right.}\right)\left[w^{2}+\frac{z^{2}}{w^{2}}\right]}}{w} .
\end{gather*}
$$

Several speoial cases may now be examined. When $v_{1}=v_{2}=0$, the p.d.f. of the "normalized" product is obtained. The p.d.f. of 2 in this case is ${ }^{1} \quad \frac{\rho}{1-\rho^{2}}=$

$$
\begin{equation*}
\varphi(z)=\frac{0}{\pi \sqrt{1-\rho^{2}}} K_{0}\left(\frac{z}{1-\rho^{2}}\right) \tag{II-4}
\end{equation*}
$$

where $K_{0}(\cdot)$ is a modified Bessel function of the second kind of zero order possessing a singularity at $z=0$. The product of two independent "normalized" variables by (II-4) reduces to

$$
\begin{equation*}
\varphi(s)=\frac{1}{\pi} x_{0}(z) \tag{II-5}
\end{equation*}
$$

a result show in [5] and [6].
The non-central product $\quad Z=X_{1} X_{2} / \sigma_{1} \sigma_{2}$ in which each variable is characterized by its respective reciprocal of the coefficient of variation, $\nabla_{i} \notin 0$, has undergone extensive study. As yet, however, no satisfactory method of obtaining numerical results for the oumuative distribution function of 2 has been derived for all paraneters values of ρ, γ_{1}, and ∇_{2}. The analysis by C. C. Craig [5], [6], is perhaps the most nctable concerning tinis product.

[^0]In an effort to simplify any numerical calculation, Craig reformulated (II-3) as an infinite series. The cosh function in (II-3) may be expanded so that it is possible to write $\varphi(z)=I_{1}(z)-I_{2}(z)$ where

$$
\begin{align*}
I_{1}(z) & =\frac{\exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[v_{1}{ }^{2}+v_{2}{ }^{2}-2 \rho\left[z+v_{1} v_{2}\right]\right]\right\}}{2 \pi \sqrt{1-\rho^{2}}} \int_{0}^{\infty} \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[w^{2}+\frac{z^{2}}{w^{2}}\right]+\right. \\
& \left.+\frac{1}{\left(1-\rho^{2}\right)}\left[\left(\rho v_{2}-v_{1}\right) w+\left(\rho v_{1}-v_{2}\right) \frac{z}{v}\right]\right) \frac{d w}{v} \tag{II-6}
\end{align*}
$$

and $I_{2}(z)$ is the integral of the same function over the interval ($-\infty, 0$). The infinite series expression is derived by substituting

$$
\frac{w}{\sqrt{1-\rho^{2}}}=u \text { and } \frac{z}{1-\rho^{2}}=y \text { into } I_{1}(z) \text { and } I_{2}(z) .
$$

Under this transformation, $I_{1}(z)$ becomes

$$
\begin{align*}
& I_{1}(y)=\frac{\sqrt{1-p^{2}}}{2 I I} \exp \left|-\frac{1}{2\left(1-\rho^{2}\right)}\left[v_{1}{ }^{2}+v_{2}{ }^{2}-2 p\left[y+v_{1} v_{2}\right]\right]\right| \int_{0}^{\infty} e^{-\frac{1}{2}\left[u^{2}+\frac{y^{2}}{u^{2}}\right]} . \\
& \cdot \exp \left\{\left.\frac{\left(\rho v_{2}-v_{1}\right)}{\sqrt{1-\rho^{2}}} u+\frac{\left(\rho v_{1}-v_{2}\right)}{\sqrt{1-\rho^{2}}} \frac{y}{u} \right\rvert\, \frac{d u}{u} .\right. \tag{II-7}\\
& \text { The term } \frac{\exp \left\{\frac{\left(\rho v_{2}-v_{1}\right)}{\sqrt{1-\rho^{2}}} u+\frac{\left(\rho v_{1}-v_{2}\right)}{\sqrt{1-\rho^{2}}} \frac{y}{u}\right\}}{u} \text { may be expanded in a Laurent }
\end{align*}
$$

series in powers of u for all $u, u \neq 0$. This expression is simplified to some extent by substituting

$$
\frac{\left(\rho v_{2}-v_{1}\right)}{\sqrt{1-\rho^{2}}}=R_{1} \quad \text { ard } \quad \frac{\left(\rho v_{1}-v_{2}\right)}{\sqrt{1-\rho^{2}}}=K_{2}
$$

In the expansion, the coefficient of $u^{r-1}, r \geq 1$, ib $\frac{R_{1}^{r}}{r} \sum_{r}\left(R_{1} R_{2} y\right)$ in which $\sum_{r}(\cdot)$, the oonfluent hypergeometric function of order r, is ${ }^{2}$

$$
\sum_{r}\left(R_{1} R_{2} y\right)=1+\frac{R_{1} R_{2} y}{r+1}+\frac{\left(R_{2} R_{2} y\right)^{2}}{(r+2)^{(2)} 2!}+\frac{\left(R_{1} K_{2} y\right)^{3}}{(r+3)^{(3)_{3!}}}+\cdots \cdots
$$

with $(r+k)(k)=(r+k)(r+k-1) . .(r+1)$.
By thia expansion and a similar expansion for $I_{2}(y)$, the p.d.f. of $Y=X_{1} X_{2} / \sigma_{1} \sigma_{2}\left(1-\rho^{2}\right)$ may be expanded in an infinite series involving confluent hypergeonetric functions and powers y, v_{1}, and v_{2}. This series is

$$
\begin{align*}
\phi(y) & \left.=-\frac{\sqrt{1-p^{2}}}{\pi} \exp \left\lvert\, \frac{-1}{2\left(1-\rho^{2}\right)}\left[v_{1}{ }^{2}+v_{2}{ }^{2}-2 \rho\left[y+v_{1} v_{2}\right]\right]\right.\right\}\left[\sum_{0}\left(R_{1} R_{2} y\right) K_{0}(y)+\right. \\
& +\left(R_{1}^{2}+R_{2}^{2}\right) \frac{|y|}{2!} \sum_{2}\left(R_{1} H_{2} y\right) K_{1}(y)+\left(R_{1}{ }^{4}+R_{2}^{4}\right) \frac{y^{2}}{4!} \sum_{4}\left(R_{1} R_{2} y\right) K_{2}(y)+ \\
& \left.+\left(R_{1}^{6}+R_{2}^{6}\right) \frac{|y|^{3}}{6!} \sum_{6}\left(R_{1} R_{2} y\right) K_{3}(y)+\ldots\right] \tag{II-8}
\end{align*}
$$

where: $K_{i}(y)=$ the Bessel function of the second kind of the i th order

[^1]and $\sum_{j}\left(R_{1} R_{2} y\right)=\frac{A_{1}^{j}}{R_{1}}\left(\frac{R_{1}}{R_{2} y}\right)^{\frac{1}{2}} I_{j}\left(2 \sqrt{v_{1} v_{2} y}\right)$ in which $I_{j}(\cdot)$ is the

Bessel function of the first kind of the $j \underline{ }$ order.
When $v_{1}=v_{2}=\rho=0$, the $p \cdot d . f$ of $Z=X_{1} X_{2} / \sigma_{1} \sigma_{2}$ is the simple Bessel function expressed by (II-5).

Craig's result has unfortunately proved to be of little use computationally for it may be ghown that for large v_{1} and v_{2} (a frequent occurrence in engineering studies) the series expansion converges very slowly; in fact, for v_{1} and v_{2} as amall as 2 , the expansion is unwieldy.
L.A. Aroian [1], [2] took up the problem of convergence in Craig's series expansion. Using Craig's notation, he showed that as v_{1} and $v_{2} \longrightarrow \infty$ the p.d.f. of $Z=X_{1} X_{2} / \sigma_{1} \sigma_{2}$ approaches the normal p.d.f. In addition, he demonstrated that the Type IIL Suaction and the Gram-Charlier type A series afford excellent approximations to the distrioution of 2 when $\rho=0$.

The characteristic function of $\ddot{i}=X_{1} X_{2} / \sigma_{1} \sigma_{2}$ is

$$
\begin{equation*}
Y_{2}(t)=\frac{\exp \left\{\left.-\frac{\left(v_{1}^{2}+v_{2}^{2}-21 v_{j} v_{2}\right) t^{2}+v_{1} v_{2} i t}{2[1-(1+\rho) i t][1+(1-\rho) i t]} \right\rvert\,\right.}{\sqrt{[1-(1+\rho) i t]}[1+(1-\rho) i t]} \tag{II-9}
\end{equation*}
$$

Osing properties of this function, it is possible to show that $E[z]=\bar{z}=$ $v_{1} v_{2}+\rho$ and the standard deviation is $\sigma_{z}=\sqrt{v_{1}{ }^{2}+v_{2}{ }^{2}+2 \rho v_{1} v_{2}+1+\rho^{2}}$.

Aroian []]proved the following atatementa :

1) The p.d.f. of 2 approaches the normal f.d.f. with mean \bar{z} and variance σ_{z}^{2} as v_{1} and $v_{2} \rightarrow \infty$ (or $-\infty$) in any manner whatsoever, provided $-1+\epsilon<\rho<1, \epsilon>0$.
2) The p.d.f. of 2 approaches the normal p.d.f. with mean \bar{z} and variance σ_{z}^{2} if $v_{1} \longrightarrow \infty$ and $v_{2} \rightarrow-\infty$, provided $-1 \leq \rho<1-\epsilon$, $\epsilon>0$.
and 3) The p.d.f. of 2 approaches a normal p.d.f. if v_{1} remains constant and $v_{2} \longrightarrow \infty,-1+\epsilon<\rho \leq 1, \epsilon>0$; or if v_{1} remains constant and $\mathrm{v}_{2} \longrightarrow-\infty$ for $-1 \leq e<1-\epsilon, \boldsymbol{\epsilon}>0$.

2. Numerical Computation.

2.1 Integration of the Cumulative Distribution Functions The cumulative distribution function $F(z)$ may be formulated directly by marang uase of the fact that if $\Psi_{z}(t)$ is the characteristic function oi random variable 2 , then the c.d.f. of Z is given by

$$
\begin{equation*}
F(2)=050+\frac{1}{2 \pi} \int_{0}^{\infty} \frac{\cos t z}{i t}\{\psi(-t)-\psi(t)\}+\frac{\sin t z}{t}\{y(-t)+\psi(t)\} d t \tag{1I-10}
\end{equation*}
$$

This relation has been proved in [8]and [9]. The advantages of this formula lie in the fact that a separate determination of $F(0)$ need not be made and a double numerical integration is avoided. Aroian [2]used (II-10)
to obtain numerical results ven $\rho=0$. In this case $F(z)$ may be expressed as

$$
\begin{equation*}
P(z)=.50+\frac{1}{2 I I} \int_{0}^{\infty} \frac{\exp \left\{\frac{-\left(v_{1}{ }^{2}+v_{2}^{2}\right) t^{2}}{2\left(1+t^{2}\right)}\right\}}{t \sqrt{1+t^{2}}} \sin \left\{t\left[z-\frac{v_{1} v_{1}}{1+t^{2}}\right]\right\} d t \tag{II-11}
\end{equation*}
$$

This expression was numerically integrated from 0 to t_{1}, t_{1} to t_{2}, . ., $t_{1} t_{1} t_{i+1}, 1=1,2, \ldots$, where t_{i} are the zeros of $\sin \left\{t\left[z-\frac{v_{1} v_{2}}{1+t^{2}}\right]\right\}$. Aroian's tates of this c.d.f. include combinations of v_{1} and v_{2} at intervals of $0.4,0 \leq v_{1} \leq 4,0 \leq v_{2}<4$. The values of z are given at intervals of 0.1 for $\mu_{z} \pm \sigma_{z}$; at 0.2 for $\left(\mu_{2}+\sigma_{z}\right)$ to $\left(\mu_{z}+3 \sigma_{2}\right)$ and for $\left(\mu_{2}-\sigma_{z}\right)$ to $\left(\mu_{2}-3 \sigma_{2}\right)$; at intervals of 0.4 for $\left(\mu_{2}+3 \sigma_{z}\right)$ to $\left(\mu_{2}+4 \sigma_{2}\right)$ and for $\left(\mu_{2}-3 \sigma_{2}\right)$ to $\left(\mu_{z}-4 \sigma_{z}\right)$ and in intervals of 0.8 to the extreme values $\mu_{2} \pm 7 \sigma_{z}$.

In theory the c.d.f. of the correlated product may be derivid from (II-10). However, the resulting expression is quite complicated. Its rather cumbersome nature hinders the derivation of a substantial quantity of numerical results using the type of "intermediate" computer dictated by the scope of this study. lsing $\mu_{2}(t)$ as given by (II-9), the c.d.f., $P(z)$, of the correlated product is
$P(z)=.50+\frac{1}{\pi} \int_{0}^{\infty} \frac{\exp \left\{-\frac{1}{2}\left[\frac{t^{2}\left(k_{3}+k_{1} k_{3} t^{2}+4 \rho v_{1} v_{2}\right)}{1+2 t^{2} k_{2}+t^{4} k_{1}^{2}}\right]\right\} \sqrt{\frac{1+t^{2} k_{1}+1+2 t^{2} k_{2}+t^{4} k_{1}^{2}}{2\left(1+2 t^{2} k_{2}+t^{4} k_{1}^{2}\right)}} .}{}$
$\cdot \sin \left\{t\left[z+\frac{\left(k_{3} t^{2} p-v_{1} v_{2}\left(1+t^{2} k_{1}\right)\right)}{\left(1+2 t^{2} k_{2}+t^{4} k_{1}{ }^{2}\right)}\right]\right\}-\sqrt{\frac{-1-t^{2} k_{1}+1+2 t^{2} k_{2}+t^{4} k_{1}{ }^{2}}{2\left(1+2 t^{2} k_{2}+t^{4} k_{1}{ }^{2}\right)}}$.

- $\cos \left\{t\left[z+\frac{\left(k_{3} t^{2} \rho-v_{1} v_{2}\left(1+t^{2} k_{1}\right)\right)}{\left(1+2 t^{2} k_{2}+t^{4} k_{1}{ }^{2}\right)}\right]\right\} d t$,
where: $k_{1}=\left(1-\rho^{2}\right), k_{2}=\left(1+\rho^{2}\right), k_{3}=\left(v_{1}{ }^{2}+v_{2}{ }^{2}-2 \rho v_{1} v_{2}\right)$.

In order to obtain the zeros of the sin and cos functions, it is necessary to solve the fifth-order polynomial representing the arguments of the trigonometric functions. Numerical integration from zero to zero of each of these functions may be accomplished in a number of ways since all derivativea of these trigonometric functions are bounded. The number of zeros of both functions is greatly increased however in comparison with (II-11). In addition a bound for the tail area in (II-12) is difficult to obtain. Due to these difficulties and the limitations of the available computer, no further consideration was given (II-12) as a method of generating a large volume of tabular results.

2.2. Integration to Obtain the Probability Density Punction: An

 alternate approach t obtaining $F(z)$ is of course a double numerical integration of (II-2). A rearrangement of the exponents in this equation will allow $\mathscr{(z)}$ to be expressed as$\frac{P_{(z)}}{K(z)}=\int_{0}^{\infty} \frac{e^{-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{z^{2}}{w^{2}}+\frac{2 z}{w}\left(\rho v_{1}-v_{2}\right)\right)-\frac{1}{2\left(1-\rho^{2}\right)}\left(w^{2}+2\left(\rho v_{2}-v_{1}\right) w\right)}}{w}+$

$$
-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{z^{2}}{w^{2}}-\frac{2 z}{w}\left(\rho v_{1}-v_{2}\right)\right)-\frac{1}{2\left(1-\rho^{2}\right)}\left(w^{2}-2\left(\rho v_{2}-v_{1}\right) w\right)
$$

where $K(z)=\exp \left\{-\frac{1}{2\left(1-p^{2}\right)}\left[v_{1}{ }^{2}+v_{2}{ }^{2}-2 p\left[z+v_{1} v_{2}\right]\right]\right\} / 2 \pi \sqrt{1-\rho^{2}}$. In turn, (II-13) may be expressed as the sum of the integrals of the two functions of the integrand. Thus, let

$$
\begin{equation*}
\frac{\varphi(z)}{X(z)}=\int_{0}^{\infty} I_{1}(w) d w+\int_{0}^{\infty} I_{2}(w) d w \tag{21-14}
\end{equation*}
$$

where $I_{1}(w)$ and $I_{2}(w)$ are the respective terms of (II-13).
In order to bound the tail areas of (II-14) by $\epsilon, \epsilon \leq 10^{-5} \mathrm{say}$, it is sufficient to require that

$$
\begin{equation*}
\int_{u_{L_{1}}}^{\infty} I_{2}(w) d w+\int_{u_{L_{2}}}^{\infty} I_{2}(w) d w \leq \epsilon_{1}+\epsilon_{2} \leq \epsilon \tag{II-15}
\end{equation*}
$$

where $u_{L_{1}}$ and $u_{L_{2}}$ are the upper limits of the numerical integrations of $I_{1}(w)$ and $I_{2}(w)$, respectively, and E_{1} and ϵ_{2} are defined by $(1 i-16)$ and
(II-18). It 18 possible to bound each of these integrals by the normal probability integral, i.e., it is possible, for $I_{l}(w)$ eay, to write $\int_{u_{L_{1}}}^{\infty} I_{1}(v) d v=\int_{u_{L_{1}}}^{\infty} \frac{2-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{n^{2}}{v^{2}}+\frac{2 z}{v}\left(\rho v_{1}-v_{2}\right)\right)-\frac{1}{2\left(1-\rho^{2}\right)}\left(v^{2}+2\left(\rho v_{2}-v_{1}\right) v\right)}{} d v$

$$
\begin{equation*}
\leq \frac{1}{\sqrt{2 \pi}} \int_{u_{L_{1}}}^{\infty} \cdot{ }^{-\frac{v^{2}}{2}} d w=\epsilon_{1} \tag{II-16}
\end{equation*}
$$

The aigen of $z,\left(\rho v_{1}-\nabla_{2}\right),\left(\rho v_{2}-v_{1}\right)$ may combine to produce either positive or negative terms in the exponents of (II-16). In an error analysis, the selection of an appropriate w_{0} to insure, for all $w>v_{0}$, that

$$
\begin{align*}
& \exp \left\{-\frac{1}{2}\left(\frac{s^{2} \pm 2\left|z\left(\rho \nabla_{1}-v_{2}\right)\right| v}{v^{2}\left(1-\rho^{2}\right)}\right)\right\} \\
& \quad \exp \left\{-\frac{1}{2}\left(\frac{\left.\left.v^{2} \pm 2 \mid \rho{v_{2}-\nabla_{1} \mid v}_{2 \pi}^{\left(1-\rho^{2}\right)}\right)\right\} \leq e^{-\frac{w^{2}}{2}}}{} \quad\right. \text { and }\right. \tag{II-17}
\end{align*}
$$

represents one method of satisfying (II-16). Similarly, the tail area of $I_{2}(v)$ may be bounded by

$$
\begin{equation*}
\int_{u_{L_{2}}}^{\infty} I_{2}(v) d v \leq \frac{1}{\sqrt{2 \pi}} \int_{u_{L_{2}}}^{\infty} e^{-\frac{v^{2}}{2}} d v-\epsilon_{2}, \tag{II-18}
\end{equation*}
$$

provided w_{0} is chosen so that

$$
\begin{array}{r}
\frac{\exp \left\{-\frac{1}{2}\left(\frac{z^{2}+2\left|z\left(\rho v_{1}-v_{2}\right)\right| v}{v^{2}\left(1-\rho^{2}\right)}\right)\right\}}{w} \leq \frac{1}{\sqrt{2 \pi}} \text { and } \\
\quad \exp \left\{-\frac{1}{2}\left(\frac{v^{2}+2\left|\rho v_{2}-v_{1}\right| v}{\left(1-\rho^{2}\right)}\right)\right\} \leq e^{-\frac{v^{2}}{2}}, \tag{II-19}
\end{array}
$$

for all $w>w_{0}$.
For all $w_{0}>\sqrt{2 \pi}$, the sets of inequalities (II-17) and (II-19) hold when the signs within the exponents of these two sets are positive. In tais case, the upper limits $u_{L_{1}}$ of numerical integration of $I_{1}(v)$ and $I_{2}(v)$ may be chosen as $T_{1}=T_{2}=4.42$, respeotively. In this case $\epsilon_{1}=\epsilon_{2}$ and from an appropriate table each is computed to be less than 5×10^{-6}. The total tail area \in is then less than 10^{-5}.

The other "extreme" case arises when the pair of aigms in either one of the sets of inequalities, say (II-17), is negative. The first inequality of (II-17) then requires that

$$
\begin{equation*}
v \exp \left\{\frac{1}{2}\left(\frac{z^{2}-2\left|2\left(\rho v_{1}-v_{2}\right)\right| w}{w^{2}\left(1-\rho^{2}\right)}\right)\right\} \geq \sqrt{2 \pi} \tag{II-20}
\end{equation*}
$$

In most cases there will be two sets of values of watisfying this inequality. An approximation to the least upper bound of the upper range of these values, \mathbb{d}, may be obtained by a numerical iteration of

$$
\begin{equation*}
2\left(1-\rho^{2}\right) \log \left\{\frac{w}{\sqrt{2 \pi}}\right\} w^{2}-\left|2 z\left(\rho v_{1}-v_{2}\right)\right| w+z^{2}>0 \tag{II-21}
\end{equation*}
$$

The set of satisfyine the second inequality of (II-17) is easily shown to be $w>2\left|\rho v_{2}{ }^{-v_{1}}\right| / \rho^{2}$. In every sase the tail area of (II-16) may be bounded by $\frac{1}{\sqrt{2 \pi}} \int_{T}^{\infty} e^{-\frac{w^{2}}{2}} d v=\epsilon_{1} \leq 5 \times 10^{-6}$ provided the numerical integration is performed over the interval ($0, u_{L}$) where

$$
\begin{equation*}
u_{L}=\max \left\{d, 2\left|\rho \nabla_{2}-v_{1}\right| / \rho^{2}, T_{1}=4.42\right\} \tag{II-22}
\end{equation*}
$$

The upper limit given by (II-21) ie quite obviously an upper limit of integration for $I_{2}(w)$ hy the same argument. Thus, the tail area eatimate of (II-15) mey be restricted by $\in<\epsilon_{1}+\epsilon_{2}<10^{-5}$ provided the upper liaits of the numerical integration for both $I_{1}(w)$ and $I_{2}(w)$ are determined by (II-22).

2. 3 Methods of Numerical Integration: Several formulas such as

 Weddel's formula, the trapezoidal rule, the Gregory-Newton formula, and the simple rectangular formula $[2],[5]$ have been suggested for the numericalintegration of

$$
\begin{equation*}
\frac{q(z)}{K(z)}=\int_{0}^{u_{1}} I_{1}(w) d w+\int_{0}^{u_{2}} I_{2}(w) d w \cdot \tag{II-23}
\end{equation*}
$$

The magnitude of the error bounds for these and most other numerical integration methods depends directly or indirectly on values of a $e^{\text {iven }}$ derivative of the integrand within the interval of integration. The first derivatives of $I_{1}(v)$ and $I_{2}(v)$ may be written in the form of a rational function,

$$
\begin{equation*}
\frac{d}{d w} I_{i}(w)=J_{1}(w)\left[\frac{z^{2}(-1)^{i+1} z\left(\rho v_{1}-\nabla_{2}\right) w-\left(1-\rho^{2}\right) w^{2}(-1)^{i+2}\left(\rho v_{2}-\nabla_{1}\right) w^{3}-w^{4}}{\left(1-\rho^{2}\right) w^{4}}\right] \tag{II-24}
\end{equation*}
$$

where $J_{i}(w)$, $i_{n}, 2$, are the exponential functions of the $I_{i}(w)$. Alternately, (II-24) may be expressed as

$$
\begin{equation*}
\frac{d}{d w} I_{1}(w)=\frac{J_{i}(w)}{\left(1-p^{2}\right) w^{n}}=4 \quad P(w), \tag{II-25}
\end{equation*}
$$

where $P(w)$ represents the polynomial of (II-24).
All derivatives of $I_{i}(w)$ may be expressed in the form (II-25) with the order n of the polynomial $P(w)$ increasing accordingly. The terms of $P(w)$ in the second and high r-order derivatives are various powars and cross-products of the parameters $z,\left(\rho \nabla_{2}-\nabla_{1}\right),\left(\rho \nabla_{1}-\nabla_{2}\right)$, and ($1-\rho{ }^{2}$).

The error estimate for a given method of numerical integration is a function of the maximum value within the interval of integration of the derivative associated with that method. For example, the orror bound of the trapezoidal rule is a function of the second derivative, Weddel's formula involves the sixth derivative, etc. The actual error, of course, may be much amaller than indiouted by the error bound.

In order to calculate the maximum values of the given $n^{(1)}$ derivative within the interval of integration, it is necessary to derive and solve for the roots of the polynomial of the $(n+1)^{\text {st }}$ derivative. This task becomes increasingly difficult to do analytically as the order of $P(w)$ ir, reases. A numerical iteration method must be used to solve for the roots of $P(w)$ in the higher-order derivatives.

The values of each derivative are functions of the values of the parameters and their signs. Thus, for appropriate sets of parameter values, the derivatives are large in the neighborhood of $w=0$, or more generally in the interval $(0,1)$. As yet, no method of characterizing the derivatives within the interval of integration as functions of the parameter values has proved satisfactory. Because of these difficultica, other numerical methods which are not functionally dependent of the derivatives are believed to be more expadient for this problew.

The c.d.f.'s of z appearing in Appendix B were obtained using a double numerical integration of (II-23) by the simple upper and lower sum rectangular formula. In order to obtain $\mathcal{Q}(z)$, the real roots, $R_{1}, R_{2} \ldots$. of $P(w)$
for the first derivative of both $I_{1}(w)$ and $I_{2}(v)$, (II-24), were estimated by numerical methods to within five signifioant digits. For each integrand $I_{i}(w)$, an upper and lower sun, J_{S} and L_{S}, were computed in the intervals (0 to R_{1}) ... $\left(R_{j}\right.$ to u_{i}) with a normal increment $\Delta v=0.01$. The increment was reduced as necessary to insure that $U_{S}-L_{S} \leq 10^{-5}$ in all intervirio. In many cases, the functions $I_{i}(v)$ are quite steep in the interval $\left(0, B_{1}\right)$ with $R_{1} \ll 1$ 。 In these cases, very small $\Delta w^{\prime} s$ vere required to obtain a satiofactory estimate in this interval.

As compared with other numerical methods, the rectangular formula provides greater accuracy but generally requires a much larger number of computer calculations. The actual computer time required to obtain $P(z)$ 1s dependent upon the shapes of $I_{1}(w), I_{2}(w)$, and $\varphi(z)$. The "average" computer time required to approximate the double integration withan the desired aocuracy was approximately 58 minutes ${ }^{3}$. The computer time required for this integration program can be reduoed to approximately 1.25 minutes using a high-speed computer such as an IBM 7094 ${ }^{4}$. Considering both computer costs and the time required to generate the desired volume of tabular results, the use of an IBM 7094 or its equivalent is recomended for future work. The cost of using a computer on this scale prohibited its use in the investigation which was intended and funded es a "preliminary study".

3 Based on the use of an IBM 1620 computer. 4

As estimated by members of the Martin Company Data Systems Division.

HBFFRENCES

1. Aroian, L. A., "The Probability Function of a Product of Two Normally Distributed Variatles," Annals of Math. Stat. Vol. 18, 1947.
2. Aroian, L. A., Tables and Percentage Points of the Distribution Function of a Product, Hughes Aircraft Company, California, 1957.
3. Bartlett, M. and J. Wishart, "The Distributi on of Second Order Moment Statistics in the Normal System," Proc. Canb. Phil. Scc., Vol. 28, 1932.
4. Craig, C. C., "The Frequency Function of X / Y," Annals of Math., Vol. 30, 1929.
5. Craig, C. C., "On the Frequency Punction of $X Y$," Annals of Math. Stat., Vol. 7, 1936.
6. Craig, C. C., "On the Frequency Distribution of the quotient and the Product of Two Statistical Variables," American Math. Monthly, Vol. 49, 1942.
7. Huntington, E. V., "Frequency Distributions of Products and Quotients," Annals of Math. Stat., Vol. 10, 1939.
8. Gil-Pelaez, J., "Notes on the Inversion Theorem," Biometrika, Vol. 38, 1951.
9. Gurland, J., "Inversion Formulae for the Distribution of Ratios," Annals of Math. Stat., Vol. 19, 1948.
10. Pearson, K., Stauffer, S. A. and David, F. N., "Further Applications in Statistics of the $T_{m}^{\prime}(x)$ Besse? Function," Biometrika, Vol. 24, 1932.
11. Cadwell, J. H., "The Bivariate Norm Integral," Biometrika, Vol. 38, 1951。
12. Tables of the Bivariate Normal Distribution Function and Related Functions, National Bureau of Standards, Vol. 50, Applied Math. Series, 1956.
13. Watson, G. N., Theory of Bessel Functions, Cambridge University Press, London, 1922.
14. Luke, Y. L., Integrals of Bessel Functions, McGraw-Hill Book Co., Inc., New York, 1962.
15. Tables of the Exponential Integral, National Bureau of Standards, Vol. 14, Applied Math. Series, 1951.
16. The Yrobability Integral, British Assoc. for the Advancement of Science, Math. Tables, Vrl. VII, 1939.
17. Tables of Error Punction and Its Deravative, National Bureau of Standards, Voi. 41, Applied Math. Series, 1954.
18. Titchmarsh, E. C., Theory of Fourier Integrals, Oxford University Press, 1948.
19. Springer and Thompson, "The Distribution of Yroducts of Independent Random Variables," GM Defense Research Laboratories Keport TR-64-46, August 1964.
20. Donahue, J., "Yroducts and Quotients of Kandom Variables and Their Applications," ARL Report 64-115, July 1964.
21. Fox, C., "The Solution of An Integral Equation," Can. J. Math., Vol. XVI-3, 1964. pp 578-586.
22. Laha, K. G., "On the Laws of Cauchy and Gauss," Annelg of Math. Stat., Vol. 30, 1959.
23. Laha, R. G., "On a Class of Distribution Functions Where the Quotient Follows the Cauchy Law," TAMS, Vol. 13, 1959.
24. Loeve, M., Probability Theory, Van Nostrand, New York, 1963.
25. Lukacs, E., Characteristic Functions, Hafner, New York, 1960.
26. Hirschman and Widder, The Convolution Transform, Princeton, 1955.
27. Cramér, H., Mathematical Methods of Statistics, Princeton, 1951.
28. Muskhelishvili, N., Singular Integral Equations, Translated by I. Radak, Noordhoff, 1953.
29. Bergetrom, H., Limit Theorems for Convolutions, Wiley, 196!.
30. Mikhlin, S., Linear Integral Equations, Hindustan Pub. Co. (India), 1960.
31. Mauldon, J., "Charaoterizing Properties of Statistical Distributions," journal of Math., Oxford, Vol. 7, 1956.
32. Steck, G., "A Uniqueness Property Not Enjoyed by the Normal Distributions," Annals of Math. Stat., Vol. 29, 1958.
33. Laha, R. G., "An Example of a Nonnormal Distribution Where the Quotient Follows the Couchy Law," Pruc. of Nat. Aca, of Soience, Vol. 44.
34. Goodspeed, F., "The Relation Between Functions Satisfying a Cartain Integral Equation and General Watson Transforms," Can. J. Math., Vol. 2, 1950.

APPENDIX A

We give two resulte here that were obtained in a "side" investigation involving the quotients of random variables. One is probably not new but on easy proof is given.

Theorem: Let $f(z)=\sum_{i=0}^{n} b_{i} z^{n-i}$ be a oumplex polynomial, $b_{0} \neq 0$. Then the zeros of $f(z)$ are in disk $|z| \leq 1+\rho$ where $\rho=\sup \left|\frac{b_{1}}{b_{0}}\right|$, $1=1, \ldots, n$.

Proof: Write $f(z)=b_{0} g(z)$ where

$$
g(z)=z^{n}+\sum_{i=1}^{n} a_{i} z^{n-1}
$$

and

$$
a_{i}=\frac{b_{i}}{b_{0}}
$$

Then

$$
|g(z)|=\left|z^{n}-\left(-\sum_{i=1}^{n} a_{i} z^{n-1}\right)\right| \geq\left|z^{n}\right|-\left|\sum_{i=1}^{n} a_{i} z^{n-1}\right| \geq\left|z^{n}\right|-\sum_{i=1}^{n}\left|a_{i}\right||z|^{n-1}
$$

Let $\rho=\sup \left|a_{1}\right|$ and suppose $|z|>1+\rho$, then from the above

$$
|g(z)|>|z|^{n}-\rho \sum_{i=1}^{n}|z|^{n-1}-|z|^{n}-\rho\left[\frac{|z|^{n}-1}{|z|-1}\right]=\frac{|z|^{n}(|z|-1-\rho)+\rho}{|z|-1}
$$

But $|z|-1-\rho>1+\rho-1-\rho=0$ and bence for $|z|>1+\rho, \quad|e(z)|>0$.

Consequently $|f(z)|=\left|b_{0}\right||g(z)|>0$ for this range of z and the result follows.

The question arose in a study of mappings between various topological spaces, when the arbitrary union of closed sets is closed. As a partial answer we give the following. Notationally for the space Y, let $2^{Y}=\{E C Y \mid E$ is closed and non-empty\}. Amapping f, from a space X into 2^{Y} is said to be upper semi-continuous in case $x_{0} \in X, U$ open in Y and $f\left(x_{0}\right) \subset U$ implies that there is an open set V in $X_{,} x_{0} \in V$, such that $x \in V$ implies that $f(x) \subset l$. the above to hold, of course, for each $x_{0} \in X_{\text {. }}$.

Theorem: Let X be a compact, Hausdorff space, Y regular, and let f be an upper semi-continuous function $f r o m X \rightarrow 2$. Then $\bigcup_{X \in X} f(x)$ is closed in Y.

Proof: Let $B=\bigcup_{x \in X} f(x)$ and assume $y \in \bar{B}, y \notin B$ where \bar{B} denotes the closure of B in Y. Clearly then $y \notin f(x)$ for any x. This implies that for each x there are two disjoint open sets in $Y, W_{f(x)}$ and $\theta_{y f(x)}$ such that $f(x) \subset W_{f(x)}$ and $y \in \theta_{y f}(x) \cdot \theta_{y f(x)} \cap W_{f(x)}=\varnothing_{\text {. }}$ Since f is upper semicontinuous, for each $x \in X$ there is an open V_{x} in $X, x \in V_{x}$, such that $f(\bar{x}) \subset W_{f(x)}$ for sach $\bar{x} \in V_{x}$. Hence $\left\{V_{x}\right\}$ is a cover for X, a compact space. Consequently a finite number will do, say $X=\bigcup_{i=1}^{n} V_{x_{i}}$. Then $y \notin 2=\bigcup_{i=1}^{n} W_{f\left(x_{i}\right)} \supset \bigcup_{x \in X} f(x)=B . \operatorname{Now} \theta_{y}=\bigcap_{i=1}^{n} \theta_{y f\left(x_{i}\right)}$ is an open set containing y, and $\theta_{y} \cap Z=\varnothing$ so that $\theta_{y} \cap B m \phi$. But this is a contradiction since y was assumed to be in \bar{B} and the theorem is proved.

APPENDIX B

TABLES OF THE PRCDUCT OF
TWO NORMALLY DISTRIBUTED RANDOM VARIABLES

1. The c.d.f.'s of the random variable $Z=X_{1} X_{2} / \sigma_{1} \sigma_{2}$ for various parameter values vere obtained by a double numerical integration of (II-23). In this preliminary study, only positive parameters, Q, v_{1}, v_{2}, were considered.
2. Tail Area Boundg. Denoting the p.d.f. of 2 in the correlated case as $f(z, \rho>0)$, it is easily shown that $f(z, \rho>0)<\varphi(z, \rho=0)$ for $z<0$. Thus, $\int_{-\infty}^{z} f(z, \rho>0) d z<\int_{-\infty}^{z_{-\infty}^{0}} \varphi(z, \rho=0) d z=\lambda_{1}$, for $z_{0}<0$.
The value z_{0} may be chosen so that λ_{1} is arbitrarily small*. In addition, it may be shown that $f(z, p>0)<\varphi\left(\max \left\{\left(x_{1} / \sigma_{1}\right)^{2},\left(x_{2} / \sigma_{2}\right)^{2}\right\}\right)$ for all $z>z_{1}>0$. Here the symbol $\varphi\left(\max \left\{\left(x_{1} / \sigma_{1}\right)^{2},\left(x_{2} / \sigma_{2}\right)^{2}\right\}\right)$ denotes the p.d.f. of the square of the largest of the random variables x_{1} / σ_{1} and x_{2} / σ_{2}. This random variable follows the χ^{2} p.d.f. with one degree of freedom. Thus for some $z_{1}>0$, it follows that $\int_{z}^{\infty} f(z, \rho>0) d z<\int_{z}^{\infty} \varphi\left(\max \left\{\left(x_{1} / \sigma_{1}\right)^{2}\right.\right.$, $\left.\left.\left(x_{2} / \sigma_{2}\right)^{2}\right\}\right) i(\bullet)=\lambda_{2}$. The values z_{0} and z_{1} may be chosen so that the sum, θ, of the probabilities λ_{1} and λ_{2} as determined by their respective c.d.f.'s is arbitrarily small. The integral value I of $f(z, \rho)$ for positive ρ may be estimated for the neighborhood $\left(\Delta_{1}<0<\Delta_{2}\right)$ containing the point of discontinuity, $z=0$, from the relation

$$
I=1-\left(\int_{0_{0}}^{\Delta} f(z, \rho>0) d z+\int_{\Delta}^{z_{2}} f(z, \rho>0) d z+\theta\right)
$$

The eatimate I may be accurately arproximated simply by requiring that θ be made small.

[^2]3. Checks. Tables B-I to B-IIImay be oompared with Aroian's resulte[2]. Those data points nuted with an asterisk vary by 10^{-5} with his results.

B - I.
Parameter Values;
$p=0 ., v_{1}=0 ., v_{2}=0.4$

Parameter Values;

$$
\rho=0 ., v_{1}=0.4, v_{2}=0.4
$$

Z	$f(z)$	$F(2)$	Z	$f(2)$	$F(z)$
-8.00	. 00005	. 00004	. 20	. 54599	. 61086
-7.20	.00011	. 00010	. 30	. 43713	. 65878
-6.40	. 00026	. 00022	. 40	. 36474	. 69828
-5.60	.00063	. 00053	. 50	. 31109	. 73173
-4.80	. 00129	. 00124	. 60	. 26905	. 76050
-4.40	. 00216	. 00192	. 70	. 23494	. 78554
-4.00	. 00337	. 00297	. 80	. 20661	. 80749
-3.60	. 00530	. 00462	. 90	. 18268	. 82686
-3.20	. 00777	. 00721	1.00	. 16221	. 84403
-3.00	. 01024	.0090j	1.10	. 14453	. 85930
-2.80	. 01292	. 01131	1.20	. 12915	. 87293
-2.60	. 01634	. 01420	1.30	. 11569	. 88513
-2.40	. 02070	.01785	1.40	. 10135	. 89607
-2.20	. 02633	. 02248	1.60	. 08453	. 91474
-2.00	. 03359	. 02838	1.80	. 06874	. 92989
-1.80	. 04303	. 03592	2.00	. 05615	. 94224
-1.60	. 05543	. 04556	2.20	. 04600	. 95234
-1.40	. 07187	. 05809	2.40	. 03775	. 96063
-1.20	. 09398	. 07434	2.60	. 03106	. 96744
-1.00	. 11913	. 09568	2.80	. 02560	. 97305
-0.70	. 14244	. 10884	3.00	. 02118	. 97768
-0.80	. 16476	.12407	3.20	.01746	. 98151
-0.70	. 19295	. 14180	3.40	. 01444	. 98467
-0.60	. 22646	. 16256	3.60	. 01148	. 98728
-0.50	. 26920	. 18709	4.00	. 00834	. 99124
-0.40	. 32465	. 21640	4.40	.00574	. 99396
-0.30	. 40048	. $2520{ }^{*}$	4.80	.00370	. 99583
-0.20	. 51533	. 29650	5.60	.00201	. 99801
-0.10	. 77595	. 35509	6.40	. 00095	. 99905
0.00	∞	. 45169	7.20	. 00045	
. 10	. 79584	. 54958	8.00	.00028	$.99978$

Parameter Values;
$p=0 ., \quad v_{1}=0.4, v_{2}=1.2$

2	P(z)	$F\left(z^{\prime}\right)$	Z	$f(2)$	$F(2)$
-11.00	. 00001	. 00001	. 30	. 36887	. 53983
-10.00	. 00002	. 00002	. 40	. 33000	. 56451
- 9.40	. 00004	. 00004	. 50	. 29967	. 59584
- 3.60	. 00009	. 00009	. 60	. 27002	. 63444
- 7.80	. 00019	. 00021	. 70	. 25287	. 65074
- 7.00	. 00040	. 00042	. 80	. 23380	. 67502
- 6.20	. 00069	. 00084	. 90	. 21672	. 69750
- 5.80	. 00114	. 00121	1.00	. 20116	. 71846
- 5.40	. 00166	. 00176	1.10	. 18775	. 73775
- 5.00	. 00241	. 00255	1.20	. 17418	. 75579
- 4.60	. 00350	. 00369	1.30	. 16223	. 77259
- 4.20	. 00459	. 00535	1.40	. 15116	. 78824
- 4.00	. 00581	. 00644	1.50	. 14089	. 80282
- 3.80	. 00725	. 00775	1.60	. 13137	. 81642
- 3.60	. 00827	. 00934	1.70	. 11999	. 82909
- 3.40	. 01059	. 01126	1.80	. 11170	. 84091
- 3.20	. 01279	. 01358	1.90	. 10649	. 85195
- 3.00	. 01548	.01638	2.00	. 09930	. 86221
- 2.80	. 01874	. 01977	2.10	. 09258	. 87180
- 2.60	. 02272	. 02388	2.20	. 08489	. 88073
- 2.40	. 02759	. 02886	2.40	. 07517	. 89682
- 2.20	. 03856	. 03492	2.60	. 06527	. 91080
- 2.00	. 04091 .	. 04229	2.80	. 05666	. 92293
- 1.80	. 05002	. 05129	3.00	. 04914	. 93345
- 1.60	. 06137	. 06229	3.20	. 04256	. 94257
- 1.40	. 07666	. 07583	3.40	. 03685	. 95048
- 1.20	. 09096	. 09256	3.60	. $0321+4$. 95732
- 1.10	. 10414	. 10239	3.00	. 02758	. 96323
- 1.00	. 1.1659	. 11338	4.00	. 02383	. 96835
- . 90	. 13589	. 12570	4.20	. 02058	. 97277
- . 80	.14748	. 13955	4.40	. 01776	. 97658
- . 70	. 16702	. 15519	4.60	. 01531	. 97937
- . 60	. 19030	. 17295	4.80	. 81320	. 98271
- $\quad .50$. 21865	. 19325	5.00	$: 81137$. 98515
- 40 $-\quad .30$. 25425.	.21669 .24411	5.20	. 00974	. 98726
$-\quad .30$ $-\quad .20$.30128 .36983	. 24411	5.20 6.20	. 00881	. 98907
- . 10	. 51705	. 31807	6.20 7.00	.00594 .00263	. 99197
- . 00	-	. 38035	7.80	. 00141	. 99569
. 10	. 55191	. 44480	8.60	. 00075	. 99685
. 2	. 42497	. 49073	9.40	. 00040	. 99911

B-IV.
Parameter Values;

B- v.
Parameter Vaiues;
$p=0.3, \quad v_{1}=0.15, \quad v_{2}=0.4$

Parameter Values;

$$
\rho=0.3, \quad v_{1}=0.55, \quad v_{2}=0.55
$$

2	f (2)	$\boldsymbol{F}(\mathrm{x})$	2	f (2)	Pr ${ }^{\text {I }}$
-7.18	. 00000	. 00000	. 09	. 72204	. 37697
-6.46	. 00000	. 00000	. 18	. 51247	. 44612
-5.74	. 00003	. 00000	. 27	. 42280	. 48066
-5.02	. 00009	. 00001	. 36	. 36426	. 52420
-4.30	. 00024	. 00002	. 45	. 32079	. 56513
-3.94	. 00046	. 00017	. 54	. 28645	. 58245
-3.59	. 00082	. 00039	. 63	. 25827	. 60697
-3.23	. 00147	. 00079	. 72	. 23451	. 62914
-2.87	. 20245	. 00134	. 80	. 21409	. 65110
-2.69	. 00344	. 00247	. 89	. 19629	. 66780
-2. 51	. 00463	. 0030 '2	. 98	. 18058	. 67032
-2.33	. 00624	. 00391	1.07	. 16661	. 68595
-2.15	. 00844	. 00490	1.16	. 15410	. 70038
-1.97	. 01144	. 00669	1.25	. 13939	. 71359
-1.79	. 01556	. 00871	1.43	. 12395	. 72865
-1.61	. 02125	. 01243	1.61	. 10746	. 74938
-1.43	. 02919	. 01696	1.79	. 09358	. 77621
-1.25	. 04034	. 02323	1.97	. 08172	. 79198
-1.07	. 05624	. 03190	2.15	. 07150	. 80578
-. 89	. 07601	. 04382	2.33	. 06272	. 81786
-. 80	. 09384	. 05146	2.51	. 05511	. 82837
- . 72	. 11207	. 06073	2.69	. 04860	. 83779
-. 63	. 13552	. 07187	2.87	. 0427	. 84601
-. 54	. 16422	. 08436	3.24	. 03093	. 85926
-. 45	. 20157	. 10181	3.59	. 02062	. 86854
-. 36	. 25100	. 13219	4.30	. 01511	. 88016
-. 27	. 31969	. 14787	5.02	. 01060	. 89066
-. 18	. 42475	. 18137	5.74	. 00652	
-. 09	. 66035	. 23020	6.46	. 00402	. 90061
. 0	-	.29747	7.18	. 00320	. 90322

B-VII.
Parameter Values;

$$
\rho=0.3, \quad v_{1}=0.7, \quad v_{2}=0.7
$$

Parameter Values;

$$
\rho=0.45, \quad v_{1}=0.2, \quad v_{2}=0.45
$$

2	$f(z)$	$P(z)$	Z	$f(2)$	$F(z)$
-6.10	. 00000	. 00000	. 08	.76179	. 44780
-5.46	.00001	. 00001	. 16	. 53068	. 49950
-4.82	.00004	. 00002	. 24	. 43354	.53807
-4.18	. 00023	. 00010	. 32	. 36966	. 57175
-3.52	.00036	. 00029	. 40	. 32249	. 59788
-3.20	. 00070	. 00045	. 48	. 28548	. 62220
-2.88	.00129	.00078	. 56	. 25533	.64383
-2.56	.00221	.00134	. 64	. 23009	. 66325
-2.40	.00313	.00185	. 72	. 20858	. 68079
-2.24	. 00426	. 00236	. 80	.18450	. 69652
-2.08	. 00580	.00316	. 96	.16087	. 70459
-1.92	.00874	. 00432	1.12	. 13628	. 71315
-1.76	.01084	.00589	1.28	. 11684	. 73340
-1.60	. 01489	. 00795	1.44	. 10057	. 75080
-1.44	.02063	.01079	1.60	. 08656	.76577
-1.28	. 02858	.01473	1.76	. 07514	. 81347
-1.12	. 03975	. 02019	1.92	. 06544	.82472
-. 96	. 05595	. 02785	2.08	. 05717	. 83453
-. 80	. 07652	. 03845	2.24	. 05007	.84310
-. 72	. 09441	. 04529	2.40	.04394	. 85063
-. 64	.11380	. 05362	2.56	. 03698	. 85710
-. 56	. 13790	. 06368	2.88	. 03071	. 85795
-. .48	. 16837	. 07593	3.20	. 02397	. 85806
-. 40	. 20769	. 09098	3.52	. 01752	. 85972
-. 32	. 25997	. 10968	4.18	. 01266	. 85997
- . 24	. 33295	. 13349	4.82	. 00791	. 86003
-. 16	. 44504	. 16452	5.46	. 00498	. 86117
-. 08	.69762	. 21023	6.10	.00361	.86203
. 00	∞	. 31104			

B- IX.
Parameter Values;

Z	$p(z)$	$F(\underline{1}$	2	$f(2)$	$F(z)$
-7.75	. 00000	. 00000	- . 08	. 45891	. 15255
-7.10	. 00000	. 00000	. 00	${ }_{0}$. 20720
-6.45	. 00000	. 00000	. 08	. 52512	. 26550
-5.80	. 00000	. 00000	. 16	. 41855	. 30224
-5.15	. 00001	. 00001	. 32	. 31957	. 36129
-4.50	. 00003	. 00002	. 64	. 22838	. 44751
-3.85	. 00011	. 00006	. 96	. 17803	. 51239
-3.22	. 00039	. 00022	1.28	. 14353	. 56398
-2.90	. 00073	. 00041	1.60	. 15279	. 61139
-2.58	. 00138	. 00073	1.92	. 14030	. 65329
-2.25	. 00262	. 00128	2.25	. 11609	. 69931
-1.92	. 00501	. 00259	2.58	. 06760	. 72873
-1.60	. 00968	. 00492	2.90	. 05650	. 74857
-1.28	. 01369	. 00446	3.22	. 04733	. 76518
-. 96	. 03832	. 01860	3.85	. 0332 ?	. 79137
-. 64	. 08078	. 03766	4.50	. 02339	. 80910
-. 32	. 18825	. 08071	5.15	. 01644	. 82184
-. 16	. 32020	. 12139			

B- X .
Parameter Values;

$$
\rho=0.5, \quad v_{1}=0 ., \quad v_{2}=0 .
$$

2	P(z)	$F(z)$	2	$f(z)$	$F(2)$
-5.250	. 00000	. 00000	. 075	. 70335	. 49978
-4.650	. 00001	. 00001	. 150	. 53396	. 54327
-4.050	. 00005	. 00003	. 225	. 44158	. 58262
-3.450	. 00018	. 00015	. 300	. 37526	. 61370
-2.850	. 00055	. 00031	. 375	. 32720	. 63959
-2.550	.00114	. 00083	. 450	. 28931	. 6627
-2.250	. 00205	. 00105	. 525	. 25838	. 68325
-2.100	.00297	. 00173	. 600	. 23250	. 70166
-1.950	. 00408	. 00210	. 675	. 21042	. 71837
-1.800	. 00528	. 00259	. 750	. 19135	. 73347
-1.650	. 00827	. 00332	. 900	. 15997	. 76391
-1.500	. 01155	. 00417	1.050	. 13526	. 78235
-1.350	. 01635	. 00569	1.200	. 11531	. 80114
-1.200	. 02328	. 00764	1.350	. 09895	. 81683
-1.050	. 03335	. 01049	1.500	. 08535	. 83021
-. 900	. 04818	. 01401	1.650	. 07469	. 84211
-. 750	. 07039	. 02924	1.800	. 06426	. 85208
-. 675	. 08555	. 03217	1.950	. 05499	. 86203
-. 600	. 10446	. 04554	2.100	. 04899	. 86983
-. 525	. 12831	. 05816	2.250	. 04134	. 87660
-. 450	. 15878	. 07253	2.550	. 03432	. 88372
-. 375	. 19846	. 09039	2.850	. 02477	. 89684
-. 300	. 25154	. 11238	3.450	. 01793	. 93846
-. 225	. 32713	. 14183	4.050	. 01108	. 95717
-. 150	. 43717	. 17004	4.650	. 00692	. 96259
-.075 .000	$\begin{gathered} .63642 \\ \infty \end{gathered}$	$\begin{aligned} & .18215 \\ & .23574 \end{aligned}$	5.250	. 10490	. 96653

B-XI.
Parameter Values;

$$
\rho=0.5, \quad v_{1}=0.2, \quad v_{2}=0.45
$$

B-XII.
Parameter Values;

z	$\mathrm{f}(\mathrm{z})$	$F(2)$	z	P(2)	$F(2)$
-6.000	. 00000	. 00000	. 075	. 61742	. 29582
-5.400	. 00000	. 00000	. 150	. 44530	. 33567
-4.800	. 00000	. 00000	. 225	. 37479	. 35643
-4.200	. 00002	. 00001	. 300	. 32876	. 38280
-3.600	. 00008	. 00001	. 375	. 29478	. 40161
-3.300	. 00017	. 00007	. 450	. 26801	. 43729
-3.000	. 00033	. 00013	. 525	. 24603	. 45657
-2.700	. 00064	. 00017	. 600	. 22746	. 47369
-2.400	. 00115	. 00024	. 675	. 21143	. 49007
-2.250	. 00168	. 00343	. 750	. 19737	. 50611
-2.100	. 00235	. 00577	. 825	. 18487	. 52061
-1.950	. 00328	. 00610	. 900	. 17366	. 53389
-1.800	. 00460	. 00677	. 975	. 16354	. 54654
-1.650	. 00646	. 00762	1.050	. 15062	. 55832
-1.500	. 00811	. 00879	1.200	. 13884	. 57619
-1.350	. 01291	. 01043	1.350	. 12478	. 60040
-1. 200	. 01838	. 01279	1.500	. 11265	. 61760
-1.050	. 02633	. 01594	1.650	. 10198	. 63370
-. 900	. 03806	. 02312	1.800	. 09250	. 64829
-. 750	. 05332	. 04006	1.950	. 08412	. 66154
-. 675	. $0670^{\circ} 2$. 05457	2.100	. 06662	. 6712
-. 600	. 08150	. 060.15	2.250	. 07005	. 68459
-. . 525	. 10034	. 06697	2.400	. 06382	. 69463
-. 450	. 12380	. 07537	2.550	. 05833	. 70379
-. 375	. 15471	. 08582	2.700	. 04877	. 71183
-. 300	. 19615	. 09895	3.000	. 04552	. 72146
- . 225	. 25438	. 11586	3.300	. 03823	. 72998
-. 150	. 34411	. 13829	3.600	. 03012	. 73513
-. 075	. 54470	. 17162	4.200	. 02440	. 75149
. 000		. 21884	4.800	. 01734	. 76401
			5.400	. 01234	. 77290
			6.000	. 01136	. 78003

B-XIII.
Parameter Values;
$\rho=0.5, \quad v_{1}=0.85, \quad v_{2}=0.85$

2	$f(z)$	$F(z)$	2	$\mathrm{f}^{\prime}(\mathrm{z})$	$F(z)$
-7.200	. 00000	. 00000	- . 1.50	. 28920	. 09971
-6.600	. 00000	. 00000	- . 075	. 41698	. 15167
-6.000	. 00000	. 00000	. 000	∞	. 17293
-5.400	. 00000	. 00000	. 075	. 48290	. 22214
-4.800	. 00000	. 00000	. 150	. 38721	. 25477
-4.200	. 00002	. 00002	. 300	. 29921	. 30625
-3.500	. 00007	. 00003	. 600	. 21902	. 38216
-3.000	. 00028	. 00014	. 900	. 17488	. 44297
-2.700	. 00054	. 00026	1.200	. 14441	. 49086
-2.400	. 00104	. 00052	1.500	. 1,747	. 53617
-2.100	. 00203	. 00099	1.800	. 14811	. 58198
-1.800	. 00397	. 00198	2.100	. 12553	. 62314
-1.500	. 00785	. 00362	2.400	. 07488	. 65319
-1.200	. 01552	. $00 \% 14$	2.700	. 06410	. 67404
-. 900	. 03259	. 01434	3.000	. 05499	. 69191
-. 600	. 07038	. 02980	3.600	. 04056	. 72056
-. 300	. 16799	. 06556	1.200	. 02992	. 74171
			4.800	. 02207	. 75745

[^0]: 1 J. Wishart and M.S. Bartletts The Distribution of Second Order Moments Statistics in a Normal System; Proceedings of the Cambridga Philosophical Society, Vol. 28, 1932, pp. 455-459.

[^1]: 2 These functions are digqussed in detail in Whitaker, E.T, , and C.N. Watson, Δ Course in Modern Analysis, Cambridge University Press, Cambridge, 1958.

[^2]: *This function has been tabulated by L. A. Aroian [2].

