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ABSTRACT

This paper presents simple sufficient conditlons under
which the distribution of the sample average shows increasing
peakedness with increasing sample size. The results are
actually more general, permitting a comparison of the
peakedness of distribitions of various convex combinations

of sample observations.
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I. INTRODUCTION

Roughly 3peaking, the law of large numbers states thai under
mild restrictions thL~ average of a random sample has small probabllity
of deviating from the population mean 1f the sample size n 1is
taken large enough. However, nothing is said abou* the probability
of a given size deviation cecreasing monotonically as n increases.
In this paper we develop condltlions under which such monotonicity
can be established., Another way of stating this is that under
appropriate conditlions the "peakedness" of the distribution of
the average of n Increases with n. We use the definition of

peakedness given by Birnbaum (19.8). |

Jefinition Let Xl and X, be real random variables and

al and a2

than X2 about a2 if

real constants, We say Xl 1s more peaked about a

PI1X; -a) [ 2¢] SP|X, - a, | 2¢]

for all t 2 0e In the case a, =0 = 8,y We shall simply say

1

X, 1s more peaked than X

1 2°

11, PEAKEDNESS COMPARISONS FOR SYMMETRIC POLYA FREQUENCY FUNCTIONS
OF ORDER 2
Lemma 2,1 Let { be a PSlya frequency function of order 2
(PF2), f(u) = f(-u) for all u, f(u) >0 for -a<u<a, and

G elsewhere, 0 < a { =, xl and X, independently distributed with

2
density f, and G,(p,t) = P[pX; ~ X, { t], where 0 < p ¢ q,

p+q=1, Then for 0 < t < g, Gz(p,t) is strictly increasing




o

in p,0<p <t

Proof For 0 < p <4, write G2(p,t) = f‘:F ('t—-pqu)f(u)du.
Then p -g = f(}—gg) (u - t)du; differentiation under the
integral sign 1s permissible since 'f(§ﬁ§%>f(u)(u -t} < MP(u)|u - tl

and ‘ruﬁf(u)(u - t)du < «, where M 13 the modal ordinate of f.
-

Rewrite
A ®
@ 2. b fi=qu flu)(u - t)du+ [ ¢ tau flu)(u - t)du.
P P) "t P

Let v=t -u 1n the first intesral and v = u -t 1in the second

integral., We get

3G
2 x R} ,
(1) P 755 = [ov{f(t + v)r(t - %}) - ot - vt + %&)}dv
0
e 2t + v) i‘t-v} qu, . qv
i - = £t + A d

with the understandins that whenever a denominator 1s 0O we use the

interrand in (1),

- £t + w
Next note that when £ 1is 7?i., =
4 v

z

1s decreasing in

t for fixed v > Os Since t >0, g > 1, we have

B 5z i - e e e B - S

No difficulty arises in case f(%;) - 0y since in tnis case



£t + %}) = 0, Thus the inequality remains valid if we interpret

the integrand in (2) as 0 whenever f(%f) = 0o By symmetry of
aG

f, we conclude p2 155 2 0.
3G
Now suppose p 75; = Oe Thon for all v, except for at

most two points (a PF_ density is continuous except for s most

2
two points),

, (e £(t+
0 =5 f(t+v)f(t - %) - f(t-v)£(t + %) {ﬁ - F%'t-q: : }f(t-v)f(t-qV/P).

For 0 < v ¢ %f , f(t - v)f(t - %f) > 0, But since f is symmetric

tp f£(t +v) r(tgzép_%
o9 f has amode at O. Thus for 0 < v ¢ q’ Tt - v) 2 £(t - qv/p) ?

with equality possible only if f(u) 1is constant for

I3

t - tp/q {ugt+tp/qe This last however implies f(u) 1s constant

for -a <u<a, that is, f 4s the uniform density., But a direct
3G

examination of the uniform shows p2 75% > 0.

Finally note that at p = 0, Gz(p,t) 1s continuous by Cramer

(1946), pe 254e ||

Lemma 2,2 Let f be PFQ, f(t) = f(-t) for all Y
f(u) >0 for -a<u<a and O elsewhere, 0 < a =, xl,...,xn
independently distributed with density f, ard Jn(pl,t) =

n n
= P[ “1 pi)(i < t|, where 0 ¢ Py €1yt = lyeeeyl, izlpi =1,
i= =

P, * P, = b, a positive constant. [hen for O <t < a, Gn(pl,t)

is strictly increasing in p, for 0 {p, b/2,

Proof Arite Gn(pl,t) = P[le + qX, {t!' - Y] where




4

np

P=p/by q=py/b, t' =t/b, and Y= L —=X. Suppose ¥
i=3

has density h, Since f 1is symmetric unimodal, then so is h,

Wintner (1938),

@®
Write Gn(pl,t) = f G, pyt! - y)h(y)dy, so that

Differentiation under the integral sign is permissible as before.

Rewrite

b — =
3Py op

- !

aGn t! bGz(p,t' -y) @ an(p,t' -y)
h(y)dy +f

Let v = t' -y in the first integral and v =y - t' 1in the

3G, (p, - v)
second. Using the fact that ﬁ9é§421 = o —E 3 we get

dG © 3G ( ’V)
b —2 :! Sraladle {h(t' = v) = h(t' + v)}dv.

apl op
3, (p,v)
Now —__?i;-_— >0 for 0 <v<a. Also since h 1is symmetric
aG
unimodal h(t' - v) > h(t' + v). Thus apn > Oe
1
bGn
e S;" - 0, then h(t' - v) = h(t' + v) for all v in
1

(O,a) except for at most two points, i.e., h 1is unitorm. But

this implies a < «», Thus h(t' + u) =0 for u>a - t' so that
3G

h 1is identically OC, an obviocus contradi:tion. Thus SEE > 0. T
1



In Hardy, Littlewood, PSlya (1952), Chapter II, the concept of
majorization is defined, and its equivalence to several related
concepts is shown. A vector a = (ql,ou,an) is said to majorize
a vector a' = (aj,eeeya!) (written g >g') if the components

can be arranged so that

B n
(1) @ = Dl s
i=1 i1=1
(11) @ 2a, 2 e 2a 20 ol 2@} > eer 2a! 205
1 1
(111) o, > 015 for 1<{1<n.
J:l J:l

A linear transformation T of a 1s defined as follows.

Jonsider a pair a,, @, with @ > a,; write

k

a =p+Te, =p-1(0<TLp)e

k &

If 0 &< 1, then T 1is defined by

y TS =D

o = "or %t T %Rt
y -1 =0 1+ e o
@ ot Mt o1 Y TP >
ij':“j(.i?‘k:.ifl)-

We write ga' = Ta,




ﬁrr

Hardy, Littlewood, PSlya show that a necessary and sufficient
condition that o > a' but @ is not identical with g' 1s that
@' can be derived from g by a finite number of transformations
T. )

A third concept is that of forming averages. We say &' is

an average of o 1if there exist Py 20, 1=1,ece,n,

j = l,es*yn, such that

n n
Epij = l’ j = 1,“‘,!1; 2 pij = 1’ i = l,-oo’n;
i=]1 =1

n

P- = i = e
and @y zpijaj’ i 1, sNe

J=1
Hardy, Littlewood, PSlya show that a necessary and sufficient condi-

tion that ' should be an average of a is that a > a'.

Theorem 2.1 Let f be PF2, £(t) = £(-t) for all %,
£(t) >0 for -a<t<a and O elsewhere, 0<a << Xl,"',Xn

independently distributed with demsity f, H(t) = P[Epixi < t],
1=1

n
H'(t) = P[gpixi < t]_, p>p', By ' mot
=L . . .a n
identical, Epi =1= zpi. Then for 0 < t < a,
=1 i=1

H'(t) > H(t).

Proof p' can te obtained from p bty a firite number of T
transformations. Applying Lemma 2 as many times, we obtain the

desired conclusion. H

We may define a continuous version of majorization. Let




PR —— ———————— ol Sy

"
b i

(1) [ n(t)at = Ib n'(t)dt, where a and/or b may be
a a
infinite;

(i1) n(t), h'(t) be nonnegative and decreasing for a <t < b;
(111) [*n{t)at > [ nr(t)at for a <x<b.

a a
Then we say that h majorizes h' on [a,b].

In Thecrem 2.1 if we let h and h' be the densities
corresponding to the distribution functions H and H', then we
see that the conclusion of the theorem states that h' majorizes
h on [0,). Thus majorization in the weights of the convex
combination of random variables carries over into majorization in

the resulting densities (though in the reverse direction).

Corollary 2.1 Let f be PF,, £(t) = £(-t) for all %,
£(t) >0 for -a<t<a and O elsewhere, 0<a = Xppkyee
independently distributed with density f. Then for O <t<a,

o
F(n)(nt.) = P[% ZX < t] is strictly increasing in n = 1,2,°°* »

1 1...2 = f Ak s
Proof Note that p = (;, = :‘5,0) >p'= (n+l’n+1’ ’
s e
n+1’ntl

Theorem 2.1 immediately yields the desired conclusion. H

where each vector contains n + 1 components. Thus

In words, for symmetric PF2 densities peakedness of means

increases with sample size.

We can extend the class of densities for which the conclusion

of Theorem 2.1 and consequently that of Corollary 2.1 applies as




Lﬂ&'&f AT
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follows. First we prove
Lemma 2.3 Let fi(t) = ﬁ‘i(-—t) for all t, fi(t) > 0, and

decreasing for 0< t <a and O elsewhere, O <al= 1i=1,2
Let Xl,"',Xn be independently distributed with density f,,

Yl""’Yn be independently distributed with density f2. Suppose

p > p' implies gpixi more peaked than ﬁpixi and 2piyi
more peaked than > piYi‘ Then i=1 p>p' 1

implies 2})1(}(i + Yi) 1=1 more peaked than p:{()(1 + Yi).
=1 =

n

n n n
Proof Epixi’ Epixi’ ij{x* , and ZpiYi are symmetric
1=1 =1

i=1 i=1
unimodal random variables, Wintner (1928). Hence by the lemma of

Birnbaum (1948) the result follows. ||

Note that if Xj ,O",Xn are independently distributed with

Cauchy density ga(x) = n(l :azxz s 8 > O, then gpixi(o S pi < l’

n
Py = 1) is distributed with the same density. Note too that if

ifl
Xl and X2 are independent Cauchy variates with corresponding

densities g and g_, then X1 + X, 1is also a Cauchy variate
a, a, 2
with density gy for appropriate a. We may now state
Theorem 2.2 Lett f be PFZ’ with f(t) = £(-t),
£(t) >0 for -a< t<a and O elsewhere, 0<a <= Let

)(__1,---,}(n be independently distributed with density f * g ,

&

n n
H(t)=P[EpixiSt], H'(t):P[ Epix: St]: P>R'y D R
=¥ = )

=1




A A

n
not identical, Zpi =1= gpi. Then for 0 < %t < a,
1=1 =1

H' (%) > H(b).

Proof From Lemma 2.3 it follows that H'{t) > H(t).

Strictness follows from the fact that corresponding strictness

holds for the PF2 component of the convolution. H

Thus Theorem 2.1 holds when the underlying density is the

convolution of a symmetric PF2 density and a Cauchy density.

It is worthwhile to consider symmetric distributions for which

the conclusions of Thecrem 2.1 do nct hold. One such is the Cauchy

distribution with density f(x) = ——=—5—5 ; it represents a
m(l + a®x

"boundary" distribution in that if X,,ee+,X ~are independently
distributed with density f, then gpixi, Py 20, 1 = 1yeee,n,

n =

p; = 1, also has Cauchy density f. We can actually produce a
i=1

distribution G such that if Yl, Y2 are independently distributed

with distribution G, then for 0 < t < =

a(® (2t) = plaY, + 41, < £] <PIY; S ] = G(B).

Lemma 244 Let X,, X, be independently distributed with
density f(x) = = . Let @(x) be strictly convex and
22
m(1l + a“x%)

increasing for 0 { x < = and @(x) = -@F (-x) for all x. Define

X, = ¢(xi), i=1,2, Then for t >0 P[gzl + ﬁxz <4l < P[Y1 £ £l

Proof For X, X, 20 but not both 0, ¢(tx1 - txz) < §¢(xl)

+ 5¢(X2). By symmetry for X, X, < 0 but not both O,

P RS SR U SR W S R
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(L, + #%))| < [#(x)) + W(K,)|. For X, S0, X 20,

%, <X, we have G(3K + X)) = #(R(X, - [, ])) < #X, - 1%
<L) - X)) = ) + #(x,). By symetry, for X <GC,
X, 20, %] > X, g0 +#0)] < |ef(X) + #(x,)|. Thus for

all X, X, for vhich X, + X, #0, | (2 + )| < 1) + FX)l.

But $X; + gX, has the same distribution as X;. Thus Y, |
is strictly stochastically smaller than l?Yl - #YZI by Lemma 1,

page 73, of Lehmann (1959). The result follows. Il

Thus the distribution of the mean of two is actually less
peaked than that of a single random variable. Ir analogous fashion

we may show

Lemma 2.5 Let Xl’ X2 be independently distributed with
density f(x) = 8 . Let @(x) be strictly concave and
m(1l + a2x2

increasing for 0 < x <= and #(x) = -@ (-x) for all x. Define

Y, = (%), 1= 1,2. Then for % >0, P[3Y; + 37, < ¢] > P[Y < t].

Note that a very strong form of stochastic comparison is
involved, since for each sample outcome in Lemma 2.3, (2.4),
| Y| <(>)!§Y1 + §Y2|. It does not seem possible to use the same
methcd to obtain stochastic comparisons between averages of n and
n + 1 variables for n > 1l. However, using Birnbaum's lemma we
can obtain stochastic comparisons between averages of 2" and

ML ariables, n = 1,2,°%% .
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