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CALCULATION OF VOLT-AMPE CHARACTERISTICS OF THERMIONIC
CONVERTER IN DIFFUSION CONDITIONS

V. P. Karmazin and I. P. Stakhanov

(Moscow'

1. Formulation of problem and bounda conditions. Considered is a flat

thermionic energy converter (TEP) filled with cesium under conditions when length

o: !- path of electrons le is significantly less than distance between electrodes

L. Degree of ionization is assumed so little that electron scattering and ions

occurs basically on atoms of Cs. This assumption is justified, if njn.; 0.001

(n ,n.- concentration of electrons and atoms). If concentration of electrons

can be calculated from condition of thermodynamic equilibr .um, the degree of

ionization corresponds temperature . 2000*K.

Ions and atoms are freely exchanged by energy, therefore their temperaturezs

coincide: Ti = Ta. At sufficiently high pressures (when ta/L-<1) temperature

Ti linearly changes from cathode to anode. In region of pressures interesting

us, due to weak exchange by energy between electrons and ions, temperature of

electrons Te + Ti . If temperature is established mainly under the influence

of Coulomb collisions, then characteristic distance, at wnich'iaxwellization" of

spectrum of electrons occurs, is of order ( 1/31k1)'/ , where ik - "Coulomb"

length of free path of electrons.
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If one were to assume that near the cathode local thermodynamic equilibrium

takes place, then concentration and level of chemical potential of electrons at

the cathode doe not depend on material of the cathode, in particular on its work

function. Therefore, in order to receive dependence of volt-ampere (VI) char-

acteristics from work functions of cathode, it is necessary to consider deviation

from thermodynamic equilibrium on cathode, appearing due to passage of current

through TEP.

For obtaining boundary conditions on cathode, let us consider region between

planes one of which is conducted at distance x, > d from cathode and other - at

distance x: > 1, (here Debye radius d < 4). Since the space charge is concen-

trated in region between cathode and plane xs, we will consider that between

planes xi and x. potential in practice does not change.

Electrons and ions, emitted by the cathode (ions appear owing to surface

ionization), have Maxwellian distribution with temperature of cathode.

We will assume that electrons, moving from plasma to cathode, have Mazellian

distribution with temperature different than temperature of cathode and ions -

Mawellian distribution with temperature coinciding with temperature of cathode.

Since d<I.. then in layer of space charge particles move without collisions

and distribution functions on surface xi have following form:-I .. ,1 0 m.,A,' n,, ( eAT '/M < < )
2n (kT'P e  kT" 2kT') AV>q<O, Or,<oo

, ( I A >0. < V.E l2eAq'/rn

nk(', ° exp 2T)2k 1 AT,'<O.-'s&..O (1.i)

WI O 1,T,' A ' ,,€ > o. o < , , < 0o)

2n (kTPCXPkT' -- T A'< 0, 2e-'/ i1s<v,
/ (1 ,_ ), . h>O. -oo< <0 (1.2)

I ~ a, Al<0 -~X (- <k' (Avxo < AT'hM)(12

Here A '_ difference of potentials between surface z, and cathode (potential

of surface xi is taken at zero), m, M - masses of electron and ion, T' - tempera-

ture of cathode, To' - temperature of electrons at cathode, n'- density of
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plasma at cathode, 18, Iio - flows of emission of electrons and ions from

cathode. During derivation (1.1), (1.2) it was assumed that potential in layer

of space charge changes smoothly.

We will further assume that distribution function on surface x, coincides

with locally Maxwellian function, with diffusion corrections, which determine

flows of heat and particles different than zero. Desired boundary conditions

are easily received, calculating balance of number of particles and energy in

volume included between surfaces xi and x2:

at Aq' > 0

-4w. ex" (1r---3)~oeI 4exP( ) -I.. -4- e k(13

Te'. T' +- X"m ! " -L' fly v-, "' e . rif"k7

2kiV WT) (1.4)

at AqT'<O

(-iex Ii ep . -) , T.' = T ' (1.5)

Here Ie, I - electronic and ionic flows through T.P,, prime quantities

relative to cathode or to region near cathode. During derivation of these relation-

ships in second equation (1.3) and first and third equations (1.5) Vmbers of

order 1 / L, are rejected, since

4I.. 21,1 dT*'

However, relation

63-: exp

in general, is not assumed small. In case, when IeWI-kT'1 in (1.3) and (1.5)

it is possible to disregard le and Ii and in (1.4) to put T'e = T'. Here (1.3)

- (1.5) correspond to equilibrium boundary conditions.

We will introduce parameter

6) = vria / J1.0) YRI /,,M ,1.6)



It is easy to see that during equilibrium boundary conditions

Ay' = (KT'/e)y11n co (1.7)

If < 1, which corresponds to condition 4 '< O, then condition in near

cathode region can be called undercompensated (ionic emission current is small as

compared with electronic). If a)> i (Ay' > 0), then condition will be called over-

compensated (electronic emission current is small as compared with ionic). It

is necessary, certainly, to keep in mind that under the conditions of diffusion

operating regime of TEP, as much as desired strong over or under compensation

cannot leack to appearance of space charge anywhere but in a thin layer near the

surface of cathode.

We will estimate approximately the boundaries of w, at which significant

deflections from equilibrium conditions on cathode occur. At w > I this takes

place if

'/ 4n'v.' exp (- eAq'/kT') - 1.

or, proceeding from (1.7)., if

'Ln'v.' -- 1. Y

Similarly, for w <i deflections appear when

1f4n'vi' Y/wO - 1i

Since 4,. / n'v',. - 14/L, then equilibrium boundary conditions on cathode,

and consequently, independence of VI characteristics of work function of cathode

take place when

(tI) 2 < c. (L.4)' (1,8)

Actually, when 0 <I defections from equilibrium conditions on cathode

occur later than when w>1. Indeed, from (1.5) we obtain

" o- 4



and since in regime of saturation current 1- 0 , hence equilibrium value is

obtained.

Similiarly boundary conditions on anode can be obtained. It is necessary

only to consider that emission of electrons ant ions from anode is absent due to

its low temperature. Taking distribution functiaA of electrons and ions near

anode in the form of Maxwellian function3 with temperatures Te" and T" (two

primes me&n that quantity is that on anedt or in region near anode) and calcula-

ting balance of number of particl-ts and energy, we receive:

7e -"n-, i x 
'

"  when A'> (1.9)

--- - exp '" I = -- when A <6 (1.10)

Q.= (2, -- - ) (AV <0)
Here Alp - difference of potentials between anode and plasi at anodes -

flow of total energy of electrons from plasma to anode.

2. Sstem of fundamental a ions and its solution. Equations of diffusion

in three-component mixture, with regard for small degree of ionization and great

difference of masses of electron and ion, have form

nt D , (2.1)
T, d,

nil D dr (2.2)

Q - X -- + h (2kT, - e) (2.3)

Here u. -- mobility, De, - coefficients of diffusion, n - concentration

of plasma, T - is potential, counted from plane x,. Coefficieats De, and DiT,

in general, differ comeiiat from vstml coefficients of theeawl diffusion., Flows

Ie, i, and Qe are constant in voltme, i.e., volume of ionization and recombina-

ticii will be disregarded.

Due to complexity of boundary conditions and dependence of coefficients on

unkno,n fuictions (n, Te, ,q) .themselves the considered system of equations can
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be solved only numerically. Approximation method of solution with equilibrium

boundary conditions on cathode based on disregard in (2.1) and (2.2) of members

proportional to dT,.,/dz, and approximation of n () and ? (') linear functions

is given in [1].

Below, for obtaining solution of equations of diffusion a different character

of behavior of n and Te, Ti in Interelectrode space is used. At the time when

n (x) decreases from cathode to anode approximately by order of two, Te (x) and

Ti (x) change by 1.5 - 3 times. Therefore, taking as Te (x) and Ti (x) certain

constant mean values <T,), and <T,>, it is possible from (2.3.) and (2.2) to

find n (x) and (x). Putting these n and (P in (2.3), we find Te (x). Further,

with the help of this value of Te (x), we receive new n (x) and ( (x) which we

again put in (2.3), etc. Just this method was applied during programming of

diffusion problem on electronic computer. In given work for obtaining of more

simple, approximate solution the same method is used, but instead of Te (x)

and Ti (x) in equations (2.1) and (2.2) are put each time quantities <T,) and

(Tj>, (constants in interelectrode space). Here (T) is found from solution of

(2.3), where as n (x) and (x) are put in solutions of (2.1) and (2.2) at

preceding value of <T., . Since Ti is determined only by temperatures of cathode

and anode, then

IT' + (2.4)

Similiarly

<r. (. +t" 1 ) (2.5)

Thus, a system of differential equations with bounK1ary conditions reduce4

to a system of algebraic equations solved by consecutive approximations.

Setting Richardson current in the form

I= l (T')' exp (- '- nkVek (.k [m 4

Let, us turn to dimensionless variables

6



T if i to =~ 14 #A,"

T/V' 4It 1,

T6.1 4D 4Di knokv.,tLT,.1 fl' t . F = - , C.. , = L 21 .(26
kT'-f~ 177 VA OT, 0 1  (2.6)

Assuming that all particles interact as elasLic spheres and that k, is

determined by expression for thermal conduction of Lorentz gas X, = 2/3 knve 1

we obtain

= .= TZ ii *. , = T.VY . ', (2 7)

where

4 I. "  T' 4 1I aTO --- .' l-"" 90. i0 T,_1 = ""- . -L " (2.8)

Here a,, a, - scattering cross section of electrons and ions on av oms of Cs,

i2, !i' - length of free path of electrons and ions near cathode. Pressure p

in (2.8) is expressed in im of mercury, L - in cm, T' - in OK. Numerical

constant in (2.8) corresponds [2) to value a, = 2 X1O-i4 cm2 .

Solving ecuations (2.1) - (2.2) relative to derivatives and using (1.16) we

obtain

dv I_+ (2.9)= - ,,(I. --,, Id.is
, t ,r, ( , fl

-= T T T- (2.10)

'dv It . , I2(r. -- r,) + ±1 + • -l (2.11)

Boundary conditions (1.3) - (1.4) on cathode ( 0 0) in overcompensated

regime take form

( a''] - l- ,  V, =) Co--
V "X (2.12)

2(1 - ) (f,' -(1 l T +'p *" V *- At' - 2 ( - 1)1 (2.13)

and in undercompens&ted regime

v', ") = -/. ' = 1 (2.14)
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Let us remember that

(0) = V, -r, (0) --- '1"', (0) = 0, V (1) = V.,

Boundary conditions (1.9) - (1.10) on anode (t = 1) take form

].-v'Y/ ,'exp(AV'/Iv') i,'=v*J"O when Alp <0 (2.15)
/0, - -'-: /, -'V p- -,7 -e A ->o0

voI/ , / V /0exp (- AV / 0) when (2.16)

From (2.9) - (2.11) and boundary conditions it is easy to see that v (i), , (a),

e () and values of these quantities in regions adjacent to electrodes,

V', T ', V ', AV' T." as current functions j can be determine defining four
e

dimensionless parameters 4" / L - T' / pL, U1 , 0 = T" / T, w. Work of output of

cathode enters only into parameter 0). Thus, calculation of dimensionless volt-

ampere characteristics, i.e., dependence of Je on quantity -('*+ AV'+ Ap'),

reduces only to assignment of these four parameters and does not depend on concrete

values of scattering cross sections a and ai, and also work function of surface

of cathode in pairs of Cs.

Since in equations (2.9) and (2.10), according to (2.4) and (2.5),

= 1I, (0 + 0) - const, r. = 1/ (v.' U,) + -r." U)) = const

then

v (Q.= V' - at (2.17)

V (t) = (P/ a) In [v'/ v( ) (2.18)

where through a and are designated constants in right sides of (2.9) and (2.10).

Logarithmic movement of potential is easy to understand if one considers that

concentration of electrons near anode is very small, and thus, a large part of

voltage falls near anode.

We proceed further in the following manner. During fixed Je we arbitrarily

assign zero approximations Tm and T.,'. When ca >1 from (2.12) we find v,' and

AVr'. In case Atp < 0,assuming in (2.17) = 1 and using the second of equations

8



(2.15), from c and P we exclude Ji and find v'., from (2.18) - Vs"* In

case AV'>O, ion current can be determined from expression for r. of first equation

08 ,- - L

to

Fig. I Fig. 2

of (2.16) and equation (2.17) when 1. Then q'P and Ato' are found. For

determination of subsequent approximations of electron temperature we write

(2.11) in the form (k - number of approximation, k = 0, 1, 2, ... )

d~,k1l 4. rA-1 0 f( A - 1) ' k k (1

After substitution of (2.17) and (2.18) this equation is easily integrated

Considering in received equation =0
5 ,-- - . vv35

-3 (or 1 3.), jointly with (2.13) we

obtain linear system of two equations

-- ] Z5 for determination of t,.k.u amd

. Found "',,, and

15 are used for obtaining

-- V'kVk..1 etc. Thus, for every
-lo" value of je by method of successi;e

0.5 approximations we find v', A*', v

Fig. 3.
Ai. ' ( )., () corresponding to it.

When w < 1 from (2.14) for we obtain equation

W-k = (NT") (2.20)

9



Excluding hence ionic current, just as in case of 0, >1, we receive for

determination of vk' a quadratic equation. Further we easily find Vk', Aik',. v()

etc. Calculation showed that for achievement of accuracy to 3%, 3-4 iterations

were sufficient with suitable choice of -j' and 'C'.

3. Results of Calculation. Results of calculation of dimensionless VI

characteristics by above-stated method are represented in Figs. 1 - 6.

In Fig. 1 is given dependence of current intensity J. on volt~ge drop be-

tween electrodes :.-- W + AO') during equilibrium bouidary conditions on cathode

(o) = 1).

Curves in Fig. 1 correspond to following values of parameters:

Curve I 2 3 4 (In Fig. 1 values of ordinates

4,'/L=0.01 0.03 0.01 0.01 for curve 2 should be increased by

0 =0.5 0.5 0.5 0.667
5 times.)

Saturation current Jes during increase of 1'./L 5 times, increases approxi-

mately by 5 times in accordance with Eil. Increase of a, by 5 does not change

jes' but shifts VI characteristic to the left by quantity of order kT' / e,

which is coupled with growth by approximately that quality of the near anode

barrier AV. Decrease of relation T" / V from /2 to 1/3 decreases J., by

approximately 15%. When T' = const this is caused by increase of concentration

,~- I,01 - jo1 F__j

W i. A. .- g. -

1 0 10 "

'5S

01

Fig. 4. Fig. 5.

of atoms near anode which leads to increase of resistance to current through

Io



TFP. Let us note that during equilibrium boundary conditions on cathode, distinc-

tion of VI characteristics calculated by such method from characteristic received

during solution of equations (2.1) - (2.3) on electronic computer is near 15%.

Figs. 2 - 5 show influence of degree of compensation of on VI character-

istics and on quantity of density, temperature and potential at electrodes (when

it' /L Z 10. ,i I 0" = 5. 0 = 0 5). Values ' and A*' (Fig. 3) coincide with equilibrium

values for overcompensated regime at J. = O, and for undercompensated regime -

at Je = Jes (Ji 0). It is necessary to note that at value selected in calcu-

lation of I,'/L- 0.01 the range of changes of w is rather great in order to

include strongly over or undercompensation conditions. As was noted above,

deviations from equilibrium regime at w> t occur earlier then at ( < L In

connection with this, results of calculation with t 1tI-. t10 noticeably differ

from equilibrium whereas at = l, 10-2, 10-3 they practically coincide. In

particular, in the last case v = Va and '1'I Inw. ffear anode, jump of

potential AW' (Fig. 4) changes sign at significantly smaller currents (III.Z01).

than voltage drop in volume *" U; i 0. o.5). Quantity A' at 0 t h/ 1/. ; o 9 of

order kT' e. sharply changes only at ii il <01 and 1 1i > 09 At W> 10:

deflection of movement of ' (e) is already noticeable from linear (Fig. 4).

Heating of electrons at anode can be very strong and can exceed temperature of

cathode by 1.7 - 2.8 times (Fig. 5). Under these conditions volume ionization

appears and TEP starts to work in regimae of low-voltage arc. At those currents

when AqV ,i. quantity To" attains minimum. At these same currents, v, also

has minimum which follows from boundary conditions on anode. (Let us note that,

as calculations showed, v V t5- 0 - 10-.)

In Fig. 6 are presented measured VI characteristics of TEP calculated at

various values of work function of cathode W'. Inhese characteristics were

obtained from curves in Fig. 2. Here it was assumed that

2.0- C, a 0.10.- i wi. A = A 10 /fcxl, Vi = 3.86 v W * 1.7 V

1.1t



Determining W' from expression

, =3.18. W- 6 -- exp (23.2IV 2:-- 9) i, 03

' (23.2 '2) = (3.1)

we find voltage on load V

V = IV' - ,'-&q "- -4p," (3.2)

(In expression (3.1), p and T' correspond to condition i;IL = 10"2) • From Fig. 6

we see that in interval 2.25 < W'< 2.80 v VI characteristics do not depend

on work function of cathode. However, at W' = 3.5 v, saturation current decreases

almost by 1.5 times.

0.15)

0.08 1

*o ,J5 o-

H-i- I I 1II ______ 110._'_ __ _ _ _ ,o

2 0. . . /6 goqo6 £26

Fig. 6. Fig. 7.

From equation (3.2), assumlinlg V 0 , one can determidne dependence of current

of short circuit 1* on temperature of cathode T' (S-shaped curve). Tungsten~

weas taken as cathode material, work function of which in pairs of Cs was found

from data of Langmuir [3]. Pressure, interelectrode distance, and parameters

of anode were taken as equal to:

p= 1imnHg L= flUm
fl"s =n~t 80TV." ' = .7 v

Values of W' and ' calculated ror certain T are presented in table. Qual-

itatively, form of S-shaped curve (Fig. 7) agrees with experimental results. For

obtaining of qaiantitative agreement, more precise definition of size of section %.

is required and also calculation of Coulomb colliions. If

dT, . ° - "_ .
,t"T do ' - t,

aolil



Table then from qualitative analysis of equations

T'. K W. _ I (1.6), (1.7), and (2.1) it follows that

11MO 1.72 3.33.10-7
1270 1.86 4.87. M-" slopes of S-shaped curve at "< (1/L)1

137o 2.02 6.65. Uri'
1470 2.22 t. 18.1M-3
1570 2.46 2.6t.10-1 is determined by quantity of work function
1670 2.70 3.91.10-

1770 2. 92 311870 3.14 2.23.101 of anode W", and at t >(l I)' -ionizing
1970 3.36 1.22.10'
2070 3.55 4.02-.10' energy of cesium.
2170 3.7:3 1.06.10P
2270 3.86 t.5:3. ti e2370 4.012 2.88. Subritted
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TRANSFER EQUATIONS FOR NONISOTHERMISTIC MULTITIPE PLASMA

M. Ya. Aliyevskiy and V. M. Zhdanov

(Sverdlovsk)

In present wrk a system of transport equations following from
kinetic equation for particles of . typ, leads to closed form by

use of approximation of Grad's "13-moments" to distribution function
[2]. Besides usual equations of continuity, conservation of momentum
and energy conservation for each of the components of plasma, the
obtained system contains equations for nondiagonal part of stress
tensor and beat flow of particles. Tmperatures of components are
considered different.

Relationships for known properties of transfer in plasma follow from
general transport equations on the assumption that parameters of plasma
change little on mean free paths and for times of the order of time
of collisions. It is shown, in particular, that expressions for
tensor of viscosity of heat flow and of conductance current in two-
temperature partially ionized gas (T, > Tj = TO) have, with certain
limitations, the same form as in [7] if series of quantities entering
into them is determined at electronic temperature Teo

1. Transport equations in approximation of "13-moment8." Transport equa-

tion for certain quantity *. (c, r, t), referred to system of coordinates moving

with average mass velocity of gas u can be obtained by multiplication of left

and right sides of kinetic equation by V. with subsequent integration according

to space of velocity of particles [1]. (Here c. - relative velocity of a particle,

r - it3 position, t - time). Considering, in particular, ) i=,a, V',) - ?,eC,

and V.1) = (ni.2) c. where mn - mass of a-.particle, we arrive at equa-

tions of continuity, conservation of mouentum, and energy conservation for



,%- component of plasma which in the presence of electric and magnetic fields

take form:

a---+ U. = 0(i)

Pe -L VP0 - n.e. (E + u,, B) = (1.2)

3 dp3 ' 3 8ii
2 - + T p.Vu + Vq. + Pj- - - pGw.F. = RW (13)

(by repeated Latin indices sumation is implied).

Here e, n., u,, q. - axe respectively charge, density, average velocity

and heat flow of a- particles; introduced, furthermore, are mass density

p,& = mn and average relative velocity w. - u. -- u particles of a- type. Comp-

onents of tensor .P,* are coupled with usual stress tensor P. by relationship

pJ, = -IWk (1.4)

In turn, P. is divided into two parts

PQ = PA -+ A.,, (1.5)

where P. - partial pressure of a-component of plasma, and -t, zan be conditionally

called tensor of viscous stresses of a- particles.

During writing of (1.2) and (1.3) the following abbreviations were used

d. =-i (E+uxB) d: W uV, = WT + (UV), F, =- ( +Ut (1.6)
l 8: di18 ' (1.6)

here E - electric field strength, B - vector of magnetic induction.

Quantities R() and R.42). appearing in right sides of equations (1.2)

and (1.3), represent respectively average change of momentum and a- particle

energy during :ollisions. Calculation of them requires -knowledge of dynamics

or collisions of form of distribution function of particles in plasma.*

Equations (1.1) - (1.3) will not. form, in general, closed system since

besides usual hydrodynamic variables Pei us. P. present in them are moments of

*For particles, nteracting according to law -- '. these quantitie& car.

be calculated without knowledge of concrete form of distribution function.
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a higher order: stress tensor P. (rwre accurately, its nondiagonal part - 7-.)

an& vector of flow of heat q2. For these quantities their own transport equations

can be obtained, however in them, in turn, will appear two moments of a high

order. Reduction of these moments to those variables for which transport equa-

tions wtre aLready formed is possible only during use of determined approximation

and distribution function. Below, to this aim is used approximation of Grad's

"13-moments" [2]. Application of this approximation to a multicomponent gas

mixture and to completely ionized two-component plasma was discussed in works

[3], in the same place are given corresponding closed systems of transport

equations for these cases.

Expression for in (c ,rS) n approximation of 13-moments has form [3 :

T, + - + WlASC -, r - (ra' ) cP (1.7)

where

14(0) LI \G/ -T q, -- -2 Ta(18
2a p 2- ' 2 = kT (1.8)

Here k - Boltzmanr constant, T, - temperature of a- particles (relative to

average mass velocity u).

Multiplying kinetic equation for a- particles by

- in., -ma (c,' -5/ ) (1.9)

we arrive in approximation of 13-moments at following equations for quwitities

a4 and h, (or q)

d, (1 .10)

-2 {p.w.jFk)-- 2 X U ( i lk 2)

A ,,t + O ,t 2 a mu 7 O u t 5 u

+ 2 'Oal "I." i BTar 5 p, 'ZT
+ "U T. K . + -, T, 4-i

+ 'n*ku" "j-- F., -e (b x B), =

16



where designations used are

-) (Kj,k+ KkJ.,) - -4-
2 3u

( aitm - commutation tensor),

Right sides of equations (1.2), (1,3), (1.10), and (41llr th linear combi-

nations of momets relative to integral of collisions, are wr-tten in general

form as

R," -" a'") h/' g.'bdWded c (1 .2)

Here g= c -. ca , b - impat parameter of a- and - partices,

aziimthal angle, by prime (mark) is designated value of quanilty 4" after

collision.

Using expressions for /. b in the form of (1.7) and disregarding during

calculation R,) (1.12) juadra.-tic members on w., Azl. and h , we arrive

at following general axpresailcns

(1 )' (Ps W il) + T . ,_,

Rt;= 7's )
M, +.-YAP

Ra• + L 7, + c;l" *T--
Lk Pt

3). CG.ft 4-- C a- + 5 4 C,)o

Knowledge of dynamics of collisions t ,&aricles allows trs c&lculate values

of "Ga(n.  if only elasti- interactions of orticles are considered then

coefficients G!, turr out to bo linear combinations of quantities Qjl, which

are generaLization3 of 1u':L Ch,% n-Coiling integrals r 13 in case of different

temeratures of components. 17or identical temreratures these coefficients are

found in [3). In case considered by us, calsulations are c=Oplicated and lead to

followixg values of coeffiei"nts,



Gj- B(, G,(') %= BJ"

0" "+ (Tr r T X ' A 1- (To / T) B.2
-(r /IT.) X. (Ba" '- 2 '

= - (? + 2B/ ° ) +t(Be$ - Ba ,

G)= B.4?) 4 J8 Aj"'

(1.14)

where

B.9= -,nG(,! B4) p -- tfr )

a~~,~n k -& 3 0Arr) 'j1 1fix2jllj ir..) U. "  0,111

B6 ' = + - - + TA T-) Q 31J
L2otLS) 0." - +~ Lai

B.W )  Q,3 41 Q -- 7J

Bpea, jjt*qm nq [5Q,,- -29.,03
= "- I" , -

8411 ±xznan 20,,'31-

B."Ot rtn 0 1 - 1 0212+L 4,1 t

(1.15)

Here

GA~ 5 "e-t'go (1 - cos'X~p) bdbd

where X = - scattering angle in system of cnter of mauses of colliding mole-

cules.

.. . ... ..... ..... .................. .. .... .. ... ..... ... ... _ _ __,_ _ _ _ __.



Quantities 1"o X20, T.0 and ;y,, are determined by expressions.

For case of identical temperatures (T'. T = T)

kr ~ + I&A XO

and coefficients (1.14). (1.15) coincide with those found in wovrk (3.

2. Relationships for properties oftransfer in plasma. Equations (1.1 -

1.3) and (1.10 - 1.11) together with expression found above for R.,"" 'will form

elossd 3ystem of quasi-linear, differential equations relative to variables

P~1 Uj . and Suitaation of first thr-ee of them according to a

leads to usual equations of continuity, mution, and energy for plasmia as a whole

T di
3 p+ 1 dva+vpq +di~ Ak (2'1

E = E+ x B

Here, P - mass density., p -pressure, n - tensor of viscous stresse~q,,

q - heat flow for plasma on the whole obtained by simple summation of cerrespond--

ing quaantities for coraponwrits; int addiation are used condition of quasi-neutrality

of pl..sma and expression for current density of conductance

4 ~ J (2.3)

For determnination of quantities w,., n. and h,. (or q, ) it i3 poasible to

use equatiofl3 (1.2)p (1.10), and (1.11). The latter are markedly simplified if

one asumes Lhat miacroscopic parameters of plasma change slightly at distancea

r-f order of ? ffective length of free path and for a time of order of the time

of collsions of parti'cles irn plasma. It is ea.Y to show D3 - 4) that during

observance of theve conditions it is possible to disregard derivatives dwl /dt,

dni~ / d?, dhu( / de and nonlinear members in left parts of equaticnsi (1.2) and



(1.10) - (1.11) thanks to which expression for vector and tensor properties of

transfer in plasma will be determined by solution of sy:stwms of Linear algebraic

equations. Here du / dt in left part of (1.2) should be repl.ced from equation

of motion (2.1). Then equation of conservation of momentum for the a-component

of plasma takes form:

~ ; [a~~ I 1 ha _ T, ha

= -" kP. -- )-( -div =,-- div: 4. -ne, (E'I- w, x B)- L (j x B)(2 )
PPP (2.4)

Equations for tensors a, and vectors h. obtained in considered approxi-

mation can be conveniently presented in the form

+ , - 2i3s, + (2.5)

b. 4- b h0  - XJR, + (h. x (2.6)

Here

2 5k (2.7)

m P.. ) a ."

a"b - I*- +- w La (2

Y ,. [ "S A"w,-,) 2Aw,
Yp m, +Z MA2.10)

%;3" m. a&-, (I+,/cL,, (A.n

2+2

.Jrh6+m ~ ~ 4 A J'a, b ~ r ~ C

('~.o)' +'~'+ A)) -4 M' + MA UJ.1(2.8)

Finally,,

I? &3 _' T. 9;taij: 2 e- t.,jEj' +
axt 5 p. ark p-,

k.i1r.'r A" w I., T+T~ (2.10)

Here, T.A has order of magnitude of time of collision2 of a- and p-particles
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and A,'") depends on mass ratios and termperatures of particles and also on

ratios of various types of cross sections for given form of collisions. For

electron-neutron collisions. if To ' 1 , o,,- actually coincides with effective

frequency of collisions of electron normally utilized in kinetics of plasma [5].

t (= "*'"v (v)v' op (
e

(v) =- n v v .(v, X) ( - cos X) d, dQ =sin Xd de (2.12)

Here v- frequency of collisions with momentum transfer, q (V, ") - dif-

ferential cross section of elastic scattering of electron (indices e and a

relate respectively to electron and neutral).

For collisions of heavy particles in plasma (ions with neutrals and neutrals

among themselves) it is possible to connect %, with binary coefficient of

diffusion [D , (first approximation of Chapman - Cowling [1])

Sn / n !D2 ]J (2.13)

In case of Coulomb interactions in expressions for .,I appears, in

general, a divergence which can be formally eliminated by cutting of collision

parameter at distances of the order of Debye screening length 4v. Then

163 ~ 0  (La..)'1k ( 2 v ~ej~ (2.14)

Changing to analysis of system of equations (2.4) - (2.6) we note preliminarily

that members depending on olectric "ield E' in (2.9) and (2.10) turn out to be

essential only in very strong fields* (s6e [14, 6) and therefore in the future

can be omitted. When structure of expressions for tensor of viscosity and heat

flow of particles in multi-type plasma during abserce of magnetic field differs

little from corresponding expressions in the case of multicomponent gas mixture

*By the term "strong electrical field" here is understood a field in which
charged particles, during the time between collisions, are accelerated to energies
comparable to energy of their thermal random motion.



[3], it specifically 13 due to presence of Coulomb interactions of particles

and the fact that every component of mixture can correspond its own kinetic

temperature T. . Presence of magnetic field noticeable complicates results.

However, even in this case, the system of equations permits solution in the most

general form. Here equations of diffusion (2.3) can be used for derivation of

a generalized Ohm's law in multi-type plasma, connecting current density of

conductance j with voltages of electric and magnetic fields and also with

pressure and temperature gradients.

Solution of equations (2.4) - (2.6) can be somewhat simplified thanks to

presence in them of a small parameter - mass ratio of electron i. to mass of

heavy particles in plasma m, (,3 + e)

In particular, if condition 7. T is fullfilled on

(2.15)

,then in equation of diffusion (2.4) written for electron component of pLa3ma

(u =e), it is possible to disregard members with heat flow of heavy components

h . Estimating under those same conditions the order of magnitude of coef-

ficients ao and b,; in equations (2.5), (2.6), we find

AAmA TVA V,

Thus, tensor of viscosity and heat flow of olectrons car, be determined

independently of equations for other componentc. In turn, in equations for ions

and atoms it is possible by the same considerations to disr.egard quantities n.

and It. Approximate solutions correspond to fulfillment of conditions

((2.16)

Let us note that expressions obtained here for tensor of viscosity and heat

flow of electrons have the same form as in work [7) where the case of three.-

component plasma with identical temperatures of components was considered.
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Distinction is that all quantities depending on temperature must be determined

during electron temperature Te and summation !or P in expressions for . (t.'

and is extended to all components of multi-type plasma.

Solution of system' of equations for tensors of viscosity and heat flow of

heavy components in general case can be written in form of determinants; in the

particular case of three-component plasma with Ti = Ta corresponding expressions

can be taken from work (7].

Analogous remarks can be made and with respect to derivation of generalized

Ohm's law in three-component plasma with temperature of electrons different

than temperatures of ions and atoms. During fulfillment of conditions (2.16)

relationship (4.10) in work (7] remains correct for it where all quantities,

with the exception of T,,, are determined at electron temperature Te-
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ON TRORY OF WEAK DIFFUSION WAVES

G. S. Leonov and V. A. Pogosyan

(Moscow)

In work [1] on the basis of analysis of solution of system hydro-
dynamic and electrodynamic equations for electron and ionic gases
during absence of external magnetic field, it was shown that in
cylinderical symetric discharge two types of traveling waves along
axis of discharge pipe can exist; electronic and ionic. It was also
shown that electron waves fade quickly, and that ion waves can fade
as well as be strengthened. At present it is clear that striae (layers)
do not have direct relation to longitudinal electric oscillations of
electrons and ions in plasma. Druyvesteyn [2] examined mobile striae
as waves of density of charged p.rticles in plasma of positive colhu
depending on processes of appearance and disappearance of particles.
Possibility of existence of wraves of such type ensures from joint
solution of diffusion equatiuns for electrons and positive ions and
Poisson equation. To furthjr developent [2] is devoted a series of
works [3 - 6) in which initial equations were determined and expanded.
In these investigations is applied method of small perturbations.
Resultant dispersion relationships are suitable for description of
only moving or only standing striae. On the basis of experimental data
in [7) a conclusion is made about unique nature of striae. To theo-
retical proof of this conclusion is devoted work [8]. In contrast to
[3 - 6, 8] below is considered a more complete system of equations in
which thermal diffusion and dependence of parameters of equations on
electron temperature is considered.

Obtained dispersion relationship is useful for description both of
mobile and motionless striae. It can be extended also to the caae of
a positive column in a longitudinal magnetic field.

1. General eguations. As is known, in a positive colwan with moving striae

the density of electrons Ne, density of ions Np electron temperature T, and also

longitudinal gradient of potential F are functions of coordinate i, taken along



axis of pipe and time t. Carrier densities change, furthenwre, with change of

distance of considered point from axis of Pipe, as and in case of uniform positive

column.

Let us consider a cylinderical positive column. It is assuned that follow-

ing conditionns are satisfied:

1) electrons and ions have MaxwelLian distribution by velocities at constafit

by section of column txiperatures Te and TP ;

2) recombination occurs only on wall's of vessel;

3) mean free path of electrons wid ions is small as compared with radius

of column;

4) ionization occurs only during single collision between electron and atom
in the basic state, and consequently, rate of ionization does not depend on con-

centration of electrons.

For laminar positive column with these assumptions we have:

a) Equations of balance of carriers

A- div (-,Y') - Z,, 0, = -- + div (N,, 1i'1) - Z, 0 (1.1)

Here It' and W, are vectors of drift velocities of electrons and ions having

constituents w,U. w.. and w,,,. w,,,. along axis z and radius r; accordingly, Z -

number of ion pairs formed by one electron in one second.

For Z we write following simp!ified e xressivn:

Z (U,) e-- . p.
. .. (1.2)

in th.,; future we will be limited to consideration of only central region of

positive colunsm which allows to simplify problem by means of its reduction to

a one-dimension problem. n equations of (1.1) it is possible to separate vari-

ables. Consldering, as usual, that in a llminar positive colum, for the same

reasons as in quasi-aeutral plAsm of uniform column, radiae motion of carriers

is regulated by ambipolar diffusion, we obtain (under Schottky boundary ccnditions)



N( \ no (z, t) Jo N,/ n

where no (z, 1) and , (x, t) - density of electrons and ions on axis of dis-

charge, , J(r) - Bessel function of zero order, 2.4 - first root of equation

(Pr) - 0 . Using these relationships for N, and N,, taking into account that

we now consider points near axis of pipe, we will receive a one-dimensional variant

of equations of (1.1) in the form

-+ ( .)+ - Z , = 0, ID =- D,, .4,/

8I% 8 "; -~ an
T "+  W (., w p.) + FD- Z ;.0(1 3(1.3)

Here

w, -be E + Lt-(-) + a w,,.., - (= .4l )

Quantity Tz represents diffusion life of carriers, R - radtu- of pipe,

Da - ambipolar diffusion coefficient, bp - mobility of ions, be - mobility of

electrons, Ue - electron temperature, expressed in electron volts, k - Boltzmann

constant, e - charge of electron. In uniform positive column diffusion in

axial direction is completely compenvated. In erery cross section of such a

column the number of ions appearing in volume is balanced by losses of particles

on walls due to radial diffusion. Condition of balance of particles in this

case [9] will be

Zrv = (1.5)

In the presence of striae, together with radial diffusion one should consider

axial diffusion along the positive colum.

b) Poisson equation

61 / ax 4- e (np - n,) (1.6)
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c) Fquation of energy conservation electron gas

a n U.)±+.a (n.u.> - u.) -nu, 4 E - n. / (U.)WS WX Y(1.7)

First member on the right in (1.7) gives energy obtained by electrons from

electric field per xmit volume in unit of time; the second member gives loss of

energy by these electrons during collision. Second member on the left expresses

flow of energy through considered volume

T I W46b [E i': (- T) i.] (1.8)

Through distribution function /, quantities 6 and 6, entering in (1.3) and

(1.8) are expressed respectively [10]

M W 000

Values 6 and 6* for various gases are unequal, which is caused by depen-

dence of cross section for electron-atom collisions on velocity of eloctrons in

actual gases.

Here on the right are given calculated values of 6 and 6' for He, Ne, and

Ar; here dependence of cross section 0 on velocity was approximated in the form

of a step function

lie No Ar
q -t t ?

C ,'/, /, 2
/1 2

Equations (1.3), (1.6), and (1.7) will be initial for problem. Analogous

equations were used for description of mobile striae in works [5,6]. In [5] in

equations (1.3) and (1.7) are omitted members containing product Ue on x. In

[6] in equation (1.3) the member containing product U, by Ohn, / 0, is absent

and furthermore, only small rates are considered.

2. Equations describing perturbed state. System of initial equations allows



solution corresponding to stationary (uniform) state of positive column. Changes

appearLtg in striae n. and np, E and Ue will be presented in following form:

m-n It + V (Z, )1, = n [ + vP (x, 01

B E It + ,(Z11 0,t)I, U . 0 U I, I + v(z, 0) (2.1)

where n, Eo, U." characterize positive column in steady state, and ve, V., 1,

and & describe perturbation. Put (2.1) in equations (1.3), (1.6) and (1.7) and

limit to case when deviation from steady state is so small that products re, v,,, , V

and squares of these quantities can be disregarded; we assume that perturbations

are subordinated to spatial-time dependence of form

V", VM, It V -C Z (2.2)

In result we obtain

- iw;b. /t,." tEkv. -i.k'v + U,k'v. + (6 -- '/) - U,0k2v (3
- U..Z' (U..) vib. = 0 (23)

- twvp bp + LEovp + IEki + Ukv, + r-v, / b-
-Z' (U.0) U..v/bp- Z (UO) v./bp = o (24)

E. k = 4jen (v, - v.) (2.5)

- '/, IUo. Wv, - 3/1IW, .-wv- i6b, EUo A-v. - i6bUo Eok1 -- Lb. EU,9A'v + 6b, U* v,k- + b:8 (6" - '/J) U.02kv'-

- 2b. Eolq - ib. E,U..kv.- ib. (6 - 2/,) EU,, kv - 0 (2.6)

Here, as and in work [5] was not taken into account change of quantity

coupled with change of Te . We multiply (2.6) by iki'2EMb, and reject members

which contain be in denominator due to their smallness. Putting (2.5) in (2.3),

(2.4), and (2.6), we obtain

- LEk + 4nten + U.0 k) v. - 4.tenvp, -+ 8, 0 k'v U, 0 (2.7)

I. .W -- -
(41tenl + V. + iEr -I. -- -1,k-4nV

Z' (1'o) U" V = 0

-F- (2.8)

(6U,0 VI. + 4i+nenW U i6U S kos +

I4ien5U.o'+' . (Uk' -+"&,' P- +I k, k' 0
- 2E* +4env2 - 2 (2.9)



Here

to 6,=8-:3,, 80= (V - / )

Conducted linearization of equations means that only small amplitudes of

waves are permissible. For comparison of results of present calculations with

experiment it is possible to turn to data of measurements of length and frequency

of very weak mobile striae. Experience shows that generally in mobile striae,

spread of change of electric potential can attain several volts, and electron

temperature and density of carriers can change by more than twice (strong striae).

Experimental invest:- ation of discharge in helium showed that influence of sharp-

ness of striae on Lheir length and frequency is weakly manifested. Therefore,

it is possible to assume that the given formulas can be applied for appraisal

of shown quantities also in the case of sufficiently sharp striae,

3. Dispersion relationship. Equations (2.7), (2.8), and (2.9) represent

linear uniform algebraic equations relative to we, vp and v. From condition

of existence of non-trivial solution of these equations and considering also

that for striae condition as that. shown in [5] is satisfied

-I- I -- -E f , - - - Up k%

after certain simple conversions, we find

2E, - 2 2EOb,-

3iU sok2 U,'OZ" WU Eobz

b= (3.1)

where ' r (8"-8). Let us assume now k =x + i , e.

Ve, Vp, TI , V - x e (KX-40)

If 0 > 0, then wave is weakened in positive direction (in direction from

anode to cathxde).

It is easy to see that after substitution, k = x ± i0 equation of (3.1)

breaks up into two equations which can be obtained by means of eqiting of real



and ifgluwyr parts to sero.

On the assumption that 10/xI < 1, disregarding members above first degree,

we obtzain

3 ."-6 - I .'2, U Z 0 + jue -- 61Uq Eo,' -r U, 0' 9), £Z

2 1 + + =

(3.2)

- " 3--- + 2 61U.oxEo + --- + .U ' UU.,K 2

U ", Z ' (U ) 0

(3.3)

From (3.3) we find

f~ ~ T, 2a zE*.aJ ,-
V P (3.4)

Expanding expression under the square root sign in (3.4) in series, we have

i.(U. F, (!!!p.E. "(ZI UM) )

So that for large "

7W a ID '0W (3.6)

From (1.2) follows relationship

dz .l ~ U 1 ,+ . -dj7: -- ~.= - UtUU=U--O5U.
Z'E. Ui " E0

(3.7)

F3s')



Asswning here T = 26, are obtain for x WcjaczekIs expression [).

Action of magnetic rieldB on plasma decreases ambipolar ditfusiorn in direc-

tion perpendicular to it in ratio
1( 'li

Herv (,- gyromagnetic frequency, i - average time of free path of carriers.

Thus, in the presence o£ magnetic field parallel to axis of positive colum

quantity To differs from its own value Ln absence of field by factor I . ,

Noting this, we finlly obtain for x

L 2YAE + --7I( r6 bb 7c,) J 2WPL. (3.9)

Assxmrng here w = 0, we obtain dispersion relationship for motionless striae

X [ SU1" (I -bpbt fr " ) 1 (3.10)

Hence when B=O Chapnik's formula is oLtained [4]. For 0 from (3.2) we bsve

-._ "U ,1' 12E + 6?,! /o i 3'r.) e ;Y , -I.. - ,," b .,,, v,.j ,-'- u "(3.11)

If in (3.11) instead of x we substitute its expression from (3.4), we receive

bond between 0 and . eneral analysis of this bond is difficuILt. However

it i s easy Lo see that in two extreame cases corresponding to sufficiently large

and small frequencies, 0 has negative value.

We will list results of comparison of lergths of striae 1 = 12 calculated

by formula (3.9) with e2-perimental dts (1 k l fromn [llj. Comparison was made

for helium at pressure of 0.9 mm Hg and radius of pipe of 1 cm

B.- C 4(0C ) o 1(0.)i 120) (ga)

4':.2 :.8 3.1 2 .).0 (v/cm)

= 5.4 6.1 6.:' 61.) 7.8 (cm)

1, 2.9 3.2 :1,6 4.7 (Cm)

..... ..



Character of function of length of motionless striae on size of magnetic

field obtained by formula (3.10) corresponds to experimental data for H2, given
Ro

in I1.

The authors are grateful to A. A. Zaytsev for attention to the work.
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CHANGE OF ELECTRIC POTENTIAL NEAR WALL OF CHANNEL DURING
MOTION OF IONIZED GAS IN MAGNETIC FIELD

G. A. Lyubimov

(Moscow)

Distribution of electric potential in channel with conducting walls
through which gas moves in the presence of magnetic field is usually
calculated on the basis of equations of magnetohydrodynamics. However,
such calculation is correct only for nucleus of flow and viscous
boundary layers.

Near the walls, as was shown in work [21, formation is p. sible of
layers adjacent to electrode of thickness of order of several mean
free paths of the electron in which sharp change of potential occurs
due to emitting properties of wall. Therefore, a full description of
electric processes in channel requires calculation of phenomena in
layers adjacent to electrode.

In present work problem of change of potential in layer adjacent to
electrodes is considered during more general (as compared with work
[21) assumptions which, apparently, are well suited to flow of dense
gases and temperature of electrodes of order 25000. Formulas are
derived allowing to calculate voltampere characteristic of channel
and examples Of calculations are given.

1. Change of electrical potential in viscous boundary laers. Let an

electroconductive liquid move in plane channel in transverse magnetic field

(Fig. 1). Here, owing to separation of charges in region of flow, electric field

will be formed and walls limiting channel turn out to be under various potential.

If walls - conductors (electrodes) are united through extenal load R, then, owing

to difference of potentials, induced by the motion of liquid electric currents
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will flow in external circuit.*

For simplicity let channel have constant cross section, speed of liquid U

be unchanged along channel, magnetic field be cons'tart (II f oerHo = const), and

electric conductance (0) be constant. In this case, if liquid is idea3 (U

= const) electric field is constant in channel and is created by surface charges,

Difference of potentials induced in flow, is found from Ohm's law and is equal to

(" - "o ' 2a
jR = Ap = a- 9-a= ( CS(-.1)

Here F= 2aUllic plays role of

emf, and 2aia - internal resistance

-- zof equivalent generator.
a Z

R ~ E~I 9 If liquid flowing in diannel is
- Z viscous, then on walls of channel

(electrodes)a viscous boumdary layer

Fig. 1. will be formed. In the examined flow,

viscous boundary layer is a charged layer [1]. When Rm<. 1  density of charge

in boundary layer is determined by relationship

4Unp. = -c - t H rotv (1.2)

Furthermore, if wall is cold, conductance of liquid in boundary layer can

be lower than conductance in nucleus of flow, and in general, a = a (z). Presence

of spatial charge and changeability of conductance in boundary layer indicate

that electric field changes inside boundary layer. General equations describing

change of potential inside boundary layar in the considered formulation when

a = a(z) and u = u(:) , were obtained by A. B. Vatazhin.

in order to graphically present a picture of change of potential in boundary

layer and dependence of change of potential across the boundary layer on parameters

'in the future R is understood as external resistance calculated at cm'
of surface of electrode. If - total external resistance, then f = SR"
where S- area of electrode.
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of the problem, let us consider a model problem. We consider that flow in

channel consists of nucleus moving with constant speed,boundary layers of thickness

6 (Fig. 2), and linear distribution of speeds on z (Couette flow). it is known

that Couette flow in many respects simulates well the boundary layer. Therefore

the simple relationships obtained in such a schematization of the problem can be

used for approximate appraisal of change of potential and other quantities

in boundary layer.

From relationship (1.2) it follows that the viscous boumdary layer near

positive electrode is positively charged, and at negative electrode - negatively.

For determination of potential inside boundary layer it is necessary to solve

equation
d'v HaPeto u lHor
W- = 4xp,= 7 F.. = - (1.3)

As boundary conditions during solution of this equation it is necessary to

assign current density on wall and

a , value of potential on external edge

t of boundary layer T a_6),

X which is determined from solution of

Q 0 P'(1.1) for nucleus of flow. If =

Fig. 2. = const, solution of (1. 3) has form

H=O_,+ [ +.. ,](z + a) when - <-(a

,-[HOU '* - "  i ](-z) when a -6 <: <a*= J If Co2 (a (1.4)

Qualitative picture of distribution of potential in channel is presented

:'n Fig. 2..

From (1.1) and (1.4), equating difference of potentials ( q.-(P_ ) induced

in flow to change of potential on external load jR following formulas can be

obtained:

0
Of+o 2a 2 - u"102a r=-, u= I

i u '-a udz (1.5)



As will be clear further, relationships of (1.5) are true, in general,

small currents. At large currents first relationship of (1.5) must be replaced

by relationship (6.4). Formulas (1.4) and (1.7) expressing change of potential

in boundary layer depend on current density. Therefore they can be used at any

currents, if current density is found from (6.4). It is natural that main char-

acteristics of (1.5) depending only on flow rate decrease in the presence of

boundary layer. Change of potential across boundary layer

(PU-8~~ b=C( ) UUdz=

Relationship (1.6) shows that if conductance of gas inside boundary layer

is high (such as in nucleus of flow), then change of potential across boundary

layer has order of 6, where at large R (small currents) potential in boundary

layer increases in reference to nucleus, but small R (large currents) it dimin-

ishes (u** < u*). Here if 6'2a - 100, change of potential in boundary layer is

of order of 1% in reference to emf. of nucleus.

Solution of (1.4) shows that inside boundary layer is point (z z_ :),

in which electric field equals zero (vM1iz - 0). At 1 zI> Z we have Ee, > O; at

I z I < z* takes place reverse inequality E, < 0. This is intelligible, since

near walls where speeds are small electric current must be directed with electric

field (j - o), and far from walls where UI < Ul'lc, current is directed against

electric field (this is possible since emf acts in the space).

If conductance of gas changes across boundary layer (for example, cooled

wall and a = a (T)), formulas giving solution of (1.3) car. be written in the

form (a. - conductance of nucleus of flow)

i

,,. (,-:) I o-hn a <:<a
T If C 26 a :

a

[ [ dL \ (z . a) whon -a < : <- < -h)

U ; 11o4 I?



(Un 2 2 r ' d
a

- '+( - -F (1.7)

Relationships of (1.7) show that if resistance X cold boundary layers (r")

becomes comparable with resistance of nucleus, then potential drop in boundary.

layer can be very large (almost all eraf is extinguished in these layers). On

the other hand, increase of resistance of boundary layers can be considered as

increase of effective external resistance if one were to calculate emf and

difference of potentials by parameters of nucleus of flow.
2. Presence of change of potential in layer ad~cent to electrode. Distri-

bution of potential in channel described by relationships of (1.7) or by those

analogous to them in case of mzre general formulation of problem takes place in

region where usual relationship for current density

j = o(E + C-' V ) (2.,1)

As was shown in [2], this relationship can be used at distances of the order

of several mean paths of electrons from boundary wall through which current is

fed (or withdrawn). Therefore, near surface of electrode formation of narrow

layers is possible in which potential sharply changes. The average speed of

liquid in these layers is equal to zero. These narrow regions of variation of

potential will be called layers adjacent to electrodes.

Formation of layers adjacent to eleArodes is due to emitting properties of

wall [2]. Indication of existence of such layers, and also certain considerations

about dependence of potential drop in them on physical processes at the gas -

solid interface, are contained in works (3, 4]. Possible connection between

change of potential in layer adjacent to electrode with emitting properties of

electrode and corresponding changes of boundary conditions for inttrnal problem

is indicated in [2].
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In work [2] in expression or change of potential in layer adjacent to elec-

trode through emitting properties of electrode and other parameters of problem,

a series of assumptions is made. In present work this problem is considered

under less rigid assupions.

3. Forms of electron emiosiom. We will assume everywhere in the future

that parameters of the problem (pressure, temperature, degree of ionization,

and others) are such that current density is determined only by electron

component (ions do not have average speed across flow). Under these conditions

current density flowing through liquid (gas) is determined to a si&nificant

degree by quantity of electrons emitted from surface of electrode. In considered

problem (Fig. 1) electrons enter gas from positive electrode and depart from

gas through negative electrode.

Current density of electrons emitted from surface in absence of external

electric field depends on temperature of surface and work function of material

of electrode [5)

t 7(3.1 )

Here T - temperature of surface of emitter, e - charge of electron, k -

Boltzmann constant, D- work function in volts, and A - constant, which for

metals without calculation of thermal expansion is equal to 120 a/cM2.degroe 2.

Generally this experimental constant, depending on material of emitter (value

of A for various materials, can be found, for example, in table given in [5].

Presence of electric field accelerating electrons at surface of emitter

leads to decrease of effective work function (Schottky effect). Current ders3ity

of emission is determined with this relationship

AT'exp it +j',v/, 7 4c x p Y_, (3.2)

If near surface of emitter there is electric field braking electron3 and

potential of electric field is minium near surface of emitter, then part of



electrons emitted by surface will be reflected from potential barrier to outside

of emitter. Current density of electrons passing potential barrier will be deter-

mined by relationship [5]

aI T = t(3.3)

Here W - height of potential barrier outside surface of emitter in volts.

We will consider that space charge inside layer adjacent to electrode is abeent.

Then electric field inside this layer is constant, and distribution of poteantial

on gas - electrode interface has form shown in 11ig. 3. Here, electric field in

(3.2) is determined as

~(3.k)

where d - thickness of layer, adjacent to electrodes q. - change of potential

in layer adjacent to electrode.

For thickness of layer adjacent

- I d to electrodes (d) we will take Debye

... . length in the future

A, 4. te,,, (3.5)

... W
Assumptions (3.) - (3.5) need,

Fig. 3.
in general, Justification .id more

precise definition. But it is possible to think that E determined by (3.4)

characterizes in a certain sense average elcctric field inside the layer.

Thickness of layer adja:::nt to electrodes coincides with Debye length (3.5)

during absence of current. Question of thickness of layer adjacent to electrode

in the presence of current is unanswered. Perhaps this thickness will be less

than Debye length. Certain considerations on this account are contained in (6].

Potential inside layer adjacent to electrodes will be measured from potential

of surface of wall (point A on Fig. 3). Here, q± and W ,ill give change of

potential in layer adjacent to electrodes.
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A. Gas - wall contact potentials during absence of current. Let ionized

ga3 border on surface of a solid. If temperature of solid T- + 0 and solid is

a conductor, then from surface of solid electrons are emitted according to law

(3.1). On the other hand, if gas and solid are in state of thermodynamic equilib-

rium, then temp::rature of gas near solid is equal to temperature of 3olid, tem-

peratures of components (electrons, ions, neutral3) coincide, and distribution

of particles of gas, according to velocities inside components, is Maxwellian.

Here the number of charged particles (Ne, Ni ) coming to wall from gas is

accordingly equal to

d;I

aCkT

______- .= N.e= flee 2rV

Nj=l e = n,e ,---

Fig. 4 A/ (4.1)

Here r e ni - number of electrons and ions per unit of volume near solid.

in the future we will disregard Ji, since ., > rn, and n, - ni.

In general i --ie- Here, since total current on gas - solid interface is

equal to zero, near surface of solid layer of thickness d, will be formed inside

which potential changes from value on solid to value in gas. Here, if b > j,

distribution of potential is such that it brakes emitted electrons. Distribution

of potential in channel represented in Fig. 1 in this case has form depicted

in Fig. 4a at velocity of gas equal to zero, and form depicted in Fig. 4b at

U 'F 0. Change of potential in layer adjacent to electrodes in this case (Wo) ,

as follows from (3.1), (3.3), and (4.1) is found from ... ation.

AT' exp 11600 (() + 4.)n, e

At 1, < ', electrons coming to wall from gas are braked (distribution of

potential in this case is represented in Fig. 4c). From (3.2) and (4.1) it
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followa that

AT exp{ _ 47l j/...} nrV'. {- ,,,'q}
A 7" exp -5 7 F_ = op r

I# T~ (4.3)

An analogous approach to calculation of difference of electrode - gas

ib- potentials is contained in [1].

Boundary between (4.2) and (4.3) is determined froia equation

Io= ,T ' ex p P, -- !,, _-,7T q )) V

in subsequent calculations,as w,rking gas argon with addition of 0.1%

potassium is examined. Density of electrons is calculated by the Saha formula

at a temperature equal to temperature of wall. For t l is working mixtixe one

can determine from (;..4) dependence of boundary value of pressure (p*) on tem-

perature and material of wall (ionization potential of potassium Ui = 4-34,V).

When P < P* case (4.2) applies; when p > p* - calle (4.3).

In order to obtain a presentation of orders of magnitudes, we lint values

of pressure p. m. Hg column as functions of T for tungsten (A = 120 a/cm2 . degree 2 ,

= .52 v) and graphite [8] (A = 5.93 a/cm2 . deg. 2 , D = 3.93 v).

T 3000 29)0 2800 271Y) INA 2500
PO,, 1.52 0.88 0.48 0.25 0.19 0.00 tungsten
P11 6 6 1 3.26 1.52 0.8 0.28 0.11 graphite

For the same materials, values of contact potentials of difference of gas --

solid 40). calculated for working mixture + 0.1 % K) at pressure 0.1 atom are:

T = 3000 2900 280C 2700 2fMOO 2500

To= 0.25 0,33 0.4 0.49 0.57 0.65 tungsten
To = 0. 43 0.48 0.54 0,60 0.65 0 72 graphite

Let us note that T0 (or WO ) represents potentjl of gas in reference to

surface of solid. In order to find difference of potentials betveen gas and the

mass of solid, it is necessary to q, (po) to add height of potential barrier of



solid It' = 0 - I, ( V, - the greatest value of energy of electronz in metal at

absolute zero).

5. Chango of Dotential in layers adjacent to electrodes in the presence

of current. Let external resistance R be other than infinity. Then daring

motion of gas in channel In external circuit and in gas electric currents will

flow. If through co is designated average velocity of electrons across channel,

then

= (51)

It is clear that in situation depicted in Fig. 1 flow of electrons from

gas tc positive electrode will decrease, and to negative - will increase.

Difference of flows of olectrons from surface of solid and from gas should

equal current density j flowing in system. Thus, relationships*

I&.-A" .=It l.-- -=l (5.2)

Here L.. - current density from positive and negative electrodes

respectively, and

L ](T. )exp . q±1 when q±<o

13 = 3 (±)xP{ j/I} whien q~±>O (5.3)

where T+, T-- temperature of positive and negative electrodes, and .. T- - change

of potential in layers adjacent to electrodes in the presence of current. Change

of potenital in layers adjacent to electrodes (c, q.) is considered negative

if potential in layer diminishes in reference to potential of surface of wall,

otherwise T., T- are positive.

If electrons have average velocity in direction from positive electrode

to negative and have Maxwellian distribution according to velocities, then

*Note that if flow of ions to wall is not disregarded, relationships of

(5.2) take form ',, -1., + i'= i'- J -- , i where 1i is determined by (4.1).
It is evident that influence of ion current exists only at small current densities
, 1.
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3:.,br of olecfrons pzssi,'g from gas to electrodes, if change of potential in

-"" " both layers adjacent to electrodes

is negative (electrons proceeding from

( gas do not encounter potential barrier;

distribution of potential is qualita-

Fie, tive as in Fig. 5a), is

:.*- (U . c) ex p ... du

2kTt m -m) (5.4)

Such a situation takes place at small currents when potential of gas in

respect to solid at = 0 is negative (4.2). If in the same case large currents

flow, then In layer adjacent to electrodes on positive electrode the change of

potential becomes positive (Fig. 5b ). Here electrons passing to positive elec-

trode from gas encounter potential barrier (.. Electrons passing to negative

electrode do not encounter barrier. Consequently,

CO

n = " (U - CO) exp du,- c. + _< >

n- 0 - . ' '(

If during absence of current potential of gas relative to electrode is

positives, then at i + 0 distribution of potential has form as in Fig. 5c,

and number of electrons passing from gas to electrodes is

n _** r (u'. -- P. ]du, ~ = - ±- !(5.6)

Using relationship (5.1) afid (5.4) - (5.6), it is easy to obtain expression

for , appearing in equations of (5.2)

i= i exp __" afT , V -(J
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- (5.8)
va

In these relationships J. is determnined by (4.1).

Relationships (5.2) after substitution in them of (5.3) and (5.7) - (5-9)

can serve as e7'prea8ior, of change of potential in layers adjacent to electrocws

Tqx through Cttrrunt density J.

if (/ / en)l <~ 2cT.pt/ -: then in (5.-8) it is possible to reject correspon-

ding members in arguments of the funct ',n8.

Dependence of q,. and (p- on J for various temperatures, if electrodes

are graphite (8]i, is represented in Figs. 6 and 7. (Working mixture is %r- ot% .

P (1* atm.) For graphite electrodes at temperatures below 30000 in absence

of current case (4.3) occurs.

In Fig. 6 curves for which qqo, give change of potential in layer adjacent

to electrodes on negative electrode, and curvea for which z~~- on positive

electrod~e (in Fig. 6 are depicted only initial sections of these curves), in

Fig. 7 are presented carves of ~P )for large J.

IT
40- 00 go90 ~ -£ 3800 r=27004

21800 i t-600
~ 2 7 0 0270d,

2.Fig.06.

Figs. 6, 7 show that change of potential. in layer adjacent to electrodes on

negative electrode (.)weakly depends on amount of current J. Furthermore,
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since this change has order of tenths of one volt, then it, in a number of cases,

can be disregarded during determination of difference of potentials oetween

electrodes. Change of potential in layer adjacent to electrodes on positive

electrode (T.) changes relatively little to currents i I.- where q - t

I::-, . At i>i, change of potential T, grows quickly with increase of current

and this build-up is faster the lower the temperature of electrode. This is

coupled with the fact that increase of current at !>I. is related to Schottky

effect and requires presence of large electric field near electrode.

In Fig. 6 on axis of ordinates points are not marked corresponding to emis-

sion current (, = 13.41 a/cm2 for T = 30000 and . = 7.6 a/cm2 for T = 2900'.

6. Volt-ampere characteristic of channel. In formulas (1.), (l.5), and

(1.7), during expression of current (j) through external resistance and emf,

change of potential was not considered in layers adjacent to electrodes. Here

volt-m-pere characteristic of channel had form

(1--r)i = 4 (6.1)

Proceeding thus, they are deflected away from emitting layer of electrode.

It is assumed that "necessary" current density determined by (6.1) is ensured by

emission of electrode. In order to write expression for volt-ampere characteristic

taking into account emitting layers of electrode, it is necessary to set up laws

of emission of electrode and to determine change of potential in layers adjacent

to electrode [2].

Distribution of potential in channel under the conditions with which (4.3)

takes place in absence of current is presented in Fig. 8. (These conditioais corre-

spond to calculations of section 5 for graphite electrodes (8] and working

mixture of Ar + 0.1% K at p = 0.1 atm).

Difference of potentials on external load, on the one hand, is equal to

A - - jR (6.2)



On the other to

IA -U --r-4-p q)- - _ (6.3)

From (6.2) and (6.3) we obtain volt-ampere charactoristic of channel.
( + r)i ' (, T) +(p-j-, T - (6.1)

This relationship shows that calculation of emitting properties of electrodes

indicates that volt-ampere character-

istic becomes nonlinear.

Relationship (6.4) shows that

from the standpoint of obtaining large

currents at the same emf S , it is
Fig. 8.

advantageous for the positive electrode

to have a larger work function than negative ('t > (D-). Let us note that

this conclusion refers to the case when T_> 0. At small work function of nega-

tive electrode p_ can be less than zero for all j or at J larger than a certain

value. Under these conditions it is more profitable to have negative electrode
with low work function. Furthermore, since (see Figs. 6, 7)

qp (/, TI) < qp. (j, T,), (_ (/, TI) > q (j, TI) when TL> T2

it is profitable to heat positive electrode, and to cool negative, But since

work functions of various materials differ by amounts of order of several volts

and change of pot,;tial T_ has order of tenths of one folt in a wide range of

temperatures changes then in a number of cases (when E larger or of the order

of tens of volts) during calculations it is possible to consider q)-= (-) and

T,---T_ . Here

(R- +r)J= -. ,,T) +q- TT) (6.5)

Here T - temperature of positive electrode. Relationship (6.5) will be

accurate if T.= T_ = T and material of electrodes is identical. These

conditions in the future will be assumed fulfilled.

In Figs. 9 and 10 are presented volt-ampere characteristics oi channel
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calculated by (6.5). During calculation it was assumed that velocity profile

Jn channel has form

uuo = [1 -jI'ai",

where u 0 1 km/sec - velocity on axds of channel; profile of temperatures

resembles velocity profile; working mixture is Ar + U.1 % K, temperature on axds

of channel To = 3000 electrode materials is graphite [81 (A = 5.93 a/cm2 " deF2 .

01= 3.93 v); exterral resistance R = 0. Fig. 9 corresponds to channel of width

2a = 40 cm, Fig. 10 - channel a = 400 cm.

Fig. 9 shows that during calzulation of influence of electric field of layer

adjacent to electrodes on emission of electrons from electrodes, section of

saturation current L2i is absent in volt-ampere characteristic. Volt-ampere

characteristic has nearly rectilnear section (6.1) at currents 1-1, . At

larger currents, volt-ampere characteristic is nearly straight, but angle of

inclination is less than on initial section. This attests to fact that presence

of layers adjacent to electrodes can be considered as increase of equivalent

internal , esistance of channel (r -=S). Thus, r* is almost constant

for small and large currents, with the exception of a narrow (by currents)

transitional section of volt-ampere characteristic.

Since increase of resistance owing to layers adjacent to electrodes, roughly

speaking, depends only on magnitude of current J, its contribution to r* is less,

the greater the internal resistance of the channel. This situation is illustrated

in Fig. 10 (internal resistance of channel corresponding to this figure is ten

times greater than channel ;orresponding to (Fig. 9). Fig. 10 shows that volt-

ampere characteristics for channel is 400 cm closer to rectilinear characteristics

of (6.1) than to characteristic of channel 2a = 40 cm. (Volt-ampere character-

istics of (6.1), for various temperatures, are tangential to corresponding curves

in Figs. 9, 10 at origin of coordinates).

In Fig. 11 is shovn dependence of volt-ampere characteristic on amount of
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load (R, ohm) for T 2700. Under these conditions, r =6.923 ohm. In this

figure are given characteristics of (6.1) by dotted line. With growth of external

resistance volt-Ampere characteristic approaches rectilinear of (6.1).

7. Discussion of results. Motion of ionized gas in channel in transverse

mpgnetic field is accompanied by appearance of electric field. Here walls of

channel are under various electric potentials. If walls of channel (Fig. 1) are

connected through external load, currents can flow in gas and in externa circuit.

Flow of current in channel is due to the fact that electron enter the gas

space through one of walls (positive electrode) and leave the gas through the

other wall (negative electrode), ensuring thereby, continuity of flow lines.

It is natural therefore, that amount of current flowing in system and difference

of potentials on external load depend not only on hydrodynamnic and electric

parameters of flow and external circuit, but also on mechanism of electrons

transfer at the interface of gas and electrodes.

Quantity of electrons entering gas from stuface of electrode depends on

emitting properties of material of electrode, which one can determine by twi

constants a and A, fr-om temperature of electrode, and from amount of electric

field near surface of electrode). Electric field near surface of electrode is



determined by otructur,3 (distribution of charge, thickness etc.) of layer

adjacent to electrodes.

Difference of potentials on external load is determined by change of potential

in various regions of flow and is given by relationship (6.3). Amount of current

flowing in system is given by (6.4).

Relationship (6.4) shows that for solution of problem it is necessary to

know relationship between changes cf potential in layers adjacent to electrodes

(%.. q-) and other quantities determining the problem. It is clear that this

relationship essentially must depend on emitting properties of electrode. Char-

acter of dependence of T. and I on parameters determining prohlem (material

of electrode, its temperature and pressure in gas flow, speed etc.) can be fixed

either experimentally or theoretically.

In work [2) and in present work is shown how to establi:sh similar relation-

ship on basis of certain systems of assumptions rcgarding pr)perties of the

surface of electrode and flow of gas. Comparing results of these works, we see

that final result depends essentially on character of assumptions vdade. It

is necessary to say that asstuptions made here are very close to ct)nditions

taking place during flow of gas in channels and apparently, are well observed

during flow of dense gases and rather high temperatures of electrodes (T > 2500).

Absence of experimental data on gas flows under such condi.ions does not allow

to compare results of theory with experiment.

Calculations show that at temperatures below 2500' and current densities of

order of several wnperes, potential drop in layers adjacent to electrodes becomes

order of tens of volts. Electric fields active here in the layer adjacent to

electrodes attain values of 105 - 106 v/zm. With such fields, assumptions made

here will apparently not hold true.

At fields of order 106 v/cm considerable field emission is possible [9].

Although, theoretically, field emission occw's during fields of order 10 v/cm,

IC-



but experimental data show [5] that considerable field emission, especially with

poor electrode surfaces, is possible during fields as small at$( 106 v/cm.

Furthormore, during large accelerating fields, electrons in layer adjacent to

electrodes are accelerated to energies higher than gas ionization potential and,

consequently, can ionize gas by means of collision. Here, density of charged

particles near electrode can differ considerably from density given by Saha

formula and accepted in present work. Finally, ions accelerated in large electri-

cal fields colliding with the surface of the electrode can knock out additional

electrons and thereby increase density of emitting current [3]. Density of ionic

current here can be small.

Given considerations indicate that at low temperatures of electrodes a

more detailed examination of processes occurring in y adjacent to electrodes

is needed. At the same time, since theoretical description of above-mentioned

processes cannot be done in an exhausting manner, luring the study of these pro-

cesses it is necessary, apparently, to use experimental data.
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ROTATIONAL RMAXATION IN PLANE-PARALLEL RAREFACTION WAVE

V. N. Arkhipov and L. I. Severinov

(Moscow)

Influence of relaxation on flow parameters in plane-parallel rare-
faction wave formed during supersonic flow around a blunt point was
investigated in linear placement only for slight deviation from
equilibrium [1] and for mall deviation from frozen flow L2]. Generally,
without these limitations it can be investigated only by nonlinear
meth.od. Here such investigation is conducted by method of character-
istics.

Subject of investigation is rotary relaxation. Study of this form
of relaxation in flow of as is mathematically the most simple; here
it is possible, comparatively easily, to obtain visible results illus-
trating influence of relaxation on flow. At the same time mathematical
peculiarities of solution of the problem related to calculation of
relaxation and also qualitative results have general character for all
forms of relaxation.

During investigation of structure of shock waves, rotational relaxa-
tion is usually disregarded. However, in rarefaction waves it can
play a large role, as was shown by Wood and Parker (3] in example of
one-dimensional, non-stationary rarefaction wave. Furthermore, theoret-
ical (4) and experimental (5) results recently were obtained allowing
to think that time of rotational relaxation (and, consequently, its
influence on flow) is increased with rise of temperature. In connection
with this below is also investigated influence of amount of time of
relaxation on character of flow in rarefaction wave.

1. Fundamental eauations. We will take thermodynamic circuit used in [3J.

We will introduce polar coordinates ry with beginning of reference at vertex of

parallel to left side of the angle. We will make typical velocity angle. Angle

will be reckoned from initial direction of velocity vector, frozen speed of



of sound a,. in incident flow, and characteristic time of problem t0 (as To it is

possible to select, for example, time for which sonic disturbance of high rate

passes distance of 1 cm). We will introduce further dimensionless variables by

formulas

r= T P P X S= s-so
al TO 7 , X. P P. S~So

Tx T - ii,?' - , ,

Tota aa i

CplI ,- X, 1 I = 01, = .- u '
a T

(r-lIp, a.= TI poPo, TI =--p C, cp = -,. + ci, c, = co + R).

Here Jo - parameters of incident flow; T - progressiire temperature;

0 - internal temperature, T - relaxation time; cpi. cr1, ci - specific heat

capacities assumed constant; p--- pressure; p - density; S - entropy; u,. u;-.

- radial and transverse components of velocity; al - frozen speed of sound;

R - gas constant.

In the future we will disregard viscosity, thermal conductivity, and

diffusion.

Equations of motion of compressible liquid and equation of relaxation

have form (index x is omitted)

a (p,,,) a(PU, -0
pu, + r a-+

opu, r - pu, + pu, -" + ap 0

u, am, I ap = 0
pu-it+PuUt U + rpu- -0 + it-

aS aS rc (T -O)t

rum "57 + u, a ,= -t

(1.1)

These equations allow integral

"r + ct (--1)+ "fl = cns
I P 2. os (1.2)



System (1.1) is closed by equations

S =c,,InT+-chin0 -lnp, p = pT (1.3)

2. Characteristics. Boundary conditions. Two families exist of character-

istics of 8ystem (1.1), differential equations of which are

G d(2.1)

Along characteristics are satisfied conditions

c ot a/d( T/ Ci a, p (T -- e)

cot d. +J +T/PV' dr/t ev, rT cos 4p a,(.2

Here P - angle of inclination of velocity vector to initial direction

a, - arC sin-, = (2.3)

Along lives of flow equations of which rdq / dr = tan (4p - ), are satisfied

conditions

dS c, (T- 0)'e _ T-0

"7i" -- r8Yos3- )' di v, cos 3- ) (2.4)

Flow of gas remains vniform to characteristic

I = TO = arc sin (alI V.)

Therefore boundary conditions at 4F = To can be written in the form

V =Vs, p S= 0, p-p=T=0=a= (2.5)

Let f*- angle of inclination of second side of angle (T*< 0). Then

P (r, q*) = q. (2.6)

Further in calculations everywhere is taken r = I/ Ap, where A - relation

of characteristic time of problem to characteristic time of relaxation.

3. iaximum form of equations at r -. 0. In limit at r -. 0 equations (1.1)

will be turned into system of ordinary differential equations describing Prandtl -

Mayer supersonic frozen flow. System has form
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+ - -_ Uq, + *U, °  - = 0

~*~* d p 140) _ =
0 u,* + P° u,°u.F ° + _! ij
PUdq p7, 1 PU dp

uE " = O, u.-° -!

Here and iv the future index 0 designates function at r = 0. Solution of

this system for Ts < T < To has form

u= - al, 2 u,' , + V"-  = V 2 = Colst, u,° = V +s~n a

0 CUS20 a Cos IW4*1a

U 
°  X V+ Co-sa , p cns z ' Jd -osU + 2 "4

cost a os aO

T 0 a= 3 0" 00 1
Cos/ -30t

a=X.(To - T) -to, X' (t" ) [
1 T +ITI

tan =o VFYoF- (3.2)

In region q.€ < <T, parameters of state and motion of gas are constant:

S(T) = (y-) --l.Angle T, is determined from equality (')- .

4. Characteristic variables. We will introduce characteristic variables

and -n G is constant throughout characteristic of first family, in is constant

throughout characteristic of second family). Let il = r at IV = T, a = at v "

equations (2.1), (2.2), (2.4) will take form

r =tg T] - T + ad rv, rp = tg a/- -=) rk

A~ac( '- 0 i '

Pi Ct9 11 + TOT* =- .,cos @.- 4+al (3.2)

ATa eq (l -y e) ppr *)P. CCtga + TVe = itrodc c r-12es) (v.3b)

V$tr, c" (P a/' - ) + VS,,rE Cos (p- + al)
V&., owqp (T - 0)srlr, ("''

Veteqaios2(., 4 w l) + fr. Cos rm + C
- 2A co ap (T - 0) rfr,(
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Boundary conditions are:

= r =.O, 6 = 0 at 0=o; 4=F o, r= , V = V, S= 0
a= 0 = p = p = T = at E="

5. Derivatives. For study of solution in environment of point r = O it is

important to know derivatives of this point. In region j ( ? < Towe will deter-

mine characteristic derivatives. We differentiate equations (4.1), (4.3) - (4.5)

by ii, equation (4.2) by .

-. 
T

075.7 -

S II

0a5 00.a. o5 a O'a5 o .

Fig. 1. Fig. 2.

and let us turn to limit at 11 -0 in received equations and in equation (4.2).

Designating (,, ( ) = (Of / &0),.o. we receive

24p() = p(M + otM, r0) = tg 2 (A* - [) rC0)
0

p) ctg a e + TpV O -("-- - -ATia, p0 (T0 
-)

ept

Pt /M) cac 2 at - pC () ctg at* + T, (pMi) Vol + 2p°rV{')) v 4-
,tA,,,Pe (T* - 1) ajrE(l

-", 2- c42(3- (5.1)

V*T*St(') r) cos2 +o - [) +VO°SM(rt(l = 2A cos alc0 p* (TO -i)'2 rl)r(') (5.2)

Vle(Q) r01 cos 2 ( __ "r V°rt(i) =2A yos 1 (T° -n "1) r (5.3)

- p(i) ale cosec' oi° + p ( ') ctg or0 + T (P *V' 4- 2p*V'V&*) +

+ [ = ,-,° (T - 1) pa] r(" '7 Yr,,-C "T. (T O- I)Ap rE

Functions f are deterziined by the formulas of (3.2).

We 'frill differentiate also equations (1.2), (1.3), (2.3) by and let us

turn to limit at I -0. . These equations Jointly with (5.1) - (5.4) allow
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to determine function P) in closed form for Ti= 5/3. Thus, for example, in-

tegration of second equation of (5.1) and equations of (5.2) and (5.3) gives

o) G = f.lsh'Is" (5.5)

cos 'd (sin 2 - sin 2o)-co@4 as Aln 1I a aT

-2 o as a- + cs as(to,,,---)a.)] (5.6)

,j) 2ACOe s.in' [ ( a. - a) -I (sin 2 ) .(5.7)

w, [2 (x4~+ ( a- sin 2a) -cu'lot(a - a*)] 57

In interval1'*I-"z&T T.it is necessary to determine (Of (:;).

Equations for functions of 11 can be obtained by differentiating system (1.1) -

(1.3) by r and crossing to limit at r - 0 0. System has form

0dp1  o du% = ,

u,°--±--- + p -u- Fl. pu, ° -u! =F,

d9" dy df

1 alp . odu

UO dSk_ F, . dot =F
q, d-F, T,--F

where Fl, F2 , F , F5 - functions of fo, fie This system can be integrated

for r,= 5/3 in closed form. The simplest expressions are obtained for S1 and 01:

S="c (q- ') [- -' -f)' 1 (5.8)

L j OP - P.*) +~ const]
Ap, (= + const]

v. q -P. (5.9)

Constarts are determined from boundar" conditions at P = y..

6. Gradients on straight line T = (ro. Let A = I. We will designate

f ° (T) =I (AO, ) . We will differentiate by t first equations of (4.1), (1.3),

(2.3) and equations (4.2) and (1.2) and let us assume in received equations,

in second equation (4.1) and in equations (4.3) - (4.5) that = * We

obtain
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0o. 0° + t2qo 0r0 ° .Oo.P-.. -:_ I °'otg .+4,o =o
0.2 AO C- tg Ts + V62 °°  = 0

.A J Vor arP T o

to ~~o '"=rj " .- t
Figs r , c,_

00"9 Ts.' 4pq°" ctgo .. T#,°°  T i W r  (6.1)

t T

., Asa/ Pis 00  Cq* + TV.0*0 0 = ( - ) (6.1

/'a - Taking into account the second eqaat'on of system

- Pat-- (6.1) we receive

5 /0 0t

Fig. 4- P1 g P

which, after integration, gives

0.2 A P" () = poo (0) e-k,, k = "*Urct)
A: - After that we immediately obtain

A.I 0.1- (,06 = V- (0) eh,, P ('0 = ci/ (0) C-

Fig. 5. Now it is easy to integrate the filth equation of

(6.1): -(o) + cq (0) (i -
00 (() +=f"(0 -

Then,
(,) /," (,1)p,(T., r)= T. = =

kp" (0) @o
-'

) -

Poo (0) -- at (0)1 - ik

Le)p,),r) kpA o0) f-k

AV (.o, 0) + /,' ('o, 0) - .-k'

Thus, pressure gradient on 2ine p = ( diminishes with increase of distance from

vertex of angle.

Analogous result is e~sy to obtain also for gradients of other quantities.
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7. Results of calculations. Conditions of (2.5), (2.6) and equations of

(3.2) constitute system of boundary conditions starting from which it is possible

by method of characteristics, to find distribution of parameters of flow in

region q. <(P- Tn. r>

Calculations were made for V = 5/3 which corresponds to simultaneous relaxa.

tion of rotational stages of three-dimension ! rotator. (Equilibrium. value T

is equal here to 4/3). Acciuracy of calculations was controlled by comparison of

derivatives received by method of characteristics and calculated by the formulas

of Section 5. Mass flow rates through arcs tp of circle r = const limited

by half-lines of :-qn and 1 = p. with great degree of accuracy were equal to

flow rates through radii --, of these circles.

Certain results of calculations are shown in Figs. 1 - 5. Here, everywhere

V = 2, " = - 200. In Fig. 1 are given temperature distributions T x depending0

upon q for various rx at A = I. In Fig. 2 - distributions T X depending upon 9

at A = 0.1, 1.0 and 10 for r'= i. In both figures upper curve corresponds

to equilibrium. In Figs. 3 - 5 are given pressure distributions p x, temperature

T x internal temperature e and entropy S x along right side of angle T = ("

for various A. It is clear that influence of processes of relaxation during

flow around an obtuse angle is considerable. Effects of relaxation strongly

depend on length of time of relaxation.

The authors thank D. A. Ipatov for his help. Submitted

17 January 1963
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THEORY OF DIFFERENTIAL EJECTOR

B. A. Uryukov

(Moscow)

In single-stage gas ejector with cylinderical mixing chamber and
supersonic speed of ejected gas, achievement of maximum total pressure
of mixture at given ejection coefficient and given total pressure
drop of miscible gases is limited by critical conditions at which
ejected gas accelerates to speed o2 sound inside mixing chamber.

Multistage ejector (system of series connected ejectors) allows to
obtain total pressure of mixture greater than in single-stage. This
is caused by the fact that losses of total pressure daring mixing of
flows in ejector sharply decrease with decrease of ratio of total
pressures of ejecting and ejected gases and also by the fact that in
multistage ejector limitations, associated with critical conditions
are weakened to a significant degree.

Calculations for multistage ejectors were made by Yu. N. Vasil'yev.

It is interesting to consider an extreme case - "differential"
ejector - with continuous distribution of flow rate of ejecting gas
on length of mixing chamber. Investigatiozi of differential ejector
allows to clarify main characterietics of ejector with large number of
stages.

Equations of differential ejector were obtained by S. A. Khristianovich.

1. Differential ejector can consist of an infinite number cf ejector

"elementary". Diagram of differential ejector and azparate elementary stage

is given in Fig. 1.

During investigation the following assumption are made:

I) friction and heat transfer on walls of ejector are negligible;
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2) miscible gases are ideal with identical chemical composition;

3) velocity, temperature, and pressure in initial section of every elementary

ejector are evenly distributed.

We will introduce designations: F, Q, w, To, p. - area, flow rate velocity,

deceleration temperature and total pressure in given section of ejector respect-

ively: dF', dQ', w', To, po - the same parameters ejecting gas at nozzle section

of elementary ejector; df - change of area of cross section of elementary ejector

"Fig. 1).

Equations of inseparability and zomentum for elementary ejector have form

dQ dQ', d (TQ) T.'dQ', d(Qw) - w'dQ' = p'dF'- d(pF) +pd/ (1.1)

010 
Change of area of mixing chamber

dF dF'+dl=-.Fe(d+dX) (1.2)

dF dQ*wPrTIP' Dimensionless quantities (* index

_f 0 are designated parameters ejecting

.... gas at input to ejector) are

Fig. 1

T o' P" ** F

Ifir - 11P )

(*.t J 7~iR e (1.3)

- reduced speed, coefficient of injection, temperature drop of deceleration,

fall of total pressures, compression ratio, and relative area of mixing chamber

respectively; .- critical speed of sound, cp and cv- ratio of heat capacities,

and R - gas constant.

We will designate

! +-- t 1Pk
p) T k) IiT ' pQ.)=T(X)2
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We will consider that Po' and T,' aro constant along ejector, for consider-

ation of a more general case does not introduce principal difficulties.

Ejection equations lead to form

d YT q.o)

T zY) I.- Y(I + n) (I + nT) T (k) -I.A =1 x ,~t +n)+x;. x ,q(X) V( +, ! -n) X

TX) p dA __

Y (I + n) (I + nr) q (ko) " t + ni. +a+X
-- .o-  -, n= (1 . 5 )

Evidently length does not enter into ejection equations. As quantity re-

placing length along mixing chamber it is possible to take injection coefficient

n.

Usually mixing chamber of ejec.or is terminated by diffuser. If in end of

mixing chamber X<1, losses in diffuser are small. If however, X> 1, then

in diffuser various conditions can take place; losses in this case depend very

strongly on design of diffuser can be very preat at Largs values of %-

In connection with this, we pose the problem of finding the optimum ejector

in the following manner: at given total coefficient of injection n, (value of

n at end of ejector) at given T and a, and also at given value of Xi at end

of ejector, to find distribution of velocities along ejector X = X(n) andX'= '(n),

with which el at end of ejector attaines maximum value, Optimum value of Xi

can then be determined from joint consideration of work of ejector and diffuser.

Equations of (1.5) can be reduced to one equation by excluding geometric

parameters , and P

(a To7- (X ') ,+ 1 Y T 13 q D ((1.6)

W= +( +n)(l +n), , 1d '/,( +) + nV=0 T^ Vit+ R) 0+, - (1.7)

It is important to note that in (1.6) there are no differentials dA and d'

This is explained by the fact that in elementary ejector, change of total pressure



of mixture can depend only on increase of flow rate of ejecting gas.

From equation (1.6) it follows that for obtaining maximum value of ei at end

of ejec ;tor it is necessary that quantity A be at maximum for each elementary

ejector. We have

8A (,)I ) ( -+ X1- )2

Assuming 8A 'O' = 0, find

ap (1) = op CW) (1.9)

This equation has simple physical meaning: in each section of ejector

static pressure of ejecting gas at nozzle section should be equal to static

pressure of mixture.

Assuming aA / OX = 0 and using (1,9), we receive

-,+ ,,][ ' ' t- , + AT (1.10)

Since a < a, from (1.9) it follows that always < ', so that equations

(1.9) and (1.10) at any values of r allow onlv one solution ) = I., '- X.'having

physi.cal meaning. At the same time, so that ejector will operate, real velocity

of gas at nozzle section should be larger or equal to velocity of mixture (u,'> w)

This condition has form
-7 >0

((I+ I( 1)

It is obvious that (I.ll) is always executed at T > 1, therefore 1, and X.'

att >1 are found from (1.9) and A o1 Af

"A

S(1.12)
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Fzuality (1:12) can also be presented in following form.
N-I

P pw (p .- Jensity) (1.13)

At c < I maximum value of A lies at limit of possible solutions determined

by condition (1.11). Let us note that

I. =-x' =1at T

Structure of surface A = A (0, ') is shown in Fig. 2 in which 1 - line

of equal pressures (equation (1.9); 2 - line aA /I 8 = 0, equation (1.8); 3 and

4 - solutions of (1.10); 5 - section A plane A = const; 6 - section A plane

= X. = const; 7 - section A on line of equal p-esurer; C - point (X = )-*, ' = X.1)

It is possible to show that X. grows during increase of n. Therefore if

11, < .o (11, in beginning of ejector), the greatest value of A at any e is

reached when X = X, and at values of ', determined by equation (1.9). It

follows from this that in this case optimum ejector corresponds to constant

X = 1 along entire ejector. If k.e < Xv then in this case optimum ejector

corresponds to % = Xat 's < k, and then X = to end of ejector.

2. Let us consider case X =XA* and ' = X.' along entire ejector.

Excluding e and A from (1.6) with the help of (l.9)and (1.10), we receive

d'e / dn = 0 (2.1)

Thus, V,' = const along ejector.

-.1 In initial section of ejector we have

S'D-". -from (1.9) and (1.10)

Fig. 3. p ()F) up (k') (2.2)

X-. (, < 1
).*° = V-

(T<1 (2.3)

Hence are determined values of ).' and %,n . Excluding from (1.6) e and '

with the help of (1.9) and (1.10) and integrating, we find distribution of X.

along ejector. Then using equation (1.5), we find
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X o, q t+ a (2.4)

xc-- (/T) ' m -(t I +n)

40 X(Q -)(T <

X ! T+ +t .'--i"

tt +I- M<

From (2.4) and (2.1) it follows that in interval X, < Xi optimum will be

single-stage ejector ivith cylinderical mixing chamber. In Fig. 3 are shown

limits of regions X, < , at 1, = I and % < I. Corresponding limit for c > I

at n = 0 is obtain by replacement of T by r-1. It is possible to see that at X =

optimum ejector in whieh X = X. and X'= I.' along entire ejector, practically,

takes place only at very small or very large values of T.

It is interesting to note relationship-between selocities of miscible gases

in optima ejector at X* < X1 . If in case T > Iw'/w = T'/T*, i.e.,

difference between velocities is great and there is intense mixing, then at r <I

velocities are equt.l to w = W' and equalizing of flows occurs much less intensely.

3. Let us consider, practically, the most interesting case X, <).,.

In optimum ejector we have X = X = lo- Equation (1.6), taking into consider-

ation (1.9), will be converted to form

T-(;_ d- 0 F-(- YT (3.1)

Initial value of %' is determined from equation (1.9)

p (1) = op (,0') (3.2)

Geometric characteristics and compression ratio of ejector are determined

from equations

P 01s ) T X. (ra,_ / (v l

p0.), , 0 = -- , (") (3.3)
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In case r= I equation (3.1) is integrated

S+ n =t --nfr- ' - ; h 36

In Fig. 4 is shown change of area of mixing chamber as function of n at

I and Y = I for several values of a. It is clear that at sufficiently large

a mixing chamber at first contracts, and then expands. Position of minimum

section is determined from relationship

2 (3.5)

At '<k,.' mixing chamber will be continuously expanded. At X =

x = 1.4, 1' = 1.714, which corresponds to value ,, = 5.6. Let us note

that dX/dn < 0 at X = 1, i.e., mixing chamber of each elementary ejector in

this case contracts.

Since compression ratio of ejector rises with increase of XL, and loss

fa"lor in diffuser even in simplest case of supersonic diffuser with normal

shock, is small at values of I , insignificantly exceeding unity one, applica-

tion of ejector with low supersonic speed can be profitable.

00~ jJ log (I*n)

Fig. 4.

4. Let us consider the particular case of a differential ejector

when T = 1, in which area of mixing chamber in each elementary stage does not

change (x= 0) and X" = const. Equations of such ejector coincide with equations

of single-stage ejector



_t 0-) L1 7 Q4

(1 + n1) z (XI) = niz (.) +zN) (4.1)

We will determine maximum compression ratio of such an ejector when velocity

of mixture does not exceed speed of sound. For independent variables we take

k0 and 1, . Derivatives 0e, / alo and ae/ al, can turn into zero at four

points of plane (X,, AJ

(1) (P ( ) ap ('), A= 1), (2) (p (4) =ap X), ap (X) =e p (X,
(3) (4 t = = 1 ) (4) (4. = u. p (XI) = e (1))

Analysis shows that points (1) - (3) do not correspond to maximum ci"

Points (1) and (2) correspond to case

50 , =X, = ' = land a = 1. Investigation

40 of second derivative at point (3) shows

that it is a "saddle" point. Maximum-I ez is at point (4). In all sections

l og of ejector responding to point (4)

J , except output, inequality occurs

Fig. 5. Fp (.) > ep (k) (4.4)

In spite of coincidence of equations describing process of ejection under

single-stage and differential ejector conditions corresponding to point (4),

this cannot be realized in single-stage ejector, since here at values of X <1

critical regime sets in. In differential ejector critical regime does not have

place, since influence of infinitesimal ejecting stream on flow of mixture in each

section of ejector is extremely slight.

During replacement of differential ejector by multistage, critical conditions

will appear in each stage, but with increase of number of stops critical value

of ). will continuously increase approaching X 1. This allows to receive,



Jo in multistage ejector, larger compres-

sion ratio than in single-stage.

Zc - / In Fig. 5. foro = 5') at T I

as function of n are given compression

to A ratio curves: 1 - for optimum differ-

ential ejector at It = 1;2 - for dif-

ferential ejector X=O and 3 -

- #for optimum single-stage ejector under

Fig. 6. critical conditions.

Comparison of these curves shows that multistage ejector can give very large

increase of compression ratin. Narrowing of mixing chambers of elementary stages

also gives essential increase of compression ratio.

Results obtained in work for

tI---- 11 -2 -Joptimum ejectors allow to indicate

limits of application of multistage

20 Iejectors with determined number of

stages. In Fig. 6 in coordirates of

log fl-lo of r,U at I = are shown fields of use

Fig. 7. of N-stage ejectors for N - 1, 2, 3, 5,

10. Compression ratios of multistage ejectors were calculated by Yu. N. Vasil'yev.

Limits of fields correupond to difference of 10% of compression ratio cC N-stage

ejector from compression ratio of optimum differential ejector at %I= 1. It is

interesting to note that at small values of n and, practically, at any values

of o. and alamo at small values of a (to Y = 2.5 - 3), and any values of n,

application of multistage ejector3 is inexpedient. One may see also that field

of application of ejector with given number of stages is expanded with increase

of n, which is explained by decrease of losses in ejector with increase of flow

rate of ejecting gas.



5. Equaticns for optimum ejector at X, > X0 allow to estimate

simply influence of differnce of temperaturea of miscible gases on compression

ratio of ejector. From (2.5) it is clear that heating cf ejecting ga, (1 >)

does not affect compression ratio, Consequently, in this case weak change of

comressiou ratio in ,i-atistage ejector can be expected depending on increase

of temperature of ejecting gas. Convarsely, at v < I influence of temperature

heated ejecting gas should be significant, since in optimum ejector at ' <-, rol

of n is played by nr . This is seen in Fig. 7. where compression ratio curves

of optimum ejectors are given at li I for ai 50 and various values of t:

I-Tr=30, 2-- 10,

3 .-- 3.333, 4-= 1,
5 - T = 0.3, r, - - 0.1,
7 - ,r = 0.060, 8 =---0.0333

6. EZficiency o elector

V* '1 
(6.1)

is determined as relation of compression ratio of ejectore to , compres-

sion ratio obtained during isentropic

' I process of mi.ring

(L-+ n - " -8* (( \- - / (/ T) (6.2)

In Fig. 6 for a = 50 are given

values of v* as functions of n at

04 various T for optimum differential

ejector when X1i> , :

- I-=30, 2- r =16.67, 3- v 10, 4- T= I
5- 0.3, 6 -=0.1, 7-v =0.06, 8--=0.03:

z

tig. 8.
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It is clear that efficiency of optimum ejector is very low at small values

of n and is near to unit one at large n. FEiiency curves of optimum ejector at

Lon X, i have analogous form, zinc* compression ratio of such ejector in entire

range of n and a differs insignificantly from compression ratio of optimum

ejector X> X~.

Author thanks S. k.* Khristianovich for formulation of problem and help in

ire ofprocess of its solution.
role

,es

)ic

.2)

in

1
0.0333
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ON CALCULATION OF THERMAL DIFFUSION IN IAMINAR FLOW OF VISCOUS
LIQUID AT MODERATE VALUES OF THERMAL AND

DIFFUSION PRANDTL NUMBERS

A. M. Suponitskiy

(Moscow)

If a stream of viscous incompressible liquid containing certain
substance flows around a body, temperature of which is different than
temperature of flow, then under action of temperature gradient transfer
of components of solution occurs. Calculation of occurring thermal-
diffusion separation is interesting for a series of problems of chemi-
cal technology. In previous article the author [i, was considered
process of separation in case of large thermal and diffusion Prandtl
numbers. In a liquid, the Prandtl diffusion number P is rather large
(103 and more). Meanwhile, thermal Prandtl number P1 for liquids
changes in rather wide range (at 200 for water- 7, for lubricating oils

103), therefore, assumption made in [1], P1 > 1, limits field of
application of conducted calculations. Below is considered problem of
calculation of thermaldiffusion separation at moderate values of thermal
and diffusion Prandtl numbers (P > 1, P1 > 1), and also elementary
theory of thermaldiffusion separation in forced flow of viscous liquid
is given.

1. Let us consider problem of thermaldiffusion separation in two-

dimensional laminar boundary layer formed during flow around a wedge. We will

assume that presence in stream of alien substance does not have influence on

hydrodynamics of flow. This assumption is fully natural if substance is dis-

solved in comparatively small quantities or differs little by specific gravity,

from substance of stream. We will draw for the body an orthogonal system of

coordinates x, y, in such a manner that line y = 0 coincides with contour of

surface of wedge. Velocity distribution in hydrodynamic boundary layer of uniform
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liquid is given by expressions of [2]

u = U' (i), ( - - v Uz3"-, I (,9) +, -t i' (11)]

+ 2-)IS X-"x, 2 U 2 . M const

Here U - velocity distribution in external potential of flow; nP - aperture

angle of wedge; v - coefficient of kinematic viscosity; function /() satisfies

the Fokner-Skan equation.

Transfer of substance in considered problem is caused by joint action of

convection and molecular devices. Flow of substance in liquid transferred,

through surface by molecular device during calculation of thermal diffusion is

given by expression 13]

ag Y (1.2)

where c (z, y) - concentration of substances; T (x, y) -- temperatur e of liquid;

p - density of liquid; D - diffusion factor; a - Soret factor; y - normal to

a surface.

Equations for determination of concentration of substance and temperature

in diffusion and thermal boundary layers have form

S

U;+,,L=IID [-L+ ac(1 -c) j u .,-r = a , ( 1.3
Eal +y ay ox[~ oci-) } ay-~ "Y (1.3)

where % - thermal conductivity factor.

We assume that body is impervious to substance, and that concentration of

substance co and temperature away from body To, Just as surface temperature TI,

are constant; then boundary conditions have form

[ ,.. + arc (z, Y) 11 - C (.X, Y) l L

T (x, 0) = TI, c (r, oc) = c, T (z, oo) = T(o.)

TZ (0, ) , c (0, y) = c,

We assume that solution has constant physical characteristics. If we seek
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solution in the form

T = (T), c = c(q) [ tf. XV Y] ()

then, putting (1.5) in (1.3), and (1.4) and considering (1.1), we receive

- P (I) c,' = c,,,,+ a lc (I - c) T,'),', - Pj (TI) TI' = T',

c (oc) = c, T' (oo) = ', [Ic' (TI) + cc (I - c) T,'J,, = 0, ' (0) = T, (1.6)

Here, p = v / D, P, = v/ X - diffusionA and thermal Prandtl numbers. Heat

transfer equation, second equation of system (1.6), has solution, expressed by

quadrature

S 0T (1) a (PI) (T[-T ex P Pj (h) )dt T

' (1.7)

Values of function a (PI) for series of values P1 at various m were calcu-

lated by Evans 14]. Putting (l.7) in equation, and the boundary conditions of

diffusion part of problem (1.6), we receive

- P/ () C1I' c', + tot (?O [c (I - c) exp (- P, .QA) dh)}

[c%' + ea (PI) c (I - c)h.,.e = 0, c (or) = c, = c (r - 7) (1.8)

From (1.8) it follows that quantity of separation A = [c (0)- co] I c0 for

wedge of given solution depends only on P, P1 and t.

2. Experimental investigations show that Soret factor a has value of

order 10-2 10- 3 1/deg, therefore, even significant temperature drops To-T 1

quantity = c (To - TI) can be considered small.

We will seek solution of system (1.8) in the form of series on small pa'a-

meter e

C (TO = c. (71) + P, Wn + ... (2.1)

Calculations give, for first two members of series (2.1) at T = P1 / P =

D/ X + 1, following expression

74



c* 0 c* ±O a (T(-TI) exp (- P ~ (h) d)d(To
T'I (hA)d 0 [! 0

8X- a (P() ] +. (2.2)
0 0

Concentration of substance on surface of wedge will be determined from (2.2):

C (0) -c -. (To - T,)eo (I -ca) [ z( ) -r i
t-T La(P) (2.3)

In case of large values of quantity P1 during calculation of integral,

determining a (P), for furction / (TI) we can assume its value close to q = 0.

Considering / (TI) = Eil , E = const, we receive

S(PI) = 3, ', 2A
3'Is (4/3)(2.4)

Thus, at large values of thermal and diffusion Prandtl numbers, expression

(2.3), taking into account (2.4), crosses to formula (3.3), [11

c (0) = ce + a (To - Tj) r0 (I - c) T'/' (0 - T ') (0 - TY" (2.5)

In solutions of weak concentration, assuming Co ( c - co) -z Co, from (2.5)

we receive

A c -(0) - co a (To - TI) ('T. T %)i +T"+ "(2.6)

Function S (r) = ('+ T'l) (1 + T"- + T')-' in interval (0.1) will be

continuously increasing. Let us remember that quantity T =D/ X for a liquid

is less than one. Prom (2.6) it follow5 that during increase of T separation A

increases. Physical interpretation of this fact is given in Section 5. Let us note

that extrapolation of results by interval (i, oc ) is groundless, which follows

from method of obtaining of equation (1.8).

For aqueous solutions (T--4 1) formula (2.3) takes form

C((0) = CO + 
(2.()o-T)e,(I-c,)

(P) (2.7)



Number P, for aqueous solutions is great; calculating a (P) by formula

(2.4), we receive

c ce + a (To - T ) co (I - co) 3' r (4/3) a (P ) E-' p -'"2 (2.8)

If T 1, then first two members of series (2.1) have form

S co + a (To - Cc, , (I - CO - (P I oxp (- I (h) dh)d +

0

+ (P) P,[exp ( / (h) iad/i) (ih) dh) d + [I- J
U o o(P)

P(P)= 8, [exp (-" I (h) dh)](; I(h)dh'dJ-
° 0 (2.9)

Concentration of substance on surface of wedge is given by expression

e(O) = c. + a (T9-IT,) c0 (I - co)[1 - (2.10 (P)J (2.10)

At large values of P, formula (2.10) crosses to (2.6), in which is assumed

T 1.

3. During solution of problem in preceding section small parameter

mr-.thod was used. We give approximate solution of problem in closed form, intro-

ducing certain changes of initial equations (1.3), owing to partial simpli-

fication of member expressing influence of thermal diffusion. Let us assume that

thermal boundary layer is significantly thicker than that of diffusion. We

expand, in Maclaurin series, expression for temperature distribution in. flow

(1.7) and limit ourselves to first two members

T (i) = T, + a (PI) (To - TI)

(3.1)
Put (3.1) in equation and the boundary conditions of diffusion part of pro-

blem (1.6). in case of solution of weak concentration we receive ordinary

second order differential equation with separable variables. Integration



gives

c~ ~~U (2 l- ,:(PI)~) exp -P . (h) dh - e =(P), d .- -. (,;,
II o

J ~ exp [P P\ (h) d - e (P1 ) 'dt 4

00.2)

Concentration of substance on surface of wedge will be determined from (3.2):

c (0) = co [I - ea (PI) JI-' (3.3)

At small values of parameter e formula (3.3) transfers to (2.7), in widch,

considering weak concentration of solution, it is necessary to put C (0 - co) - co.

4. Let us consider class of laminar flows of viscous incoff ressible

liquid, in which normal to surface of component of speed v, depenas only on

distance on normal to surface y. To this class of flows, in particular, belong:

flow, caused by rotation of a disk in liquid, flowing around forward stagnation

point of body. Survey of problems of heat- and mass transfer for this class of

flows can be found in [5].

We will study problem of thermaldiffusion separation for these flows under

the assumption P > i and P 1 > I. It is not difficult to establish that equations

of thermal and diffusion parts of problem of thermaldiffusion separation allow

solutions, depending only from normal to surface of coordinate y. Taking into

account this consideration, equations and boundary conditions take form

- Mf (y N) c.' = D [c' + .c (I - c) Tl'I', - MI (y / N) T' = xr 't
cv' + c( - c) T' = 0, T= Twheny;r o; c= c0, T=Towhen =o. (4.1)

Here M and N constants. For case of rotation of Aisk with constant angular

velocity oin liquids (Karman's problem)

M = (oav)" ' , N = (v / w)'

normal to surface of disk of velcoity component
V, = - o) (o".y/ v".)

Function f(y/N) was determined by a number of authors from numerical iolution

of system ordinary differential equations [2]. For other flows of this class,



values of constants M, N can be found in £5].

We will introduce the following designations:

= Y P = AI'5- P, = IN' c" n c (y), T"(u T (y) (.)
T1N' V x1 *~ (4.2)

If in system (4.1) we transfer to new variable i and introduce designations

of (4.2) we will receive system (1.6). Thus, all results, received for problem

of thermaldiffusion separation on wedge, apply for considered class of flows.

5. We will list certain elementary considerations about the thermal-

diffusion effect during forced convection, which are based on certain hypotheses

about structure of thermaldiffusion boundary layer, and similiar considerations.

These considerations represent interpretation of results obtained above.

Let liquid with initial concentration co, be located between two horizontal

walls, upper of which has temperature To, and lower T1 . Let us assume that in

layer no convection current is present (including free convection). Under action

of temperature gradient transfer of substance appears with the help of a molecular

device. After a certain time, process of transfer will be completed and stationary

distribution of concentration will be established. From condition of equalit

of flow of substance j at zero, and from initial condition, we receive, for

solution of weak concentration, following conditions:

i=D(+ accor =0, c (y) dy = c(5dy - Y(5 .1 )

Here 1 - distance between plates; y - distance on normal to surface of

plates. Considering that quantity a = a (T2 - TI) is small, it is easy to receive

from (5.1) quantity of separation

A L- = a (To - Tco (5.2)

where cl, c2 - concentration of substance on lower and upper plates respectively.

In case of thermal diffusion in forced flow we will consider that thermal-

diffusion layer can be smashed into two layers: thermal boundary Layer and
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within it the diffusion boundary layer. We assume that thermal boundary layer

during forced flow gives the same separation, as in above considered case of

motionless layer (this assumption is inherent to the so-called film theories).

Further, let us assume that it "works", i.e., evokes separation of only part of

thermal boundary layer, corresponding to diffusion boundary layer. We designate

respectively 6 (, 6 .?. 6 - thicknesses of diffusion of thermal and hydrodynamic

boundary layers. Amount of separation 4 then is given by expression

A T (T - T2 ),-' (5.3)

At large values of P and P1

6 a'. 8ap_
R1, Vie (5.4)

Putting (5.4) in (5.3), we receive

A = (. - T) T % (5.5)

Formula (5.5) coincides with (2.6) in case of small values of quantity T'.

During increase of T , according to above-stated considerations, effective

part of thermal boundary layer is increased, and amount of separation should

in(.rease, which also follows from (2.6).

In caseP > I and P,> I we determine thicknesses of thermal and diffusion

layers for wedge by expressions

8 k (T, - T) k (T - T) -It --- k (To - TI) aK (PI) %l~ I - (PO) 1V,' I,..

8( O D.- C.) D (eo - .) I8M = = D (co-€.) a(P).l- % = (P) qwIV-0 (5.6)

where J, and j - respectively are flows of heat and substance on surfac-e of wedge;

c* - concentration of substance of surface of wedge. Putting values for 6,21 and

611) in (5.3) we receive formula (2.7) for strongly diluted solutions.

6. Flow of substance through surface in gas mixtures under nonisothermal

conditions, is given by expression of (3)

I -- _P[D gradc + D;c -(I- c)r dT ] g6ad
9 (6.1)
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where DT - thermaldiffusion factor.

A number of researchers use expression of (6.1) during description of tnermal

diffusion in liquids. During assignment of flow of substance in the form of

(6.1), self-similarity of thermaldiffusion problem during forced convection,

obviously, is not disturbed. Assuming further smallness of quantities

i -- D ID. ri = (To - TOIT

it is easy to show justice of following situation: for calculation of therval-

diffusion separation during forced convection in case of assignment of molecular

transfer of substance by expression (6.1) it is sufficient in solution, received

during assignment of molecular transfer by expression (1.2), to exchange a (To - TI)

for DT(TO - T1 ) / DT1.

Author thanks G. I. Barenblatt for attention and advice.
Submitted
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ON FLWS OF LIQUID WITH FORMATION OF CLOSED CAVITATION CAVITIES

A. Ye. Khoperskov

(Novosibirsk)

Considered is cavitation flowing around bodies on circuit, offered
by M. A. Lavrent'yev (1] behind body will be formed closed region, in
wKich liquid circulates; inside this region is included a cavitation
recess with constant velocity: at its outer edge; flow is i.-rotatiorai
and velocity everywhere is final (Fig. 1). The problem: to create
flow according to given diagram, i.e., to find complex potential w(z)
of flow, if external botundary of flow and number cf cavitations are
given. Internal boundary (boundary of cavity) i not known beforehand,
but two conditions on it are given - it is flow line and velocity on
it is constant.

Below is considered a particular case of this problem - flow in
infinite region with curvilinear boundary. Presented method will apply
also for solution of analogous problem of flow in curvilinear channel.

Let doubly connected region of flow D be depicted in circular ringR I

boundary of cavity over to interna; (-i. 2) circumference C -r

ness we will consider that point z = oo corresponds to point. C .

•-- :,. C

.. ., , ,.. ..', , .,, ',; ' , .

Fig. i. Fig. 2.



We will find complex potential v (-") of flow in ring, considering that at

point ! a doublet is locatet, and circumference CR and C1 will be flow lines

Qj I(i)-L 0 R" _C)+rI

w(CW) 1 ~?r~(- (1)

Here 0 -scale factor; QPr - circulation of velocity on boundary of cavity;

Q tV, - (r / 2n) !a RI - flow rate on circuit, connecting C1 witb CR.

In the future will be demanded derivative

d Qi r.__ 'a!% r7-:= € -)t -- U (V" _ C- 11) +  j- (2

Let us turn to variable u - (1K I r) In C , where K is found from relation-

ship nK 01(R--) ("(k) = K)

Hero K and K' - full elliptlc first integrals. Then series in expression

(2) it is possible to sua

dw QL n Ru nu r
d- L~ T ee4 K- 2 2-k? ,flcos- + J
Q- Al K(K-E) r Q IK', I 1-

(3)

Here E E (k) - full e0lipti - second integral, sn u = sn (u, k) - Jacobi's

elliptic sine, and uo - aurilary parameter, associated with £ relationship

i E iI

sn u K 2K ()

Parameter uo determines position of critical points of flow (points, where

dwd = 0 ); depending upon quantity p, flow can have either two critical po_'nts

on Cl, o. two critical pointa on CR, or one critical point inside flew.

If boundary has angular point in which angle, turned to flow is larger than

zr, then, during usual non-cavitational flowing around in this point, velocity

turns to infinity. In order to avoid this, according to received diagram, we

consider such points branching points of f".ow (critical points) and to analyze

flow with critical points on external boundary of flow.



Baedf d t u ) . construct function z I (), depicting

ring I? -", ! I I on physical region of flow D. For solution of problem it is

IS sufficient to dotermine complex velocity of flow

dw dw dZ.

Let us consider function X (") U (r, t) + iV (r, t) such, that

d: ex)d = -l- - v  = '"  (5)

Then from (5) we receive

Id:
U r,I) = In - + I (I - 2 rcos- + r1

V (r, t) = arg dz - arg dt + 2 arcttn - i--

We have
I-

Idz/ dC -Idz/ dwl. dw / d

But on surface of cavity dw / dz = v., and, consequently.

U(R,t)- In 'dw/dzr:,A-It, vo+In(_2Rctsi.+R,) (6)

will be known futction of t.

On cirouit C1 we have arg dz = 0 -angle tangential to circuit with ayxs i,

and arg f + Vt ' consequently,

V 1, j) = 0 3 0 .(7)

Angle 0 as function of t is not known. If on6 were to temporarily assume

that funcion V (Ap t) (7) has bEen found expression for function %(), can be

obtained. This allows solution o.' problem by integral equation.

Regular, in ring R < II < - single-valued function X (C) , if its real

nts part U (R, t) un cirnumference CR and imaginary part V (1, t) on C1 , is given

by following expression;

Ln 0
(, ( t) dtJ- i U (R,t)Co -, +

-!.n, L (C" - - i di ± V (1, f) dl +
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+ 1- 1) , " [Cos°( ) + t)
+ CO Rl i, Y+ (~J -

- isin t(

If we introduce variable u - i (K / -n) In { , then

{+ {;"=2 cc C-- - 2 si
K ' K

Since In.R - nK' /K, then

(~)R +(~~)~2 2 cos ~ -L'

"~s - -").R = 21 sin 11 (u - 1K?)

Putting these expressions in formula for X (,), we receive

a aT

X() = U (R, t) + -R (t. n V((-- di

pnp v i l (

-}- ({.t)dl-F ( ) t.d. ''------tos, at---i)

,R, t da n ( u (1 ,dna, . " (9)

Here dn u =dn (u. k) - delta of amplitudep Jacobi's elliptic function. At

Rf 41 U < t integrals in formula (9) do not hava peculiarities.. but at ri 7= R

the first of themp and at ICI = I second is singlular, and in these cases their

principal values arp put in formula (9).

Now we return to detecting of function V (li, t), (7). Considering angle 0

as function of length of are s of circuit$ we receive

dV (I.] ) A, o ,(, I .I I ex U (j,t))d:.= , Y1 = " =(-c-t at =

Considering curvature of boundary dO I ds = x (s) given, we receive
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dV (t. t)
i p I, U (1, 1)1 eu(. t  (10)

where p [t, U (1, t)] - operator of function U (1. t)

pit, U (1, t) = Itr ( )[ (. 'd

C ~ ~~~ -X, (t)+'x t ) dt
O0

From formula (9) we find U (i, t)

U(, -dV(1 1 I 1-dn(v- )K/ I+

+ U (R, I) n (v - .+

U(1, t fljsn [(K--t)Klnj
0

Putting dV (1, t) / dt from (1i0) we receive nonlinear iinategral equation

for determination of U (1, t)

Sw

U(i)=- p [r, U(1, r)]n ln(l-t)KIn l
U I Id Iv- (1d)z

+ U (R, T0)(I, d"r

Havig determined U (1, t), place it in (10) and integrated, we receive,
unknown function V (1, t).

Let us consider function

((t) = UW(t)-g() (gl)=--- U(".T)-"dn ' dT)

0

Here g (t) - known function, and crosming to dimensionless quantities,

we receive for y (t) the following equation:

y X) = K (r,t, y (r)) evr) dt x.+.-)

Here dimensionless quantities

K(r, t,y(v)) = p [r, g(r) + y(T)I h j --d.(t-t)K/Ti eII sn

p3 It, U ()1= 2(1--oL) x [S@) + d eu-LodLJ

g1 () = g (1) + In v - III Q
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do not depend on parameters of v. (velocity on surface of cavity), Q (flow rate)

and 1 (characteristic dimension of streamlined body); X - dimensionless para-

meter (unknown quantity, since flow rate Q is not previously known).

Besides X. quantity r" in formula (1) is also unknown. For their deter-

mination we use condition of uniqueness of function z= (); for this i is

necessary and sufficient that on any closed circuit L lying in ring R < I I !

d (13)

for circuit L we take CR' using (4), and receive

d = R exp [W (R, t) + 2i a'ctg -R sin t

and from (8)

V(R, t) = -- \V (1, -r) dn-- - --
0

, [U (R, ') - U (R, cnf(T-)K/l K dn snl(1-t)Klal n

Here second integral exists, since U (R, t) satisfies Gelder condition.

Thus, condition (13) gives two equations, which, together with (12), is

sufficient for finding solution of U (I, t) and of parameters X and P. Besides

Q / vel , in problem there is still dimensionless parameter

;-_0( --. -I number of cavitations )

where 'm- velocity of flow at irinity. Parameter R depends on this relation,

where R - is large at small v0 / v , and vice versa. Since to express R

through vo1 vo and other parameters is very difficult, we will consider flow

at various R and determine vo/ v-, which are obtain here. It is easy to

receive
vor = e-U(. ' ) Jr (C - 1).I =i Qc-U,,.o,

It is interesting to consider case when boundary of flow has angular

points. Let tiem correspond to Ck = exp (it 1 ), and region of flow D will form,
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in the e points, angles % - Ak (k = i,..., n) (Fig. ).

We will express, through delta-function, the curvature of circuit

X Is(t) = X" s(t)] +> Ak6 [s(t) s(14)1
h-I

where X0 [s (t)] - piecewise cont.. uous function. For
n , s n ( t k- t ) K" / I n

* (t) U (, t) - g (t) --.. AIn lltkKI,'1. - U (la) -g" (1)

we receive integral equation analogous to (12)
I.

YO () = KO (, t, y" (v)) ev'V! dt(

where

K(t, 1* (T)) - Pir g (I) + y* (.r) sn I (v f-L) K-I-n I d -V)
ni [-r -- t) K I -

xklI It -dal(tk-) K/ i I
I

P 1* It, U MX,*[S$(to) + !exp u (1)dt.

pt* !t, u (t O = 2(-cost) '21 [ -(os +

remaining designations coincide with designations of formula (12).

Question of existence of solution of problem is complicated by the fact

that equation (14) must be solved jointly with conditions of (13). If one were

to put aside, for the moment, conditions (13), considering knowns X and F, certain

conclusions on solvability of fundamental equation (14) can be made.

Function K* (r t, " (t)) weakly depends on y' (T), since

min x* max *
2( -- cost) < P1* [t, U (1, t)1 -. 2(1 -cost)

and has integrated particulars of type In I x I and I zXI- Ak / at z - 0, since A4 <

(for that, let us agree not to consider flow with region D forming zero angle).

Therefore, not knowing solution, it is possible to estimate integral

5K" ( O, , y (r)) dr = Mt)

We aissume, for simplicity, that curvilinear part of boundary is located in

limited region. Then max M (t) ono < t < 2will be finite quantity. Solution

of equation (14) can be received by method of successive approximations if

max M (t) < e" ' n ot <2,



This inequality occurs at x* (s) < 0, i.e., if all curvili-ear sections

are turned, by convexity, in the direction of flow, and also at sufficiently small
4=e

j ()Ids

i.e., at sufficiently small contribution introduced by curvilinear sections to

change of angle of circuit along axis x.

Let us consider the most simpli case - absence in circuit of curvilinear

sections. Since x* (s) = 0, then y*(t) 0, and we are relieved of neces-

sity to solve integral equation (14). In this case V (1, t) - step functioi.

determined with accuracy up to unknown parameters of tK which determine position

of angular points.

In this case, second integral in formula (9) takes form

V(,) n u+ iK') K'dt= - I A a + K
X j k-

where am u = am (u, k) - Jacobi amplitude.

It is easy to see that first integral in formula (9) gives solution of

problem of flowing around a bubble above an even bottom (Fig. 3). Its solution

can be found in appendix to work of Cox and Clayden [2]. Below it is given in

designations made earlier.

If one were to make cut CD in region of flow shown in Fig. 3 (z) then region

of variation of fimction

x =ln i ID "

will have form shown on Fig. 3 (x) Depicting this region in parametric

rectangle (Fig. 3 (u))

iK

we receive
dw - ________ue S ydi 0 dn u, "nlu

(d auo-I+dn u)'



Using expression (3) for dw/dC , we find
d: dd: QK' i (dnu. 4 dnu

A, CC B A This formula gives solution of problem of bubble
'N "

above even bottom, and simultaneously allows to calculate

. first integral in formula (9)

. (_ K [ , (:- ' (dn u0 + dnu1
a a~rok,(16)

.,and, during absence of curvilinear sections, we receive
-X -u 0 uo  X

from formulas (15), (16), and (5)
Fig. 3.

ds iQKe hee to cdnc - i tht r t
dc n'rk' Cla upon +s sigl

(17)

ILI obstacle is given, then lengths of (n - 1) - th section I,,,between angu2ar

points A i and A are known; for determination of paramet of ota and Q we cbtan

n - 1 transcendent equation

1j. di d d *+ n(t a
6. ,, to On ,, ,"' sn & s K-I,))x

X dn [(t - t) K i a dt Y"= t. .. - l

(18)
Joining two equations to them, ensuing from condition (13) of single-

value of function z (

dn'u k sn -h- + ca'Ktcos T (t) dt = 0

(19)
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dau. sn' IVa + on' rI si d 0
d( u, s n (,Kt n nl n j(t - (20)

We arrive at a system of (n + I) - th equations for determination of (n 4 1) - th

unknown: t ,. ..,t and Q.

If however there are several points Ak for which A < 0, generally, it would

be necessary to consider triplyt and more, connected region of flow D. During

existence of two such points A* and A** region of flow will be doubly connected

and fits our consideration if t* and t** corresponding to them are coupled by

relationship t- =-.-t*; this relationship can be satisfied if one were to le-

crease, per unit, the number of equations (18), (19), and (20). This can be done

in two cases: if obstacle is taken as eymmetric, equation (20) is transformed to

identity (T () in this case is odd function of t) and if we consider the previ-

ously unknown length of one of sections j: ii.

Thus, the proposed problem has been reduced to solution of an integral

equation, the solvability of which is clear for convex and for slightly bent

obstacles. For circuits in the form of broken line, solution is written in

closed form, but for determination of parameters it is necessary to solve

system of transcendent equations.
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ON CRACKS SPREADING BETWEEN FIAT PLATES ON RECTILINEAR
BOUNDARY OF GLUING

R. V. Gol!dstein and R. L. Salganik

(Moscow)

Propagation of cracks at place of gluing between two elastic materials
differs by a number of peculiarities from well-studied (see survey (I]])
propagation of cracks in uniform materials.

During quasi-static advance of end of crack in uniform material,
local symmetry has a place, i.e., near this end only normal stresses act,
symmetrically distributed relative to direction of propagation. Further-
more, form of crack and distribution of cohesive forces in terminal
region of quasi-statically advancing end do not depend on applied loads
(hypothesis of autonomy of terminal region).

Crack spreading on boundary of gluing betw4een Two elastic materials
only in exceptional cases possesses these properties. In general, its
behavior is different. Ii terminal region of such a crack, because
of bulging of sides due to inequality of properties of glued bodies,
overlap of one side on other occurs. in places of overlap appear
forces of reaction influencing advance of ends of crack. Local symmetry
in general, is also absent. On continuation of crack, near its end
appear both sheering and normal stresses.

Nevertheless, if points of overlap of opposite sides are concentrated
only near ends of crack, the hypothesis of autonomy can be generalized
[2]. Generalized hypothesis of autonomy turns out to be equivalent to
assumption about constancy of work, which reciprocal forces of opposed
sides of crack distributed in the small terminal region produce, during
formation of unit of length of crack.

For experimental check of permissibility of such assumption, it is
necessary to obtain from it a number of results. In connection with
this, in offered work are considered two problems of propagation of
cracks along rectilinear boundary of gluing: the first problem about
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a tension crack, caused 'by given normal stresses; the second - about
wedging along boundar-y by a strictly smooth, semi-infinite wedge of
constant thicknesu.

1. Rectilinear crack stretched by normal stresses under the conditions of

flat deformation. Let us consider typical problem of theory of cracks. In d

infinite body, along axis z from x = 0 to x = 1 is located a crack. At in-

f inity to body are applied compressing stresses d = - p (p > 0). Crack is stretch-

ed in the middle by concentrated forces equal by absolute magnitude P and

directed on perpendicular to crack. As always, it is necessary at first, to

solve problem, assuming that crack and loads applied to its surface are absent.

Then it is necessary to solve problem of a crack loaded 
on surface by forces

and stresses applied to it eq,,al to and opposite those which were obtained in

first problem at place of discovery of crack. Here it is considered that other

loads are absent. Sum of solutions of both problwis, on account of linearity,

will be solution of initial problem.

Materials on both sides of axis x are identical, solution of first problem

in stresses will be

OV = - P. 0, 1 -- 0 (. 1)

If, however, these materials are not identical, then, assuning that gluing

is not disturbed and that deformations of a thin layer of glue can be disregarded,

we receive ainother solution. This solution, obviously, does not depend on x and

in stresses has form

OW= -P. 1 ,P. 0, (1.2)

where v-- Poisson's ratio. Here, and in the future, by indices 1 and ': will be

marked quantities relating respectively to upper and lower half-spaces. From

(1.2) ensures that presence of compressing stre3ses perpendicular to boumdary

leads to appearance of longitudinal compression where corresponding compressing

stresses in both glued parts are different.
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In contrast to preceding case, stress state described by formulas (1.2)

is nonuniform. This is connected with the fact that formulas of (1.2) represent

solution of problem of a strip glued along axis z from two different strips

and compressed evenly by stresses distributed on its edges. Solution of (1.2)

does not depend on stripwidth and therefore width of strip is considered infinite.

Turning to solution of second problem of a crack loaded on surface we will

use, at y >0 , formulas of N. I. Muskhelishv.-iL [3]

a.,+ a,,= 4Re q)(z), a,,- iT3r=, (z+ Q z+ (z - Z))
•(1.3)

where I - shear modulus; x =3-4v, z = x 4- iy, In considered case, functions

D and Q in these formulas have form [4]

_-= --- Q (: -- q (1) Z (t -4 '0) d

(, z iz (=)) -
0

(2 /- - t',% 1 . ILT,~ (1.4) ,x

Here
( •y ~rw)z,.x. - .)=,o cp (z), Jim (Z (:)/z) =

.Z--wO

Quantity will be considered nonnegative. This can always be done,

numbering glued oodies in the appropriate way.

Surface of crack is loaded by normal stresses of concentrated forces and

by stresses of action of elastic field (1.2). This gives

+ (z) = p - P'5 (x - ,' (0 <x< ) (1.5)

Due to symmetry of problem concerning line of action of concentrated forces,

ends of crack are always disposed at identical distances from this line. There-

fore, about propagatiun of crack, it is possible to judge, for example, by

behavior of left end x- 0 and to consider value - < (',, ). Behavior of

left end of crack is wholly determined by elastic field in its small environment.
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From given solution, we find that on co.itinuation of crack in this environment

(tz=-s, s -. +0)

- ITX( (A, + iB) + o 1)., -t ,,= ---,=l~t , /(1.6)

Opening of crack fu + 1v, equal to difference of displacements of its upper

and lower sides at corresponding points, with accuracy within small (values]

of a in!gher order, is determined when x -. + 0 by expression

[U + l if7 (V--" ((Be - 2Ac) - t (A 0 + 2Bo) (1.7)

Here H - certain positive quantity depending on elastic constants. Quan-

tities AO and Bo are expressed through applied loads in foUowing manner

At - 2 P, +'' Po r ,

From (1.7) it seems that during approach toward the end of crack, upper side

would infinitely frequently intersect with the lower located beneath it. Actually

this does not occur. Oppsite sides of crack o'.erlap one on the other. In

places of overlap reaction forces appear, which it is necessary to add to already

considered forces acting on surface of crack. To these forces it is necessary

to add also cohesive forces of opposite sides of the crack which act near ends of

crack. As a result, in formulas (1.6) and (1,7) instead of Ao, !0 it is neces-

sary to place AO + A' and Bo + Bl, where quantities A', B' account for action

of reactive forces and cohesive forces.

If given end of crack is in equilibrium, there should be

* -F A'f= 0, Bo + B = o (1.9)

Hero, in end of crack, sides are smoothly closed and stress in continuation

of crack become terminal. Condition of (1.9) known for cracks in uniform

materials as hypothesis of S. A. Khristianovich [5], was later proven with the

help of variational principles [6, 7]. By the same method, it can be proven
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also for cracks spreading on boundary of gluing [2).

Size of region of action of reactive forces can be various, depending upon

relationship between loads p and p. If tensile force P is sufficientiy great,

points of overlap will appear only in the small terminal region. Actually,

oscillatory character of dependence (1.7) disappears when x > x.. where

It is easy to show that < <(hi xt)12a. Since Poisson's ratio v is

always nonnegative, then, for all materials, , 10'I. Derivative x on quan-

tity Wad, calculated without account of reactive forces and cohesive forces,

at point x .x. is equal - M(Ao +2AB.) . If this derivative is positive,

then the more to the right x -x. upper side ie located above the lower. From

character of distribution of applied loads, it is clear that from this place

and further, up to middle of crack, upper side will remain above lower. Condition

of positiveness of derivative, taking into account expressions of (1.8) for Ao,

Bo, is reduced to inequality

P >P. (t)-- (I + 4 1) (.

Thus, during fulfillment of inequality (1.11), reactive forces and cohesive

forces clearly act in small eaid region. This region remains small also, when

Px (1) somewhat exceeds P. When P * (i) greatly exceeds P, size of region of

action of reactive forces ceases to be small compared with length of crack.

A necessary condition of application of generalized hypothesis of autonomny

is smallness of end region. LAt us assume that this condition is satisfied.

As was already noted, generalized hypothesis of autonomy is reduced to require-

ment of constancy of work of T, produced by forces of interaction of opposite

sides of crack, during formation of unit of length of crack during quasi-static

advance of its end. Quantity T is expressed through A', B' by the formula, of
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T 4h +!. P%1 .4 iX 1 ) (12 4- PIX2)

-2 pipsi fp~s(xi -t-1) +i. p,(-3)J- J (A2 + B12) (1.12)

Hence, from conditions of equilibrium (1.9) and formulas of (1.8) we obtain

following expression for 1.i gth 1 of mobile-equilibrium crack

xY1_11 ri+42 P 4-2-P

(n' = ±( IP2Xz) W2i + ftzXI) / PIPIz)

In Fig. 1 is given graph of dependence of length 1 of mobile-equilibriumr

crack on quantity of concentrated force P, stretch-

- .~ ing crack. This graph is a loop located in the

- first quarter of plane Pl. In Fig. 1 is also

depicted straightline S{(P == P,() . Under

this straightline, and near it (above it) lie
Fig. 1.

points to which small end region corresponds,

and for which, consequent!-r, application of generalized hypothesis of autonomy is

permissible.

Accordig to this hypothesis, dutring increase of load P, Length of crack 1

remains unchanged so long as quantity P does not attain value corresponding to

g4Vtn length 1 on curve 1(P). If length 1 is sufficiently small, after laod P

attains indicated value, quarsi-static incraase of length of crack begins on

curve I(?I. Within limits of generalized hypothesis of autonomy, after this in-

crease, it is possible to trace only up to values of I which exceed somewhat

length '11This corr',sponds to point of intersection of straightline S with

curve 1(~. It is easy to ahow that in, region of such values of 1. dependence

1(P) is single-valued.

For the largest values of 1, use of generalized hypothesis of autonomy is

not possible, because terminal region of crack ceases to be small compared with

length of crack. However, one canI aasume that .for sufficientiy large vaiues
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of length of initial crack quasi-static development, during increase of P,

cannot continue indefinitely. Such an assumption is derived in the followinp

manner.

During decrease of tensile force P, the crack is closed. In uniform

material this would not lead to advance of its ends, in the interior of body.

If however, materials, among which crack is located, are different, then, near

ends of crack, small areas of contact will alternate with places where crack

is open. As a result, on extent of crack concentration of stresses will appear.

Due to this, ends will advance into interior of body. Increase of length of

crack, duringR compression, is a characteristic peculiarity of brittle fracture

of glued bodies. If we now stirt to increase tensile force P, this will lead

to lowering of concentration of stresses, and ends of crack will stop. They,

apparently, will remain motionless as long as the main part of crack is not

freed from sites of contact and these sites are not concentrated near ends (full

disappearance of sites of contact, as was already shown is generally impossible).

In Fig. 1 to such a process corresponds transference of point depicted on

horizontal above straightline S up to this straightline. During further increase

of load P, body should be fractured, since by assumption, initial length of

crack significantly exceeds quantity 11, and from generalized hypothesis of

autonomy in this case it ensures that equilibrium crack does not exist.

During infinite increase of compressing load p, characteristic length 11

aspires to zero. Together with it, minimum length of equilibrium crack decreases.

This phenomenon is analogous to that, which takes place for crack in uniform

material, stretched to infinity by stresses normal to the crack. Maximal equili-

brium length of such a crack aspires to zero during infinite increase of tensile

load (see, for example, (1). However, an above mentioned interesting peculiarity

of the considered case is the fact that this phenomenon sets in during compression,

but not during tension.
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If compressive stresses p decrease, then region under straightline S is

increased, and within limit p-. 0 occupies entire first quarter. Intersection

point of curve I(P) with straightline S here departs to infinity. Thus, when

only tensile loads act on crack, end region is always small, which is a neces-

sary condition of application of generalized hypothesis of autonomy. Applying

this hypothesis, we receive, for case p = 0 a result, not qualitatively dif-

ferent from corresponding result for crack in uniform body,

We note also that if distinction in properties of glued bodies disappears,

loop in Fig. 1 is turned into open curve departing to infinity, and straightline

S occupies a certain limited position. Above this straightline, as before, lie

points corresponding to case of mutual overlap of opposite sides of crack. But

now stresses on extent of cracks are final, and a crack remains motionless during

any changes of P in interval 0 < P < P.(1). At P> P. (1) spread of crack occurs,

as was already described for small length 1 of, when glued materials are dis-

similar. The only distinction is that now a part of the mobile-equilibrium

development is not limited. At very large values of compressing stress p,

influence of specific surface en-rgy T becomes insignificant, and within limit,

curve 1(P) becomes straightline P = P,(1) . Thus, in the same manner, without

regard for cohesive forces, the problems of cracks in uniform rocks (see survey

(1]), where large compressing 5tresses are caused by pressure of the overlying

rock strata, are considered.

If a crack spreads in a non-uniform layer, and on the boundary between two

uniform layers with various elastic properties, then at large values of compres-

sing stresses, calculation of specific surface energy becomes immaterial in a

certain intermediate interval of quasi-static development of the crack. This

intermediate interval is wider, the less the distinction between properties of

layers, and within limit when distinction disappears it becomes unlimited from

above.
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In problem analyzed in this paragraph, terminal region was small only during

definite relationship between loads. Another case, when terminal region is

always small, is represented by problem of wedging.

2. Wedging along glued boundary by wedge of constant thickness. Let us

assume that along boundary of gluing (axis x) is inserted a rigid, smooth, semi-

infinite wedge of constant thickness 2 h, so that end formed before it a free

crack of length 1 at origin of coordinates. Wedge itself is located in interval

S< x < oc. We assume also that to the wedge - body system no external forces

are applied. Thickness of wedge 2h will be considered sma.l comparatively with

length of free crack. The problem can be solved in linear placement analogous

to that for problem of a uniform body (8]. Here boundary conditions fall on

axis x. Assumption about smoothness of wedge means that friction is absent, on

its sides, i.e., shear stresses are equal to zero. Since thickness of wedge is

constant, along it transverse displacement v remains constant. Surface of

crack is considered not loaded. Thus, we have

(O.V/ = 0, ay= (i1<x<?. Y±O)(avlax) = O, " V= 0 (V < x<-o. Y .- 0 )

Solution of problem of wedging at Y > 0 is given by formulas Muskhelishvili

(1.2). On basis of results of work [4], it can be shown that

0 = WD (2.1)

where D - function analytic in entire plane of complex variable z = x + iy,

except perhaps, semiaxis x "0 0. This function at z - oc becomes zero, and

on semiaxes x > 0 satisfies following boundary conditions:

4D(z+ iO) + m(x- iO) = 0, 1m (z ±iO) = 0

(0<1<I) (7<x<) (2.2)

Introducing function $(z)- (), prob"'em (2.2) can be reduced to conjugate

problem for system of two functions [9]. In given case, problem for the system,
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with the help of simple conversions, reduces to Riemann problem for one function

[9, 111. In result of solution of this problem is obtained,

6 exp ip In Y7E7- i i
Y7Z-Y T-1i sY7 (2.3)

Here, at Z=X <0

and imaginary part of logarithm is equal to zero.

Constant C, in expression (2.3), is determined from condition, that opening

of crack [v during change of x from 0 to 1., changed from zero to 2h. This

constant is equal to

(2.5)

Investigating, as and in preceding paragraph, elastic field near end of

crack, it is possible to show that size of region of action of reactive forces

is always small as compared with length of crack 1. ApplicaLion of generalized

hypothesis of autonomy leads to following expression for length 1 of a mobile-

equilibrium crack

T 1- H (Xi + 1) + P (X2 +l) (2.6)

where T specific 3urface energy.

Thus, as in analogous problem of wedging of uniform material, length of

free crack 1 is proportional to square of thickness of wedge 2h. If elastic

properties of glued bodies were identical, then in each of these bodies wedge

would deepen by quantity h. In general, quantities of deepenings, h1 and h2

first and second media, accordingly, are equal to

h,= 2h( + X,.+ I/ P, h, 2h +ti't
h 1 +, ,1jij', + P (2.7)

Received qualitative and quantitative results it can be checked by experi-

ment. In particular, using these results, one can find experimentally specific
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surface energy T, and verify if it remains constant during change of external

parameters.
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EQUILIBRIUM CRACKS IN STRIP OF FINITE WIDTH

I. A. Markuzon

(Moscow)

Considered is problem of determination of length of iquilibrium crack
formed in strip of finite width under the conditions brittle faztu re.
With this aim, initially, is solved problem of distribution of
stresses near slit of certain given length, and then results of work
£1 are used, allowing to determine size of equilibrium crack depending
upon applied loads. In connection with this, consideration is initially
conducted without regard for cohesive forces acting near tip of crack.

Smltaneously considered is analogous problem of crack having form
of round disk in plate of finite thickness.

1. Formulation of problem. Let us consider a strip of width 2h, axis

of symmetry of which we will take for axis of abscissas. Axis of ordinates y

we direct upwards. Let on boundary of strip, i.e., at y = ±h, distributed

breaking load act of intensity p (x) symmetric with respect to axis ordinates

and abscissas. We will create, in proximity of origin of coordinates along axis

of abscissas, a crack (cut). Then under action of applied system of loads a

crack will occur (Fig. 1), in general, of certain equilibrium length 2a. Removing

stresses on boundary of L Lip and considering, in view of symmetry, a halfstrip,

we obtain following boundary conditions:

at Y=O

T' p = 0 UI?<-)



Y P( ) -g (T)

0 (Jr Jla< (1.2)

I -~a- 1 at y=h

Fig. 1.

Here g(x) - stress appearing in solid strip on axis x from application of

loads taking stresses on boundary.

2. Obtaining of integral equations. Following the method presented in

Sneddon's book [2], ard considering symmetry, we take following expressions for

components stress tensor and displacement:

% 00 00

ar 2 G (y, t) cos 'x T = 20, d (2.1)
00

S2(t -v) v 2-v 2d o
a dd'-yj X (2.2)

where G (,y) = (A + B~y) ch ty + (C + D~y) sh ty

Functions A(t), B(g), C(j, D(;) are determined from boundary conditions of

problem.

Shown system of stresses and displacements satisfies equations of equili-

brium and compatibility (components a, and u here are not written out). Using

boundary conditions (1.1) and (1.3), we obtain system of three equations for

A, B, C, D, whence, in particular, it follows

A (E) = Bh +h -' ch - (t) - if (t) B (E)
th + Ath ch IhB)

We now demand fulfillment of boundary conditions (1.2). As a result,

considering x axt, a!. h = a6, we obtain following system of dual integral

equations:
( 0

XII (X) , (X) cos Xx, d% = g, (x,). B, Q.) cos Xz, d). = 0
0 0(f) < X1 < iX) (> I

(g(z,) - a(ax) (B (k) B (2.31(2.3)



Let us note that displacement V' " and stress Ov--Ov at poiits of

axis of abscissas are detoriinod.by formulas

'P 4 (1 B (X) :os x..d, am* -- a ),f (6%) B, (X) cos ).zdX
00 (2.4)

3. Reduction of vte. of dul intoal eoations to one Fredhoim equation

of second kind. Integrating the first of equations (2.3) from 0 to x, we obtain

system

6

B () cos XdX (>1 (3.2)

(index for B1 and Xis omitted).

We will introduce new function T () is following form

B (X) z (t) .° (X) dt (33)

(J0 - Becsel function of zero order).

On basis of formula

5'O (XI) Cos XzX < o z)/' (>t

equation (3.2) satisfies identity with the help of (3.3). We present equation

(3.1) in following form:

B 5(k)sin Xdx+ H, (UX)B (A) siB Xdx G (z) (0 < r<1)
O (HI W ) - " (OX) - 1) (3.4)

First component in (3.4), with the help of relationship (3.3) and formula

JO (A.)A .A= , (X < t

, ((' - ) (x > f)

will convert in following manner:

I ccz ()d

B (k) sin y A 4p' (t)dt sin Xx J, (XI) A . (a)-di

6 6 o 0 (3-5)
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Integrating by parts (3.3), we obtain

B (.) )J*().) --. X J,(Xt) dt ( )(o , o)
(3.6)

If we now place (3.6) in second component of left part of equation (3.4)

and consider (3.5), then equation (3.4) can be written

-i y (1) A, (z; 6) . A, 8) V (t +r - G (,) (3.7)

where

A, 11 , I 1 (6k.) J9 (k.) sin X.z A)

0

A, (x; ) W = Ifl ( ).) J, (.t) sin).x d.
0

Wa will introduce function I' (x) by following relationship

, '( ) dt2 S r/ "r) dr

(Z)or W () 'i-, (3.8)
0 Y --

Using (3.8) and chnging order of integration in iterated integral, we

obtain from (3.7) the P'radItolm integral equation with Kernel having a remo~vable

discontinuity

+ IL .(z, v; 6) -IK(z, v,; 6)11(u,) d v=G(z) (0 < z< 1) .

0 (3.9)

where

L (x, v; ) A, ( K (z, v; 6) -,At(, 6)d(
V f ' V i(3•10)

S

The same equation can be written in. somewhat different form, more convenient

for its solution
I

1(z) + !J K (x, v; 6) f (r) dc - C, (7) (O<,<,, (<.11)

Here

G, (z) = C (z) - T (1) A, (z; 6)

If one were to temporarily consider constant' (I) known, then right side of

: ;l



equation (3.11) will be given function. Then, solution of equation (3.11) can

take the form £3)

i(x) = G, (z) -- " G, (v) K (x, v; 6) dv +
0

Formula (3.8) allows to obtain relationship, nece3sary for finding constant

4. Case of constant load. If strip breaks due to load of constant intensity

pg. applied to its surfaces, then G (z) = 0.5 np#4'x, and ccnsequently,

I

f (z) = - .pQ'x -(f (1) A, (x; 6) - p.41 vK (x, v; 6) dv +
I

+ A, (v; 6) K(z. r;6)dv+ .

We convert expressio--s A, (x; 6) and K (z, r; 6). entering (4.1). Here we

u60 integral representations of Bessel functions Jo and Jr

Thus

A, (x;6)= 1, (6U) si Ax dX Co i- 2 H'i -,U'

Here
J1 1,(X, u; 6) -- , II (8X) sin Xx cos Xu dX

Analogous to

K(v;6) ="v t\, f2o (x, u; 6) V't-u2du
I 0

where

112 (Z, U; 6) -- H1 , (UX) sin Xx cos Xu dX

0

.st us note that expression 11, (z) entering into these formulas under the

sign af integral can be is represented in following manner-

z (e " V - t--- 2' - 2z) 1 6 +z

HI (Z) - 2(z-+ah b h -) - ( - 6.2 ze-  +8 ze- -

__ ' +- 4.A e-p': + 10.4 z'e- ' + 12.4 zse -P' - 8ze '

-- 16 li - - 16 zae-P?)

(p =4.8, p, 4 .0, p= 2 .8 p4= 2 .0) (4.2)



Here is used [2) that

(--.55 u)c-'""+ 2us-"

Calculating integrals entering into solution of (4.1) and expanding integrands

in series by degrees of 6-.1, we obtain

I (z) -'I/, Apa'x - qp (t) c,zx6" 4p (1) c, (2 0- 3x) -' 4+

+ 'I/, xpa'x6"' + ...

(e, - -2.31. M-0.83. a, -0.63) (4.3)

Having found p (t) by formula (3.8), we determine value of constant T (),

entering into (4.3). After that we immediately find that

a (t) 'I, p0 a't{i + aA"' - (.1, + at') 6"' + (a, + a." + at') 6""-...)

(a, = 1.15., a= -0.71. a3 = t.2. a, = -0.38., = 0.0. a, =0,77) (4.4)

Expression (4.4) allows, by formula (3.3), to find B (k) and thereby, on

basis of formulas of section 2, to obtain solution of problem of stress state

in strip with crack. In particular, displacement of points of surface of crack

(x < 1) is expressed as

Io p4( -v') q (a)dt 2(1 - vI) 4,- . ,- j. Po" VIL. A (x; 6) (.)

where

A (x; 6) - a,- 2 - [a,+ - 1 o.) 4]-'+[+ 4  (, + g+ n4 +
+ ".1 :,t ' X4.

However, length of equilibrium crack has still not been determined, since,

as was said, solution of problem was conducted neglecting cohesive forces. For

finding of length 2a of equilibrium crack, we demand smoothness of closing of

its opposite surfaces near tip. This length can be determined from relationship

written in dimensionless form

Jim (LI- y(I-d- 9A- V')vVW
Xir dX RE (4.7)
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Hance P, Y- K
c. A (1;6) =

(A (1; 6) = I + 1.15 6-' - 0.55 6-' -+

-+ 0.49 6-9 + .-- = (4.8)

When 6 -. oo (A (1; 6) = 1) , condition (4.8) takes form, coinciding with known

solution for strip of infinite width.

Relationship (4.8) can be written in the form

(1 6) (h=q6) (4.9)

X 0d

15Z 3 -

Fig. 2. Fig. 3.

As can be seen from graph (Fig. 2), constructed formula (4.9) at given strip

width, with increase of load po, size of equilibrium crack decreases. As expected

equilibrium of cracks in considered case of load of constant intensity is unstable.

From graph, furthermore, it is clear that instability of development of crack

with decrease of parameter 6 = h/- assumes a sharper character. This may be

seen also from Fig. 3, in which is given dependence of size a of equilibrium

crack, at given load, on parameter 6. Thus, for example, if h = 1.5 a, then

critical size of crack decreases approximately twice in comparison with that in

infinite body. At h > 5a critical size of equilibrium crack in strip, practically,

coincides with critical size

a 2KIn'p = X

of crack in infinite body.

5. Case of axial smtry. Let us consider thick infinite plate with a

round crack in the middle plane; selecting beginning of coordinates in center of

crack, we direct axis z perpendicularly to middle plane of plate. Let, under
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action of given symmetric, with respect to axis z, breaking load, crack open up.

Removing stress at boundary, as was done in section 1, we obtain following boundary

conditions:

when z=0
0 (0<r<oc) (51)

,=-g(r) (0Or< a) w = 0 (,a) (5.2)

when z = h

i:, -= 0, a, = 0 (0 <r<o) (5.3)

Here g (r) - cracking stress at points of surface of crack (in converted

stress state [1l), 2h - thickness of plate, a - radius of equilibrium crack,

r - radial cooriinate.

Biharmonic function [43,

00(p, )a $ 3X-2 2v + k  llsh

-- -- 2+sh).6ch,61sh X(l) J.(Xp)d

(p = r /a, 6 = ha, = zl a)

through which are expressed components of displacement and stress, allows to

satisfy boundary conditions of (5.1) and (5.3), equations of equilibrium and

compatibility. Here, on basis of boundary conditions (5.2), function X(X)

should appear by solution of following system of dual integral equations:

XH (16) x Q-)1o (Xp) Ad = - g (P) (0< p<)

0

It is interesting to note that, as and in problem of a stamp, plane and

axisymmetric cases are described by equations, analogous in form, to replace-

ment only of Bessel function (for c.e of axial symmetry) by cosine.

We will introduce new function [4, 5]

X ( ) ( si d)i ( 5 -5
e



Then, the second of equations (5.4) will be satisfied identically, and the

first of equations (5.4), taking into account formulas of type (3.8), after

corresponding conversions [4) takes form

(P) + -L / (r) K (v, p; 6) d g (p) a' (p < l

Here (5.6)

I(P)~YF = V,-,- t Vi' - us
0 0

where

N (u, t; 6) 1 ,II (6%) sin It cos .u dX

Solution of equation (5.6) can be taken in the form

-, a g2 K (r; p; 6) g (v) dv +

+(+ K (z: p, 6)dz K (v', Z; 6) g (z7) dL' + *

0 0 (5-7)

Let us consider a particular case when plate is ruptured by constant load

of intensity p0 applied on its edge. Using relationsh~ip (4.2) and expanding in

(5.7) integrands by degrees of 6-1, after rather clumsy computations, we obtai-n

ft 2 2 2

2 (k.8)

Here
a, = - 4.21, a, = - 4.84, a, = - 3.24, aj = -1.68
a, = - 0.75, a, = - 0.3, a7 = - 0.12, 0a,=- .04

At sufficiently large m
a/,(,+ "" 2 ---+ )(n1 + 3) 2 (In + 2)

Now, oy formula (5.5) can be found funption X (W. However, for finding

of displacements and stresses in points of middle surface of plat'e there is no

necessity to find x (;.) . Indeed, stress GO° outside crack (: - 0, p> I '

is determined by formula

00 d,.{.. 0 !+ .! + 5( () dj , XH,(Xb) sink Xt.I (A.P)dk}

(5.9)
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Displacement of points of surface of crack (p < 1)is given by following

expression; 1
wO= 4(--D Y(L1-

(5.10)

Function (1). into both these formulas enters. We will show that for deter-

mination of previously known radius of

1. 'l equilibrium crack it is sufficient to
1.6 I

-.6 know value A (1; 6) = (D (1) / a'po.

For finding of relationship, determining

sought radius of equilibrium crack, we
Fig. 4.

will demand, that stress G,°  when

r-.a (p-t 1) have order of magnitude KI Yr-a . As a re,' lt, we obtain

P. Y A (1; 6) = K (5.11)

The same condition can be obtained, using principle smooth closing of free

surfaces of equilibrium crack (see (4.7)). From (5.10) we find that

S= 4(0 - v') ! =_ 1 (pu) du I ,(pu)du

Hence, with the help of (4.7) we arrive anew at relationship (5.11).

Wen 6 - oc , from formula (5.8) we have (D (1) = alp0, therefore, relation-

ship (5.11), when 6 - oo coincides completely with known reiult for space with

crack.

Calculated with the help of formula (5.8), expression for A (t; 6) has form

A(I; 6)=1 i" (0.89 6-3 - 1.64 6-3 +2.36 6- 1- 3.05 6-' + 3.72 6"-...)-

+ (0.80 6-' - 2.57 6-8 + 5.46 6-10 - 9.69 6-1 -+ 14.4 6-" - ) ...

In Fig. 4, with the help of relationship

a (I:5) _ K

- W, V'x3(5.12)

obtained from formula (5.11), is built graph, allowing to find equilibrium

radius of crack as a function of applied 2oad. Comparison of graphs, built in
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Figs. 2 and 4, shows that behavior of crack in axisymmetrJc case is analogous

to behavior of straight crack in strip.
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EQUILIBRIUM OF A TWIN FOR PLANE SURFACE OF ISOTROPIC MEDIUM

A. M. Kosevich and L. A. Pasmur

(Khar 'kov)

Considered is dislocation model of quasi-static twinning on surface
of crystal. General qualitative picture of hysteresis phenomena during
such twinning is explained.

We will assume that twin is infinite in one direction parallel to
surface of crystal, i.e., is formed by load created by infinitely long
blade. Here, form of twin is completely characterized by its profile
4n plane perpendicular to indicated direction. In dislocation model :,
Lch a twin is equivalent to totality of rectilinear dislocations,

axes of which are located on its outline. Usually, thickness of twin ia
very small, therefore, it is natural to consider that all dislocations

are located in one plane (plane of twinning), and besides, since
number of them in macroscopic twin is sufficiently great, it is pos-
sible to introduce linear plane of dislocations which is continuous
function of coordinate y, counted off along plane of twinning from
surface to interior of crystal. These representation- were assumed
on the basis of works of authors [1 - 4]. In indicated works, for
plane of dislocation P (y), were formulated equations, which describe
quasiequilibrium development of thin twin, and also their qualitative
investigation is conducted.

In simplest case, when twin is formed purely by edge dislocations, and it is

perpendicular to surface of isotropic body, indicated equation has form
i y' + 4ylq - Tj

K )p(q)d (y) -I S(y), K (Y, 1) =((y.1)

where 1 - length of twin; f(y) - force, acting on dislocation from side of

external load (we can always consider that (Y) > 0); y) - so-called force

of nonelastic origin. Let us note that force of the same physical nature causes
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ob

presence "modulus of cohesion" in theories of fragile cracks, offered by G. I. es

Barenblatt (5).

If end of twin is free, i.e., there are no stoppers, preventing its growth

into depth of crystal., then Po is determined from following equation

+S1) U (71) s(T)} = 0 (0.2N
K

where po(h) - solution of homogeneous equation, adjoint to (0.1).

In general, resisting force, acting on dislocation, depends on previous

history of its given state.

Such dependence, as in [6], is cause of hysteresis during twinning under

action of external load, infinitely slow, but non-monotonic varying with time Me

(process of loading and 3ubsequent unloading). It is interesting to note that

fcr e zplanation of qualitative picture of hysteresis phenomena in dislocation

model only certain things are essential, sufficiently general properties of

function P.Q) , entering into (0.2): fixed in interval (0, 1) and definite

asymptotics on ends of interval. To proof of these properties po(1 is devoted

first part of present work. In second part is conducted qualitative analysis
f

of hysteresis phenomena during twinning at surface of crystal, and also briefly
a

considered is question of stability of twins.

1. As was already indicated,, p (y) represents solution of uniform integral
i

equation, adjoint to (0.1)

£

+ +(.lq il=-)

By substitution q 14. Y = Lrs equation (1.1) we come to form C

+ y) (t) dt = 0 (1 1(1.2)

Nonuniform equation of such type was considered by Wiggleeworth [7] in

connertion with problem of crack at surface of solid body, where solution was
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obtained by method of Wiener - Hopf. We will solve equation (1.2), following

essentially the method of work [7].

We will introduce functions

,. ~ 0)r (., < , <, (o <). [0 (o<,<,)
0 (1<Z<C). k(-,(x) O<zo.)

T, (X) = K (I. p- ,,(t) dt

With the help of these functions, and also taking into account homogeneity

K (t, x), we write (1.2) in the form

40

-p - ( Y k, ( Y -) ( ( ) . t - . ± 1 4 ' + -, / 0)3

By Mellin transform, considering that left part of (1.3) has the form

Mellin convolution, we bring (1.3) to form

,in (I. uc.))
sins .1 D(s (1.4)

Here () (a) is Mellin transform of functions T (). i.e.,

,). (S) ()S '.) xdx, (S) q- (z .r''dx
I C

We will solve functional equation (1.4) by method of 
Wiener - Hopf (see,

for example, [8]. Following main idea of this method, we will explain 
first of

all, general strip of analyticity of both parts 
of equation. If we assume that

tp_ (r) , when x - 0 conducts self, as x2  - ). then -). (s) will be analytic

in half-plane Re s > - a. Further, since
i {di , A

,.(=,_ (t) k when Z 0,/ .•

). (s) is analytic in half-plane Res < 2. Therefore, general strip of analyticity

of equation (1.4) will be p< Re s K ., where p =max (-a, 0) ; function

is analytic in each of strips, shown in parentheses.

X (S) . in, n) -- ,' (2n < ties < 2m : . n - O. ± .. )
X (t) - sin ns

Following stage of solution consists of factorization 
of x (s), i.e., in

.1 *i



its representation in the fom X (a) - x. (s) x x. (8) , whe'e x; (s) - analytic,

and functions not turning into sero, cot.'esponding, in half-planes, to Re a >

and Re u> * This was performed in work [7); here is given only expres-

sion for x.(s) , which will be needed in the future

A. r (1/i i ( . 5)

where r (s) -,Euler gama function, and
,0 +

. )(1.6)

Here p - roots of equation sin; ('/I.A) - a -0. lying in first

quadrant; except for 0 wA I (i10 Pn > 0, Re It > 0), and dash designates

complex union. For h. () cau be obtained also integral representation, from

which is established [7# 83, that lir h. (a) - I (Re a> P).

Using factorisation function x (a), we represent (1.4) in the form

.(a) X. (8) - 0, (a) x. (6) (1.7)

Hence, it follows that both parts of (1.7) are equal the same entire function

P (s), which, as usually, in Wiener - Hopf method, can always be selected poly-

nomial. Thus
P (a)
;7 ' "(1.8)

?rom (1.5) it follows that x- () - rs when t .- oo, Re s> , Since

0. (s) should disappear to infinity (this is necessary condition for Application

of Mellin transform [8)), then P (s) can be only a constant. Finally we obtain

that C () - 'x, (a), and means

T...X_(1. (1.9)

where L - straightline Ie a - 6 > 0 . Since here 0 < x < 1, it is possible to

add contour L to semicircle of infinite radius, lying ore to the left of L,

and then q.() will be equal to sum of residues of F. (a) at poles, lying



more to the left of L, i.e.,

fp(X) = C@ + c. )
RO (lZlO)

(1.10)

Here C. and C. - residues of (D_ (s) at points -s = 0 and s = IL. respectively.

From (1.10) one may see, that w (0)= C0  (since Re p,."> 0).

For explanatior of behavior of T (x) when x - I we will use ollowing

affirmation [9): i' f (4 ahalf-plane" of Meilin transform, functions of

(t), then are

lim (e) -lims/ (() = St(t) ,'-Id:)
0

Here, from existence of limit in left part, follows existence of limit on the

right. We assume now that

r () .A (I-- T  when x (A = coast,T>_)

Then from (1.11), it follows, first of all, that T < 0, since s<_. (s), when

5 -. 0o , also aspires to infinity (s(t_ (s) Vi when -. oo ). Further,

applying (1.11) to y (t) = q (- A (I - we conclude that, necessarily

urn S r (t - 1)#ibra• tq(S)- A I-T I= 0

and since at large s

0. (S) = Cr. + 0 (Vii.)

then obviously
! C

T, A= -

Thus, finally

9(z) - (i 4 -" when ' t-.1

We will now prove nonnegative character of function f (x). This, its

property, is result of one theorem of S. N. Bernstein [10), which, as applied

to considered case, is formulated thuz. so that function '(x) is nonnegative,

it is necessary and sufficient, that its "half-plane" )ellin transform

_(s) =~~ (x) x-Idz
0
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be an absolutely monotonic function, i.e.,

(D_ (S)> 0, 4P_' ( 0, 0_ (s) >0 . ., < (112)

Because of this theorem, it is necessary only to be convinced of the fact

that 4_ (s) satisfies condition (1.12).. For that we will use expression (1.8)

for (P_ (s), from which, taking into account form of (s, given in (1.5), it

is immediately clear that $- (s > 0 (0 < s < oo). Further, we examine

Y
Vl)In (_l(S) + jnu  (+ - ReT

It can be shown that Re , - (2n + 3) < 0 at any n, whence it follows thiat

T' (s)< 0, '' (s) > 0, ..... Now applying method of mathematical induction, it is

easy to prove that 4-(s) satisfies (2.12), and means T(J) is nonnegative.

2. Let us consider development of twin during infinitely slow, but non-

monotonic change of load. For basis 'we will take equation (0.2), which gives

connection of length of free twin with quantity and character of forces, acting

on dislocation, We note, first of all, that force of resistance S (x) consists

of two considerably different parts

S + SO

where s (z). -braking force (Peierls force), :.nd S ° (x) -W force of surface tension.

Regarding s, we will assume that it is directed against possible motion of

dislocations and in limit of infinitesimal speed is equal to constant: Isj_= SO =

const. During monotonic buildup of external load s - So, and during its

non-monotonic change, in general, - S0 < s < S.

Force of surface tension So (x) is applied directly to "mouth" of twin and

threfore, it can be considered non-zero only near end of twin, i.e., S' (x) =

- Q(I-z), whereQ(x)#+O only at0<x<dand d is small.

External load f (x), let us assume, is proportional to certain parameter

A (f(x) = Ag (x)), so that increase or decreaoe of load is caused by increase

or decrease of A. Then, for case of load, equation (0.2) is vTitten in the



form (F =s' + 1 (0 (.i

Here

F C0 (x)= q (x) dx 1 (x) (z d
o 0

B (x) dx, = 4_), ' (x) T _f,2

It is not difficult to show now, considering results of Section 1, that

equation (2.1) has the same properties as corresponding equations in [5, 6].

Thus J (1) will be monotonely diminishing function 1, of and its main member

at I> d equals

M COV (z) dx

Further, F(1) also will be monotonically diminishing function of 1, if

f(x) monotonically diminishes. If however: f(x) non-monotonically depends on

x, then F(1) can have several maxima and minimums (however, always F(oC) =0,

only if f(x) is integrated in infinite interval). Marked coincidence of pro-

perties of equation (2.1) and corresponding equations of [5, 6] allows to affirm

that all basic conclusions and results of these works will also be correct and

in given case. In brief, we will formulate these results.

Loading. During increase of external force Ag(x) while parameter A less

than certain A*, twin does not appear. Quantity A* is determined by the condition

that external force at locus point of source is equaled by full resisting force

at this point S (0). When A = A* twin appears, which is increased with further

rise of A. Depending upon form of g(x), .length of twin, when A = A*, can be

either as small as desired (during monotonous and is sufficiently fast decrease

of g(x), when equation (3.1) has only one solution), or finite (during slow

decrease or non-monotonous change of g(x), when equation (2.1) has two or more

roots). In latter case, twin of finate dimensions intermittently develops.

Unloading. During examination of unloading, a simplifying assumption is
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made about form of g (x), which is considered monotonely diminishing with rise

o x. It turns out that a determining role is played here by relation So to

So, depending upon size of which, two cases can be represented.

1. Surface tension is slight,S°(O) <S. Then, if twin is formed by

comparatively little force, such that always/(0) < 2S0 , then after removal of load,

dimensions of twin remain unchanged. Otherwise, when external stress at point

x = 0 in end of load is larger than 2So  , during removal of load, a certain thin-

ning of twin occurs in its mid part, without change of length.

2. Surface tension is great. In this case, twins of large dimensions,

such that So4/> AM, conduct themselves just as in case 1, i.e., only then

without changing length. If length of twin is not very great, and reverse inequal-

ity S4.1/<M, occurs, then, during removal of load, at first occurs decrease

of thickness, at constant length, and then, at most extreme decrease of external

force, length also starts to decrease, and finally twin completely disappears.

Apparently, case 2 corresponds to real twin layers, whereas case 1 is more

probable for incomplete shifts.

In conclusion, we will list certain considerations about stability of twins

at surface of crystal. Twin will be called stable, if its length increases with

increase of load, i.e., if dL/dA 0.

Considering equation (2.1) as implicit assignment of function 1 (A), we

will find that from condition dil/dA > 0 , it follows that F'(1)< M().

During sufficiently large 1

00t

and, consequrtly, condition stability is fulfilled. This means that long twins

are always stable, where, inder long, one should understand such twins, length

of which is great as compared with dimensions of region of application of load

to surface of crystal.

Physicotechnical Institute of Low Submitted
Temperatures of Academy of Sciences 8 June 1963.
of USSR
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ON STRAIN WAVES IN DURABLE ROCKS

Ye. I. Shemyakin

(Novosibirsk)

ic. During dynamic loadings of solid media by explosion or shock,
strain waves appearing in these media have, as a rule, small spatial
extent of region of loading. If the biggest dimension of this region,
s, is significantly less than distance r o from source (in center of
carge or at point application of impact load), for example, sj.-O.l ro,
or still less, then such a strain wave can be considered short [1, 2].

In significant range of distances from source, strain waves in solid
media can be considered weak. This is due to fact that compressibility
of solid bodies is small: bulk modulus of compression of majority of
durable rocks has a magnitude of -10 kg/cm2 , so that relation of ampli-
tude of strain in wave to magnitude of this modulus is of small size of
order 0.1 for waves with amplitude of 105 kg/cm2 .

As an example, of short strain waves can serve waves on section of load
in durable rocks, appearing during underground explosion of high explosive
charge. Practically, in entire range distances, starting from 2-5 radii
of charge and further, these strain waves are weak. These facts allow
to apply to study of strain waves methods of theory of short waves [1, 2].

20. On basis of given measurements cf strains and particle velocities
in durable rocks (diabase, limestone, granite, marble [3]) it is possible
to note following peculiarities of strain waves, appearing during under-
ground explosions:

1) in entire range of measurements, starting with 10-15 R. (R*- radius
of charge), on stress curves shock waves are not observed.

2) starting from distances 10-15 R. to 100, relation of length of
section of stress build-up sl to distance from point of explosion has
magnitude of order of 0.1, and then approximately proportionally decreases
with distance from point of explosion;
3) build-up of strain occurs sharply, and decoy of strain has smooth

character; ration of stress gradients in regions of loading and unloading
cai, be estimated by ration of magnitudes s/S), where s2-extent of zone
of compression in region of unloading. This ratio in zone near charge
has magnitude -0.05-0.1, and at great distances, where stresses are
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already small, equal 0.25-0.3;
4) length of zone of compression s1 + s2 increases slightly wi.th dis-

tance from point of explosion (with increase of distance from 30 to 150
R* magnitude of sI + s is increased approximately by 10-20%).
Region of streA build-up sl, approximately up to 100 R grows signi-

ficantly faster, than s, + s2, so that position of peak on stress curve
sharply shifts from beginning of curve to sides toward point of explosion-
peak of stresses "will lag" behind entry of wave;
5) starting from distances of order 20-30 R*, entire stress curve, on

the whole, travels approximately with speed of sound ao and in stationary
medium. Difference of prepagation speed between peak of stresses and
wave front is approximately equal to 5-10% at distances -30 R* and --1-2%
at distances of 100 R*; difference of these speeds decreases with
distance from point of explosion;
6) peaks of stress and strain in section of stress build-up decrease

with distance approximately proportionally with r-n, where n = 1.6 - 1.8;
7) at distances -50 R* ratio of maximum travelling speeds u, to speed

of sound in stationary medium is aei,-4: longitudinal deformation
has the same order.
Peaks of stress ar at distances -50 R* have magnitude of order 100

kg/cm2 ; for a given particle, these stresses increase for a time -10-3
sec (for charge of TNT weighing 1 t).

30. In article are considered short strain waves in medium, which,
during rapid dynamic loadings, changes to maximum state in part of loading,
it is assumed that in this state principal normal stress in wave are
connected wirh certain condition of type of Coulomb-Mohr-Prandtl condi-
tions. Depen dnrce of hydrostatic pressure on volume strain is assumed
weak-nonlinear.

Solution of problems for spherical and cylinderical symetry, and also
for plane wave is constructed by method of theory of short waves; all
main results about loading waves coincide in accuracy with results of
article [4]. New data relate to generalization of condition of limiting
state in case of weak nonlinearity and to appraisal of influence of
unloading law of attenuation of maximum applitudes.

1.1. Let us consider one-dimensional problems of propagation of strain waves

in continuous medium. We will select, as independent variables, the Lagrange

variables: ro-initial coordinate of particle, r-coordinate at moment of time t.

Equations of motion and inseparability in Lagrange variables have following

f orm*
a I I 2( r -), ar

P' L + _. ! + 2 (3, - , (1.1)

Here o,, as = c,-principal normals of stress; p-density, p, -its initial value;

u speed of travel in direction r.

*In equation of motion, compressive stresses are considered positive quantities.
Equations of (1.1) a.'e writen for case of spherical symetry, but all subsequent
calculations, with elementary uhanges, can be applied to cylindrical and plane
cases.
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if one were to introduce instead of p volume strain of particle t = P0 / P - I

and to differentiate second equation of (1i) by t, this equation of inseparability

can be represented in the form

a" _L )~*'0, re Or 2u~ (u 0.' .3 ro P0Wo ,r. 1. = =-o t as - °)  (1.2)

In equations of motion and inseparability we shall turn from stresses to

deformations; let u (re, t) - velocity of a particle; e (re, t) - volume strain;

r(ro, t) - pcsitiol. of particle. w (t) - dislocation of particle; then

r~.L=udt' +ro or w Iu dt'
S o (1.3)

We introduce new independent variables 6, r , and new unknown functions m

and e with the help of relationships

r = at (i + AS), T = II t, U = a9 fom (6, T), e = e0e (6, T)

Here ao - speed of sound in stationary medium; Mo and e0 - small quantities,

having order of maximum Mach number and of naximim deformation. Assumption of

smallness of Mo and eo is assumption of weakness of amplitudes in wave. As was

indicated above, M, has order of magnitude 10-3 to 10- , quantity e. also is

small; as will be shown below (during derivation of equations of short ves),'

g=: MO; quantities 6, r- are of order of one unit.

In (1.5) is considered that A.6 < t due to smallnos of Ao.

Assumption on smallness of Ao is assumption of shortness of wave. This

signifies, ac follows from (1.4) and from determination of sl (see above), that

length of region of stress build-up aI = st A0 is significantly less than

distRnce, passed by wave from point of explosion rg = aot

SL < r. (1.5)

In short (A.. I) and weak (.. 1< ; eo < 1) waves, followi.ng appraisals

of lateral awid longitudinal deformations in spherical-symmetric wave are correct:
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Wt "- 463fvn t allAI')e -- ,,(1+ A'¥) .o.. 0.o, r 1 (1.6)

From comparison of appraisals of (1.6), it follows that e, is small quantity

of order of Moa nid to - is small quantity of a higher order, since e -A 01,.

1.2. We assume that during dynamic loading behavior of medium is described

by the following two functions:

-- = z.a= l(a, +2a,'. Or- ag = () (1.7)

Connection of average stress a with volume strain will be obtained, further,

in the form

- a = Ke (1 + Ile), I'eI<I (K~x + /, coast) (1.8)

Here K - bulk modulus, Xp - Lame constants.

In (1.7), function /(c) describes limiting state of medium and connects

first and second invariants of stress tensor; we obtain

f (a) = 3ma ( - X') (X'a < i m, ' -=- cist > 0)

This corresponds to decrease of shearing stres3 at site of slipping with

increase of normal stress at this site (or with increase of average stress )

In this case, using smallness X'c, Ae have

as = aa, (I + %a) a= -f . x =' X:%1.9
t +;!n 32(1.9)

Unknown parameters a, X will be considered constant in range of high speeds

of loading, near shock loads. With the help of (1.8) and (1.9) we obtz0in

-- r  3K U ( + le) 1 =--l 1", t + 21 "

i + 22 ) 1 1+
OF s3K (I - a) a (t + re,), r ="+ x'K

We put these expressions in equations of motion (1.1), replace in it, p, r, r,

by expressions through deformationsI a,, ",' (1 - ) (14 VC t,) t + 8',
1+a,), - - a2, (I + 21,) '  - = 0- a+to,, at+1,ar( i. ii+)



Here alO - local speed of sound in region of limiting state; it is deter-

ty mined by factor ae/ Ore; we have

I d-, I a,0(t + 21t), a 3K
p de a, 10 = pC +2) (1.12)

In elastic medium, instead of (1.10), we have Hooke law

-, = (X + 2V) t- - 4pt, a, - C = 21 (e - 3e) (1.13)

Equations of motion of elastic medium have form

t. a " I , L [+i t -3e.)] _ ,v + '
(1+-,)' a a , ] - "I (e - 3e.) t+ 0

Here component in parentheses is obtained during differentiation of ea with

respect to ro.

1.3. We will derive equation of short waves for medium in limiting

state and for elastic medium. In equations (1.1l) and (1.14) let us turn to

variables of (1.4); here we will consider appraisal of (1.6) for E and e, and

use following transfer formulas

au 3/0, el a m a,, ..M . ,, fi I -L 0 a m,
Us a ' a-= M - ) A1"

N f ae ae E_ 130 .-;An ae)=rI - ".Z.-j6"' a- W 7( a, a. TO (1.15)

TransformLng equation of inseparability of (1.2) we have

Al. On. e [te J 4- A 6 -- 2, 240.1t,

Hence, with accuracy within small parts of a higher order, respectively

Be ve 1

Transformation for equation of motion gives:

for limiting state of meditm
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*r0. 3 m -P L " iA -i=A,, - 6 a- 21A -,- 2N(t -- Nk e (N

(1017)

for elastic medium

3,. e. Be 1 a, ^a,ant + e-#T ae = A"'-- al(~8

From comparison of (1.16) and (1.17), and also (1.16) and (1.18), assuming

that right sides of equations - small quantities, we find

a = M,, -N = 1-2hAo (h = const > 0, h-t) (1.19)

From (1.16), (1.18) and from (1.16), (1.17) of equation of short waves will

obtain:

for elastic medium
am , a m m

W+ (1.20)

for medium in limiting state

o" =0, O-,(6+xm+h) -+(2-a)m=O (X'=--) (1.21)

If x < I, it is possible to show that speed of propagation of deformations

in regions of limiting state will be constant, and that, quantity x.n in equation

(1.21) should be disregarded.

From first equations of (1.20) and (1.21) it follows

,,J = -t (1.22)

(arbitrary function of x is equal to zero due to continuity ofm and e on boundary

of elastic zone and state of rest on boundaries of zones of elastic and limiting

states).

During derivation of equation o- short waves with acceptable accuracy (to

small parts of first order inclusively) into final equations did not enter

quantity e,, since it is small of order of A01o. Since Lagrange coordinate

r o differs from r by e,,. then with acceptable accuracy r = r o .
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Therefore equations of short waves (1.20) and (1.21) have the same form

in Lagrange and Euler coordinates.

If, in expression for N from (1.19), we replace alO, ao by their expres-

sions through Lame parameters and quantity a from conditions of limiting state,

it is possible to establish following relation

21&or a=:j- - ) ) (1.23)

Here v - Poisson's ratio. Quantity hA0, as follows from formula for N.,

determines jump of local speed of sound during transition from elastic region

to region of limiting state

al0 = a. (I - hA°) (1.24)

i.e., in case of weak short wave (alO - a0 ) / ao - small quantity of order of

A0. From (1.23) it follows that for such wave a =v ( -v) with accuracy

within small part of order A0.

If speed of sound changes continuously, then h = 0 and quantity a in

accuracy, is equal to v /(I-v), as was noted in [4].

We return to relationships of (1.10). Let us consider simplest case,

considering a = v I(i - v)and disregarding nonlinearity 1 = j = 0 ; we have

-o, = (X + 211) e, - as = X.e

We will compare these and elastic dependences

-- a, = (X + 2L) e - 4le,, - a$ = ke + 2p,,

One would think, that due to simllness of Ps in comparison with a, , there

should be no difference both in laws of propagation and wave attenuations in

elastic and limiting zones. However, this is not so. into equation of dynamics

of elastic media (1.14) enters derivative ae/ Oro, having the same order

Ho as longitudinal deformation e, (see (1.6)), and size of this derivative

can be disregarded z.o longer. This determines faster attenuation of stresses

in region of limiting state as compared with attenuation of stresses in short



elastic wave (compare second equations in (1.20) and (1.2-1)). We will show, at

last, that if into conditions of limiting state (1.7) or 1.19) we introduce

constant component p (let us consider, for example, linear condition (1.9) and

connection a and v in the form (1.23))

+ * ,(1.25)

then, for short wave I(X +-21L) will be small of order Ars and quantity

in equation of motion should be disregarded.

We make following appraisal. From condition (1.25) %Ie have
iv AAC

o - t V

and from elastic connection

vV0 + 20 as

Since, during transition from elastic region to region of limiting state,

stresses are continuous, then

p =Ao~fo (3 .- 2v )t +V t -V''-&M (1.26)

In this case, during derivation of equations of short waves (1.21) under

condition of (1.25), into the right part of (1.17) would enter a quantity of

order Av M, which one should reject. Thus, during the study of continuous

strain waves, one should use condition (1.9) and consider a and v connected

by relationship (1.23).

1.4. We will find common integrals of equations (1.20) and (1.24).

Integratin"g ordinary differential equations

dr d6 dm
T -(a+xm+h) -(2-)m

we deterrruie
t

Hence, comon integral
I

a)= (MO") + -(1.27)

where ' - arbitrary function.
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Common integral can be rewritten in the form

m = -(t*' ( ) T- ~
-- - h (1.28)

where (by meaning of problem) T - arbitrary positive, monotonically increasing

function; entry with variable T was selected for convenience of doitermination of

T from initial data at t = to .

We will write (1.28) in variables (r, t)

a I Ia (), t = rI - -) -a"1 -h O-, = rao:1 0. ) (1.29)

coinciding, at h = 0 , with integral, shown in [4].

Comion integral of equation of short elasti-. waves has form

m=8o T), or)m(1.30)m = 61D (Ur), or M = (D Ur(-0
T

where 4D. - arbitrary function. Or

'(ao (1,31)

From comparison of (1.29) and (1.31), it follows that in region of limiting

state, decrease of amplitudes with distance occurs reciprocally to r2 1 ,

independently of quantity x, which determines change of speed of sound as

function of size of load. In elastic medium it is reciprocal to r.

Comparison of formulas (1.10) and (1.13) shows that at = v/(0 -v)connection

c. ( .) , in elastic and limiting states, hardly differ. This fact is well

illustrated by experimsants with fast loading, for example, Fig. 1 from £8]

(with increase of velocity of loading, function a,(g) changes from (5) to (1)).

But, as follows from presented [example], law of attenuation of amplituds does

not determine this connection, but derivative of or in respect to r, which is

various for elastic and limiting states.

In concluding this section we will introduce integrals of equations

for short waves in elastic medium and in medium of limiting state.

In cylindrical case

. ..= 0,6 2 0 (1.32)
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These equations allow common integral (h = 0, (t) =0, i.e., m = - e)

= I(,t-0 ) +.!xm or m = T 2 (o[ 6-- -xr) T] (133).

Here Oe- arbitrary positive, monotonically increasing function. In cylin-

derical case, common integral of equation of short elastic waves has form

m = T";( (6T)

which coincides with main member of asymptotic expansion of known solution for

elastic waves.

In case of plane wave (or for wave ii rod, included in rigid shell) connections

of stresses and deformations in elastic and limiting states do not differ, since

as before, from continuity of speeds, follows co,'Uiction a = v,(1- v), and

lateral deformations are absent.

Equations of short waves for medium in limiting state will differ from

equations of short elastic waves only by component, allowing for nonlinearity

of volume strain (1#0), which influences only rebuilding of stress profile,

and does not affect attenuatio; if we disregard unloading
8m ae

eooo "W a" 6

S0Hence, if follows that

M=•0js (6 + tM) l (1.30.

Fig. 1. Here $ - arbitrary function. Case of

plane elastic wave follcws from (1.34) at I = O.

As in elastic medium, so also in medium, Iccated in limiting state (dis-

regarding unloading), aecreaae of amplitudes of continuous plane wave of loading

with distance does not occur. This agrees with known facts.

2.1. We will investigate influence of elastic unloading on attenuation of

amplitudes in spherically-symmetrical strain wave, region of loading of which

is described by solution of Section 1.
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Influence of irreversible losses on lowering of peaks of stresses in spherical

(and cylinderical) case can appear in two-fold manner:

1) in region of loading, velocity of propagation of perturbations (speed

of sound) a, is less than speed of sound ao in stationary medium (or in zone of

elastic unloading), because of this, wave of unloading continuously lowers

peaks of stress in wave;

2) presence of irreversible losses during loading (limiting state of

medium) leads to faster lowering of all stresses in zone of loading, as compared

with case of elastic (reversible) deformations. As was shown above, in region

of load faster lowering of amplitudes of all stresses occurs, as compared with

lowering in elastic wave (r - ,2- ,  < I instead of r1).

Influence of unloading wave on decrease of peak3 of stresses in strain

wave is determined by conditions of reflection and refraction of waves at bound '..y

of region of elastic unloading and region of loading. Influence of unloading

depends on difference in velocities of propagation of perturbations and on

relative magnitude of gradients of stress curve in regions of loading and un-

loading (5, 6].

Knowing solution of problem of wave propagation in region with limiting

state, for determination of unloading wave it is necessary to solve boundary

problem for equations of theory of elasticity (data on one of characteristics

and data on unknown curve, near characteristic of second family), which can be

done by numerical methods (for example, method of characteristics).

If, however, we consider only appraisal of influence of unloading on attenu-

ation of maximum amplitudes, it is possible to use following method: to derive

formula for initial velocity of unloading front (by analogy with derivation for

plane elastic-plastic wave (5, 6]) and then by deviation of speed of unloading

front from speed of sound to estimate contribution of unloading to decrease of

amplitudes.
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2.2. We will derive equation of elastic unloading. Equations of motion and

inseparability of small elastic deformations have form

p "+ " --- 2 r 0, -2au =0
Ft 7 at (2.1)

During unloading, differences between stresses and deformations obey the

Hooke law

-- (,-o,_)= (- + )- (X + 2-(  ) c- + 4pee

- (a@ + .-.) := It + 2pe, - ke_ - 2pe... (2.2)

where quantities with minus index are calculated on front of unloading t = f (r)

from side of region of loading (f (r) - unknown function).

Using connection of stresses and deformations in region of limiting state

(not limiting generality of conclusion, we assume below h = 0, so that

V / (--- v))
- o.. = () + 2p) e_ (1 + _), It- =X( + k) (2.3)

From (2.2) we find

- , = (. + 21) t - 4peo + (X + 2p) le.' + 4feg_
,- , = - 2p (a - 3e,) - 2le-- 6eo_ (2.4)

Putting (2.4) in equation of motion (2.1), we find

p. (X + 24)0 = pea' G (r) (2.5)

where

G (r) - + 2 (1 -- ) + 2 (t 4) or)_ (2.6)

If we introduce characteristic variables

a, q r "+- a (2.7)

in region of elastic unloading, equations of (2.1) can be written in following

form

OF, . G(P) F, U C(r) F,=u )
, (2.8)

Relationships of (2.8) will be represented in following form, convenient

for further computations:



along characteristic E = const

2(2.9)

along characteristic nI const

2.3. We will derive formula for initial velocity of unloading c, following

method, shown in [6], for plane of unloading wave.

Let, at r = ro deformation curve be given z(l). having corner at

4=t1 2 . t = to. In vicinity of this point, it is possible, approximately, to

describe curve by formulas (Fig. 2)

em = - - ki ft - t) Vt :
e, s=, + ,(- k2 ) (t - 4. (2.11)

Loading corresponds to 1< to. unloading - t> to, kit k2 - positive

values of gradients of deformation.

Solution of problem of unloading is based on joint solution of equations of

short waves for region of limiting state and equations (2.9), (2.10) for elastic

unloading, taking into account boundary conditions of (2.11) at r = ro and

conditions of continuity of particle velocities and deformations on unloading

front t = f (r), position of which is not known.

Using approximations of (2.11), we will define values of deformations at

points A, B, and C, on characteristics in region of loading and unloading re-

spectively, considering quantities of velocities c and a1 constant in section

(ro, ro  + dr*): A k (die )

' mx+ ks di -

,C =, + * k dio (2.12)

At point M (ro + dr*, to + dt*) on front of tmloaclng, we will calculate

deformation and particlt velocity by the formulas for region of limiting



state

~"~ Y r - .- 4i f-t )I, a,(2 .13 )

Hence, with the help of (2.11), for section of load it follows

(P. {Ea 8 a 1 - t. r . (2.14)

Thus, on front of unloading

It P - ?g= c(-ta) or dre - edt* (c = dr dt /'

e~ft)will be

el =-,maz -( 2 -a) emazdio/ re-kdt(t - c /a,) (2.15)

tod'------ "g "mUax - (2 -a) uma dr* I re +f e~ktdI*,j -a/ at) (2.16)

Irzdetwith accuracy within first degrees of dr*, dt*

e . inclusively.
Fig. 2.

We will determine "reflectivity factor" of

waves in region of elastic unloading from front of unloading.

From proximity of points B and C to point 0 it follows

U."- M M2L L (j-t,)=I - t

where j-acceleration at origi of unloading.

Hence,

Kaz _-C/a&9

UC1 "Mal 1+C/49(218

For calculation of UB - ua and uC - uma we will use relationships on

characteristics in region of elastic unloading, will calculate u. - u.and 'uC

with the help of (2.9) and (2.10), and then, with the help of formula (2.16)

for u., let us turn to required quantities. Inasmuch as relationship along

charcteristic (2.9) and (2.10) is applied in imdiate vicinity of point (r0 , to),

integrals in (2.9) and (2.10) are calculated approxi~mately; integrand is calculated

at point M (or point 0) and is multip.Lied by length of interval of integration



2dr*.

Omitting intermediate calculations, we arrive at final. expressions

Nil - max asks (I - c I,) dt* + 2aokI (I - c/ at)d1* L- Ggaok~dt

-xa -mmtzak 1 (1 + to~i) d1* - 2az*oltls do / P# - 0146k~dto

where

Putting these expressions in (2.18), we obtain equation for unknown quantity c

I - e;# (kilki) (I + clan) +2 (t -clai) + C1 tc
i + C140 -(kykl) (I + c/a.) + 27L/ -G l. (2.19)

Quantity U, as easily shown, will be small, due to shortneEss ofT wave. Indeed,

for curve with linear build-up of quantity of deformation U = s1 /ro, so that U

has order of smallness Ao-.

Usig experimental -4ata on proximity of quantity c and ao (I - cl/ao =w i, wI i)

and assuming that 1 -aaoW,<t from (2.19), we obtain, with an accuracy

to the small order of the products w,. ca , Ai..

i.e.,. velocity of front of unloading is nearer to velocity of propagation of

500 kadeformations in limiting region a,, the

~ . ~ 4  K-less k/ - ratio of gradients in region

of unloading and loadting - and the less

zoo- deviation of velocity of propagation

Formula (2.20) coincides with anal-

o ogous:~r ~ frmforpan wave of unloading

2 5, 6siintelatter, are consider

WIT 0 reslt for paewave is result of

Fig.3. hornessof "Lodngwave.



Application of (2.20) to appraisal of influence of unloading on attenuation

of peak amplitudes of strain waves during explosiona in durable rocks, shows

that this influence is insignificant, since at short distances, where u, - 0.1.

ratio k2/k1 is small, and at great distances, where k2/kI - 0.26 - 0.3, there

is minute difference 1 - c/a o . For appraisal of influence of unloading, following

calculation was performed, in which experimental strain curves were used [3).

Law of attenuation of maximum stresses, according to this data, is represented by

dependence 1 (Fig. 3). As initial curve was taken stress curve at distance of

20 R., shown in Fig. 3. Using experimental data on quantities k2 and kl, and

on speeds ao and c, with the help of formula (2.20), was calculated decrease

of maximum amplitude owing to unloading at all distances from point of explosion.

For intermediate distances between empirical curves, interpolation was made.

Thus, dependence 2 (Fig. 3) was determined, which corresponds to change of maxi-

mum stress, without influence of unloading.

At distance 15G 1%, as seen from Fig. 3, amplitude of stresses, measured

in experiment, is equal to 13.8 kg/cm2 , without regard for influence of unloading,

amplitude c',= 16 kg/cm2 . If we calculate attenuation of amplitudes, without

regard for transfer of rock in limiting state in regions of loading (i.e., for

elastic medium), amplitude of stresses is equal to 62 kg/cm2 .

In [7), remarks concerning our article from N. S. Medvedeva [4] were expres-

sed in which preliminary results of investigations of waves of loading in rocks

were presented. These notes relate to connection between a and ,v and to possible

influence of unloading (which was not estimated in [4]). This criticism forced

return to problem of strain waves and re-examination, once again, of basic

conclusions of [4]. As reader may note, all basii assertions of [4) are true.

Author extends sincere gratitude to S. A. Khristianovich for valuable advice

an instructions, given during execution of present work.
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APPROXIMATE EQUATION OF STATE OF SOLID BODIES

V. M. Gogolev, V. G. Myrkin, and
G. I. Yablokov

(Leningrad)

In series of problems, coupled with study of strong shock waves in
solid bodies, information is necessary about their thermodynamic proper-
ties during high loads. At present, for study of mentioned properties,
so-called method of shock compression [1-10), is widely used. This
method allows to obtain shock adiabat for investigated material.
Using shock adiabat and theoretical model of solid body in Debye approxi-
mation or in more accurate approximation, equation of state and other
thermodynamic relationships can be obtained.

Large variety of solid materials and insufficient knowledge their
properties during shock compression pose question of consideration of
possibility of generalization of experimental data and obtaining of
unified relationships, describing thermodynamic properties of definite
class of solid materials, which would allow to make extrapolation of
these properties on other materials. Such generalization, in accurate
meaning, is hardly possible. However, for problems of applied character,
in many cases presence of approximate information is sufficient for
this question.

Below are given results of generalization of experimental data of
(1-101 concerning shock compression of metals, rocks, and several
other solid materials. Offered is single shock adiabat for shown
materials. On the basis of theoretical model of solid body in Debye
approximation and shock adiabat, generalized equation of state expres-
sion for internal energy and several other thermodynamic relationships
for solid bodies are given. These results have an approximate character.,

1. Generalized shock adiabat. At present, in sufficient detail, shock

compressibility of metals has been studied (1-5, 8-101. Furthermore, in published

literature there are experimental data on shock compression of series of rocks

139



[6, 11 and certain other solid materials [6, 7]. Let us consider possibility

of their generalization and obtaining of single shock adiabat. For comparison

of ihown data, it is necessary to bring them to dimensionless form. As measured

parameters, which would characterize form of hard material, it is rational 'o

select speed of sound CO in undisturbed medium and density Po.

In Fig. 1 are given experimental points on shock compression of solid rocks

and related materials in system of coordinates
Ap - P-- o M - U_

pore CS

where p - p - pressure jump at front of shock wave, spreading in undisturbed

medium, u - particle velocity at front of shock wave. From consideration of

figure, it is clear that for various materials, experimental points are sufficiently

well coordinated armong themselves without any noticeable systematic deviation.

In Fig. 2, in that same system of coordinates are given experimental points

for dimensionless pressures up to magnitudes - 35. Since, for large pressures,

information about shock compressibility of solid rocks is absent, on figure are

given points for metals; in given case, experimental points for various materials

are well coordinated.

Below, on basis of given data, is made an attempt to obt.ain single shock

adiabat for solid rocks, metals, and several other materials.

During approximation of experimental data on compressibility of liquids and

solid bodies analytic function is frequently used, of form

AP= FS T PC 1(1.1)

where A and n - constants, determined by experimental data. Using conditions

of dynamic compatibility, we proceed in (1.1) to variables A P, M

A' = AP It -( 1 AP + I)-tj (1.2)

As a result of approximation of data of Figs. 1 and 2, we obtain

A=5.5. n=5 hen 0.t <AP <35 (1.3)
A=3, a=3 whon 0 O< P <0.1
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In Figs. 1 and 2, graph of depen-

dence of (1.2) with respect to (1.3)

and (1.4) is shown by solid lines. This

3i -graph is sufficiently well coordinated

- with experimental points. Relative

-deviation of experimental points from

curve lies within limits ten percent.

U0- •I 8 - ,. - "-- -

&Z .7-.-

IA as,,,

0 02 0/ 0.5 ti

0 1 2 q

Fig. 1. Curve-calculation by formula Fig. 2. Curve-calculation by formula
(1.2); points: (1.2); points:

I - marble '. - 1 - paraffin
2 - quartz (0. - 2 - C02, solid
3 - paraffin (  -2 t" c. 3 - NaCl, single crystal
4 - NaCl, single crystal (P. - . - 3318 4 - Cd ('. - "I. C. -u
5 - CO solid 15.-57 c-sO 5 - Cu e.- 9,.. - ,,
6 - tuf, rose (,. - 9. c. '1) 6 - Pb 1,. .- I
7 - tuff, white (o. - . * - ,3) 7 - Sn 7%. r- 2 ", 1

' ( OG8 - Zn C.. -O01
I.- ,e¢n' [hi rm/SOC 9 - tuff, white

10 - tuff, rose

It is necessary to note that formula (1.2), under condition of (1.4), has

interpolating character, since, in this range of pressures, experimental data are

absent.

Detailed compari.son of approximation (1.2), under conditions (1.3) and

(1. 4), with experimental data for various metals is given in Fig. 3. This

comparison once again shows good coincidence of experimental data with approxi-

mation (1.2) - (1.4).

In plane of varlablesA P and plpo there is rather large scattering of

experimental points. In connection with this, deviation of experimental points
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from curve (1.2) reaches 20%.

Thus, conducted comparison of experimental data for various solid rocks,

metals, and several other materials shows that for approximate description of

shock compressibility of these materials it is possible to use generalized shock

adiabat (1.1).

2. Equation of state for solid bodies. Knowledge of shock adiabat of solid

body allows to receive equation of state and other thermodynamic characteristics,

if one were to use theoretical model of solid body Debye approximation. It is

known 112), that in this approximation, internal energy and equation of state

can be represented in the form

E= E, r) + E- Cv, T) (2.1)

8E "E. .. ,

Here, p - pressure; T - temperature; v- specific volume; EX - energy of

cold ca, pression; E - energy, connected a with thermal motions of particles;

- Grineisen coefficient. In these expressio, s Em, Ex, and I are unknown

functions. If they will be determined, then full thermodynamic description of

solid body will be obtained. Let us consider their determination. Thermal

energy, in this case, can be calculated in following manner [12):

E,.=e.T (2.3)

If we assume that temperature of body, on the one hand, is noticeably

,bove room temperature, and, on the other hand, does not exceed tens of thousands

degrees, then, according to Dulong and Petit law [12], we have

. =* Coast (2.4)

i.e., heat capacitieb, during constant volume and pressure, are identical and

constant. Thus, thermal energy is determined completely by (2.2) and (2.3), in

the above mentioned interval of temperatures. For determination of energy of



cold compression, shock adibat is used

f u /rl, 8). For that, from condition of

| 2dynamic jointness

K where Eo, Po, r, - values of parameters
'7

6 A"before front of shock wave, thermal

"Z part of energy, is excluded with the

44 IV-help of (2.1) and (2.2). As a result,
, 15
* ,- equation for determination of energy of

Ccold compression is obtained by shock

0.2 O M adiabat
Fig,)3. pnsCurve-calculation by formula dAE,_ +1 AE, =
(1.2); points: dr

1 - Co . C. =4W)
2 - Be 88. 4 7.W ' (2 5)
3 - Th 1190. 2w)

4 - T i ( .- 1210. M O, 
j I)F

5 - Zn Here index 0 designates quantity
6 - Cd
7 - Zr (G.=C2. c .=) of parameters of medium in undisturbed
8 - Ag (P. = 100. . O=O3
9 - Au (P=,9 M. c Y=) state, value of pressures is taken on

10 - Cr (.M. -, . 5,%
11 - Mo (,. 0. =5,W) shock adiabat (1.1)
12 - Ni(,.-. c- ")
13 - Ti (.- . c. 48-0)-4I, A =(E+ )/
14 - V (.-6 .- 5150)

15 -W (0-- . c-4%0 This equation determines energy of
16 - Sn (- 743. c. - 7v6)

17 - Cu (P. - . . ) cold compression with accuracy within

immaterial additive constant.

For determination of Gr 4 neisen coefficient by L. D. Landau and Slater [1 -4],

was offered dependence

--- -2 p l ( -- "(2.6)
3 2 dp~/dv;d

Here Px (v) pressure of cold compression; Ex - energy of cold compression.

,mewhat later, MacDonald and Dugdale offered a more accurate, though bulkier,
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formula [1 - 4, 8]. For aims of present work, it was more convenient to use

dependence (2.6). Totality relationships (2.5) and (2.6) gives differential

equation for determination of energy of cold compression. However, accurate

solution of this equation is possible only by numerical methods and entails great

difficulties. Therefore, we will make approximate solution of shown equation.
II

Calculations show that Gruneisen coefficient is a slowly variable function as

compared with remaining variables in (2.5). In connection with this, we will

integrate (2.5), considering that T is constant. Then with the help of (2.6),

we will determine dependence of I on v. Before doing this, let us turn to

dimensionless variables.

V _.AE_ cVT

9 - = C, 8m (2.7)

Making replacement in (2.5), according to (2.7), and executing integration,

we receive

ex = e" (V) + VI + -[('Q +ew(28

where

=+ T2) (-+) L+ [ (T+2)( -T) V]v-. +e • -7ATP + 1)-- (, -T) 'T~ - 7---, t)+
+ (n++) ("+ ) [

T(T+I)(-)( --r-1) V (2.9)

Quantities A and n are determined according to (1.3) - (1.4).

Thus, relationships (2.1), (2.3) and (2.8) allow to receive expression for

internal energy. From (2.2), (2.7), and (2.3) we obtain equation of state

=,.(V) + -,e (2.10)

where

F, PP1 (V+ ±T+2 + T [ PO (2.11)P.=P(*)V)+2 7r+i +I 2(1+1) '

rX (V T_ n (T +2) (n -1)(n-l V--1 -"2A- T L (tT-I)1
it (A + 1) r(Y+I) - t (T" + 2)}-- + 1)(A-1)(1---- 0 (I (2.12)

Quantity T is determined from (2.6) and (2.11). Disregarding initial values
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of parameters in (2.11), we obtain

2 + t B(+)-B(n+2)V-'-D,(rt+2)V"'
2 B, - V-' - BV - T-1  (2.13)

where
(Tr + 2) (m - t)n a (A + ) ( + t

B A-- t  , B3 = -T ' B= (A __ )) (n __ __ )

Graph of function I (V) is shown in Fig. 4. Analytic dependence

T - 2.30-3 (2.14)

gives sufficiently good approximation of graph of Fig. 4.

Thus, relationships (2.1), (2.3), (2.8), (2.10), and (2.14) give expres-

sion for internal energy and equation of state for metals, solid rocks, and

several other materials.

In Fig. 5, are given curves for comparison shock adiabat and isotherm of

cold compression (2.11) with regard to (2.14). At comparatively small pressures,

these curves differ little one from another. Of interest is analytic appraisal

of difference of these quantities. We will introduce, for this quantity

p-pe
Ps

Considering it small, as compared with one, and expanding expressions (1.1)

and (2.11) in a series along 8. we obtain

App(,) {.T(n+1)(n-1-1)(n- 2T)+T(T-1)J-A- I 12(n -T) (. - T - i) 6 +

+ TIfn ( t)i(n-)(n- 2 )(2n - 3T)"- -T(IT-)(T-2)1 6 .. (.5
2-.41( -- 1 .- -t " (2.15)

Since V changes little here, we consider '" constant. From (2.15), it

follows that difference between shock adiabat and isotherm of cold compression,

at relatively low pressures, is proportional to 6'.

'41-;



tl-p "- - -

' "P''1.5

Fig. 4. Curve-calculation by formula Fig. 5. Comparison of shock adia-

(2.13); points - calculation by formula bat 1: with isotherm of cold com-

(2.14). pression 2.

3. Fxression for entropy of solid body. According to definition, entropy

differential has form

T - T (3.1)

In accordance with assumptions made above, we have
8E1

dE=- -d +cdT (3.2)

Placing (3.2) in (3.1), we obtain

d = -L+ C, . (3.3)

We proceed, in (3.3), to dilmnsionless quantities

S P -- = -- m eE= cj T

Using equation of state (2.10), we obtain

dS-r dV +de, (3.4)Vs --+.

Integrating this equality from point of initial state (S = SO, V =,

up to arbitrary state, we obtain

emlr

This relationship represents generalized expression of entropy S of solid

body, through parameters of its state. It is necessary to note external similarity

of expression (3.5) to expression for entropy of ideal gas. In latter case, role



of Gruneisen coefficient is different

If, in solid body, there is isoentropic process, then, from (3.5) and (2,10),

we obtain following expression for Poisson's adiabat

v-"! p - P,(V)j = const (3.6)

From (3.6), it follows that product of thermal pressure on specific volume

in degrees (T+ 1) is constant quantity, i.e., in given case, there is also the

above-noted analogy to ideal gas. This analogy is associated with assumption

of (2.3).

In order to receive appraisal of jump of entropy .n front of shock wave,

depending upon its intensity, we exclude, from (3.5), thermal eriera, wIth the

help of equation of state (2.10)

SS=_lint+ 1P- P iV"'"- 7C}
1 ,. l (3.7)

During comparatively slight intensity of shock wave, fraction in expression

(3.7) is small. Therefore, we represent logarithm in the form of a series

$_ $. IP - F111 rV+ - 7e"+.
7emo

Using (2.15) and expanding Vr' in series along 6, we obtain

S- - , .1162 4-[A:- A i (3.8)

where A1 - coefficient from (2.15) at V A2 - coefficient from (2.15) at 61.

From this expression, it follows that jump of entropy on front of shock wave

is propcrtional to jump of density in degrees not lower than 3.

Thus, on basis of generalization of experimental data on shock compression

of metals, solid rocks, and several other nonporous materials, we managed to

obtain single, for these materials, shock adiabat. As a result of use of theoret-

ical model of solid body and of single shock adiabat, generalized equation of

1,4"7



state, bxpression for internal energy and entropy are obtained, which can be

used for approximate description of thermodynamic properties of metals, solid

rocks, and several other hard nonporous materials.
Submitted
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EXPER1?ENAL INVESTIGATION OF DYNAMIC STRESSFIELD IN
SOFT EARTH, DURIG CONTACT EXPLOSION

V. D. Alekseyenko

(Nos ow)

Contact explosion occurring at boundary cf two strongly differing
(by properties) media - air, and ground, creates, in latter, non-
stationary axisymmctrical stress fields and speeds, and leads to
motion of air. Theoretical solution of corresponding problem arising
for equation of gas dynamics describing motion of air, and equations
of mechanics of ground (eight of which are considered here), present
great difficulties. Difficiulties also appear during experimental study
of this phenomenon.

Below are expounded certain results of experimental investigation of
non-stationary stress field, created by contact explosion, in medium--
granular sand of undisturbed structure with specific weight -, 1.6 g/cm3
and absolute humidity w = 7 - 10%. The following scheme of measurements
was used (Fig. I). On spherical surfaces, far from center of explosion,
to relative distances r, equal to 15, 20, 30, and 40 (r R/r R-distance
from center of explosion, r,, - radiuas of charge), at points - 9, were
established four-component tansometeric data units. With the help of
these, werc measured normal stresses aO,a c, a), acting in coordinate areas
of cylinderical system of coordinatee :,o. and normal stress ao, acting in
meridian plane i4 on area, rormal of which constituted, with axis p, fixed
angle a - n /,. Details, coniacted with necessity of such measurements,
are contained in [1). We w1 give only necessary formulas, allowing, by
results of meaaurement of a., o . o, 3n to callulate main characteristics
of stress field: it - shear stress, , ,- main stresses in meridian
plane, p - angle between one of main directions and direction z

.' 7+ i i



C01 = 3 Cos, 4 + :s sill, ( + tr sin21P()

13 = ' A (P + z s a A C052 (P - Tpsin 2(P (3)

0 23n=:.5 2rct 2 - (. cs.x + ,sin3 )]

Fig. 1.

At point 10, capsule-microphones, were established fixing moment of'
arrival of front of air shock wave. Signals from strain gauges through
amplifier UTS-12/35 were recorded by loop oscillographs MPO-2 or N-102,
and from capsule-microphones directly by oscillographs. Angular distance
between points of measurement 1 - 5 constituted 150, and 60 between
points 5 ... 10. Trotyl charges of cubic form, by weight 1.6, 5.4, 12.8 kg,
were disposed as shown in Fig. 1.

1. Kinematic characteristics of motion. Experimental investigation showed

that in significant region of ground half-space, adjacent to axis of symmetry

z (00 - p 60c--G6-). blast wave has one stress peak, but near surface of ground

(600 - 660<0 <-900) - two peaks, corresponding to two longitudinal waves, generated

by perturbation, proceeding through the ground from focus of explosion and by air

shock wave, spreading on surface of ground (1, 2). In Fig. 2 are depicted stress

oscillograms at point 1, when r = 20,0 = 00 (oecillograin 48 -1), and at point 7,

when r = 20, = 720 (oscillogram 34-6). Linea downward correspond to a. a:, an,. oe,

time marking - sinusoid of 500 cps. Region, in which are observed waves with

two peaks, we will call surface.

Experiments showed that at relative distances from center of explosion.

r < 20, wave in the ground is characterized by discontinuity of stresses. Here

the greatest of stresses at the front constitutes 4 - 5 kg/cm2 . At distances

icu?,



r > 20, there are waves with smooth build-up of stresses to a maximum value. Above

information relates to waves, having one peak. Waves having two peaks, at distances

r , 20 also have shock fronts at both maxima, and at r > 20, stress in second

maximum grows for some time, but first maximum preserves intermittent character

longer, the nearer point of observation is to surface of ground. Here, time

increase of stress in first maximum decreases with approach to free surface, and

at 5 = 900, obviously, equals zero. Time increase in second maximum, at fixed

distance from center of explosion, does not depend on angle coordinate P, Time

increase relative to second maximum, is determined as time between minimum and

second maximum. In Fig. 3 are represented experimental function of time of build-

up tI. on linear r, and angle 3 coordinates for wave having one Liaximum, and on

first maximum for wa-ves having two maxima*. Curve 1 corresponds to value of

angle " from 0 to 660, curves 2, 3, 4 for P = 720, 780, 840. Let us note that

difference from zero of time, corresponding to dotted line in Fig. 3., should be

subtracted from true time of build-up, since it characterizes boundedness of re-

solving power of applied equipment. By given data of Fig. 3 is obtained formula

for determination of time of build-up for waves shown

m -I (1.1)
In all formulas (including (1.1)) are obtained following units of measurement:

L msec for time, m for length, kg for weight

C= F of charge, kg/cm2 for stresses, kg sec/cm2

Mfor specific impulses, and m/sec for

velocity. Numerical (dimensional)

coefficients I and d in formula (1.1)

depend on angle coordinate P. In sub-C..j

sequent formulas, analogous coefficients

Fig. 2 will also be functions of P . On graphs,

*Here, and in the future, superscript * means that given parameter is related
to linear scale of charge C= J [msec/kg I /3] (C-weight of charge in kg).
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depicting this dependence on 0. dotted parts are natural extrapolation. In Fig.

4 are shown functions of 1 and d on . Data on time of stress ouild-up in

second maximum is more conveniently given later.

W',o' 72"#,

8)0* 78-Z 9.

Fig. 3 Fig. 4

For determination of velocity of propagation of blast wave in ground, by

experimental data on time of its arrival at points of measurement, hodographs

of fronts of shock waves or maximum stresses for unstressed waves were constructed.

Hodographs of fronts of sound waves, arising at a definite stage before shocks

were also constructed. By means of differentiation of these curves was determined

velocity of propagation of maximum stresses at various points of ground half-

space. In Fig. 5, in coordinates to*, r, are depicted hodographs of waves; by

dash lines is depicted front of sound wave, aolid lines - front of first maximum,

and dash-dotted - second maximum of stresses. From Fig. 5 it is clear that at

any fixed value of r, in certain region adjoining axis z and having angle

dimension u -i , only one stress maximum is observed in wave, time of

arrival of which, within limits given region, does not depend on I. Beyond

limits of this region, i.e., at A>P(r), wave has two maxima. Here, time of

arrival of first stress maximum tol* decreases as compared with time of arrival

of wave in region 0"< O < A(r), and the more intense, the nearer to free

surface is the considered point. It is obvious, that at P = 900, to,* is

equal to time of trrival, at given point, of front of air shock wave. Arrival



time of second stress maxiimum toe beodlmt*frgin0"%<A ,o

the contrary, increases as compared with arrival time of wave within liinits of

this region. However, as seen from Fig. 5, this increase is insignificant.

8 --

Fig. 5 Fig. 6

Data of Fig. 5 are wel-I described by foriuila

40= k(18.5R- t)" (1. 2)

Differentiating (1.2) in respect to t, we obtain formula for doterminatioa

of propagation velocities of stress maximums

54

D kn(1.5R- 1)"-' (1.3)

Graphic functions of coefficients k and n are represented in Fig. 6. By

data of Fig. 5 is obtained formula for determination of time between arrivals of

first and second maxima

(a R - b VU(1.4)

* ~ab~ h 7

1.5

a 0

0'-5 75 85 'C 1

Fig. 7 Fig. 8
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Coefficients a and b are determined by graph in Fig. 7. Position of

minimum of stresses, as experiments show, depends mainly on distance from center

of explosion. If fronts of first and second maxima are shock, the minimum of

stresses coincides in time, with second maximum, i.e., time between arrival of

first maximum and minimum tmin = t12. When stresses in second maximum increase

smoothly for some time, minimum of stresoes is displaced in direction of first

maximum. In Fig. 8 is depicted functivu of tMn/t12 on r. Using for la (1.4)

and data of graph of Fig. 8, one can determine rise time of stress in second

maximum by the formula

is ,j. - (1.5)

Full time of action of blast wave, within limits region where wave has one

maximum (0o 0 < 600 - 660), practically, does not depend on angle of p at

fixed value of r. At 0 > 660, full time of action diminishes with increase

of angle of p, in spite of the fact that in surface region there is a composition

of two waves displaced in time. In this, apparently, is developed essential

influence of rarefaction wave on stress field in surface region. Data of experi-

ments are well described by formula

S=(t. + 1)171 (1.6)

Function of q and f on p are depicted in Fig. 9.

On basis of data of Fig. 5, it is

K possible to construct wave fronts in

half-space at various moments of time

I and, thus, to trace transforiation of

-- wave front in process of propagation.

During construction of wave3 front,

L F T 0"for characteristic moments of time were
0-60 70 80

Fig. 9. taken arrival times of wave at points

of measurement on axis of symmetry -o°). far from center of explosion at



r = 15, 20, 30, and 40. At distances of r,>20, during construction wave front,

arrival time of sound front and arrival time of stress maximum were considered.

In wave with two maxima, arrival times of beginning of wave of first and second

maxima were considered. In Fig. 10 is depicted meridian section of wave front

at various distances from center of explosion. Points of measurement were disposed

on spherical planes with center coinciding with center of charge. Therefore, in

regions where arrival time of wave does not depend on angle coordinate p, wave

front has spherical form. In surface region, fronts of first and second stress

maxima, due to dependence of their arrival times on angle of P are not spherical

in form. Here, front of first stress maximum, as been in Fig. 10, with approach

to free surface, seems to "follow" front of air shock wave. Front of second

stress maximum deviates slightly from spherical.

In Fig. 10, it is clear that magnitude of value p, separating surface region

from remaining space, changes together with r. Increase of angular dimension of

surface region occurs due to faster deceleration of propagation of spherical

wave spreading through ground from center of explosion, as compared with wave

generated by air shock wave. Slope of front of latter wave, due to decrease of

ratio of velocity of air wave to velocity of ground wave Df / D, is increased

with departure from center of explosion. However, absolute values of angle of

inclination + are small, and at distance r = 40 contitutes approxima.ely 160.

Thus., wave front in meridian section represents semicircle with center

coinciding with center of charge, and

.- a certain slightly distorted line,

. .... - convex in the direction of free surface,

and inclined towards it under certain

Iangle t, magnitude of which increases

together with r. The above refers to

Z fronts of maximum stresses. Regarding,

Fig. 10



sound wave, however, with removal from center of explosion, its outline, in half-

space, approaches configuration of longitudinal waves, appearing in elastic

isotropic half-space during action on its surface of a concentrated forke and

weak air wave.

2. Main characteristics of stress waves. During investigation of

dynamic stress field, at every point of measurement, four normal stresses

a., ac. o,. a were fixed in time. Measurements of shown stresses give full

information about state of strain at point of ground half-space, which allows

to produce manifold analysis of dynamic stress field. Purthermore, with the

help of data on stressed state, it is possible to check derivations made from

kinematic parameters.

In Fig. 11, by solid lines are represented experimental functions of maximum

values of components of stresses

6mot, 630Co. atp an of angle p at distance

-L from center of explosion r = 40, when

-. '&-" >/lj center of charge coincided with surface

Le of ground. In this figure, by dotted

lines are depicted curve changes of

-4 1 , shown stresses in centrally symmetric

0o 4 i- field constructed from formulas

Fig. 11 It cos' + Zo si ' (2.1)

3S,== t si l -+- - g COS 3 (2 .2 )

+ 0:o - 3.) sin ".::l (2.3)

Go= =const (2.4)

where ,o. ,coo - experimental values of stresses at A = 00. There are anal-

ogous data for other relative distances, however, they are not listed here due

to lack of space. It is natural that each curvep relating to any component of
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stress, starting from certain value of angle p. consists of two branches, expres-

sing change of maximum stress in first and in second maxima. Relationship of

maximum magnitudes of stresses in first and in second maxima depends on angle

In beginning (on p ) surface region, stress has large magnitude in second maximum,

but with approach to free surface - in the first. This is explained, by various

laws, as wave attenuation, spreading from center of explosion, and wave generated

by air shock wave. Stress in wave, propagated through the ground from center of

explosion, decreases with approach to free surface, and increases in wave, generated

by air shock wave and diffused from free surface. From Fig. 11, it is clear that

unloading influence of free surface on wave, propagated through the ground

from center of explosion, is so intense that, in spite of the fact that second

maximum is result of imposition of this rave on wave, propagated from free surface,

this maximum, during approach to free surface, becomes minute.

0.6.L--- i : j .'j__

L~I 7-A -4

A, .1•1. f o I0.

JO Ca so Ica- L

Fig. 12 Fig. 13

During conduction of experiments position of center of charge change. rela-

tive to surface of ground. Results of measurements of stress field showed that

maximum stress rather considerably depends on this factor. Thus, for example,

when location of charge is directly on surface, maximum stress in region, where

wave has one maximum, is twice as low as when charge is flush with free surface.

Influence of position of charge on magnitudes stresses in first and in second
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maxima spreading in surface region, is varied, Change of stress in second maximum

is approximately the same as in regions with one maximum in wave. Change of

stress in first maximum, depending upon pIsition of charge, occurs in o3posite

manner. When charge is directly on surfaces of ground, stress in first maximum

is larger than when charge is located flush with surface. All this is natural,

and is connected with varied distribution of energy of explosion between movements

of ground and air in initial moments of development of process at varied location

of charge relative to surface of ground. In Fig. 12 are presented data on depen-

dence on § of ratio K of ,aximum stresses at above mentioned two extreme locations

of center of charge (in reference to free surface) to maximum stresses where

center of charge is on surface of ground.

Maximums of measured components

of stresses can be described by formula

7,gs = KA q G (tj (i = o,-,,.p: j 1.2) (2.5)

L6 " -Coefficients K, Aij, and nj are

determined by graphs in Figs. 12, 13,

, to a0 680 and 14. Here, value of index j = 1.2

Fig. 14
indicates in which maximum o"' is

determined.

Analysis of experimental data showed that within limits of region with one

maximum in wave, laws of change of specific impulses are similar to laws of

change of corresponding components of stresses. This is explained by the fact

that, as shown above, total time of action of wave in this region does not depend

on angle P. n surface region, specific impulses for each component of stresses

are total throughout entire wave with two maxima. Obviou5ly, on free surface,

specific impulse is equal to specific impulse of air shock wavet Expcriments

showed that position of charge of, in reference to free surfaae, noticea-y

influ,.ces the magnitude of specific impulse. We note, however. that influence



of this factor shows up, mainly, in regions where wave has one maximum. Since

in this repion, time of action does not depend on angle coordinate 0, specific

impulse changes here proportionally- to coefficient K. In surface region, because

position of chaige, in reference to free surface, affects magnitude of stresses

in first and in second maxima differently, magn:itude of total (by wave) specific

impulse, practically, does not depend on position is charge. By data of experi-

ments, it is possible to construct following formula "or determination of

magnitude of specific impulse.

Kw4 (1)14L (2.6)

ZO 30. sO 80 l 30 60 90
Fig. 15 Fig. 16

Coefficients , and ii are determined by graphs in Figs. 15 and 16. On

basis of data on stresses, time of action, and specific impulses, is obt.ained

dependence, characterizing law of change of stress in wave in time. Here, it

was assumed that blast wave, in time, is described by binomial law.

(2.7

In Fig. 17 is shown change of exponent v depending upon r and .

Tiv 1 , Obtained experimental data allow to

1F--I,,5- ,z analyze in detail the qualitative and quan-
3 '0 i- ititative sides of dynamic stress field. By

0 30O-,--- 0 above mentioned data are calculated m imum

Fig. 17
magnitudes of principal normal stresses, and

their orientation in meridional planes (mes . .ib s determined along with maximum

15t a 9.



value of shear stress T,,, effective in that same plane. In Figs. 18, 19, 20, and

21 respectively are presented results of calculations for ai m nx, 3" , q.

From Fig. 20; it i- clear that angle q. calculated by maximum values of stresses

in wave with one maximum and by stresses in second madxawi, :i surface region,

within limits all half-space, i; very near in magnitude to angle . Proximity of

angles ? and p indicates that wave front, spreading from center of explosion,

can be considered spherical. Angle T, calculated by stresses in first maximum,

in the beginning, in surface region, sharply diminishes, and then, practically,

is equal to angle v of slope of wave front, spreading from free surface. Thus,

outline of wave front is half-space, constructed from kinematic data, is confirmed

by data of measurements of stresses.

Examination of Fig. 11 shows that experimental curves, within limits of

region 0O<P < 300, is immaterially deviate from dotted curves expressing laws

of change of corresponding components of stresses in centrally symmetric field.

This fact, jointly with received data on sphericity of front, justifies conclusion

that distrib-ation of stresses in this region (1. will call it axial) can be con-

sidered zpproximately the same, as in case of centrally symetric field. Inczsed,

in Figs. 18, and 19, it is clear that principal normal stresses ai, as,.-

within limits of axial region, depend little on angle coordinate P , and that

4

8 " O 6 90 'a JO 60 .0.r I 18 a .
6s

rs

O O Fr q Paz0F~ 6,

30 60 (r'0
l og , ' 0 6 g o0 jo 6 0 .0a w

Fig. 18 Fig. 19

smaller of them are close by absolute magnitude, ie.,,O 01~0. Data of
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Fig. 21 also confirm expressed affirmation. Thus, in axial region, character of

wave propagation, distribution of stresses, and consequently, the movement of

ground are qualitatively similar to case of centrally symmetric field, created

by camouflet explosion. This means that influence of free su.7face (from the

viewpoint of distortion of stress state in azial region, by comparison with stress

state on axis of sysmmetry z, where, as known, conditions of c-ntal symmetry are

satisfied) is insignificant. Beyond the limits of axial region, as seen from

Figs. 11 aud 21, experimental and dotted curves strongly differ. Let us note

that comparison of these curves has meaning only in region where wave has one

maximum. It is characteris.ic that in region 3#O3<. 60- 66° (we will call it

the mean region), in spite of sphericity of front, is observed essential deflection

in distribution of stresses, as compared with centrally symmetric field (Figs.

18 and 19). In addition, we note that smaller main stresses are close in absolute

magnitude at any fixed value of angle 1. Consequently, it is possible to

consider that, in mean region conditions of central symmetry are approdmately

satisfied, i.e., P = 04, a= ,o@, and main stresses depend on V. as on parameter.

The greatest influence free surface appears in surface region. This is

confirmed by the very fact of existence of a wave with two maxima. Due to this,

stress field in surface region is the most complicated. From Fig. 10 it is clear

that front of wave of generated air shock wave, has small angle of inclination,

in reference to free surface. This circumstance and the fact that smaller main

stresses are approximately equal, gives possibility to assume that stress state

created by this wave, insignificantly differs from stress field in plane wave.

Analysis of differential equations describing movement of ground evoked by waves

of similar kind, by method of estimations presented in [3], showed that movement

of ground, due to smallness of angle V, occurs practically vertically. Allowable

error proportional to sin2 V. However, because pressure on front of air shock

wave is function of distance from center of explosion, movement of ground, in
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various vertical sections of half-space, will be varied. Thus, the process of

wave propagation, excited by air shock wave, is analogous to phenomenon of flow

around thin, pointed bodies by stationary gas stream with very great supersonic

ceed. Distribution of stresses beyond second maximum, generated by wave, spread-

ing from center of explosion, during ts imposition on wave, generated by air shock

wave, is very complicated. Principal normals of stress depend considerably on p.

the smaller of them are not equal to one another which is especially noticeable

S: - - in direct proximity to free surface.

Front.. of second maximum, as seen from

S. Fig. 10, although insignificantly,

differs from sphere. Thus, by experi-

mental means, are revealed characteristic

Fig. 20 sides of the d).-mic stress field in

soft group! d7aring a contact explosion.

In conclusion, let us consider the very significant question of distribution

of energy of a contact explosion in ground and in air. By experimental means,

by method of intersection of front of air shock wave, spreading along free surface,

were obtained dependences of time of arrival of wave front t* on distance from

center of explosion r, at varied position

S -- of center of charge, relative to free

2.0 surface. By means of differentiation

1a of these dependences and use of gas-

k 8 dynamic relationships on front of shock

wave, were constructed dependences of

00 30 eo 's,9S#pressure on wave front AP, as functions

Fig. 21 of r. By comparison of these dependences

with dependence A P(r), for case of explosion in incompressible half-space,

established by M. A. Sadovskiy [4), was determined ,hare of energy, radiated
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in air and expended on excitation of air shock wave. Remaining energy, obviously,

is transmitted to ground. In our experiments, it was found that during location

of charge in such a way that its center coincided with surface of ground, in air

and in ground is radiated, coorespondingly, 65 and 35% of the energy of the

explosion. In cases, when upper or lower bounds of charge were disposed on sur-

face of ground, in air and in ground are radiated 78 and 22, 53 and 47% of the

energy of the explosion, respectively.

These data give possibility, in axial region, to use theoretical or experi-

mental dependences, by which are determined parameters of waves in spherical

stress field, and also more accurately to calculate parameters of air shock

waveas compared with case, asslmling half-space to be incompressible.
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FORMIWY OF SHOCK WAVE AND SCATTERIM3 OF PRODUCTS
OF EXPLOSION IN AIR

V. V. Adushkin

(Moscow)

With the help of piezo apparatus, high-speed photographing, and ioni-
zation probe were studied laws of movement of front of shock wave and
products of explosion (FE), during explosion in air of spherical
charges of certain types of explosives (HE). By speed of front, were
constructed dependences of main parameters of front near charge to
distances, at which formulas of M. A. Sadovskiy [1] are correct. In
region of action of FE is constructed dependence of width of layer,
compressed in wave of air between front and IE on distance.

By method, developed in [2] similiar to method of film [3, 4], on
basis of measurements of parameters of front of shock wave is obtained
distribution of pressure and density in layer of air behind front to
contact surface. Calculated pressure distribution in layer is augmented
by diagrams of AP = f(t), obtained during measurement of parameters of
shock waves in air near a charge of HE [5]. By distribution of pressure,
density, and velocity of air in shock wave is calculated energy, which
air acquires from expanded HE as result of its intense braking. Shown
is at what stage and how energy of air is distributed behind front of
shock wave. Comparison is conducted of certain obtained results with
results of numerical calculation of shock wave from explosion of
spherical charge of trotyl [6], strong point explosion [7], and point
explosion with counterpressure [8].

1. Description of experiment. In experiment were measured arrival times

t of wave front and PE at various distances r from center of charge in three

series of experiments on charges of various types of HE of spherical form.

Charges ware triggered from center. In Table 1 are given data on charges of

trotyl-hexogen 50/50 (TH) and PETN, used in experiment.
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Table 1.

(a) cePv~Kb)ran 8AapR.1 BB C_ I (d) c.K "8J~aA~x / no Am

f uT rroi 1.68 24-10-3. t 3 1140 0 .052
Tr acucnnou i 0.9 36.t0. t50.1 0:10 2 0.064,t 1.6 0.8.10- , 2.5.10 -

3 1400 0.2 0.053

KEY: (a) Series; (b) Type of charge HE; (c) p, g/cm3 ;
(d) C, kg; (e) ,, kcal/kg; (f) TH, cast; (g) TH granular;
(h) PETN, pressed.

Here p-denslty is charges, C-weight of charges, t-specific energy of explosion,

b-thickness of scattered layer of HE,P = ro/Cl/3 , where ro-radius of charge in

meters after subtracting scattered layer.

In series of experiments 1 and 2 movement of wave front and PE in region from

surface of charge to 13 ro was obtained by method of ionization probe, bared ends of

which were connected by front of strong shock wave, where air was partially ionized.

Recording was done on cathode-ray oscillographs OK-17 and CK-24. Furthermore, in

realm of distances above 4 ro, arrival times of wave front were measured in records

of Ap - f (t), obtained with the aid of piezo-probes. Results of measurements of para-

meters of shock waves by piezo-probes, in near zone of explosion, and their organiza-

tion are given in [5J." In Fig. 1 are shown samples of recordings obtained with the

help of piezo-probe (a) and ionization probe (b) at a distance of 11.1 r0 .

Movement of PE was photographed by instrument SFR-2M, which, besides continuous

scan in time, allows to receive a series of frames with frequency of shots from 20

thousand to 2 million frames per second. Some frames of photographs of explosion from

series 1 of charges weighing 135 g are presented in Fig. 2. Near frames is designated

dinmension of visible cloud from center of explosion in radii of charge ro. Let us

note that in direct proximity to charge, source of light is surface of front of shock

wave formed by expanding PE. Then possibly, glow comes from deeper layers of tur-

bulent air behind wave front. In reRion above 3-4 ro , which is especially well

seen in photographs, obtained on SFR by method of stereo survey, surface

I1GS.



'is bared" of PE's themselves in the

form of a rough cloud. However, it is

', possible that source of light, neverthe-

e E3 less, is a thin layer of air, adjoining

the surface of oE, especially so since

Ltemperature of the air behind wave

#d Lo front increases (especially sharp near

__. 10- contact surface) while temperature of

Fig. 1 PE's themselves is significantly lower

than temperature of air hehind wave front (9].

~..*. cI
Fig. 2

Results of measurements on movement of wave front (curve 1) and PE (curve

2), for explosions of series 1, are shown in Fig. 3 in the form of dependence

of shown time, to = t / CI/3 in sec/kgI/3 , on distance in radii of charge. Since

temperature of FF's, during their expansion, is many times lower than temperature

of th- compressed air behind front of shock wave, it was expected that ionization

probe would sense difference in electrical conductivities of air, compressed in

wave, and FE. In Fig. 3, results of measurements by ionization probe, of arrival

times of PE in region up to 13 ro , are designated by crosses. On recordings of

Icf;



ionization probe (Fig. ib), the arrival time of PE was taken as the moment of

sharp drop after second peak of the recording. These measurements of arrival

times of PE coincided with optical obser-

. "' vations. Thus, under the conditions

experimeunt, during photographing of the

I -intrinsic glow of process of explosion

LB -7 _....

Fig. 3 Fig. 4

of HE are recorded trie hottest layers of air at the very contact surface, or

external layers of PE.

In the case of explosion of charges of PETN, movement of front in region up

to 25 ro was obtained during photographing of explosions in parallel bundle of

light (schlieren method) slave photo recorder ZhFR. Photograph of unfolding of

explosion of 2.5 g of PETN is shown in Fig. 4. Scatterinz PE was photographed

by instrument SFR-2M. As a result, was obtained dependence r = r (t) for front

and PE of charges of PETN.

In Fig. 3, by dash-dotted line 3 is presented movement of contact surface,

obtained during calculation of trotyl explosion Brode (6]. It is clear that

movement of contact surface, from Center of explosion, in (6], ceases at distance

13 to 14 r o , in contrast to movement of PE observed in experiment, which starts

approximat,ly from 5 to 7 r,.

2. Width of layer of air between front and products of explosion. By law



of motion, r = r (t) of wave front and PE is built an empirical formula, presenting

dependence of width of layer of air a between PE and front from a distance to

wave front rs

,¥ocs F . r <,. (2.1)

Within limits experimental variance (near 10%), difference in width of layer,

depending upon form of iE was not obser-

7 ved.

___ 3. Parameters of front near charge

3- of HE. By graphic differentiation of

experimental dependences r = r (t), for

13 _ front and PE were determined velocities

of their movement, as functions of

1 2 3 '1 5 7 10 20 30110
distance. By speed of front, with the

Fig. 5
help of known tables of parameters of

front of a shock wave in air, composed by A. S. Kompaneyts and N. M. Kuznetsov,

and also presented in [i0, 11), functions were plotted of maximum pressure and

mass velocity at wave front on distance. In Fig. 5, curve 1 represents dependence

10 1jof velocity of front on distance, in

M case of experiments of series 1; curve 2

303- dependence of mass velocity of air at

wave front. Circles represent experi-

mental velocities of boundary of PE -

air, at that same moment of time, at

which velocity of front is measured.

Similar plotting was done for explosions

of series 2 and 3. Location of experi-,i mental points, in reference to curve 2,
!r

I 2 '4 6 8)0 o 20 indicates that measured velocities of

F-1g. 6



boundary PE - air agree, with accuracy up to 10 to 15%, with magnitude of mass

velocity of air at front. In connection with this, the layer of air between

front and FE, within limits of indicated accuracy, consists of particles, which

move with nearly identical velocity, varying only with time (or radius of front).

In Fig. 6 are presented dependences of maximum pressure on distance: figures

on curves designate series of explosions, by dashed line are continued the depen-

dences of pressure, corresponding to trinomial formula of M. A. Sadovskiy (1].

Dash-dotted line shows result of Brode calculation (6], under conditions, noted

in 15].

In near zone of explosion, dependences of maximum pressure and velocity of

front on radius of front, and also dependence of radius of front. on given time

to, obtained oy integration of expression for velocity of front under the condition

that t = td at r = t, where td - time of detonation of charge of HE, can be

described by following empirical formulas corresponding to the three serie-- of

epaeriments:

at (I <r4/ < 12)

IS3). D 9 ,. (3.1)

at (t< rlr.<10)

7.29) t0) +

,--D- (,/:.. • - [2 .1 (+ -- t') + I .  (3.2)

at (0 I rZ 12)

A P - 2.8- O(Q - )"
V -.(rI ,.). re to, , e - (3.3)

In the future, exponent, in law of attenuation of pressure with distance,

starts to increase, attairng greatest magnitude 2.7 at pressure near 20 kg/cm
2,

then, starting from distance 15 to 18 ro, dependence of maximum pressure corresponds

formula of M. A. Sadovskiy, which occurs in realm of distances, whore influence of

FE is absent and pressure at wave front from charge of various type of HE is

determined only by amount of energy of explosion.



4. Parameters of air bqhind front of shock wave. Obtained experimental

results characterizing, basically, front of shock wave, with the help of method

presented and well-grounded in (2), were used for calculation of parameters of

air entrapped by shock wave, during explosion of charge of HE. This determina-

tion of parameters is made according to accurate values of derivatives of main

gas-dynamic quantities at wave front in Lagrange (mass) coordinates. By experi-

mental data for explosions of series 1, derivatives were calculated of pressure

a and speed b, taking counterpressure into account, in the case of spherically-

symmetric motion (v = 3)

,ap 1 am .if d In U.
P6 "I -=--

2D (I~
1+ IP) 3 P (4.1)

For undisturbed air !:= 1.4, co  330 m/sec, P*= 1,29 x 10- 3 g/cm3 .

Results of calculation of a, b, U', depending upon amount of pressure at

front Ap. are given in graph of Fig. 7 and designated, respectively, 1, 2, and 3.

For cosxa ison, in the same graph, by dash-dotted lines 1', 2', and 3' are showi,

correspor Ang magnitudes of a, b, and U' calculated by results of calculation

of point explosion with counterpressure '8]. From graph of Fig. ', one may see

that magnitude of derivatives of a, b and U'1 in case of explosion of real

charge of HE, considerably differ from case of point (without mass) explosion,
in region of strong shock wave, there, where AP.> 10 - 20 kgcm2 . Thus, in

case of explosion of charge of HE, dorivative of pressure a is almost three

tiwes less than corresponding derivative of point explosion, and derivative of

mass velocity b vanishes to zero.

Assuming profiles of pressure and velocity to be linear by mass of air

compressed by wave £2), distribution of pressure, density and velocity in

Lagrange ccordinatos, in that layer of air, can be written in the form

.-0,-A . /P. (4.2)



p (i)p. (in) L '(1 )

, - -I&) U = MulaI L4)

In expression (4.3), for air density it is assumed that process of expansion

of compressed air, behind front of shock wave, is adiabatic with its own effective

adiabatic exponent k(m), at fixed m. Here, effective adabatic exponent k(rn)

for each m, is coupled with compression in shock wave by known formula

k (, n) + I P.(,. ko , '. ) p , .N 5
k(.)- t + -- I , N p(,,.) F (4.5)

In order t, obtain distribution of parameters behind wave front by radius,

it is necessary to establish bond of

Lagrange .zoordinate of m with the

ON -- I 1Euler ol r. in the case of spherical

symmetry, these coordinates are coupled

71" ,with equation of inseparability

Fig. 7 a _ 3

am n p - (4.6)

Integrating and inserting boundary cor.itio which at r -rs, M (= 1),

we obtain

*1-- k+1S

1.0~~ +*= 1.
P..*. .. .[ ,-I

-- - where agnitude of P. is determined oy

,, i(4.3). As a result of numerical inte----

-_ 1 - gration of expression (4.7), distribution

...... was obtained of main parametirs of air,

Z5 _ _ _ by radius, behind front. of shcck wave.t- .. , .o .36 i.C

Fig. 8 In Figs. 8 and 9 is shown change of

pressure and air density up to contact surface 4,= 0). Figures on graphs desig-

nate position of front in radii of charge r.. For comparison in Figs. 8 and 9



by dotted line is represented distribution of corresponding magnitudes in case

of strong point explosion (7J, by dash-dotted line - from calculation of point

explotion with regard to counterpressure [8) for wave with AP. = 7.9 kg/cm2

which corresponds, in our case, to position of front near 25 ro . We note, first,

essential diffsrence from case of strong explosion (73, and secondly, that

distribution of pressure and density of air, in case of explosion of HE, becomes

the same as and in case of point explosion, starting from 20 to 25 ro , where

AP.< 10 kg/cm2. We should note that distribution of density and magnitude

of dynamic pressure Pu" in layer of air between wave front and PE, have

practically the same form. For appraisal of dynamic pressure of air during

explosion, it is possible to use magnitudes of u, presented as curve 2 in Fig. 5.

In conducted calculJ ion, result was not used of experiment on position of

boundary of PE - air and velocity of its motion. Therefore, determination of law

of motion of contact surface from (4.7) at s4- 0, and also calculation of magni-

tude of aarivative of pressure on contact surface by speed of its motion, and

comparison of it with value of derivative at front, can serve as control of

applied approximation method of determination of parameters of air behind wave

front. On the other hand, this will b, additional confirmation of result of

experiment on motion of contact surface, obtained, basically, with the help of

oDtical observations of expanding cloud of PE. Indeed, at A = 0 r = rk, i.e.,

I

,. k 1 ik iS =- (4.8)

Result of calculation of rk is represente. by dotted line 2' in graph of

Fig. 3, where curve 1 - front, 2 -

boundary of PE - air from experiment.

It is clear that there is good coin-

cidence of calculated rk with motion of

______ edge of PE from experiment, in entire

Fig. 9 range where calculation of parameters



of air in shock wave %as conducted.

Further, calculation was made of derivative of pressure at contact surface.

From equation of motion

kam (4-9)

after certain conversions, we obtain

a p 3 1 r P "n ( ' d I n u t . P P U r
8,, p. - -P (4.10)

Result of calculation of derivative at contact surface by (4.10) is repre-

sented in Fig. 7 by curve 1". It is clear that there is satisfactory coincidence

with curve 1, the derivative of pressure at front of shock wave. Thus, profile

of pressure, with sufficient degree of accuracy, is near to linear.

5. Form of shock wave in near zone of explosion. Fig. 8 shows that profile

of pressure, in layer of air compresset. by shock wave, changes comparatively

slowly from one moment of time to another. Using this fact and including experi-

mental dependence r = r (t) for wave front, on basis of obtained distribution of

pressure by radius, were plotted curves of attenuation of pressure in time, in

this perturbed layer of air, for certain fixed distances from center of explosion.

Then, at those distances, where, with the help of piezo-probe, were obtained pres-

sure recordings as functions of time 131, experimental curves of AP= f(t) were

augmented by those calculated. This allowed correctly to reproduce head portion

of profile of shock wave heaped up by piezo-probes because of finite size and

insufficiently high frequency responses of the data unit and electrical circuit.

Result of such combination in regions near charge of HE, is presented in. Fig. 10.

On axis of abscissas is plotted time from moment of e 'osion t0 in sec/kgl/3,

near curves is designated distance from center of charge to point of measurement

in radii of charge -.0 Shaded head portion of curve represents compressed air

in wave behind which follows PE.
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Furthermore, degree of attenuation of pressure ,Ap in phase of compression,

as proportion of passage by shock wave to point of measurement, is represented

in table as function of time °r*, reckoned from moment of arrival of wave front.

By solid line is designated boundary of PE - air. In first line, are values of

pressures at wave front Ap,. Xagnitudes of excess pressures, given in Table 2,

show process of forming of compression phase of shock wave. We note that piston

action of PE is finished, when pressure at wave front becomes less than 20 kg/cm2 .

Wave length(compression phase), by then, is near 6 ro. PE is still present in

compression phase, their volume attaines 4000 volumes of charge of HE. Shock

wave is gradually detached and is liberated from FE. However, approximately

up to 30 r o , PE are expanded, being in compression phase of wave. Wave length,

by then, is already 15 ro.

Analysis of form of shock wave in near zone of explosion showed that law

of attenuation of pressure with time, behind wave front, is riot exponential.

However, near front, at '<5.10- 5 sec/ygI / 3 , it can be represented in exponential

form
A(,r) . ap exp (-,e / r)

As functions of distance, quantities o', characterizing steepness of slump
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of pressure behind "ave front, can be represented by following empirical formla

.0, \1. ApI< r!<3
o.=to-e ;), o- pld x-<,.(,.

For comparison, in Fig. 10 by dotted line is shown change of pressure in

time by calculation of point explosion with counterpressure [8). It is clear

that in regicn where there are PE, there is a marked essential difference in

character of pressure slump in wave of a trotyl explosion, as compared with wave

of point explosion. Only for waves with intensity Ap. < 10 - 20 kg/(,m2 , dif-

ferenice in profiles of these two types of explosiorn becomes inmaterial.

Values of A p, kg/cm2 as Functions of r'x 10b sec/kg- /3

.9 122 100 67 49 38 0 30 22 12.5
.9 80 58 435 3 9.7 25 19.5 1t.3

7.8 75 65 52 41 33 19.4 21.5 17.5 10.3
11.6 45 54) 46 :8 31 29.2 18.5 16 9.2
15.5 .30 38 40 35i 30 39 17 14. 8.5
19.4 23 .30 35 32 28 97 8 7.5 5.2
29.2 14 !8 22 26 25 1 194 2.5 3.7 2.6

39 9 !2 13 20 22. 292 1.2 1.9 1.5
58 4 6 7 10 16 390 0.8 1.3 0.9
77 2.5 4 3 3.5 12 486 0.5 0.P. 0.5
97 t 2 1 1.5 3 5W) 0.2 0.5 0.3
1t6 0.5 1. 0 0. 0.5 680 0.21 0.15

By dash-dotted line in Fig. 10 are represented functions of Ap = f (t) by

results of numerical calculation of shock wave from detonation of spherical

charge of trotyl with density P = 1.5 g/cm2 [6]. Comparison of above mentioned

experimental data with results of work £6) showed that there are evident devia-

tions ii certain details of picture of development of explosion in region where

there are PE. Thus, for example, according to [61, at pressure in shock wave

near 12U kg/cm2 , pressure, after drop in "air plug," starts anew to increase

behind contact surface, attaining maximum of near 15 kg/cm2 to a time three times

.onger than arrival time of wave front.

In present work, with such parameters, a front of similar peak was not

observed, although piezo apparatus applied in investigations was able to register
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this. Difference is observed also in width of layer of air between front and

PF and in movement of contact surface. Thus, in £6), mcvement of contact surface

from center ceases at a distance of 13 - 14 radii of charge. In our case, expan-

sion of PE is observed to 30 ro * Cause of shown deviations can be that equation

of state of PE used during calculation [12] insufficiently describes late stages

of scattering of PE. Insufficient reliability of calculation of equation of

state of explosives leads also to necessity of experimental investigation of the

trotyl explosion.

6. Energy of air between wave front and products of explosion. By distri-

bution of pressure and density in region front - PE and by magnitude of mass

velocity of air behind wave front, energy acquired by disturbed layer of air

from scattering PE was calculated. Magnitude of .otal energy of air in wave is

composed of internal and kinetic energies. Taking expression (k -1) - lp/p. for

internal energy of a mass unit of air, we can calculate the increase of internal

energy FT of the layer of air compressed by a wave

I
ET2 .f P (P) ,ip 'St

p _ _) k - p(p (-- i (6.1)

Expression for kinetic energy Ek of air, brought to motion by shock wave, is

written in the form

2~~-e (6.2)

Result of calculation of internal and kinetic energy of in reference to

total energy of explosion E = Ce is

37 represented graphically in Fig. 11 as

function of distance to wave front in

AS radii of charge. Curve 1 shows change

of kinetic energy of air in wave. It

0is interesting to note that at distance
Is to 29 ao

Fig. 11 13 - 15 re is observed maximum of
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kinetic energy which constitutes 30 - 35% the energy of explosion. Curve 2

presents rise of internal energy of turbulent air, and curve 3, the sum of kinetic

iict internal energies of layer of air in wave. From graphs, it is clear that

PE intensely issue their own energy to the ambient air. Thus, when a mass of

air equal to mass of charge of HE, set in motion which occurs at 11 ro, kinetic

energy of turbulent air constitutes 25% of initial energy of explosion, internal

- 40%, i.e., 65% of energy of explosion crossed to a narrow (1.2 ro) layer of

air of compressed in the wave. When a mass of air, participating in motion,

exceeds, by 2 to 3 times, the mass of charge of E, which occurs when position of

front is near 15 ro, almost 90% of the energy of explosion is transferred to layer

of air between front and PE.

In conclusion, the authaor thanks I. V. Nemchinov for offered method of

calculation of parameters o. air behind front of shock wave and interest in the

work.
Submitted
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COURSE OF REACTION IN DETONAT0N WAVE OF EXPLOSIVE MIXTURES

A. Ya, Apin, I. M. Voskoboynikov, and G. S. Sosnova

(Moscow)

Development of theory of explosives requires knowledge of kinetics of reactions

at front of detonation wave. Complexity of study this question is caused by lack

of direct methods of detection of composition of products of explostion in wave and

by the impossibility to extrapolate, in region of such high temperatures T and pres-

sures p, data on thermal decomposition of explosives at low T and p.

Certain inforn ion on the course of reactions under the conditions of detona-

tion wave can be obtained, investigating dependence of velocity of detonation D,

m/sec, on diameter of charge d, mm, of explosive nixture Containing explosive

constituents of various reaction ability. Due to various reaction times of decompo-

sition of these constituents, growth of velocity of detonation, during increase of

diameter of charge, will not be continuous, but occurs with fixation of certain

values, corresponding to completion of intermediate stages of reaction. Analogous

dependences of D(d) can also take place for mixtures of type oxidizer-fuel, if final

reaction, after decomposition of explosive constituents, requires for its aim comple-

tion a significant interval of time due to complexity of diffusion at detonation

pressures of condensed explosives. Below are given experimental data on detonation

velocities of various explosive mixtures, at front of wave of which is revealed

the phasic character of course of reaction.
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Initially investigated were mixtureso consisting of explosive oxidizer and

nonexplosive fuel; it was possible to judge the degree of progress of final-

reaction, by increase of speed of detonation. In Fig. I are presented dependences

of D = D (d) for suspension of lamp black with dimension of particles near one

micron in tetranitromethane 10/90 (curve 1); mechanical mixtures of perchlorate

of ammonium with paraffin 90/10, grain size 0.01 m, p.- 1.0 g/cm2 (curve 2),

and trotyl with colloidal boron 90/10, p. = 0.65 g/cm2 (curve 3). Common

to shown mixtures is constancy, within

csrtain interval of diameters of charges

of imperfect velocity of detonation

6000 ("pseudoideal" velocity), magnitude

WOO of which corresponds to energy of

decowposition of oxidizer.

Increase of velocity of detonation

ZO 0 60 80 of mixture of trotyl and colloidal

Fig. 1
boron, at diameters of charge greater

than 40 m, indicates that metals (in particular, boron) can burn in detonation

wave of condensed explosives with emanation of additional quantity of heat,

leading to increase of speed of detonation, - a fact which is frequently subject

to doubt during investigation of powerful metallized explosives. Velocities of

detonation were measured by the ionization and optical methods, error in both

cases did not exceed 50 m/sec.

In Fig. 1 are aloo curves of D - D(d) for 58,42 :mixture of hexogen and

ammonium nitrate 58/42, grain size 0.1 = (curve 4) and a suspr.sion of macro-

crystalline hexogan with particles size 1.0 to 1.6 m in gelatinized, 2% plexiglas

tetranitromethane 30/70 (curve 5). Magnitudes of pseudoideal velocities corre-

spond to energies of decomposition of hexogen and tetranitromethane at wave

front. In the latter, it is easy to check, measuring detonation velocity in
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Table 1. Pseudoideal Detonation Velocities D? of Explosive
Mixtures, Corresponding to Decomposition of

Only one Component

(a-) napuz-arAe sentocTas IL a D,

58% (Ci|,NNO), + 42%NHNO, 1.73 7600 8100
58%(CHNNO), + 42%NaCI t.89 - 7500
70%C (NO) + 30% (CHjNNO,), - 6400 7500
70%C. NO=)& + 30%NaSO - -- 6Z00
90%NHX + 10% napa h (4-) 1 .00 3000 4800NHCIO0 t.O0 - 2M0
90%CHaCHg (NO), + 10% B 0.65 2100 420

CH.CH, (NO), 0.65 - 3800

Key: (a) Explosives; (b) paraffine.

mixtures, where constituent unable to decompose in wave (anxonium nitrate and

macrocrystalline hexogen) is replaced by an inert substance. From values given

in Table 1, it is clear that detonation velocity of mixture of hexogen and table

salt and suspension of hyposulphite in tetranitromethane differs little from

corr . Donding pseudoideal detonation velocities. In Table 1 are also values of

ideal detonation velocities D. of studied mixtures.1

Pseudoideal detonation velocities are also observed for mixtures, the

explosive constituents of which are decomposed in wave in short times. In Fig.

2, as an example, are presented curves of D(d) for suspensions of hexogen with

dimension of particles 0.3-0.4 m 30/70 and trotyl 20/80 in tetranitromethane

(curves 1 and 2), and also for solution of dinitroethane in tetranitromethane

76/24 (curve 3). Analysis of magnitudes

wo- _ !of pseudoideal velocities in this case

can be made with the help of calculation

700-- 4of parameters of detonation wave (1).

0- 0 - It is assumed that reaction in

wave proceeds in the following manner:
f !o di

200 z qO 60 at first, explosive components complotely
Fig. 2 decompose within their own volume, and

then, after the lapse of a certain interval of time, starts effective reaction
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of final reaction between products of their decomposition. Coincidence cf

results of calculation of datonation velocities D3 corresponding to completion

of first stage of reaction, with experimental values of pseudoideal detonation

velocities D2 for series of exploaive mixtures, serves as confirmation of such

a diagram of the course of reaetion.

Table 2. Pseudoideal Dtonation Velocities of Explosive ixture-
Corresponding to Decomposition of two Constituents

(a) hapumue ,euem DoV C Do.*/Co. D j. A

80%C(NO,). +20%CHC.H, (NOs) 1 .6 6800 6800 7600
70%C (NOa) + 30% (CH1NNO,), 1.70 7000 700 7500
76%CHxCH (NO)t+ 24%C(NO,, 1.42 72.50 7000 7800
50%C (CH2ONO,)& + 50%CH&C4H(NC,)j 1.65 7450 7550 7450

Key: (a) Explosives; (b) Po g/cm3 ; (c) M/sec.

During investigation of liquid explosive solutions, the authors discovered a

strong dependence of detonation velocity on diameter of charge, although it is

almost completely absent for individual liquids and single-crystal explosives.

Sometimes this dependence has a very unique form: for example, for solutions of

tetranitromethane with nitrobenzene (76/24) and kerosene (88/12) (curves 4 and

5, Fig. 2) it exists, at a certain d' meter of charge, depending on thickness

and material of shell, with equal probability for value of detonation velocity,

differing by 400 m/see. Temperatures of detonation fronts measured by electronic-

optical method, differ by 500*K.

Main cause of the observed phenom-

7500 enon of pseudoideal detonation velocity

S700J "1 2zJ is phasic course of reaction at front
7 u of detonation wve of the explosive

__ mixture, caused by kinetics of decom-
6000L -d0  ?0 '0 60 position the explosive constituents.

Fig. 3
Velocity of energy release in wave is

influenced by a whole series of factors (reaction capability of components, heat
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of their explosive reaction, dispersity, and percentage of compositiorn of mixture),

action of each of which for concrete explosire mixture is frequently difficult

to reveal. However, decrease of dispersity of components in a mixture always

increases probability of observation of pseudoideal detonation velocity, since

temporal ,.*-.fference 4. ' ,omposition of components and subsequent fina±

reaction increases. Thus, if for suspension of fine-crystalline hexogen with

particles size near 0.1 m in gelatinized tetranitromethane (cur.: 1, Fig. 3),

build-up of detonation velocity, during increase of diameter of charge, is con-

tinuous, then, at particles size 0.3 - 0.4 mm (curve 2), at diameters of charges

20 - 50 mm, we are able to fix delay of final reaction between products of

decomposition of tetranitromethane and hexgen. Increase of dimension of particles

to 1.0 - 1.6 m and 3 - 4 mm reveals that at small diameters of charges coarse

metallic hexogen is not able to decompose in wavo (curves 3 and 4).

Investigation of curves D(d) for suspension of hexogen in tetranitromethane

(Fig. 3) shows that, during increase of dimension of particles above a certain

magnitude (1.0 - 1.6 m.), diameter of charge d1 , in which hexogen is deeompoaed,

ceases to depend on its dispersity. Quantity dl characterizes delay time of

A decomposition of hexngen by volume (for surface of reaction, i.t would be a

function of dimension of particles) and decreaes dur ng increase of pressure

in detonation wave.

Placing grain of macrocrystaliine hexogen, by dimesion 1.0 - 1.6 mm, in

liquid explosives, pressure in detonation wave of which changes from 180 to 220

thousand atm, it was possible to trace
4

decrease of diameter dI with rise of

F 2. -=. pressure (Fig. 4). If it is considered70-
that reaction progresses effectively as

long as pressare does not decrease by

2 1 0a fixed fraction, delay times of reaction

Fig. 4
will b, in first order of approximation
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proportional to diameters of charges dl, and at pressures of 180, 190, and 205

thousand atm have ratio 8: 3: 2.

Curves 2 and 3 correspond to the same pressure p = 190 thousand atm, but

to various temperatures of products of explosion of liquid explosives: curve 2

- T = 32000K, curve 3 - T = 42000X, a difference of 10000K. Grains of hexogen

were decomposed at equal diameters of charge. Curve 1 corresponds to pressure

p = 205 thousand e&tm, and curve 4 - p = 180 thousand atm. Liquid explosives had

small c:itical diameters. For them was assumed comparatively short reaction

time of decomposition in detonation wave.

Examination of curve D(d) for suspension of hexogen in liquid explosives

intricates possibility of us6 of phenomenon of pseudoideal detonation velocities

for estimation of times of decomposition of explosive components in wave.

Ideal detonation velocities correspond to composition of products of explosion,

which depends only on contents of C - H - N - 0 and temperatures and pressures

of detonations; all parameters of ideal detonation wave of explosive mixture

can be calculated in exactly the same way as for individual explosives [l].

It is necessary only to consider peculiarities of course of reaction in detonation

wave of explosive mixture, coupled with the fact that, at first, explosive com-

ponents are decomposed in their oum volume, and then final reaction occurs in

products of explosion. When composition of prcducts of explosion produces

more energy in first stage than after the final reaction, the first stage of

reaction is responsible for ideal detonation velocity (this refers to mixtures

of pentolite t~pe, Table 2). Submitted

25 May 1963
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INFLUENCE OF PRESSURE ON DISTURBANCE OF STABILITY OF COMBUSTION
OF POROUS EXPLOSIVES

A. F. Belyayev, A. I. Korotkov, ana A. A. Sulimov

(Moscow)

It was noted [1] that penetration of combustion to interior of a porous explo-

sive, evoking sharp increase of surface of combustion and speed of gasification,

can lead to explosion.

K. K. Andreyev [2) showed that triggering of explosion during combustion of

porous explosives occurs with achievement, in process of burning, of sufficiently

high pressure.

Below are given certain quantitative data on pressures at which stable combus-

tion of pressed charges of hexogen, PETN, and trotyl (with particles of initial

powders of similar dimension -i0 to 20$ is disturbed. Charges were of various

porosity m = i-p /pi,. where p-density of charge and p...-density of single crystal.

Quantity m gives fraction of volume, occupied by pores.

During conducting of experiments, elongated charges 10 nm in diameter of various

porosity were ignited in a closed manometric bomb at considerable loading density

with piezoelectric registration of rise of pressure. So long as a stable combustion

layer was maintained, a smoothly accelerating build-up of pressure in time was ob-

served. Sharp break p(t) (up to appearance of compression shock) attested to dis-

turbance of layer combustion and to breakthrough of combustion to pores; pressure,

zt which this occured, was directly indicated by recording p).
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Some of results obtained by us are given in figure, where on axis of abscis-

sas is plotted porosity m, and on axis of ordinates-pressure p in bars (1 bar-!.02

kg/cm 2 ) at which occurs breakthrough of combustion to pores. Squares indicate data

for trotyl; circles, PETN, and triangles,

In rough approximation, it is possible

to set pm= A, where constant A depends on

- properties of substance, character of poros-

• ity, and conditions of experiment. During

a more detailed consideration of results,

it is obvious that asymptote of curves on vertical is m " 0. For PETN, p(m - 0.02)=

A1 , and for trotyl, p(m - 0.05) = A2 . Practically, this means that PETN, at m =

O.02 (o = 1.735) is able stably to burn at pressures measured in thousand atmo-

spheres. This was established [3] also for PETN of somewhat less density. At

identical porosity (for example, 0.1), the stablest combustion of trotyl (highest

breakthrough pressure) and least stable combustion of hexogen occur.

By Taylor [4) it was noted that during combustion of PETN and hexogen (and all

the more of trotyl) molten layer should be formed, stabilizing burning as long as

its thickness (decreasing with pressure) is not less than dimension of pores. At

identical pressure, the biggest layer should be for trotyl, the smallest-for he,'ogen.

For estimation of thickness of molten layer x for PETN*, we have

CP T; -T

Here ).- thermal capacity of liquid, c - heat capacity, up- mass combustion

rate [5), T. - sw.-agnation temperature of PETN, TO - melting temperature, and

*For roughly tentative appraisals it is possible to limit ourselves to
quantity ). pcu- characteristic length of thermal wave - distance at which
temperature dependence decreases by e times.
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To - initial temperature.

Under the conditions conducted experiments, at p = 330 bar, m = 0.1 for

PETN
.O- , up 6.4 -- j. T '.-8, T'-0". T.o-20C

Substituting these data D (1), we obtain that x is equal to several microns

( "-2 to 3 u ). Let us assime that at limit, diameter of pores d, into which

combustion is able to penetrate, is equal to thickness of molten layer d w x

(if d>x, combustion will penetrate to interior; if d<x, there will be no

penetration). Thus, we come to the conclusion that for PETN, at pressure p =330

bar, combustion is able to penetrate into pores with dimensicn of several microns.*

It is possible to estimate also the average hydraulic dimension of pores [6]

D - V-3. where k - gas-penetrability. For PETN at m = 0.1, we obtain DO.01

-0.1 A which is 1 - 2 orders less than d. Difference obtained (d - D) is

explained naturally. Amount of gas-penetrability is determined by all including

the small pores. Breakthrough of combustion in initial stage is to the oiggest

pores (possibly even to the biggest "pore"). Obviously, distribution o pores

is by such di-mension that the biggest pores d- x are 1 to 2 orders larger than

average hydraulic dimension D.

During increase of pressure, velocity u increases (u - p), thickness of

molten layer x decreases, and combustion can penetrate to pores of increasingly

smaller dimension

i t
or Pd =c= const

The latter relationship is approximately satisfied. In any case, during

increase of pressure, dimension of pores, gaps, into which cotbustion is able

to penetrate, becomes increasingly smaller d - 1/p. For various substances,

breakthrough of combustion to pores occurs at various pressures, but if stabili-

zation is caused by molten layer and structure of charges is identical, thickness

*If actual thickness of molten layer exceeds that calculated by formula (1),
critical size of pores will be larger.
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of molten layer should be similar. Calculation shows that for hexogen kt

p = 130 bar), thickness of molten layer (just as for PETN (at 330 bar)) will

be several microns. For trotyl (at 430 bar), layer is thicker and breakthrough

of combustion to pores should occur at pressure, approximately two times larger

(04 800wbar). It is obvious that at identical porosity (a = 0.1) structure of

charge of trotyl is orite distinct. By measurement of gas-penetrability it

is directl' established that average hydraulic dimension of pores of trotyl

is 1.5 times greater than for PETN (at identical m = 0.1). Apparently, dimension

of the biggest pores for trotyl is twice as large. Incidentally, at less porosity

(0.07 to 0.08), structures of charges of PETN and trotyl become more alike.

Given data are well coordir lted with assumption of Taylor 141 about stabilizing

action of molten layer. Andreyev E7) pointed out the opposite possibility of

disturbance of stability of combustion of PETN due to self-turbulization of molten

layer. This was not developed in an experiments (true, conditions in our experi-

ments were considerably different).

Let us consider case of combustion of porous explosives not forming a molten

layer. It would be incorrect to assume that for unmelting explosive, combustion

will penetrate deeply at any (low) pressure. This penetration will be coupled

with conditions of influx of products of combustion into pores and substances

igniting them. Both these factors depend on conditions of combustion and on

distance x' between surface of substance and zone of intense reaction in gas

or smoke-gas phase; this distance

c'(up) T'-To e x. see (2)

Here, , and c' - thermal conductivety and thermal capacity of gas phase,

TO - temperature of surface, T* - temperature of intense reaction in gas phase

(in majority of cases, T* will not be maximm taperature of combustion).

Remaining designations are the same as in (1). By tentative estimation, Xt is

somewhat less than thickness of molten laysr x. Furthermore, viscosity of gas
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is considerably less than viscosity of liquid which should facilitate flowing

of gases irto pores. Finilly, in the absence of molten layer, deep penetration

of combustion should be eased (at identical porosity, breakthrough of combustion

to pores d' will be at pressures a few times lower; at identical pressure, several

times lower). Roughly approximately also should be satisfied condition pdt

= (const)', where (const' < const.

Test experiments with non-melting explosives showed that these conclusions,

in general, are correct, and in particular, breakthrough of combustion to pores

of unmelted explosives is easier than for those melted. It is necessary to

note that break of curve p(t), attests to passage of combustion to pores, for

non-melting explosives which is somewhat blurred and is expressed less cl6arly.

Breakthrough of combustion to pores of mercury fulminate (triggering

explosive) tshould be especially easy. This was noted in a work by author (8].*

Indeed, if for hexogen at p 1 100 bars, for penetration of combustion to depth

of substance, the dimension of pores d must be several microns, then for fulminat

of mercury with this same pressure, value of d must be estimated maximum by

tenth fractions of a micron, and d should be still less for atide of lead. At

one time, from certain indirect data, it was assumed [8) that combustion rate

of azide was so great that it alone, without penetration of combustion to depth,

caused very great jump of pressure and, consequently, detonation. In work of

K. K. Andreyev and B. N. Kondrikov [9], is git-n a better grounded appraisal of

combustion rate of azide of lead, which turned out to be higher than for mercury

fulminate, but only by 2 - 3 times. In order to explain extremely sudden trig-

gering of detonation of azide of lead (detonates upon ignition), with such a

combustion rate, it is natural to assume that at moment of ignition (at any

pressure) combustion immdiately penetrates to depth and actual surface of com-

bustion becomes quite large.

*A. F. Belyayev. Mechanism of combustion of explosives, Doct. dissert.,

Institute of Chemical Physics of Academy of Sciences of USSR, 1946.
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Here it is necessary to note that if mechanism of combustion of azide of

lead is like tlaat of mercury fulminate, then for azide of lead at low pressures,

in Particular at atmospheric pressure, combustion is able to penetrate into

pores of order of one micron. Such gaps can be formed between particles of

aside of lead even when pressed to high density. Moreover, for crystals of

aside of lead of order of one micron, there can be inltervals between crystallite

(microporn and mitgrocavities),, To this, it is necessary to add that by direct

observationv of Bowden and collaborators [103, defects of crystals can be formed

to grow in process of the actual comuotion. At last,. during combustion of

azide of lead, dy4-namic increase of pressure should be -very significant. All this

nhows that in case of aside of lead there are many possibilities for intensive

penetration~ of combustion to depth, sharp increase of surface of combustion, i.e.,

for instantaneous wxplosion imediately trwisferred to detonation.

K. K. Andreyev [111t noting that for triggering explosiifes, the breakthrough

of combustion into pores saiould be easier, as main cause poinlts o the large

completeness of reactionis of explosive transformation and to higher~. temperature

of combustion of' triggeiig explosives. Value of temperature of combnstion is

absoluitel~y essential (this is one of frctors determining combustion rate), however

iuain caute facilitating breakthrough of cobibustion to depth of triggering explo-

sives, will be a short distance between surface of explosive andl zone of intense

rea2ction, wh!ch, other conditions being equal, for triggering explosives is

conaiderab.y lean than for ascondoxy types. Hi&, teperatures of products un-

doubtea. ly promotes breakthrough of icombustion into pores, but more important in

this respoct magnitude of temperature gradient dT/dx at the surface, which for

triggering wxplusiv*&. is 2 -3 orders higher than for secondary explosives,9

basically due to smaller bxtcert of zone of heating up determined, in the final

ans.4iis, by character of reactions of combustl-on and by corresponding constants

of thae substance.



Returning to the investigated phenomenon in general plan, let us note that

phenomenon breakthrough of combustion to pores. This very complicated phenom-

enon was considered here in simplified form. Breakthrough of combustion to pores

and its character depend on physicochemical properties of the substance (our

experiments were conducted with explosives reacting chiefly in gas phase [123)

on conditions of combustion, gas dynamics of inflowing products, and character

of porous structure. If for example, we take an explosive consisting of la-ger

crystals, its gas-penetrabilit- will be increased, dimension of the largest pores

will increase still more signif:.cantly; as a final result, breakthrough of com-

bustion to depth of explosive will be eased. As was already noted, experiments

were conducted in a manometric bomb under conditions of considerable dp/dt and

fall of pressure dp/dx.

Under other conditions results could be different. Thus, for example, in

bomb of constant pressure, stability of combustion increases: pores will be

filled by inert compressed gas. Nevertheless, simplified investigation under-

taken allowed to obtain useful results.

Institute of Chemical Physics Submitted
of Academy of Sciences of USSR 25 April 1963
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ON INFWWCE OF FIESSURE ON COMBUSTION RATE OF AWONIUM PERCHLORATE

A. P. Glazkova

(Moscow)

To study of process of self-propagating intramolecular oxidation of
ammonium perchlorate is devote a series of investigations.

Friedman, Nugent, and et al. [1) studied combustion of anronium
perchlorate (samples of square section 4 x 4 =, unarmored) in range
:f pressures to 340 atm; under these conditions they established
initially, the upper and lower limits of ability to burn according to
pressure: perchlorate is able to burn, starting from - 40 atm; com-
bustion ceases, if pressure exceeds - 270 atm.

Below is investigated function of combustion rate on pressuze in a
wider range (to 1000 atm). In work was applied photographic method of
study of process of combustion, described in detail earlier [2].
Experiments were placed in vessels of constant pressure at 350 and
1000 atm in an atmosphere of nitrogen. For strengthening of glow of
unarmored samples of amonium perchlorate in realm of unstable combustion
(160 - 350 atm), light conductor was applied: a rectangle of polished
plexiglas touching, on one side, the window of vessel,, on the other
(protected by a thin glass plate), the scimen of perchlorate, Unsifted
perchlorate (analytical grade) was used, dried to constant weight and
pressed to density near to specific gravity (1.93 - 1.94 jgcm3 ).
Diameter, shell, and form of samples were changed in various strics of
experiments.

1, On intensification of thermal loss during increase of pressure As pos-

sible cause of upper limit. It can be assumed that quenching of combustion at

upper limit for American researchers was caused by thermal losses, all the more

so since they uzd samples of small transverse dimns:Ln. Indeed, experiments

with unarmored cylinders of perch3frate showed that at d§.ameter of 5 "lu,
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combustion ceases at 270 atm, and at 7 m, extinguishing of combustion at this

pres-surs is no longer observed. Still more convincing were experiments with

kernels in the form of a frustum of a cone (upper diameter of which was 7 mam,

lower - 1 - 2 nm) igniting from large end. Combustion in all experiments was

extinguished at 250 atm, up to a diameter of 4.7 - 5 nm.* Inspection of unburned

part of sample showed that front of combustion had a concave form, part of

external lateral surface of kernel did not manage to burn and remained, after

combustion, in the form of a thin border.

Lower limit, as one would expect under the same thermal considerations,

also depends on diameter: at diameter of 5 m, sample did not burn at 50 atm,

at 7 um, stable combustion was observed already at 30 atm.

Thus, both upper and lower limits

of combustion are determined by pres-W : Isure. This is due to the decrease of

- combustion rate, in other words, its

MW duration. Thermal input is not able

Fig. 1
to compensate heat loss.

During explanation of upper limits ability to burn according to pressure,

it was assumed that decrease of combustion ratio occurs during increase of pres-
on

sure and under conditions when thermal losses do not play an essential role.

In Fig. 1 are given functions of combustion rate u (here and in the future u -

mass combustion rate in g/cm2 sec, pressure p in kg/cm2 ) of perchlorate on

pressure p. Points 1 and 2 for diameters of 7 and 12 mm of unarmored samples,

point of 3 give values of critical diameter of combustion. From the figure it

is clear that in interval of pressures to 150 atm, combution rate is identical

*In three analogous experiments, when air from vessel was not evacuated
before experiment, combustion of kernels was complete. This is attributd to
the influencG of oxygen, remaining in vessel.



for thin and thick kernels from 200 to 4,- "tm. The latter burn rapidly, but

their coibustion rate also drops as for kernels of rmall diameter. in Fig. 1

are also presented oriented data on dependence of critical diameter of combustion

(determined by extinguishing of bare conical kernels) of perchlorate on pressure.

This dependence, up to pressure of 200 atm, in general, agrees well with curve

u -. £(p). Decrease of critical dimeter at pressures from 200 to 350 atm, in

region where combustion rate remains contant, was not intelligible.

As can be seen from photograprs (ig. 2a), at pressure of 140 atm, com-

bustion of unarmored samples of ammonium perchlorate is stable and differs from

combustion of secondary explosives only by the presence of separate local flashes

at front of flame. At pressures of 200 - 350 atm, character of combustion

changes sharply: glow becomes weaker and combustior assumas a pulsating character

- at front of combustion are stops when burning seems to cease and then starts

again, and, as a rule, with the same rate as before the stop.

From photographs of combustion it follows also that in region of unstable

combustion of perchlorate (see, for example, Fig. 2b, combustion at 267 atm),

front of flame has striped structure and consists of alternating light. and dark

strips. At pressure5 of 200 - 500 atm., were observed case-. of 7-.millimetcr samples

not burning completely. In Fig. 1, region of vnstable combustion is designated

by dotted line.

*.F Ig.2
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Influence of thermal losses during combustion is lesseni also, in addi-

tion to increase of diameter of sample, by application of shell of low thermal

capacity (plexiglas). In Fig. 3 is given dependence of combustion rate on pres-

sure for samples of perchlorate pressed in plexiglas pipes of diameter 5.7 and

10 mm, with wall thickness of 1 mm (points 1, 2 and 3 correspond to values of

diameter, d = 7, 5, 10 m). As can be seen from Fig. 3, u - f(p) has basically

the same character as that for unarmored kernels, and combustion rate does not

depend on diameter of sampl.e. It follows from this that drop of rate cannot

be explained by thermal losses to the outside. Actual confirmation of this con-

clusion comes from following experiment: plexiglas tuba of perchlorate (dia-

meter 5 or 7 mm) was placed to half its height in water. If thermal loss had

significant influence, combustion rate in that part of the tube located in the

water, should have decreased. Experiments conducted at 200 atm, showed that

combustion rate in both parts of tube were practically identical (1.44 - 1.39 for

7-millimeter diameter and 1.38 - 1.40 g/cm2 sec for 5-millimeter).

Results of described experiments

,i I I/ jare subject to doubt in connection with

Jthe fact that combustion occured in tubes

of organic material - plexiglas, partic-

ipation of which in combustion could

I .accelerate it. This circumstance can be

explained in two ways: clther determine

fox influence of plexiglas on combustion rate
Fig. 3

of perchlorate or take as material of

shell a low-reactive substance. In this work, both variant were applied.

Mixture with zero oxgen balnce of perchlorate and plexiglas (particle

size of components > 1 P < 250 t ) burns in significant range of pressures with

slower rate, than perchlorate alone; at 50 atm, combustion rate of perchlorate
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in plexiglas pipes was, on the average, 1.20, and combustion rate of mixture

- 0.78 g/= 2 sec. Thus, plexiglas does not accelerate, and even delays com-

bustion of perchlorate in region of moderately ,- increased pressures, and its

application as a shell under these conditions does not evoke doubts. Incidentally,

one should note that c-haracter of combustion of perchlorate changes somewhat

depending upon cond!itions of conduction of experiments. In photograph of Fig. 4a,

during combustion of perchlorate in pipe of diameter 10 ma at 156 atm, visible,

adjacent to front, is a narrow luminescent strip of granular structure, as if

front of combusti.on consisted of separate microflashes. ,ranularities of front,

apparently, cor.,-espond to separate streams of burning gases, probably accompanied

by particles giving flame a shaggy, striped, form. At pressure of 276 atm (Fig. 4b)

velocity of gases was approximately 30 cm/sec.

Fig.

In glass pipes, combustion of perchlorate proceeds otherwise. It goes by

parallel layers, but glow on surfaces of combustion is weak and at separate

points brighter flashes are observed. On walls of lower part of pipes, at height

of 9 - 3 cm, after experiments there remains a layer of salt of noticeable
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thickness externally baked and nonuniform with separate "burnt places" extending

to wall of pipe. Comparing this picture with photographic prints of experiments,

it may be concluded that combustion goes very nonuniformly; it is delayed at

periphery; light points and spots on photographs correspond to approach of

combustion at separate points, to walls of that part of pipe which is turned to-

ward objective. Described process of combustion reminds us, in this respect, of

combustion of catalyzed ammonium nitrate.

2 - Absence of these peculiarities on

S - 1 photographs of combustion in plexiglas

2 pipes is probably explained by smaller

thermal losses through walls of pipe

Iarnd by a relatively high temperature

of combustion. In general, these

photographs graphically demonstrate
Fig. 5

nonuniform, local character of com-

bustion of ammonium perchlorate.

Experiments in low-reactive shell were run in follo°wing manner. Samples

15.3 mm in diameter were covered with varnish of vinyl-perchloride resin

(content of C1 60,-65%) dissolved in dichloroethane. Thickness of layer of varnish

was 0.1 m. In order to ensure uniformity of igniting with such diameter, igni-

tion was triggercd at high pressures by tablet of black powder, which led to

sharp decrease of scattering of velocities in parallel experiments at 750 and

1000 atm. Furthermore, in ordet- to explain influence of thickness of ahell, a

series of experiments was run in which 7-millimeter samples of perchlorate were

covered by layer of varnish of thickness at 1 mm so that pipe was formed of

vinyl-perchloride varnish.

At last, fluorinated lubricant was studied as she3l. In Figs. 5 and 6

are presented obtained results.

Fig. 5 shows dependence of combustion rate on pressure for 15-millimeter
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samples of perchlorate in shell of vinyl-perchloride varnish (0.1 mm, curve 1),

and curve 2 for 7-millimeter Eiaples in fluorinated lubricant.

In Fig. 6 are presented dopendence of combustion rate on pressure for 7-

millimeter samples of perchlorate in shell of vinyl-perchloride varnish of

various thickness h: curve 1 for h = 0.1 m, curve 2 - for h = 1.0 mm (scale

or. axis of ordinates is twice less).

Graphics show that on curves of dependence u = f(p) for samples in vinyl-

perchloride varnish, section of velocity drop is preserved, although under

these conditions it is expressed less distinctly than in plexiglas pipes.

2. Dependence of combustion rate

..... Hof ammnium perchlorate on presence of
7 F -- shell material at high (500 - 1000 atm)

pressures. In Fig. 7 are summed up

2 - ~
data obtained in this work on combustion

of samples of perchlorate of diameter

Fig. 6 7 m, and dependences are shown of

combustion rate of perchlorate in various shells: 1 - without shell, 2 - in

vinyl-perchloride varnish (0.1 m), 3 - in vinyl-perchloride varnish (1 mm),

- in plexiglas pipes, 5 - in fluorinated lubricant.

Examination of graphs shows that for perchlorate, two regions of pressures

are observed: first - up to pressures of approximately 400 atm where combustion

rates of perchlorate in various shells are similar and drop of combustion rato

rith pressure is more sharply pronounced for unarmored samples and for perchlorate

pressed in plexiglas pipes; second region from 500 to 1000 atm where magnitiue

of combustion rate is varied depending upon shell.

The question naturally arises of the physical meaning of this distinction

and of which curve depicts, to the greatest degree, combustion of the perchlorate

itself? The highest combustion rate at 1000 atm is shown by perchlorate in
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plexiglas pipes - 14 g/cm2 sec. In pipes of perchlorvinyl (0.Imm), perchlorate

burns with significantly less speed 9 g/, 2 sec*

During combustion in a thick shell
I.-.- -7

/I of low thermal conducting material

9(plexiglas), thermal losses could be
. I less than in a thin shell of vinyl-

S /- --- perchloride. Such explanation, however,

- f .... ,could be checked. If thermal losses

Y ,considerably affect rate, then the

latter should depend on diameter. There-
_ I / - fore, at pressure of 950 atm were run

'Io02 experiments in a vinyl-perchloride their

Fig. 7
shell at various diameters; we list

obtained average rates of combustion u for various diameters of sample d in mm;

d 5 7 5 3
K = 1O.0 9.06 8.98 8.33

These data show that influence of thermal losses was slight, so that through

it was possible to explain variations in combustion rates.

A still sharper influence of thermal losses should have shown up under these

conditions for unarmored samples. However, experiments showed that combustion

rate of 3-millimeter samples of perchlorate was even somewhat higher (7. g/cm2

eac) than for 15-millimeter samples (6.0 W/cm2 sec). Probably, here is manifested

influence of combustion on lateral surface of oxygen contained in technical

nitrogen.

A second possible explanation is that at high pressures, the plexiglas of

the wall burns with perchlorate and this combustion in contact zone is faster

than far from it and leadts the process. Verification was possible, comparing

combustion rate of mitures of zero oxygen balanct in plexiglas pipes and without
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shell. Paraffin mixtures yield, in plexiglas and vinyl-perchloride shells

identical ratee - 17 g/cm2 sec. This rate applies also to combustion of a bare

kernel of perchlorate with paraffin, This attests to the fact that such secondary

factors as cooling, heat transfer in shell, washing by dense nitrogen, do not

play an essential role, but difference in rates for perchlorate is actually

caused by reaction of the substance with the wall. This interaction can not

be considered completely excluded during combustion in vinyl-perchloride shell.

Let us note that experiments with a bare kernal gave significantly lower rate -

7 - 8 g/cm2 sec which can be considered the combustion rate of the perchlorate

itself.

Experiments with kernels covered with fluorinated lubricant gave still

lower rate. We can assume that this latter shell in burning, partially volatil-

izing in proportion ;o rate of combustion, and mixing with products of combustion,

decreases its rate somewhat, as compared with combustion rate of perchlorate with-

out shell.

Thus, dependence of combustion rate on pressure for ammonium perch!orate,

studied in wide range of pressures, differs considerably from that for other

substances studied [2]. The most interesting of e2perimental facts is fall of

combustion rate with pressure within its determined range, and also the pulsating,

unstable character of combustion under these conditions. Fall of combustion rate

with pressure, according to K. K. Andreyev, is connected with phase change which

occurs during thermal decomposition of perchlorate at 2400C. This suggestion,

however, requires experimental verification.

Author thanks K. K. Andreyev for valuable advice.

Institute of Chemical Physics Submitted
of Acadenmy of Sciences USSR. 7 February 1963
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ON HEAT FXCFANGE OF MICROTHERMOCOUPLES UNDER CONDITIONS OF
COMBUSTION OF CONDENSED SUBSTANCES

A. A. Zenin

(Moscow)

For obtaining of temperature distribution during stable combustion of
condensed substances, it is possible to apply thin thermocouples. Ther-
mocouples sealed in kernels of burning condensed substance, with rate
of its combustion, pass through a zone of variable temperature showing
(during ideal heat exchange of thermocouple with the medium) temperature
distribution. A similar method is widely used for study of combustion
of powders (see (1, 21), where encasing of thermocouples in kernels is
done "by anigle". The application of thermocouples of such form can be
explained only as insufficient attention to the question of.heat ex-
change of a thermocouple with gas and condensed medium in the process
of combustion. It is natural to expect a significant lowering of tempera-
ture of ther-mjanction for thermocouples of such form owing to thermal
losses to the ends, due to fact that coefficient of thermal conductance
of a metallic thermocouple (I,) exceeds by 2 - 3 order coefficient of ther-
mal conductance of powder(x) and products of its decomposition (p).
Possible also is distortion of temperature profile due to thermal inert-
nes5 of thermocouples.

In present work are considered requirements which parameters of
thermocouples must satisfy (form, thickness, etc.) to ensure minimum of
distortion of obtained temperature profile. For that, initially we
studied heat exchange of thermocouple with condensed and gas medium
under conditions similar to conditions of measurements of temperature in
wave of zombustion; then, errors of thermocouple measurements are
estimated. In work it will be shown that sealing of thermocouples
"by angle" can indeed lead to large errors in temperature and serious
distortion of form of temperature profile,
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Designations

- coefficient of thermal T* - temperature of combustion
conduction of gas phase, T2  - temperature of thermo-

- coefficient of thermal Junction
conduction of thermocouple. T, - initial temperature of pow-

1. - coefficient of thermal con- der ard thermocouple
duction of condensed phase T3  - surface temperature of

- coefficient of heat emission burning powder
c2  - specific thermal capacity u 1 - outflow velocity of gas

of thermocouple from powder
c3  - specific thermal capacity u 2  - rate of motion of thermo-

of powder couple (combustion rate
h - thickness of ribbon thermo- of powder)

couple H - deflection of mid portion
1 - size of shoulder of thermo- of thermocouple shoulder

couple E - young modulus of thermo-
pa - density of gas phase couple ribbon
02 - density of thermocouples I - moment of inertia of
p, - density of powder thermocouple ribbon
14 - time constant of thermo- p - aerodynamic pressure

couple in gas phase of b - width of thermocouple
burning, condensed sub- ribbon
stance na d nviscosity of gas

. - time constant during ideal x - distance from temperature
heat exchange (very large a) of combustion to measured

a1 - coefficient of thermal dif- temperature
fusivity of gas phase y - distance through thick-

a2  - coefficient of thermal dif- ness of thermocouple from
fusivity of thermocouple center of ribbon

a3  - coefficient of thermal B - Biot criterion
diffusivity of powder N - Nusselt number

R - Reynold's number

a-

For obtaining of temperature profile is suggested (see also [33) thermocouple

Il-shaped. Presence of secion, parallel to isotherms, called "shoulder," will

decrease lowering of temperature of thermojunction from thsrmal loss to ends. Below

will be shown that it is possible to select size of should 1 so that error owing to

heat transfer to ends will become small, and thermocouple will remain still rigid

(deflection of middle part of shoulder will be slight). Investigation of heat ex-

change of thermocouples of fl-shaped form has sufficiently general character: at

1 =0 we obtain a thermocouple "by angle," at I = o -plane thermocouple (parallel

to isothsrms). Numerical calculations and quantitative results of experiments are

given for ribbon thermocouples of alloys of tungsten and rhenium (95% W + 5% Re to

80% W + 20% Re) with thickness h = 7 and h = 3.5, and width b = 20 h.

At first, let us consider hoat excbange of Ib,-shaped, ribbon thermocouples
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in gas phase and calculate temperature errors owing to thermal inertness of

thermocouples and thermal loss to their ands. We will also shot, that thermal

inertness of thermocouples covered by a layer of melted borax is no higher than

for those not covered by borax (the same total thickness). Then, let us consider

heat exchange of a thermocouple with the condensed medium and determine under-

stating of temperature owing to thermal inertness of thermocouple and thermal

loss to its ends.

The problem of temperature distribution on length of thin n-shaped thermo-

couple during its passage with constant speed through front of flame with expo-

nential growth of temperature was considered earlier (3). In cited work, as

in given, exponential rise of temperature was selected for simplicity, and also

because actual zone of variable temperature is wider due to existence of several

regions of heat release. Errors determined by us coupled with understating of

temperature of thermojunction, will be maximum. In order to use obtained solu-

tion, we will experimentally determine coefficients of heat radiation a of

iibbon thermocouples. For a heated thermocouple moving with known speed, by

rate of cooling we find its time constant T. and then calculate a by relation-

ship which can be obtained from heat-conduction equation for a thin plate. If

suddenly transfixed into a medium with different temperature (if criterion Biot

B= oJ I 21, 1; for our thermocouples B = 1O-4 to 1O05)

Here c2 $. - volumetric heat capacity of thermocouple (for wire of radius r

in this formula h is replaced by value of r).

Diagram of experiment is shown in Fig. 1. Thermocouple 4 was braced on

two rods welded to rings located on opposite sides of revolving disk 2, from

which thermo emf is removed by brushes 3 and passes through preamplifier 6 to loop

oscillograph 7. Thermocouple is heated while passing through a thin (diameter

1 to 2 cm) strewa of hot air (temperature 5000C) and is cooled in air of room
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temperature. Lonrth of path Of cooling I m. Blast velocities are high (5 to

15 n/avc), and therefore transition from hot gas to cold is practically instan-

taneous.

Results of experiments for flat, ribbon thermocouples are given in the

form of dependence of Ma~sselt number N = ala I ',; on Reynolds criterion

It UI~h 11 in Fig. 2. Values of parazeters entering into criteria were taken

for air of room temperature (To 250 C)

P= 1.29310~-8 g/c2m3 ,Ijtt =-t.&i.1Og/czi se,)~o.6. to-4 cal/cm. sec -deg

For obtaining temperature profile, most e4ed ftnt was the application ai-

shaped and M - ahaped thermocouples. Therefore.. following series of experimental

was cnduced w to th , and results are plotted in the same figure. Obviouly

within linits of scattering of experimental data, form of thermocouple does not

affect magnitude of a.

Obtained criterial bond N = £ (R)

was used for calculation of coefficients

of heat emission of mentioned thermo-

couples under conditions of burning of

nitroglycerine powder H depending upon

Fig. 1. Diagram of experiment for its combution rate. Calculations were
deteruaination of coefficients of hsat
emission: 1 -electric motor, 2 - made for average temperature 10000C
revolving disk, 3 - bz..shes, 4 -
thermcouple, 5 - stream hot air, values of parameterat
6 - preamplifier, 7 - loop oscillo-
graph. Ft 4-0- g/c CM eCr i3.5. 10-4 cal/c. sec -deg

As an example we point out that for thermocouple h =3.5 P~ at pressure 20 atm

(combustion rate of' powder u2 -0.34 cm/sec) To 0.6 millisecond, a= 0.114

cal/cm2 x seec deg at pressure 150 atm (u2 =1.2 cx/sec) r, 0.22 millisecond,

a 0.30~7 cal/c=2 x sec x deg.
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Fig. 2. Criterial function N = f(R) for
various ribbon thermocouples: 1 - flat
thermocouple h = 7 ; 2 - flat thermo-
couple h = 3.5 1 ; 3 - flat thermocouple
h = 71 , covered by borax layer--71
(during processing of data, it was con-
sidered that her = 10u ); 4 - flat
thermocouple h - 3.5. , covered by
borax layer -3 A(during processing of
data, it was considered that hef 5 );
5 - 11 - shaped thermocouple h = 7 ;

- M - shaped thermocouple h = 7 A'

Table 1.

1k=3.5 '= "=0.4.. 0.7% 6,8% 3.51% ItI.5% 18% 0.4%

KEY: (a) u2 cz/sec; (b) Form of thermal
losses.

Calculated values of a are used for calculation of relative understating

of temperature by n - shaped thermocouples in gas phase by the formula work (3).

Results of calculation are given in Table 1, where a - due to thermal

inertness of thermocouples, b - from thermal loss to ends.

Increase of error due to thermal inertness of thermocouples with incre .."

of combustion rate is obvious. Decrease of error due to heat losses to ends

is coupled with decrease of time of stay of thermocouple in zone of variable

temperature.



If one were to put 1 - 0 (thermocouple by angle), then by the formula of

work (3) and calculated values of v it is siple to receive that temperatures

measured by thermocouple of temperature and temperature gradients lor taken

thermocouples and speed range will be approximately 1') times loss than actual

temperatures due to thermal loss to ends of thermocouples. 'hus, thermocouple

method, used in works (1, 2], cannot be considered acceptable, and results of

measurements require check.

During use of thermocouples Ln sones of chemica]. reactions in gas phase,

catalytic effect is possible on the surface of a metallic thermocouple. For

its removal, thermocouple is covered by layer of melted borax. Investigation

of thermoinertial properties of such thermocouples presents interest. Ribbon

thermocouples h - lp and h - 3.5 . were covqred by layer of melted borax:

first Ja yer with maximu= thickness at center of ribbon - 7 F. second . 3 P (average

thit-knesses 20'A and 10 p accordingly) Results on heat radiation received by

described method in criterial view are presented also in Fig. 2, and, in order

to combine them with previously obtained dependence N = f(R) for bare thermo-

couples, it was assumed that first thermocouple has thickness 10 it second 5 P.

Thus, thermal inertness of thermocouples covered with borax turns out to be

even less than thermal inertness of an uncovered thermocouple the same average

thickness. This result is not strange, in spite of the fact that thermal

conductance of borax is three orders less than thermal conductance of thermocouples.

Actually, mnimm time constant (during ideal heat exchange, internal problem of

thermal conductance) our thermocouples is equal to

i.e., four orders less than ,. This appraisal shows how strongly the

thermal boundary layer on themocouple determines thermal inertness of thin

metallic thermocouples under tbe considered conditions. Its d,%termining role

is true also for poor conductors of heat (glass, borax) having dimenaions of
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taken thermocouples, since problem of thermal conductance reains external

(B -. 10- 2 ). Thermal inertness of such bodies will be determined by their volume-

tric heat capacity c€pi, and not by thermal conductance. Rat :r of

borax is approximately 1.5 times less than for metal of thermocouple which itxplains,

experimentally, the received decrease of inertness of thermocouples covered with

borax as compared to inertness of bare thermocouples of the same average thickness.

Another cause is the decrease of thickness of covering tora-rde edge of ribbon.

We note also that calculation for accurate solution of problem of thermal

conductance about temperature distribution by thickness of this flat thermo-

couple passing front of exponentially rising temperature, having form*

T - T o ch (:.V) (Z= u,- 1 )
(T. - T,) - rh (1,-h) + (), / ) sA ('2:L) Vr4 3

shows practical independence of temperature change in time from coefficient of

thermal conductance of thermocouple in wide range of change xs (, = 1 to 10-3

cal/cm , sec °C) under the conditions burning of powder H.

Appraisal of thermal losses by moans of therma. conductance to ends of thermo-

couples and thermal inertness of thermocouples in condensed phase will be made

by us separately, due to great complexity of problem.

&t first, we will determine thermal inertness of flat thermocouples for

which there are no losses of heat to ends, and then we will find lowering of

temperature of thermojunction owing to thermal losses to ends under conditions

when influence of thermal inertness of thermocouples is exluded. Estimates of

understating of temperature of thermojunction obtained for each type of thermal

loss can be integrated if these errors are small. This region of errors and

conditions leading to small errors will also present interest.

In condensed phase, heat exmhange with thermocouple is carried out by

*A. A. Zenin. Study of temperature distribution during combustion

of condensed aubstances. Dissertation, Moscow, 1962.
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thermal conductance. Let us consider thermal inertness of thin, flat thermo-

couples. Difference in temperature of thermocouple and an adjacent condensed

substance located in zone of heating can be caused only by large volumettic

heat capacity of the thermocouple. Problem of heating of thermocouple in

condonsed phase under certain simplifying assumptions was considered earlier.*

Solution for maximum relative error has form

r,-T, 2 -  - q sP,)

where

In Table 2 are given magnitudes of maximum relative error in temperature

owing to thermal inertness of thermocouples, calculated by this equation as

functions of burning rate of powder H.

Table 2.

se Relative errors in temperature grow

0.2 0.5 .0 .O I proportionally to thickness of thermocouple
7 0.86% 1 2% 6%
3.51& 0.30, 0.8%. 1.6% 2.4% and burning rate. In absolute magnitude,

relative errors owing to thermal inertness in condensed phase are significantly

less than in gas.

During appraisal of heat losses to ends of thermocouples, we will use thermal

modeling. Average number of parameters determining heat exchange of thermocouple

and ccndensed phase was six: thermal diffusivity of substance (a 3 cm2 /sec) and

of thermocouple (a 2 cm2 /sac), their volumetric heat capacities (c 3 P'cal/cm3 *C and

c2 Pscal/=m0C), thickness of thermocouple h cm and size of shoulder 1 cm. Of

these quantities, three are independent: c3 P, (or c2 P,), a3 (or a2 ) and 1 (or h).

According to fl-theorem of theory, similar unknown function (in our case,

dimensionloss temperature of thermojunction) should depend on three dimensionless

*A. A. Zenin. Study of temperature distribution during combustion of con-

densed substance. Dissertation, bloscow, 1962.
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criteria
,p, ;2 I

C a ',

Since in model experiments substances with those some theimal coefficients

were used. The aim was detecting of form of function F

TI

where T2 _ temperature of junction, r - temperature of medium (surface).

To accurately reproduce conditions

of heatinR uf thermocouples in condenaed

substance during combustion is very dif-

- .ficult, therefore, for simplification it

was considered that in heated znne is
Fig. 3. Diagram of experiment for
determination of thermal losses to orly the shoulder of thermocouple. Under
ends of thermocouples in condensed
phase: 1 - heated glycerine, 2 - actual conditions, part of ends directly
glass, 3 - thermocouple.

adjacent to shoulder is in heated zone.

Therefore, model experiments will give a superficial appraisal of heat lossen.

This simplification leads to independence of results from regime of burning (for

example, rate) and in essence was allowed for by us when rate in a number of

determining parameters was not considered. Thus, is considered stationary part

of the complicated problem of heat exchange (tnermal inertness was considered

earlier). Therefore, accepted scheme of experiments (constant temperature of

heated medium) is permissible.

For experiments were used ribbon model thermocouples of copper-constantan

of following dimensions: h = 0.05 rm, 0.5 xm, 0.7 m, 2.0 iM, and mangarin-

constantan h = 0.2 m, 0.6 m, 1.2 im. As medium was taken glycerine, similar

in its thermal properties to many condensed substances (including powder H).

Model thermocouple was sealed in plexiglas sleeve, in which there was glycerine

at a temperature of 50'C, after which part of thermocouple protruding from bottom

of sleeve was submerged in glycerine heated to 250-C. Thermocouples could



withdraw from bottom of sleeve. Process of heating of Lhermocouple was recorded

on potentiometer EPP-09 (Fig. 3). Aim of veasurements was determination of

established temperatures of therwojunction. Temperature of fall everywhere was

300'C. Results of experiments are presented in Figs. 4 and 5, from which it is

clea e that there is a significant understating of temperature of mediu at small

sizes of shoulder, especially sharply developed for better heat-conducting thermo-

couple of copper-constantan.

Results can be described by formulas

T* -J0.xe(0) for Fig. 4
To, ( To

T, - o.o for Fig. 5

' 'Experiments with thermiocouples of
s2

two indicated types differ by thermal

conductance of thermocouples. There-

fore, results c-n be combined if we

O-- " h consider coefficient of thermal conduc-
50 150

tance (true, it must be kept in mind that
Fig. 4. Understating of temperature
by thermocouple of copper-constantan IS changed only at one electrode, and
due to thermal losses to end as
a function of dimensionless depth of therefore the formula is tentative)
submersion: i- h -0.05 =4 2 - h =
= 0.5 i, 3 - h = 0.7 =, 4- h T,-T. I
- 2.0 w. r,'j' -T - t +1351,7. (h/I)'

If we set relative error at 2%, we obtain following formula for size of

shoulder of thermocouple.

1=a (t .*,kcAu, ca/cm.sec.deg

As example we indicate that at h - 5 & for copper 1/2 1 = 500 Y , manganin

and constantan 1/2 1 = 80k, for tungsten and rhenium 1/2 1 = 200 p.

Thus, due to large losses of heat to ends, necessity of n - shaped form

of thermocouple is erident. However, for thermocouple of such form, there is



the possibility of deflection of central part of shoulder under action of gas

flow, especially in first moment escape to gas phase. We will show that it

is possible to select size of shoulder so that at its previously obtained di-men-

sions (from considerations of smallness thermal losses to ends) deflection of

shoulder is small.

Superficial estimate of dynamic deflection in center of shoulder, i.e., in

place of thermoJunction, assuming hinged joining of ends of shoulder with ends

of thermocouple (obviously, rigid connection prevents deflection of shoulder),

is possible by the formiula (see (43)

5 PbI ( 4Nt

where H - amount of deflection, E - Young's modulus, i - moment of inertia, p -

aerodynamic pressure [5), and R - Reynold's number for shoulder. Taking ratio

b = 20 1_ we can find bond between h and 1 during displacemnt of central part of

thermocouple, equal to thickness of thermocouple (H - h).

We obtain equation

M _ 0.06 cul / E")p

T where li - viscosity of gas, or for

conditions of burning of powder H (pres-.3

sure 5 to 150 atm (tech]),

P= tOa to O" As.

Se One is easily convinced that opposite

requirements of small thermal loss to

SI$ ends of thermocouple and its sufficient

Fig. 5. Understating of temperature rigidity are compatible both for gas
by thermocouple of manganin-constantan
due to thermal loss to ends as function and for condensed phases which allows
of dimezionless depth of submersion:
1 - h = 0.2 m, 2 - h = 0.6 nmm, 3 - application of n - shapcd thermocouples.
h = 12 mam.

Let us note that magnitudes cf 2.

in Table 1 are selected in such a way as to satisfy requiremcnts of rigidity
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and smallness of thermxal losses to ends.

Comparing requirements presented to thermocouples for' unerring recording

of temperature diistribution in gas and condensed phases, we arrive at conclusion

that requirments in gas phase are more strict and. if they are 3atisfied, tempera-

ture distributions in condensed phase will be also unerring.

Absence of influence of thermal losses to ends of thermocouples on their

readings in condensed and gas phases for selected sizes of &ohoulder was checked

experimentally with the help of M - shaped thermocouples for wihich thermal loases

to ends change sign. Therefore, if thermal losses influence., then temperature

profiles obtained by these thermocouples and ue'ual ni- shaped must differ.

Experiments showvd that within limitts usual scatterhg distinction is not observed.

Also observed e_ -perimenttally was influence of absence of shoulder for a

thermocouple by means of comparison of temperature pre±files obtained by usuai

a -shaped theriwcouples and thermocouples with angle. In Fig. 6 are giver. typical

recordingb by these two for~ms of thermoc~ouples (powder H, pressure 20 atm '(tech),

thermocouple iD 30 1A) illustrating well the strong cLstortion of temperature distri-

bution due to thermal loss to ends for thermocouples "by angle."

Approximatel.y tho same understating of temperature gradient can be obtained

by calculating means presented in. present work.

It is necessary to consider that distortion of teperature profile obtained

by thzarmocouples sealed "by angle" will be connected also with disturbance of

7, Ic one-dimensionalness of process of burn-

seaI ing of powder (in particular, with

I.'/Li L 0. 0.5031 Z 0distending of surface of powder at

Fig. 6. Tinpceature proriles of output of thermocouple to gas phase,
H-powder at pressure of 20 atm
[tech] obtained by thermocouples inasmuch as laver of condensed sub-
4*30 A of various form ( n --

shaped and "by angle"), stance adjacent to thermojunction will

start to decompose only if temperature of thermojunction is near to temnerature
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of surface).

In conclusion we indicate the receipt of temperature profile with the

help of thermocouples covered by thin borax layer. For nitroglycerine powder H,

temperatures profiles received by these thermocouples (h - 3.5 A, layer of borax

- 3 Px) to- O14000C (boiling point of borax) are within limits of usual scattering

of experimental data which indicates absence of noticeable catalytic effect for

our thermocouples.

The author thanks A. A. Koal' ski.y for organization of the v rk and valuable

reimAs du ng discusion of results. Submitted
15 April .963
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DISPERSION AND ACCIDENTAL ERROR OF IEASUREWT OF TEKPERATURE OF
LOCALLY ISOTROPIC TURBULENT FLOW

Yu. L. Rozenahmok

(Leningrad)

Process of measurement of temperature of nonisothermal flow of gas or liquid

by contact method is accompiutimd by appearance cf accidental error determined

by statistical character of turbulent pulsation of temperature in flow and by

dynamic characteristics of data unit. Appraisal of accidental error of measure-

ment of temperature of air in turbulent atmosphere by linear thermal receiver

was conducted in [33. Here, resultant conclusion in [l] were based on approxima-

tions of transient response of thermometer of exponential function of time.

Meanwhile, it is known that such approximation has very rough character and is

valid only in case of equality of average temperature at surface of thermometer

with its average volumetric temperature, which corresponds to application as

thermometric body of material with infinite thermal conductivity. In general

case this condition, obviously, does not have place, especially for high frequen-

cies of energy spectrum of turbulence during intense heat radiation, and also for

thermometers of low thermal conductance and not too small a radius.

Let us consider the problem of determination of accidental error of measure-

ment of temperature of locally isotropic turbulent flow without essential
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limitations.

Process of heat transfer in a thermometer is described by heat-conduction

equation or.
-j -,- 'T" ()

with boundary conditions on surface of body

-VT I. - -( - T80)= (2)

and initial condition

T" (, y. ) = 0 (3)

Here T* - temperature of body; X. a - coefficients of thermal conductance

and thermal diffusivity of body; - coefficient of heat exchange; 0- ambient

temperature.

Applying operational calculus to problem, we obtain expression for sought

temperature T* (x, y, z, t) in the form of Duhamel integral

9TO~xy~z,)=_ u'(x,y,z,'r)O(t-T)dV
T" (. y. z. 1) = (4(

Here u* (x, y, z, t) represents solution of problem when ambient tempera-

ture is described by the Heavyside function (of unit force).

Relationship (4) can be represented in following equivalent form with regard

to (3)
£

TO (z .z, ) Y"(... " t -r) d1:

where G* (x, y, z, t) - local pulse transient function. For quasi-stationary

regime, upper limit of integral can be taken as equal to infinity.

Since the majority of applied data units of temperature (thermocouples,

thermomterts of resistance etc.) will covert to a useful signal not local, but

average volumetric value of temperature, it is necessary to average T* (V) by

volume of body. (" =1 ) G. 0 (t --r) dr d G= (T) 6 (1 - -) d
0

V (6)
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Averaging both parts of (6) by time, when e (t) represents stationary random

function of time, we find that mean value of temperature of medium and thermo-

meter coincide in accuracy

<) - <e (I - r> C (V) d -

<e (a)> 4. " $.( (, .y,. c) -' (x, y. ,. o)) dV -<e ())(e• (7)

since u* (x, y, a # ) 1, u* (x, y, z, O 0. Thus, if we di:3regard

systematic errors of measurement of tmperature caused by pulsation of heat

radiation with time 12], t e systematic error of measurement of temperature of

turbulent flow by linear thermometer is absent, i-n accordance with whicn mean

square error is an accidental error of indications of instrument.

Considering

T (t) - T. + T' (t), (1) (8)

where To and ea - constant constituents, T' and e - pulsational parts, and con-

sidering that To = %. we obtain formula for conversion of correlated function

field of temperature' K by linear thermal receiver

CocKrT (v) = (T (1) T' (t +,c)> ~(v1 ) G (v3)AK, (r + v3- r1 )drdr, (9)

Expressing correlated function through temporal structural function field

of temperatures D9. we obtain analogous formula for relationship structural

functions D, and DT at. entrance and output of thermometer

D () 2( r2  +i " + G C(-r)G(-r)D9(r+r:- i)drid co (10)
00

Here a7A - dispersion of indications of thermometer, et - average square

of pulsation of temperature of flow

Dg (-t) = <[e" (I + r) - ' (f)]'>

From (9) or (10) at T = 0 we find expression for dispersion and root mean

square error of i dicatione of thermometer through correlated or structural

function of field of temperatures and pulse transient response of thermometer,
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deterrined for bodies of simple form by analytic means

CO 00

T'= do' - "L I i) (T) D9 (t,- - ,l) d L (1.)
2 0 0

Common integral of Fourier equation (1) with conditions (2) and (3) at

0 = 1 in accordance with Boussinesq theorem [3] is expressed by formula

u(r, y. ,) = I- AU 1 (r, y,)ej ()
(12

Here Ai - constants (initial thermal amplitudes), TJU - eigenfunctions of

problem sat-sfying r"m!Ihnltz equation

7'Uj + mjUj =0 (mi = Tj J a)

mj = eigenvalues. Eigenfunction3 Uj satisfy boundary condition (2) of mixed

type on surface S limiting considered body. Accordingly

G ( Y X , =Y (13 )

From (11) and (13) we obtain

0--1 t--j
2 (14)

where

00 S0

-D (vi) dL + e Dg (Qi)
0 (15)

In case of locally isotropic turbulence for temporal structural functions

at small v can be taken exponential approximation of Kolmogorov - Obukhov [4-7]

D9 (i) = (16)

where C and - quantities independent of . Hence

crt + p )) (17)



Equivalent form of (17) during clculation of (16) is

r (t + 8)
I. (r. + Tk) (tf'D- (tT1-) + Tk-ID0 (Tk-')I (18)

Putting (17) or (18) in (14) and changing indices of integration in resultant

second double sum, will find

Tj Tk PckDO (Tj- t)
h T* PP~ T1  (19)

We apply obtained xpression (19) to determination of dispersion and acciden-

tal error of measurement of tmperature oi: locally isAropic turbulent flow by

thermometric bodies having plane, cylindrical, and spherical form (one-dimensional

problem). Using certain results obtained in analytic theory of thermal conductance

[9], for all three cases, after simple conversions, we obtain

-~~v vi (t + p) Fj FJv'V,(v"D, (V.) (04-1 Ti (20)

Here v 1 1, 2, 3, for plate, cylhider and sphere accordingly

Tl, } = "i (  Fi~ A4( c 2BI
R2 -- i= T j '. + ja + M2"J

)A(s)4B ) A 6B2

9 €M lot+ --Vwz j j = [M -B21
~ -B(3)2j 1~~ (21)

where a), p ind - roots of characteristic equations:

.. , _ )t 2)I -1
W; cth x *,j()

Here Jo and J- Bessel functions of first kind, Io and I, - modified

Bessel functions of first kind, B - Biot criterion, R - characteristic dimension.

When there is accurate information on quantities C and 5, it is expedient
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to use for Vk expression (17). Here

- 0 = lo - C R1 4 Q (B) (24 )

where
00

Q(", (B) = vr (1 - ) \, (.,J ' ). F,( '/"J (25)
j-1-"

For conditions of atmospheric turbulence in surface layer A= 0.42 [1, 8).

Graph of functions of Qc, for v = 1, 2, 3 at A = 0.42 is shown in figure.

Formulas (20) and (24) give possibility also to determine mean square

error of indications of thermometer, and

= - r'V" = C3'f T  '' %' ' i)(26)

representing, as was already indicated,

accidental error of measurement of

temperature of locally isotropic turbu-

lent flow.
zz

As follows from curves, optimum

properties in the sense of minimum of

.0 ,accidental error belongs to the spherical

thermal receiver, whereas thermometer-

_ "__ " plate has worst properties in this
Id4 1.4 I0

sense. It is necessary to note the

presence of a finite, accidental error not vanishing to zero during infinite

heat radiation. In this case pulsations of temperature on surface of thermometer

coincide by phase and amplitude with pulsations of temperature in flow. However,

as a result of presence of temperature drop through thickness of thermoweter,

accidental error does not turn into zero as would have occured during formal

application of condition B -ao to thermometer of infinite thermal conductance.



Function I(V7)(B) , and consequently, accidental error el") change in range

10-,<B 1o by approximately thre6 times. At B> to , function Vly(B) remains

constant and equals O.5.
Submitted

26 April 1963.
Literature

1. A. M. Yaglom. On calculation of inertia of meteorological instruments.
Tr. Geofiz. in-ta AN SSSR, 1954, issue 24.

2. M. A. Kaganov and Yu. L. Rozenshtok. On temperature of bodies in medium
with pulsating heat radiation and temperature, PMTF, 1962, No 3.

3. T. V. Boussinesq. Theorie analitique de la chaleur, Paris, 1901.

4. A. N. Kolmogorov. Energy dissipation during locally isotropic turbu-
lence, Reports of Academy of Sciences of USSR, 1941 vol. 32, 19.

5. A. M. Obukhov. On distribution of energy in spectrum of turbulent flow,
News of Academy of Sciences of USSR, Ser. geogr. and geo phys., 1941, No. 4-5.

6. A. M. Obukhov. Structure of temperature field in turbulent flow, News
of Academy of Sciences of USSR, Ser. geo phys., 1949, 13. No. 1.

7. A. M. Yaglom. On local structure field of Lomperatures in turbulent
flow, Reports of Academy of Sciences of USSR, 1949, vol. 69, No. 6.

8. A. V. Perepelkin. Certain results of investigation of turbulent
pulsations of temperature and vertical components of velocity of wind, Izv. AN
SSSR, Ser. geofiz, 1957, No. 6.

9. A. V. Lykov. Theory of thermal conductance. Gostekhteoretizdat, 1952.



ON ONE NONLINEAR PROBLEM OF THERMAL CONDUCTION

S. I. Anisimov &nd T. L. Perel'man (Minsk)

In theory of thermal explosion and in a number of questions of theory of thermal

conductance (1, 2] is encountered nonlinear equation
ST

4AT + q ex (T W- i

Source in right sid6 of (1) approximately describes thermal divisions during

chemical reaction, and constant E signifies activation energy of reaction.

Let us examine simplest one-dimensional boundary value problem for equation (1)

T(+t.i)=T, T(r. O)=r (-<X< 1) (2)

or the same,
8T (O. I)T (I t) To.8z =0. T (r. 0) --: To 3

We will introduce dimensionless variables

~' j- O(~)t(j ) T. i

Let, further, C ('.&L '- - Green's function of heat-conduction etqaation

for unit section. Problem (1) - (3) will be reduced to integral equation

!I I'
V ) = (rb ) + t G a .v .-r - Tj exp e ' d r*" 5

W.- (5)

2 :%2 [ C (A + nt

.., (6)

Green's function has form

G d. V; -t - 1= Vs, 102,V's,(t + El: in3(,-,I) + V,1 fo- 11 in (V- <))I (7)



Theta functions in right side oA' (7) are determined by equality [3]

,$(u. ir) = 2 exp -r1% n+ - -J "i(2n j 1)u

Let us note that Green's function (7) is symetric about arguments and &r

and in considered region is nowiere negative.

Equation (5) can be solved by sequential approximations of form

er( = .(,T).. y(" )(1+ )= (L -- e C ( ;

oc

Daring solution of boundary value problem analogous to (1) - (3), usually

interesti:-g are conditions of existence of such temperature distribution which when

v iO would change to stationary. It is not difficult to show that such distribution

exists, if parameter t is sufficientlY small. Here, sequence of functions O(") (t. T)

is evenly reduced to solution of integral equation (4). In order tc show this, we

will compose following expression

O(M-aM) Ga. t; -- T ix,- exp~ )

alit) (to, T') - 6 (n-1) (', i '
t - )( 9 )

Let us note that e - ) - e--1) >, o. since it (t,r) ,), C (1. TV: 1D - . We will in-

troduce designation

Max (,) > ) 0

From (9), it follows that
IT

A* < AMn. A = sexe - d

It is easy to check that A <1. if a </' In this case there exists limiting

function of sequence (8), which will be solution of equation (5),

For chemical kinetics, case of o.t is of interest. It is easy to show that

in this case inequality for e has form

,< -- -I



whiere &. - the biggest value i cona3dered region of O(L .

Let us note that describec. method of successive approximations indicates the

existence of a solution. Applyig known theorems of theory of integral equations

(see, for exAmple (4]) it is easy to show that equation (5) has at leaat one solutior

at any values of parameter a. Meaning of result is that in a certain interval of

values, solution will be unique. We wi).]. return to this quest ion below during in.-

vestigation of the stationary problem.

Method of successive approximations allows to receive approximate solutions in

certain simple extreme cases. Let us consider, at first, solution during rather

long times.

1. We will consider that parameter t is rather small, so that in all tim-es

there is a unique solution of equation (5) which can be obtained by iterations of

(8). We will calculate ow (t, t)taking, for zero approximation, statiora~ry temperaturc

distribution, ea~, m~) e(t) satisfying relationships

7t1+ ' x -*)= (10)=3' A()

Solution of problem (10) has form
*ep

where ~m-the biggest 'value of function e It' in section o < I < 1, which due' to

syuetry is attained at t = 0.

Stationary solution of 0 (t) is unique if equation (11) at =0 is

unique for every e value of constant e,, here integrals entering in (11) are

not expressed i~n eleientary ftnctions. However, general character of dependence

8,, (c) can bu± irrv'estigated without resorting to numerical. intpegratt.ion. It is easy

tG see, firsit of all. that equaion (llat E-0 has at least one solution for 0.

at any values of r.; indeed* takes place appraisal

#"?-P( 4. (12)

t f4



Consequently, values of r can be an large as desired. Lot us note that after

replacement in work [21

tip Texp rep (13)

solution at sufficiently large 9 does not exist. This is intelligible because as

a result of replacement of (13) in equatioh (10) instead of bounded function -

exp(--1/8>there is an infinitely increasing function of exp(w.e), and known conditions

of edistence of solution (see, for example, r5j)are unfullfilled.

Expansion of (13) is valid under two conditions; 0,<.i and e - Oreo. Preserving

the first of them and comparing result obtained in [2] with estimate of (12), it is

simple to conclude that during fixed 0, function c(o,) has at least two extremes

among which is a region of ambiguity of solutions, where every value of e corre-

sponds to more than one (in reality three) values of em. More detailed consideration

show , that minimum of function ctoj lies in range of values e.- t.and also that

there is such a critical value 0e, so that 0,>0,, solution of stationary problem

exists und is unique at all e. These remarks may be of interest in case of re-

actions with low activation energy.

Taking solution (l-) for zero approximation, we obtain value of function e( , T)

similar to steady state. Result has form
I

F b ) - -0 R ) + 1 -e x p - C o s e - - ( ') C o s a - '

f i (15)

If in enti7-e region e(C)<l, it is possible, usiing method of steepest descents,

to simplify initial integral equation. Omitting calculations, we obtain result

X~O+ (_ ) 2L /(__10) (16)

Formulas (15) and (16) are true during condition T>4/=2.

2. Let us consider solution at brief times. In this case for zero approxi-

mation it is natural to take initial temperature %. Nucleus of integral equation

(5) we siwplify, using known relationship fo'- Theta fimctions

'0 (( :~ V) j ~/ e,_ )



Leaving at v- o only main members of Green's functio-n ard executing *hntegratioi

we obtain in result

O( , +- texp.- 1 - - o)e +,{ E +

+ (i.~eip (-2LL 2CXP =q+ to -0,+ t0 V+

xexp -1 ert ( )+ - - [L 2+F ) ] 4-exp tcrf ) -

-{9'O Ci CXP 1~2 + vicrf(j} (erfr (z) cd

3. Let us consider, at last, case when parameter e is small. Solution in

this case can be obtained in the form of series by degrees of ,. taking for zero

approximation V(. r)(see (5)). Let us note that during e- o difference 0o,,-O c - U

This allows during sufficiently long times to disregard in (6) second member as cob

pared with first. The same can be done for all times, if IO -Dul O

In first order of approximation for t, result has form

, -1,, j.s , 2 - 0_.,C(.) ~+cpD 27 -. 3 j~ (n+ it? x (19)

For receipt of highest approximation in corresponding calculations it is con-

venient to use method of steepest descents, applied above to calculation of ex-

pression (16).

4. We will show, in conclusion, that in process of establishment of stationar

temperature distribution (e<,.) temperature in any point monotonely strives duri

V--0_ toward corresponding stationary temperature. Intuitively, this result i

sufficiently obvious. For proof, we will formulate difference A ( t. ) = 0 (., v) - 0 (D.

The latter satisfies integral equation

M 2,) + e + ,P I0e, i-c- -(f' de.) (20)

a+ 7 t {' ex p ,. s + ). T , + - t

2 27



.ion,

To equation (20) we apply method of successive approximations, considering

a(° (-. ') - ko a ,. T)

Considering that o(-.T) <o (in physically interesting case e,>. when medium

is heated with time), and repeating reasonings conducted during proof of existence

and singleness of solution of boundary value problem (1) - (2), we find that A(n"Yo

at all T and difference a W ) - A("- ') - - o during i-. .
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ON HEAT EXCHANGE AT CRITICAL POINT OF A BLUNT
BODY AT SMALL REYNOLDS NUMBERS

I, N. Murzinov

(Moscow)

On basis of analysis of flowing around spheres by hypersonic flow is revealed
parameter determining heat exchange at critical point at small Reynolds numbers.
Certain results of calculations are given which were approximated by analytic ex-

pression depending upon this parameter. Obtained function is compared with ex-
perimental data.

Using main assumptions of work [1), equations of momentum and energy in environ-

ment of critical point of sphere are written in the form

(1,1")' + 2//"--- , 0b  M- O I-  -,i - 2/i O0

-=z'(). = - 2/ (n) .r= RC. n=- V.°S

Here r,.. yr. - distances along generatrix and on normal to body, ro - radius of

sphere, uV0. v VC. Ppm. Ppio. .iVo2 , PP" VC01 - accordingly constituent velocities on axes

and y. density, viscosity, enthalpy, and pressure of gas,, P0. , 1" - density,

viscosity, and approach stream velocity, 0 - Prandtl number, dash signifies dif-

ferentiation by variable , Quantity b determines pressure gradient at critical

point of body, so that .p
W- == -- b



Boundary conditions are condition on body and in chock wave:

i.= , /=r=O at A= 0
iO0,5, /= " =-7 at (2 )

where r~r1 - radius of curvature of shock wave, - unknown quantity characterizing

position of shock wave.

At given b and r are six conditions (2) sufficient for solution of system (1)

and determination of n.

Considering pressure distribution on sphere to be Newtonian, we can be obtained

b :* (1 - 1/2k), where k - ratio of densities in direct shock wave. For spherical

blunting at low wall temperature, thickness of displacement of boundary layer is

small. Therefore, we will consider that magnitude of rl will remain the same as

during ambient flow around a sphere by inviscid gas. In calculations were used

values of rI determined by data of [2, 3) as functions of k.

Product of desity by viscosity at constant pressure was considered power

function of enthalpy

pit - (3)

Constants c and n (n.0,3) wer3 determined from results of [4]. Prandtl number

in calculations was relied on a. constant a 0.72.

Calculations showed that last member of first equation of system (1) weakly af-

fects its solution at i<I Thus, during change of izagnitude cf b in interval

b = 0.5 to 1.5, calculated heat flow changes by only 2 to 3%.

Therefore, density entering in last member of first equation was approximated

by expression P - (2ki) - l . This approximation, practically, is accurate in inviscid

region of flow and very weakly affects amount of heat flow.

Equations of (I) and condition of (2) can be converted to form

(Y-",-)'-I 2qT" - T" + bki = 0 (4)

l = ic. = at C=O

'I,; (5)
i-=0.5. - 'at=C,

7V 0



there

Considering earlier state relationship

of weak dependence of heat flow on member

15 .coupled with pressure gradient (see Lees [5]),

and also fact that at hypersonic speeds ,,:I

of ej and for strongly cooled wall from (4)

i e_ .. 4 and (5) it follows that unique quantity which

determines influence of small Reynolds num-
I.0
05 1. 1.5 Z(logM bers on heat exchange is value of q atC ,.

This valve with aid of (3) we easily con-
Fig. 1. 1 - V oo = 11,000 m/sec, verted to form
k = 0.06; 2 - V co 8,000 m/sec,
k = 0.06; 3" Vco = 6,00 m/sec,
k:0.07; 4V = 4,OO0 m/sec, 4 2 P" VS- () (6)
k - 0.09. 2 I, /

where Ro - Reynolds number calculated by parameters of deceleration behind the direct

shock "ave.

In such a manner, heat exchange in environment of critical point at - all

Reynolds numbers will be determined by parameter N = ROk 2 . Usually, results of in-

vestigations ar presented as function of Ro, Mach number and adiabatic coefficient

[6 - 8].

System of equations (1) was in numerical solved by Runge.-Kutta method. Calcu-

lations conducted for sphere showed that heat flow normalized to its value without

regard for interaction with shock wave, practically, depends only on parameter N.

Quantities of heat flow for small Reynolds numbers without regard for interaction

with shock wave were determined by results of calculations at large Reynolds numbers

(R . - 106) on the assumption that heat flow q c VI. Heat flows thus normalized

for various velocities depending upon parameter N are listed in Fig. 1. Results of

calculation can be well approximated by dependence

2.14 (7)Qt- +(logN + 0.95)3 1



which is also shown in Fig. 1.

it is possible to expect, due to normalization of results of calculation, that

use of a different kind of assumption will not strongly show up in (7).*

Comparison of calculations by dependence (7) with experimental data of (6, 7]

is shown in Fig. 2. It is clear t'tat calculation satisfactorily agrees with ex-

periment and parameter N is ectuaily the determining parameter of the problem.

Investigations of influence of small Reynolds numbers on heat exchange are us-

ually limit to the sphere. It is interesting to reveal influence of small Reynolds

numbers on flowing around environment of stagnation point of bodies of other

configurations. We will originate from assumption that, Just as for sphere, for

strongly cooled wall on such bodies, thickness of displacing of boundary layer is

negligible as compared with departure of shock wave from blunting.

It was noted [10, ii] that for dimensionless departure of shock wave from body

of rather general form can be obtained
1, k

;1-,+ (8)

In [10] was indicated also that if

radius of curvature of shock wave was used

as characteristic dimension quantity b de-

pends weakly on forms of body. This means

* o OZ
that the same radius of curvature of shock

1 - wave, flow in environment of critical point

05 1.0 1.5 Z0 log of various bodies will be identical at

identical incident parameters and conditions

Fig. 2. 1 - experiment (6], k 0.167; on body. From this ensues following ap-

2 - experiment (7], k - 0.07 to 0.09.
proximate method of calculation of

*At 8a.~0 results of calculation agree with data of [9) (when Lewis number

L = 1) with discrepancy not over 5%.
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influence of small Reynolds numbers on characteristics of flow in environment of

stagnation point of blunt bodies. We determine departure of shock wave (or its

radius of curvature on axis) for given body as function of quantity k. By departure

of shock wave we find radius of sphere ro. which forms shock wave with that same

departure and radius of curvature. By quantity ro. and k we calculate parameter N

and make correction for small Reynolds numbers according to (7).

Thus, for calculation of thermal flow at critical point of considered body, it

is necessary to determine radius of sphere ro. with that same departure and radius

of curvature of shock wave and to find thermal flow at critical point of sphere.

Departures of shock wave for considered body and sphere with r o 
= rto are equal,

*herefore, in envirorment of critic&l point radiation thermal flows from gas volume

will be equal and heat exchange at critical point of sphere with ro = ro. will com-

pletely model heat exchange at critical point of considered body.

Author thanks V. V. Lunev for discussion of work and remarks and N. G.Kas'yanov

who made calculations. Submitted

7 March 1963
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DETERMINATION OF AVERAGE SECTION OF COLLISIONS OF ELECTRONS
WITH NEUTRAL ATOM OF WEAKLY-IONIZED GAS MIXTURE

E. P. Zimin and V. A. Popov

(Moscow)

Described are experiments on determination of average section of ccl-
lisions of electrons with neutral atoms at temperatures of 1900 - 23001 K.
Sections are determined by data on attenuation of radio waves in products
of combustion of a methane-oxygen mixture with addition of potassium.

1. As was shown in [1, 2], under certain conditions, attenuation factor of

radio waves in conducting gas is coupled with electrical conductivity of this medium

by following relationship;

= z(1)

Here os- electrical conductivity to direct current (sec-!); wangular frequency

radio emission; v - effective frequency of collisions of electrons with heavy

particles of gas; 7- attenuation factor (db); and z - length of investigated ob,-

ject.

From equation (1) it follows that knowing the experimental values of 1, it is

possible to calculate values of electrical conductivity to alternating current

(o(-+w'/v') and further through known v to determine quantity a,. Unfortunately,

quantity v , at low energies of electrons, i.e., at temperatures less than 5000*K,

for majority of gases is not accurately known. Knowledge of it presents great

f practical interest.



However, from equation (1) it follows that by measurements of attenuation factor

of radio wayes on any two frequenciea, one can determine both a., and v, here

R'el (2)

Here ne- concentration of electrons, m and a - mass end charge of electron

respectively.

Further, effective frequency of collisions of electrons with heavy particles

of gas is expediently determined by following relationship:

+ j n (3)

which is a result of condition that resistance of gas can be represented as sum of

resistances of weakly-ionized gas in which elastic collieions of electrons wit~h

neutral atoms predominate, and of strongly ionizad gas in which Coulomb interactions

of electrors with positive ions [3) predominate. In equation: (3) v - average ther-

mal velocity of electrons; n 1 - concentration of atoms of norijonizing component of

mixture; n 2 - concentration of atoms of ionizing component of~ mixtaure; Q 1 and Q2-

average sections of collisions of electrons with atoms of correspondin~g components

of mixture; and Q, - apparent section of collisions of electrons with ions.

Above is asstmed that: 1) mixture contains neutral atoms, o " only two gases-

practically nonionized diluent (nl, Ql) and slightly ionized admixture (n 2 , Q2 ); 2)

concentration of admixture is very =mall (n2 << fl); 3) only single ionization takes

place and 4) degree of ionization of admixture is sml ne / n 2 < 1.

Assuming form of function Qi(ne) given, it is expedient to use experimental

measurements of attenuation of radio wavss for determination of concentratio~n of

electrons and effective section of collisions of electrons with neutral atoms of

mixture + - Q + /n 1.

Problem reduces to solution of system of two algebra-ic equations

zw. -v-a -f(vIOn (I.T2)-r (4)

Here 
A* IDIR3 .
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It is necessary to note that since 9 is linear function of relative concen-

tration of admixture t t n/nl, knowing experimental dependence Qo0 (t) , one can de-

termine average aection of collisions of electrons with neutral atoms of diluent

(Q) arA also of admixtue (Q2).

Re3olving system (4), we obtain (w>(')

Q* ,, + L\t,,, , -3 Qj (5)

or 2LJ23 F,' _11 6
1'.%L,' 2 )"' 1Qw

P_ (W'? O 1) -

Apparent section of collisions of electrons with ions is determined by expression

(k - Boltzmann constant.)

el 3 kiTQ =8.ibInA, b- , A-- ---'5 U 2 V Y. 0 _p (71,

For simplification of calculations, expression (7) is conveniently ccnverted to

form
2.9.10-4Q,= - (1 3T-l03P - 10 a - 14;)

2. If n2 < nI and Q2 insignificantly differs from QI, determinaing parameter

will be section of collisions Q1 which one can determine by the simpler graphic

method (4). Putting constants in equations (1) and (2), we obtain

+ - (a = ,/2.i6)
a ,V+" (8)

It is obvious that dependence plotted in system of coordJnates (w", '). has

linear character atu allows to determine, from anglo of inclination of straight line

to axis &.2 and ordinate ('). both ne and v.

Z7



Of course this method cannot be used for determination of average sections of

collisiuns of electron with neutral atoms of both diluen. (Q1 ) aad admixture (Q2 ).

3. Investigationc were conducted on products of combustion methane-air and

methane-oxygen mixtures. Mixture was burned on burner of torch type with fornation

of sufficiently uniform region of products of combustion. Temperature was modi-

fied by means of change of cumposition of mixture. Pressure was equal to 1 atm.

Slightly ionized admixture was introduced into flow of oxtdizer directly before

preliminary mixing chamber of burner in the form of aqueous solution of K2CO3 of

various concenti-&'ion. Temperature of products of combustion was measured by meth-

od of reversal of lines of Na. Method of use of waveguide lines w1 = 10,000 MC

and w2 = 40,000 MC is analogous to that described in [l, 2).

T°K V 1 0 - I sec- 1  Q, . 1015 cm2

1900 1.49 1.30
2000 1.64 1.47
2100 1.82 1.67
2200 2.39 2.24
23O0 3.33 3.19

Experiments were conducted at three various values of concentration of solution

of K2 CO3 fed into torch differing by 102 times.

Given results were obtained at various temperatures; error does not exceed

3 - 5%.
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FIDW BETWEE PARALLEL WALLS IN PERIODIC MAGNETIC FIELD

th- I. B. Chekmarev

(Leningrad)

S. A. Regirer [1] investigated flow between parallel plane walls in nonuniform

field on the assumption that velocity of liquid does not change throughout flow,

Recently, stationary flow of inviscid electrical conducting medium in a flat duct

in the presence of a nonuniform external magnetic field was investigated in work of

Sakurai and Naito [2]. Magnetohydrodynamic boundary layer in nonuniform fields was

ion studied by Sherman [3] and Turcotte and Lyons [4).

Below is considered stationary flow of viscous electrical conducting liquid be-

tween parallel plates y = + a created by drop of pressure along axis x. Constitu-

ents of magneti" induction of external potential field are considered periodic

963 functions of coordinate x and have following form:

2~i 2z';2Aw 2nw,Bx B sin - sh y , B" -ch--, Bz = 0

Since in considered case all magnitudes are indeperient of coordinate z, con-

fining ourselves to small magnetic Reynolds numbers, we have:

am au ap a u a ,_.,u a(A a ,,
e="U +p PV.-- .-- --..,,+,_-+i/ B +-F-=o. (2)
5, a, ai a,(2)

PU-7+qV y1 , d

Pu.- + pg,.y- T=-- + n ± is =,3 (uB - vBD)

Here B' and B s-e determined by formulas of (1), and external electric field
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is absent. We will introduce dimensionless variables

- , '- Cu e " 2 (3)

Here uo - average velocity of medium; po - certain scale of pressure. System

(2) in these variables has form (asterisks are omitted in the future)

6(M- a i sO - S cos 2.nx ch 2ney (u cos 2.i ch 2ney +

+ s, sW 2x ab 2e) + (Z ' !!U + a) •aps
£' (u +v ) =, - ELP-- S sin 2'x sh 2xey (u cos 2iti'ch 2i-ey +

+.vsxs2YR+ ('ui+ d

e ( s S aBR

Let us consider case X >a. Under this condition, magnetic field strength and

velocity of liquid will change slightly along flow as compared with their lateral
of

change in channel. We seek a solution of system (4) in the form of a series by de-
Oas

grees of small parameter t aIX/ t. Considering E=/te , we find for zero

approximation of equation
De-

IfVe- Scos 2.trs= u :*~ =O. - =

Uj Y r+ j (5)

Differentiating the first of equations (5) on y, we exclude pressure p and ob-

tain equation for velocity

a u au
f- ( cos 2x), - =0 (A'=PSR (6)

resolving which under condition.

-ISI,.:t, -o. udy 2 (7)

we find
Cli (MV ow. 2,) - ch (31 coc, 2xr)

~ -N co2xu)1 iii (MV cos 2znt) - Ch (AA C,06 2Xx) (8)

,ld When .- , formula (8) changes to known solution of Hartmann problem for

uniform magnetic field ch My-ch Ml
M-1 sh M-ch 4 (9)



It is curious to note that at points r=,,. where cos 2.,i=(_1). we also

obtain Hartmann profile. At points /4 (2n + 1), where cos 2th =O. formula (8)

gives usual Poiseuille profile u - 3/2 (1 - Y).

Thus, duri, motion of liquid in per-

o_ iodic external magnetic field, wave length

of which is significantly longer than

height of duct, distribution of velocities

is determined by formula (8) which is analogous formula (9) taken with certain ef-

fective Hartmann number Al ,I s .tr 1. Here, velocity profile is periodically de-

formed from the Hartmann when I cos2, rI;= I to Poiseuille at cos 2nr =_-.

Transverse velocity v can be is found from last equation of (5) by known constituent

U.

For determination of pressure distribution in duct, we have relationship

dp IT of cos 2t()A!

Calculating its right side with the help of (8), we find

dp (.11 ros 2,-tr)l ch (M coi 2ns )
dx - IR (M cos 2nx)-' sh (.1 cos 21z) - cit (Al cos 2i r) (10)

In the figure is shown change of velocity profile as a function of longitud-

inal coordinate x.
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ABOUT MODELING OF MAGNETOHYDROYNAMIC FLOW
IN CHANNEL IN ELECTROLYTIC BATH

V. V. N,"-arenko

(Moscow)

For flow of electrically conductive incompressible liquid in flat channel in

presence of magnetic field at values of Reynolds magnetic number Rem < 1 it is

possible to disregard influence of induced magnetic field on motion of liquid.

Furthermore, in a number of cases, the hydrodynamic problem can be separated from

the electrodynamic [1]. Velocity of liquid V can be determined from hydrodynamic

equations, and distribution of current density j and electric potential T in

channel is found from Ohm's law and equation of inseparability for j

VV X divj=(1)

Here, B - magnetic field strength, a - electrical conductivity of liquid, c -

velocity of light in a vacuum. Here, V dnd B are considered given functions of

coordinates. Problem reduces to Poisson equation for function of P .

If channel is composed of sections of conductors and dielectrics, boundary con-

ditions will be constancy of potential of f on conductors and absence of normal

component of current density, on dielectrics Jn = 0.

For flow with variable velocity V~v(y),o) in constant magnetic feld (y - coord.-

nate in transverse direction of axis of channel) problem also reduces to solution

of Laplace equation for certain auxiliary function u determined by relationship
V

=- t1j Vdy, 2
)(2)
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Certain particular problems reducing to Laplace equation are considered in [2.

It is expediont, fo. solution of' simdlar

______ kind of problems in those cases when obtain-

, .ing of analytic solution is difficult, to

-L X use methods of ilectric modeling, in partic-

r.Z, A uiar - tho electrolytic bath [4).

Lower are given certain results of
Fig. 1.

investigation of flow of incompressible

electric conductive liquid in flat channel with the help of electrolytic bath.

Flow was modelled in channel of width 2 6 , walls of which were composed of

sections of conductors and dielectrics (Fig. 1). Velocity of flow of liquid V was

considered given, independent of x, and arbitrary even function of y. A pair of

symmetrically located electrodes of length 21 was connected by a certain external

load R. In entire extent of channel perpendicularly to its plane was applied con-

stant magnetic field of intensity B 40, 0, - BI .

During motion of liquid in channel, on electrodes appears difference of poten-

tials 29, and in external circuit flows electric current I. On external load R

will be distinguished power N= 2q,.

Under shown assumptions, function u determined by equation (2) satisfies Laplace

equation [2]

6K=0 (3)

with boundary conditions:

u=± uj at y on electrodes (4)

aw/av= O at Y 6 on dielectrics

a6 Values of function u on electrode isRd=

determined from following relationship

OK I b1 NJ= qs---_-Vdy (%I -- T. =2T,>O0)
0.8 1.6 zli

Fig. 2.
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where T , meaning of potential on electrode

i, Power separated on external load can be

X 1. determined by following expression0II ad 1.6 Z.Y

Fig. 3. N" N t e -2(,(i

Expression for Joule dissipation Q in channel given in [3] in considered case

has form

(T (6)
CE E -Y _ 2r

" when y=8, x" =

Determining efficiency n as the ratio of power to sun of power and Joule dissi-

pation, we have

N No
i + Q-No +-Q* (7)

Let us note that for determination of power, dissipation and efficiency it is

sufficient to know quantity 2T, and distribution of potential on dielect' ic wall of

channel at given V, B, R and a. Due to symmetry of problem it is sufficient to

know value of p (or C ) in section )..rfz<oo-,Y=6.

In electrolytic bath geometrically similar to considered channel, was modelled

function of u determined by expzession (2) with those same boundary conditions a3 in

the channel. Here, value of u at corresponding points of channel and bath coincide.

Using Ohm's law for electrolytic bath and external circuit of channel, we obtain

following relationships between parameters of channel and bath

E l ai" (8)

ol- u:=2 - E

where a,, and I., - electric" conductivity of liquid and current intensity fo.

bath, and Rm - r esistance of electrolyte between electrodes of bath.

By values of u found experimentally is found distribution of potential V in

channel at given E (or Ra).
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For appraisal of accuracy of modeling,

comparison was made of quantities determined
f I

Y 'in electrolytic bath with analogous quan-

Z tities received from theoretical solutions

[2, 3]. In Fig. 2 are plotted theoretical

Fig. 4 and experimental magnitudes of efficiency

T as function of X/6 at /to = 0.5.

In the same place is given an approximate solution for n. which is obtained on

assumption that electric field is considered constant between electrodes and equal

zero outside electrodes, i.e., a solution which disregards longitudinal edge effects

"spreading" of current. n laet case

In certain cases, for decrease of

o.14 -1"spreading" of electric current, thin die-

lectric plates parallel to axis of channel

.. . (Fig. I). Influence was investigated of

a3 0these baffles on electric current, power

Fig. 5 and efficiency in channel. To boundary

conditions of (4) is added condition on surface of baffles.

In determination of total Joule dissipation in this case, integration iz per-

formed also on surface of baffles, on which % endures a break.

Investigated were symmetric groups of plates A and B of various length a and

at various distances on axis x between plates.

It was found that during closing of baffles there is a decrease of both electric

current and power in channel and of efficiency all the more intense, the bigger the

size of plates a and .he more the plates in the group. In Fig. 3 is given depend-

ence of q on distance xl/) between baffles for symetric baffles of type B (Fig.

1) of dimension a/ = 1.0 in channel with 0 0.5 at /fo - 0.5.



As experiment shows, application of dielectric baffles to obtain increase of

power and efficiency takes from electrodes was found impractical. In addition, in-

vestigation was made of influence of distance between two pairs of symmetric elec-

trodes tith 1/6 - 0.25 coupled in parallel (Fig. 4) on power and efficiency in

channel.

It was found that with increase of distance between electrodes, power and ef-

ficiency monotonely increase from theoretical values corresponding to a solid elec-

trode of total extent 1/6 - 0.5 at Ra = 0.5. Function of n on distance between

electrodes is shown in Fig. 5.
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I

VARIATIONAL METHODS OF SOLUTION OF PROBLEMS
OF DEFORMATION AND STABILITY OF PLATES
AND SHELLS UNDER CONDITIONS OF CREEP

G. V. Ivanov

(Novosibirsk)

Variational methods of solution of problems of deformation and stability
of plates and shells under conditions of oreep were considered in [1, 21.
In [11 is shown variational equation during condition of variation of
speeds of stresses and speeds of shifts. In [21 is given variational
equation during condition of variation of only speeds of shifts.
V. I. Rozenblyum [31 (see also [41) by variational method solved prot'lem

of stability longitudinally compressed rods having initial (in undeformed
state) deflection. Stress and di3placements were modified, satisfying
equations of equilibrium and boundary conditions. Below is derived an
analogous equation for a mildly sloping, circular, cylindrical panel
(figure). For plates and closed cyclinderic shells it has the same form.

1. In fixed moment of time t, real stresses a, v,. r and displacements

u, v, w in panels are connected between themselves and with speeds of stresses and

speeds of displacements by equations of [., 53:

VT drT, or aT*
z+ -W-- o. L-+W- V 0

,. a ZY a8x

j7-4-. . + v + r. -W + r,.U[ +  + 2rT -- + q 0
at! axma

a+W o, -:- + o (1.1)

ayaf a



+-- 2 P--it.- + PW + + j . -- +

27 0 (1.2)

+:r +~ TV + s axA ay(A- + !&-? S, W# #f = ± ,-A-+

S+ - -,-- - -- s -

Curvilinear system of coordinates for points of middle surface obtained here is

shown in figure; Tx, Ty, TV, 2, M, H-forces and moments in middle surface, R -

radius of p&nel, w - "full" deflection , I.e., sim of initial (in undeformed state)

deflection and that appearing in process of deformation, q - intensity of surface

load (point signifies differentiation by time) A - function of stresses and time,

a -function of stresses (energy of elastic deformations), z - coordinate of points

of panel counted off from middle surface in the direction of internal normal.

Besides above-indicated equations, real

stresses and displacements in panel satisfy

given conditions on edges x = 0, 1, y

0, b (figure). We assume that these con-

ditions are given in forces, moments and

zero displacements. For example, on edges

x = 0, x 1 are given either

Ms. ,, a1 aw + !.V, all
M~, T1 . ~ ;T-+T +- + 2

or accordingly,

dWldz=O. K=O. 0'O v~to

Cases when on edges of panel instead of forces and moments are given non-zero

speeds of displacements are not considered.

2. We will coioare, in fixed moment of time t, tho true stress and deformed

248



state with another characterized by the same speeds of stresses and speeds of dis-

placements, but with different stresses and displacements, namely stresses

a, + 6%, a + 6% .+ 6v, and displacements u + 6u, v + 6v, w + 6w, infinitely near to real

value satisfying equations of equilibrium, equations of equilibrium in speeds and

given boundary co-ditions. T>i '3 -essts and displacement will be called

permissible.

Putting permissible stresses and displacements in equations

a +T-a 6TV=O, ;8T + -6TX =O08fi, + 2 6H+-!° ~ T T
+w + 6w +t T +2

OT a ;3 -r 6TI " +w 26TX X y (2.2)

According to (1.3), variation of speeds of deformations depends on variation

only of displacement w

6, LT 6 -aY8L, 6 4- 156a ' X ' =. C (7x FY VY jC (2.3)

3. Because real stresses and displacements satisfy equations of equilibrium

and boundary conditions, it follows (see, for example, (5), section 7)

(si + %e+ vj) dV = A

where V - volume occupied by panel, A - power of external furces applied to panel.

i Permissible stresses and displacements also satisfy equations of equilibrium and

given boundary conditions (let us remember that these conditions are considered

giver in forces, moments an- zero displacements; cases, when on edges of panel, in-

stead of efforts and moments, are given non-zero speeds of displacements, are not

considered).
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Therefore

+ ~ + 6 ) + ( zy + 67) 6 V + 6 W + ( % + 6 r) (i + 61),] dV = 4 A(3 .1 )

i.e, power of deformations in class of permissibl, stresses and displacements is

stAtionary. Omitting in (3.1) the product of variations as an infinitesimal quan-

tities of the second ordr, we find

(. + 6 e + 6j) dV + (663, +';'e" + 161) dV = 0 (3.2)

Validity of (3.2) is simple to prove and is directly integrated by parts with

use of equations (2.1) and relationships of (2.3).

4. From equations of (1.2) it follows that second component in (3.2' is a vari-

ation of integral

S(A + II)dV

Under certain conditions, the first component in (3.2) is also a vuriation of

certain expression.

Using the first two of equations of (2.1) azd the first two equations of (1.1),

we write (2.2) in the form

16 a, +\ (6T. +' (6T, V  +

+ V(, V + (-at ' ) + 8t .41) + (-1 .,, o 0)

Multiplying (4.1) by w and integrating by area of middle surface 0. we find

+ tvaxJ14T am y S ax m a ax(4.2)

Using (2.3) and (4.2), the first component in (3.2) can be written in the form
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+% !xj d vw\1-

dIA 'x"at/vf,, I -- i3

If' bouary conditions are such that cotoi integal in (4.3) disappears (for

examle, .n case, when on all edges of p'Lel w =0), the first component in (3.2)

is full variation and (3.2) takes fo(3m

V(.4)

Under these conditions, among all permissible stresses and displacements, true

distribution of stresses and displacements is characterized by stationariness of

functional 0.

It is not difficult to perceive that determination of deflection with the help

of variational equation (4.4) reduces to integration of a system of resolved (rela-

tive to derivatives) nonlinear differential 6quations of the first order. Increase

of number of parameters during assignment of class of permissible stresses and dis-

placements shows only on increase of number of equations of system subjectel to in-

tegration.
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APPROXIMATE METHOD OF CALCULATION
FOR CREEP BUCKLING

S. A. Shesterikov

(Moscow)

Survey of solution of certain of the simplest particular problems on
buckling of rods can be fourd, for example, in [3., 2). Investigation of
plates and shells was conducted, basically, in direction of development
of criteria of stability for linearised formulation of problem of buck-
ling. In works devoted to this problem [3-5), basically was studied be-
havior of thin-walled elements in initial phase after loading. Below is
described a method for approximate calculation of buckling during creep.

1. The offered method is based on the assumption that for rods and thin-walled

elements under the conditions of longitudinal compression the connection between

stresses and deformations can be replaced by aralogous functions for bending moments

and warping.

A similar method was used earlier during investigation of other problems (see

[61). We emphasize that this assumption in certain cases can appear too coarse.

Therefore, a critical appraisal of obtained results and indication of regi.on where

they are applicable is necessary each time. At the same time, such a hypothesis

for a large class of problems considerably simplifies calculation without distorting

the essence of the phenomenon.

For the uniaxial case, the taken hypothesis means that there is dependence
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where x - warping of element; m - bending moment of internal or external forces

about the middle of section; T - average temperature by section; by dot is desig-

nated differentiation by time. For plates we assume that relationship (1.1) is exe-

cuted for invariant characteristics M and H

0 (H. i, M, M, )= 0 (1.2)

Here M, -M f$ + M,' + 3Af'

For R, tw various determinations are possible

/ aw \ at a'w 2= (1.3)
or~~~~ ~~ )",(---', + 2 , o, !-or ~S.J)(aay*w)! aay)'

In accordance with selected condition (1.3) will take either deformation re-

lationships of form
ew =a!'

azz (1.4)

or relationship of flow type
'= aM.,'"(1.5)

We will take equations of equilibrium for a plate in the following form [7):

'Mz_ 0's!f1 _LS ='a -' ('w +N" +N01.+Z) (.6)

W%.V +or"

Here woo - initial deflection; Nx, NY, Nx - forces acting on planes of plates

which we consider known. System of equations (1.2) - (1.6) allows to determine de-

flection as a function of time.

2. Let us consider a rod compressed by longitudinal force P. Bendiing moment

for the rod will be written in the form

M (u + 8'. (2.1)

where h - thickness; u - dimensionless additional deflection; uoo - initial
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dimensionless deflection. Relationship (1.1) is written in the form

- h, = 1(m) + T (M,) (2.2)

First component in the right part corresponds instantaneoK deformation, and

second characterizes process of creep. Let us note that relationship (2.2) does not

consider possible unloading in separate parts of section of rod. This naturally

can lead to deviations during comparison with experimental data. Let us examine a

hinged supported rod. We seek solution of equation (2.2) by method of combination.

Then, assuming that deflections can be approximated by one half-wave of sinusoid, we

obtain for amplitude of deflection u equation

k; - /lp(u+ )] + fp(u+.+)] (k=:%'/hlLt. p=PPhlmv) (2.3)

Specifying functions f and v. solution of number of concrete problea can be

obtained.

Buckling of a rod under action of constant force P. Solution is divided into

two stages. First stage corresponds to instantaneous application of force P, as a

result of which rod receives deflection uo . Value of u. is determined from solution

of equation corresponding to instantaneous deformation

k".- =- [/ ( U# + ago)) (2.4)

Further process corresponding to build-up of deflection in time is characterized

by equation
,k-f wIP + "u,) P'k IP(?J,+U,, 1) d (2.5)

It is obvious that when condition is fullfilled

k-rIp otu+uo)1 P o (2.6)

speed of build-up of deflection wil turn into infinity. Value of full deflection

ul + u0 determined by condition (2,6) corresponds to value of critical deflection

also for purely instantaneous deformation. Indeed, if in (2.4) condition p / au.= 0

is used, it will lead to equation coinciding with (2.6). This property, during so-

lution of problems of buckling with regard to creep; is analyzed in more detail in

[2). This phenomenon was first discovered by (Freiya de Vebek] (8]. It is necessary.

to note that independmce of critical deflection from properties of creep follows
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from monopaaetric nature of considered system.

If accepted that functions of f and v can be presented in the form

bhen solution of equation (2.5) will be written in form

k I { 1 (2.8)
SB(m1 t((+ um1n" (u-+-U )m"

Moment of destruction t3. is determined from (2.8) if instead of u we place u1

found from condition (2.6).

Of great interest i the case of slow change of applied force, starting from

zero. We obtain solution of equation (2.3) by semi-inverse method. Let us assume

that is satisfied relationship

p(i. + u=.) = D - --- (2.9)

Then for case n = 2 and m = 1 we obtain

=2 - 2 ' (I- Vt-

P-a. e (2.10)

, 20CII CS.4 BCt1
~T~kdL k~ + C =

Solution in final form can be obtained for any whole m and n, but here for sim-

plicity we are limited 1y shown values. It is obvious that when r - I u -- i. e ., = I

corresponds to moment of destruction (at x > t solution does not exist). As main

given parameters we take initial deflection u0 0 and initial speed of loading po.

Then tI and C are determined through these parameteri and

3- 2 - . I2Au,'0- ZB=.2'" (2.11)

As illustration, in Figs. 1 and 2 are given graphs of u/uoo and p/p 0 t 1 as

functions of dimensionless time r for a number of values of parameter r- At

i there is almost proportional loading.

255



Fig. I Fig. 2

3. Let us consider the simplest case of buckling of an evenly compressed, free-

supported, square plate. We will take that

We = (9) sin fln AY K," =uoosin ,si (3-1)=. = -- (

MLeus = m (l) sin as. -i- (ng of 0in the cente r)

We satisfy equations of (1.2) in median point, then obtain dependence between m

and u aralogous to dependence for a rod (2.3)
k,, = I (km) + V (k ,m) (3.2)

It is taken that for H and M there exists dependence analogous to connection be-

twaen x and m for a rod. From (1.3) it is easy to obtain linear connection between

m &nd (u + Uoo) p, where p - uniform pressure on planes of plate. Cons,quently, for

plate in considered case, equation connecting u and p coincided with equation (2.3)

"eith accuracy up to constant factors characterizing geometry of considered element.

Therefore invoi.tigation of solution conducted in part 2 is also valid in the present

case. We note also that solution does not depend on which relationship - (1.4) or

(1.5) is taken during investigation. It is obvious that this takes place in case

,when M is completely determined by one unknown parameter depending on time as it

was in the cuiaidered case. When two or rore parameters are preserved equation for

plate during use of (1.5) does not reduce to first order equation and solution dif-

fers considerably from solution obtained for a rod.
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TORSION OF PRISMATIC RODS OF IDEALLY PLASTIC
MATERIAL WITH CAICULATION OF MIC1ROSTRESSES

I. A. Berezhno,- and D. D. Ivley

(Voronezh)

Theory of torsion of rods of ideal rigidly-plastic material is presented
in (1-4]. In [5) is considered torsion of prismatic rods of rigidly-
plastic ari-sotropic reinforcing material under linearized condition of
plasticity. In present work is considered torsion of rods polygonal cross
section. Material of rods is assumed ideally plastic, where ideally
plastic state is attained during transition through regior strengthening
(6]. In the material appear residual microstresses (7). Similar material
can be called material with terminal strengthening.

1. Let us consider problem of torsion of rods, material of which conforms to

dependence between shear stresses and the nonreversible part of shear given in

Fi;g. 1. We will select a coordinate system as shown in Fig. 2. In the future in

designations of strairs , Tu, and deformation* s ..' ev, we will omit index z.

Initial relationships for problem of torsion of rods of anisotropic reinforcing,

rigidly-plastic material with terminal strengthening have form

ax aV

s. ,)' + (,,v- W", = kx'. ,;' + *,' < kg, kj. k, = const(. )

ds. de dx, dx

T -, $x T-'z 8V (1.3)

, =C (e, - X). ,, = (ev - xe. = cost (1.4)

If +'+*v'<k,, then x =x.=0.
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Here sx, s y- components of micro-

stresses, x'. XI - components of micro-
B C.

deformations, and c - parameter of strength-
A

K eniLig.

o •Condition of plasticity (1.2) in

Fig. 1 planes T. TV represents a circle with co-

ordinates of center sx, ay. In initial moment of plastic flow

: = , = o, = =" I = ,v* (*'2 + 'V" = k1')

Condition of plasticity (1.2) can be interpreted as rounding family of plas-

ticity tangential to given condition. In the future, following [5], linearized con-

dition of plasticity, considering that stress state at each point of the body corre-

sponds to a tangent to circle of conditions of plasticity preserving its own di-

rection in planes v. i1 in process of deformation of body,

T .(,- ,=) + ," (TV - 8J,) = kit (1.5)

Similarly for icrostresses we can assume that after attainment by them of lim-
itig vlus ~ 0  y0 ,~ o2 0 ~2 = 22

iting values Sx , sY, (sx 6+ y = 2) takes place linearizad condition

' + sV", < k* (1.6)

z

Considri:-g conditions (1.5) and (1.6)

as plastic potentials, we obtain, instead

of (1.3), relationships

de9 dev  dxx dXV
Fig. 2 -- -V- (1.7)

Since in process of plastic flow *. v," and B, s do not depend on para-

meter of load, then integrating (1.7) we obtain

ax as . X Vx
-i= T, -t C1(Z, C r,

Assuming that at initial moment, rod was in rigid, undeformed state and micro-

stresses was absent, we fird that cI = c2 = 0, and finally that relationships of
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(1.8) take form

V"*X - %T" = 0. , v'x - -., =0 (1.9)

In the future it is necessary to exclude from initial relationships of quantities

of microstresses and microdeformations. Using (1.4), we obtain (1.5) and (1.6) in

the form

T'- C (e, - x) + i9 - c ( - 'v) , (1. 0)

';(, - )+ , ( -X.) = LI( i.Sl

Condition (3.11) can be written

)Y'* +cIJ*,o= q (q a+ V ev C) (1.12)

Solving linear system of equations - relationship for microstrains of (1.9)

and (1.12), we obtain expressions for micro-deformations

, --, ,V = - --,,(1.13)

Then, taking into account relationships of (1.13), condition (1.10) it assumes

final form

kO ')]I +
T - + ~(CDXSX+ *UDU- +(1.14)
[I.'- ' + c" l =11

Components of deformations are determined by relationships

2 01,S 2 am(1.15)

where w (x, y) - warping of section, e - twist. Thus, for y .,.,, and w, we have:

equation of equilibrium (1.1), condition of plasticity (1.14), and law of plact-ic

flow (first relationship of (1.9)).

2. Let us consider region oaf of rod of polygonal cross section (Fig. 3a),

where oe - line of break of strains, Equation of lines of break y=a(Y = const).

Here, axis x is perpendicular to free boundary of contour of rod ef.

From solution of tLeory of ideal plasticity (1-4] it follows

;=0. k; (2.1)

2



As was noted in (5], warping of cross section of rod of reinforced material

coincides with warping during ideally plastic flow of rod. Warping under the con.-

ditions of rigidly-plastic torsion is determined by expression w - n e d, where n -

distance from point P ( x, y) to line of break on normal to ef passing through point

P. For considered regicn we have

(2.2)

Let us assUAe that in certain region

h f (Fig. 3b) material of rod reached yield

P(,T,) I-point (BC in Fig. 1), then in considered

d n- region

0 - _," 0 , = k- (2.3)
a b,

Linearized condition of fluidity (1.14),

Fig. 3 taking into account (2.1) and (2.3), takes

form

It follows from this that in regions MIf

TVki+ a (2.5)

Putting expression (2,3) in equation of equilibrium (1.1), we find that

• (y). On counter ef always r=q 0, consequently, T. = 0 everywhere in

region M.

In region o state of material corresponds to section AB shown in Fig. 1.

In this region s 2 + sY2 < k 2 2 and x =x, =0. Then, in region 2M, condition of

plasticity (2.4) takes form

TV = k, + ca (2.6)



Equation of equilibrium (1.1) under condition (2.6) will be satisfied in con-

sidered region if

=k,+c ) , (2.7)

On boundary of region of ideal plas-

ticity M, we have T,= k + ks, =O. 

whence, from eWpressions of (2.7) we find

9z O (z..- Y/:, - klI and f (y) (C acO ) Y.

0 al,

In region ot we obtain

re k (2.8)

Fig. 4

In region hex satisfying condition rx 0 on contour I, we obtain

T,, .- x - b)(2.9)

On boundary hg, component of stress r, endures break. Break of component of

stress Tx we asse static, since contacting stresses T. during transition

through hS are continuous. Appearance of break is caused by use of limiting cir-

cuit. We will deaignate length of region of ideal plasticity along free contour

ef through glf=t. then from (2.7) we have

(b - (e=0 when 6 < kcb) (2.10)

3. Let ui consider concrete examples.

1) In case of a rod of square section (Fig. 4) with length of 21 in region oaf,

equation of line of break os has form Y='. =,I. From (2.5), (2.7), (2.8), and

(2.9) we fird

,,-kj+c6(o-y). Irv=cO(zy)._ks (in ohjM) (3,1)

r Iks 4- y (.-Y). r, (z- .) (in he&)

2'2



Torque for entire section will be

N- 4 (kt + k,) (1l - )+ k, (p -- j gi + -L-) +
43++4 (3.2)+t 2J*8 (lt -I3 ) +r 0 ' (14 +{ Wta -_ 24 Isal + 32? la11 -- ITO )

where

.mO at =1, at *> (3.3)

Regions of plasticity corresponding

y J- .to state of ideal plasticity of material

h q (BC in Fig. 1) here and everywhere are

shaded.

2) Considering region cef of rod of

triangular section (Fig. 5) with side 21,
'ig. 5

we obtain equation of line of break oe in

the form y= Ir/3 ,a= 31{3.

Then from (2.5), (2.7), (2.8), and (2.9) we find components of stresses

-k,+k. . =0 (in ohg)

' 3 3 "3 (

3 3 ?. (3.4)

Torque for entire section will be equal to

M - (k,-+-kj) 134-i'412- 5- as) + k, ( -II-l-- +
L3 3 3 3(3.5)

+ ks (1'- 0) + ef 9 (1' - 2P- WPas + ul- 4a)

where

-0 at O<-ts- -i--s- at O> - (3.6)

3) Solution for rod of rectangular section with sides 2h and 21 (Fig. 6) in

regi oef is determined is analogous to rod of square section.



In region olooml, gradient of line of break 2=o , then from (2.5), (2.7),

(2.8), and (2.9) components of stresses will be determined

v, -ki+k,. Vx 0 (in mlmff I )

(3.7)
T" c kx +.. 0 (in olomm! )

Torque for entire section will be equal to

M= It. + 4 (h - 1) I(,' + Q,)& + k, (1- al) + k, (1a - 0) + / cO (I - ,a (3.8)

where Mf* - torque for rod of square section dntermined by formula (3.2). Let us

note that dependence M = M ( o ) for rods of rigidly-plastic material with terminal

strengthening at values of twist within limits

0< 6< -ks -i

coincides with dependence M = M ( p ) for ideally plastic material with linear

strengthening [5]. In interval of values of twist

dependence M = M ( e ) becomes nonlinear and by measure of growth of twist is

asymptotically similar to solution for ideally plastic material with yie]d point

(kI + k2 ). This circumstance is shown in Fig. 7.

M f

" lit

Fig. 6. Fig. 7.
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THEORY OF STRAIGHT LINES OF DrSCONTINUITY OF
STRESSES FOR TRUE PLANE FLOW OF A

RIGIDLY-PLASTIC BODY

0. D. Grigor'yev (Novosibirsk)

Considered is connection between the condition of positiveness of dispersion

power and the picture of true plane flow near a sraight line break. Kinematic

characteristic of existence of straight line of break of stresses is established.

We will prove the following kinematic characteristic of existence of straight

line of break. So that a certain straight line of break of stresses for true

plane flow of a rigidly-plastic body, it is necessary and sufficient, so that the

indicated straight line:

a) does not coincide with slip line;

b) after exclusion of translational motion of plastic rugion ir is orthogonal

to flow lines, and divides trajectories orthogonal to flow lines of variou.i

concavity (convexity); here line of break does not coincide with inflection points

of flow lines.

Necessity. Let there be a straight line of break of stresses. Obviously it

does not coincide with slip line. Excluding translational motion of plastic region,

we find what line of break is orthogonal to field of speeds. Since speeds se

continuous near straight line of break, the curvilinear grid ir, the form of flow



lines and trajectories orthogonal to them has here a continuous tangential.

Lengthwise along shown orthogonal grid take place relationships (1, 2)

all u± kcos2. a -- + ( in")oil-- k sin 24

I v it a V & (1)
I-~ W Wit -- 7., -t= I' i ' , 1 qo It -2 tg 23.X

Here vi, u - physical components of stress tensors and rates of deformations;

HI, H2 - Lame coefficients; - angle between direction of large main stress and

speed vector; v - modulus of speed vector; R2 - radius of curvature of trajectories

orthogonal to flow lineso.

According to (1), from both sides of straight line of break (after exclusion of

translational motion) we have

sin, V4 = sin 213, -=9o-+ (2)

Here values from various sides of line of break Uiffer by plus and minus

indices.

Let us consider condition of positiveness of dispersion power near line of

break, expressing the latter in the form [2)

RS>O for 45*P<45" or '35*< A<225

R,<0 for 45' < P<35" or 225 < 3 < 31." (3)

Here, radius of curvature is considered positive if it is directed toward the

side of rise of parameter ql-

From (3)- (2) it follows that straight line of break splits orthogonal trajec-

tories of various concavity (convexity).

Sufficiency. Let there be true plane flow. Field of flow lines, after

exclusion of translational motion of plastic region, contains straight line

orthogonal to flow lines which does not coincide with slip line and divides

orthogonal trajectories of various concavity. By condition along indicatod Atraight

line

R3 -- (4)
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Therefore, tensor of ratts of deforaation turns along i into zero. On the

other hand, due to various concavity of orthogonal trajectories, function 0 , during

trrnsition through straight line endures a break (3). Thus, considered straight can

only be a line of break of stresses for true plane flow [3). Let us note that from

investigation there was a case of straight flow lines, i.e., whan medium moves as a

sol-id body. We will show in conclusion tha. line of break does not coincide with

inflection points of orthogonal trajectories. In view of (1), we have
ren a I+  [amy a=] -
ra I*n, =-' + o,. -, - r ax- •*=o (5)

where au/i/u - curvature of flow lines; a/d,, - derivative along line of break.

Sincs translational motion is excluded, then

aft. - ' o a-s& o d(6)

Hence, due to the lema about preservation of a continuous function in environ-

ments of a point, where its own sign, is, other than zero, we find that curvature

of flow lines does not change sign during transition through line of break.

Consequently, straight line of break is not locus of inflection of flow lines. In

Figs. 1 and 2 are depicted possible viws of plane flow near straight line of break.

Fig. 1. Fig. 2.
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RELXAT!ON OF STRESSES IN THIN-WALIED PIPE

V. S. Nametnikov (Novosibirsk)

In work (12 during the investigation of r ]axation of thin-walled pipe twisted

and stretched simultaneously it was assumed that elastic instantaneous -Cxponents

of deformation satisfy condition of incompressibility- Let us consider this

problem disregarding requirement of icompressibility.

We dispose axes x and y in tangent plane, heading axis x parallel with axis of

pipe. Stress tensor in considered case leads to

Tensor of elastic deformations is expressed

e = '/ E. tit = ex= - v/ E . r =-(t + .)vI.E. e,= ,=o (2)

(E-Youtig's modulus, ,-Poisson coefficient.)

Expressions for creep have form

-p * '3F
Px " j-T ISO P== - ' , ,,= - ,. .ag-WPX= 0(3)

p and a are connected by dependence

Xp O X LI T A I I CU -31))1 .a( 4 )

In considered case

,I -e'+ 3-11,. V (MS I2):+ (5)
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Lengthening and angle of rotation of pipe are kept constant. Therefore,

condition of relaxation reduces to

, e£ + px - cont. a- CXe '+ P coeI d (6)

Frcm (2), (3), and (6) we obtain

;+-Lj--aLO +jr1=0 2 (t+ l

Hence
M± or ' -"(8)

a a

Here 4 and , - initial values of stresses. Putting (8) in (5), we obtain

0- ( "m "  + 3)'P,, tm z v , (ch '" -' + 4)% ( as = Ij v) (9)

Hence from second equation of (7) we have

ns (ch" + 3)/-' + E (0 00)

From (4) and (9) we obtain
Ppg f, p {,(ct",-, + 3,"- + .L (CS"-'+ 4)'}

Thus, problem was reduced to solution of systems (10) and (11) with initial

conditions

I -r., p - 0 at I e 0 (12)

Solution of systems (10) and (21) has form

4(V-64  + 3)'A [( c' " + 3)3/1, tE U (13)

X tip [-4, (dli"' -* 3)%. - + 4)']} dq

Relationohip (8) is result of hypothesis of proportionality deviators which for

elastically incompressible material (v = 0.5, m = 1) reduces to

.!a,. or (14)

(relationship (6) of work (13). In [1) by experimental data on duralumin and copper

it was shown that in majority of cases divergence of left part from right in (14)

does not exceed 14%.

11 JST50 tflIOWe assiUae that v =0.35 (m = 0.9).

to - In this case we obtain scmewhat better

conformity of left and right sides in (8).
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If for example, in first case of divergence were compiled, - 14 + 4, - 16.7,

- 4-.,- 10.7%, then in second they are equal respectively to - 8.3, + 7.5, - 15,

+ 2.6, - 6.7%.

In the fiqure are given examples of comparison of relaxation curves, calculated

by (13) taking into account (m = 0.9) and without calculation of (m = 1) of

compressibility of material. As can be seen, curves turned out to be quite

similar in both cases, difference in time at the same level of stress is near 20%.

As one should have been led to expect, relaxation curves with respect to compres-

sibility of material are lower than curves without calculation of compressibility,

i.e., calculation of compressibility improves corormity of computed relaxation

curves with experiments, so long as the latter are always lower than computed

curves [1].

The fact that computed relaxation curves turned out to be above those of

experiments is partly caused by the fact that elastic modulus obtained on the usual

testing machine is understated due to influence of creep. Error in determination

of E (equals k%) changes relaxation time during the same stress by not less than

+ 1) k%.

Calculations of relationship (13) were performed by S. N. Savchenko to whom the

author expresses gratitude.
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