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CALCUTATION OF VOLT-AMPERE CHARACTERISTICS OF THERMIONIC
CONVERTER IN DIFFUSION CONDITIOWS

V. P, Karmazin and I, P. Stakhanov

(Moscow)

1. Formulation of problem and boundary conditions. Considered is a flat

thermionic energy converter (TEP) filled with cesium under conditions when length
o L-+> path of electrons l. is significantly less than distance between electrodss
L. Degree of ionization is assumed so little that electron scattering and ions
occurs basically on atoms of Cs. This assumpticon is justified, if n/n,< 0.001

(n, na— concentration of electrons and atoms). If concentration of electrons
can be calculated from condition of thermodynamic equilibrium, the degree of
ionization corresponds temperature - 2000°K,

Ions and atoms are freely exchanged by ensrgy, therefore their temperatures

coincide: Ty = Ta. At sufficiently high pressures (when /L 1) temperature
T3 linearly changes from cathode to anode. In region of pressures interesting
us, due to weak exchange by energy between electrons and ions, temperature of
electrons T, =Ty « If temperature is established mainly under the influence
of Coulomb collisions, ther characteristic di;tance, at wnich'"™Maxwellization" of
spectrum of elsctrons occurs, is of order ( !,Ll)” , where l,— "Coulomb"

length of free path of electrons,




If one were to assume that near the cathode local thermodynamic squilibriuvm
takes place, then concentration and level of chemical potential of electrons at
the cathede doe not depend on material of the cathode, in particular on its work
function. Therefore; in order to receive dependence of volt-ampere (VI) char-
acteristics from work functions of cathode, it is necessary to consider deviation
from thermcdynamic equilivrium on cathode, appearing due to passage of current
through TEP.

For obtaining boundary conditicns on cathode, let us consider region between
planes one of which is conducted at distance ;> d from cathode and other - at
distance z:> I (here Debye radius d<€ ). Since the space charge is concen-
trated in region between cathode and plane z;, we will consider that between
planes z: and z2.potential in practice does not change.

Electrons and ions, emitted by the cathode (ions appear owing to surface
ionization), have Maxwellian distribution with temperature of cathode,

We will assume that electrons, moving from plasma to cathode, have Maxwellian
distribution with temperature diffsrent than temperature of cathode and ions -
Maxwellisn distribution with temperature coinciding with temperature of cathode.
Since d<l.. then in layer of space charge rarticles move without collisions

and distribution functions on surface x1 have fcllowing form:

mdl . cAq’ __m AP >0, V2 Im oS oo
IR kTP "p( X7 m*) ( AY K0, 0<ry < oo )

, m '/vc mo? Y >0, —oo Ko, < V289 |m
”(zakr') ’p(—zkr,') ( AP L0, —o0o Qo0 ) (1.1)

/e

Ay, Ag’ Mﬂ‘ Ag >0, 0Cr, oo )
u(kr'y“p(" ¥ BT (A¢'<o, VZag M < v, < oo
hh= L M /. . Mo AP D>), —o gy <0 (1.2)
"(ukr' "‘p( ) (A¢<o —o Ko, S V=2:4¢ /u) o</
‘
Hers A¢’ — difference of potentials between s#urface zi: and cathode (potential

of surface z: is taken at zero), m, M ~ masses of electron and ion, T' - tempera-

ture of cathode, Te' -~ temperature of elecirons at cathode, n' — density of




plasma at cathode, I «~ [lows of emission of electrons and ions from

00’ Lis
cathode, During derivation (1.1), (1.2) it was assumed that potentizl in iayer
of space charge changes smoothly.

We will further assume that distribution function on surface z; coincides
with locally Maxwellian function, with diffusion corrections, which determine
flows of heat and particles different than zero. Desired boundary conditions
are easily received, calculating balance of number of particles and energy in

volume included between surfaces r: and 12

at 8¢’ >0
a's/ eAg’ a'r eAg’
Jo — ——exp (—- KT ) = I, [ 4‘ = [ygexp (—- z—;—) (1.3)
’ 4 ;’C’ ﬂ.l lc ¢A¢' . __ m . __ V-g—kT'
NeTtgmatw (VV a7 Var)
at Ay’ <0

I ._.‘AQ' = v LAY feBe'y

-oeID Y —"—‘_, I(O'_" % exp kT } -— 1" T.l — Tl (1.5)

Here I,, I; ~ electronic and ionic flows through T%P, prime quantities
relative to cathode or to region near cathode. During derivation of these relation-
ships in second equation (1.3) and first and third equations (1.5) members of

order 1 / L, are rejected, since

RN A <1

o, ? s
a'v,, kuv. dr L

However, relation

4l e’
woes ()

in general, is not assumed small. In case, when |.Aq'|~k7’, in (1.3) and (1.5)
it is possible to disregard I, and Ij and in (1l.4) to put T', = T', Here (1.3)
- {1.5) correspond to equilibrium boundary conditioms.

We will introduce parametsr

o=l 1) VIm ,




It is easy to see that during equilibrium boundary conditions
Ay = (KT'/e)gln o (L.7)
If 4 <1, which corresponds to condition A¢’ <0, then condition in near
cathode region can be called undercompensated {ionic emission current is small as
compared with electronic}. Ifw> {(Ag’ > 0),then condition will be called over-
compensated (electronic emission current is sm2ll as compared with ionic). It
is necessary, certainly, to keep in mind that under the conditions of diffusion
operating regime of TEP, as much as desired strong over or under compensation
cannot leac tmn appearance of space charge anywhere but in a thin layer near the
surface of cathode,
We will estimate approximately the boundaries of w, at which significant
deflections from equilibrium conditions on cathode occur. At w > 1 this takes
place if

Yr'vg exp (—elq' [AT') ~ 1,

or, proceeding from (1.7), if

l/Cn'vc"'"‘[eV(;
Jimilarly, for ©<{ deflections appear when
Yan'od Ve~
Since 4l,i/n'v'ey~1,/L, then equilibrium boundary conditicns on cathode,
and consequently, independence of VI characteristics of work function of cathode
take place when
LIl ]1)
/<o ({L]1) (1.8)
Actually, when 9@ <1 defections from equilibrium conditions on cathode

occur later than when ©>1. Tndeed, from (1.5) we cbtain

16/ s
n' = [ = (140-—/0]

Y W B
P¢ vy




and since in ragime of saturation current /,—0, hance equilibriwm value is
obtained.

Similiarly boundary conditions on anode can be obtained. It is necessary
only to consider that emissicon of electrons and ions from anode is absent due to
jts low temperature., Taking distribution functlion of electrons and ions near
anode in the form of Maxwellian functions with temperatures T," and T% (two
primes mesn that quantity is that on ancde or in region near anode) and calcula-

ting balance of number of particleas and energy, we receiva:

nv,* np” edo* o
fo=—g™, [i=~—ex (-—-~ C""-) when ap* >0 (1.9)
L4 r A ” » L4
la == n e exp (:"["‘p' )' I = ’i"l when A@" < (lOlO)
. L (M By D)
Q=1 (U —eg” — D), D= { 0 (Age>0) (1.11)

Here Ag" — difference of potentiais between anode and plasma at anode; Qg -
flow of total energy of electrons from plasma to anode.

2. System of fundamental acquations and its solution. Equations ef diffusion

in three-component mixture, with regard for small degree of lcnization and great

difference of maases of electron and ion, have form

_ do dn v+ n dT, . \
1, == nu.-;;-—- Ve T -—ID¢ -7.-:-4—"- (z'll'
. dep d ; dT
li:“n!l('i;—D{?;—D‘r%-&}—‘ (202)
dT
Qe= ~ A=+ I (2T, — ep) (2.3)

Here u,; —- mobility, p,, - coefficients of diffusion, n - concentraticn
of plasma, 9 ~ is potential, counted from plane X Coefficients DBT and DiT,
in general, differ comewiat from vauzl coefficients of thermel diffusion, Flows
lg» I3, and Q, are constant in volume, i.e., volume of ionigation and recombina-
ticn will he disvegardsd,

Due to complexity of boundary conditions amd dependence of coefficients on

anknown fusictions (n, Te, » @) - themselves the considered system of sqguations can

S




be solved only numerically. Approximation method of solution with equilibrium
boundary conditions on cathode based on disregard in {2.1) and (2.2) of members
proportional to dT.;/dz, and approximation of n (1) and ?{(2) linear functions
is given in [1],

Below, for obtaining solution of equations of diffusion a different character
of behavior of n and T4, T; in interelectrode space is used, At the time when
n (x) decreasesz from cathode to anode approximately by order of two, T, (x) and
T3 (x) change by 1.5 - 3 times. Thersfore, taking as T, (x) and Ty (x) certain
constant mean values (7.}, and <(T\). it is possible from {2.)) and (2.2) to
find n (x) and ?(x). Putting these n and ¢ in (2.3}, we find T, (x). Further,
with the help of this value of T, (x), we receive new n (x) and @ (x) which we
again put in (2.3), etc. Just this method was applied during prozramming of
diffusion problem on electronic computer. In given work for obtaining of more
simple, approximate solution the same method is used, but instead of T, (x)
and Ty (x) in equations (2.1) and (2.2) are put each time quantities (I') and
(7:», (constants in interelectrode space), Here <T.> is found from solution of
{2.3); whare as n (x) and ? (x) are put in solutions of (2.1) and (2.2) at
preceding value of (7, . Since T; is determined only by temperatures of cathode

and ancde, then

Ty =5 [T+ T (2.4)
Simlliarly
(Toy =7 [T (L) HTW (1] (2.5)
Thus, a system of differential equations with bouniary conditions reduces
to a system of algebraic equations solved by consecutive approximations.
Setting Richardaon current in the form

fro = 2 (T)exp (*‘ ":‘Vf') = Navu ( 2 =~f ';,,T]”')

Let us turn to dimensionless wvariables

6




Tot 4 4 @ 4D, 4D, kn, ol
V=g Y=g Y=g b= U= g s (2.6)

Assuming that all particles interact as elastic spheres and that A\ is

determined by expression for thermal conduction of Lorentz gas A, = 2/3 kxwe -le ’

we obtain

L=r, V;:"i» b= T.T(.h’ $ =TV V;:“ (297)
where
“ T ‘I o
= =, N - = ._‘-. = Ve ..:"—“

Here o., o, — scattering cross section of electrons and ions on awoms of (s,
;é, 14! =~ length of {ree path of electrons and ions near cathcde. Pressure p
in (2.8) is expreszsed in mm of mercury, L - in cm, T' - in °k. Numerical
constant in (2.8) corresponds [2] to value 6 = 2x10~14 em2,

Solving ecquations (2.1) - (2.2) relative to derivatives and using (1.16) we

obtain
:%= —1’.((.":'""() (V:‘:;—:%VT—‘%) (2.9)
Fet el ) 220
":g - va‘. (2 — %) ¢+ ¥ — 9] (2.11)

Boundary conditions (1.3) - (1.4) on cathode { ¢ = 0) in overcompensated

regime take form

v S exP("' %:E:-) =1—Jo V=
. (2.12)
21—y (% — ) =f I+ ¥+ A —2(x — )] (2.13)
and in undercompensatied regime
sV = "" yiedd — © — /h T‘I = { (2.11")

7




Let us remember that

v =v, w@=1w, $0) =0 v({) =}
v(h=vy, ti)=r1’

Boundary conditions {1.9) - (1.10) on anode (¥ = 1) take form

L=vVeexp(8y/v) ji=vV0  when M"<0 (2.15)
Je=¥Va5, Ji=vV0exp(— Ay /8) when  A89°>0 (2.16)
From (2.9) ~ {(2.11) and boundary conditions it is easy to see that .y (§), y (%),
% (§) and values of these quantities in regions adjacent to electrodes,

v, vy A%, V9, AV 1" as current functions J, can be determine defining four
dimensionless parameters I'/L ~T'/pL, 6, v, 8 =T /T,0. Work of output of
cathode enters only into parameter ®. Thus, calculation of dimensi&hless volt.
ampere characteristics, i.e., dependence of j, on quantity — (V" + Ay" + 4Ay),
reduces only to assignment of these four parameters and does not depend on concrete
values of scattering cross secticns ¢. and 0i, and also work function of surface

of cathode in pairs of Cs,

Since in equations (2.9) and (2.10), according to (2.4) and (2.5),

w="1(1+6)= const, v =1, ()+ v () = const
then

v =v —af (2.17)
$() =(@/a)in [v'/v (D] (2.18)

where through a and B are designated constants in right sides of (2.9) and (2.10).
Logarithmic movement of potentizl is easy to understand if one considers that
concentration of electrons near anode is very small, and thus, a large part of
voltage falls near anode.

Ve proceed further in the following manner. During fixed jo we arbitrarily
agsign zero approximations e’ and Tw’. When © >1 from (2.12) we find v,” and

Ay,. In case Ay” < 0,assuming in (2.17) & = 1 and using the second of equations

8




(2.15), from a and § we exclude J; and find vy, A%y from (2.18) - Yo In

case Ay" >0, ion current can be determined from expression for «, of first equation

2, - . —y -

J10 0 — l
log
£—Lw'10’
AN
.z ——

[

10°
4

N -
07—\

il

[
O
]
<2
(Y
L
<

Fig. 1 Fig. 2
of (2.16) and equation (2,17) when £=1., Then Y and A¥, are found. For
determination of subsequent approximations of electron temperature we write

(2.11) in the form {k - number of approximation, k =0, 1, 2,...)

d".mn I ["r(hn(i) = Tetie1) . P Wi e (B) ]

& wVwl %O T e

(2.19)
After substitution of (2.17) and (2.18) this equation is easily integrated

Considering in received equation & =0

5 Aw'-.— V' 35
v’ (or & =1), jointly with (2.13) we
N ,/‘ obtain linear system of twc equations
4 e 23 for determination of Toke) and
PR xlﬂif
::d__g,» Toiken) . Found Tetren) and
3 AN 15 Vetko1) are used for obtaining
| .
..\"'_q_.___ 4 ,_—_'X‘ i Vikers Vet etc. Thus, for every
= oS |
v i ~ value cf j,. by method of successive
20 j‘/-l“ l s [ ]
05 1
approximations we find ', Ay, v (&),
Fig. 3.

Ay, b (). T () corresponding to it,
When o < 1 from (2.14) for “t"  we obtain equation

o — fiue = (%) (2.20)

9




Excluding hence ionic current, just as in case of  >1, we receive for
determination of v+’ a quadratic equation. Further we easily find vi's A%y, v (B)
etc. Calculation showed that for achievement of accuracy to 3%, 3-4 iterations

were sufficient with suitable choice of 1., and Teo -

3. Results of Calculation. Results of calculation of dimensionless VI

characteristics by above~stated method are represented in Figs. 1 - 6.

In Fig. 1 is given dependence of current intensity j, on voltage drop be-
tween electrodes ¢:: — (¢" + 4¢y°) during equilibrium bouiidary conditions on cathode
(» =1).

Curves in Fig. 1 correspend to following values of parameters:

(In Fig. 1 values of ordinates

Curve 1 - 2 3 4

";;/5[‘”_’:_0‘2’ 0.95 o'gé 0.0t for curve 2 should be increased by
Ve T

0 =05 0.5 0.5 0.667 )
5 times.)

Saturation current Jes during increase of ;‘Q/L 5 times, increases approxi-
mately by 5 times in accordance with (1]. Increase of o, by 5 does not change
Jpgs but shifts VI characteristic to the left by quantity of order kT' / e,
which is coupled with growth by approximately that quality of the near anode
barrier 4¢¥". Decrease of relation T" / T* from 1/2 to 1/3 decreases j,, by

approximately 15¢. When T' = const this is caused by increase of concentration

a1

Y W'd ~ 1"', T‘t
5 2
.3 - §
’ar‘ 110,10 > % 2

w10 ——J“_‘T-"—"’?J"ﬁ;’

f//figu' \0.‘ ; ] -

174 ‘ )93/ /

‘IU' 19‘7 fe ! /
-y / jL1 &Zﬁ
[
o1
Figo [‘o Figo 50

of atoms near anode which leads to increase of resistance to current through

10




TFP. Let us note that during equilibrium boundary conditions on cathode, distinc-
tion of VI characteristics calculated by such method from characteristic recsived
during solution of equations (2.1} - {2.3) on electronic computer is near 15%.

Figs. 2 - 5 show influence of degree of compensation of , on VI character-
istics and on quantity of density, temperature and potential at electrodes (when
'L =107 6/3,=50=05). Values v and AV (Fig. 3) coincide with equilibrium
values for overcompensated regime at J, = 0, and for undercompensated regime -
at Jo = Jgq (ji = 0). Jt is necessary to note that at value selacted in calcu-
lation of L'/L=001 the range of changes of v is rather great in order to
include strongly over or undercompensation conditions., As was noted above,
deviations from equilibrium regime at @«>1 occur earlier then at ©<t. In
connection with this, results of calculation with w=10* 10* noticeably differ
from equilibrium whereas at © = 1, 102, 10~3 they practically coincide. In
particular, in the last case v=Vo and AV =Y lnw.  jlear anode, jump of
potential Ady" (Fig. 4) changes sign at significantly smaller currents U.if. =01
than voltage drop in volume ¥ (,is,=0.55). Quantity Ay" at 084,11, S0 of
ordar kT /e, sharply changes only at foliee <01  and  1/1a>08% At 0> 100
deflection of movement of ¥ (Jj,) is already noticeable from linear (Fig. 4).
Hasting of elscirons at ancde can be very strong and can excesd temperature of
cathode by 1.7 -~ 2.8 times (Fig. 5). Under these conditions volume jonization
appears and TEP starts to work in regime of low-voltazge arc. At those currents
when 49 = quantity v° attains mimimum. At these same currenis, v also
has miniium which follows from boundary conditions on anode. (Let us note that,
as calculations showed, v'/v 10721072}

In Fig. 6 are presented measursd VI characteristics of TEP calculated at
various values of work function of cathcde ¥!, These characteristics were

obtained from curves in Fig. 2. Here it was assumed that

= =13V
G, = Z-iO""V et a = $0.40"1 cx3, A = 120 & /e, Vi = 38 v ¥ .7

11




Determining W' from expresaion

W —1 93 ,
w= 3.18-10‘5(‘{;-7/; exp (23.2 "’T"‘) =

-

(3.1)

we [ind voltage on load V

Ve W — W —A¢ —Ag” —¢° (3.2)
(In expression (3.1), , and T' correspond to condition / /L= 102)+  From Fig. 6
we see that in interval 2,25 < W'< 2,80 v VI characteristics do not depend

on work function of cathode. However, at W! = 3,5y, saturation current decreases

almost by 1.5 times.

012 | v I
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¥ volt) : >
A AN ¥ R PR T I 04 0.6 as
Figo 6. Fj-go Te

From equation (3.2), assuming V = O, one can determine dependence of current
of short circuit I* on temperature of cathode T' (S-shaped curve). Tungsten
was taken as cathode materisl, work function of which in pairs of Cs was found
from data of Langmuir [3]. Pressure, interelectrode distance, and parameters
of anode were taken as equal to:

p=1t @ Hg L=1 mm
T =800°K, W =17y

Values of W' and « calculated for certsin T are presented in table. Qual-
itatively, form of S-shaped curve (Fig. 7) agreas with experimental rssults, For
obtaining of quantitative agreement, more precise definition of size of ssction o,

is required and also calculstion of Coulomb collisions, If

Ta o da A" —n"__ o
dc ) 72 AR




Table then from qualitative analysis of equations

T *K W, e . (1.6), (1.7), and {2.1) it follows that
1470 1.7 3.33.107 -
1270 Use |47 0 slopes of S-shaped curve at o< (4 /L)
{370 2.02 | 8.65-10°%
1470 2,22 | 1.18.107 3 i jon
1570 2.46 | 2.61.10° is deturmined by quantity of work funct
;g}lg 2.;0 3.94-10"! d . {onizi
2.92 3.33 n_an {0 /L) -ionizin
1870 314 | 2 onm of anode W", &t 1o /L) g
;g‘;g 3.38 | 1.22.50 p
3.55 4.02.108 energy o ium,
20 | 33 106,108 nergy ob cesium
: 3.86 | 1.53.108 .
2370 500 | 208848 Submitted
6 ray 1903
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TRANSFER EQUATIONS FOR NONISOTHERMISTIC MULTITYPE PLASMA

M. Ya. Aliyevskiy and V. M, Zhdanov

(5verdlovsk)

In present work a system of transport equations following from
kinetic equation for particles of «. type, leads to closed form by
use of approximation of Grad's "13-moments" to distribution function
[2]. Besides usual equations of continuity, conservation of momentum
and enargy conservation for each of the components of plasma, the
obtained system contains equations for nondiagonal part of stress
tensor and heat flow of particles. Temperatures of components are
considered different.

Relationships for known properties of transfer in plasma follow from
general transport equations on the assumption that parameters of plasma
change little on mean free paths and for times of the order of time
of colliaicns, It is chown, in particular, that expressions for
tensor of viscosity of heat flow and of conductance current in two-
temperature partially ionized gas (T.>7=7, have, with certain
limitations, the same form as in (7] if series of quantities entering
into them is determined at electronic temperature T,.

1. Transport equations in approximation of "l3-moments."” Transport equa-

tion for certain quantity o, (c,, r, t), referred to system of coordinates moving
with averagze mass velocity of zas y can be obtained by muliiplication of left

and right sides of kinestic equation by ¥¢.with subsequent integration according

to space of velucity of particles [1), (Here c, ~ relative velocity of a particle,
r - it3 position, t ~ time). Considering, in particular, . =m,, @' =mc,

and ¥ = (me/2) c.?, where #; - mass of «--particle, we arrive at equa-

tions of continuity, conservation of momentum, and energy conservation for




a- component of plasma which in the presence of electric and magnetic {ields

take form:
3
‘:7*“+vpau¢=0 (l.l)
d
Pl -%‘:_.. -+ VPQ‘ — Nty (E + u, B) = Rﬂ(“ 102)
3dp, " 3 . du
-7 + 5 PVUu T+ V4 + Pcug;: — PawaFa = R, (1.3)

(by repeated Latin indices summation is implied).
Here i, nq, u,, q: - are respectively charge, density, average velocity
and heat flow of a~ particles; introduced, furthermcre, are mass density
Pa = Mana and average relative velocity w. —= u, — u particles of @~ type. Comp-

onents of tensor _P,* are coupled with usuval stress tencgor P, by relationship

L
Pau = Py — PsWaillek

(1.4)
In turn, P, is divided into two parts

P¢ﬁ=P=6ik+“ztk (l 5)

where P« - partial pressure of a-component of plasma, and =, xan be conditionally
called tensor ol viscous stresses of a- particles,

During writing of (1.2) and (1.3) the following abbreviations were used

2 —  d L4 ‘u
GoFAOT) E =R eV R=S EruxBof

here E - electric field strength, B - vector of magnstic induction.

Quantities R,m and R.», appearing in right sides of equations (1.2)
and (1.3), represeni respectively average change of momentum and a— particle
energy during collisions. Calculation of them requires knowledge of dynamics
of collieions of form of distribution function of particles in plasma.*

Equations (1.1) - (1.3) will not form, in general, closed systex sin:e

besides usual hydrodynamic variables ©..UYss P:  present in them are moments of

#For particles, interacting according tec law ~r*. thess quantities carn
be calculated without knowledge of concrete form of distribution function.
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a higher order: stress tensor P. (more accurately, its nondiagonal part - %)
anc vector of flow of heat Gi- For these quantities thelr own transport equations
can he obtained, however in them, in turn, will appear two moments of a high
order, Reduction of these moments to those varisgbles for which transport equa-
tions wrre already formed is possible only during uss of determined approximation
and distribution function., Below, to this aim is used approximation of Grad's
"13-moments" (2], Applicztion of this approximation tc a multicomponent gas
mixture and to completely ionlized two-component plasma was discuased in works
{3,4], in the same place are given corresponding closed systems of transport

equations for these cases,

Expression for /s (cu.5y) in approximation of 13-moments has form [3]:
T‘l Td
Ic = l‘l(o) {i -+ TaWal, -+ 2P, TaikCoiCak -1 ’5; (’f:ca’ - 5) hxca] (1.7)
where
T2 V% “"TQCQ‘ = . = i
/'(0) —_ n;(_z_‘;‘_} exp — 5 , h.; = Qa1 -~ 5 2 Va Ta = "Ta (108)

Here k -~ Boltzmann constant, 7, - temperature of a- particles (relaf.ive to

sverage mass velocity U)

Multiplying kinetic equation for a=~ particles by

.

a 1 ! .
%u) = I, (cﬂ’-cak - G“Cu’) ’ ‘?-’(‘3) = 2 Ma (C;’ =35/ Ta) Cai (109\'

we arrive in approximation of 13-moments at following equations for quantities

T and h, (or g, )

dnuu ) 8“1 a“k /. aq i
@t Tt Taik £ 4'2'{1%!1 3;;} -4- "5‘{ a; } -+ 2paty —
, (1.10)
-2 {PeraiFar} -—2 ',;:" {(=: X B)ix )=nai?)
a
dhy 7 i 2 duy 7 dup 5 du
S m— v— n— -___.,: ——— —— Al '
4 + 5 hcl a“‘ + [ ~h¢! ax‘ + A ha(‘é;"*‘ szua"";" +
{ oy 77 g T 5 Pq oT
+2pug ey b —- Nt &y 9 Fa”a
Pall'ary -+ e 0g . Tau T‘ oz, t o, Tc az‘ 1
5 dT e . . ‘
+ g ke — = — Fanaq — —(h, X B), = R (1,11)
L1
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where designations used are

(Kida) = 5 (Kdaot Ka) — 5 Kilada

i du
‘} {ma % B)u = “chollmﬂm

( oum - commitation tensor),

Right sides of equations (1,2), (1,3}, (1.10), and (3,11}, the linear combi-
nations of viomente relative to integral of collisions, ara writtsn in general

form as
R (™ = 2 S ($a" —~ $,i™) 7, foganbelideds,dey (1.12)
8

Here Baa =[ta— ¢z}, b =~ impasxt parameter cf a— and B~ particles, ¢ -
agimuthel angle, by prime (mark) is designated value of quaniity ¢™  after

collision.

Using expressions for [, f; in the form of {1.7) and disregarding during
calculation p @ (1.12) quadratic members on  We At and h. , we arrive

at following general sxpressicns

n __ () ) el k | JP
R“ = .(‘:..' G-Iﬁ (wui - “'ﬂ:) T ZC“, Ton (—-i‘— — ....!i.'_)
@ )

T;Pg Tppp
V (3} v
R.® = 5_ £ (7 ; — Tg)

R G Batx 3 Tpk

R YR N B X e X L

a 2 l Laf Pu I Uy Pp ]
@ _ 1 C.l Ay @) "m JTaa ,
we = 1o > CB }:" “l"Ga et i o 13 ‘\t"’ ""w.m)'rslaﬁ(;sg,wa(1 (1313)

Knowledge of dynamics of collisions .f perticles allows to calculate valuss
of G4 i only elasti. interactions of particles are considered then
coefficients GV turr out to bo )inear cembinations of quantities QY. which
are generalizations of kn~wn Chapran-Uowling integrals {1] in case of Qifferent
tenperatures of comporents. For identicul temperatures thess coefficients are
found in [2]. In case considered by us, calzulations are complicated and lead to

following values of coefficisnts,
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G Y B,?}, G’Jf’ — E.i;”
Gl = B — (15[ ¥) hasBofls Gl = Bafl! — hpliaf]
Cuf? = Bufl'+ F 10/ 1) e Ball — B — 2072/ 76) Bai™1 —
~ (2l 1) Aeh (Bai” — B3
Gai’ = B — fhep (Bl — Ball’ + 2Bef”) + ok (Baff” — 7 Bl
Gei' = Bal + MoBai” — AafB.5Y

(1.14)
where

B.ﬁ" = L:?aﬁ":"ﬁ Q.4 Ba‘a" = - y‘l-’t.'ma":i (—: Qz}f - Qx}’l

_B-g) = - ?Faﬂ"x@!(’f& EALRES 3 > Q.3

B.S‘) = %ﬁpagngng (Q,g —_— -- p;:;‘)

B = — % papsapnang {QaF + (Pya /e 4+ T 70/ Ya) R’ —

___l_ Ta / Ta (5 Qa}l! - QJ?)K

Bc‘ﬂ.) = “gpoﬁxcsnana [Qan —g + ! /sgnﬂ - 5%33)]

Bof = — Bposnaing [R5 — + Qi)

Bcgn = - "Hnﬂ)‘uﬁr:nﬂ {SQ B - ZQ l

B.") = ~p,5x,pn,np i59;p — ZQ,‘; ]

Be“m;" - *ﬂ:ayznnanﬂ [Q:a Qa}lz + z‘ﬁ Qzlall
B. 5")“ —""Pza’zznﬁ [QIQ - Qlﬁ =7 ]

B = — Bpapnany (5 — 20,5

(1.15)
Here

Ol = VAL Vgt — costn) bibdl, (&= Sastias/2)

oG
.q_.&ﬂg

where ¥%,5 - scattering angle in system of centar of meuses of colliding mols-

cules,
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Quantities M, %, 7,, and by are determined by expressiona:

momg « Tata { — TS 1T,
= —_— Ryp 52— | =2 e Pop 7= e
pgg mﬂ + m a“ Tq + T° Tc“ Ta -*‘ 7’ ' e ’ + n‘ﬂ I m‘

For case of identical temperatures (T, = T; = T)

— Bag Bza
. Tep == xT ! Hag "“. mc+"‘@'

laa'—=0

and coefficients (1.14), {1.15) coincide with those found in work [3].

2. Relationships for properties of transfer in plasma. Equations (1.1 -

1.3) and (1,10 - 1.11) together with expression found above for R," will form
clossd system of guasi-linear, aifferential squations relative to variables
Par Way Pos Taik and *.. Summation of first three of them according to o

leads to usual equations of continuity, mution, and energy for plasma as a whole

%i:-i-divpum(), pg—:'+ vp t-diva=j x B (2.1)
3dp , 5 .. . Gu i E
TE +-E,:-pdu'u - div q + “(k‘é‘z—t‘ =} {2.2)
E‘::.-E"*" uxB

Here, P - mass density, p - pressure, n - tensor of viscous stresses,
q - heat flow for plasma on the whole cbtained by simple summation of cerrespond-
ing quantities for components; in addition ars used condition of quasi-peutrality

of plasma and expression for current density of conductance

g}mea =0, j= Izlnzemx (2.3)

For determinztion of quantities w., . and k. {or q. ) it is possible to
use equations (1.,2), (1.1¢), and (1.11)., The latter ars markedly simplified if
ons pssumes iLhat macroscopic parameters of plasma change slightly at diatances
¢f order of affective length of frse path and for s time of order of the time
of coliisions of particles ir plasma. It is eaxy to show {3 - 4] that during
observance of theve condiiions it is possible to disregard derivatives dw,/dl,

dnaix [ dY, dhy/ dt and nonlinear mewbsrs in left parts of egusticns (1.2) and
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{1,10) ~ {1.11) thanks to which sxpression for vector and tsnsor properties of

transfer in plasma will be determined by sclution of systems of linear algebraic
equations. Here du/dt in left part of (1.2) should te replsced from equation
of motion (2.1), Then egquation of conservation of momentum for the o~component

of plasma takes form:

h, 1, h
n ; W, — W5 Y L et I N R
’z"” T“ﬁ[ TR, +x S Pa)

=—-\AP-—-9—AP) (dwm-—dwx)Jr nees (E'+ w, x B)— ——(J % B) (2.4)

Equations for tensors n. and vectors h, obtained in considered approxi-

mation can be conveniently presented in the form

) ¢
atx ‘§ BapMpx = — 27}«-;:’( + o (n:lloklmmamf:) (205)
bq h = -
b, + a% shp ARa + (hy x 0,1%,) (2.6)
Here
2 Sk
Na = 5 Patas Ay = m_paf“t' W = ”:: n {2.7)
2 Mg Ta\"t P
Qap = -~ RER L] - m Pa
T Ym +"‘8 (i + ‘fa) Pg Tetei A, bap = iy +Bma‘?f“.faf‘% 5
1,7 = 5 A (8) (6) -
( @)% + Em T, (1-«}- ) A,"i”‘r,nl
fre ty-1 14 (5) ®
{Fa®)7 = - (4.7 + Al ) Tea' 4 Aqm
2 “;‘m‘ + g 4 1’9 (298)
Finally,
eﬂ ’
Patk = ek — o (WatEy) (2.9)
'31' 2 Ta a“ail: 2 4 .
Rap= -—é—xT-}--g—’:'—‘E- "‘5“6‘“1.!5‘! +
1 -
-+ ‘;‘% Pzal’.n‘ [‘Y—;':‘" A (u,‘ — wpi) -+ 2) 5%y ] (2.10)
T3t =R QU A G G (2.11)

Here, 7, hac order of magnitude of time of collisions of q— and p— particles
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and A, depends on mass ratios and termperatures of particles and also on
ratios of various types of cross secticns for given form of collisions. For
electron-neutron collisions, if 7, < 7, %' actualiy coincides with effective

frequency of collisions of electron normally vtilized in kinetics of plasma (5].

1 2 ”ﬁ . e Tgv'
T2} =vm=-§(;‘-—) '{,/'Sv (v) v‘oxp(— -—;—) dv
[ ]

v (v) = ncqu (v, x) (1 —cos ) dQ, dQ =sinydyde (2.12)

Here v— frequency of collisions with momentum transfer, ¢ (v.%) ~ dif-
ferential cross section of elastic scattering of electron (indices ¢ and a
relate raspectively to electron and neutral).

For collisions of heavy particles in plasma (ions with neutrals and neutrals
among themselves) it is possible to connect v,; with binary coefficient of

diffusion D=0l (first approximation of Chapman - Cowling [1])

A =n;/ !Dz’
Tap%as n;/ n A]x (2.13)

In case of Coulomb interactions in expressions for Q) appears, in
general, a divergence which can be formally eliminated by cutting of collision

parameter at distances of the order of Debye screening length Ap.  Then

— A 3
16V 1 Tap ) €% )3 { Bia JAp )
-1 = a | == A G
¥ - < a \ 2 ( Pap In A‘ﬁ \A,a Tap | e_nleﬁl

(2.14)
Changing to analysis of system of equations (2.4) - (2.6) we note preliminarily

that members depending on clectric “ield E' in {2.9) and {2.10) turn out to be

essentizl only in very strong fields® (sea [4, 6]) and therefore in the future

can be omitied., When structure of expressions for tensor of viscosity and heat

{low of particles in multi-type plasma during absence »f magnetic field differs

little from corresponding exprossions in the case ¢f muiticomponent gas mixture

#By the term "strong electrical field" here 1s understood a field in which
charged particles, during the time between collisions, are accelerated to energies
comparable to energy of their thermal random motion.
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(3], it specifically ia due to presence of Coulomb interactions of particles
and the fact that every component of mixture can correspond its own kineti.c
temperature 7, . Presence of magnetic field noticeable complicates results.
However, even in this case, the system of equations permits solution in the most
general form, Here equations of diffusion (2.3) can be used for derivation of
a generalized Ohm's law in multi-type plasma, conneciing current density of
conductance j with voltages of electric and magnetic fields and also with
pressure and temperature gradients.

Solution of equations (2.4) -~ (2.6) can be somewhat simplified thanks to
presence in them of a small parameter - mass ratio of electron m, to mass of
heavy particles in plasma m; (3=k¢) .

In particular, if condition 7, << 7; is fullfilled on

mTy
:;T:‘=’ (2.15)

.then in equation of diffusion (2.4) written for electron comporient of plasma
(u=¢€) it is possible to disregard members with heat flow of heavy components
hs . Estimating under those same conditions the order of magnitude of coef-

ficients a3 and b, in equations (2.5), (2.6), we find

R (2 -e)

Thus, tensor of viscosity and heat flow of clectrons carn be determired
independently of equations for othsr componentcz., In turn, in equations for ions
and atoms it is possible by the same considerations to disregard quantities =.
and l.. Approximate solutions correspond to fulfillment of conditions

Tk, gn
’ (2.16)

Let us note tﬁat expressions obtained here for tensor of viscosity and heat

flow of electrons have the same form as in work [7] where the case of three.-

component plasma with identical temperatures of components was considered.
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Distinction is that all quantities depending on temperature must be determined
during slectron temperature T, and swmation for § in expressions for ', (v.°)™
and is extended to all components of multi-type plasma.

Solution of systam of equations for tensors of viscosity and heat flow of
hsavy components in general case can be written in form of determinants; in the
particular case of three-component plasma with T, =T, correaponding expressions
can be tsken from work (7],

Analogous remarks can be made and with respect to derivation of generalized
Chm!s law in three-component plasma with temperature of electrons different
than temperatures of ions and atoms. During fulfillment of ccnditions (2.16)
relationship (4.10) in work [7] remains correct for it where all quantities,

with the uxception of Tu, are determined at electron temperature Te.

Submitted
9 March 1963
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ON THEORY OF WEAK DIFFUSION WAVES

G. S. Leonov and V, A. Pogosyan

(Moscow)

In work (1] on the basis of analysis of solution of system hydro-
dynamic and electrodynamic equations for electron and ionic gases
during absence of external magnetic field, it was shown that in
cylinderical symmetric discharge two types of traveling waves along
axis of discharge pipe can exist; electronic and ionic. It was also
shown that electron waves fade quickly, and that ion waves can fade
as well as be strengthened. At present it is clear that striae (layers)
do not have direct relation to longitudinal electric oscillations of
electrons and ions in plasma. Druyvesteyn [2] examined mobile striae
as waves of density of charged purticles in plasma of positive colum
depending on processes of appearance and disappearance of particles.
Possibility of existence of waves of such type ensures from joint
solution of diffusion equatiuns for electrons and positive ions and
Poisson equation. To furthur development [2] is devoted a series of
works [3 ~ 6] in which initial equations were determined and expanded.
In these investigations i1s applied method of smsll perturbations.
Resultant dispersion relationships are suitable for description of
only moving or only standing striae. Un the basis of experimental data
in [7] a conclusion is made about unique nature of striae. To theo-
retical proof of this conclusion is devoted work ([8]. In contrast to
(3 - 6, €] below is considered a more complete system of equations in
which thermal diffusion and dependence of parametars of equations on
electron temparature is considered.

Obtained dispersion relationship is useful for description both of
mobile and motionless striae. It can be extended also to the nase of
a positive colum in a longitudinal magnetic field,
1. General equations. As is known, in a positive colum with moving strice

the denaity of electrons Ny, density of ions Np eloctron temperature T, and also

longitudingel gradient of potential F are functions of coordinate r, taken along

24



axis of pipe and time t. Carrier densities change, furthermore, with change of
distance of considered point from axis of oipe, as and in case of uniform positive
columm,

Let us consider a cylinderical positive colusm. It is asswned that follow-
ing conditions are satisfied:

1) electrons and ions have Maxwellian distribution by velocities at constant
by section of column temperatures T, and ?P;

2) recombination occurs only on walls of vessel;

3) mean fres path of electrons and ions is swail as compared with radius
of column;

L) ionization occurs only during single collision between elecctron and atom
in the basic state, and consequently, rate of ionization does not depend on con-
centration of electrons.

For laminar pcaitive column with these assumpiions we have:

2) Equations of balance of carriers

3y, o, ) w, . . : .
m 4 div (VW) — ZN = 0, -,;‘-’- + div (¥, 1) — ZNp = 0 (1.1)

Here 117, and ', are vectors of drift velocities of electrons and ions having
constituents We., w.r and w,., w,. along axia ¥ and radius r; accordingly, 2 -
number of ion pairs formed by one alectron in one aecond.

For Z we write following simplified expression:

Z{UY =4 V-U";exp.(—- z—l)
- (1.2)

In the future we will be limited to consideraiion of cnly central region of
positive column, which allows to simplify problem Ly means of its reduction to
a one-dimension problem. In equations of (1.1) it is possible tc separate vari-
ables, Considering, as usual, that in a laminar positive column, for the same
reasons as in quasi-neutral plasms of uniform colum, radise motion of carriers

is regulated by ambipolar diffusion, we obtain (under Schottky boundary conditions)

] &
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N.= n,(z, 8 J.(z_',_‘{i), Np = ny (o0 ) 1o (35)
where ne(z,t) and n,(z,t) - density of electrons and ions on axis of dis-
charge, J,(ur) - Bessel function of gzero order, 2.4 - first root of equation
Jo(ur) =0 + Using these relationships for N. and ., taking into account that
we ncw consider points near axis of pipe, we will receive s one-~dimensional variant
of equations of (1.1) in the form

am, 3 n, R \1t
s T+ 37 (Aes) + i Zn, =0, 1p = (’:,_7 ) Dy Do =0,

ﬂ‘

n 3 ‘
'3"-’-' + 37 (RpWpx) + ;';::' —7Zn, = 0 (1.3)

Here

U, on, 39U, . Uyon,
w._,==-—b€[E+—“3; (6-—7)-31—]. L =‘bx'[l’— "‘E_l] (1.4)

R, llu or

Quantity v represents diffusion life of carriers, R - radius of pipe,

D, - ambipolar diffusion coefficient, j, -~ mobility of ions, b, - mobility of

e
electrons, Ue - electron temperaturs, expreszed in electron volts, k ~ Beltzmann
constant, e - charge of electron. In uniform positive column diffusion in
axial direction is completely compensated. In every cross section of such a
colum the number of ions appearing in volume is balanced by losses of particles
on walls due to radial diffusion. Condition of balance of particles in this
case [9] will be
Zxp =1 (1.5)
In the presence of striage, together with radial diffusion one should consider

axial diffusion along the positive column.

b) Poisson equation

‘8E / 8z = 4ne (n, — n,) (1.6)
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c) Fquation of energy conservation electron gas

4

3 (neg U) + o (nac 3 U) = — naweE — .21 (U.)

(1.7)
First member on the right in (1.7) gives energy obtained by electrons from

electric field per unit volume in unit of time; the second member gives loss of

energy by these slectrons during collision. Second member on the left expresses

flow of energy through considered volume

L3 2 U all 3 6(/
Wee =1 — - B [E+_:-L.+(5‘__\ ']

(13 ) ¢ ", _0: 2 ) or (1.8)
Through distribution function [/, quantities 8 and 4*, entering in (1.3) and

(1.8) are expressed respectively [10]

8= e{ L], dw [ §°w’ Modo, %= inw"?s/.,dw /3 ] dw
H o o 3l

Values 8 and 0° for various gases are unequal, which is caused by depen-
dence of cross section for electron-atom collisions on velocity of electrons in
actual gases.

Here on the right are given calculated values of 3 and 4* for He, Ne, and
Ar; here dependence of crogss section g on velocity was approximated in the form

of a step function

e Neo Ar
¢ = —1 1 ?
0 = Cdp.q 8 = ‘/l '/l

1
8 =7T/s s 2

Equations (1.3), (1.6), and (1.7) will be initial for problem. Analogous
equations were used for description of mobile striae in works [5,6]. In (5] in
equations (1.3) and (1.7) are omitted members containing product U, on z. In
[6] in equation (1.3) the member containing product U, by dlun,/dr, is absent
and furthermore, only small rates are considered.

2. Equations describing perturbed state. System of initial equations allows

« proy
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sclution cerresponding to stationary (uniform) state of positive colum. Chuanges
appearing in striae ngy and n,, E and U, will be presented in following form:

n, = =

E= ;.[:1‘*‘4_';'((’:" “))Il'- (’}: - rlll.?!;*--:pv(fz,t )tl)l (2.1)
where n, E,, U4 characterize positive colum in steady state, and Vv v, 7w,
and » describe perturbation, Put (2.1) in equations (1.3), (1.6) and (1.7) and
limit to case when deviation from steady state is so small that products ve. v,, M, v
and squares of these ciuantitiaa can be disregarded; we assume that perturbations
are subordinated to spatial-time dependence of form

Yoy ¥y, NP ~ ¢! hx—ut) (2.2)
In result we obtain

— (0, [ by —= IEJv, —iEkdn 4 Uk, + (8 —3)) — Ueoh®v —
—UnZ' (U vibe= 0 (2.3)

— lovy by + EAv, + tEJ + Ugktvg + vl [ by —
—2' (U U2 ! by — Z (Ueg) ve/ by = 0}
iE, kn = dnen (v, — v,) (2.5)
= Yy W oo 0V — 33 1U s 0V~ i8b, Eglea hvy — i8b Ueo Eohny —
— 130, EJU v + 8b, U vek* 4 80 (8° — ¥y U Alv—
= Wy B2 — iby EU g hve,— iby (8 — ¥3) EUeo kv = 0 (2.6)

(2.4)

Here, as and in work [5] was not taken into account change of quantity
coupled with change of T,. We multiply (2.6) by  tk/2ED, and reject members

which contain b, in denominator due to their smallness. Putting (2.5) in (2.3},

(2.4), and (2.6), we obtain

(— Ek + dnen + Uy k) vy — dnenvy -} 8,0 Kv = 0 (2.7)

2 i sre e i X '

i (e
. J(L"o) U'o
- 2= =0
5 z.6)
U h finenU iU o3 ko* Uk
('_21"’ + dnen 4 —gp— k4 —g; —2"”) Yo

; k BU K iBU, 2K b, A
_ ( 4”‘2;::/00 + 4“8") Vp + ( c";) + 2t:)o + ! 2.(2_.._..) U= 0

(2.9)
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Here
8 6; =8 — .!'sc 50 = 4 ¢ — '/a)

Conducted linearization of eguations means that only small ampiitudes of
waves are permissible, For comparison of results of present calcuiations with
erperiment it is possible to turn to dats of measurements of length and frequency
of very weak mobile striae. Experience shows that generally in mobile striae,
apread of change of eleciric potential can attain several volts, and eleciron

- temperature and density of carriers can change by more than twice (strong striae).
Experimental investigation of discharge in helium showed that influence of sharp-
ness of striae on Lheir length and frequency is weakly manifested. Therafore,
it is possible to assume that the given formulas can be applied for appraisal
of shown quantities also in the case of sufficiently sharp striae,

3. Dispersion relationship. Equations (2.7), (2.8), and (2.9) represent

linear uniform algebraic equations relative to ¥ ¥ and v From condition
of existence of non-trivial solution of these equations and considering also

that for striae condition as that shown in [5] ic satisfied

i io . 1
s } e e | e oo e -3 %
T |5y A — S — U B

after certain simple conversions, we find

rs Wt o, Ut s, TWele
—2E, TF 5 19U oh* + m;‘k -
’ 30, Utz iU o Eoz
g ke b =0 (3.1}

where T =93 (8'—48). let us assume now k=x L ¢ , i.e.,
Ve, Vp, Wy U~ 9% ¢ (xx—at)
If $> 0, then wave is weakened in positive direction {in directicn from
ancde to cathide).
It is easy to see that after substitution, k = x 4 i} equation of (3.1)

breaks up into twu equations which can be obtained by meana of squiting of real

3¢
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and imaginary parts to sero.

On the assumption that |0/x|<C1, disregarding members sbove first degree,
we oblain

[3!.',,’6# W, Sex Uz ]0 U N

-3 £, T T, fir— 8w Eor® —
_ SU;’?“ + "nf‘z' =O'
. i ] 1 4
. ' g 3.2)
_ "1(/” n$ ™ Ut U 2
[ i + 20U ok Ey + -—T-]o S +Tb3:‘-“x'~r
U3 (U
P
(3.3)
From (3.3) we find
12w P w
) Y
[(m‘T) o] -
¢ » P (3.4)

Expanding expression under the square root sign in (3.L4) in series, we have

R TAL) _L(BE )’h(ﬂwe& )

To vo /N bpd (3.5)
So that for large '@
o~ Z'E, UC.'E.
= e T te
-P (3.5)
Prom (1.2) follows relationship
v TS e 05U
JU" ‘ﬂ_TZ( ) = "D' ‘ '::"'Ui‘f‘ wle (3.7>

Putting in (3.6) expression (1.3) for t, and considering (3.7), we finally

find

(3.8)



Asswning here 7y = 28, are obtain for x Wejaczek's expression {5].
Action of magnstic fieldl on plasma Aecreases ambipolar diffusior in direc-
tion perpendicular to it in ratioc

1 B
e, (=5
T W% T, me

Here o - gyromsgnetic frequency, v - averags time of free path of carriers,
Thus, in the pressnce ol magnetic field parailsl to axis of positivs column
quentity v differs from its own value in absence of field by factor | -+ w,w,%.%,

Noting this, we finaily obtain for *

< os ! (m’f’-’%)’.;_ . MU e ]-,.__ e
L2, By ] 7 O BE(L - b, b, B %) 25, Lo (3.9)

Assuming hers o = Q, we obtain dispersion relationship for motionless striae

® ==

X [ ty® T
RO O e, 5,7y | (2.10)

Hence whet B=0 Chapnik's formula is oitained [4]. For © from (3.2) we have

— U 3t 28 - 8U  Fox 2 B ’an—-- Y VAR b, (3 11)
U O U Fam, b e U od Z52h st/

9 = -

It in (3.11) instead of * we substitute its expression from (3.4), we receive
bond between U and «. General analysis of this bond is difficuwlit. However
it is easy 10 see that in two exireme cases corresponding to sufficiantly large
and small freqgusncies, 0 has negative vaiue,

¥e will list results of comparison of lengths of siriae 1 = 1o calculated
ey formula (3.9) with erperimental dats (1 = 1,) from [11). Compariscn was made

for helium at pressure of 0.9 mm g and radius of pipe ef 1 cm.

B~ C 400 69 160 120 (gs)
Om)7le - 19300 18660 {7100 14200 12000 {zps)

Fe 4238 %% 12 L0 (v/cm)

h= 53 81 62 69 7.8 (cm}

= 2.3 .2 a8 4.7 5.¢€

(cm)
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Character of function of length of motionless striae on size of magnetic

field obtained by formula (3.10) corresponds tc experimental data for H,, given

R,
in [..].

The authors are grateful to A. A. Zaytsev for attention to the work.
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CHANGE OF ELECTRIC POTENTIAL NEAR WALL OF CHANNEL DURING
MOTION OF IONIZED GAS IN MAGNETIC FIELD

G. A. Lyubimov

(Moscow)

Distribution of electric potential in channel with conducting walls
through which gas moves in the presence of magnetic field is usually
calculated on the basis of equations of magnetohydrodynamics. However,
such calculation is correct only for nucleus of flow and visccus
boundary layers.

Near the walls, as was shown in work [2], formation is p. sible of
layers adjacent to electrode of thickness of order of several mean
free paths of the electron in which sharp change of potential occurs
duc to emitting properties of wall. Therefore, a full description of
electric processes in channel requires calculation of phenomenz in
layers adjacent to electrode.

In present work problem of change of potential in layer adjacent to
electrodes is considered during more general (as compared with work
[2]) assumptions which, apparently, are well suited to flow of dense
gases and temperature of electrodes of order 2500°, Formulas are
derived allowing to calculate voltampere characteristic of channel
and examplesof calculations are given.

1. Change of electrical potential in viscous boundary layers., Let an

elactroconductive 1liquid move in plane channel in transverse magnetic field

(Fig. 1). Here, owing to separation of charges in region of flow, electric field
will be formed and walls limiting channel turn out to be under various potential.
If walls - conductors (electrodes) are united through extecnal load R, then, owing

to difference of potentials, induced by the motion of liquid electric currents
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will flow in external circuit,*

For simplicity let channel have constant cross section, speed of liquid U
bs unchanged along channel, magnetic field be constant (Il = Hee,, Ho = const ), and
electric conductance (9) be constant. In this case, if liquid is ideal (U =
= const) electric field is constant in channel and is created by surface charges,

Difference of potentials induced in flow, is found from Ohm's law and 1s equal to

R =By = 9u— o = (% —5) 21

o=(Tt-5)n G

(1.1)

Hare &= 2al lljc plays role of

emf, and 2q/0 — internal resistance

H
n of equivalent generator.
v
w E l . If liquid flowing inchannel is
LN O} | } J 7 ) 2
-2 Ja viscous, then on walls of channel

(electrodes) a viscous boundary layer
Fig. 1. will be formed. In the examined flow,
viscous boundary layer is a charged layer [1]. When R.<<1 density of charge

in boundary layer is determined by relationship

= e ol
4np, == —c1Hrotv (1.2)

Furthermore, if wall is cold, conductance of liquid in boundary layer can
be lower than conductance in nucleus of flow, and in general, o =20 (2} Presence
of apatial charge and changeability of conductance in boundary layer indicate
that electric field changes inside boundary layer. General equations describing
change of potential inside boundary laysr in the considered formulation when
o =0(z) and u= u(z) , were obtained by A. B. Vatazhin.

In order to graphically present a picture of change of potential in Loundary

layer and dependence of change of potential across the boundary layer on parameters

%In the future R is understood as external resistance calculated at 1 em'

of surface of eslectrode. If #°— total external resistance, then K =Sk’ ,
where S — area of electrods.
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of the protlem;, let us consider a model problem. We consider that {low in
charnel consists of nucleus moving with constant speed, boundary layers of thickness
6 (Fig. 2), and linear distribution of speeds on : {Couette flow). It is known
that Couette flow in many respects simulates well the boundary layer. Therefore
the simple relaticnships obtained in such a schematization of the problem can be
used for approximate appraisal of charnge of potential and other quantities
in boundary layer.

From relstionship (1.2) it follows that the viscous boundary layer near
positive electrode is positively charged, and at negative electrode - negatively.
For determination of potential inside boundary layer it is necesszry to solve

equation
Hodu  Holj

=Aee=TE =" (1.3)

dz*

As boundary conditions during solution of this equation it is necessary to

assign current density on wall and

H ! . _ value of potential on external edge
g0 0 jeUypj:0 _
ol ¥ / of boundary layer (at z =35 a+34),
v /ep g which is determined from solution of
I & p0 (1.1) for nucleus of flow., If ¢ =
Fig. 2. = const, solution of (1. 3) has form
?=9.a+ [”ZUZZ,“—-—'—](H—H) when —al:<— (@9
wrl(va—[f%g'—"—%:-—%](a—z) when e -6l :<a (1.1)
Qualitative picture of distribution of potentiai in channel is presented
n Fig. 2,

From (1.1) and (1.4), equating difference of potentials ( Pa—%-« ) induced
in flow to change of potential on external load JR following formulas can be

obtained:

(1.5)

®
»

H
1
éo./ta
© -

Q,
™




As will be clear further, relationships of (1.5) are true, in general,
small currenta. At large currents first relationship of (1.5) must be replaced
by relationship (6.4). Formulas (1.4) and (1.7) expressing change of potential
in boundary layer depend on current density. Therefore they can be used at any
currents, if current density is found from (6.4). It is natural that main char-
acteristics of (1.5) depending only on flow rate decrease in the presence of

boundary layer. Change of potential across boundary layer

H,

Qo — Pa-p = -

(u“ —u* ut® =

Qe
NS

R;')b, S udz =

azd (1.6)

Relationship (1.6) shows that if conductance of gas inaside boundary layer
is high (such as in nucleus of flow), then chznge of potential across boundary
layer has order of 6. where at large R (small currents) potentiszl in boundary
layer increases in reference to nucleus, but small R (large currents) it dimin-
ishes (u** < u®). Here if 6./2¢ ~ 100, change of potential in boundary layer is
of order of 1% in reference to emf. of nucleus.

Solution of (l.4) shows that inside boundary layer is point (z = - :*),
in which slectric field equals zero {v¢/dz2=0). At|z]| > z* we have Ee.>0; at
| z] < 2* takes place reverse inequality E::;<{0. This is intelligible, since
near walls where speeds are small electric current must be directed with electric
field(j ~ o). and far from walls where |E|<<UFH/c, current is directed against
electric field (this is possible since emf acts in the space).

If conductance of gas changes across boundary layer {for example, cooled
wall and ¢ =0 (7)), formulas giving solution of (1.3) can bs written in the

form (s, - conductance of nucleus of flow)

L 4
e H! (a—2) .o cde — z) ¥hen a—8L:<a
v [ L - S e

z
el 24 | c d: .. _
tp=q>.a-!-[ 2 .:ba -~1a+z\ _](z-$,~a) when —a < : < — (a—1?)

S e Sa u-n,,'l . ully ¢ Bl
1= [“‘—,"‘f' p ' 1—7"'2“',7'_'1"7‘7. Pa ¢ Hoyre




-3
_ _He e o 27 o d:
Pa Qu-b =7 "E"‘(U - u 8'-7(——'—7;-)6, ro=: S -5-{_-
a
a 2a
00 T e e e & T e——
¥ (@ —=08)3 ! d 3

(1.7)

Relationships of (1,7) show that if resistance of cold houndary layers (rc)
becomss comparable with resistance of nuclsus, then potential drop in boundary
layer can be very large (almost all emf is extinguished in these layers). On
the other hand, increase of resistance of boundary layers can be considered as
increase of effective external resistance if one were to calculate emf and
difference of potentials by parameters of nuclesus of f{low.

2. Presence of change of potential in layer adjacent to electrode., Distri-

bution of potential in channel described by relationships of {1.7) or by those
analogous to them in case of more general formulation of problem takes place in

region where usual relationship for current density

j=o(E +clvx H) (2.1)

As was shown in [2], this relationship can be used at distances of the order
of several mean paths of electrons from boundary wall through which current is
fed {or withdrawn). Therefore, near surface of electrode formation of narrow
layers is possible in which potential sharply changes. The average speed of
liquid in these layers is equal to zero. These narrow regions of variation of
potential will be called layers adjacent to electrodes.

Formation of layers adjacent to ele trodes is due to enitting properties of
wall (2], Indication of existsnce of such layers, and also certain considerations
about dependence of potential drop ir them on physical processes at the gas -
solid interface, are contained in works [3, 4]. Possible connection between
change of potential in layer adjacent to electrode with emitting properties of
electroede and corresponding changes of boundary conditions for internal problea

is indicated in [2].
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In work (2] in exprussion of change of potential in layer adjacent to elec-
trode through emitting properties of electrode and other parameters of problem,
a zeries of assumptions is made. In present work this problem is coneidered
under less rigid assuaptions.

3. Forms of eiectron emiosiom. We will assume everywhore in the future
that parameters of the problem (pressure, temperature, degree of ionizaticn,
and others) are such that current density is Jetermined only by elesctron
component (ions do not have average speed across flow), Under these conditions
current density flowing through liquid (gas) )s determined to a significant
degree by quantity of elecirons emitted from surface of electrode. In considered
problem (Pig. 1) electrons entor gas from positive electrode and depart from
gas through negative electrods.

Current density of electrons emitted from surface in absence of external
electric field depends on temparature of surface and work function of material

of electrode [5]

o AT s 9] = AT exp [ 292 51

Here T - temperaturs of surface of emitter, ¢ - charge of electron, k -
Boltsmann constant, @ - work function in volts, and A ~ censtant, which for
metals without calculation of thermal expansion is equal to 120 u/cmz-degroez.
Generally this experimental constant, depending on material of emitter (value
of A for various materials, can be found, for example, in table given in [5].

Presence of electric field accelerating electrons at surface of emitter
leads to decrease of effective work function (Schottky effect)., Current density

of emission is determined with this relationship

. : s R X2 . HEOD | 43,
Je 5= A”OXP{—;T+-—;T'}-117 cxp{-- T O Ty V }' (3.2)

If near surface of emitter there is electric fiesld braking electrons and
potential of electric field is minimum near surface of emitter, then part of
AN



electrons emiited by surface will be reflected from potential barrier to cutside
of emitter, Current density of slectrons passing potential barrier will be deter-

mined by relationship [5]

fo = joexp {‘— g%} = [,exp {—- 1""6‘;2!}- W>~0 . (3.3)
Here W « height of potential barrier cutside surface of emitier in velis.
We will consider that space charge inside layer adjacent to electrode is absent.
Then electric field inside this layer is constant, and distribution of potential
on gas - electrode interface has form shown in I'ig., 3. Here, electric {ield in
(3.2) is determined as
E=% 3.4)
where d - thickness of layer, adjacent to electrodes ¢. — change of potential
in layer adjacent to electrode.
For thickness of layer adjacent
to electrodes (d) we will take Debye

length in the future

—7
i
¢
kT \'h
ﬁ 4= (3.5)

Assumptions (3.4) - (3.5) need,

Fig. 3.

in general, justification z.ad more
precise definition, But it is possible to think that E determined by (3.4)
characterizes in a certain senseé average elsctric field inside the lsyer.
Thickness of layer adja«:nt to electrodes coincides with Dabye length (3.5)
during absence of current. Question of thickness of layer adjacent to electrode
in the presence of current is unanswered, Perhaps this thickness will be less
than Dabye length. Certain considerations on this account are contained in [é].

Potential inside layer adjacent to electrodes will be measured from pctential

of surface of wall (point A on Fig., 3). HKere, q. and W i1l give change of

potential in layer adjacent to electrodes.
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4. Gas ~ wall contact potentials during absence of current. Let ionized

gas border on surface of a solid, If tempsrature of solid 7 =<0 and solid is

a conductor, then from surface of solid elsctrons are emitted according to law

(3.1), On the other hand, if gas and solid are in state of thermodynamic equilib-

rium, then tempzraturs of gas near solid is egual to temperature of solid, tem-

peratures of components (electrons, ions, neutrais) coincide, and distributiocn

of particles of gas, according tc velocities inside components, is Maxwellian,
Here the number of charged particles (N,, Ny ) coming to wall from gas is

accordingly equal to

‘ d
a /b// ¢ T
¢ I4=N¢e=n¢e Zmn.
T f -
Ji=Nie = ne —
Fig. 4. B (4.1)

Here Pgs Ny = number of slectrons and ions per unit of volume near solid,
In the future we will disregard Jji, rince ,, > m, and " — i

In general | ~J- Here, since total current on gas - solid interface is
equal to zero, near surfuce of solid layer of thickness d, will be formed inside
which potential changes from value on solid to value in gas, Here, if js» > Ie ’
distribution of potential is such that it brakes emitted electrons. Distribution
of potential in channel represented in Fig. 1 in this case has form depicted
in Fig. 4a at velocity of gas egual to zero, and form depicted in Fig. 4b at
U - 0. Change of potential in layer adjacent to electrcdes in this case (wo),
as follows from (3.1), (3.3), and (4.1) is found from oquaticn

AT?oxp {- 10 @+ u',,)} =n, e ‘/-Z‘T:—:—— (h.2)

At J, <. electrons coming to wall from gas are brakad (distribution of

potential in this case is represented in Fig. 4e). Fron (3.2) and (4.1) it
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follows that

. 11600 479 T ’
AT ex {_ LRbglaldl( JREIA ﬁ} = 1/ LT 11600
P TV G TEV g 0P {"” W

An analogous approach to calculation of difference of electrode -~ gas

(4.3)

potentials is contained in [7].
Boundary between (4.2) and {4.3) is determined from equation
Jr= AT exp {— %&p (D} = n,e i:%?: (1)
in subsequent calculaticns,as working gas argon with addition of 0.1%
potassium is examined. Density of electrons is calculated by the Saha formula
at a temperature equal to temperature of wali. For this working mixture one
can determine from (..4) dependence of boundary value of pressure (p*) on tem-
perature and material of wall (ionization potential of potassium U3 = 4.3LV ).
When » <<P* case (4.2) applies; when p> p* — case (4.3).
In order to obtain a presentation of orders of magnitudes, we list values
2

of pressure p*. mm. Hg column as functions of T for tungsten (A = 120 a/cm?. degree=,

® = 4,52 v) and graphite [8] (A = 5.93 a/cm2- deg.z, ® =3,93 v).

T =3000 2000 2800 W0 2606 2500
pre=1.52 088 048 025 019 0,06 tungsten
pr=6.64 326  1.52 0.8  0.28 0.4 graphite

For the same materials, valuss of contact potentials of difference of gas -~

solid (.. calculated for working mixture + 0.1 % X) at pressure 0.1 amm are:

T =3000 2900 280C 2700 2600 2500
g,=0.25 0.33 0.41 0.49 0.57 0.85 tungsten
WO = 0.{{3 0.48 0.54 0,50 0.% 0 12 graphite

Let us note that 9, (or W,) represents potentix] of gas in reference to

surface of 30lid. In order to find difference of potentials between gas and the

mass of solid, it is necessary to ¢, (W, to add height of potential barrier of




solid 1V, = @ -+ 1, (11, — the greatest value of energy of electrons in metal at

absolute zero).

5. Change of potential in layers adjacont to_electrodes in the presence

of current. Let external resistance R be cther than infinity. Then during
motion of gas in channel in external circuit and in gas electric currents will
flow. If through c, is designated average velocity of electrons across channel,
then
w=g  n=n (5.1)
It is clear that in situation depicted in Fig. 1 flow of electrons from
gas tc positive electrode will decrease, and to negative -~ will increase,
Difference of flows of ulectrons from surface of solid and from gas should

equal current density J flowing in sys:em. Thus, relationships*

]b&"‘ln& =,o ]'\-—_IO-:/ (5.2)
Here Joos J.. — current density from positive and negative electrodes

respectively, and

. 11600
Jou = J.(T.) exp {"‘ff:t“ ¢;t} when G+ <0

fo = b T exp{F- )/ 25} when >0 (5.3)

where T+, T.~- temperature of positive and negative electrodes, and .. ¥. — change
of potential in layers adjacent to electrodes in the presence of current. Change
of potenital in layers adjacent to elactrodes (¢..¢.) is considered negative
if potential in layer diminishes in reference to potential of surface of wall,
otherwise .+ ?- are positive.

If electrons have average valozity in direction from positive electrode

to negative and have Maxwellian distribution according to velocities, then

#ote that if flow of ions to wall is not disregarded, relationships of

(5.2) take form oo =las Hig= 1 da- =l —I=1 | yhere !i is determined by (4.l).
It is evident that influence of ion current exisis only at =small current densities

.'4“ .
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~unbey of alestrons pessing from gus Lo clectrodes, if change of potential in

e R beth layers adjacent to electrodes
e X * ! - “b ,
et . . :
;:>ﬁ » ::///; is negative {elactrons proceeding [rom
[P P
/“\" - . -
' o [ gas do not encounter potential barrier;
- —v N - -
b § e .‘/_’-'. . . . s .
v g e distribution of potential is qualita-
. L4
M. 5. tive as in Fig. 5a), is
o -~
] ’ _— u*
A ¥= = S U 3= Cj eXp ... —_ du
b4 To yr p ( e 0) p ol
TCy
T, ., (5.4)
vt = o F im = m,)

"

Such a situation takes place at small currents when potential of gas in
respect to solid at j =0 is negative (4.2). If in the same case large currents
flow; then in layer adjacent to electrodes on positive electrode the change of
potential becomes positive (Fig. 5b ). Here electrons passing to positive elec-
trode from gas encounter potential barrier ¢,. Electrons passing to negative

electrode do rnot encounter barrier. Consequently,

- n 3 ut ' ’/'2—__:
ey le e (e te )BT e
s e . u?
nteoys ) 6+ e esp {~ 2} du, <0 (5.5)

If during absence of current pctential of gas relative to electrode is
positives, then at j = 0 distribution of potential has form as in Fig. 5¢c,

and nunber of electrons passing from gas to electrodes is

[« &) PR
R T P S _ 1/
: r“,“-:yu._tco,exp{ S 1=V e (5.6)

Using relationship (5.1) and {5.4) - (5.6), it is easy to obtain expression

for jw appearing in equations of (5.2)

SIE (5.7)
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In these relationships j, is determined by (4.1).
Relationships {5.2) after substitution in them of (5,2) and (5.7) - (5.9)
can serve as erpressicn of change of potential in layers adjacent to slectrodus
¢., ©. through currant density j.
If (j /1 er)* <€ 2ep4f 2, then in {5.8) it is possible to reject correspon-
ding members in arguments of the funct. ns.
Dependence of <. and ¢. on j for various temperatures, if electrodes
are graphite [8), is represented in Figs. 6 and 7. (Working mixture is Ar- 0%k,
p it atm,) For graphite electrodes at temperatures below 3000° in absence
of current case (4.3) occurs.,
In Fig. 6 curves for which ¢ <qo.give change of potential in layer adjacent
to electrodes on negative electrode, and curves for which ¢ > 4. — on positive
electroce (in Fig. 6 are depicted only initial sections of these curves), 1In

Fig. 7 are presented carves of %+=%{} for large j.
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Fig. 6. Fig. 7.

Figs. 6, 7 show that change of potential in layer adjacent to electrodes on

negative elecirode (9-) weakly depends on amount of current j. Furthermore,
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since this change has order of tenths of one volt, then it, in a number of cases,
can be disregarded during determination of difference of potentialy petween
electrodes. Change of potential in layer adjacent to electrodes on positive
electrode (P changes relatively little to currents /~1I,. where q.~fo at
1<, .« At 1>1, change of potential ¢, grows quickly with increase of current
and this build-up is faster the lower the temperature of electrode. T@is is
coupled with the fact that increase of current at 1>/, is related to Schottky
effect and requires presence of large electric field near electrode.

In Fig. 6 on axis of ordinates points are not marked corresponding to emis-
sion current ¢, = 13.41 afcm® for T = 3000° and ' = 7.6 a/em? for T = 2900°,

6. Volt-ampere characteristic of channel. In formulas (1.1), {(1.5), and

(1.7), during expression of current (j) through external resistance and emf,
change of potential was not considered in layers ad jacent to electrodes. Here

voli-ampere characteristic of channel had form

-t .:'_-;‘;
(R-+r)] (6.1)

Proceeding thus, they are deflected away from emitting layer of electrode.

It is assumed that '"necessary" current density determined by (6.1) is ensured by
emission of electrode, In order to write expression for volt-ampere characteristic
taking into account emitting layers of electrode, it is necessary to set up laws

of emission of electrode and to determine change of potential in layers adjacent

to electrode [2].

Distribution of potential in channel under the conditions with which (4.3)
takes place in absence of current is presented in Fig. 8, (These conditious corre-
spond to calculations of section 5 for graphite electrodes (8) and working
mixture of Ar + 0,1% K at p = 0.1 atm),

Difference of potentials on external load, on the one hand, ia equal to

Qs — Qp = j1 (6.2)
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On the other to
Pa—Pu=8—rf—@,+ .4 O, —D_ (6.3)
From (6.2) and (6.3) we obtain wolt-ampere characteristic of channel
R+r)j=8--9,0,T,)+9.U, T )+ O, - Q. (6ely)
This relationship shows that calculation of emitting properties of electrodes

indicates that volt-ampere character-

W
- o 4
- :Q istic becomes nonlinear.
> Relationship (6.4) shows that
- . p (6.4)
%:—' l from the standpoint of obtaining large
currents at the same emf & , it is
Fig. 8.
advantageous for the positive electrode
to have a larger werk function than negetive (D, > D). Let us note that

this conclusion refers to the case when ¢. > 0. At small work function of nega-
tive electrode ¢_ can be less than zero for 211 j or at J larger than a certain
value, Under these conditions it is more profitable to have negative electrode

with low work function. Furthermore, since (see Pigs. 6, 7)
e T <o, (W Ty)y @ (7)) > (j,T) when T,>T,

it is profitable to heat positive electrode, and to cool negative. But since
work functions of various materials differ by amounts of order of several volts
and change of potzaivial ?- haa order of tenths of one folt in a wide range of
temperatures changes then in a number of cases (when E larger or of the order

of tens of volts) during calculations it is possibie to consider ® = ®_ and
T, =T_, Here

R+n/=&—o.0.T1)+e. (. T) (6.5)
Hers T - temperature of positive e¢lectrode. Rslationship (6.5) will be
accurate if T, =T_=T and material of electrodes is identical. These
conditions in the future will be assumed fulfilled.

In Figs. 9 and 10 are presented volt-ampere characteristics o: channel
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calculated by (6.5). During calculation it was assumed that velocity prufile
in channel has form

ujue = [1—lyl/al"
where u, = 1 km/sec - velocity on axis of channel; profile of temperatures
resembies velocity profile; working mixture is Ar + C.1 % K, temperature on axis
of channel T, = 3000°; electrode materials is graphite [8] {A = 5.93 a/cmz- deg?.
® = 3,93 v); external resistance R = O, Fig. 9 corresponds to channel of width
2a = 40 cm, Flg. 10 ~ channel Za = 4,0C cm.

Fig. 9 shows that during calsulation of influence of electric field of layer
adjacent to electrodes on emissicn of electrons from elsctrodes, section of
saturation current [2] is absent in volt-ampere characteristic. Volt-ampere
charact(=istic has nearly rectilnear section (6.1) at currents 1~1, . At
lavgzer currents, volt-ampere characteristic is nearly straight, but angle of
inclination is less than on initial section. This attests to fact that presence
of layers adjacent to electrodes can be considered as increase of equivalent
internal .esistance of channel (r* =%¥/). Thus, r#* is almost constant
for small and large currents, with the exception of a narrow (by currents)
transitional secticn of volt-ampere characterisiic.

Since increase of resistance owing to layers adjacent to electrodes, roughly
speaking, depends only on magnitude of current j, its contribution to r¥* is less,
the greater the internal resistance of the channel., This situation is illustrated
in Fig. 10 (internal resistance of channel corresponding to this figure is ten
times greater than channel .orresponding to (Fig. 9). Fig. 10 shows that volt-
ampere characteristics for channel is 4L0C cm closer to rectilinear characteristics
of (6.1) than to characteristic of channel 22 = 40 cm. (Volt-ampere character-
isties of (6.1), for various temperatures, are tangential to corresponding curves
in ®gs. 9, 10 at origin of coordinates).

In Fig. 11 is shovn dependence of volt-ampere characteristic on amount of
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Fig. 9. Pig. 10, Fig. 11,
load (R, ohm) for T = 2700°. Under these conditions, r = 6.923 ohm. In this
figure are given characteristics of (6.1) by dotted line., With growth of external
resistance volt-ampere characteristic approaches rectilinear of (6.1).

7. Discussion of results. Motion of ionized gas in channel in transverse
magnetic field is accompanied by appearance of electric field. Here walls of
channel are under various electric potentials. If walls of channel (Fig. 1) are
connected through external load, currents can flow in gas and in external circuit.

Flow of current in channel is due to the fact that electrons enter the gas
space through one of walls (positive electrode) and leave the gas througn the
other wall (negative electrode), ensuring thereby, continuity of flow lines.

It is natural therafore, that amount of current flowing in system and difference
of potentials on external load depend not only on hydrodynamic and electric
parameters of flow and external circuit, but also orn mechanism of electrons
transafer at the interface of gas and electrodes.

Quantity of electrons entering gas from surface of eiectrode depends on
emitting properties of material of elsctrode, which one can determine by two
constants ¢ and A, from temperature of electrode, and from amount of electric

?ield near surface of electrode). Electric field near surface of electrode is
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determined by structurs (distributien of charge, thickness etc.) of layer
adjacent to electrodes,

Difference of potentials on external load is del.ermined by change of potential
in various regions of flow and is given by relationship (6.3). Amount of current
flowing in system is given by (6.4).

Relationahip (6.4) shows that for solution of problem it is necessary to
know relationship between changes cf potential in layers adjacent to electrodes
{§ar §-) and other quantities determining the problem. I{ is clear that this
relaticriship essentially nmst depend on emitting properties of electrode. Char-
acter of dependence of 9. and T  on parameters determining protlem (material
of electrode, its temperature and pressure in gas flow, speed etc.) can be fixed
either experimentally or theoretically.

In work (2] and in present work is shown how to establish aimilar relation-
ship on basis of certain systems of assumptions regarding properties of the
surface of electrode and flow of' gas. Comparing results of these works, we see
that final result depends essentially on character of assumptions isde. It
is necessary to say that assumptions :nade here are very close to conditions
taking place during flow cf gas in channels and apparently, are well obuerved
during flow of dense gases and rather high temperatures of electrodes (T % 2500°),
Absence of experimental data on gas flecws under such condi.ions does aet allow
to compare results of theory with experiment.

Calculations show that at temperatures below 2500° and current densities cf
order of several amperes, potential drop in layers adjacent to electrodes becomes
order of tens of volts. Electric fields active here in the layer adjacent to
clectrodes attain values of lO5 - 106wr/:m. With such fields, assumptions made
here will apparently not hold true.

At fields of order 106 v /cm considerable field emission is possible [9].

Although, theoretically, field emission occw:s during fields of order 10 v/cm,
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but experimental data show [5] that considerable field emission, especially with
poor electrode surfaces, is possible during fields as small as( 106 v/cm.
Furthormore, during large accelerating fields, electrons in layer adjacent to
electrodes are accelerated to energies higher than gas ionjzation potential and,
consequently, can ionize gas by means of collision., Here, density of charged
particles near electrode can differ considerably from density given by Saha
formula and accepted in present, work. Finally, ions accelerated in large electri-
cal fields colliding with the surface of the electrode can knock out additional
electrons and thereby increase density of emitting current [3]. Density of ionic
current here zan be small.

Given considerations indicate that at low temperatures of electrodes a
more detailed examination of processes occurring in ..yers adjacent to electrodes
is needed. At the same time, since theoretical description of above-mentioned
processes cannot be done in an exhausting manner, during the study of these pro-
cesses it is necessary, apparently, to use experimental data.
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ROTATIONAL RELAXATION IN PLANE-PARALLEL RAREFACTION WAVE

Ve No Arkhipov and L, 1, Severinov
(Moscow)

Influence of relaxation on flow parameters in plane-parallel rare-
faction wave formed during supersonic flow around a blunt point was
investigated in linear placement only for slight deviation from
equilibrium (1) end for small deviation from frozen flow (2]. Generally,
without these limitations it can be investigated only by nonlinear
mett.od. Here such investigation is conducted by method of charuacter-
istics.

Subject of investigation is rotary relaxation. Study of this form
of relaxation in flow of gas is mathematically the most simple; here
it is possible, comparatively easily, to obtain visible results illus-
trating influence of relaxation on flow. At the same time mathematical
peculiarities of sclution of the problem related to calculation of
relaxation and also qualitative results have general character for all
forms of relaxation.

During investigation of structure of shock waves, rotutional relaxa-
tion is uswally disregarded. However, in rarefaction waves it can
play a large role, as was shown by Wood and Parker (3] in example of
one-dimensional, non-stationary rarefaction wave. Furthermore, theoret-
ical [4) and experimental [5) results recently were obtai.ied allowing
to think that tims of rotational relaxation (and, consequently, its
influence on flow) is increased with rise of temperature. 1In connection
with this below is also investigated influence of amount of time of
relaxation on character of flow in rarefaction wave,

1. Fundamental equations. We will take thermodynamic circuit used in [3].
We will introduce polar coordinates r¢ with beginning of reference at vertex of
parallel to left side of the angle. We will make typical velocity angle. Angle

¢ will be reckoned from initial direction of velocity vector, frozen speed of
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of sound a, in incident flow, and characteristic time of problem v, (as 1, it is
pessible to select, for example, time for which sonic disturbance of high rate

passes distance of 1 cm), We will introduce further dimensionleas variables by

formulas

P T P 4 S — 5

rs= * . — = = Y=
al.ro. 1 - T. * p P. ] P p°. S R
T u u V e,

T = £ x__ T L L A x __ _t
T S Mg Vim e e =g

ot ey 4y 0
Cot =g Cof = . 4 =, 9'=7-:. Vi=ut+u,?

(v ~1/p, ”’. = 7 Po/ Pos Y1 = cpy | €y €5 = 5y + €1y €y = €0y + R).

Here f, - parameters of incident flow; T - progressive temperature;

0 - internal temperature, ¥ - relaxation time; cpi+ v C - specific heat

capacities assumed constant; p-- pressure; p -— density; S - entropy; ur U;—

~ radial and transverse components of velocity; a;— frozen speed of sound;

R - gas constant.

In the future we will disregard viscosity, thermal conductivity, and
diffusion,

Equations of motion of compressible liquid and equation of relaxation
have form (index * is omitted)

d(pu,) | 2(pu,)
pu, 4 r ,3: + av =0

du,

3
reu, 6! — pugt -+ puy —— ‘3? =+ .; Tf' 0
Au du, 1 ap
Puo"s'j."‘"}'?ur uo+r9urw'+n 9 = =0
as  rg{T —9)
Tir =2 + > 3 """T"of -
T—8
o e 3= S
(1.1)
These equations allow integral
Lf} } Lf
=40 —1 = const
y—1ir 10 )+ (1.2)
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System (1.1) is closed by equations

S =¢pyInT 4+ ¢ 1nd —Inp, p=¢T
" ‘ (1.3)

2. Characteristics. Boundary conditions. Two families exist of character-

istics of system (1.1), differential equations of which are

r (:-})*"8(!3-'1’&“1)

(2.1)
Along characteristics are satisfied conditions
. Q s d_g _ T,CiGIP(T—O)
4 cot «a (d’)t + TIPV (d’)t =¥ oy trcos(3—~@ £+ a) (2.2)

Here P — angle of inclination of velocity vector to initial direction

oy = arc sin—:,i, a3 = f- (2.3)
2.

Along lives of flow eguations of which  rdg/dr = tan (p — B), are satisfied

conditions
s (T -0 o - T-—0
& T Vs (3—9)* 0 Vvcos (3 —9) (2.4)

Flow of gas remains uniform to characteristic

@ = @, = arc sin (a5,/ V)

Therefore boundary conditions at ¢ = ¢, can be written in the form

V=V, p=8=0, p=p=T=0=a=1 (2.5)
Let ¢* —angle of inclination of second side of angle (§* <<0). Then
Blr %) = ¢° (2.6)
Further in calculations everywhere is taken vt =1/ Ap, where A - re_ation
of characteristic time of problem to characteristic time of relaxation.

3. Maximum form of equations at r —0. In limit at r -0 equations (1.1)

will be turned into system of ordinary differential equations describing Prandtl -

Mayer supersonic frozen flow. System has form
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dur®

p°u, + ‘__——(";:’.) =0, —poug” Py o =
) d“ * (-] - -] -_l_{P_' —
Pu:'—d—;—"*‘P U, Ug 1 de =
dase 0 d0*®
u o= = U, — = 0
s T (3.1)

Here and in the future index ° designates function at r = O. Solution of

this system for @¢ < < ® has form

uy” = — a,°, T—z-—’u,"’ +V?2r=V?=const, u’ =V, sina
-
e g Ty g
o _ o _ Cus o, Cos "%
u,” = — AV, cosa, p = e ' p= ==y
1
T°=.c_o_s’._a_. afo'-.:—‘-:osa ' S°=0. =1
cos? ap €0$ Qo
y—1 1
a=A(ge—9 40 A=V L o=r—7
. (‘Po ‘P) 1 Ger v71+1 ’ Tl'—i

(3.2)

In region §° <9 <7, parameters of state and motion of gas are constant:
f () = f (¢-) = /- Angle Psis determined from equality B (g:) = 9%

L. Characteristic variables. We will intrvoduce characteristic variables

t and n (§ is constant throughout characteristic of first family, 5 is constant
throughout characteristic of second family). Let n=7 at® = Pe & E=0qat r= 0;
equations (2.1), (2.2), (2.4) will take form

. =tgPB —q@+a)rs, rge =tg (B —@—a)rg

_ AMyapedT—8) por, (k1)

PactBY + 1PV P = — e T ey (4.2)

— peetgay + 7V e = 2:;1:,‘.((:: :)f;‘) (L.3)
VSerecos @ — 9 — ) + VSirecos @ — ¢ + o)) =

=2A cos qp (T — 6 )rers ! (4.4)

Vogracos @ — @ —a)) + VBrgcos B — @ + o) = (15)

= 2A cos a;p (T — 0) rery
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Boundary conditions are:

Q=E.r=_0,6=0at 1=0; P

5. Derivatives., For study of solution in environment of point r =0it is
important to know derivatives of this point. In region.x € ? < Powe will deter-
mine characteristic derivatives. We differentiate ecuations (4.1), (4.3) - (4.5)

by . equation (4.2) by § .

-a
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Fig. 1. Fig. 2.
and let us turn to limit at n -0  in received equations and in equation (4.2).

Designating [ (§) = (9f/ M)snos we receive

291 = BW + ), r = tg 2 §° — &) re®
P etg o + VPN = — -c-‘-AT a°p° (T° — %)

praftt cscta® — pehctg a°’ + 14 (p(’) Vo3 4 2p°V°FN) By +

o Tphep'p’ (T*—1) ";"gm
+yp VB = T o825 — %)

(5.1)

VTS0 0 con2 (° — §) +V°T"SOre® = 2A cosa%ep® (I~ n0r® (5

Ve 0 ri cos 2 (B° — & + VO = 2A cos a° (T° — 1} regrtt) (5.3)
— P ag® cosec* ar” + pe ctg af” + 1 (V7 20°VVe) PO +
‘e P o (n (5.[")
+wﬂmW”——[n¢ s (T — ﬂp}“—nw—- 2 (r—1)Ap°ry

Functions f* are determined by the formulas of (3.2).
We 311 differentiate also equations (1.2), (1.3), (2.3) by t and let us

turn to limit at 7n —0. . These equations jointly with (5.1) - (5.4) allow
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to determine function s in closed form for T1= 5/3. Thus, for example, in-

tegration of second equation of (5.1) and equations of (5.2) and (5.3) gives

A= coe® aq sin"va, (5.5)
. costasin’ta
2Ac; cos® g sins aq

SW= -
cost aesin’t a

[%_(a,_a)-}--z-(sinZa—sinZao)—
— 2 coe® a, (@ — ag) + cos® ag(tanax—tas )Ge)] (5.6)

2A cos? K .
) w::{:.,: [’% (ao—a)+-§-(sinZa—sin%)—cos'a,(a—a.)] (5.7)

In interval®®* <9< 9,it is necessary to determine Of 1 07} 022 £y ()-
Equations for functions of f, can be obtained by differentiating system (1.l) -

(1.3) ty r and crossing to limit at r — 0. System has form

. dpy du du,
ey TP =Fe putg=F
1 "-'Pl —- o‘u
e =Py =T
ds d
u,° dv‘ =F‘. u,°-a%=F.

vhere Fp, F2, F3, Fh’ F5 - functions of f°, fl. This system can be integrated

for 7= 5/3 in closed form. The simplest expressions are obtained for S; and 9

. ACiPo(Te— 1)
S; =se°(q’~—B.)[— —EVLJ.—) (p—B.) -+ cousl] (5.8)

0 = sec (g — B) [ — £22L2=9 (9 —p,) + const] (5.9)

Constarts are determined from boundary conditions at ¢ = Q..

6. Gradients on straicht line P=¢,. Let A=1. We will designate
£°o () =f: 9o ) . We will differentiate by § first equations of (.1), (1.3),
(2.3) and equations (4.2) and (1.2) and let us assume in received equations,

in second equation (4.1) and in equaticns (4.3) - (4.5) that £ = ¢, . We

obtain
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! : : °e ‘ oo ¢ o0
LQ T A —— PaC et e 3 TV = — 1 -;’-‘;-T (6.1)
S~
f,d_ From last two equations we have directly
*(o P r— c‘
UL e L T P 8 Qe+ 1VeBa = (1 — 1) —p
RUNDS S »!
-r,' t Taking into account the second sguation of system
!’ A:O’
2 ’/// g g (6.1) we receive
0 5 it w_ _N=1 &
Fig. 4- Pa Tcigpe cpy ©
which, after integration, gives
Ss A9 od — oo(o)c_,k‘ k:___-'_i_t("fl""”
2ol PP =p ' Zepy 14 e
Asl —t !
/,/’””'— After that we immadiately obtain
0. 4 .
- T@) =T=0)c*, =) =p" 0™
A Ve =V2©@e?, oM =aT O
0 2 3 3 ‘
Fig. 5, et
Now it is easy tc integrate the filtu equation of
(6.1)s B* (0) + 2, (0)
! x
vp“(n)r-—'“'—s;."‘""“““"")
Then,
= (% P* ()
2 T) = [ = ==
. Pe (90 7) (d(p ).B" W
- kPO meh
B0 -+ 2% (0) § e g—Hn
l.e., kp,, (o, 0) re ke

p@ (\?0' r) = B’ (q‘o' 0) -+ a[' (q‘o' O) _1-:* E-k’

Thus, pressure gradient on line ¢ == @, diminishes with increase of distance {rom

vertex of angle,

Analogous result is ewsy to obtain alse for gradients of other quantities,
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7. Results of calculations. Conditions of (2.5), (2,6) and equations of

(3.2) constitute system of boundary conditions starting from which it is possible
by metiiod of characteristics, to find distribution of parameters of flow in
region <P o, r>0.

Calculations were made for Y = 5/3 which corresponds to simuitaneous relaxa
tion of rotational stages of three-dimensionzl rotator. (Fquilibrium value ¥.
is equal here to 4/3). Accuracy of calculations was controlled by comparison of
derivatives received by method of characteristics and calculated by the formulas
of Section 5. Mass flow rates through ares g* <9<y of circle r = const limited
by half-lines of @=¢» and 3: 9*. with great degree of accuracy were equal to
flow rates through radii +=9s of these circles,

Certain results of calculations are shown in Figs. 1 - 5, Here, everywhere
VvV =2, % =.20° 1InFig. 1 are given temperature distributicns T x depending
upon ¢ for various »~ at A=1. In Fig., 2 - distributions T X depending upon ?
at A =0.,1, 1.0 and 10 for +*=1. In both figures upper curve corresponds
to equilibrium. In Figs. 3 ~ 5 are given presJure distributions p x, temperature
T x, internal temperature ¢ and entropy s* along right side of angle ?=9°
for various A. It is clear that influence of processes of relaxaticn during
flow around an obtuse angle is considerable. Effects of relaxation strongly
depend on length of time of relaxation.

The authors thank B. A. Ipatov for his help.
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THEORY OF DIFFERENTIAL EJECTOR

B. A. Uryukov

(Moscow)

In single-stage gas ejector with cylinderical mixing chamber and
supersonic speed of ejected gas, achievement of maximum total pressure
of mixture at given ejection coefficient and given total pressure
drop of miscible gases is limited by critical conditions at which
ejected gas accelerates to speed ol sound inside mixing chamber.

Multistage ejector (system of series connected ejectors) allows to
obtain total pressure of mixture greater than in single-stage. This
is caused by the fact that losses of total pressure during mixing of
flows in sjector sharply decrease with decrease of ratio of total
pressures of sjecting and ejected gases and also by the fact that in
multistage ejector limitaticns, associated wita critical conditions
are weakened to a significant degree.

Calculations for multistage ejectors were made by Yu. N. Vasiliyev,

It is interesting to consider an extreme case - "differential"
ejector - with continmuous distribution of flow rate of ejecting gas
cn length of mixing chamber. Investigatiocn of differential ejector
allows to clarify main characteristics of ejector with large number of
stages.
Equations of differential ejector were obtained by S. A. Khristianovich.
1. Differential ejector can consist of an infinite number of ejector
"elementary". Diagram of differential ejector and ssparate elementary stage
is given in Fig. 1.
During investigation the following assumption are made:

1) fricticn and heat transfer on walls of ejector are negligible;
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2) miscible gases are ideal with identical chemical composition;

3) velocity, temperature, and pressure in initial section of every elementary
ejsctor are evenly distributed.

We will introduce designations: F, @, u, Tm Pes — area, flow rate velocity,
deceleration temperature and total presgsure in given section of esjector respect-
ively: dF', dQ', w', T, p, — the same parameters ejecting gas at nozzle section
of elementary ejector; df -~ change of area of cross section of elamentary ejector
{Fig. 1).

Equations of inseparability and momentum for elementary ejector have form

4Q =dQ’, d(TeQ) = T,dQ’, d(Qu)— wdQ' = p'dF’ —d (pF) + p«}/ (1.1)

Change of area of mixing chamber

dF = dF’ 4 df'= Fe(da + dY) (1.2)

Dimensionless quantities (by index

PRI

—— TS O are designated parameters ejecting
—hul.p gas at input to ejector) are
Fig. 1
A= p=0 I K P ~=r
. * N T ' Poe ’ Poo ’ ‘p - Fy

Qe
(=¥ sFrame e =22 - (1.3)

-~ reduced speed, coefficient of injection, temperature drop cof deceleration,
fall of total pressures, compression ratio, and relative area of mixing chamber
respectively; 4, — critical speed of sound, , and ¢ — ratio of heat capacities,
and R - gas constant.

We will designate

4 x—1 s N L
zM=rt+tg, TA)=1-337M, FR)=TH)*
3

= _ % 4§\ =1
P =TW™, g =) %) (1.4)
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We will considsr that P and T, are constant along ejector, for consider-
ation of a more general case does not introduce principal difficulties.

Ejection squations lead to form

1 VT q()
dn = e gq(\)
g ’ TNt 4 d Y
V) VT A+ ) gt = 2 IVTFm £ an 2 ()]
_ Yt +ad +an 9 e! 14 nv 5
¢= 9 qA) ' et ita ¢=1taty

(1.5)

Evidently length does not enter into ejection equations, As quantity re-
placing length along mixing chamber it is possible to take injection coefficient
n.

Usually mixing chamber of ejscltor is terminated by diffuser. If in end of
mixing chamber A<(1i, loszes in diffuser are small, If however, A > 1, then
in diffuser various conditions can take plsce; losses in this case depend very
strongly on design of diffuser can be very great at largs values of M.

In connection with this, we pose the problem of finding the optimum ejector
in the following manner: at given total coefficient of injection ny (value of
n at end of ejector) at given z and 0, and also at given value of A1 at end
of ejector, to find distribution of velocities along ejector % = A(r) andA’ = A'(n),
with which e; at end of ejector attaines maximum value., Optimumm value of A:
can then be determined from joint consideration of work of ejector and diffusar,

Equations of (1.5) can be reduced to one equation by excluding geometric

parameters a, ¥ and ¢

de = Adn, _¥x _L_[ Ny 2% _‘:'_] e g (d)
nooA4 u'{m) AU Rt Ll Bl i (1.6)

_ , do M +7)+ar
o =} (1 +n) (1 + nv), e e T T Y] (1.7)

It is important to note that in (1.6) there are no differentials di ard d\' .

This is explained by the fact that in elementary ejector, change of total pressure
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of mixture can depend only on increase of flow rate of ejecting gas.
From equation (1.6) it follows that for obtaining maxiwum value of e1 at end

of ejector it is necessary that quantity A be at maximum for each elementary

ejector. We have

‘5r=’ }:‘ 1?15}()1){?(&)[’(”)‘(") ~+* V ]+(v “::&)’}
W=,L’1_V_!/1 ) 7o [~ se) (=143 hi ¥) (1.8)
Assuming 94 *dr' =0, find
ep (A) = op (V) (1.9)

This equation has simple physical meaning: in each section of ejector
static pressure of ejecting gas at nozzle section should be equal to static

pressurs of mixture.

Assuming 94 / 6\ = 0 and using (1.9), we receive

[l'l —~» 11(1++n:)] [ —4 l/t:“;;.:)] = (1.10)
Since ¢ < o, from (1,9) it follows that always A <A', so that equations
(1.9) and (1.10) at any values of T allow only one solution A = A,,» = M having
physical meaning, At the same time, so that ejector will operate, real wvelocity
of gas at nozzle section should be larger or equal to velocity of mixture (v’ >u).

This condition has form
]//- 1+ at
1+
G ke (1.11)

It ie obvious that (1.11) is always executed at t > i, therefore %, and A.’

att >l are found from (1.9) and ,

vor /i, (1.12) Y 'Pliig 2‘\




Fquality (1.12) can also be presented in following form.

u—y

o'’ (%) * —pw (p-- Jensity) (1.13)

At t<{ mixdimmm value of A lies at limit of possible solutions determined

by condition (1.11)., Let us note that

tructure of surface A = A (A, A') is shown in Fig. 2 in which 1 - line
of equal pressures (equation (1.9); 2 ~ line dA/d\ =0, equation (1.8); 3 and
L - solutions of (1.10); 5 - section A plane A» = const; 6 — section A plane
A=A, = const; 7 - section A on line of equal pressurer; C - point (A =24,, 2" = 4.").

Tt is possible to show that A, grows during increase of n. Therefore if
A< Ao (B in beginning of ejector), the greatest value of A at any e is
reached when » =2, and at values of X', determined by squation (1.9). It
follows from this that in this case optimum ejector corresponds to constant
A =1, along entire ejector. If A,.<A; then in this case optimum ejector
corresponds to A=A,at *¢ <A and then » =4, to end of ejector.

2. Let us consider case A=A, and A =1, along entire ejector.

Excluding ¢ and A from (1.6) with the help of (1.9)and (1.,10), we receive
dl'./dn=0

(2.1)
b T
au( Thus, A,’ = const along ejector.
az!\g;:iﬂ'o In initial section of ejector we have
¥ ) 1 ,:
P O ey ot A from (1.9) and (1.10)
T2 w06 80 6
Fig. 3. Pl =0p (M), o
o =2V 1<)
AI
Ao = —= (t<Y)
N (2.3)

Hence are determined values of A,"and *.0 , Excluding from (1.6) ¢ and »
with the help of (1.9) and (1.10) and integrating, we find distribution of A,

along ejector. Then using equation (1.5), we find




x=0, ?:i-}-a

(2.4)
W=t arat he=reV iEm <o
Mi=rEL n=h )/ EE wsy
e=(5 -'rt—:/t"m )::f “= F<h
(T e ilmmo ) (2:5)

From (2.4) and (2,1) it follows that in interval A, <}, optimum will be
single-~stage ejector with cylinderical mixing chamber, In Fig. 3 are shown
limits of regions A, <A, atA, =1and <* <1. Corresponding limit for «>1
at n =0 is obtain by replacement of ¥ by t-!. It is possibleto see that at »; =1
optimum ejector in which A =2A,and A=A, along entire ejector, practically,
takes place only at very small or very largs values of .

It is interesting to note relationship.between selocities of miscible gases
in optimm ejector at A+ <A. If in case *> twiw = 1071, i.e.,
difference between velccitiss is great and there is intense mixing, then at v <1
velocities are equal to ¥ =¥’ and equalizing of flows occurs much less intensely.

3. Let us consider, practically, the most interesting case A; <2,

In optimum ejector we have A=2x =2 Equation (1.6), taking into consider-~
ation (1.9), will be converted to form

Vv oda Yy A ! —M)l=0
T e T\t V: )

(3.1)
Initial value of 3/ is determined from equation (1.9)
p () = op () (3.2)
Geometric characteristics and compression ratioc of ejector are determined
from equationsy

dy _ 0N /
= _}71_')7‘(1) [z(l)m —V;Z(}s)]

& p(d)
ERIYN

JALY)

¥= PR) (3.3)

a.=cp—_i—-x. =06
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In case T =1 squation (3.1) is integrated

A — & ST [ — B4 M\ X —1
A= — AL 4 )\ oo . X —
l+n=5— T(lo‘)(l+h7~.’i—hl.') ("" l/x+i) (3.4)

In Fig. 4 is shown change of area of mixing chamber as function of n at
»=1 and v« = § for several values of o. It is clear that at sufficiently large
o mixing chamber at first contracis, and then expands. Position of minirmum

section is determined from relationship

ve () (3.5)

it &' <X, nixing chamber will be continucusly expanded. At A =1 7= 1{,
=141, = 1.71L, which corresponds to value 6.= 5.6, Let us note
that dy/dn <9 at A =1, i.e.,, mixing chamber of each elementary ejector in
this case contracts.,

Since compression ratio of ajector rises with increase of A,, and loss
far*or in diffuser even in simplest case of supersonic diffuser with normal
shock, is small at values of A, , insignificantly exceeding unity one, applica-

tion of ejector with low supersonic speed can be profitable,

Fig. 4.

L., Let us consider the particular case of a differential ejector
when Tt =1, in which area of mixing chamber in each elementary stage does not

change (x=0) and A" = const. Equations of such ejector coincide with squations

of single-stage ejector




= M) = LA (t)
U=T0) T Tdag ()

(4 + ny) z(A) = nz () +z(Ro) (4.1)
We will determine maximum compression ratio of such an ejector when velocity
of mixture does not exceed spead of sound. For independent variables we take
A, and %, . Derivatives dey/ A, and ge/ 9, can turn into zero at four
points of plane (A, A,

D @R)=0ap @), A= 1), (2) (p(A) = op (X'), op (') =e.p (X)),
B (Ae=1, A, =1), (4) Ag =1, ap (V') = e.p (M)

Analysis shows that points (1) -~ (3) do not correspond to maximum 2.

Points (1) and (2) correspond to case

50 Ae = A, =1’ =1and o =1. Investigation
. e /
) 1 7 : of second derivative at point (3) shows
7 4 that it is a "saddle" point. Maxdimum
20 is at point (4). In all sections
/ ¢ at po
/ At
r// Yog (1+1) of ejector responding to point (4)
)
% ! ‘ J except output, inequality occurs
Figc 5 ’
op (A') > ep (&) (4oh)

In spite of coincidence of equations describing process of ejection under
single-stage and differential ejector conditions corresponding to point (4),
this cannot be realized in single-stage ejector, since here at values of A <t
critical regime sets in, In differential ejector critical regime does not have
place, since influence of infinitesimal ejecting stream cn flow of mixture in each
section of ejector is oxtremely slight.

During replacement of differential ejector by miltistage, critical conditions
will appear in each stage, but with increase of number of stops critical value

of 3 will continuously increase approaching A = 1. This allows to receive,
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3015 | // // in mulitistage ejector,; larger compres-
)
/// / sion ratic than in single-stage.
20 l / y / / In Pig. 5. fore¢ =50 at v : 1
\ 19 //TZ// /// as function of n are given compression
- \// M r 4 F
\ 1;/4//// /// ratio curves: 1 - for optimum differ-
10 \N—1=~ .
\ ,//// 2 4 ential ejector at M = 1;2 - for dif-
¢ M=l .
\ " ferential ejector =0 and & -
‘T_’—;:g (”ﬂ)
0 7 2 3 for optimum single-stage ejector under
Fig. 6. critical conditions,

Ccmparison of these curves shows that multistage ejector can give very large
increase of compression ratin., Narrowing of mixing chambers of elementary stages

alsc gives essential increase of compression ratio.

Results obtained in work for

& I ¥ ?’-“
40 1 2.3~ -,)// é optimum ejectors allow to indicate
N 7 e 5/
5, 6/7
//// % Iimits of application of multistage
20 / / / ; //’ I ejectors with determined number of
/| / _
o A L7 stages. In Fig. 6 in coordinates of
b ! 2 logilfen) of n,6 gt t =1 are shown fields of use
Fig. 7. of N-stage ejectors for N =1, 2, 3, 5,

10. Compression ratios of multistage ejectors were calculated by Yu. N. Vasiliyev.
Limits of fields correspond to difference of 10% of compression ratio ef N-stage
elector from compression ratio of optimum differential ejector at 1, = 4. It is
interesting to note that at small values of n and, practically, at any values

of o. and alac at small values of ¢ (to ¢ = 2,5 - 3), and any values of n,
application of multistage ajactors is inrexpedient. One may see also that field

cf application of ejector with given number of stages is expanded with increase

of n, which is explained by decrease of losses in ejector with increase of flow

rate of ejecting gas.
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5. Equaticns for optimm ejector at M > A, allow to estimate
simply influence of diffsrence of temperatures of miscible gases on compression
ratio of ejactor. From {2.5) it is clear that heating cf ejecting gas (r>1)
does not affest compr~ssion ratio. Consequently, in this case weak change of
compreysion ratio in multistage ejector can be expected depending on increace
of temperature of ejecting gas. Convarsely, at t <1 influence of temperature
nsatad ejecting gas should be significsnt, since i optimum ejector at y ¢ rol
of n is played by nr . This is seen in Fig. 7. where compression ratio curves
of optimum ejectors sre given at A1 =1 for ¢ = 50 and various values of T

I — 1= 30, 2 — v =10,
§~14=3333, 4d—v=1

4 — 1= 0.3, 5o T = 0:1,
7 —v=0.060, 8 -1 =0.0333

6. Elficiency o ejlector
v* = 8,’ g,

(6.1)
is determined as relation of compression rstio of ejectort to ®¢— compres-

sion ratio obtained during isentropic

process of mixing

n
1 4 nr\x-1 — T4n
o= (v5n) @/

(6.2)

In Fig. 8 for o = 50 are given

= &
\\i
e N\
SN
~L N
O

values of v* as functions of n at

{
N
S

e
~Z]
I
S~

~
_—
T~
|~
\\

various T for optimum differential

y ///// / / / sjector when M2 b,

i
///,4 /// J—t=30, 2—1=1667,3—v=10, 4 —t=1
az W/ / 5 —1=03 6—t=04, 7—7=006 8—7=0.03

AN/4 04
_ﬁ%—// //l/ 30g (1+n)

% 1 Z 3
Fig. 8.
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It is clear that efficiency of optimum ejector is very low at small values
of n and is near to unit one at larges n. Efficlency curves of optimum ejector at
A =1 have anslogous form, since compression ratio of such ejector in entire
range of n and ¢ differs insignificantly from compression ratio of optimum
ejector A, >, .

Author thanks S, 4. Khristianovich for formmlation of problem and help in

process of its solution,




ON CALCULATION OF THERMAL DIFFUSION IN ILAMINAR FLOW OF VISCOUS
LIQUID AT MODERATE VALUES OF THERMAL AND
DIFFUSION PRANDTL NUMBERS

A. M, Suponitskiy

(Moscow)

If a stream of viscous incompressible liquid containing certain
substance flows around a body, temperature of which is different than
temperature of flow, then under action of temperature gradient transfer
of components of solution occurs, Calculation of eccurring thermal-
diffusion separation is interesting for a series of problems of chemi-
cal technology. In previous article the author [1], was considered
prccess of separation in case of large thermal and diffusion Prandtl
numbers. In a liquid, the Prandtl diffusion number P is rather large
(103 and wore), Meanwhile, thermal Prandtl number P for liquids
changen in rather wide range (at 20° for water~ 7, for lubrlcating oils
~ 103), therefore, assumption made in (1], P; > 1, limits field of
application of conducted calculations. Below is considered problem of
calculation of thermaldiffusion separation at moderate values of thermal
and diffusion Prandtl numbers (P> 1, P; > 1), and also elementary
theory of thermaldiffusion separation in forced flow of viscous liquid
is given.

1., ILet us consider problem of thermaldiffusion separation in two-
dimensional laminar boundary layer formed during fiow around a wedge. We will
asgume that presence in stream of alien substance does not have influence on
hydrodynamics of flow. This assumption is fully natural if substance is dis-
solved in comparatively small quantities or dirfers little by specific gravity,
from substance of stream. We will draw for the body an orthogonal system of
coordinates z, y, in such a manner that line y = 0 coincides with contour of

surface of wadge. Velocity distribution in hydrodynamic boundary layer of uniform
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liquid is given by expressions of [2]

w=or o v=—(SHvne) |10 + T3 0]

n= (ﬂ:}!—i %)% ;‘_;!y (U =", m= B - cnnst) (1.1)

—

Here U - velocity distribution in external potential of flow; =nf — aperture
angle of wedge; v — coefficient of kinematic viscocity; function  /(n) satisfies
the Fokner-Skan equation.

Transfer of substance in considered problem is causaed by joint action of
convection and molecular devices. Flow of substance in liquid transferred,
through surface by molecular device during calculation of thermal diffusion is
given by expression [3]

1= —pD|% toclt —a 3] (1.2)
where e¢(z,y) — concentration of substances; T (z,y) —= temperatu-e of liquid;
p — density of liquid; "D — diffusion factor; o — Soret factor; y - normal to
a surface.
Equations for determination of concentration of substance and temperaturs

in diffusion and thermal boundary layers have form

2 L _d(pfde oy 9T LT T o aT
"5'*'"5?—37{0[037“(1 Il "a;+”ay“a,(x ay) (1.3)
where ¢ —thermal conductivity factor.

We assume that body is impervious to substance, and that concentration of

substance ¢, and temperature away from body T o? Just as surface temperature T,

are constant; then boundary conditions have form

[a—‘%;,—"-)- + oc (z, y) 1 —c(z, y)] ‘%L:O
T{z,0)=T, cl{ro)=cn T(z,00) =T, (1.4)
O TO =T, 0y =c

We assume that solution has constant physical characteristics. If we sesk
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solution in the form
_[m41 u o m—1
F=T@, c=cn) (=[5 5]z 719 (L.5)
then, putting (1.5) in (1.3), and (1.4) and considering (1.1), we receive

—Pf e =¢’Fa le(l = T¢W  —=Pf)TS =T
ey =cy T(o)=To lea’ (M) +oc(d—¢)Tlaa=0, T(0) =T, (1,6)
Here,p = v/D, P, = v /y —diffusion and thermal Prandtl numbers. Heat
transfer equation, second equation of system (1.6), has solution, expressed by

quadrature

T =0 () (=10 oxp (= £, § 1) ) at 4 7,
’ L

! | a(Po=[S oxp (— P,i/(h) k) dg]"

(1.7)

Values of function « (Pl) for series of values Pl at various m were calcu~
lated by Evans [4]. Putting (1.7) in equation, and the boundary conditions of
diffusion part of problem (1.6), we receive

—Pf(m ey’ = &y + ea(P)) [ (1 — o) exp(— P‘.(j(h) a)],
lea’ + ea (P) e (1 — €¢)]smg = O, c(oc) =e, & °= c(Te—Ty) (1.8)

From (1.8) it follows that quantity of separation  , _ [, 0) — ¢l /¢, for
wedge of given solution depends only on P, P; and .

2. Experimental investigations show that Soret factor ¢ has value of
order 102 - 1073 1/deg, therefore, even significant temperature drops ‘1‘0-—’1’1
quantity & =¢C (1, - T,) can be considered small.

We will seek soclution of system (1.8) in the form of series on small para-
meter &

cm) =¢c () +ee;(n)+... (2.1)

Calculations give, for firsi two members of series (2.1) at v =Py /P =

=p/ 1% 1, following expression
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¢=cy4 0 (Ty — 7",){- J:;%ﬂ[g exp (— pfﬂ 1 (k) dh)dg —

—rfomn (- 2] s ] S e

T
.

Concentration of substance on surface of wedge will be determined from (2.2):

8(To—Ty) co(l — cu) [1(”1) _T}

c{0) =¢o+ T—7 a(P)

(2.3)

In case of large values of quantity P1

determining « (Py), for function f(n) we can assume its value close to n = 0.

during calculation of integral,

Considering f(n) = £ , E = const, we receive

PIET

“(Px)=m

(2.4)
Thus, at large values of thermal and diffusion Prandtl numbers, expression

(2.3), taking into account (2.4), crosses to formula (3.3), [1]

¢(0) = ¢+ o (Ty — Ty) cg (1 — co) T'/' (1 — T"") ({ -7 (2.5)
In solutions of weak concentration, assuming o (1 — ¢} = ¢, from (2.5)
we receive
A= O —c  s(To—Tna"+ 1"
‘ {74y (2.6)

Function S(y) ="+ 1) +1 + 1" in interval (0.1) will be
continuously increasing. Let us remember that quantity 7 =0/x for a liquid
is less than one. From (2.6) it follows that during increase of 7 separation 4
increases. Physical interpretation of this fact is given in Section 5. Let us ncte
that extrapolation of results by interval (1, « ) is groundless, which follows
from method of obtaining of equaticn (1.8).

Sor aqueous solutions (Y<{1) formula (2.3) takes form

¢ (0) = ¢, + 3(7’0—7’1);‘,.((;))—- )3 (Py)

(2.7)




Number P, for aqueous solutions is great; calculating ¢ (P) by formula

(2.4), we receive

¢=Cco+o(To—T))co(1 —co) 3T (¥y) a(P) E~" 0"

(2.8)
If 7 =1, then first two members of series (2.1) have form
¢=¢+o(Ty—Ty)c, (4 —co){—-a(P)g‘ oxp (-—-Pi ) dh)d§ +
' 2 4 £ ' '
+a(P)P;‘}[exp (=25 rman)] (§ 7o an) ag +[1—22 )+
® £ g
By = {{[exe (=P | /0 ah) | (\ 1 (#y dn) g}
° ¢ 3 (2.9)

Concentration of substance on surface of wedge is given by axpression

¢(0) = ey + 8 Ty ot — g [1— D] (2.10)
2.10

At large values of P, formula (2.10) crosses to (2.6), in which is assumed
v=1,

3., During solution of problem in preceding section small parameter
mothod was used. We give approximate solution of problem in c¢losed form, intro-
ducing certain changes of initial equations (1.3), owing to partial simpli-
fication of member expressing influence of thermal diffusion., Let us assume that
thermal boundary layer is significantly thicker than that of diffusion. We

expand, in Maclaurin series, expression for temperature distribution ir flow
(1.7) and limit ourselves to first two members

TM=T+aP)(To—T)n

(3.1)
Put (3.1) in equation and the boundary conditions of diffusion part of pro-

blem (1.6). In case of solution of weak concentratiun we receive ordinary

second order differential equation with separable variables. Integration
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glves

— _ _Cra(P) ¢
c('l) = T:zz(m\ exp [— p

[

s §W

.‘ /(h) dh — &z (Pl) E] dﬁ ";‘ “':‘;'25'“‘};:)'-

<

(J = §e,p[_ P § /m)dh-e:un)a]wi)
J X

0

(3.2)

Concentration of substance on surface of wedge will be determined from (3.2):

. c(0) =co [{ — ea(P)J]-? (3.3)

At small values of parameter e formula (3.3) transfers to (2.7), in widch,
considering weak concentration of solution, it is necessary to put ¢, (1 — ¢) = co.

4. Let us consider class of laminar flows of viscous incompressible
liquid, in which normal to surface of component of speed v, depenus only on
distance on normal to surface y. To this class of flows, in particular, belong:
flow, caused by rotation of a disk in liquid, flowing around forward stagnation
point of body. OSurvey of problems of heat— and mass transfer for this class of
flows can be found in [5].

We will study problem of thermaldiffusion separation for these flows under
the assumptionP > 1and P, > 1. It is not difficult to establish that equations
of thermal and diffusion parts of problem of thermaldiffusion separation allow
solutions, depending only from normal to surface of coordinate y. Taking into

account this consideration, equations and boundary conditions takes form

—Mfy/Ne' =Dic/ +sc(1 =T/, — Mf(y/N)T, =T,
¢ +3ac(1—T, =0, T="T,wheny- 0, c=¢, T=T,wheny= oo (4.1)

- Here M and N constants. For case of rotation of iisk with constant angular
velocity win liquids (Xarman's problem)
M= (ov)*, N =(v/w)"
normal to surface of disk of velcoity component
vy = — M/ {u"y/v")
Function £(y/N) was determined by a number of authors from numerical 3olution

of system ordinary differential equations [2]. For other flows of this class,
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values of constants M, N can bs found in [5].

We will introduce the following designations:

MN MN . .
n= g PETm =T =@ T =T@W) (),

If in system (4.1) we transfer to new variable n and introduce designations
of (4.2) we will receive system (1.6). Thus, all results, received for problem
of thermaldiffusion aeparation on wedge, apply for considered class of flows.

5. We will list certain elementary considerations about the thermal-
diffusion effect during forced convection, which are based on certain hypotheses
about structure of thermaldiffusion boundary layer, and similiar considerations.
These considerations represent interpretation of results obtained above.

Let liquid with initial concentration c , be located between two horizontal
walls, upper of which has temperature T,, and lower T;. Let us assume that in
layer no cenvection current is present (including free convection). Under action
of temperature gradient transfer of substance appears with the help of a molecular
device, After a certain time, process of transfer will be completed and stationary
distribution of concentration will be established, From condition of equalit;
of flow of substance j at zero, and from initial condition, we receive, for
solution of wesk concentration, following conditions:

1
. 2 ¢« ar
/=D(5-;+.cc5;)=0, §c(y)dy==col (5.1)

Here 1 - distance between plates; y - distance on normal to surface of
plates., Considering that quantity e =g (T2 - Tl) is smszll, it is easy to receive

from {(5.1) quantity of sevaration

A=2"2 _ 5(Te—T;
P 6 (7 i) (5.2)

where c;, ¢, ~ concentration of substance on lower and upper plates respectively.

2
In case of thermal diffusion in forced flow we will consider that thermal-

diffusion layer can be smashed into two layers: thermal boundary layer and
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within it the diffusion boundary layer. We assume that thermil boundary layer
during forced flow gives the same separation, as in above considared case of
motionless layer (this assumption is inherent to the so-called film theories).
Further, let us asaume that it "works", i.e., evokes separation of only part of
thermal boundary layer, corresponding to diffusion boundary layer. We designate
respectively §,,,6.. § —thickneszes of diffusion of thermal and hydrodynamic

boundary layers. Amount of separation A then is given by expression

A= d_(T. — Ty dud™

(5.3)
At lsrge values of P and Py
— 8 Dl' 3 6"/-
dp = — = 2 N 1
==, O B, o (5.4)
Putting (5.4) in (5.3), we receive
A =g (Ts— T)) 1 ,
) {5.5)

Formula (5.5) coincides with (2.6) in case of small values of quantity T
During increase of T , according to above-stated considerations, effective
part of thermal boundary layer is increased, and amount of separation should

increase, which alsc follows from (2.6).

In caseP > 1 and P, > | we determine thicknesses of thermal and diffusion

layers for wedge by expressions

3 _k(@Te=Ty) k(To—Th) — £
(t 1 R n - k(T,—T;)a(P;) n"!v_g a(Pl) nv‘ Iu-.
_ Dica—c,) _ D {co —¢4) _ S
b === D(ce—e)a (P, Tmg  2(PIN lo {(5.6)

where J; and j - respectively are flows of heat and substance on surface of wedge;
c, - concentration of substance of surface of wedge. Putting values for 8. and
du) in (5.3) we receive formula (2.7) for strongly diluted solutions.

6. Flow of substance through surface in gas mixtures under nonisothermal

conditions, is given by expression of [3]

_ Die( —c)grad T
/-—p[Dgradc+ 7 ] (6.1)
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where DT - thermaldiffusion factor.

A number of researchers use expression of (6.1) during description of tnermal
diffusion in liquids. During assignment of flow of substance in the form of
(6.1), self-similarity of thermaldiffusion problem during forced convection,

obviously, is not disturbed., Assuming further smaliness of quantities

Si=DyID &ty = (T, — T)ITs

it is easy to show justice of following situation: for calculation of thermal-
aiffusion separation during forced convection in case of assignment of molecular
transfer of substance by expression (6.1) it is sufficient in solution, received
during assignment of molecular transfer by expression (1.2), to exchange o (T, - T;)
for Dp(To - Ty) / DTy

Author thanks G, I. Barenblatt for attention and advice.
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ON FLOWS OF LIQUID WITH FORMATION OF CLOSED CAVITATION CAVITIES

A. Ye. Khoperskov

(Novosibirsk)

Considered is cavitation flowing around bodies on circuit, offered
by M. A. Lavrent'yev [1] behind body will be formed closed region, in
which Jiquid circulates; inside this region is included a caviistion
recess with constant velocity: at its outer edge; flow is i-rotational
and velocity everywhere is final (Fig. 1). The problem: to create
flow according to given diagram, i.e., to find complex potential w(z)
of flow, if external boundary of flow and number cf cavitations are
given. Internal boundary (boundary of cavity) i not known beforehand,
but two conditions on it are given - it is flow line and velocity on
it is constant.

Below is considered a particular case of this problem - flow in
infinite region with curvilinear boundary. Fresented method will apply
also for solution of analogous problem of flow in curvilinear channel,

Let doubly connecil.eG region of flow D be depicted in circular ringft |01
boundary of cavity over to interna: (-ir, ?) circumference CR' Tar el irilive-

ness we will consider that point : = oc correspords to point § = 1.
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We will find complex potential w {z) of flow in ring, considering that at

point {=! a doublet is locatss, anl circumference Cp and C; will be fiow lires

w () = Qc[—‘4~—~2 e = U+ min ] -

Here? -scale factor; Qr — cireulation of velocity on boundary of cavity;
Q My — (/20 la Rl — flew rate on circuit, comnscting C; with Cp.

In the future will be demanded derivative

dw Qi [ L ;3‘ AR m i pony ’l‘_]
A R R ey A R (2)
Let us turr to varisble # = —(iK/n)In{ , where K is found from relation-

ship R = oxp (v._ ’3‘.}.) _ (I\" (M) =K (VT—-_A‘))

Hers K and K' -~ full elliptlc first integrals. Then series in expression

{2) it is possible to sum

R!n
3% %—[ csc’ -2 Z . —qm €08 ":u + 5= ] -
L QiR 1 Hi\-—F) QK {
=7 [n' s T T i?:"_]'" T?[sn’u_’ sn*uo]

(3)
Here E = E (k) ~ full e)lipti> second integral, sn u = sn (u, k) - Jacobi's
elliptic sine, and u, « awtilary parameter, associated with 'relationship

i E al
anvie T TR (&)

Parameter u, determines position of critical points of flow {points, where¢
d“j’ [df =10 ) ; depending upon quantity T, flow can have either two critical peclnts
on Cy, or two critical points on UR, or one critical point inside flow,

If boundary has angular point in which angle, turned to flow is larger than
7, then, during usual non-cavitational flowing around in this point, velocity
turns to infinity. In order to avold this, according to received diagram, we
consider such points branching points of £ ow (critical points) and to analyze

flow with c¢ritical points on external boundary of flow.
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nts

Based on found function w({), Wwe construct function  z = f({), depicting

ring R <{ly;{!{ on physical region of flow D, For solution of problem it is

sufficient to dotermine complex velocity of flow

dw . dw de
dx ~df dz
Let us consider function () = U(r,t) + iV (r,8) such, that
d: P = et
Ty =) (5)

Then from (5) we receive

Uir, t) = hll;—é— +In(i —2rcosi4rd
V (r, t) = arg dz — arg dg + 2 arctm__c_’b_}‘?:f:f

We have
{dz /df} = |dz/dw| “{dw [ di|

But on surface of cavity |dw/dzi = v, and, consequently,

UR, ) — In {dw/dz|pmp — In vy + In ({ — 2R cus t.+ RY {6)
will be known function of t.

On circuit C we have argdz =0 —angle tangential to earcuit with axis 1z,
and 884l =t Yy, consequently,

Vit ) =8 — ¥ (N

Angle 6 as function of ! is not known. If one were to temporarily assume
that funcvion V {1, t}) (7) has been found expression ror function %(%) can be
obtained. This allows solution oI problem by integral equation.

Regular, in ring R <|{| <@ single-valued function  X%{{) , if its real
part U (R, t) vn circumferenca Cp 2rd imaginary part V (1, t) on Cy» is given

by following expressiomn;

.Q‘J‘"’

o o n
1) = T‘;‘\ vir, g d L\ U R, Y E';;fiﬂ-_.; [cos nt ({4 § %) —

[ ]
"

s @ - g (VL DAt
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4l v S o ()4 ()) -
~ {sin nt ((-,CT)" - (-g-)‘")]dt

If we introduce variable uyu=— i(K/x)In{. , then

(8)

+{™=2c sm" C"—C"‘=28m'g¥—
Since InR = —aKk’/ K, then
() + ()= 2o - )

(7 - G -2 -

Putting these'sxpressions in formula for x()), we recsive
¢ !
s—\ U (R, b=\ U —— L
% (L) = MS &, o) dt }-R§L(R 'le cmn(t )dt

+2’%§V“'0d‘+- KV(i I)Z cosn(t——%(u-—tK’))dl

R”

©.

But

R Kz t
22,“.3 cusnr--——dn -7

Rl

Therefore

'a!

@) =<{U@R,y dn{Sg—u)Fat + <\ v (1, 9 dn (B—u+ iK'} £t
[ ]

(9)
Hers dn u = dn (u, k) - delta of amplitude, Jacobi's elliptic function, At

[ J _/‘o

K <18l <Y integrals in formula (9) do not havez peculiarities, but at 5l =
the first of them, and at [{| =1 second is singlular, and in these cases their
principal values are put in formula (9).

Now we return to detecting of function V (1, t), (7). Considering angle ¢

as function of length of arc s of circuit, we receive

V(1) _ 40 ds dr expU (i, 1)
dt . dt "I , , =T —cost) at ""‘)
Considering curvature of boundary dd/ds=x{s) given, we receive
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v (1, 1) u
St =p I U4, glevun (10)

where p [t, U (1, t)] - operator of function U (1. t)

ple, U, 8)]= _*_l'ﬂ!_=____i___[ . (8 *_\expll(l nat |

2(f—cost) ~ Z(1=cosp)” 2(T~com 1) J
From formula (9) we find U (1, t)
b L]
Ud, t)-—--_ dV(i T) li—dn[(r—:)l{/nl

S TR T |
’ﬂ

+'—,;S U (R, ) dn-%(r— z)%dr

Putting dV (1, t) / dt from (1U) we receive nonlinear integral equation
for determination of U (1, t)

i

1 sn [(x—0K/=n| <
U(i'!)—--;‘g plr, U4, ©)) 1n e =R/ A] eV gy 4

2n
+-}‘-S UR, oS aniE=0 g
o (11)
Having determined U (1, t), place it in (10) and integrated, we receive
unknown function ¥ (1, t).

Let us consider function
&1

yO=UU,0—g() | (g(,)____‘ v o~ LI e dt)

R
]
Here g (t) ~ known function, and crosaing to dimensionless quantities,

we receive for y (t) the following equation:

™ . q
y( =2 K (r, 6,y (x)) o0 dr (»= T’x%.)

»
o

(12)

Here dimensionless quantities

- sn [(x—nK " a) -
Kt thy())=ple,g(®+y@ln oy e v

1 exp u () dt
—cos !) x[s (to) + S 2zu ——G:s_-;]

&Gi{t)=g@®) +lavy—1In Q

P “, u (l)l =

8o




do not depend on parameters of v, (velocity on surface of cavity), @ (flow rate)
and 1 (characteristic dimension of streamlined body); A — dimensionless para-
meter (unknown guantity, since flow rate Q is not previously known).

Besides A, quantity I in formmla (1) is also unknown, For their deter-
mination we use condition of uniqueness of function z=f({)i for this i' is

necessary and sufficient that on any closed circuit L lying in ring R<|{I<

d:
for circuit I we take Cps using (4), and receive
d: dw . e Nsint
T lrmn = |7 | ur exp[zV (R,t) + 2i asctg m]

and from (8)
} &
vy =L\vi 9 X Lo

1“ . enf(r—8)K/x}] K
— = U @® 0 — U B, )G T dn
[

Here second integral exists, since U (R, t) satisfies Gelder condition,
Thus, condition (13) gives two equations, which, together with (12), is
sufficient for finding solution of U (1, t) and of parameters A and TI. Besides

Q/ vl, ., in problem there is still dimensionless parameter

v fo N —— _ P — P
o = Vi (s STaprg — | number of cavitations )

where Yo — velocity of flow at infinity. Parameter R depends on this relation,
where R - is large at small v/ ¥ , and vice versa. Since to express R
through v,/ v» and other parameters is very difficult, we will consider flow
at various R and determine %/ Vx»  which are obtain here. It is easy to

receive

Voo = €U0 [im ({ — 1)? -j-ic‘-’

L1

= QC-U (Lm

It is interesting to consider case when boundary of flow has angular

points. Let tl'em correspond to & = exp (itx), and region of flow D will form,
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in the-s points, angles = — & (k = 1,..., n) (Fig. 1).

We will express, through delta-function, the curvature of circuit

% [s(] =x* [s ()] + 2 Ad [s(t) — s (1))
k=1

where x® [s (t)] - piecewise cont. :uous function. For

snl(t, — ) K/ n)
{ —dajy,—) N/x]

n
\l

v O=UW)—g)—— Mo
k)

=U,9)—¢g" ()

we receive integral equation analegous to (12)
P
v =2 K2 (v b,y () erar (1)

[ ]
where

— DK
K (ntyt () = pif [0 g® (0 + 3° (91 I [ B0 oo x
Ay

n

ﬁ | sn [(t,— D K/x]
ii—-du[(lk—r)l\’/n]

k=1
[
_ 1 . expu (f)di
pi* [t u O = e [ (0 + (o2 aey

te

remaining designations coincide with designations of formula (12).
Question of existence of solution of problem is complicated by the fact
that equation (14) must be solved jointly with conditions of (13). If one were
to put aside, for the moment, conditions (13), considering knowns » and [, certain
conclusions on solvability of fundamental equation (14) can be made.
Function X* (v, 4 y* (%) weakly depends on y° (%) since

min x. max 7(‘
2({f --cost) <pt U190 2(1 —cost)

and has integrated particulars of type In|z| and |z[*/" at =z —0, since A <7
(for that, let us agree not to consider flow with region D forming zero angle).

Therefore, not knowing solution, it is possible to estimate integral

S K* (v, t, y* (%)) de = M(0)

We assume, for simplicity, that curvilinear part of boundary is located in
limited region., Then max M (t) onQ < t< 2nwill be finite quantity. Solution

of equation (14) can be received by method of successive approximations if
Amax M (f) <e?! ‘D O<tC2x
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This inequality occurs at x* (s) <0, i,e,, if all curvilinear sections

are turned, by convexity, in the direction of flow, and also at sufficiently small

-.i-co
g= S |%® (8)| ds

—o00

i,e., at sufficiently small contribution introduced by curvilinear sections to
change of angle of circuit along axis «x.

Let us consider the most simplw case - absence in circuit of curvilinear
sections. Since x* (9 =0, then y*(9) =0, and we are relieved of neces-
sity to solve integral equation (14). In this case V (1, ) - step functioi.
determined with accuracy up to unknown parameters of tx which determine position
of angular pointa..

In this case, second integral in formula (9) takes form

'3

v, gdn (£~ u+ k) Lat

= —fr,E“ (———u+‘K)(1s)

.0..

where am u = am (u, k) - Jacobi amplitude.

It is easy to see that first integral in formula (9) gives solution of
problem of flowing around a bubble above an even bottom (Fig. 3). Its solution
can be found in appendix to work of Cox and Clayden [2], Below it is given in
designations made earlier,

If one were to make cut CD in region of flow shown in Fig. 3 (z) then region

of variation of function

will have form shown on Fig, 3 (x) . Depicting this region in parametric

rectangle (Fig. 3 (u))

u==—-2§ln(
(r<iti<t —n<agi<n A=erp (7))

we recsive
dw g 30, -8N

—

ds ookt (dnuc 1 dnu)®
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Using expression (3) for dw/d{ , we find
d: dw d: . QK 1 (dnue'* dnu)t

0T T =Taw™ wew T e mane
|

g, [ cc’ . This formula gives solution of problem of bubble

TR RN .
%&:&\\\&‘3@ e above even bottom, and simultaneously allows to calculate
AN NN N .
\\\&\\\&\\EO first integral in formula (9)
AN NN \ -ﬂ(: I+ :
. i - (Kt \ K _ . QK (L — 1) /dnuy 4+ dnuy?

" - [/ —“-S U (R. t) an (—,“- —u) x dt = In [‘ ;l’('ok’ 14 ( 3n°u08hu ) ]

S N 16
;““ \\&f’i\\oﬁ \l\""'\\c’}‘ and, during absence of curvilinear sections, we receive
- ) L] UO

from formulas (15), (16), and (5)
Fig. 3.
di _ iQK® { (day, 4 dn ""fl [cn (fli_u +.iK' ) 4
&~ wep T (e neme ) 1L -
~A:'n
. Xy e ?
+ion (52 —u i) (17)

In solution of (17) enters n unknown parameters of t-j and unknown scale
factor Q. Parameter u, (through it is determined I , with the help of relation-

ship (4)) is equal to Kt,'t , where t, coincides with that from ty for which

A, < 0 — this angular point should be branching point of flow. For the time

being we consider that such an angular point is singular.
If obstacle is given, then lengths of {n - 1) - th section [,_,., between angular

points A, and Aj+l; are known; for determination of parameters of tj and Q we cbtain

n - 1 transcendent equation
- ds ____2 K € (dous4 dn(Kt/a)\8
bt ‘S ld;' dt = py kin3 ) (sn 3N (Kt / ) ) X
) §

-A(/t

t—da[(ts,—t) K/ =n) dt =1 A—1{)

X ‘I:_I‘l {1, —~1) K/a]

(18)
Joining two equations to them, ensuing from condition (13) of single-

value of function z (%)
X :
S (dn’u, snl -n{‘ <+ cn? AT‘) cosy(f)dt =0

(19)
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4 Xt ‘Kt . '
S (dnlu' 3nl Y <+ ¢n? -;-) sin vy (t) di = 0
[ ]

n
T() = —2a efkt)m) v B K
( o tan dn uy 0Kt [ n) g i R 0 ‘)) (20)

We arrive at a system of (n+ 1) - th equations for determinstion of (n + 1) -~ th
unknown: tl""’tn and Q,

If however thsre are several points Ak for which Ay <0, generally, it would
be necessary to consider triply, and more, connected region of flow D. During
existence of two such points A* and A#* region of flow will be doubly connected
and fits our consideration if t%* and t*% corrssponding to them are coupied by
relationship t## = —4¥#, this relationship can be satisfied if one were to de-
crease, per unit, the number of equations (18), (19), and (20). This can be done
in two cases: if obstacle is taken as symmetric, equation (20) is transformei to
identity (v () in this case is odd function of t) and if we consider the previ-
ously uninown length of one of sections /i:j-.1.

Thus, the proposed prohlem has been reduced to solution of an integral
equation, the solvability of which is clear for convex and for slightly bent
obstacles. For circuits in the form of broken line, sélution is writien in
closed form, but for determination ;f parameters it is necessary to solve

system of transcendent equations.
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ON CRACKS SPREADING BETWEEN FLAT PLATES ON RECTILINEAR
BOUNDARY OF GLUING

R. V. Gol'dstein and R. L, Salganik

(Moscow)

Propagation of cracks at place of giuing between two elastic materials
differs by a number of peculiarities from well-stuiie? (se= surver [1])
propagation of cracks in uniform materials.

During quasi-static advance of end of crack in uniform material,
local symmetry has a place, i.e., near this end only normal stresses act,
symmetrically distributed relative to direction of propagation. Further-
more, form of crack and distribution of cohesive forces in terminal
region of quasi~statically advancing end do not depend on applied loads
(hypothesis of autcnomy of terminal region).

Crack spreading on boundary of gluing betveen twn elastic materials
only in exceptional cases possesses these properties., In general, its
behavior is different. In terminal region of such a crack, because
of bulging of sides due to inequality of properties of glued bodies,
overlap of one side on other occurs. In places of overlap appear
forces of reaction influencing advance of ends of crack. Local symuetry
in general, is also absent. On continuation of crack, near its end
appear both sheering and normal stresses.

Nevertheless, if points of overlap of opposite sides are concentrated
only near ends of crack, the hypothesis of autonomy can be generalized
(2]. Generalized hypothesis of autonomy turns out to be equivalent to
assumption about constancy of work, which reciprocal forces of opposer
sides of crack distributed in the small terminal region produce, during
formation of unit of length of cracke.

For experimental check of permissibility of such assumption, it is
necessary to obtain from it a number of results. In connection with
this, in offered work are considered two problems of propagation of
cracks along rectilinear boundary of gluing: the first problem about
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a tension crack, caused by given normal stresses; the second - about
wedging along boundary by a strictly smooth, semi-infinite wedge of
constant thickness,

1., Rectilinear crack stretchad by normal stresses under the conditions of

flat deoformation., Let us consider typical problem of theory of cracks., In

infinite body, along axis z from z=0 to x =1 is located a crack. At in-
finity tc body are applied compressing stresszes s, = — p(p>0). Crack is stretch-
ed in the middle by concentrated forces squal by absolute magnitude P and
directed on perpendicular to crack. As always, it is necessary at first, to
solve problem, assuming that crack and loads applied to its surface are absent.
Then it is necessary to solve problem of a crack loaded on surface by forces
and stresses applisd to it eqral to and opposite those which were obtained in
first problem at place of discovery of crack. Here it is considered that other
loads are absent. Sum of solutions of both problems, on account of linearity,
will be solution of initial problenm.

Materials on both sides of axis z are identical, solution of first problem
in stresses will be

8y = —p, o, =0, Ty =0 (L.1)

If, howsver, these materialsare not identicai, then, assuming that gluing
is not disturbed and that deformations of a L{hin layer of glue can be disregarded,
we receive another solution. This solution, obviously, does not depend on z and

in stresses has form

b ] ° (1.2)
where v - Peisson's ratio. Here, and in the future, by indices 1 and ~ will be
marked quantities relating respectively to upper and lower haif-spaces. From
(1.2) ensures that presence of compressing streases perpendicular to boundary
leads to appearance of longitudinal compression where corresponding compressing

stresses in both glued parts are different.
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In contrast to precedirf case, stress state described by formulas (1.2)
is nonuniform. This is connected with the fact that formulas of (1.2) represent
solution of problem of a strip glued along axds r from two different strips
and compressed evenly by stresses distributed on its edges. Solution of (1.2}
does not depend on stripwidth and therefore width of strip is considered infinite.
Turning to solution of second problem of a crack lcaded on surface we will
use, at y >0 , formulas of N, I. Muskhelishvili [3]

0. +0,=4Re®(z), 0,— ity =Q(+ Q(5) + (z=2) T (2)

(5 +ige)=n® ()~ Q@) —z— (3

(1.3)
where p - shear modulus; x=3—4v,z=z + iy’ In considered case, functions
® and Q in these formulas have form (4]

{ ¢ 7 Z @0

. -y 3 - = C @i Z (¢4 iQ)

®(z) m Q(z) bxiZ(z)S T at
. o
A z) = -8 —_ N4+ ____!_ _ B - Pen
(z) = 2B (21— ] , p= ann m, m-—}i_—r—y% (1.u)
Here )
lay _'”-rv)z-,.;o = (g, — irﬂ')x-x:-io = (1), lim (Z (/9 =1
IO

Quantity f will be considered nonnegative. This can always be done,
numbering glued codies in the appropriate way.
Surface of crack ia loaded by normal stresses of concentrated forces and

by stresses of action of elastic field (1.2). This gives

@D =p—PLi(x—1,0) (0= (1.5)
Dius to symmetry of problem concerning line of action of concentrated forces,
ends of crack are always disposed at identical distances from this line. There-
fore, about propagativn of crack, it is possible to judge, for example, by
behavior of left end £~ 0 and to consider value & <(%{). Behavior of

left end of crack is wholly determined by elastic field in its small environmen:.
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From given sclution, we find that on coatinuation of crack in this environment
(2=z=—3 8 - +0)
S O AU .
oy ~ 11y, Y?{(m) (4 + i8) + o (1)) (1.6)
Opening of crack ([u -+ {v], equal to difference of displacements of its upper
and lower sides at corresponding points, with accuracy within swall [values]

of a higher order, is determined when x — 4+ 0 by expression

fu+ 1o} = MVz [:25) ((By — 2840) — 1 (4, + %BY

(1.7)
Here M «— certain positive quantity depending on elustic constants. Quan-

tities A, and B, are expressed through applied losds in following manner

A"""i?i'v‘f%%“'zf&' Bo=pp T 1.8)

From (1.7) it seems that during approach toward the end of crack, upper side

would infinitely frequently intersect with the lower located beneath it. Actually

this does not cceur. Opposite sides of crack overlap one on the other, In

vlaces of overlap reaction forces appear, which it is necessary to add to already

considered forces acting on surface of crack. To these forces it is necessary

to add also cohesive forces of opposite sides of the crack which act near ends cf

crack. As a result, in formulas (1.6) and (1.7) instead of Ay, T, it is neces-

sary to place A, + A' and Bo + B', where quantities A', B! account for action

of reactive forces and cohesive forces.

If given end of crack is in equilibrium, there should be

Ac4-A'=0, BB =0 (1.9)
Hero, in end of crack, sides are smoothly closed and stress in continuation

of crack become terminal., Condition of (1.9) known for cracks in uniform

materials as hypothesis of S. A. Khristianovich [5], was later proven with the

help of variational principles [6, 7). By the same methcd, it can be proven
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also for cracks spreading on boundary pfﬁg}uing (2],

Size of region of action of reactive forces can be various, depending upon
relationship between loads p and p. If tensile force P is sufficiently pgreat,
points of overlap will appear only in the small terminal region. Actually,

oscillatory character of dependence (1.7) disappears when > r,. where

z, =lenrn( g € “UD)-1 (1.10)

It is easy to show that B < (lnx1)/2x. Since Poisson's ratio v is
always nonnegative, then, for all materials, <, -J10°Y. Derivative ; on quan-
tity [¢l, calculated without account of reactive forces and cohesive forces,
at point r ==z, is equal — AM(Ae+4-238) . If this derivative is positive,
then the more to the right r = r, upper side i¢ located above the lower. From
character of distribution of applied loads, it is clear that from this place
and further, up to middle of crack, upper side will remain above lower. Condition
of positiveness of derivative, taking into account expressions of (1.8) for Ao, |

Bo, is reduced to inequality

P>p (=2 (1 44

(1.11)
Thus, during fulfillment of inequality (1.1)), reactive forces and cohesive
forces clearly act in small eind region. This region remains small also, when
P, (1) somewhat exceeds P. When P, (1) greatly exceeds P, size of region of
action of reactive forces ceases to be small compared with length of crack.
A necessary condition of application of generalized hypothesis of autonomy
is smallness of end region. Let us assume that this condition is satisfied.
As was already noted, generalized hypothesis of autonomy is reduced to require-
ment of constancy of work of T, produced by forces of interaction of opposite
sides of crack, during formation of unii of length of crack during quasi-static

advance of its end. Quantity T is expressed through A‘, B' by the forasmuls of

(2]



T (B 4 paxa) (B2 -4 %) 1 P
C 2 BapaBs (%0 -k ) A By (% 1)) (47 -+ B7) (1.12)

Hence, from conditions of equilibrium (1.9) and formulas of (1.8) we obtain

following expression for ler sth 1 of mobile-equilibrium crack

_t4m 41t 2PT P
l = { 2 __}
3 Ym(i-{»-aﬁ’) + "P"" 'l‘p' + ap B p?
(n =V (1 + Bax1) (Bs + Pi%s) / pafta)

In Fig. 1 is given graph of dependence of length 1 of mobile-equilibrium

crack on quantity of concentrated force F stretch-

-~ ing crack. This graph is a loop located in the
~”
”~
/,,’ ' } first quarter of plane Pl. In Fig. 1 is also
’ /s

:‘{::::::::7r"’ depicted straightline S{P = P,()}. Under
P

this straightline, and near it (above it) lie
Fig. 1.

points to which small end region corresponds,
and for which, consequentl, agplication of generalized hypothesis of autonomy is
permissible,

According to this hypothesis, during increase of load P, length of crack 1
remains unchanged so long as quantity P does not attain value corresponding to
given liength 1 on curve [(P}. If length 1 is sufficiently small, after laod P
attains indicated value, quasi-static incraase of length of crack begins on
curve (7). Within limits of generalized hypothesis of autcnomy, after this in-
crease, it is possible to trace only up to valuves of 1 which exceed somewhat
length 1;. This corrsesponds te point of intersection of straightline S with
curve (). It is easy to show that ir region of such values of 1, dependence
{P) 1is single-valued,

For the largest values of 1, use of generalized hypothesis of autonomy is
not possible, because terminal region of crack ceases to be small compared with

length of crack. However, one can assume that for sufficientiy large values

96




of lenrth of initial crack quasi-static development, during increase of P,
cannot continue indefinitely. Such an assumption is derived in the following
manner.

During decrease of tensile force P, the crack is closed. In uniform
material this would not lead to advance of its ends, in the interior of body.

If however, materials, among which crack is located, are different, then, near
ends of crack, small areas of contact will alternate with places where crack

is open. As a result, on extent of crack concentrotion of stresses will appear.
Due to this, ends will advance into interior of body. Increase of length of
crack, durine compression; is a characteristic peculiarity of brittle fracture
of glued bodies. If we now start to increase tensile force P, this will lead

to lowering of concentration of stresses, and ends of crack will stop. They,
apparently, will remain motionless as long as the main part of crack is not
freed from sites of contact and these sites are not concentrated near ends {full
disappearance of sites of contact, as was already shown is generally impossible).
In Fig. 1 to such a process corresponds transference of point depicted on
horizontal above straightline S up to this straightline. During further increase
of load P, body should be fractured, since by assumption, initial length of
crack significantly exceeds quantity ll’ and from generalized hypothesis of
autonomy in this case it ensures that equilibrium crack does not exist.

During infinite increase of compressing load p, characteristic length L
aspires to zero. Together with it, minimum length of equilibrium crack decreases.
This phenomenon is analogous to that, which takes place for crack in uniform
material, stretched to infinity by siresses normal to the crack. Maximal equili-
brium length of such a crack aspires to zero during infinite increase of tensile
load (see, for example, [1]). However, an above mentioned interesting peculiarity
of the considered case is the fact that this phenomenon sets in during compression,

but not during tension.
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If compressive stresses p decrease, then region under straightline S is
increased, and within limit p2--0 occupies entire first quarter. Intersection
point of curve [(P) with straightline S here departs to infinity. Thus, when
only tensile loads act on crack, end region is always small, which is a neces-
sary condition of application of ~eneralized hypothesis of autonomy. Applying
this hypothesis, we receive, for case = ( a result, not qualitatively dif-
ferent from corresponding result for crack in uniform body.

We note also that if distinction in propsrties of glued bodies disappears,
loop in Fig., 1 is turned into open curve departing to infinity, and straightline
S occupies a certain limited position. Above this straightline, as before, lie
points corresponding to case of mutual overlap of opposite sides of crack. But
now stresses on extent of cracks are final, and a crack remains motionless during
any changes of P in interval 0 < P < P.(l).. At P> P,(l) spread of crack occurs,
&s was already described for small length 1 of, when glued materials are dis-
similar. The only distinction is that now a part of the mobile-equilibrium
development is not limited. At very large values of compressing stress p,
influence of specific surface en~rgy T becomes insignificant, and within limit,
curve I(P) becomes straightline P =P, ). Thus, in the same manner, without
regard for cohesive forces, the problems of cracks in uniform rocks (see survey
{1]), where large compressing stresses are caused by pressure of the overlying
rock strata, are considered.

If a crack spreads in a non-uniform layer, and on the boundary between two
uniform layers with various elastic properties, then at large values of compres-
sing stresses, calcvlation of specific surface energy becomes immaterial in a
certain intermediate interval of quasi-static development of the crack. This
intermediazte interval is wider, the less the distinction betweern properties of
layers, and within limit when distinction disappears it becomes unlimited from

above.
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In problem analyzed in this paragraph, terminal region was small only during
definite relationship between loads., Another case, whon terminal region is
always small, is represented by problem of wedging.

2. Wedging along glued boundary by wedge of constant thickness, Let us

assume that along boundary of gluing (axis x) is inserted a rigid, smooth, semi-
infinite wedge of constant thickness 2 h, so that end formed hefore it a free
crack of length 1 at origin of coordinates. Wedge itself is located in interval
| <r<<oc. We assume also that to the wedge —— body system no external forces
are applied. Thickness of wedge 2h will be considered small comparatively with
length of free crack. The problem can be sclved in linear placement analogous
to that for problem of a uniform tody [8]. Here boundary conditions fall on
axis x. Assumption about smoothness of wedge means that friction is absent, on
its sides, i.e., shear stresses are equal to zero., Since thickness of wedge is
constant, along it transverse displacement v remains constant. Surface of

crack is considered not loaded. Thus, we have

Try =0, oy =0 W<zt y=40)
(0v/dz) =0, Ty =0 (1< <o, y=20)

Soluticn of problem of wedging at ¥ >0 is given by formulas Muskhelishvili

(1.2). On basis of results of work [4]. it can be shown that

Q =md (2.1)
where ® — function analytic in entire plane of complex variable z = z + iy,
except perhaps, semiaxis z >0. This function at z — oc becomes zero, and
on semiaxes z > 0 satiufies following btoundary conditions:

P(z+i0)+mDP(zx—i0) =0, ImD(z+i0)=0
<z 1<z ) (2.2)

Introducing function & (z) = @ (z), prob’em (2,2) can be reduced to conjugate

problem for system of two functions [9]. In given case, problem for the system,
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with the help of simple convearsions, reduces to Riemann problem for one function

(9, 11], In result of solution of this problem is obtained,

__ ¢ o Vi~ VI
® Yiis—1) exp{tﬁ In }/z-—-l-i-iyi} (2.3)

Here, at 2=z <0

Vi—=l=1Yl—32  ViG=0=Vz{Ez=0 (2.4)
and imaginary part of logarithm is equal to zerc.

Constant C, in expression (2.3), is determined from condition, that opening
of crack [v] during change of x from O to 1, changed from zero to 2h. This
constant is equal to Cm b b

- (2.5)

Investigating, as and in preceding peragraph, elastic field nesr end of
crack, it is possible to show that size of region of action of reactive forces
is always amall as compared with length of crack 1., Application of generalized
hypothesis of autonomy leads to following expression for length 1 of a mobile-

equilibrium crack

[ = BAN, gy cb? 1B
T [Ps (%1 + 1) + p1 (s + 1)) (2.6)

where T specific surface energy.
Thus, as in analogous problem of wedging of uniform material, length of
free crack 1 is proportional to square of thickness of wedge 2h. If elastic
properties of glued bodies were identical, then in each of these bodies wedge
would deepen by quantity h. In general, quantities of deepenings, hl and h_,

2
first and second media, accordingly, are equal to

w2+ SR b= 2k SRR (2.7)

Received qualitative and quantitative results it can be checked by experi-~

ment. In particular, using these resuits, one can find experimentally specific
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surface energy T, and verify if it remains constant during change of external
parameters,
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EQUILIBRIUM CRACKS IN STRIP COF FINITE WIDTH

I. A, Markuzon

(Moscow)

Considered is problem of determination of length of esquilibrium crack
formed in strip of finite width under the conditions brittle fasturs.
With this aim, initially, is solved problem of distribution of
stresses near slit of certain given length, and then results of work
[1] are used, allowing to determine size of equilibrium crack depending
upon applied loads. In connection with this, consideration is initially
conducted without regard for cohesive forces acting near tip of crack.

Simmltaneously considered is analogous problem of crack having form
of round disk in plate of finite thickness.,

1. Formulation of problem., Let us consider a strip of width 2h, axs

of symmetry of which we will take for axis of abscissas. Axis of ordinates y
we direct upwards. Let on boundary of strip, i.e., at y = +h, distributed
breaking load act of intensity p (x) symmetric with respect to axis ordinates
and abscissas., We will create, in proximity of origin of coordinates along axis
of abscissas, a crack (cut). Then under action of applied system of loads a
crack will occur (Fig. 1), in general, of certain equilibrium length 2a. Removing
stresses on boundary of tisip and considering, in view of symmetry, a halfstrip,
we obtain following boundary conditions:

at ¥=0

Ty =0 (12} <o) (1.1)
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Oy = —glz) (| =] < a)

v=20 ([zl)a) (1.2)

at y==4

Ty =0, oy, =0 (1<)

Fig. 1.

(1.3)
Here g(r) — stress appearing in s0lid strip on axis x from application of

loads taking stresses on boundary.

2. Obtaining of integral equations. Following the method presented in

Sneddon’s book {2], ard considering symmetry, we take following expressions for

components stress tensor and displacsment:

2 ¢ . e 2 ¢ 4G
Oy = — — E’G ’ cos ¢ dS' Tx = - - 8.1 d%
v 7 § (y, §) cos &z v n S ¢ dy = bz (2.1)
_ 2(1-1-v)§° oG 246 ] I
D= - ({—v)=5—(2—v)E*—lcos Bz -+ )
n-l; ;{ dyp dy J ¢ (2.2)
where Gt y) = (A + BEy)chty + (C + DEy)shiy

Functions A(E), B(§), C(gf, D(¢) are determined from boundary conditions of
problem.

Shown system of stresses and displacements satisfies equations of equili-
brium and compatibility (components o, and “ here are nof. written out). Using
boundary conditions (1l.1) and (1.3), we obtain system of three eguations for
A, B, C, D, whence, in particular, it follows

AR =gttt B = HEHB®)

We now demand fulfillment of boundary conditions (1.2). As a result,
considering r = ax, A == al. h = g8, we obtain following system of dual integral
equations:

= ©
S AH (84) B, (M) cos Az, dh = g, (z,). S B, (») cos Az, d\ = 0
’ 0L ) ’ (s1>1)

(gl (z,) = —.?-Q°L'("1'|)) (Bl A = -i_“-ﬁ(—::—-)) (2.3)
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Let us note that displacement Vi=¢* and stress Ov=9"  at points of

axis of abscissas are determined by formulas

v = ’:;7 ')Sa.o.) cos hz.dh, @, =._.-_Sm (8%) B, (A) cos A.x,dh
’ o (2.4)

3. Reduction of system of dugl integral equgtions to one Fredholm equation
of second kind. Integrating the first of equations (2.3) from 0 to x, we obtain

system -

s B (A) I (8)) sin Azd) = G (2)- 0<z <) ((.' (2) ==Sgl ® dg) (3.1)
[ ]

§B(1) cos Azdh »= 0 (z>1) (3.2)

(index for B, and x) is omitted).
We will introduce new function ¢ (}) is following form

!
B\ =" (1) ], (M) adt
(Jo - Bessel function of zero order).
On basis of formula

(1 — ) (r <)

S"‘“’W*“*"{ (x>

equation (3.2) satisfies identity with the help of (3.3). We present equation
(3.1) in following form:

SB(x)nnAza+ H M) B (M sindzdh = G(5) (©<s<i)
(Hy (82) = H (8)) — 1)

(3.4)
First component in (3.4), with the help of relationship (3.3) and formula
¢ 0 (x <¢)
SJ. (sinrzdh={(s _ i (25 1
will convert in following manner:

g ¢ ¢ mmd

S B () sio Az dh = ¢ (0t S sin Az J, (M) dh = ﬂ ?"}_L:-;"—

. J o o (3.5)
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Integrating by parts (3.3), we obtain

B =¢(1)J,0) + xﬂw) 7y ) de (% (0) +- 0)
(3.6)
If we now place (3.6) in second component of left part of equation (3.4)

and consider (3.5), then equation (3.4) can be written

( 9
S-}'/ +°P(1)A (3 8) +4- RA (., 6; @ () dt = G (1) O<r<t) (3.7)

where

A,y (2;0) =\ H,(0%) /4 (A) gin Az d)

Ay (2, 6; 8) = AH, (83) J, (M) sindr d)

i
cws Ol./la

We will introduce functior i (x) by following relationship

]

¢ (0t o 2 rLinde
f(z) = \”“‘ﬁs or P77 | ViTT (3.8)

[

Using (3.8) and changing order of integration in iterated integral, we

obtain from (3.7) the Fradholm integral equation with Kernel having a removable

discontinuity
2 1
/() + -;'S (L (z, 4 8) 4 K (2, v; 8)) / (v) dv = G (2) <z

y ‘ (3.9)

where
1
. 8y = Az . ) Av(r, t: 8) di
L(z, v;8) = Voo Kz, v, 0) p§ BT (3.10)

The same equation can be written in somewhat different form, more convenient

for its solution

l .
1@+ L2 K@ udmde =6, 0L (2.11)

Here
Gi(2) =G (1) —p (1) A, (2;8)

If one were to temporarily consider constant% (1) known, then right side of
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squation (3.11) will be given function. Then, solution of equaticn (3.11) can

take the form [3]

1 (2) = Gl(.r)-—%g G, (V) K (z,v;0)dv+ ...

Formula (3.8) allows to obtain relationship, necessary for finding constant
?(1).

L. Case of constant load., If strip breaks due to load of constant intensity

Pe applied to its surfaces, then G (s) = .5 n1pea’2,  and consequently,

1 N
fia) =3 p ’z-—tp(i)A,(z;b)-apoa’SvK(z.v;b)dv+

-~

+-—i—q>() A (0, 0) K (2. 7, 0) dv + .

(4.1)

[ g 1

We convert expressic:e A (z;8) and K (z, ;). entering (4.1). Here we

use integral representations of Bessel functions /o and Iy

Thus

- 1

VA -g_ coshudu i . ] duy
Az 0= 2 § H, (8} sin Az d).§ e 5 Huiz, u; 8) ol

Here o

Hi(z, u; 8) =\ H, (83 sin Az cos u dh

o
Analogous te .
1
de
K (z, v; )———~v§t}, gf[,o(.r,u 8) V*—uldu
where

<0
Hso (2, u; 8) = { w2 i, (88 sin Az cos hu dh

[

75t us note that expression ll; (z) entering into these formulas under the

sign of integral can be is represented in following manner-

¢ {232 1, - ot
s, (1) = UG s L (P 6.2 27 48 P
— ™ L 40 P - 104 226 12,4 2% P — 8z P —
- 185%™ — 16 %)

(Pr=48, py=4.0, p3y =238, p,=2.0)

(4.2)
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Here is used [2] that

EET i (';‘ — 1.55u) ™" 2ue™

Calculating integrals entering into solution of (4.l) and expanding integrands

in series by degrees of 4!, we obtain

f(z) = Ygnpaatz — @ (1) ¢,28"2 <~ @ (1) ¢y (247 5- 3s) 874 4
+ Yy mpeate,rdt 4+ . ..

(¢ = — 2.3, ey 22 — 0.83, ¢ = — 0.63) (4.3)

Having found ¢ (t) by formula {3.8), we determine value of constant ¢ (1),

entering into (4.3). After that we immediatsly find that

@ (1) = Mynpat{l + ad? — (3, + a,?) 8¢ - (a, + a0t + a,1f) 841 ..)
(ay = 1.15, ay = — 0.7, 0y == 1.25, as = — 0.38, a, = 0.0, & ='0,77) (4.0)
Expression (4.4) allows, by formula (3.3), to find B (A) and thereby, on
basis of formulas of section 2, to obtain solution of problem of stress state
in strip with crack. In particular, displacement of points of surface of crack

(z < 1) is expressed as

1
° 4(1 — Q' (1) dt 2(1 — 2 ——
v “l:'rs Vu_.x::_b"’)p"a'/t""ls (£; 9) (4.5)

where
- i 2
A(z;8) =1--a0"*— [a,+ (J b ':TI’) a,]é"-}— [a‘ -t (-1— -}--;-25—1’) ay -
1 4 8 -
(5t e)a) o —.. (4.6)

However, length of equilibrium crack has still not been determined, since,
as was sajd, solution of problem was conducted neglecting cohesive forces, For
finding of length 2a of equilibrium crack, we demand smoothness of closing of
its opposite surfaces near tip. This length can be determined from relationship

written in dimensionless form

L (det — R =w)Va
lim ( VT=7) = =252

(L.7)
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Hence E.K;lA ;8 =X

Y "
(A (1:8) = 1 + 1.158" — 0.55 8¢ +
- _ W .8
04980 + .. = 20) (4.8)

When 8- o (A (1;8) =1) , condition (4.8) takes form, coinciding with known
solution for strip of infinite width.

Relationship (4.8) can be written in the form

a(e)  KVZ

T Sy =n Gh=a) (4.9)

x,‘\ o o ey W et Tt g e B e o f v G s w

1.6 ‘\ e }/“""——:—

08 > X //
/
4

[/}
0 4
! 2 J Y 5 1 Z 3 7, 3
Figa 20 Fizo 30

As can be seen from graph (Fig. 2), constructed formula (4.9) at given strip
width, with increase of load p,, size of equilibrium crack decreases. As expected
equilibrium of cracks in considered case of load of constant intensity is unstable.
From graph, furthermore, it is clear that instability of development of crack
with decrease of parameter § =h/u assumes a sharper character. This may be
seen also from Fig. 3, in which is given dependence of size g of equilibrium
crack, at given load, on parameter 6. Thus, for example, if h =1{.54, then
critical size of crack decreases approximstely twice in comparison with that in
infinite body. At h > 5a critical size of equilibrium crack in strip, practically,
coincides with critical size

e = 2K*'n*p} = x1
of crack in infinite body.

5. Case of axial symmetry. Let us consider thick infinite plate with a

round crack in the middle plane; selecting beginning of coordinates in center of

crack, we direct axis z perpsndicularly to middle plane of plate. Let, under
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action of given symmetric, with respect to axis 2z, breaking load, crack open up.

Removing stress at boundary, as was done in section 1, we obtain following boundary

conditicns:
when z:=0
=0 0<r<w) (5.1)
g, = —g(r) 0O<r<a) w=0 (¢>a (5.2)
when z = h
T, =0 0,=0 0<rLoo) (5.3)

Here g (r) — cracking stress at points of surface of crack (in converted
stress state [1]), 2h -~ thickness of plate, a — radius of equilibrium crack,
r - radial coordinate,

Biharmonic function (4],

Q0 h,
9(p, ) =a* S A {[Zv + +-"-—————¢s§) m‘ﬁh Ms] ch AL —
[ ]

¢~ SR 0 ) 9 1,00

p=r/a, =hla,;=z{a)
through which are expréssed components of displacement and stress, allows to
satisfy boundary conditions of (5.1) and (5.3), equations of equilibrium and

compatibility. Here, on basis of boundary conditions (5.2), function % (M)

should appear by solution c¢f following system of dual integral equations:

-]

(A0 (o) x W) b = Gatg ) O<p<D)

(xWn0ad=0 6>, (#0)=-giamar=t + 1 68) O

It is interesting to note that, as and in problem of a stamp, plane and

axisymmetric cases are described by equations, analogous in form, to replace-

ment only of Bessel function (for cusse of axial symmetry) by cosine.

We will introduce new functien {4, 5]

1

x(l)=So(:)sinudz (5.5)
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Then, the second of equations (5.4) will be satisfied identically, and the
first of equations (5.4), taking into account formulas of typé (3.8), after
corresponding conversions [4] takes form

1)+ —ﬁ—i/(r) Kwpdd=5g@a (<D
Here (5.6)

du
Vel—ut

» 1 [
/(P)=S ot g (v, p; 8) = 7‘:—»\ dt SN (w, £: 8)
® 0

Vs
where -
4
N (u, t; 8) = S %.H, (8}) sin At cos Au dA
9

Solution of equation (5.6) can be taken in the form

1) = Fat{glo)— =\ K (ripi ) g () v +
2 al' ¢ o
+(=) { K (0, 8)dz Sx(e, 5 8) g (v)dr + ...}
[} [} (507)
Let us consider a particular case when plate is ruptured by constant load
of intensity p, applied on its edge. Using relationship (L.2) and expanding in

(5.7) integrands by degress ¢f 4§, after rather clumsy computations, we obtain

i 'Mm—”

oS
— q)litmta)_ 1 % 3+
m.%.‘( e “ntt g.‘,, " (2k+u<m—2k+2)+“‘} (5.8)

D)= a’p,{t -

aim

Here

gy =— 421, a,= — 484, a;= — 3.24, a, = —1.68
ay =—0.75, a,=-—031, a,=— 0.12, a4=~—0.04

At sufficiently large m
By min = 2~ N m - 3) (i 2)
Now, oy formula (5.5) can be found function % (A}. However, for finding
of displacements and stresses in points of middle surface of plate there is no
necessity to find x (4) . Indeed, stress ¢° outside crack (:=0,p>1 )

is determined by formula

1 1 ‘oo
° 2 ®4) @’ (L) dt .
=2 S 0= S @ (1) dt ,§ AH (AD) sin AL J, (Ap)dl.}

G, == — —— =
: xat Vp‘-—i .}/pi_ J

(5.9)
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Displacement of points of surface of crack (p < i)is given by following
expression;

o All—v){ O@dl
- E {3 — pt
NCa J V" PS

(5.10)
Function @ (t). into both these formulas enters, We will show that for deter-

mination of previously known radius of

X
;,; _‘\ equilibrium crack it is sufficient to
\ know value A (1; 6) = © (1) / a*p,.
0.8 S
) For finding of rclationship, determining
0 3 T
! ¢ © 4 03 sought radius of equilibrium crack, we
Fig. 4.
will demand, that stress O: when
r—a (p — 1) have order of magnitude K/a}Vr—a . As a re lt, we obtain

peV2an (1) =K (5.11)
The same condition can be ouLtained, using principle smooth closing of free

surfaces of equilibrium crack (see (4.7)). From (5.10) we find that

1{24(1-—‘#) {—-0 (1) P x‘u @’ (pu)du ;J_l"mql(pu)du }
dp nka Yi-Tp | «Vui -1 $ .lu‘}/:‘—:l

Hence, with the help of (4.7) we arrive anew at reiationship (5.11).
Wher & — o , from formula (5.8) we have ® (1) = a*2, therefore, relation-
ship (5.11), when & — oo coincides completely with known reiult for space with

cracke.

Calculated with the help of formula (5.8), expreesion for A (1;¢8) has form

AT(1; 8)=11 (0.89 8% — 1.64 8% +2.36 87 — 3.05 8= + 3728 —..)+
F (0.80 8¢ — 2.57 8% + 5.46 871 — 9.60 07 + 14,487 — .. ) +...

In Fig. L, with the help of relationship

Vi eVE (5.12)

obtained from formula (5.11), is built graph, allowing to find equilibrium

radius of crack as a function of applied load. Comparison of graphs, built in
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Figs. 2 and 4, shows that behavior of crack in axisymmetric case is analogous

to behavior of straight crack in strip.
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EQUILIBRIUM OF A TWIN FOR PLANE SURFACE OF ISOTROPIC MEDIUM

A. M. Kosevich and L, A. Pasmur

(Khar'kov)

Considered is dislocation model of quasi-static twinning on surface
of crystal, General qualitative picture of hysteresis phenomena during
such twinning is explained.

We will assume that twin is infinite in one direction parallel to
surface of crystal, i.e., is formed by load created by infinitely long
blade. Here, form of twin is completely characterized by its profile
‘n plane perpendicular to indicated direction. In dislecation model .=

«ch a twin is equivalent to totality of rectilinear dislocations,
axes of which are located on its outline. Usually, thickness of twin i3
very small, therefore, it is natural to consider that all dislocations
are located in one plane (plane of twinning), and besides, since
number of them in macroscopic twin is sufficiently great, it is pos-
sible to introduce linear plane of dislocations which is continuous
function of coordinate y, counted off along plane of twinning from
surface to interior of crystal. These representations wsre assumed
on the basis of works of authors [1 - 4]. In indicated works, for
plane of dislocation ¢ (y), were formula-ed equations, which describe
quasiequilibrium development of thin twin, and also their qualitative
investigation is conducted.

In simplest case, when twin is formed purely by edge dislocations, and it is

perpendicular to surface of isotropic body, indicated equation has form

i ’ e
§K(y-n)f>(n)dn=/(y) + S(y), A(y,q):g]__-i__y..*.%;r"_ 0.1)

where 1 - length of twin; f(y) - force, acting on dislocation from side of
external load (we can always consider that f(y) >0k Sy) - so-called force

of nonelastic origin. Let us note that force of the same physical nature causes
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presence "modulus of cohesion" in theories of fragile cracks, offered by G. I.
Barenblatt [5].
If end of twin is free, i.s., there are no stoppers, preventing its growth
into depth of crystal, then po is determined from following equation
'
gm(n){/(n)+5'(n)}dn=0 (0.2)
where po(1) ~ solution of homogeneous equation, adjoint to (0.l).

In general, resisting force, acting on dislocation, depends on previous
history of its given state.

Such dependence, as in [6], is cause of hysteresis during twinning under
action of external lecad, infinitely slow, but non-monotonic varying with time
(process of loading and subsequent unloading). It is interesting to note that
fer explanation of qualitative picture of hysteresis phenomens in dislocation
model only certain things are essential, sufficiently general propertias of
function pe(n) , entering into (0,2)}: fixed in interval (0, 1) and definite
asymptotics on ends ¢f interval., To proof of these properties po(n) is devoted
first part of rresent work. In second part is conducted qualitative analysis
of hysteresis phenomena during twinning at surface of crystal, and also briefly
considered is question of stability of twins,

1. As was already indicated, p,(y) represents solution of uniform integral
equation, adjoint to {0.1)

!

§{,,i,+ Lo oy (n) dn = G 1)

By substitution n=U#y=1z, equation (1.1) we come to form

1 22— 4t
.S{:_,’_f' T }‘P(‘)df=0 (@ (4) == po (1)) (1.2)
Nonuniform equation of such type was considered by Wigglesworth [7] in

connection with problem of crack at surface of solid body, where solution was
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obtained by method of Wiener - Hopf. We will solve equation (1.2), following
essentially the method of work [7].

We will introduce functions

Q. (1) = ets) (02 <), . 6 (0=
) 0 (1<rx) w’“yﬁlnm U<:<m)
) ]
n@ =K o0 a

With the help of these functions, and also taking into account homogeneity

K (¢, x), we write (1.2) in the form

Jr@k(HF =0 (o~ - i)

(1.3)
By Mellin transform, considering that left part of (1.3) has the form

Mellin convolution, we bring (1.3) to form

®_(s)=2n ﬂ'—‘i‘é%%:i =0, (s)

(1.4)

Here @®: () is Mellin transform of functions @, (1) i,e.,

< 1
®0 (') = S‘P. (I) I"ldl. o (s) = S(;" (I) idr
! <

We will solve functional equation (1.4) by method of Wiener - Hopf (see,
for example, [8]. Following main idea of this method, we will explain first of
all, general strip of analyticity of both parts of equation. If we assume that
g (r) , when z -0 conducts self, as z* (@ > — 1), then ®_(s) will be analytic

in half-plane Re s> — a. Further, since

1
?. (ﬂ""&?- ()] L(":‘)é{"‘"% when £ — oo

[ ]
®, (s) is analytic in half-plane Res <2. Therefore, general sirip of analyticity
of equation (1.4) will be p< Res<1!,, where p = max (—a.0) ; function

is analytic in each of strips, shown in parentheses.

()=ﬂﬂﬁﬂt:1 @r<Res<2n - toa0, 1)
sin ne

Yollowing stage of solution consists of factorization of x (s), i.e., in
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its representation in the fore. %(s) = x_ (s)/x%, () , where x;(5) - analytic,
and functions not tuming into sero, corresponding, in half-planes, to Ke s> p
and Res > 1, This w.aa‘ performed in work (7]; here is given only expres-
sion for %.(1) , which will be needed in the future

" (e) = L r"&"l/'n‘:)“ ; (1.5)

where I (s) — Euler gm tunotion, and
h () = (1 + c)ﬁ (1 + = )(1 -i-é:)(t )
o ' : (1.6)
Here pn — roots of .qu.mn sln® (Vyns) — # = 0, lying in first
quadrant, exsept for 0 u l(lmun>0. Re pn > 0), . and dash designates
complex union. For A (l) cm be obtained also integral representation, from
which is established [7, 8], that lim A () =1 (Res>P).

Using factorization function % (n). we represent (1.i) in the form

O_ (1) x_(s) = D, (s) x, (s) (1.7)
Hence, it follows that both parts of (1.,7) are equal the same entire function
P (s), which, as ulually,: in Wiener - Hopf method, can always be selected poly-

nomial, Thus
P (a)

D, (s) =
(1.8)
Prom (1.5) it follows that x_(s) ~Vs when |s] . oo, Res> P . Since
"®_(s) should disappear to infinity (this 1s necessary condition for application
of Mellin transform [8]), then P (8) can be only a constant. Finally we obtain
that . (s) = C/xy (0), and means
- ur"ai-‘tc"—"—'r.d‘ (1.9)
where L - straightline Res =320, Since hers 0 <z <1, it is possible to
add contour L to semicircle of infinite radius, lying more to the left of L,

and then 9.(r) will be equal to sum of residues of D.(5) at poles, lying
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more to the left of I, i.e.,
o)
9 {2) = Cy+ D) Ro(Caz*")
' »=1 (1.10)
Here C, and C,, - residues of ®_(s) at points -s =0 and s = pn» respectively.
From (1.10) one may see, that ¢ (0) = C, (since Re p, > 0),
For explanatior of behavior of @(z) when = —1  we will use following
affirmation [9): iy f {<; .. “half-plane" of Mellin transform, functions of

¥ (t), then are
) |

lim ¢ (¢) = lim s (s) f@) =Y ¢ et

. 8) = ([)‘ dt
i~} ) ( ' 03 ) . (1”11)
Here, from existence of limit in left part, follows existence of limit on the

right. We assume now that

¢(z) ~A(l —2)" yen -t (A4 =const, 1> —1)

Then from (1.11), it follows, first of all, that 7 <%, since s®_(s), when

8 — oo , also aspires to infinity (s®_(s) ~Vs when s — )o Further,
applying (1.11) to v (1) = @ (1) — A (1 — )", we conclude that nscessarily
. rdg-—-
lims {o_(:) —a=M o

and since at large s
Q_(5) =Cs"s + 0 (5'h)

then obviously

Thus, finally
L4 (z) ""‘C'—-— (14— I)-"l' when 'z—1
| &
We will now prove nonnegative character of function ¢ (z). This, its
property, is result of cne theorem of S. N, Bernstein [10], which, as applied

to considered case, is formulated thuc. so that function ¢(z) is nonnegative,

it is necessary and sufficient, that its "half-plane' Mellin transform
1
O_(s) = SQ(I) z*+idz
[}
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be an absolutely monctonic function, i.e.,
D (>0, CI(H<KO O ()>0..., ©O<o)  (1,12)
Because of this theorem, it is necessary only to be convinced of the fact
that ®_ (s) satisfies condition (1.12)., For that we will use expression (1.8)
for ®_(s), from which, taking into account form of *-(s) given in (1.5), it

is immediately clear that @.(5) >0 (0 Js ). Further, we examine

YO =100.0=[r5 -5+ 3 (g — Moy

TRy

It can be shown that Rep, — (27 4+ 3) <0 at any n, whence it follows that
¥ (5) <0, ¥ () >0,.... Now applying method of mathematical induction, it is
easy to prove that ®_(5) satisfies (2.12), and means @ (/) is nonnegative,

2. Let us consider development of twin during infinitely slow, but non-
x;xonotonic change of load. For basis we will take equation (0.2), which gives
connection of length of free twin with quantity and character of forces, acting
on dislocation. We note, first of all, that force of resistance § (r) consists

of two considerably differsnt parts

=s4S5°

where s (r) . -braking force (Peierls force), znd S° (z) —. force of surface tension.

Regarding s, we will assume that it is directed against possible motion of
dislocations and in limit of infinitesimal speed is equal to constant: |[s|=§, =
= const., During monotonic buildup of external load s = - 5,, and during its
non~monotonic change, in general, — §, < s< S,

Force of surface tension S° (x) is applied directly to "mouth" of twin and
threfore, it can be considered non-zero only near end of twin, i.e., S° (x) =
= Q(—2) whereQ(z)+0 only at0 <z<dand d is small,

External load £ (x), let us assume, is proportional to certain parameter
A (£f(x) = Ag (x)), sc that increase or decreace of load is caused by increase

or decrease of A. Then, for case of load, equation (0.2) is :ritten in the
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form
F (0 =8s+J (l)
(2.1)

Here

1 { .
FO=3ls@n@ds, T =3{s @0 d
1

B = S(p(:c) dz.= ®_ (1), n(z)_:giz‘,_l)

It is not difficult to show now, considering results of Section 1, that
equation (2.1) has the same properties as corresponding equations in (5, 6].
Thus J (1) will be monotonely diminishing function 1, of and its main member

at > d equals

oo

~_AL - C Q (x)dx
Jhmarme M=po| S

Further, F(l) also will be monotonically diminishing function of 1, if
f(x) monotonically diminishes. If however. f{x) non-monotonically depends on
x, then F(1) can have several maxima and minimums (however, always F(ec) =0,
only if f£(x) is integrated in infinite interval). Marked coincidence of pro-
perties of equation (2.1) and corresponding squations of [5, 6] allows to affirm
that all basic conclusions and results of these works will also be correct and
in given case., In brief, we will formulate these results,

Loading. During increase of external force Ag(x) while parameter A less
than certain A%, twin does not appear. Quantity A* is determined by the conditicn
that external force at locus point of source is equaled by full resisting force
at this point S (0). When A = A* twin appears, which is increased with further
rise of A. Depending upon form of g{x), length of twin, when A = A%, can be
either as small as desired (during monotonous and is sufficiently fast decrease
of g(x), when equation (3.1) has only cne solution), or finite (during slow
decrease or non-monotonous change of g(x), when equation (2.1) has two or more
roots). In latter case, twin of finate dimensions intermittently develops.

Unloading. During examination of unloading, a simplifying assumption is
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made about form of g (x), which is considered monotonely diminishing with rise
of x. It turns out that a determining role is pisyed here by relation S, to
5°, depending upon size of which, two cases can be represented.

1. Surface tension is slight,S°(0) < S,. Then, if twin is formed by
comparatively little force, such that always f(0) < 2S., then after removal of load,
dimensions of twin remain unchanged. Otherwise, when external stress at point
x =0 in end of load is larger than 25, , during removal of load, a certain thin-
ning of twin occurs in its mid part, without change of length.

2. Surface tension is great. In this case, twins of large dimensions,
such that S¥/7T> M, conduct themselves just as in case 1, i.e., only then
without changing length. If length of twin is not very gre=at, and reverse inequal-
ity Seo¥/T<'M, occurs, then, during removal of load, at first occurs decrease
of thickness, at constant length, and then, at most extreme decrease of external
force, length also starts to decrease, and finally twin completely disappears.

Apparent’y, case 2 corresponds to real twin layers, whereas case 1 is more
probable for incomplete shifts.

In conclusion, we will 1list certain considerstions about stability of twins
at surface of crystal, Twin will be called stable, if its length increases with
increase of load, i.e., if di/dA > 0.

Considering equation (2.1) as implicit assignment of function 1 {A), we
will find that from condition di/dA >0 , it follows that F'() < J'(l)-

During sufficiently large 1
. [ ]
n ¥ 1 M
FOy~7 (h:::iS/(x)d:), JOEE
and, consequertly, condition stability is fulfilled . This means that long twins
are slways stahle, where, under long, one should understand such twins, length
of which is great as compared with dimensions of region of application of load

to surface of crystal.

Physicotechnical Institute of Low Submitted
Temperatures of Academy of Sciences 8 June 1963.
of USSR
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ON STRAIN WAVES IN DURABLE ROCKS
Ye. I. Shemyakin
(Novosibirsk)

1°. During dynamic loadings of solid media by explosion or shock,
strain waves appearing in these media have, as a rule, small spatlal

extent of region of loading. If the biggest dimension of this region,
Sy, is significantly less than distance r, from source (in center of

c%arge or at point application of impact load), for example, s}~0.l rg,
or still less, then such a strair wave can be considered short [1, 2].

In significant range of distances from source, strain waves in solid
media can be considered weak. This is due to fact that compressibility
of solid bodies is small: bulk modu%us of compr6351on of majority of
durable rocks has a magnitude of ~10° kg/cm?, so that relation of ampli~
tude of strain in wave to magnitude of this modulus is of small size of
order 0.1 for waves with amplitude of 10% kg/cm?.

As an example, of short strain waves can serve waves on section of load
in durable rocks, appearing during underground explosion of high explosive
charge. Practically, in entire range distances, starting from 2-5 radii
of charge and further, these strain wavas are weak. These facts allow
to apply to study of strain waves methods of theory of short waves [1, 2].

2°, On basis of given measurements of strains and particle velocities
in durable rocks (diabase, limestone, granite, marble [3])} it is possible
to note folleowing peculiarities of strain waves, appearing during under-
ground explosions:

1) in entire range of measurements, starting with 10-15 Ry (Ry- radius
of charge), on stress curves shock waves are not observed.

2) starting from distances 10-15 R, to 100, relation of length of
section of stress build-up s, to distance from point of explosion has
magnitude of order of 0.1, and then approximately proportionally decreases
with distance from point of explosion;

3) build-up of strain occurs sharply, and decoy of strain has smooth
cneracter; ration of stress gradients in regions of loading and unloading
can be estimated by ration of magnltudes 3 /s , where s,-extent of zone
of compression in region of unloading. %s ratio in zone near charge
has magnitude ~0.05-0.1; and at great dlstnncos, where stresses are
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already small, equal 0.25-0.3;
L) length of zone of compression 8, + s, increases slightly with dis-
. tance from point of explosion (with increase of distance frem 30 to 150
R¥ magnitude of s, + s, is increased approximately by 10-20%).

Region of sireas bulid—up S, approximately up to 100 Ry grows signi-
ficantly faster, than s, + 32, so that position of peak on stress curve
sharply shifts from beginning of curve to sides toward point of explosion-
peak of stresses "will lag" behind entry of wave;

5) starting from distancss of order 20-3C Ry, envire stress curve, on
the whole, travels approximately with speed of sound a, and in stationary
medium. Difference of prepagation speed between peak of stresses and
wave front is approximately equal to 5-10% at distances ~30 Ry and ~1-2%
at distances of 100 Ry; difference of these speeds decreasss with
distance from point of explosion;

6) peaks of stress and strain in section of stress buiid-up decrease
with distance approximately proportlonally with r™0', where n = 1.6 - 1.8;

7) at distances ~50 Ry ratio of maximum trava*llng spesds u, to speed
of sound in stationary medium is u/e~10" h longitudinal deformation
has the same order.

Peaks of stress o, at distances ~50 Ry have magnitude of order 100
kg/em~; for a given particle, these stresses increase for a time ~10~3
sec (for charge of TNT weighing 1 t).

3°. In article are considered short strain waves in medium, which,
during rapid dynamic loadings, changes to meximum state in part of loading,
it is assumed that in this state principal normal stress in wave are
connected wi*h certain condition of type of Coulomb-Mohr-Prandtl condi-
tions. Depencarce of hydrostatic pressure on volume strain is assumed
weak-nonlinear.

Solution of problems for spherical and cylinderical symetry, and also
for plane wave is constructed by method of theory of short waves; all
main results about lvading waves ccincide in accuracy with results of
article [4]. New data relate to generalization of condition of limiting
state in case of weak nonlinearity and to appraisal of influence of
unloading law of attenuation of maximum applitudes.

1.1. ILet us consider one-dimensional problems of propagation of strain waves
in continuous medium. We will select, as independent variables, the Lagrange
variables: r,-initial coordinate of particle, r-coordinate at moment of time t.

Equations of motion and inseparability in Lagrange variables have following
form*

e

{ 01’ 2(,r-'5.) re ar Pa [P0 b
Por + i =0 g =B(%)

(1.1)
Here o,, ds == 0,~principal normals of stress; p-density, p -its initial value;

u speed of travel in direction r.

*In equation of motion, compressive stresses are consideresd positive guantities.
Equations of (1.1) a.e writen for case of spherical symetry, but all subsequernt
calculations, with elsmentary changes, can bs applied to cylindrical and plane
cases.
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ir one were to introduce instead of p vulume strain c¢f particle e =p,/p —1
and to differentiate second equation of {1.l) by t, this equation of inseparability

can bte represented in the form

du re\%3ds o Or 2u O _ 9. _Po __
-5 -Smw  (=Fmat-r =B

(1.2)

In equations of motion and inseparability we shall turn from stresses tuv
deformations; let u (ro, t) - velocity of a particle;e (ro, t) - volume strain;
r(ry, t) - pesitic.. of particle, w (t) - dislocation of particle; then

t !
r(ryt) = \udt'+ry or w=Sudt'
v = d (1.3)
We introduce new independent variables 8, v , and new unknown funciions m

and e with the help of realationships

r=ag(i + A43), t=It¢, Cu = apMom (8, %), &= eg (8, )

(1.4)
Here a, -~ speed of sound in stationary medium; M, and & ~ small quantities,
having order of maximum Mach number and of maximum defcrmation. Assumption of
smallness of M, and & is aasumption of weakness of amplitudes in wave. As was
indicated above, M, has order of magnitude 1073 to 10"“, quantity e, also is
small; as will be shown below (during derivation of equaticns of short saves),
e My; quantities 3, ¥- are of order of one unit.

In (2.5) is considered that A8 <© 1 due tc smallness of 4,

Agsumption on smallness of A, i3 assumption of shortness of wave, This
signifies, ar follows from (1.4) and from detcrmination of s, (see above), that
length of region of stress build-up s, = atd Ay is significantly less than
distance, passed by wave from point of axplosion 7a = ¢

s, (1.5)

In short (Ae<<1) and weak (Mo < 1 £, << 1) waves, following appraisals

cf latersl and longitudinal deformations in spherical-symaetric wave are correct:
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- apMomAyt ow
B T W T 4s )“’A°M°' 8r=H~M. (1.6)

From comparison of appraisals of (1.6), it follows that e, is small quantity

of order of M,, and & - is small quantity of a higher order, since

1.2.

lo A A 0.‘1..
We assume that during dynamic loading behavior of medium is described

by the following two functions:

—6:=¥{(e), o0="Y,(0 4+ 20, 6, — oy = [ () (1.7)

Connection of average stress o¢ with volume strain will be obtained, further,
in the form

—o=Ke(d + l'e), [le]€1 (K= d £%p, = const) (1.8)

Here K - bulk modulus, A, p - Lame constants.,

In (1.7), function f(c) describes limiting state of medium and connects

first and second invariants of stress tensor; we obtain

f (o) = 3mo (1 — y'0) (s <€ 1 m, ' = const >0)

This corresponds to decrease of shearing strezs at site of slipping with

increase of normal stress at this site (or with increase of average stress

).
In this case, using smallness X'0, we have
oy =ao, (1 + %0) (a =11+_2:;, 1=(_’_:L):g_i.“)il ya xs<l) (1 9)

Unknown parameters a,% will be considered constant in range of high speeds
of loading, near shock loads. With the help of (1.8) and (1.9) we ohtrin

3Ke ' 4. 22 »
3K(1 —a)

0'—0.=

Tym ¢t F=U+ykK (1.10)

We put these expressions in equations of motion (1.1), replace in it, p, 7, 7,
by expressions through deformations
i du

e 2al(l—a)e(t4-1e)1+e,
Treyr ar — % (0 + 20 5o — F— e =

(1.11)
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Here a; ~ local speed of sound in region of limiting state; it is deter-~

Lty mined by factor de/dry; we have
{ d3, K
—_ -l = _a!(l-{-?.le), Q=
Po det & 10 po(l 4-23) (1.12)
In elastic medium, instead of (1.10), we have Hooke law
= (A 4 2p) &4 — 4pe,, 0, — Gy = 24t (&2 — 3e4) (1.13)
Ty
Equations of motion of elastic medium have form
{ ou 4p {+e, .
TFegr a6 a6t 5, + [ (6 = 3e0] = e — Sed) 755, =0
]/"H-Zp
a°= .
( Po ) (1.14)

Here component in parentheses is obtained during differentiation of e with
respect to r,.

1.3. We will derive equation of short waves for medium in limiting
atate and for elastic medium. In equations (2..11) and (1.14) let us turn to
variables of (1.4); here we will consider appraiial of (1.6) for ¢, and e, and
use following iransfer formulas

du Mo Om du  aaMa (Om i + Ad 6m)
dre  1Be 38 ' T\ B3, 03
dr. ta e Qe_gg(c_?_:___i-l .mge_)
3 T wad. 8 o T T\, T T A, 9 (1.15)
Transforming equation of inseparability of (1.2) we have
My am eofde _ 13 Adbde) Ve — 2 2aMem
184 98 (i*qv [ Ao 00 1 ¢t ol (1 + Add)

Hence, with accuracy within small parts of a higher order, respectively

My Ay .

om o ae e [ar M
&+ i = e | 3% 3% 2% 7] (1.16)
Transformation for equation of motion gives:

for lixiting state of medium
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3__"1-_ . 0o B Im am . ta e _ “!z
o N ‘md-g—ﬁn[s—‘--—é;—s — 20N EQS“%‘V“ --oz)c]( = :.-,)
(1.17)
for elastic medium
om 2o O¢ om am
Tt = b5 0% (1.18)

From ccmparison of (1.16) and (1.17), and also (1.16) and (1.18), assuming

that right sides of equations - small quantities, we find

ee=M, N=1—2h8, (h=const>0, h~1) (1.19)
From (1.16), (1.18) and from (1.16), (1.17) of equation of short waves will
obtain:
for elastic medium
??%+<%'=0' %—G%J-m-o (1.20)
for medium in limiting state

] e an a
Ft+a=0 Fo@+xminNTHFiQR-am=0 (x=1z2~1) (1,21)

If x <1, it is possible to show that speed of propagation of deformations
in regions of limiting state will be constant, and that quantity xm in equation
(1.21) should be disregarded.

From first equations of (1.20) and (1.21) it follows

m=—e (1.22)
(arbitrary functicn of v is equal to zero due to continuity ofm and e on boundary
of elastic zone and state of rest on boundaries of zones of elastic and limiting
states),

During derivation of equation o. short waves with acceptable accuracy (to
small parts of first order inclusively) into final equations did not enter
quantity es, since it is small of order of Ao.)Me. Since Lagrange coordinate

ro differs from r by e, . then with acceptable accuracy r = r,.
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Therefore squations of short waves (1.20) and (1.21) have the same form
in Lagrange and Euler coordinates.

If, in expression for N from (1.19), we replace 2;0» 8 DY their expres-
sions through Lame parameters and quantity « from conditions of limiting state,
it is possible to establish following relation

N A v A
a_r-—-—_*_z“ hAo (1+i——+2}!)' or a-t——v( —-73) . Ade<£ 1) (1.23)

Here v -Poisson's ratic. Quantity kA, as fellows from formula for N,
determines jump of local speed of sound during transition from elastic region
to region of limiting state

830 = ag (1 — hA,) (1.24)
i.e., in case of weak short wave (a.lo - ao) / a, - small quantity of order of
Ao From (1.23) it follows that for such wave ¢ =v /(1 —v) with accuracy
within small part of orderA,.

If speed of sound changes continuously, then h = 0 and quantity a in
accuracy, is equal to v/ (i —y), as was noted in [4].

We return to relationships of (1.10). Let us consider simplest case,
considering ¢ = v/ (1 — v)and disregarding nonlinearity 1 = 1' = 0 ; we have

-a,=(A+2p)e, — gy = At
We will compare these and elastic dependences
~ 0, = (A - 2n) & — 4pe,, ~— Os = At + 2pe,

One would think, that due to amallness of £+ in comparison with e, , there
should be no difference both in laws of propagation and wave attenuations in
elastic and limitingz zones. However, this is not so. Into equation of dynamics
of elastic media {1.14) enters derivative dei/dro, having the same order
M_ as longitudinal deformation ez, (see (1.6)), and size of this derivative

(o]

can be disregarded r.o longer. This determines faster attenuation of stresses

in region of limiting state as compared with attenuaticn of stresses in short
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elastic wave (compare second equations in (1.20) and (1.21)). We will show, at
last, that if into conditions of limiting state (1.7) or 1.19) we introduce
constant component g (let us consider, for example, linear condition (1.9) and

connection « and v in the form (1.23))

4
Gy = ac, — B, T -~
’ r B l+41 0 (1.25)

then, for short wave B/ (A - 2p) will be small of order A4y and quantity
B in equation of motion should be disregarded.

We make following appraisal. From condition (1.25) we have

R4,

. v
G = ---—0,—-[3—-1_?

{—vw

g,

and from elastic connection

vy

— 1-—-2
G= 50 —37T A+ 2 e
Since, during transition from elastic region to region of limiting state,

stresses are continuous, then

B §—2v A
oz = DM (3 T — —-—1_,'/)~_A.M,, (1.26)

In this case, during derivation of equations of short waves (1.21} under
condition of (1.25), into the right part of (1.17) would enter a quantity of
order A,. Ho, which one should reject. Thus, during the study of continuous
strain waves, one should use condition (1.9) and consider a and v connected
by relationship (1.23).

1.4. Ve will find common integrals of equations (1.20) and (1.24).

Integrating ordinary differential equations

f_!_ d8 - dm
{ — (0 +xm 14) —2~a)m

we determine
1

=y wn
C‘zml’.‘. 6=C‘m,4+"_a~h

Hence, common integral
1
8=m= O (m**)+ — —h (1.27)

where ¢ - arbitrary function,
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Common integiral can be rewritten in the form

m = :rj"“'"l’[(é— =t h) T]' T = ,f (1.28)

where (by meaning of problem) ¥ - arbitrary positive, monotonically increasing
function; entry with variable T was selected for convenience of determination of
¥ from initial data at t = t4,

We will write (1.28) in variables (r, t)

=Y @ b= (1= ) ot — hag

x4

a (1.29)
coinciding, at h = 0 , with integral, shown in [4].
Common integral of squation of short elasti: waves has form
m=208d@T), or m=-—20D (1.30)
where @, - arbitrary function. Or
=T (1.31)

From comparison of (1.29) and (1.31), it follows that in region of limiting
state, decrease of amplitudes with distance occurs reciprocally to r*-*,
independently of quantity x, which determines change of speed of sound as
function of size of load. In elastic medium it is reciprocal to r.

Comparison of formulas (1.10) and (1.13) shows that atz = v/ ({ —v)connection

o, (¢ , in elastic and limiting states, hardly differ. This fact is well
illustrated by experiments with fast loading, for example, Fig. 1 from [8]

(with increase of velocity of loading, function g,(e) changes from {5) to (1)).
But, as follows from presented [example], law of attenuation of amplitudes does
not determine this connection, but derivative of o, in respect to r, which is
various for elastic and limiting states.

In concluding this section we will introduce integrals of egunations
for short waves in elastic medium and in medium of limiting state.

In cylindrical case

d @ 0 -
FtE=0 G-+ iizn.o (1.32)
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These equations allow common integral (h =0, ¢(x) =0, i.8.,, m= - e)
d= mi_-'im(m“—;:) + %xm or m= T:’-—’(Do [(6 - -;-xm) 'I'] (1.33).
Here @4~ arbitrary positive, monotonically increasing function. In cylin-
derical case, common integral of equation of shert elastic waves has form
m=T-® (8T)
which coincides with main member of asymptotic expansion of known solution for

elastic waves.

In case of plane wave (or for wave in rod, included in rigid shell) connections

of stresses and deformations in elastic and limiting states do not differ, since
as before, from continuity of speeds, follows comnzction a =v/(l —v), and
lateral deformations are absent,

Equations of short waves for medium in limiting state will differ from
equations of short elastic waves only by component, allowing for nonlinearity
of volume strain (1#9)» which influences only rebuilding of stress profile,

and does not affect attenuation, if we disregard unloading

3 a
00, % T I; .
2 v
5 ) (z)/j_m 4 am om
i Im)s =0
i w— Orima
1063 =
Hence, if follows that
s
€10 m =@ [(3 + Im)!] (1.34)
0 ¥ [ 12 1§
Fig. 1. Here @ - arbitrary function., Case of

plane elastic wave follows from (1.34) at 1 =0.

As in elastic medium, so also in medium, lccated in limiting state (dis-
regarding unloading), decrease of amplitudes of continuous plane wave of loading
with distance does not occur. This agrees with known facts.

2.1. We will investigate influesnce of elastic unloading on attenuation of
amplitudes in spherically-symmetrical strain wave, region of loading of which

is described by solution of Section 1.
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Influence of irreversible losses on lowering of peaks of stresses in spherical
(and cylinderical) case can appear in two-fold manner:

1) in region of loading, velocity of propagation of perturbations (speed
of sound) ay is less than speed of sound a, in stationary medium (or in zone of
elastic unloading), because of this, wave of unloading continuously lowers
peaks of siress in wave;

2) presence of irreversible losses during loading (limiting state of
medium) leads to faster lowering of all stresses in zone of loading, as compared
with case of elastic (reversible) deformations. As was shown above, in region
of load faster lowering of amplitudes of all stresses occurs, as compared with
lowering in elastic wave (" ¥, a < { instead of .

Influence of unloading wave on decrease of peaks of stresses in strain
wave is determined by conditions of reflection and refraction of waves at bound:.y
of region of elastic unloading and region of loading. Influence of unloading
depends on difference in velocities of propagation of perturbations and on
relative magnitude of gradients of stress curve in regions of loading and un-
loading (5, 61J.

Knocwing solution of problem of wave propagation in region with limiting
state, for determination of unloading wave it is necessary to solve boundary
problem for equations of theory of elasticity (data on one of characteristics
and data on unknown curve, near characteristic of second family), which can be
done by numerical methods (for example, method of characteristics).

If, however, we consider only appraisal of influence of unloading on attenu-
ation of maximum amplitudes, it is possible to use following method: to derive
formula for initial velocity of unloading front {by analogy with derivation for
plons elastic-plastic wave {5, 6]), and then by deviation of speed of unloading
front from speed of sound to estimate contribution of unloading to decrease of

amplitudes.
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2.2. We will derive equation of elastic unloading. Equations of motion and
inseparabillty of small elastic deformations have form
d' -0.

du 93, ] de
Aot t25—=0, G427 =0 (2.1)

During unloading, differences between stresses and deformations obey the
Hooke law
— (0, —09,)=(A+ 2u) e — dpee — (A 4+ 2p) e. -+ 4peg_
— (@0 - 0s.) = Ae 4 2uey — Ae_ — 2
“ [ e_ pe‘.. (2.2)

whers quantities with minus index are calculated on front of unloading t = f (r)
from side of ragion of loading (f (r} - unknown function).
Using connection of stresses and deformations in region of limiting state

(not limiting generality of conclusion, we assume below i =0, so that
a=v/({1—v) .
—O0-=A+20e (141l), —or=2he_(1+ L) (2.3)
From (2.2) we find

— 6 = (A+ 2p) e — dpes -+ (A + 2p) le® + 4pe,

O, — Gy = — 2§ (2 — 3eg) — 2ule ? — Gpe,. (2.4)
Putting (2.4) in equation of motion (2.1), we find
P W =Pt G () (2.5)
where
6O =G )[F+2u~-aF]+20-a% (2.6)
If we introduce characteristic variables
t=r—qy, n=r-+4at (2.7)
in region of elastic unloading, equations of (2.1) can be written in following
form
e —ftafd, To-Loaf0 (DZiTe (2.8)

Relationships of (2.8) will be represented in following form, convenient

for further computations:
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along characteristic ¥ = const

) ]
= v o =t+n
U= — \ | —— dn+ 5(§) r=
§.['~ e o (2.9)
along characteristic N = conat

ua_.a,a-i +e.§"" P+ £ @) (2.10)

2.3. We will derive formula for initial velocity of unloading c, following
method, shown in [6], for plane of unloading wave.

Let, at r = r, deformation curve be given (). having corner at
=t,,,. t =ty. In vicinity of this point, it is possible, approximately, to
describe curve by formulss (Fig. 2)

Se=ty s —ki{t—1) (¢ < to)
be =Cpnux + ka(t— 1) (¢ > te) (2.11)

Loading corresponds to (<t unloading - t>t,, kl’ k, - positive
values of gradients of deformation,

Solution of preblem of unloading is based on joint solution of equations of
short waves for region of limiting state and equations (2.9), (2.10) for elastic
unloading, taking into account boundary conditions of (2.11) at r = r, and
conditions of continuity of psrticle velocities and deformgtions on unloading
front t = £ (r), position of which is not known.

Using approximations of (2.11), we will define values of deformations at
points A, B, and C, on characteristics in region of loading and unloading re-
spectively, considering quantities of velocities ¢ and ay constant in section

(rg, ro + dr¥):

- . d [ 3
=t -hec-{ﬂ
d
e = Cuay + ks (dt' — 7'._)
'c = 'm.‘ + kl (dl. i é—:: (2012)

At point M (r, + dr¥, t, + dt*) on front of unloaz.ing, we will calculate

deformation and particle velocity by the formulas for region of limiting
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state

e=r N[ —py—a (-], o= — e (2.13)
Hence, with the help of (2.11), for ssction of load it follows
e e - -
Thus, on front of unloading
‘ rF—re=c(l—t) Or dr®:cdt* (c=dr/dt=1}[)

will be

Cy Ty —(2—a) e,  dr® [ re— kydt*(t — ¢/ ay) (2.15)

t.;dt B Uy Uy — (2= a) U, dr® I re + adkidt® (1 —a/ay) (2.16)
4 M
/:Lm with accuracy within first degrees of dr¥, di#*
N r
o ldr inclusively.
Fige 2.

We will determine "reflectivity factor" of
waves in region of elastic unloading from front of unloading.

From proximity of points B and C to point O it follows

My — Uy = gT“ ll-t.+o (ty—to)=1 (1—- _:_.) die
MG~ Mgay = :_;.‘. re ety =1 (1 +-:-.) dee )
(<ot
where ; - acceleration at origin of unloading.
Hence,
g " “max _1—c/as
o— g,y 14-c/e (2.18)

For calculation of ug - uwy. and Us = Up,y W will use relationships on
characteristics in region of elastic unloading, will calculate up - Uy and u; - uH
with the help of (2.9) and (2.10), and then, with the help of formula (2.16)
for Uy let us turn to required quantities. Inasmuch as relationship along
charcteristic (2.9) and (2.1C) ia applied in immediate vicinity of point (r,, t,),
integrals in (2.9) and (2.10) are calculated approximately; integrand is calculated

at point M (or point O) and is multiplied by length of interval of integration
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2dr*,

Omitting intermediate calculations, we arrive at final exprsssions
¥~ M¥par = apks(l —c; 8o) dt® 4 2a0k; (1 —c¢/a}dt* L Giapkdt®

B~ Mgy = —aeks (1 -} 2/ 2,) dt® — 2a0ae,, . d7® [ re — Giaokdi®

where
6= (1) 2 + (- 2)]

Putting these expressions in (2.18), we obtain equation for unknown quantity c

1—ciae (ko) (1 + c/an) +2 (1 —¢lar) 4+ Gy (U _ em:a")

THciae = —kuki) (1 1 cjas) + 230 — Gy T ke (2.19)

Quantity U, as easily shown, will be small, due to shortness o wave. Indeed,
for curve with linear build-up of qusntity of defcrmation U = sl/r0 , 80 that U
has order of smallness A,

Using experimental -ata on proximity of quantity c and 4 (I —c/a =w01 <),
and assuming that 1 - ai/ae=0sn o1t from (2.19), we obtain, with an accuracy
to the small order of the products wi.ws, A,.

Lokl
ll-—-i : kl\i—ag) (2.20)
i.e., velocity of front of unloading is nearer to velocity of propagation of

deformations in limiting region ays the

g‘;c q__;:% \\ ! less k,/k; - ratie of gradients in region
”A \\ of unloading and loading - and the less
o \ 2 w; - deviation of velocity of propagation
190 : 1] of peak ¢ from ay.

‘w*-a, nE \.T{% Formula (2.20) coincides with anal-
. :ZJ:?_\“’M'B N ‘\i ogous formula for plane wave of unloading
za_gm \\ . \\‘ [5, 6], if in the latter, are consider

! y . ;Ev/lq’l Q‘\\ w: < 1. Coincidence of (2.20) with

! e 3 30 100 200 results for plane wave is result of
Fig. 3. shortness of loading wave.
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Application of (2.20) to appraisal of influence of unloading on attenuation
of peak amplitudes of strain waves during explosions in durable rocks, shows
that this influence is insignificant, since at short distances, where uw, ~ 0.1,
ratio kz/kl is small, and at great distances, where 1c2/kl ~ 0,26 - 0.3, there
is minute differsnce 1 - c/ao. For appraisal of inrluence of unloading, following
calculation was performed, in which axperimental sirain curves were used [3].

Law of attenuation of maximum stresses, according tc this data, is represented by
dependence 1 (Fig. 3). As initial curve was taken stress curve at distance of

20 R, shown in Fig. 3. Using experimeatai data on quantities k, and ky, and

on speeds a, and c, with the help of formula (2.2C), was calculated d2crease

of maximim amplitude owing to unloading at all distances from point of explosion.
For intermediate distances between empirical curves, interpolation was made.

Thus, dependence 2 {Fig. 3) was determined, which corresponds to change of maxi-
mum stress, witaout influence of unloading.

At distance 150 Q*, as saen from Fig. 3, amplitude of stresses, measured
in experiment, is equal to 13.2 kg/em®, without regard for influence of unleading,
amplitude o, = 16 kg/cmz. If we calculate attenuation of amplitudes, without
regard for transfer of rock in limiting state in regions of loading (i.e., for
elastic medium), amplitude of streases is equal to 62 kg/cm?.

In [7], remarks ccncerning our article from N. S. Medvedeva [4] were expres-
sed in which preliminary results of invsstigations of waves of loading in rocks
were presented. These notes relate to connection between a and. v and to possible
influence of unlcading (which was not estimated in [4]). This criticism forced
return to problem of strain waves and re-examination, once again, of basic
conclusions of [L]. As reader may note, all basi: assertions of [4] are true.

Author extends sincere gratitude to S. A. Khristianovich for valuable advice

an instructionz, given during exscution of present work.

Submitted
1 June 1963
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APPROXTMATE EQUATION OF STATE OF SOLID BODIES

V. M. GOgOlev, V. G. m’rkin, and
G. I. Yablokov

(Leningrad)

In series of problems, coupled with study of strong shock waves in
solid bodies, information is necessary about their thermodynamic proper-
ties during high loads. At present, for study of mentioned properties,
so~called method of shock compression [1-10], is widely used. This
method allows to obtain shock adiabat for investigated material.

Using shock adiabat and theoretical model of solid body in Debye approxi-
mation or in more accurate approximation, equation of state and other
thermodynamic relationships can be obtained.

Large variety of solid materials and insufficient knowledge their
properties during shock compression pose question of consideration of
possibility of generalization of experimental data and obtaining of
unified relationships, describing thermodynamic properties of definite
class of solid materials, which would allow to make extrapolation of
these properties on cther materials. Such generalization, in accurate
meaning, is hardly possible, However, for problems of applied character,
in many cases presence of approximate information is sufficient for
this question.

Below are given results of generalization of experimental data of
{1-107 concerning shock compression of metals, rocks, and several
other solid materials., Offered is single shock adiabat for shown
materials., On the basis of theoretical model of solid body in Debye
approximation and shock adiabat, generalized equation of state expres-
sion for internal energy and several other thermodynamic relationships
for solid bodies are given. These results have an approximate character.,

1, Generalized shock adiabat. At present, in sufficient detail, shock

compressibility of metals has been studied [1-5, 8-10], Furthermore, in published

literature there are experimental data on shock compression of series of roccks
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(6, 11] and certain other sclid materials [6, 7]. Let us consider possibility
of their generalization and obtaining of single shock adiabat, For comparison
of shown data, it is necessary to bring them to dimensionless form. As measured
parameters, which would characterize form of hird material, it is rational fo
select apeed of sound C, in undisturbed medium and density ?o-

In Fig. 1 are given experimental points on shock compression of solid rocks

and related materials in system of coordinates

P—Po . u
AP = poret M =
where p - p« - pressure jump at front of shock wave, spreading in undisturbed

medium, u - particle velocity at front of shock wave. From consideration of
figure, it is clear that for various materials, experimental points are sufficiently
well coordinated among themselves without any noticeable systematic deviation.

In Fig. 2, in that same system of coordinates are given experimenial points
for dimensionless pressures up to magnitudes ~ 35. Since, for large pressures,
information about shock compreasibility of sclid rocks is absent, on figure are
given points for metals; in given case, experimental points for various materials
are well coordinated.

Below, on basis of given data, is made an attempt to obtain single shock
adiabat for solid rocks, metals, and several other materials,

During approximation of experimental data on compressibility of liguids anl

solid bodies analytic function is frequently used, of form

p—p__V[(2\"_
AP =53 =3 [(Po) ‘] (1.1)
where A and n - constants, determined by experimental data. Using conditions

of dynamic compatibility, we proceed in (1.1) to variables a P, M

My=AP —(AAP -+ i)-‘m‘

(1.2)

As a rosult of approximation of data of Figs. 1 and 2, we obtain
A=355 n=5 when 0IC AP (1.3)
A=3, A=3 when 0 AP0 (1.14)
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Fig. 1. Curve-calculation by formula
(1.2); points: .
1 - marble (#=2®. ¢~ 3010)

2 - quartz (=2 =300
3 - para.ffin (Pe = 2.8, ¢, == 3000)

L, - NaCl, single crystal to=20. e =3ty

5 = CO, 301id (e.= 157, ¢ = 260)
6 - tuff, rose (s=1%. =150
7 - tuff, white (=16, c =130

{ps] = uc?'/m" [te} = m/sec

In Figs. 1 and 2, graph of depen-
dence of (1.2) with respect to (1.3)
and (1.4) is shown by solid lines. This
graph is sufficiently well coordinated
with experimental points. Relative
deviation of experimental points from

curve lies within limits ten percent.
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Fig. 2. Curve-calculation by formula
(1.2); points:

1 -~ paraffin

2 - C02, solid

3 - NaCl, single crystal
L - Cdtss=281 o =210

5 « CU (5= 08, cq= 20

6 - Pb tFa=1188, ¢ =200

T = SN (6, =183, ¢y =200

8 - Zn (6o = T2, ¢y = UO0)

9 - tuff, white
JO - tuff, rose

It is necessary to note that formula (1.2), under condition of (1.4), has

interpolating character, since, in this range of pressures, experimental data are

absent,

Detailed comparison of approximation (1.2), under conditions (1.3) and

(1.4), with experimental data for various metals is given in Fig. 3. Tuis

comparison once again shows good coincidence of experimental data with approxi-

mation (1.2) - (1.4).

In plane of variablesa P and P/Pe there is rather large scattering of

experimental points. In connection with this, deviation of experimental points
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from curve (1.2) reaches 20%.

Thus, conducted comparison of experimental data for various solid rocks,
melals, and several other materials shows that for approximate description of
shock compressibility of these materials it is possible to use generalized shock
adiabat (1.1).

2. Equation of state for solid bodiss. Knowledge of shock adiabat of solid

body allows to receive equation of state and other thermodynamic characteristics,
if one were to use theoretical model of solid body Debye approximation. It is
known [12], that in this approximation, internal energy and equation of state

can be represented in the form

E=E_()+E (v, T) (2.1)
aE £,
p:aj-{-'r(v)-;' (202)

Here, p - pressure; T - temperature; »-~ specific volume; E, - energy of
cold o¢mpressicn; E, - energy, connected a with thermal motions of particles;
1 - Gruneisen coefficient. Inthese expressios E , E,, and ; are unknown
functions. If they will be determined, then full thermodynamic description of
solid body will be obtained, Let us ccnsider their determination. Thermal

energy, in this case, can be calculated in following manner [12]:

By =¢T (2.3)
If we assume that temperature of body, on the one hand, is noticeably
sbove room temperature, and, on the other hand, does not exceed tens of thousands

degrees, then, according to Dulong and Petit law [12], we have

c. zc, = const

(2.4)
i.e., heat capacities, during constant volume and pressure, are identical and
constant. Thus, thermal energy is determined completely by (2.2) and (2.3), in

the above mentioned interval of temperatures. For determination of energy of

N
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cold compression, shock adibat is used
4 i
w 7 / {1, 8). For that, from condition of
B °7; . dynamic jointness
)
U oxe ] E—Ev="s(p+ p (v — 7o)
L o §
6 where Eq, py, ,,. - values of parameters
A
a8 before front of shock wave, thermal
o8
- o part of energy, is excluded with the

help of (2.1) and (2.2). As a result,

equation for determination of energy of

cold compression is obtained by shock

L/

az 0y A adiabat
Fig. 3. Curve-calculation by formula daB, |
(1.2); poinus: - T 8=
]l ~ CO (pe=®0, ¢ =4530)
2 - Be(r.=18, ¢ =80}
3 = Thieem 1190, =200 =1 ~2) =1 (Tt =t L En (2.5)
L = T1 (ee=1210, o= 183)) i
5 «2Zn Here index O designates quantity
6 -cCd
7 - Zr (be=62,  com=e 33 of parameters of medium in undisturbed
8 - Ag (py=1070, c, = 31%)
G - Au (s, =190, € =3%) state, value of pressures is taken on
10 - Cr (p=75, ¢ =515
11 = MO (.= 1080, ¢ =51%0) shock adiabat {1.1)
12 « Ni (o=, =460
13 = Ti (Pe=480, o =4319) AE:':Ex_Ent A=Q+1)/7
1 - V (Fe=62, = 5180
15 = W (pe=1955, ¢ = 4050 This equation determines energy of
16 ~ Sn (=13, =2z
17 - Cuta =98, ¢ =3m cold compression with accuracy within

immaterial additive constant.
For determination of Gruneisen coefficient by L. D. Landau and Slater [1 -],

was offered dependence

T2

dr

2 __» dp,/do? OF,
e (=5 (2.6)

Here p_ (v) pressure of cold compression; Eyx - energy of cold compression.

mewhat later, MacDonsld and Dugdale offered a more accurate, though bulkier,
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formula [1 - 4, 8], For aims of present work, it was more convenient to use
dependence (2.6). Totality relationships (2.5) and (2.6) gives differential .
equation for determination of energy of cold compression. However, accurate
solution of this equation is possible only by numerical methods and entails great
di"ficulties, Therefore, we will make approximate solution of shown equation.
Calculations show that Ganeisen coefficient is a slowly variable function as
compared with remaining variables in (2.5). In connection with this, we will
integrate (2.5), considering that y is constant. Then with the help of (2.6),

we will determine dependence of ¥ on v». Before doing this, let us turn to

dimensionless variables,

P=

V=-— | —1

2 .
e A (2.7)
Making replacement in (2.5), according to (2.7), and executing integration,

we receive

\

P T+2 [ __P
e, =V (v) + 7°[1- T-{-TV]‘*‘ 4 ’[Wﬁ“ﬂ]*‘m (2.8)

where

w_ _T{i[_a+2 [, G+26-=1 .-
= ‘M{r[’ (7+1)"]+(n—n[‘ =1 =1 "]V +

- A (n+1) :
T TN —nm —Tr=0" ‘}

(2.9)
Quantities A and n are determined according to (1.3) - (1.4).
Thus, relationships (2.1), (2.3) and (2.8) allow to receive expression for

internal energy. From {Z.2), (2.7), and (2.3) we obtain equation of state

P=Px(y)+%zm (2.10)
where
Py 742 T Py
P PO+ T [Err— o] (2.11)
T A (1+2)(n—1)(n—1) (e
Py”n=77{~—r[ Tr—7—1)n V”‘]V(lt"

A(nt 1) w_ O+

Rl g Tt T ey s ML A i (2.12)

Quantity t is determined from (2.6) and (2.11). Disregarding initial values
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of parameters in (2.11), we obtain

2 { Biy(n4-1)—By(n 4 2)V-'— By(y+2) V™71
7"——'*‘.—
3 2 By — BVt — B,y"-1"1 (2. 13)
where
(t+2)(a—1)n a{n+1) w4
Bi="S=t » B=Smy BEmne—-D

Graph of function 7 (V) is shown in Fig. 4. Analytic dependence
7=23yt8 (2.14)
gives sufficiently good approximation of graph of Fig. 4.

Thus, relationships (2.1), (2.3), (2.8), (2.10), and (2.14) give expres-
sion for internal energy and equation of state for metals, solid rocks, and
several other materials.

In Fig. 5, are given curves for comparison shock adiabat and jsotherm of
cold compression (2.11) with regard to (2.14)., At comparatively small pressures,
these curves differ littie one from another. Of interest is analytic appraisal

of difference of these quantities. We will introduce, for this quantity

Considering it small, as compared with one, and expanding expressions (1.1)

and (2.11) in a series along 8. we obtain

Ap._.px(l)____i_{ my () [(n=1) (n—27) + 1 (r —1)]

A 2D —T—1) & +
R4+ D{n—1)(rn—2)(2n = 37) - 7(7 — 1) (T —2)} .
+ 24l (=) (n—17—1) 6‘+'°'} (2.15)

Since V changes little here, we consider 1 constant. From (2.15), it
follows that difference between shock adiabat and isotherm of cold compression,

at relatively low pressures, is proportionai to &.
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Fig. 4. Curve-calcwlation by formula Fiz. 5. Comparison-of shock adia-
(2.13); points - calculation by formula bat 1. with isotherm of cold com~
(2.14). pression 2,

3. _Expression for entropy of solid body. According to definition, entropy

differential has form

ds

3| &

dv
+£T— (3.1)

In accordance with assumptions made above, we have

3E,
dE = —5-=dr +4-¢, dT (3.2)
Placing (3.2) in (3.1), we obtain
1 JE: ai .
l:=-7.- W""P dv+c,7— (5-3)

We proceed, in (3.3), to dimensionless quantities

s P v AE T
S =— = = —-" = —Z= x
&’ k Pato®’ v o BT gyt = !

Using equation of state (2.10), we obtain

1dv de,
ds‘-’—‘ hac"7 e —— oh
v+ . (3.4)

Integrating this equality from point of initial state (S = So) ¥V = 1, “-‘=%m)

up to arbitrary state, we obtain

s—&cm?w (3.5)

my

This relationship reprasents ganeralized expression of sntropy S of solid
body, through parameters of its state. It is necessary to note external similariﬂy

of expression (3.5) to expression for #ntropy of ideal gas. In latter case, role
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of Gruneisen coefficient is different
(21
"
If, in solid body, there is isoentropic process, then, from (3.5) and (2.10),

we nbtain following expression for Poissen's adiabat

VY P — Pe(V} = const (3.6)
From (3.6), it follows that product of thermal pressure cn specific volume
in degrees (11 1) is constant quantity, i.e., in given case, there is also the
above-noted analogy to ideal gas. This analogy is associatad with assumption
of (2.3).
In order to receive appraisal of jump of entropy un front of shock wave,
depending upon its intensity, we exclude, from (3.5), thermal ensrgy, with the

help of equation of state (2.10)

S—Se=:In {1 4 (P—PrJ vt Tlm}
' Tern

(3.7)
During comparatively siight intensity of shock wave, fraction in expression

(3.7) is small. Therefore, we represent logarithm in the form of a series

_P ,'T'l —
s_&nw ) 1%+“

Tmg

Using (2.15) and expanding V™' ip series along §, we obtain

1 :
S —S8o== .‘7;:;(-"16’ A [A2 =y DB .} - (3.8)

where A; - coefficient from (2.15) at & ; Ap - coefficient from (2.15) at &
From this expression, it follows that jump of entropy on front of shock wave
ia propcrtional to jump of density in degrees not lower than 3.

Thus, on basis of generalization of experimental data on shock compression
of metals, solid rocks, and several other nonporous materials, we managed to
obtzin single, for these materials, shock adiabat. As a result of use of theoret-

ical model of solid body and of single shock adiabat, generalized equation of
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state, sxpression for intarnsl snergy and entropy are obtained, which can be
used for approximate description of thermwdynamic properties of metals, solid

rocks, and several other hard nonporous materials.
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EXPERIVENTAL INVESTIGATION OF DYNAKIC STRESSFIELD IN
SOFT EARTH, DURING CONTACT EXPLOSION

V. D. Alekseyenko

(Moszow)

Contact explosion occurring at boundary «f two strongly differing
(by properties) media - air, and ground, creates, in laticr, non-
stationary axisymmetrical stress fields and speeds, and leads Lo
wotion of air. Thecretical soluvion of corresponding problem arising
for equation of gas dynamics describing motion of air, and equations
of mechanics of ground {eight of which are considered here), present
great difficulties., Difficulties also appear during experimzntal study
of this phenomenon,

Below are expounded certain results of experimental investigation of
non-stationary stress field, created by contact explosion, in medium--
granular sand of undisturbed structure with specific weight v= 1.6 g/cm3
and absoluts humidity w = 7 - 10%. The following scheme of measurements
was used (Fig. 1). On spherical surfaces, far from center of explosion,
to relative distances r, equal to 15, 20, 30, and 40 (r = R/r,, R--distance
from center of explosion, r, — radias of charge), at points i ~ 9, wers
established four~-component tsnsometeric data units. With the help of
these, wer¢ measured normal 3tresses o: o, oy, acting in coordinate areas
of cylinderical system of coordinates ;.. and normal stress o. acting in
meridian piane ;p on area, rormal of which constituted, with axds p, fixed
angle g = n/4. Details, coniiscted with necesaity of such measurements,
are contained in [1]). We will give only necessary formulas, allowing, by
results of meazurement of 0. 0c 0v,3¢ %o caleulate main characteristics
of stress field: .. - shear stress, g, o~ main stresses in meridian
plane, ¢ - angle hetween ons of main dirsctions and direction z

A A (1)
sin 1

Tor
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o
~r

& =3, c08* @ + 3, sint @ - 1, sin2p (

s =G, 3l g 4o, cos?g — 1, 8in 29 (3)

@ = 0.5arc - [ 23, — 2 (3, cos? f‘.—%— 3, 5in73) ] (
(o, —3,)8in 22 L)

At point 10, capsule-microphones, were established fixing moment or
arrival of front of air shock wave. Signals from strain gauges through
amplifier UTS~12/35 were recorded by loop oscillographs MPO~2 or N-102,
and from capsule-microphones directly by oscillographs. Angular distance
between points of measurement 1 - 5 constituted 15°, and 6° between
points 5 - 10, Trotyl charges of cubic form, by weight 1.6, 5.4, 12.8 kg,
were disposed as shown in Fig. 1.

1. Kinematic characteristics of motion. Experimental investigation showed
that in significant region of ground half-space, adjacent. to axis of symmetry
% (0° < p.< 60°—G6°), blast wave has one stiress peak, but near surface of ground
(60° - 66°< B <90°) - two peaks, corresponding to two longitudinal waves, generated
by perturbation, proceeding through the ground from focus of explosion and by sgir
shock wave, spreading on surface of ground [1, 2]. In Fig. 2 are depicted stress
oscillograms at pount 1, when r = 20,8 = 0° (oscillogram 48 -1), and at point 7,
when r = 20, B= 72° (oscillogram 34-6). Lines downward correspond to de, 0: 0a, 0o,
time marking - sinusocid of 500 cps. Region, in which are observed waves with
two psaks, we will call surface.

Experiments showed that at relative distances [rom center of explosion,
r < 20, wave in the ground is characterized by discontinuvity of stresses. Here

the greateat of stresses at the front constitutas 4L - 5 kg/cm?, At distances
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r > 20, there are waves with smooth build-up of stresses tc a maximum value., Above
information relates to waves, having one peak. Waves having two peaks, at distances
r < 20 also have shock fronts at both maxima, and at r > 20, stress in second
maximun grows for some time, but first maximum preserves intermittent character
longer, the nearer point of observation is to surface of ground. Here, time
increase of stress in first maximum decreases wilh approach to free surface, and

at p = 90°, obviously, equals zero, Time increase in second maximum, at fixed
distance from center of explosion, does not depend on angle coordinate 0. Time
increase relative to second maximm, is determined as time between minimum and
second maximum, In Fig. 3 are represented experimental function of time of build-~
up T:* on linear r, and angle 3 coordinates for wave having one maximum, and on
first maximum for waves having two maxima#, Curve 1 corresponds to value of

angle 3 from O to 66°, curves 2, 3, 4 for f = 72°, 78°, 84°, Let us note that
difference from zero of time, corresponding to dotted line in Fig. 3., should be
subtracted from true time of build-up, since it characterizes boundedness of re-
solving power of applied equipment. By given data of Fig. 3 is obtained formula

for determination of time of build-up for waves shown
T - UR —d) € (1.1)
In all formulas (including (1.1)) are obtained following units of measurement:

msec for time, m for length, kg fcr weight

of charge, kg/cm2 for stresses, kg sec/cm2

Lg
£
<

for specific impulses, and m/sec for
velocity, Numerical (dimensional)
coefficients 1 and d in formula (1.1)

depend on angle coordinate f. In sub-

sequent formulas, analogous coefficients

Fig. 2 will also be functions of # . On graphs,

#Here, and in the future, superscript * means that given parameter is related
to linear scale of charge r;=v | ¢ [msec/kgl/3] (C-weight of charge in kg).
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depicting this depsndence on §. dotted parts are natural extrapolation. In Fig.
L are shown {unctions of 1 and d on p. Data on time of stress ouild-up in

second maximum is more conveniently given later.
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Fig. 3 Fig. 4

For determination of velocity of propagation of blast wave in ground, by
experimental data on time of its arrival at points of measurement, hodographs
of frorts of shock waves or maximum stresses for unstressed waves were constructed.
Hodographs of fronts of sound waves, arising at a definite stage before shocks
were also constructed. By means of differentiation of these curves was determined
velocity of propagation of maximum stresses at various points of ground half-
space. In Fig. 5, in coordinates to*, r, are depicted hodographs of waves; by
dash lines is depicted front of sound wave, zolid lines - front of first maximum,

and dash-dotted -~ second maximum of stresses. From Fig. 5 it is clear that at

any fixed value of r, in certain regicn adjoining axis z and having angle
dimension v p <<p .. only one stress maximum is observed in wave, time of
arrival of which, within limits given region, does not depend on §. Beyond
limits of this region, i.s., at B >p(r), wave has two maxima. Here, time of
arrival of first stress msximum t,)* decreases as compared with time of arrival
of wave in region 0°<PB<P(r), and the more intense, the nearer to free
surface is the considered peint. It is obvious, that at B = 90°, t ;* is

equal to time of errival, st given point, of front of air shock wave, Arrival
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time of second stress maximum t,*, beyond limits of region 0°< B < B(r), on
the contrary, increases as compared with arrival time of wave within limits of

this region, However, as seen from Fig. 5, this increase is insignificant.

T ona -1,
t :JU. oS o
A P/.ﬁ,// W 6 18
7 -!zf . 3
3 y ‘.; b . s Z
: /,;5'/,55 18 -1z
IR TI‘(‘ e
uy , 4 . ’
! Y ; A8 14 <~ \MT 34
/, ’/ Pty
2 = Il./ v \90‘ . _l
4/ / ,a‘ ’Mdtl ’n‘;
o(é—-—r’ 1 —r 1.2 ] 3.0
0 10 20 30 40 v-66 4 82
Fig. 5 Fig. 6
Data of Fig. 5 are well described by formula
L=k (18.5R* — 1)" (1.2)

Differentiating (1.2) in respsct to t, we obtain formla for determination

of propagation velocities of stress maximums

54

D= iBsR— 1) (1.3)

Graphic functiocne of coefficients k and n are represented in Fig. 6. By

data of Fig. 5 is obtained formula for determination of time betwsen arrivals of
first and second maxima

§tn=(aR* —b)Y/T (1.4)

ab 4

15

\ 1.0 -
min| °
11 | as g,
b
P.\\ os e
™ . r
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Coefficients a and b are determined by graph in Fig. 7. Position of
minimum of stresses, as experiments show, depends mainly on distance from center
of explosion, If fronts of first and second maxima are shock, the minimum of
stresses coincidss in time, with second maximum, i.e., time between arrival of
first maximum and minimum Yoin = t12e When stresses in second maximum increase
smoothly for some time, minimum of stressss is displaced in direction of first
maximm. In Fig. 8 is depicted functiom of tmin/tlz on r. Using for 1la (1.4)
and data of graph of Pig. 8, one can determine rise time of stress in second
maximum by the formula

%3 == {13 — ‘min (1.5)

Full time of action of blast wave, within limits region where wave has one
maxdmum (0° “P<  60° ~ 66°), practically, does not depend on angle of p at
fixed value of r. At B> 66°, full time of action diminishes with increase
of angle of 8, in spite of the fact that in surface region there is a composition
of two waves displaced in time., In this, apparently, is developed essential
influence of rarefacticn wave on stress field in surface region., Data of experi-

ments are well described by formula

0= (nAt* + )y T (1.6)
Function of ®" and f on p are depicted in Fig, 9.

On basis of data of Fig. 5, it is

!
§\ possible to construct wave fronts in
n
7 half-space at various moments of time
Pt —
p 1./ "I\\ and, thus, to trace transformation of
L S
— - --fy-x——%—w wave front in process of propagation.
J N During construction of wave front,
\\
{ D?“' for characteristic moments of time were
o-60 70 80
Fig. 9. taken arrival times of wave at points
of measurement on axis of symmetry @ -- v°), far from center of explosion at
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r =15, 20, 30, and 40, At distances c¢f r .20, during construction wave front,
arrival time of sound front and arrival time of stress maximum were considered.
In wave with two maxima, arrival times of beginning of wave of firat and second
maxima were considered. In Fig. 10 is depicted meridian section of wave front

at various distances from center of explosion. Points of measurement were disposed
on spherical planes with center coinciding with center of charge. Therefore, in
regions where arrival time of wave does not depend on angle coordinate g, wave
front has spherical form. In surface region, fronts of first and second stress
maxima, due to dependence of their arrival times on angle of f are not spherical
in form. Here, front of first stress maximum, as veen in Fig. 10, with approach
to free surface, seems to "follow" front of air shock wave. Front of second
stress maximum deviates slightly from spherical.

In Fig. 10, it is clear that magnitude of value p, separating surface region
from remaining space, changes together with r. Increase of angular dimensior of
surface region occurs due to faster deceleration of propagatiocn of spherical
wave spreading through ground from center of explosion, as compared with wave
generated by air shock wave., Slope of front of latter wave, due to decrease of
ratio of velocity of air wave to velocity of ground wave Df / D, is increased
with departure from center of explosion. However, absolute values of angle of
inclination | are small, and at distance r = 40 contitutes approximately 16°.

Thus, wave front in meridian section represents semicircle with center
coinciding with center of charge, and
a certain slightly distorted line,
convex in the direction of free surface,
and inclined towards it under certain
angle ¢, magnitude of which increases

together with r. The above refurs to

fronts of maxinum stresses. Regarding,
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gsound wave, however, with removal from center of explosion, its outline, in half-
space, approaches configuration of longitudinal waves, appearing in elastic
isotropic half-space during action on its surface of a concentrated force and
weak air wave.

2. Main characteristics of stress waves. During investigation of
dynamic stress field, at every point of measurement, four normal stresses
0. Ocv Op O, were fixed in time. Measurements of shown stresses give full
information about state of strain at point of ground half-space, which allows
to produce manifold analysis of dynamic stress ficld. Furthermore, with the
help of data on stressed state, it is possible to check derivations made from
kinematic parameters.

In Fig. 11, by solid lines are represented experimental functions of maximum

values of components of stresses

3,0 Cpe Oy O of angle p at distance

from center of explosion r = 40, when

center of charge coincided with surface

of ground., In this figure, by dotted

lines are depicted curve changes of

shown stresses in centrally symmetric

field constructed from formuilas

8, = 3,0 5051 + g Sin' B (2.1)
G, = 8,4 31013 + 3, cos3 (2.2)
8, = 0.5 (3,9 + 5, +
Y (3,0~ 3,00 5in 23] (2.3)
Gq = gy == cCONSL (2.4)
where 9, 9.4 Oy - axperimental values of stresses at f = 0°, There are anal-

ogous data for other relative distances, however, they ars not listed here due

to lack of space. Il is natural that each curve; relating to any component of
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stress, starting from certain value of anglef, ccnsists of two branches, expres-
sing change of maximum stress in first and in second maxima. Relationship of
maximum magnitudes of stresses in first and in second maxima depends on angle B

In beginning (on p ) surface region, stress has large magnitude in second maximum,
but with approach to free surface - in the first., This is explained, by various
laws, as wave attenuation, spreading from center of explosion, znd wave generated
by air shock wave. Stress in wave, propagated through the ground from center of
explosion, decreases with approach to free surface, and increases in wave, generated
by air shock wave and diffused from free surface. From Fig. 11, it is clear that
unloading influence of free surface on wave, propagated through the ground

from center of explosion, is so intense that, in spite of the fact that second
maximum is result of imposition of this -mave on wave, propagated from free surface,

this maximum, during approach to free surface, becomes minute.
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Fig. 12 Fig. 13

During conduction of experiments position of center of charge changea rela-
tive to aurface of ground. Results of measurements of stress field showed that
maximum stress rather considerably depends on this factor. Thus, for example,
when location of charge is directly on surface, maximum stress in region, where
wave has one maximum, is twice as low a2s when charge is flush with free surface.

Influence of position of charge on magnitudes stresses in first and in second
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maxima spreading in surface region, is varied. Change of stress in second maximum
is approximately the same as in regions with one maximum in wave. Change of
stress in first maximum, depending ursn position of charge, occurs in owposite
manner. When charge is directly on surfaces of ground, stress in first maximum
is larger than when charge is located flush with surface. All this is natural,
and is connected with varied distribution of energy of explosion between movements
of ground and air in initial moments of development of process at varied location
of charge relative to surface of ground, In Fig. 12 are presented data on depen-
dence on p of ratio K of maximm stresses at above mentioned two extreme locations
of center of charge (in rsference to free surface) to maximum stresses where
center of charge is on surface of ground.

Maximuns of measured components

28 T n
n
==L=i=: :L*lli\ of stresses can be described by formula
241 < 7
o~
”“:’7‘: ' o max KA‘ (-1_.)”‘)’ (‘ = 6’:.n'p; [ = 1,2) (2 5)
La_,,‘l o ! t i\R .
6 P 5%’~ Coefficients X, A;j, and nyy are
1/4 TP' determined by graphs in Figs. 12, 13,
L2
0 20 40 40 &0 and 14. Here, value of index j = 1.2
Fig. 14
indicates in which maximum o** is
determined.

Analysis of experimental data showed that within limits of region with one
maximum in wave, laws of change of specific impulses are similar 1o laws ol
change of corresoonding components of stresses., This is explained by the fact
that, as shown above, total time of action of wave in this region does not depend
on angle §. In surface region, specific impulses for each component of strasses
are total throughout entire wave with two maxima, Obviouwsly, on free surface,
specific impulse is equal to specifiz impulse of air shock wave. Experiments
showed that position of chargs of, in reference to free surfass, noticeabhly

influraces the magnitude of specific impulse. We note, however, that influence




of this factor shows up, mainly, in regions where wave has one maximum. Since

in this region, time of action does not depend on angle coordinate B, specific
impulse changes here proportionally to coefficient K. In surface region, because
position of chaige, in reference 1,0 free surface, affects magnitude of siresses
in first and in second maxima differently, magnitude of total {by wave) specific
impulse, practically, does not depend on position is charge. By data of experi-
mepts, it is possible to construct fellowing formulaz “or determination of

magnitude of specific impulse.

1 .
I = Xoiy'T (ﬁ—.)” (2.6)
14 N 2 [ 1.98
w‘ \ \-N-.\~‘i‘p
’ T w, N L #, \b
| N X, i S~
w AN : &,
P ‘N/; T £
& : o 182 - -l
=t 2t {‘1! \\»\
W ~t—J -]
0 50 . &0 S0 n a0 60 90
Fig. 15 Fig. 16

Coefficients o, and p; are determined by graphs in Figs. 15 and 16. On
basis of data on stresses, time of action, and specific impulses, is obtained
dependence, characterizing law of change of stress in wave in time. Here, it

was assumed that blast wave, in time, is described by bincmial law.

Gy (1) = o™ (S-—%)' (2.7)

In Fig. 17 is shown change of exponent v depending upon r and §.

Obtained experimental data allow to

analyze in detail the qualitative and quan-

titative sides of dynamic stress field. By

above mentioned data are calcvlated maximum

magnitudes of principal nermal stresscs, and

their orientation in meridional pianas(s;™F%, ™' ¢).1s determined 2long with maximum
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value of shear stress v, effective in that same plane. 1In Figs. 18, 19, 2C, and

21 respectively are presented results of calculations for o™ 3™, .1,
From Fig. 20; it is clear that angle¢., calculated by maximum values of stresses
in wave with one maximum and by stresses in second maximmum, in surface region,
within limits all half-space, is; very near in magnitude to angle 8. Proximity of
angles ¢ and g indicates that wave front, spreading from center of explosion,
can he considered spherical. Angle ¢, calculated by stresses in first maximum,
in the beginning, in surface region, sharply diminishes, and then, practically,
is equal to angle y of slope of wave tront, spreading from free surface. Thus,
outline of wave front is half-space, constructed from kinematic data, is confirmed
by data of measursments of stresses,

Examination of Fig. 11 shows that experimental curves, within limits of
region 0"<p < 30°, is immaterially deviate from dotted curves expressing laws
of change of corresponding coumponents of stresses in centrally symmetric field.
This fact, jointly with received data on sphericity of front, justifies conclusion
that distribation of stresses in this region (v.2 will call it axial) can be con-
sidered gpproximately the same, as in case of centrally syumetric field. Indeed,
in Figs. 18, and 19, it is clear that principal normal stresses oi, g, o.

within limits of axial region, depend little on angle coordinate p , and that

1 V4
?Z_GHIO! r”5 -ﬁ
8 r:20 18
- r:]% ) 4
" r:20 mefrl\ ,_] 10 :
I
R I L a2l
16 1;130 rr:za ay
DY WL, /L7 22
i Imax Y
I B s Y
005 =350 "50
Fig. 18
smaller of them are close by absolute magnitude, i.e,, 0: =0 Data of
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Fig. 21 also confirm cxpressed affirmation. Thus, in axial region, character of
wave propagation, distribution of stresses, and consequently, the movement of
ground are qualitatively similar to case of centrally symmetric field, created

by camouflst explosion. This means that influence of free su~face (from the
viewpoint of distortion of stress state in azial region, by comparison with stress
state on axis of symmetry z, where, as known, conditions of cantal symmetry are
satisfied) is insignificant. Beyond the limits of axial region, as seen from
Figs. 11 aud 21, experimental and dotted curves strongly differ. Let us note

that comparison of these curves has meaning only in region where wave has one
maximum., It is characteristic that in region 30% p <60°-66° (we will call it

the mean region), in spite of sphericity of front, is ohserved essential deflection
in distribution of atresses, as compared with centrally symmetric field (Figs.

18 and 19). In addition, we note that smaller main stresses are close in absolute
magnitude at any fixed value of angle 3. Consequently, it is possible to
consider that, in mean region conditions of central symmetry are approximately
satisfied, i.e., 9 =B, o3 <o, and main stresses depend on @, as on parameter.

The greatest influence free surface appears in surface region. This is
confirmed by the very fact of existence of a wave with two maxima. Due to this,
stress field in surface region is the most complicated. From Fig. 10 it is clear
that front of wave of generated air shock wave, has small angle of inclination,
in reforence to free surface. This circumstance and the fact that smaller main
stresses are approximately equal, gives possibility to assume that stress state
created by this wave, insignificantly differs from stress field in plane wave.
Analysis of differential equations describing movement of ground e¢voked by waves
of similar kind, by method of estimations presented in [3], showed that movement
of ground, due to smallness of angle vy, occurs practically vertically. Allowable
error proportional to 8in? ¢. However, because pressure on front of air shock

wave is funcction of distance from center of explosion, movement of ground, in
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various vertical seciions of half-space, will be varied. Thus, the process of
wave propagation, excited by air shock wave, is analogous to phenomenon of flow
around thin, pointed bodies by stationary gas stream with very great superscnic
zyeed. Distribution of stresses beyond second maximum, generated by wave, spread-
ing from center of explosion, during .ts imposition on wave, generated by air shock
wave, is very complicated. Principal normals of stress depend considerably on 8,

the smaller of them are not equal to one another which is especially noticsable

in direct proxmity to free surface.
Frony of second maximum, as seen from
Fig. 10, although insignificantly,
differs from sphere., Thus, by experi-

mental means, are revealed characteristic

sides of the dy.'mic stress field in
soft grouni during a contact explosion.

In conclusion; let us consider the very significant question of distribution
of energy of a contact explosion in ground and in air. By experimental means,
by method of intersection of front of air shock wave, spreading along free surface,
were obtained dependences of time of arrival of wave front t* on distance from

center of explosion r, at varied position

-~

N ' of center of charge, relative to free
\f” A eurface. By means of differentiation
Yy
P \ of these dependences and use of gas-
Lr2g | ] \‘i
\\X \kf“ dynamic relationships on front of shock
RS
Yoo O B N A wave, were constructed dependences of
mAS S
S pressure on wave front AP, as functions
60 B0
Fig. 21 of r. By comparison of these dependences

with dependence 4 P(r), for case of explosion in incompressible half-space,

established by M. A. Sadovskiy [4], was determined zhare of energy, radiated
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in air and expended on excitation of air shock wave. Remaining energy, obviously,
is transmitted to ground. In our experiments, it was found that during location
of charge in such a way that its center coincided with surface of ground, in air
and in ground is radiated, coorespondingly, 65 and 35% of the energy of the
explosion. In cases, when upper or lower bounds of charge were disposed on sur-
face of ground, in air and in ground are radiated 78 and 22, 53 and 47% of the
energy of the explosion, respectively.

These data give possibility, in axial region, to use theoretical or experi-
mental dependences, by which are determined parameters of waves in spherical
stress field, and also more accurately to calculate parameters of air shock
wave ;as compared with case, assuming half-space to be incompressible.
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FORMING OF SHOCK WAVE AND SCATTERING OF PRODUCTS
OF EXPLOSION IN AIR

V. V. Adushkin

(Moscow)

With the help of piezo apparatus, high-speed photographing, and ioni-~
zation probe were studied laws of movement of front of shock wave and
products of explosion (PE), during explosion in air of spherical
charges of certain types of explosives (HE). By speed of front, were
constructed depandences of main narameters of front near charge to
distances, at which formulas of M. A. Sadovskiy (1] are correct. In
region of action of PE is constructed dependence of width of layer,
compressed in wave of air between front and PE on distance.

By method, developed in [2] similiar to method of film (3, 4], on
basis of measurements of parameters of front of shock wave is obtained
distribution of pressure and density in layer of air behind front to
contact surface. Calculated pressure distribution in layer is augmented
by diagrams of A» = f(t), obtained during mezsurement of parameterc of
shock waves in air near a charge of HE [5]. By distribution of pressure,
density, and velocity of air in shock wave is calculated enexrgy, which
air acquires from expanded HE as result of its intense braking. Shown
is at what stage and how energy of air is distributed hehind front of
shock wave. Comparison is conducted of certain obtained results with
results of numerical calcuwlation of shock wave from explosion of
spherical charge of trotyl [6], strong point explosion [7], and point
explosion with counterpressure [8].

Description of experiment. In experiment were measurad arrival times

t of wave front and PE at various distances r from center of charge in three

series of axperiments on charges of various types of HE of spherical form.

Charges ware triggered from centsr, In Table 1 are given data on charges of

trotyl-hexcgen 50/50 (TH) and PETN, used in experiment.
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Table 1.

(a)CepnnKb)l‘ln sapats BB (‘;)u e/ emt | (d) C. xs (6), xxas/xs |8, an l [ ]
f) i TI' nwvoit ) l 1.68 24-1073, 135.10-3 1140 0 | 0.052
ﬁ 2 TT Racunsnoil 0.9 36-10-3, 150-10-3 10130 2 0.064
3 | Tem npecco-,tmmuﬁl 1.6 0.8.10°3, 2.5.10"3 1400 0.2 10.053

KEY: (a) Series; (b) Type of charge HE; (c) p, g/cm3;
(d) C, kg; (e) ¢, kcal/kg; (£) TH, cast; (g) TH granular;
(h) PETN, pressed.
Here p-density is charges, C-weight of charges, ¢-specific energy of explosion,

b-thickness of scattered layer of HE, f = ro/Cl/B, where r,-radius of charge in

meters after subtracting scattered layer.

In series of experiments 1 and 2 movement of wave front and PE in region from
surface of charge to 13 r, was obtained by metbod of ionization probe, bared ends of

which were connected by front of strong shock wave, where air was partially ionized.

Recording was done on cathode-ray oscillographs 0K-17 and CK-24. Furthermore, in
realm of distances above 4 r,, arrival times of wave front were measured in records
of ap~ f (t), obtained with the aid of piezo-probes. Results of measurements of para-
meters of shock waves by piezo-probes, in near zone of explosion, and their organiza-
tion are given in {5].° In Fig. 1 are shown samples of recordings obtained with the
help of piezo-probe (a) and ionization probe (b) at a distance of 11.1 T,

Movement of PE was pho.ographed by instrument SFR-2M, which, besides continuous
scan in time, allows to receive a series of frames with frequency of shots from 20
thousand to 2 million frames per second. Some frames of photographs of explosion from
seriss 1 of charpes weighing 135 g are presented in Fig. 2. Near frames is designated

dimension of visible cloud from center of sxplosion in radii of charge r,. let us

note that in direct proximity to charge, source of light is surface of front of shock

wave formed by expanding PE. Then possibly, glow comes from deeper layers of tur-
bulent air behind wave front. In region above 3-4 T which is especially well

seen in photcgraphs, obtained on SFR by methiod of stereo survey, surface

e
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"is bared" of PE's themselves in the

form of a rough cloud. However, it is

possible that source of light, neverthe-
' less, is a thin layer of air, adjoining

the surface of PE, especially 2o since

temperature of the air behind wave

front increases {especially sharp near

contact surface) while temperature of

PE's themselves is significantly lower

than temperature of air hehind wave front [9].

Fig. 2

Results of measurements on movement of wave front (curve 1) and PE {curve
2), for explosions of series 1, are shcwn in Fig. 3 in the form of dependence
of shown time, t° =t / 01/3 in sec/kgl/B, on distance in radii of charge. Since
temperature of PF's, during their expansion, is many times lower than temperature
of tho compressed air behind front of shock wave, it was expected that jonization
probe would sense difference in electrical conductivities of air, comprassed in
wave, and PE. In Fig. 3, results of measurements oy ionization probe, of arrival

times of PE in region up to 13 r,, are designated vy crosses. On recordings of
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ionization probe (Fig. 1b), the arrival time of PE was taken as the moment of
snarp drop after second peak of the recording. These measurements of arrival

times of PE coincided with optical obser-

vations. Thus, under the conditions
experiment, during photographing of the

intrinsic glow of process of explosion

GRAPHIC NOT

REPRODUCIBLE

Fig. &4

of HE are recorded tne hottest layers of air at the very contact surface, or
external layers of PE.

In the case of explosion of charges of PETN, movement of front in region up
to 25 r, was obtained during photographing of explosions in parallel bundie of
light (schlisren method) slave photc recorder ZhFR. Photograph of unfolding of
explosion of 2.5 g of PETN is shown in Fig. 4. Scatterinz PE was photographed
by inotrument SFR-2M. As a result, was obtained dependence r = r (t) for front
and PE of charges of PETN.

In Fig. 3, by dash-dotted line 3 is presented movement of contact surface,
obtained during calculation of trotyl explosion Brode [6]. It is clear that
movement of contact surface, from zenter of explosion, in [6], ceases at distance
13 vo 1 ry, in contrast to movement of PE observed in experiment, which starts
approximataly from 5 to 7 ry.

2. Width of laver of air btetween front and products of explosion. by law
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of motion, r = r (t) of wave front and PE is built an empirical formula, presenting
dependerice of width of layer of air 4 between PE and front from a distance to
wave front rg
A r, 14 r,
FE‘“"“S[(F) -1], 1<2<3 (2.1)

[

Within limits experimental variance (near 10%), difference in width of layer,

depending upon form of HE was not obser-

Iﬁrf' H
NS t
7 \ Ved.
5 & -'%‘T \ - ~
NG 3. Parameters of front near charge
3 “}‘\ .
U of HE. By graphic differentiation of

2 N
Q\\ experimental dependences r = r (t), for
2
3,

A front and PE were determined velocities

vive

r 3 3
A N of their movement, as functions of
1 2 3 45 7 1 20 J0 4o

"
pog—

distance. By speed of front, with the
Fig. &
help of known tables of parameters of
front of a shock wave in air, composed by A. S. Kompaneyts and N. M, Kuznetsov,

and also presented in [10, 11}, functions were plotted of maximum pressure and

mass velocity at wave front on distance. In Fig. 5, curve 1l represents dependence

11305 — 1—rT,q of velocity of front on distance, in
0 i i___ case of experiments of series 1; curve 2
Joo \\\\ .]L - dependence of mass velocity of air at
lw"pg }%&.‘7‘ __Ti wave front. Circles represent experi-
50: R ?n;;— ;‘;”I‘:{ mental velocities of boundary of PE -
30 \\,E‘« ] air, at that same moment of time, at
" \\&;’ t vhich velocity of front is measured.
P : “'(\ ; Similar plotting was done for expiosions
3 \\’\\ of series 2 and 3. Location of expsri-
’ ,,% }K mental points, in reference to curve 2,

) 2 4 6 810 20 L7860
Fig. 6

indicates that measured velocities of
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boundary PF - air agree, with accuracy up to 10 to 15%, with magnitude of mass
velocily of air at front. In connection with this, the layer of air between
front and PE, within limits of indicated accuracy, consists of particles, which
move with nearly identical velocitr, varying only with time (or radius of front).
In Fig. 6 are presented dependences of maximum pressure on distance: figures
on curves designate series of explosions, by dashed line are continued the depen-
dences of pressure, corresponding to trinomial formuls of M. A. Sadovskiy [1].
Dash—dotted line shows result of Brode calculation {6], under conditions, noted
in (5],
In near zone of explosion, dependences of maximun pressure and velocity of
front on radius of front, and also dependence of radius of front on given time
t°, ortained oy integration of expression for velecity of front under the condition
that t = t4 at r = r,, where 1y - time of detonation of charge of HE, can be
described by following empiricsl formulas corresponding te the three seriesz of
axperiments:

at 1 <r/n <12)

1400 400 ’ . . 0.60
= —— e L = (3100 (1 — 1) 1) ,
PEC Cire ! T (3.1)
at (1< rirs L 10)
m 00 r
B T D= Tl oo T 2808 (¢° -1 °) 4 1]082
ar (rf20) 2 (rheg)™® " Mo E (=t (3.2)
at 1< r/r, 12
1000 0 I
A ST, D= s T = 2800 (°-—-¢" _10‘0‘
P ('l ,.)l p13 (’l’.)ﬂ.ﬁi re [ ( d ) -{ l (3 ‘3)

In the future, exponent, in law of attenuation of pressure with distance,
starts to increase, attaining greatest magnitude 2.7 at pressure near 20 kg/cmz,
then, starting from distance 15 to 18 r,; dependence of maximum pressure corresponds
formula of M. A. Sadovskiy, which occurs in realm of distances, whore influence of
PE is absent and pressure at wave front from charge of various type of HE is

determined only by amount of energy of explosion.
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L. Parameters of air buhind front of shock wave. Obtained exparimentsl

results characterizing, basically, front of shock wave, with the help of method
presented and well-grounded in (2], were used for calculation of parameters of
air entrapped by shock wave, during explosion of charge of HE. This determina-
tion of parareters is made according to accurate values of derivatives of main
gas—dynamic quantities at wave front in Lagrange (mass) coordinates. By experi-
mental data for explosions of series 1, derivatives were calculated of pressure
a and speed b, taking counterpressure into account, in the case of spherically-

symmetric motion (v =3)

_izg:i_l ou M ., Glu
‘=6mp.' = om iy Sdin M
2D co! 4n
weigi(t=) A=Telr - (4.1)

For undisturbed air ¥, = l.4, co = 330 m/sec, rpe= 1,29 x 107 g/cm3.

Results of calculation of a, b, U!, depending upon amount of pressure at
front 4p, are given in graph of ¥ig. 7 and designated, respectively, 1, 2, and 3.
For ccamparison, in the same graph, by dash-dotted 1lines 1!, 2!, and 3' are show:
correspor .ing magnitudes of a, b, and U' calculated by results of calculation
of point explosion with counterpressure {8]. From graph of Fig. 7, one may see
that magnitude of derivatives of a, b and U', in case of explosion of real
charge of HE, considerably differ from case of point (without mass) explosion,
in region of strong shock wave, there, where 47>10 - 20 kg/cmz. Thus, in
cass of explosion of charge of HE, derivative of pressure a is almost three
tines less than corresponding derivative of point explosion, and derivative of
mass velocity b vanishes to zero.

Assuming profiles of pressure and velccity te be linear by mass of air
compressed by wave [2], distribution of pressure, density and velocity in

Lagrange ccordinates, in that layer of air, can be written in the form

Pde=t—a(l—p), p,=pip, p=m|M (4.2)
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“k(m)

pim) p,(m} P, (M)
oy ee—— ‘-— l-— « ———
Fo ™= p M) P,(Jl){l “l p)IP.('")} (4.3}

Bye=1—d(l —pn), Mg = W[y, llc-h)

In expression (4.3), for air demsity it is assumed that process of expansion

of compressad air, behind front of shock wave, is adiabatic with its own effective
adiabatic exponent k(m), at fixed m. Here, effective adabatic expenent k(m)

for each m, is coupled with compression in shock wawe oy known formula

k(m)+1-=P.(m) ko - 40, 0m}  n P (L.5)
k) =1~ “ps T ke—1"p5 F,(m  F, () ‘

In order to obtain distribution of parameters behind wave front by radius,
it is necessary to establish bond of

Lagrarge >cordinate of m with the

Euler of r. In the case of spherical

symmnetry, these coordinates are coupled

with equation of inseparability

Fig. 7

»
e

I

clw

(£.6)

Integrating and inserting boundary cordition which at r = ry, m =M ®=1),

Q'

S

1

we cbtain
Lo— o . k—i(de L2
j{/}'i WEISETNA TR ()
P P A
. ’ /I 3 3 [
5/%5/ e//:’ 5 where 3agnitude of ?e 1is determined by
as WEZS
"'iﬁ:/%’l {(L.3). As a result of numerical inte-
4. .7/‘ %
4
06 151 .;ﬁé” gration of expression (4.7}, distribution
A7
| _}2%'/” ! was obtained of main parameters of air,
- ’_,—’ - l r
py i HEERY DS SO by radius, behind front of shcck wave.
84 0.32 298 &
Fig. 8 In Figs. 8 and 9 is shown change of

pressurs and air density up to contact surface #= 0), Figures on graphs desig-

nate position of front in radii of charge r,. For comparison in Figs. 8 and §

374




by dctted line is repressnted distribution of corresponding magnitudes in case
of strong point explosion [7], by dash-dotted line - from calculation of point
explozion with regard to counterpressure [8] for wave with 8r, = 7,9 kg/cm?
which corresponds, in our case, to position of front near 25 ro,. We note, first,
essential diffsrence from case of strong explosion [7], and secondly, that
distribution of pressure and density of air, in case of explosion of HE, becomes
the same as and in cass of point explesion, starting from 20 to 25 r,, where
8p, < 10 kg/cm?. We should note that distribution of density and magnitude
of dynamic pressure pu’ in layer of air between wave front and PE, have
practically the same form, For appraisal of dynamic pressure of air during
explosion, it is possible to .ize magnitudes of u, presented as curve 2 in ¥ig. 5,
In conducted calcwis*icn, result was not used of experiment on position of
boundary of PE - air and velocity of its motion. Therefore, determination of law
of motion of contact surface from (4.7) at u =0, and also calculation of magni-
tude of uerivative of pressure on contact surface by speed of its motion, and
comparison of it with value of derivative at front, can serve as control of
applied approximation method of determination of parameters of air behind wave
front. On the other hand, this will bu additional confirmation of result of
experiment on motion of contact asurface, obtained, basically, with the help of

optical cbservations of expanding cloud of PE. Indeed, at #¥ =0 r =rny, i.e.,

k—1(d r
f.’.:i—mgi' r'k=’_:. (1&08)
¢

Result ¢f calculation of ry is repressntec by dotted line 2' in graph of

r | ‘/£¥¢rﬂ Fig. 3, where curve 1 - front, 2 -
* 7
T z f/' boundary of PE - air from expariment.
.7L.f ,’
‘ 77 /Af’ It is clear that there is good coin-
s N PR/

=] ;:C;/Iz 9‘&4/7 _ cidence of calculated r, with motion of
g1 2@ /5 ;f e edge of FE from experiment, in entire

7] VET 0’2 096 10

Fig. 9 range where calculation of parameters
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of air in shock wave was conducted.
Further, calculation was made of derivative of pressure at contact surface.

From equation of motion

— == e p O
& ¥~ (4.9)
after certain conversions, we obtain
ap M poulD uy frtdlnu,
3m p, P 7(7,) Tt Pt (4.10)

Result of calculation of derivative at contact surface by (4.10) is repre-
sented in Fig. 7 by curve 1", It is clear that there is satisfactory coincidence
with curve 1, the derivative of pressure at front of shock wave. Thus, profile
of pressure, with sufficient degree of accuracy, is near to linear.

5. Form of shock wave in near zone of explosion. Fig. 8 shows that profile

of pressure, in layer of air compresseu by shock wave, changes comparatively
slowly from one moment of time to another. Using this fact and including experi-
mental dependence r = r (t) for wave front, on basis of obtained distribution of
pressure by radius, were plotted curves of attenuation of pressure in time, in
this perturbed layer of air, for certain fixed distances from center of explosion.
Then, at those distances, where, with the help of piezo-probe, were obtained pres-
sure recordings as functions of time [3], experimental curves of 8r= t{t) were
augmented by those calculated. Tuis allowed correctly to reproduce head portion
of profile of shock wave heaped up by piezo-probes because of finite size and
wsufficiently high frequency responses of the data unit and electrical circuit.
Result of such combination in regions near charge of HE, is presented in Fig. 10.
On axis of abscissas is plotted time from moment of & “osion £° in sec/kg1/3,
near curves is deaignated distance from center of charge to point of measurement
in radii of charge -,. Shaded head portion of curve represents compressed air

in wave behind which follows PE,.
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Furthermore, dsgree of attenuation of pressure 4r in phase of compression,
as proportion of passage by shock wave to point of measurement, is represented
in table as function of timet®, reckoned from momsnt of arrival of wave front,
By solid line is designated boundary of FE - air. In first line, are values of
pressures at wave front 4p,, Magnitudes of excess pressures, given in Table 2,
show proceas of forming of compression phass of shock wave. We note that piston
action of PE is finished, when prussure at wave front becomes less than 20 kg/cm2.
Wave length(compression phase), by then, is near 6 ro. PE is still present in
compression phase, their volume attaines 4,000 volumes of charge of HE. Shock
wave is gradually detached and is liberated from PE. However, approximately
up to 30 r,, PE are expanded, being in compression phase of wave. Wave length,
by then, is already 15 rq.

Analysis of form of shock wave in near 2one of explosion showed that law
of attenuation of pressure with time, behind wave front, is not exponential.

However, near front, atx'<:5a10'5 soc/kgl/B, it can be represented in exponential

form
A,(v):Apexp(u-x‘/U‘)

As functions cof distance, quantitiss e, characterizing steepnsss of slump
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of pressure behind w=ve front; can be represented by following empirical formula

1.6 Ap_ r,
' =—dpjdi* !<;;<35 (5.1)

0°-=10‘°(:{) 6
For comparison, in Fig. 10 by dotted line is shown change of pressure in
time by calculation of point explosion with counterpressure [8]. It is clear
that in regicn where there are PE, there is a marked essential difference in
character of pressure slump in wave of a trotyl explosion, as compared with wave
of point explosion. Only for waves with intensity 4p. <10 - 20 kg/cm2, dif-

ference in profiles of these two types of explosior. becomes immaterial.

Values of A p, kg/cm? as Functions of ' x 10° sec/kg"l/3

<® Ap < ap

? lxzz 100 {67 |49 18 0 o |22 2.5
3919 |8 |58 |4 35 9.7 |25 |19.5] 11.3
781775 | 65 |a2 |at 33 19.4 | 21.5]17.5| 10.3
11.6 145 |50 |46 |38 31 29.2 | 18.5| 16 9.2
155 30 | 38 |40 |35 00 39 17 t4.5] 8.5
19.4123 30 135 (3 |28} 9 |8 75| 5.2
29.2 | 14 18 |22 726 25 194 251 3.7 7%
39 9 © 113 120 |[TzZ f o9 t.21 1.9 1.5
58 4 6 7 {10 i6 3% 0.8 1.3] 0.9
77 2.5 4 3 3.5] 12 486 05| 0.8) 0.5
97 1 2 1.5} 1.5 8 580) 02| 05! 0.3
116 0.5/ 1.0] 0.5 051 5 630 0.2] 0.5

By dasb-dotted line in Fig. 10 are represented functions of ap = f(t) by
results of numerical calculation of shock wave from detonation of spherical
charge of trotyl with demnsity ¢= 1,5 g/cm2 [6]. Comparison of above mentioned
experimental data with results of work [6] showed that there are evident devia-
tions in certain details of picture of development of explosion in region where
there are PE. Thus, for example, according to [6], at pressure in shock wave
near 120 kg/cmz, preassure, after drop in "air plug," starts anew to increase
behind contact surface, attaining maximm of near 15 kg/cm? to a time thres times
longer than arrival time of wave front.

In present work, with such parameters, a front of similar peak was not

observed, although piezo apparatus applied in investigations was able to register
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this. Difference is observed also in width of layer of air between front and

PF and in movement of contact surface. Thus, in [6], mcvement of contact surface
from center ceases at a distance of 13 -~ 14 radii of charge. In our case, expan-~
sion of PE is observed to 30 r,. Cause of shown deviations can be that equation
of state of PE used during calculation [12] insufficiently describes late stages
of scattering of PE, Insufficient reliability of calculation of squation of
state of explosives leads also to necessity of experimental investigation of the

trotyl explosion.

6. Energy of air between wave {ront and products of explosion. By distri-

bution of pressure and density in region front - PE and by magnitude of mass
velocity of air behind wave front, energy acquired by disturbed layer of air
from scattering PE was calculated, Magnitude of .otal energy of air in wave is
composed of internal and kinetic energies. Taking expression (k -l)’lplp. for
internal energy of a mass unit of air, we can calculate the inciease of internal

energy ET of the layer of air compressed by a wave

1
=M P () dp . _Mpo
fr ‘Pm)u(ur*ll po (ke — 1) (6.1)

¢
Expression for kinetic energy Ek of air, brought to motion by shock wave, is

written in the form

Mu,!
E --—L <
== \[t —bit — p)jrdy (6.2)

[}

Result of calculation of internal and kinetic energy of in reference to

total snergy of explosion E =t i3

1.0¢

T 5/ represented graphically in Fig. 11 as
475 V/, function of distance to wave front in
y 2 /"’—"——
65 1/// ///" . radii of charge. Curve 1 shows change
R25 ;//’/ —— of Kinetic energy of air in wave. It
L
L“é h ‘s is interesting to note that at distance
Y; 70 27 3¢
Fig. 11 13 - 15 r, is observed maximum of
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kinetic energy which constitutes 30 - 35% the energy of explosion. Curve 2
presents rise of internal energy of turbulent air, and curve 3, the sum of kinetic
and internal energies of layer of air in wave. From graphs, it is clear that

PE intensely issue their own ensrgy to the ambient air. Thus, when a mass of

air equal to mass of charge of HE, set in motion which occurs at 11 r,, kinetic
energy of turbulent air constitutes 25% of initial energy of explosion, internal
- L0%, i,e., 65% of energy of explosion crossed to a narrow (1.2 ro) layer of

air of compressed in the wave, When a mass of air, participating in motion,
exceeds, by 2 to 3 times, the mass of charge of HE, which occurs when position of
front is near 15 r,, almost 90% of the energy of explosion is transferred to layer
of air between front and PE.

In conclusion, the autrnor thanks I, V. Nemchinov for offered method of
calculation of parameters o.” air behind front of shock wave and interest in the
work,
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COURSE OF REACTION IN DETGNATION WAVE OF EXPLOSIVE MIXTURES

A. Ya, Apin, I. M. Voskoboynikov, and G. S. Sosnova

(Moscow)

Development of theory of explosives requires knowledge of kinetics of reactions
at front of detonation wave. Complexity of study this question is caused by lack
of direct methods of detection of compositicn of products of explostion in wave and
by the impossibiiity to extrapolate, in region of such high temperatures T and pres-
sures p, data on thermal decomposition of explosives at low T and p.

Certain infors 1ion on the course of reactions under the conditions of detona-
tion wave can be obtained, investigating dependence cf velocity of detonation D,
m/sec, on diameter of charge d, mm, of explosive mixture containing explosive
constituents of various reaction ability. Due to various reaction times of decompo-
sition of these constituents, growth of velocity of detonation, during increase of
diameter of charge, will not be continuous, but occurs with fixation of certain
values, corresponding to completion of intermediate stages of reaction. Analogous
dependences of D(d) can also take place for mixturas of type oxidizer~fuel, if final
reaction, after decomposition of explosive constituents, requires for its own comple-
tion a significant interval of time due to complexity of diffusion at detonation
pressures of condensed explosives. Below are given experimental data on detonatien
velocities of various explosive mixtures, at front of wave of which is revealed

the phasic character of course of reaction.
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Initially investigated were mixtures consisting of explosive oxidizer and
nonexplosive fuel; it was possible to judge the degres of progress of final~
reaction, by increase of speed of detonation. In Fig. 1 are presented dependences
of D =D (d) for suspenision of lamp black with dimension of particles near one
micron in tetranitromethane 10/90 (curve 1); mechanical mixtures of perchlorate
of ammonium with paraffin 90/10, grain size 0.0l mm, p,- 1.0 g/cm2 (curve 2),
and trotyl with colloidal boron 90/10, pe = 0.65 g/cm2 (curve 3). Common

to shown mixtures is constancy, within

aaquﬂ__ 4 certain interval of diameters of charges
b
g f of imperfect velocity of detonation
v o W
5wm%_ — ("pseudoideal" velocity), magnitude
P
- ﬁn___ of which corresponds to energy of
147 decoiposition of oxddizer.
b e
ﬁody/} dl Increase of velocity of detonation
U 560
of mixture of trotyl and colloidal
Fig. 1

boron, at diameters of charge greater
than 40 mm, indicates that meotals (in particular, boron) can burn in detonation
wave of condensed axplosives with emanation of additional quantity of heat,
leading to incrsase of spsed of detonation, « a fact which is frequently subject
to doudbt during investigation of powerful metallized explosives. Velocities of
detonation were measured by the ionization and optical methods, error in both
cases did not exceed 50 m/sec.

In Fig. 1 are also curves of D = D(d) for 58/,2 mixture of hexogen and
ammonium nitrate 58/42, grain size 0.1 mm (curve 4) and a suspension of macro-
crystalline hexogen with particles size 1.0 to 1.6 mm in gelatinized, 2% plexiglas
tetranitromethans 30/70 (curve 5). Magnitudes of pseudoideal velocities corre-
spond to energiss of decomposition of hexogen and tetranitromethane at wave

front. In the latter, it is easy to check, measwring detonation velocity in
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Tabile 1. Pseudoideal Detonation Velocitiss D, of Explosive
Mixtures, Corresponding to Decomposition of
Only one Component

Y g

(o) BapuseaTAc BentocTs? ' »” D, b,

58Y4 (CH4NNO,); + 423 NHNO, 1.73 | 7600 8100 !
5895 (CH4NNOy); + 429 NaCl 1.8 | -- 7500 )
7094 C (NOy) 4 309 {(CHNNO,)a — | 6400 7500 N
709, C (MOs) 4 30%NayS0; —_— —_ 6200 P
904, NHCIO, + 10%, napaduua (“') 1,00 { 3000« 4800 ‘
X0t 1y, (NOujs 4 10%B 00 | 20! S0 ‘
890% 3 1)s + 40% .85 | 24 ‘
CH;CsH,y (NGy)s 0.85| — 3800

Key: (a) Explosives; (b) paraffins.
mixtures, where constituent unable to decompose in wave (ammonium nitrate and

macrocrystalline hexogen) is replaced by an inert substance. From values given

in Table 1, it is clear that detonation velocity of mixture of hexogen and table

salt and suspension of hyposulphite in tetranitromethane differs little from
corr~ vonding pseudoideal detonation velocities. In Table 1 are also values of
ideal detonation velocities Di of studied mixtures.

Pseudoideal detonation velocities are also observed for mixtures, the
explosive constituents of which are decomposed in wave in short times. In Fig.
2, as an example, are presented curves ol D(d) for suspensions of hexogen with
dimension of pariticles 0.3-0.4 mm 30/70 and trotyl 20/80 in tetranitromethane
(curves 1 and 2), and also for solution of dinitroethane in tetranitromethane

76/24 (curve 3). Analysis of magnitudes

8000, 7 P of pseudoidezl velocities in this case
_4,*5° 4 can be made with the help of calculation
=l
) p of parameters of detonation wave [1].
10
AT It is assumed that reaction in
4 . wave proceeds in the following manner:
d
¥oo 20 40 60 at first, explosive components complotely
Fig. 2
decompose within thair own volume, and
¢
then, after the lapse of a certain interval of time, starts effective reaction é§§
‘9‘_) 2
e,
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of final reaction bstween producis of their decompcsition. Coincidence cf

results of calculation of dstonation velocities D3 corresponding to completion

of first stage of reaction, with experimental values of pseudoideal detonation

velocities D2 for series of explvaive mixtures, serves as confirmation of such

a diagram of the course of reaction,

Table 2. Pseudoideal D~’onation Velocities of Explosive Mixtures
Corresponding to Decomposition of twe Constituents

(2) Bapusvarie semecrsa n.(P (T I D} (it)/m D, (‘c,)“‘ ID ,.‘1‘7;
80% C (NOy)y + 209 CH;CeHa (NOy)s 1.64° 6800 8800 7600
NG éNO; -+ 30¢; (CHyNNO, 1.70 7000 7000 7500
788 CHaCH (NOy)s - 24%C (NOsk 1.42 7250 7000 -1 7800
1.65 7450 7550 7450

50%C (CHONOs)s + 50% CHiCaHa(HOs)s

Key: (a) Explosives; (b) Po g/emd; (c) m/sec.

During inveatigation of liquid explosive solutions, the authors discovered a
atrong dependence of detonation velocity on diameter of charge, although it is
almost completely absent for individual ligquids and single-crystal explosives,
Sometimes this dependence has a very unique form: for example, for solutions of
tetranitromethane with nitrobenzene (76/24) and kerosene (88/12) (curves 4 and
5, Flg. 2) it exists, at a certain diamster of charge, depending on thickness
and material of shell, with equal probability for value of detocnation velocity,
differing by 400 m/sec. Temperatures of detonation fronts measured by electronic-
optical method, differ by 500°K,

Main cause of the observed phenom-

15005~ enon of pseudoideal detonation velocity
/// L 2 is phasic course of reaction at front
700 I
/] q/& of detonation wave of the explosive
v
¢ mixture, caused by kinetics of decom-
d
6000,
020 40 60 position the explosive constituents.

Fig. 3
Velocity of energy release in wave is

influenced by a whole series of factors (reacticn capability of components, heat

1872,
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of their explosive reaction, dispersity, and percentage of composition of mixture),

action of each of which for concrete explosire mixture ia frequently difficult

to reveal. However, decrease of dispersity of components in a mixtur~ always

increases probability of observation of psendoideal Jdetonation velocity, since

temporal < .Iference iotwi.: i.:omposition of components and subsequent fina.

reaction increases, Thus, if for suspension of fine-crystalline hexogen with
particles size near 0.1 mm in gelatinized tetranitromethane (cur.: 1, Fig. 3),
build-up of detonation velocity, during increase of diameter of charge, is con-
tinuous, then, at particles size 0.3 - 0.4 mm (curve 2), at diameters of charges
20 - 50 mm, we are able to fix delay of final reaction between products of

decomposition of tetranitromethane and hexogen. Increase of dimension of particles

to 1,0 -~ 1,6 mm and 3 - 4 mm reveals that at small diameters of charges coarse

metallic hexogen is not able to decompose in wave (curves 3 and 4).
Investigation of curves D(d) for suspension of hexogen in tetranitromsthane

(Fig. 3) shows that, during increase of dimension of particles above a certain

magnitude (1.0 - 1.6 nm.), diameter of charge dy, in which hexogen is decomposed,

ceases to depend on its dispersity. Quantity d; characterizes delay time of

decomposition of hexogen by volume (for surface of reactior, it would be a
function of dimensiun of particles) and decresses during incrsase of pressure
in detonation wave,

Placing grain of macroerystalline hexogen, by dimemsion 1,0 - 1.6 mm, in

liquid explosives, pressure in detonation wave of which changes from 180 to 220

thousand atm, it was pessible to trace

o . decrease of diameter dl with rise of
1
z .
v900 //pg-_ pressure (Fig. L). If it is considered
‘(V/, . that reaction progresses effectively as

§500—o g

) - % 4 long as pressure does not decrease by
500 .

a fixed fraction, delay times of reaction

will ba in first order of approximation
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proportional to diameters of charges dy, and at pressures of 180, 190, and 205
thoussnd atm have ratio 8: 3: 2,

Curves 2 and 3 correspond to the same pressure p = 190 thousand atm, but
to various temperatures of products of expivseica of liquid explosives: curve 2
~ T =3200°K, curve 3 - T = 4200°K, a difference of 1000°K, Grains of hexogen
wore dacomposed at equal diameters of charge. Curve 1l corresponds to pressure
p = 205 thousand &tm, and curve 4 - p = 180 thousand atm. Ligquid explosives had
small critical diamsters, For them was assumed comparatively short reaction
time of decomposition in detonation wave.

Examination cf curve D{(d) for suapension of hexcgen in liquid explosives
indicates possibility of use of phenomenon of pseudoideal detonatiocn velocities
for estimation of times of decomposition of explosive components in wave.

Ideal detonation velocities correspond to composition of products of explosion,
which depends only on contents of C - H = N ~ 0 and tamperatures and pressures
of detonations; all paramsters of ideal detonation wavs of explosive mixture
can be calculated in exactly the same way as for individual explosives [1].

It is necessary only to consider peculiaritiss of course of reaction in detonation
wave of explosive mixture, coupled with the fact that, at first, explosive com~
ponents are decomposed in their ovn vclume, and then final reaction occurs in
products of explosicn. When composition of prcducts of explosion produces
more energy in first stage than after the final reaction, the first stage of
reaction is responsible for ideal detonation velocity (this refers to mixtures
of pentolite t:ps, Table 2).
Submitted
25 May 1963
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INFLUENCE OF PRESSURE ON DISTURBANCE OF STABILITY OF COMBUSTION
OF POROUS EXPLOSIVES

A. F. Belyayev, A. I. Korotkov, ana A. A. Sulimov

(Moscow)

It was noted [1] that penetration of combustion to interior of a porous explo-
sive, evoking sharp increase of surface of combustion and speed of gasification,
can lsad to explosion.

K. K. Andreyev [2] showed that triggering of explosion during combustion of

porcus explosives occurs with achievement, in process of burning, of sufficiently
high preasure.

Below are given certain quantitative data on pressures at which stable combus-
tion of pressed charges of hexogen, PETN, and trotyl (with particles of initial
powders of similar dimenazion ~10 to 20¥ is disturbed. Charges were of various
porosity m = l—p /p,,,, Where p-density of charge and p_,, -density of single crystal.
Quantity m gives fraction of volume, occupied by pores.

During conducting of experiments, elongated charges 10 mm in diameter of various
porosity were ignited in a closed manometric bomb at considerable loading density
with plezoelectric registration of rise of pressure. So long as a stable combustion
laysr was maintained, a smoothly accelerating build-up of pressure in time was ob-
ssrved. Sharp break p(t) (up to appearance of compression shock) attested to dis-
turbance of laysr combustion and to breakthrough of combustion to pores; pressure,

&t which this occured, was directly indicated by recording p).
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Some of results obtained by us are given in figure, where on axis of abscis-
sas is plotted porosity m, and on axis of ordinates-pressur? p in bars (1 bar-1.02
kg/cmz) at which occurs breakthrough of combustion to pores. Squares indicate data

for trotyl; circles, PETN, and triangles,

:0‘;0 \ i hexogen.
\ \ In rough approximation, it is possible
SM% ’ ‘&R\§ to set pm = A, where constant A depends on
' - htg:’ | properties of substance, character of poros-
Lo v ;t%~~'ﬁ; ity, and conditions of experiment. During

a more detailed consideration of results,

it is obvious that asymptote of curves on vertical is m # O. For PEIN, p(m - 0.02)=
= Ay, and for trotyl, p(m - 0.05) = A,. Practically, this means that PETN, at m =
= 0, (p = 1.735) is able stably to burn at pressures measured in thousand atmo-
spheres. This was established (3] also for PETN of somewhat less density. At
identizal porosity (for example, 0.1), the stablest combustion of trotyl (highest
breakthrough pressure) and least stable combustion of haxogen occur.

By Taylor [4] it was noted that during combustion of PETN and hexogen (and all
the more of trotyl) mclten layer should be formed, stabilizing burning as long as
its thickness (decreasing with pressure) is not less than dimension of pores. At
identical pressure, the biggest layer should be for trotyl, the smallest-for ha~ogen.

For estimation of thickness of molten layer x for PETN¥, we have

C-::-.ln%%;:‘: ()

Here 3 - thermal capacity of liquid, c¢ - heat capacity, up- mass combustion

rate (5], T, - stagnation temperature of PETN, T° - melting temperature, and

*¥For roughly tentative appraisals it is possible to limit ourselves to
quantity 2/pes — characteristic length of thermal wave - distance ai which
temperature depondence decreases by e times.
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To = initial temperature.
Under the conditions conducted experiments, at p = 330 bar, m = 0.1 for

PETN

l . ' ] L ] Q
;~10"'-u-‘—,§,- upz&.i-c;,;.—'o Ty ~580°, T°~140%, T4~ 20°C

Substituting these data in (i), we obtain that x is equal to several microns
( ~2to3 u ). let us assmume that at limit, diameter of poras d, into which
combustion is able to penetrate, is equal to thickness of molten layer d = x
(if d>x, combustion will penetrate to interior; if d<x, there will be no
penetration). Thus, we come to the conclusion that for PETN, at pressure p =330
bar, combustion is able to penetrate into pores with dimensicn of several microns.*
It is possible to estimate also the average hydraulic dimension of poras [6]
D~ VYkim, where k - gas-penetrability. For PETN at m = 0.1, we obtain D~ 0.0l
~0,1 u which is 1 - 2 orders less than d. Difference obtained (d » D) is
explained naturally. Amount of gas-penetrability is determined by all including
the small pores. Breakthrough of combustion in initial stage is to the oiggest
pores (possibly even to the biggest "pore"). Obviously, distribution of pores
is by such dimension that the biggest pores d~x are 1 to 2 orders larger than
average hydraulic dimension D,

During increase cf pressure, velocity u increases (u ~ p), thickness of
molten layer x decreases, and combustion can penetrate to pores of increasingly

smaller dimension

™) Oor pd == ¢z cons

The latter relationship is approximately satisfied. In any case, during
increase of pressure, dimension of pores, gaps, into which coxbustion is able
to penetrate, becomes increasingly smaller d ~ 1/p. For various substances,

breakthrough of combustion to pores occurs at various pressures, but if stabili-
zation is caused by molten layer and structure of charges is identical, thicknass

#*If actual thickness of molten layer exceeds that calculated by formula (1),
critical size of pores will be larger.
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of molten layer should be similar. Calculation shows that for hexogen (.t

p = 130 bar), thickness of molten layer (just as for PET™N (at 330 bar)) will

be several microns, For trotyl (at 430 bar), layer is thicker and breakthrough
of combustion to pores should occur at pressure, approximately two times larger
(~ 800%3ar). It is Gbvious that at identical porosity (m = 0,1) structure of
charge of trotyl is gnite distinct. By measurement of gas-penetrability it

is directly established that average hydraulic dimension of pores of trotyl

is 1.5 times greater than for PETN (at identical m = O,1). Apparently, dimension
of the biggast pores for trotyl is twice as large. Incidentally, at lesa porosity
(0.07 to 0.08), structures of charges of PETN and trotyl become more alike,

Given data are well coordirsted with assumption of Taylor (4] about stabilizing
action of molten layer. Andreyev [7] pointed out the opposite possibility of .
disturbance of stability of combustion of PEIN due to self-turbulization of molten
layer. This was not developed in an experiments (true, conditions in our experi-
ments were considerably different).

Let us consider case of combustion of porous explosives not forming a molten
layer. It would be incorrect to assume that for unmelting explosive, combustion
will penetrate deeply at any (low) pressure. This penetration will be coupled
with conditions of influx of preducts of combustion into pores and substances
igniting them. Both these factcrs depend on conditions of combustion and on
distance x' between surface of substance and zone of intense reaction in gas

or smoke-gas phase; this distance

¥ . Te—T, % e\
% sy B =T (5 ~5-10 5 (2)

Here, » and c¢' ~ thermal conductivety and thermal capacity of gas phase,
T° - temperature of surface, T* - temperature of intense reaction in gas phase
(in majority of cases, T* will not be maximm temperature of combustion).
Remaining designations are the same as in (1). By tentative estimation, x' is

soxewhat less than thickness of molten layer x. Purthermore, viscosity of gas
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is considerably less than viscosity of liguid which should facilitats flewing

of gases into pores. Finally, in the absence of molten layer, deep penstration
cf combustion should be eased (at identical porosity, breakthrough of combustion
to pores d! will be at pressures a few times lower; at identical pressure, several
times lower). Roughly approximately also should bs satisfied condition pdt =

= (const)', where (const! < const,

Test experiments with non-welting explosives showed that these conclusions,
in general, are correct, and in particular, breakthrough of combustion to pores
of unmelted explusives is easier than for those melted., It is necessary to
note that break of curve p(t), attests to passage of combustion to pores, for
non-melting explosives which is somewhat blurred and is expressed less clearly.

Breakthrough of combustion to pores of mercury fulminate (triggering
explosive) should be especially easy., This was noted in a work by author [8].%
Indeed, if for hexogen at p = 100 bars, for penetration of combustion to depth
of substance, the dimension of pores d must be several microns, then for fulminat
of mercury with this 3ame pressure, value of d must be estimated maximum by
tenth fractions of a micron, and d should be still less for azide of lead. At
one time, from certain indirect data, it wss assumed [8] that combustion rate
of azide was so great that it alone, without penetration of combustion to depth,
caused very great Jjump of pressure and, consequently, detonstion. In work of
K. K. Andreyev and B. N. Kondrikov [9], is givrn a better grounded appraisal of
combustion rate of azide of lead, which turned out to be higher than for mercury
fulminate, but only by 2 - 3 times. In order to explain extremely sudden trig-
gering of dstonation of azide of lead (detonates upon ignition}, with such a
combustion rate, it is natural to assume that at moment of ignition (at any
pressure) combustion immediately penetrates to depth and actual surface of com-

bustion becomes quite large.

*\. P, Belyayev. Mechaniam of combustion of explosives, Doct. dissert.,
Institute of Chemical Physics of Academy of Sciences of USSR, 1946.
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Here it is necessary to note that if mechanism of combustion of azide of
lead is like %kt of mercury fulminate, then for azide of lsad at low pressures,
in particular at atmospheric pressure, combustion is able to penetrate into
pores of order of one micron. Such gaps can be formed bstween particles of
azide of lead evon when pressod to high density. Moreover, for crystals of
azide of lead cf order of ons micron, there can be intervals between cryscvallite
{mloropores und microcavities), To this, it is nacessary to add that by direct
obsarvationr of Bowden and collaborators [10], defects of crystals can be formed
to grow in process of the actual combuntion. At last, during combustion of
azide of lead, dynamic increase of pressure should bs very significant. All this
shows that in case of azide of lead there are many possibilities for intensive
psnstration of combustion to depth, sharp increase of surface of combustion, i.e.,
for instantaneous sxplosion immediately traisferred to detonation.

X. K. Andreyev [11]. noting that for triggering explosives, the breakthrough
of combustion into pores shculd be easier, as main cause points "o the large
completeness of reactions »f explosive transformation and to higher temperature
of combustion of triggering explosives, Value of temperature of combustion is
absolutely essential (this is ones of frctors determining combustion rate), however
main cause facilitating breakthrough of combustion to depth of triggering sxplo-
sives, will be a short distance between surface of explosive ancl zone of intense
rsaction, which, othar conditions being equal, for triggering explosives is
considerably less than for secondary types., High temperatures of products un-
doubted ly prumotes breaithrough of combuation into pores, but more important in
this respoct magnitude of temperature gradient dT/dx at the surface, which for
triggering sxplusives ie 2 - 3 orders higher than for secondary explosives,
basically due to smaller sxient of zsone of heating up determined, in the final
anzlysis, by character of reactions of combustion and by corresponding constants
of the substance.
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Returning to the investigated phsnomenon in general plan, let us note that
phenomenon breakthrough of combustion to pores. This very complicated phenom-
enon was considered here in simplified form. Breakthrough of combustion to pores
and its character depend on physicochemical properties of the substance (our
experiments were conducted with explosives reacting chiefly in gas phase [127])
on conditions of combustion, gas dynamics of inflowing products, and character
of porous structure. If for example, we take an explosive concisting of law~ger
crystals, its gas-penetrabilit: will be increased, dimension of the largest pores
will increase still more significantly; as a final result, breakthrough of com-
bustion to depth of explcsive will be eased. As was already noted, experiments
were conducted in a mancmetric bomb under conditions of ccnsiderable dp/dt and
fall of pressure dp/dx.

Under other conditions results could be different. Thus, for example, in
bomb of constant pressure, stability of combustion increases: poras will be
filled by inert compressed gas. Nevertheless, simplified investigation under-
taken allowed to obtain useful resulte.

Institute of Chemical Physics Submitted
of Academy of Sciences of USSR 25 April 1963
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ON INFLUENCE OF FRESSURE ON COMBUSTION RATE OF AMMONIUM PERCHLORATE

A. P, Glazkova

(Moscow)

To study of process of self-propagating intramolecular oxidation of
amwonium perchlorate is devote a series of investigations.

Friedman, Nugent, and et al. [1] studied combustion of ammonium
perchlorate (samples of square section 4 x L mm, unarmored) in range
cf pressures to 340 atm; under these conditions they established
initially, the upper and lower limits of ability to burn according to
pressure: perchlorate is able to burn, starting from ~ 40 atm; com-
busticn ceases, if pressure exceeds ~ 270 atm.

Below is investigated function of combustion rate on pressure in a
wider range (to 1000 atm). In work was applied photographic method of
study of process of combustion, described in detail earlier [2].
Experiments were placed in vessels of constant pressure at 350 and
1000 atm in an atmosphere of nitrogen. For strengthening of glow of
unarmored samples of ammonium perchlorate in realm of unstable combustion
(160 =~ 350 atm), light conductor was applied: a rectangle of polished
plexiglas touching, on one side, the window of vessel, on the other
(protected by a thin glass plate), the spacimen of perchlorate, Unasifted
perchlorate (analytical grade) was used, dried to constant weight and
pressed to density near to specific gravity (1.93 - 1.94 g/em3).
Diamster, shell, and form of samples were changed in various series of
experiments.

l, On intensification of thermal loss during increase of pressure as pos-

sible cause of upper limit. It can be assumed thz! quenching of combustion at

upper limit for American researchers was caused by thermal losses, all the more

sc since they uzed samples of small transverse dimension, Indeed, experiments

with unarmored cylinders of perchlorate showed that at diameter of 5 mm,
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combustion ceases st 270 atm, and at 7 mm, extinguishing of combustion at this
pressurs is no longer observed. Still more convincing were experiments with
kernels in the form of a frustum of a cone (upper diametsr of which was 7 mm,

lower - 1 ~ 2 mm) igniting from large end. Combustion in all experiments was

extinguished at 250 atm, up to & diasmeter of 4.7 -~ 5 mm.* Inspection of unbumied

part of sample showed that front of combustion had a concave form, part of
external lasteral surfacs of kernel did not manage to burmn and remained, after
combustion, in the form of a thin border.

Iower 1imit, as cne would expect under the same thermal considerations,
also depends on diameter: at diameter of 5 mm, sample did not burn at 50 atm,
at 7 mm, stable combustion was observed already at 30 atm.

Thus, both upper and lower limits

d:’" ! :; / of combustion are determined by pres-
41 ; I f;/ sure, Thia is due to the decreass of
%ﬁ@k -/ combustion rate, in othsr words, its
'IS 'i‘bi/ ;., duration. Thermal input is not able

8o

to compensates hest!, loss,

During explanation of upper limits ability to burn according to pressure,
it was assumed that decrease of combustion rate occurs during increase of pres-
sure and under conditions when thermal losses do not play an essential role.

In Fig. 1 are given functions of combuation rate u (here and in the future u -
mass combustion rate in g/cmz sec, presaure p in kg/cmz) of psrchlorate on

pressure p. Points 1 and 2 for diameters of 7 and 12 mm of unarmored samples,
poirit of 3 give values of critical diameter of combustion. From the figure it

ias clear that in interval of pressures to 150 atm, combustion rate is identical

#In three analcgous experiments, when air from vessel was not evacuated
before sxporiment, combustion of kernels was complete. This is attributed to

the influence of oxygen, remaining in vessel,
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for thin and thick kernels from 200 to 4.. am. The latter burn rapidly, but
their combustion rate also drops as for kernels of rmall diameter, In Fig. 1l
are alsc presented oriented data on dependence of critical diameter of combustion
(determined by extinguishing of bare conicel kernels) of perchlorate on pressure.
This dependence, up to pressure of 200 atm, in general, agrees well with curve

u = £f(p). Decrease of critical dii.wueter at pressures from 200 to 350 atm, in
region where combustion rate remains constant, was not intelligible,

As can be seen from photograpns (Fig. 2a), at pressure of 140 atm, com-
bustion of unarmored samples of ammonium perchlorate is stable and differs from
combustion of secondary explosives only by the presence of separste local flashes
at front of flame. At pressures of 200 - 350 atm, character of combustion
changes sharply: glow becomes weaker and comburtior assumes a pulsating character
- at front of combustion are stops when burning seems to cease and then starts
again, and, as a rule, with the same rate as before the stop.

From photographs of combustion it follows also tha®t ip region of unstsble
combustion of perchlorate (see, for example, Fig; 2L, combustion at 247 atm),
front of flame has striped structure and consists of alternating light and dark
strips., At pressures of 200 - 500 atm, were cbserved cassz of 7-millimetcr samples

not burning completely. In Fig. 1, region of vnstable combustion is designated

by dotted line.




Influence of thermal losses during combustion ia lessenad also, in addi-
tion to increase of diamster of sample, by application of shell of low thermal
capacity (plexiglas). In Fig. 3 is given dependence of combustion rate on pres-
sure for samples of perchlorate pressed in plexiglas pipes of diameter 5.7 and
10 mm, with wall thicknesa of 1 mm (points 1, 2 and 3 correspond to values cf
diameter, d = 7, 5, 10 mm). As can be seen from Fig. 3, u = f(p) has basically
the same character as that for unarmored kernels, and combustion rate does not
depend on diameter of sample. It follows from this that drop of rate cannot
be explained by thermal losses to the outside. Actual confirmation of this con-
clusion comes from following experimeont: plexiglas tubs of perchlorate (dia-
meter 5 or 7 mm) was placed to half its height in water. If thermal lcss had
significant influence, combustion rate in that part of the tube located in the
water, should haves decrsased. Experiments conducted at 200 atm, showed that
combustion rate in beth parts of tube were practically identical (i.44 - 1.39 for
7-millimeter diameter and 1.38 - 1.40 g/cm? sec for 5-millimeter).

Results of described experiments

are subject to doubt in connection with
(71

the fact that combustion occured in tubes

/f of organic material - plaxiglas, partic-

// ipation of which in combustion could

~——

»* ® ©
‘o P -

accelerate it. This circumstance can be

§? Wﬁ&z o explained in two ways: clther determine

000 influence of plexiglas on combustion rate
Fis. 2 of perchlorats or take as material of
shell a low-reactive substance. In thie work, both variant were applied.
Mixture with zero oxygen balance of perchlorate and plexiglas {particle
sigze of components > 1 k< 250 % ) burns in significant range of pressures with

slower rate, than parchiorate alcne; at 50 atm, combustion rate of perchlorate
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in plexiglas pipes was, on the average, 1,20, and combustion rate of mixture

- 0.78 g/cm? sec. Thus, plexiglas does not accelerate, and even delays ccm-
bustion of perchlorate in region of moderately ~ increased pressures, and its
application as a shell under these conditions does not evoke doubts. Incidentally,
one should note that sharacter of combmustion of perchlorate changes somewhat
depending upon conditions of conduction of experiments. In photograph of Fig. Ls,
during combustion of perchlorate in pipe of diameter 1O mm at 156 atm, visible,
adjacent to front, is a narrow luminescent strip of gramular structure, as if
front of combustion consisted of separate microflashes. (ranularities of front,
apparently, cor:espond to separate streams of burning gases, probably.accompanied

by particles giving flame a shaggy, striped, form. At pressure of 276 atm (Fig. 4b)

velocity of gases was approximately 30 cm/sec.

Fig. &4

In glass pipes, combustion of perchlorate pruceeds otherwise. It goes by
parallel layers, but glow on surfaces of combustion is weak and at separate
points brighter flashes are observed., On walls of lower part of pipes, at height

of 2 - 3 cm, after experiments there remains a layer of salt of noticeable
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thickness externally baked and nonuniform with separate "burnt places" extending
to wall of pipe. Comparing this picture with photographic prints of experiments,
it may be concluded that combustion goes very nonuniformly; it is delayed at
periphery; light points and spots cn photographs correspond to approach of
combustion zt separate points, to walls of that part of pipe which is turned to-
ward objective, Described process of combustion reminds us, in this respect, of
combustion of catalyzed ammonium nitrate.

2 Absence of these peculiarities on

photographs of combustion in plexiglas

pipes is probably explained by smaller

thermal losses through walls of pipe

and by a relatively high temperature

of combustion, In general, these

photographs graphically demonstrate

Fig. 5

nonuniform, local character of com-

bustion of ammonium perchlorate.

Experiments in low-reactive shell were run in following manner. Samples
15.3 mm in diameter were covered with varnish of vinyl-perchloride resin
(content of C1 60,-65%) dissolved in dichloroethane. Thickness of layer of varnish
was 0,1 mn, In order to ensure uniformity of igniting with such diameter, igni-
tion was triggsred at high pressures by tablet of black powder, which led to
sharp decrease of scattering of velocities in parallel experiments at 750 and
1000 atm. Furthermore, in order to explain influence of thickness of zhell, a
ssries of experiments was run in which 7-millimeter samples of perchlorate were
covered by layer of varnish of thickness at 1 mm so that pipe was formed of
vinyl-perchloride varnish.

At last, fluorinated lubricant was studied zs shel®. In Figs. 5 and 6
are prescnted obtained results.

Fig. 5 shows dependence of combustion rate on pressure for 15-millimeter
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samples of perchlorate in shell of vinyl-perchloride varnish (0.1 mm, curve 1),
and curve 2 for 7-miilimeter Saguples in fluorinated lubricant.

In Fig. 6 are presented dopendence of combustion rate on pressure for 7-
millimeter samples of perchlorate in shell of vinyl-perchloride varnish of
various thickness h: curve 1 for h = 0,1 mm, curve 2 - for h = 1.0 mmn (scale
or axis of ordinates is twice less).

Graphics show that on curves of dependence u = f(p) for samples in vinyl-
perchloride varnish, section of velccity drop is preserved, although under

these conditions it is expressed less distinctly than in plexiglas pipes.

" 2. Dependence of combus.ion rate

of zmmonium perchlorate on presence of

shell material at high (500 -~ 1000 atm)

pressures. In Fig. 7 are summed up

data obtained in this work on combusticn

of samples of perchlorate of diameter
Fig. 6 7 wma, and dependences are shown of
combustion rate of perchlorate in various shells: 1 -~ without shell, 2 - in
vinyl-perchloride varnish (0.1 mm), 3 - in vinyl-perchloride va;nish (1 mm),
L - in plexiglas pipes, 5 - in flusrinated lubricant.

Examination cf graphs shows that for perchlorate, two regions of pressures
are observed: {irst - up to pressures of approximately 400 atm where combustion
rates of perchlorate in various shells are similar and drop of combustion ratc
with pressure is more sharply pronounced for unarmored samples and for perchlorate
pressed in plexiglas pipes; second region from 500 to 10CO atm where magniitiie
of combustion rate is varied depending upon shell.

The question naturally arises of the physical meaning of thia distinction
and of which curve depicts, to the greatest degree, combustion of the perchlorate

itself? The highest combustion rate at 1000 atm is shown by perchlorate in
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plexiglas pipes — 14 g/cm? sec. In pipes of perchlorvinyl (0.lmm), perchlorate
burns with significantly less speed 9 g/cm2 sec.

During combustion in a thnick shell

of low thermal conducting material

(plexiglas), thermal losses could be

less than in a thin shell of vinyl-

perchloride. Such explanation, however,

could be checked., If thermal losses

considerably affect rate, then the

latter should depend on diameter., There-

fore, at pressure of 950 atm were run

experiments in a vinyl-perchloride their

shell at various diameters; we list

obtained average rates of combustion u for various diameters of sample d in mm;

d= 15 1 5 3
u=10.0 9.06 8.98 8.13

These data show that influence of thermal losses was slight, so that through
it was possible to explain variations in combustion rates.

A still sharper influence of thermal losses should have shown up under these
conditions for unarmored samples. However, experiments showed that combustion
rate of 3-millimeter samples of perchlorate was even scmevhat higher (7.4 g/cm2
gec) than for 15-millimeter samples (6.0 g/cm? sec). Probably, here is manifested
jnfluence of combustion on lateral surface of oxygen contained in technical
nitrogen.

A second possible explanation is that at high pressures, the plexiglas of
ths wall burns with perchlorate and this combustion in contact zone is faster
than far from it and leads the process. Verification was possible, comparing

combustion rate of mixtures of zero oxygen balanct in plexiglas pipes and without

200




shell, Paraffin mixtures yield, in plexiglas and vinyl-perchloride shells
identical rates - 17 g/cm? sec. This rate applies also to combustion of a bare
kernel of perchlorate with paraffin, This attests to the fact that such secondary
factors as cooling, heat transfer in shell, washing by dense nitrogen, do not

play an essential role, but difference in rates for perchlorate is actually

caused by reaction of the substance with the wall. This interaction can not

be considered completely excluded during combustion in wvinyl-perchloride shell.
Let us note that experiments with a bare kernal gave significantly lower rate -
7-8 g/cm? sec which can be considered the combustion rate of the perchlorate
itself.

Experiments with kernels covered with fluorinated lubricant gave still
lower rate. We can assume that this latter shell in burning, partially volatil-
izing in proportion co rate of combustion, and mixing with products of combustion,
decreases its rate somewhat, as compared with combustion rate of perchlorate with-
out shell,

Thus, dependence of combustion rate on pressure for ammonium perchlorats;
studied in wi:le range of pressures, differs considerably from that for other
substances studied [2]. The most interesting of erperimental facts is fall of
combustion rate with pressure within its determined range, and also the pulsating,
unstable character of combustion under these conditions. Fall of combustion rate
with pressure, according to X. K. Andreyev, is connected with phase changs which
cccurs during thermal decomposition of perchlorate at 24,0°C., This suggestion,
however, requires experimental verification.

Author thanks K. K, Andreyev for valuable advice.
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ON HEAT EXCHANGE OF MICROTHERMOCGUPLES UNDER CONDITICNS OF
COMBUSTION OF CONDENSED SUBSTANCES

A. A. Zenin

{Moscow)

For obtaining of temperature distribution during stable combustion of
condensed substances, it is possible to apply thin thermocouples. Ther-
mocouples sealed in kernels of burning condensed substance, with rate
of its combustion, pass through a zone of variable temperature showing
(during ideal heat exchange of thermocouple with the medjum) temperature
distribution. A similar method is widely used for study of combustion
of powders (see {1, 21), where encasing of thermocouples in kernels is
done "by angle". The application of thermocouples of such form can be
explained only as insufficient attention to the question of.heat ex-
change of a thermocouple with gas and condensed medium in the process
of combustion. It is natural to expect a significant lowering of tempera-
ture of thermojunction for thermocouples of such form owing to thermal
losses to the ends, due to fact that coefficient of thermal conductance
of a metallic thermocouple (A} exceeds by 2 -~ 3 order coefficient of ther-
mal conductance of powder (a and products of its decomposition ().
Possible also is distortion of temperature profile dus to thermsl inert-
ness of thermocouples,

In present work are considered requiremen*s which parameters of
thermocouples must satisfy (form, thickness, etc.) to ansurs mirimum of
distortion of obtained temperature profile. For that, initially we
studied heat exchange of thermocouple with condensed and gas medium
under conditions similar to conditions of measurements of temperature in
wave of combustion; then, errors of thermocouple measurements are
estimated. In work it will be shown that sealing of thermocouples
"by angle" can indeed iead to large errors in temperature and serious
distortion of form of temperature profile.
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Designations

M -~ cosfficient of thermal Ty, - temperature of combustion

conduction of gas phase, T2 - temperature of thermo-
- coefficient of thermal Junction
conduction of thermocoupie. To - initial temperature of pow-
- coafficient of thermal con- der and thermocouple

duction of condensed phase T3 - surface temperature of

@ .« coefficient of heat emission burning powder

c, - specific thermal capacity u; - outflow velocity of gas
of thermocougle from powder

¢y - specific thermal capacity u, - rate of mation of thermo-
of powder couple (combustion rate

h - thickness of ribbon thermo- of powder)
couple H - deflection of mid portion

1l - size of shoulder of thermo- of thermocouple shoulder
couple E - young modulue of thermo-

p1 - density of gas phase couple ribkton

ps - density of thermocouples I -~ moment of inertia of

ps - density of powder thermocouple ribborn

te -~ time constant of thermo- p - aerodynamic pressure
couple in gas phase of b - width of thermocouple
burning, condensed sub- ribbon
stance w - Vviscosity of gas

*, - time constant during ideal x - distance from temperature
heat exchange (very large a) of combustion to measured

2, - coefficient of thermal dif- temperature
fusivity of gas phase y - distance through thick-

ay, - coefficient of thermal dif- ness of thermocouple from
fusivity of thermocouple center of ribbon

a, -~ coefficient of thermal
diffusivity of powder

- Biot criterion
- Nusselt number
- Reynold's number

I =2w

For obtaining of temperatura profile is suggested (see also [3]) thermocouple
Il-shaped. Presence of sscion, parallel to isotherms, called "shoulder," will
dscrease lowering of temperature of thermojunction from thsrmal loss to ends. Below
will be shown that it is possible to select size of should 1 so that error owing to
heat transfer to ends will become small, and thermocouple will remain still rigid
(deflaction of middle part of shoulder will be slight). Investigation of heat ex-
change of thermocouples of Ik-shaped form has sufficiently general character: at

1

O we obtain & thermocoupls "by angle," at 1 = w —plane thermocouple (parallsl
to isothsrms). MNumerical calculations and quantitative results of experiments are
ziven for ribbon thermocouples of alloys of tungsten and rhenium (95% W + 5% Re to
80% W + 20% Re) with thickness h = 7, and h = 3.5, and width b = 20 h.

At first, let us consider hoat exchange of Dl~-shaped, ribbon thermocouples
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in gas phase and calculate temperature errors owing to thermal inertness of
thermocouples and thermal loss to their unds. We will also show that thermal
inertness of thermocouples covered by a layer of meited borax is no higher than
for those not covered by borax (the sams total thickness). Then, let us consider
heat exchange of a thermocouple with the condensed medium and determine under-
stating of temperature owing to thermal inertness of thermocouple and thermal
loss to its ends,

The problem of temperature distribution on length of thin fi-shaped thermo-
couple during its passage with constant speed through front of flame with expo-
nential growth of temperature was considered earlier [3]. In cited work, as
in given, exponential rise of temperature was selected for simplicity, and also
because actual zone of variable temperature is wider due tc existence of several
regions of heat release. Errors determined by us coupled with understating of
temperature of thermojunction, will be maximum., In order to use cbtained solu-
tion, we will experimentally determine coefficients of heat radiation e of
#-ibbon thermocouples., For a heated thermocouple moving with known speed, by
rate of cooling we find its time constant *e¢ and then calculate o by relation~
ship which can be obtained from heat-conduction equation for a thin plate. If
suddenly transfixed into a medium with different temperature {(if criterion Biot

B=ah/2a << H1; for our thermocouples B = 10~% to 10~5)

€= 2%
Here c,pr - volumetric heat capacity of thermocouple (for wire of radius r
in this formula h is replaced by value of r).
Diagram of experiment is shown in ®ig., 1. Thermocouple 4 was braced on
two rods welded to rings located on opposite sides of revolving disk 2, from
which thermo emf is removed by brushes 3 and passes through preamplifier 6 to loop
oscillograph 7. Thermocouple is heated while passing through a thin (diameter

1 to 2 cm) stream of hot air (temperature 500°C; and is cooled in air of room

205




temperature., Length of path of cooling 1 m. Blast velocitiea are high (5 to
15 m/cec), and therefore transition from hot gas to cold is practically instan-
taneous,

Results of experiments for {lst, ribbon thermocouples are given in the
form of dependence of Nussslt number N =aA/M;  on Reynolds criterion
R = wmh i in Fig. 2. Values of parasmeters entering into criteria were tsken

for air of room temperature (To = 25° C)

pr=1.203.10-+ gfemd ,lm =i1.84-10-1g/cm sec , 4, = 0.6.10 cal/cm-sec-d2g

For obtaining temperature prof'ile, most exped nnt was the application wm-
shaped and M - shapsd thermocouples. Therefore, following series of experiments
was conducted with thea, and results are plotted in the same figure. Obviously,
within limits of scattering of experimental data, form of thermocouple does not

affect magnitude of .

Obtained criterial tond N = f£(R)

was used for calculation of coefficients

of heat emission of mentioned thermo-

couples under conditions of burning of

nitroglycerine powder H depanding upon

Fig. 1. Diagram of experiment for its combustion rate. Calculations wsre
determination of coefficlents of heat

smisaion: 1 ~ electric motor, 2 - made for average temperature 1000°C
revolving disk, 3 - brushes, 4 -

thermocoupie, 5 ~ stream hot air, valuss of parameters

6 ~ preamplifier, 7 - loop oscillo-

graph. Bi=4.104 g/cm sec, A, = 3.5.10-¢ cal/cm-sec-deg

As an example we point out that for thermocouple h = 3,5 ¢ at pressure 20 atm
(combuation rate of powder u, = 0,34 cm/sec) % = 0.6 millisecond, @ = 0,114
calf/ca® x sec x deg at pressurs 150 atm (u2 = 1.2 cm/sez) T+ = 0,22 millisecond,

5 = 0,307 cal/cs? x sec x deg.
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Fig. 2. Criterial function N = £(R) for
various ribbon thermocouples: 1 - flat
thermocouple h = 7u ; 2 - flat thermo-
couple h = 3,5u ; 3 - flat thermocouple
h =74 , covered by borax layer~7u
(during processing of data, it was con-
sidered that h,e = 10u ); 4 - flat
thermocouple h -~ 3.54 , covered by
borax layer ~3 w{during processing of
data, it was ccnsidered that het = 5 4 );
5 = 1 « shaped thermocouple h = 7Tu;

0 « M - shaped thermocouple h =7 ¢ ,

Tablﬂ lo
(a) ¥y C / cEn 0.2 05 10 s
(b)mm’rononps . ™ 6 e '3 ™ 6 P '3
A=Tp,  1=f.2ux 4.5%1 10% | 199 16.5%; 430,4!4.20,.; 58% | 3%
A=3.5p, I'=0.4xn 0.7% 16,8% 13.5% | 3% [11.5%] 1% | 18% | 0.4%

KEY: (a)upcm/sec; (b) Form of thermal
loases.
Calculated values of a are used for calculation of relative understating
cf temperature by -~ shaped thermocouples in gas phase by the formula work {31].
Results of calculation are given in Table 1, where « - due to thermal
inertness of thermocouples, b - from thermal loas to ends.
Increase of error due to thermal inertness of thermocouples with incre ..a
of ccmbustion rate is obvious., Decreass of error due to heat losses to ends

is coupled with decresse of time of stay of thermocouple in zone of variable

temperaturs,
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If one were t¢ put 1 — O (thermocouple by angle), then by the formula of
work (3] and calculated values of a it is simple to receive that temperatures
rieasured by thermocouple of temperature and temperature gradients for taken
thermoccuples and speed range will be gpproximately 1 times luss than actual
temperatures due to thermal loss to ends of thermocouples., Thus, thermocouple
method, used in works [1, 2], cannot be considered acceptable, and results of
measurements require check,

During use of thermocouples in sones of chemical reactions in gas phase,
catalytic effect is possible on the surface of a metallic thermocouple. For
its removal, thermocoupls is coversd by layer of melted borax. Investigation
of thermoinertial properties of such themmccouples presents interest., Fkibbon
thermocouples h = 7u and h = 3,5 u were covered by layer of melted borax:
first layer with maximum thickness at center of ribbon ~ 7p, second ~ 3p (average
thizknesses 20'u and 10 s accordingly) Results on heat radiation received by
described method in criterial view are preseated alec in Fig. 2, and, in order
to combine them with previously obtained dependence N = f(R) for bare thermo-
couples, it was assumed that first thermocouple has thickness 10 g, second 5 u.
Thus, thermal inertness of tharmocouples covered with borax turns out to be
even less than thermal inertness of an unccvered theérmocouple the same average
thickness. This result is not strangs, in spite of the fact that thermal
conductance of borax is three ordsers less than thermal conductance of thermocouples.
Actually, minimm time constant (during ideal hest exchange, internal problem of

thermal conductance) our thermocouples is equal to

3
1',=';—%;=10"-—10" .

i,e., four orders less than «,. This appraisal shows how strongly the
thermal boundary layer on themocouple determines thermal inertness of thin
metallic thermocouples under the considered conditions. Its dstermining role

is true also for poor conductors of heat (glass, borax) having dimensions of
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taksn thermocouples, since problem of thermal conductance remains axternal
(B~.10"2), Thermal inertness of such bodies will be determined by their volume-
tric heat capacity ces and not by thermal conductance. But “*F'  of
borax is approximstely 1.5 times less than for metal of thermocouple which axplains,
experimentally, the received decreass of inertness of thermocouples covered with
borax as compared to inertness of bare thermocouples of the same averags thickness.
Another cause is the decreaze of thickness of covering towards edge of ribbon.

We note also that calculation for accurate solution of problem of thermal
conductance about temperature distribution by thickness of this flat thermo-

couple passing front of exponemtially rising temperature, having form¥*

___Tr—rt — fh@w _ (x= ;m:)
(To=To) v = b (/aR) 4 (ha/ ) sb (Vsch)

snows practical independence of tempsrature change in time from coefficient of
thermal conductance of thermocouple in wide range of change i ( =1 to 10~3
cal/em « sec °C) under the conditions burning of powder H.

Appraisal of thermal losses by means of thermal conductance to ends of thermo-
couples and thermal inertness of thermocouples in condensed phase will be made
by us separately, due to great complexity of problem.

At first, we will determine thermal inertness of flat thermocouples for
which there are no losses of heat to ends, and then we will firnd lowering of
temperature of thermojunction owing to thermal losses to ends under conditions
when influence of thermal inertness of thermocouples is exluded. Estimates of
understating of tsmperature of thermojunction obtained for each type of thermal
loss can be integrated if these errors are small., This region of errors and
conditions leading to smsll errors will also present interest.

In condensed phase, heat exchange with thermocouples is carried out by

*A. A. Zemin. Study of tempsrature distribution during combustion
of condensed substances. Dissertation, Moscow, 1962.
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thermal conductance. Let us consider thermal inertness of thin, flat thermo-
ccuples. Difference in teﬁperaturo of thermocouple and an adjacent condensed
substance located in zone of heating can be caused only by large volumet:ic
heat capacity of the thermocouple. Problem of heating of thermocouple in

condonsed phase under certain simplifying assumptions was considered earlier.®

Solution for maximum relative error has form

Tg-—T. =1 2 Uthq ( _'_’f_!)
Ty—Te ~ ° 1—9} Koy 1Py

whers

i=8 - 5__&-1/‘7:
° =158 By a3
In Table 2 are given magnitudes of maximum relative error in temperature

owing to thermal inertness of thermocouplss, calculated by this equation as

functions of burning rate of powder H.

Tabla 2.
Relative errors in temperature grow
A | vy, cuf goo
0.2 los t1.0 1.5 propertionally to thickness of thermocouple
Tn 0.8% | 2% ld% 8%
3.51 0.39 10.8% 11.6% 12.4% and burning rate. In absolute magnitude,

relative errors owing to thermal inertness in condensed phase are significantly
less than in gas.

During appraisal of heat losses to ends of thermocouples, we will use thermal
modeling. Average number of parameters determining heat exchange of thermocoupie
and ccndensed vhase was six: thermal diffusivity of substance (a3cm2/éec) and
of thermocouple (azcm?/sac), their volumetric heat capacities (C3p,cal/cm3°C and
c2p.cal/bm3°c), thickness of thermocouple h cm and size of shoulder 1l cm. Of
these quaatities, three are independent: c3p, (or cng), 85 (or a5) and 1 (or h).

According to II-theorem of theory, similar unknown function (in our case,

dimensionloss temperature of thermojunction) should depend on three dimensionless

*A. A. Zenin. Study of temperature distribution during combustion of con-
densed substance. Dissertation, lioscow, 1962.
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criteria .
£3Ps b
;;5:, ‘l' 3

Since in model experiments substances with those soms thermal coefficients

were used. The aim was detecting or form of functioen ¥

fe ()

'herﬁ T2 - tanperatu_re of junction’ Ts - tmpﬁr&tm of Mim (mrac%)o

3 To accurately reproduce conditions

of heating of thermocouples in cendensed

substance during combustion is very dif-

ficult, therefore, for simplification it

was considered that in heated zone is
Fig. 3. Diagram of oxperiment for

determination of thermal losses to only the shoulder of thermocouple. Under
ends of thermocouples in condensed
phase: 1 - heated glycerine, 2 - actual conditions; part of eands directly

glass, 3 - thermocouple.
adjacent to shoulder is in heated zone.

Therefore, model experiments will give a superficisl appraisal of heat losses,
This simplification leads to independence of results from regime of burning (for
example, rate) and in essence was allowed for by us when rate in a number of
determining parameters was not considered. Thus, is considered stationary part
of the complicated problem of heat exchange (tnermal inertness was considered
earlier). Therefore, accepted ascheme of experiments (constant temperature of
heated medium) is permissible.

For experiments were used ribbon model thermocouples of copper-constantan
of following dimensicns: h = 0,05 mm, 0.5 mm, 0.7 mm, 2.0 mm, and manganin.-
constantan h = 0,2 mm, 0.6 mm, 1.2 ma. As medium was taken glycerine, similar
in its thermal properties to many condensed substances (including powder H).
Model thermocouple was sealed in plexiglas sleeve, in which there was glycerine
at a temperaturs of 50°C, after which part of thermocouple protruding from bottom

of sleeve was submergsd in glycerine heated to 250C. Thermocouples could
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withdraw from bottom of sleeve. Process of heating of thermccouple was recorded
on potentiometer EPP~09 (Fig. 3). Aim of weasurements was determinatic: of
established temperatures of thermojunction. Temperature of fall everywhere was
300%C, Results of experiments are presented in Figs. 4 and 5, from which it is
clear that there is a significant understating of temperature of msdiue at small
sizes of shoulder, espscially sharply developed for better heat-conducting thermo-

couple of copper-constantan.

Results can be described by formulas

are, r,tfr.= °-°°°(lﬁ)' for Fig. 4
n
nol} ’f.—?-'_rﬁo'n"(;)n for Fig. 5
‘ :; Experiments with thermocouples of
“ 3] two indicated types differ by thermal
m: conductance of thermocouples. There-~
:. fore, results czn be combined if we
0 ¥ . 3 ‘j consider coefficient of thermal conduc-

&0 w
tance (true, it must be kept in mind that
Fig. 4. Understating of temperature

by thermoccuple of copper-constantan Xs changed only at one electrode, and
due to thermal losses to end as

a function of dimensionless depth of therefore the formula is tentative)
submersion: 1 -h=0,05mm, 2 ~-h =

=0,5m, 3~h=0,7m; 4J -h~= TeeTs ]

= 2.0 m, T, —T," 1+ 15L% @/

If we set relative error at 2%, we obtain following formula for size of

shoulder of thermocouple.
F=2000/ 2] (fexhen,ds cal/cm.sec-deg
As example we indicate that at h = 5 for copper 1/2 1 = 500 # , manganin
and constentan 1/2 1 = 80u, for tungsten and rhenium 1/2 1 = 200 .
Thus, due to lsrge losses of hest to ends, necessity of 1 - shaped form

of thermocouple is evident. Howover, for thermocouple of such form, there is
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the possibility of deflsction of central part of shoulder under acticn of gas
flow, especially in first moment escape to gas phase, We will show that it
is possible to select size of shoulder so that at its previously obtained dimen-
sions (from considerations of zmallness tharmal losses to ends) deflection of
shoulder is small,

Superficial estimate of dynamic deflection in center of shoulder, i.e., in
place of thermojunction, assuming hinged joining of ends of shoulder with ends
of thermocouple (obviously, rigid connection prevents defiection of shoulder),

is possible by the forrmla (see [4])

5 pbi (p____ P—'.“'—'-R pm.l)

Z M

e

vhere H - amount of deflection, E - Young's modulus, I - mxanent of inertia, p -
aerodynamic pressure [5], and R ~ Reynold!s number for shoulder. Taiing ratio
b = 20 1, we can find bond betwean h and 1 during displacemmt of central part of
thermocouple, equal to thicknass of thermocouple (H = h).

We obtain equation

M =005 (U;lmpll"

e ; where g1 - viscosity of gas, or for
fﬂ ‘ E; conditions of burning of powder H (pres-
1. sure 5 to 150 atm [tech]),
. v ‘. B =10 to 101 i,
" )"'r: 'i['___ One is easily convinced that opposite
s .': requirements of small thermal loss to
0 1ge < ends of thermocouple and its sufficient

s ] &

Fig. 5. Understating of temperature rigidity are compatible both for gas
by thermocouple of manganin-constantan
due to thermal loss to endc as function and for condensed phases which allows
of dimerncionless depth of submersion:
l1-h=02m, 2~h=0,6m, 3 - application of nm - shaped thermocouples.
h = 1.2 ma.
Let us note that magnitudes cf 1

in Table 1l are selected in such a way as to satisfy requirements of rigidity
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and smallness of thermal losses tc ends,

Comparing requirements pressnted to thermocouples for unerring recording
of temperature diastribution in gas and condensed phases, we arrive at conclusion
that requirements in gas phase are more strict and if they are satisfied, tempera-
ture distributions in condensed phase will be also unerring.

Absence of influance of thermal losses to ends of thermocouples on their
readings in condensed and gas phases for selected sizes of shoulder was checked
experimentally with the help of M ~ shaped thermocouplss for which thermal loases
to ends change sizn., Therefore, if thermal lossas influence, then temperature
profiles obtained by these thermocouples and usual 11~ shaped must differ,
Expsriments showed that within limits usual scatterig distinction is not observed.

Also observed e:yperimentally was influence of absence of shoulder for a
thermocouple by mesns of compariscn of temperature prciiles obtained by usuali
n -shaped thermocouples and thermocouples with angle. In Fig. 6 are given typical
recordings by these two forms of thermosouples (powder H, pressure 20 atm {tech],
thermocouple @ 301 ) illustrating well the strong d.stortion of temperature distri-
bution due to thermal loss te ends for thermocouples "Dy angle.®

Approximately the same understating of temperature gradiaznt can be obtained
by calculating means presented in present work.

It is necessary to consider that distortion of temperature profile obtained
by tharmmocouples sealsd '"by angle" will be connected also with disturbance of

one-dimensionglness of process of burn-

1,
o~ 7 1008 .
y ing of powder (in particular, with
\ 566
"ib 17 1008 05 09 020 distending of surface of powder at
Fig. 6. Tempcrature protiles of output of thermocouple to gas phase,
H-powder at pressure of 20 atm
[tech] obtained by thermocouples inasmich as layer of condansed sub-
& 30 4 of various form ( II..
shaped and "by angle'), stance adjacent to thermojunction will

start to decompose only if temperature of thermojunction is near to temverature
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al

of surface).
In conclusion we indicate the receipt of tempsrature profile with the
help of thermocouplss covered by thin borax layer. For nitroglycerine powder H,
Lemperatures profiles received by these thermocouples (h = 3.5 p» layer of borax
~ 3 1) to-1400°C (boiling point of borax) are within limits of usual scattering
of experimertal data which indicates absence of noticeable catalytic effect for
our thermocouples,
The author thanks A, A. Koval'!skiy for organization of the work and valuable
remacks during discussion of results.
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DISPERSION AND ACCIDENTAL ¥RROR OF MEASUREMENT OF TEMPERATURE OF
IOCALLY ISOTROPIC TURBULENT FLOW
Yu. L. Rozenahmok

(Leningrad)

Process of measurement of temperature of nonisothermal flow of gas or liquid
by contact method is accompaiiiad by appesarance ¢f accidental error determined
by statistical character of turbulent pulsation of temperature in flow and by
dynamic characteristics of data unit. Appraisal of accidental error of measure-
ment of temperature of air in turbulent atmosphere by linear thermal receivar
was conducted in [}i. Here, resultant conclusion in [1] were based on approxima-
tions of transient response of thermometer of exponential function of time.
Meanwhile, it is known that such approximation has very rough character and is
valid only in case of equality of average temperature at surface of thermometer
with its aversge volumetric temperature, which corresponds to applicaticn as
thermometric body of material with infinite thermal conductivity. In general
case this condition, obviously, does not have place, especially for higi frequen-
cies of energy spectrum of turbulence during intense heat raciation, and alaso for
thermometers of low thermal conductance and not too small a radius.

Let us consider the problem of determination of accidental error of measure-

ment of temperature of locally isotropic turbulent flow without eszsential
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limitations,
Process of hsat transfer in a thermometer is described by heat-conduction

equation
are T
—_ =g k ]
ot (1)

with boundary conditions on surface of body

— VT, 4+ 3 (8 =T, =0

(2)

and initial condition
T*(z,y,2,0)=0 (3)
Here T* - temperature of body; A, a - coefficients of thermal conductance
and thermal diffusivity of body; a - coefficient of heat exchange; ¢ - ambient
temperature,
Applying operational calculus to problem, we obtain expression for sought
temperature T (x, ¥y, z, t) in the form of Duhamsl integral
TO (2, y,2,1) = .‘_’..‘S u®(z,y,2,7)0 (t —7)dv
o g (1)
Here u* (x, y, 2z, t) represents solution of problem when ambient tempera-
ture is described by the Heavyside function (of unit force).
Relationship (4) can be represented in following equivalent ferm with regard

to (3)

1
T* (2, y, 5, 1) = S C* (z,v,2,7) 8 (t — ) dr
[

(5)
where G* (x, ¥, %, t) ~ local pulse transient function. For quasi-stationary
regime, upper limit of integral can be taken as equal to infinity.

Since the majority of applied data units of temperature (thermocouples,
thermomeiers of resistance etc.) will covert to a useful signal not local, but
average volumetric value of temperature, it is necessary to average T* (V) by

volume of body. T(g)::..:T§SG‘(I 10 (t — 1) drdV = G(f)e(l-—t)d:

Gm

C(v) =._ c° {V.v) av
[ ] (6)
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Averaging both parts of (6) by time, when @ (t) represents stationary random
function of time, we find that mean value of temperature ol medium and thermo-
met.ear coincide in accuracy '

&(a)): <6(‘-*)>°§G(f)df-
v .

w (O (1)) -é-s (x*{z.y, 3, 0) —u"(z,y,7,0)dV = (B ()

(7)
since u* (x, y, 3, = ) =1, u* (x, y, z, 0 = 0, Thus, if we disregard
systematic errors of measurement of temperature caused by pulsation of heat
radiation with time [2], the systematic error of measurement of temperature of
turbuleat flow by linear thermometer is absent, in accordance with whican mean
square error is an accidentasl error of indications of instrument,

Considering

T (= Te+ T (1), 8 (1) = B, 4 6° (1) (8)
where Ty and 8, ~ constant constituents, 7 and e - pulsational parts, and con-

sidering that Tg = 6. we obtain formula for conversion of correlated function

field of temperature X, by linear thermal receiver
KT (f) = (T' (‘) 7'" (l + f)) = S S (4 (T;) G (Tj) A',. (f + T3 — 1'1) dl’[ dr, (9)
0

Expresaing correlated function through temporal structural function field
of temperatures U, we obtain aralogous formula for relationship structural

funciions Dy ard Dp at, entrance and output of thermometer

Dp (1) =2(sy*— %") + S”:So G (v1) G (13) Dg (¥ + 73 — 71) d71 d7s (10)
Here o - dispersion of indications of thermometer, - average square
of pulsation of temperature of flow
Dy (v) =<[6" (¢t + 7} — B ()]
From (9) or (10) at * = O we find exprsssion for dispersion and root mean

square error of indications of thermometer through correlated or structural

function of field of tempsratures and pulse iransiemt response of thermometer,
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deterrined for bodies of simple form by analytic means

G (f;) ¢ (T;) DO (‘(3 —1)dn dty .

S g

1&
=g - .
e 2§ (11)

Common integral of Fourier equation (1) with conditions (2) and (3) at

8 = 1 in accordance with Boussinesq thecrem [3] is expressed by formula

ut{r,y.z,t) =1~ S‘ A-U’(r,y, z)e-v’-'
. a0 (12)

Here Aj - constants (initial thermal amplitudes), Uj ~ sigenfunctionse of

problem sat.sfying lislmholtz equaticn

V'U,”{"m,‘vj"—"o (”‘,'=ij“)
my = eigenvalues, Eigenfunctions Uj satisfy boundary condition (2) of mixed
type on surface S limiting considered bedy. Accordingly

G*x, v, 2,l)= 2 A’-Uﬂ}c-”‘
b

(13)
FProm (11) and (13) we obtsin

i o 90

Oyt =34t — - ZE 2_‘: A; AT 0P Vja (1)
where
1 ¢ T
Q’ - "T,' § Uj (V) dV' *i. = S S exp ('-' (T,-T[ + kaj)l DG (T;— 'h) dfl d\'; =
1. [ -] e -]
-2 %y . ba 31}
= s [“S P Dy{n}dny +'S e Dg (13) dt,]

' (15)

In case of locally isotropic turbulence for temporal structural functions
at small ¢ can be taken exponential approximation of Kolmogorov - Obukhov (4-7]
Dy (1) = C<F (16)

where C and B - gquantities independent of «. Hence

Cri +8), e -1
Y= G Fg P ) (17)
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Equivalent form of (17) during cslculation of (16) is

rad+8) - - -
¥ir =, 7, D (70 + 770 (7)) (18)

Putting (17) or (18) in (14) and changing indicesz of integration in resultant

second double sum, will find
al=0 =T (1 +8) 3 3 4,4, %%%De ;™
$ (19)

We apply obtained expression (19) to determination of dispersion and acciden-
tal error of measurement of temperature or locally isutropic turbulent flow by
thermometric bodies having plane, cylindrical, and spherical form (one-dimensional
problem). Using certain results obtained in analytic theory of thermal conductance
[9], for all three cases, after simpls conversions, we obtain

£ magt — VL (1 + ) ,‘_?; Fiow p, (7:(") (20)

Here v = 1, 2, 3, for plate, cylinder and sphere accordingly

o

28t
) () = 4. 1) .
L] o Fit = A

,(m IB"*" B+ P)_(l)l]

4B 6Bt
F o 4Ny (1 . B — 49 (3)
i Ai Vj P’(lh [8‘ 't' pé(ml . F) A 9 “ (3)3 [B’ B P {3)3 } (21)

where @, p and g - roots of characteristic equations:

b Jol™)  p® o
(5) - L . ._,L.._ 2
agp; B N (]l,w) il L — 3B (22)
g cth "’(l) { -1 . ¢ | 1 I M (!)) { -1
. 2 )
W0 - (.,m) ( g, +B) ’ Wi("’"(,m) (,w, 0,(:))'*'"5)
e (23)

- (,m m“h,,(s)_i’*‘_ﬁ') b (f"eiﬁ)

Here J, and Jl ~ Bessel functions of first kind, I, ;54 I; - modified
Bessel functions of first kind, B - Biot criterion, R - characteristic dimension.

¥hen there is accurate information on quantities C and 3, it is expedient
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to use for ¥, expression (17). Here

8" = 341 — CRMa"PQU) (B) (24)

where
Q™ (B = vF (1 4 3) :S (1, )% F O (25)
i=t -
For conditions of atmospheric turbulence in surface layer p= 0.42 (1, 8],
CGraph of functions of QY for v = 1, 2, 3 at B = 0,42 is shown in figure.
Formulas (20) and (24) give possibility also to determine mean square

error of indications of thermometer, and
e = (342 — 5.2 N 2 e YV orian(26)

representing, as was already indicated,

20 accidentsl error of measurament of
Y temperature of locally isotropic turbu-

\\> \d lent flow.
2
\\\ As follows from curves, optimum
\\<ix properties in the sense of minimum of

0 \q

7

accidental error belongs to the spherical

4

thermal receiver, wheress thermometer-

v
;;;;E;:::M .
ol 8 plate has worst properties in this
10° 16! ! 10

sense. It is necessary to note thse
presence of a finite, accidental error not vanishing to zerc during infinite
heat radiation. In this case pulsationc of temperature on surface of thermometer
coincide by phase and amplitude with pulsations of temperature in flow. However,
as a result of presence of temperature drop through thickness of thermoueter,
accidental error does not turn into zero as would have occured during formal

application of condition B — e to thermometer of infinite thermal conductance.
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Function ¥ Q™ (B , and consequently, accidental error change in range
10-* < B 10 by approximately thres times. At B>10, function V@i remains

constant and squals =0.5.
Submitted
26 April 1963.
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ON ONE NONLINEAR PROBLEM OF THERMAL CONDUCTION
S. I. Anisimov and T. L. Perel'man (Minsk)

In theory of thermal explosion and in a number of questions of theery of thermal
conductance [1, 2] is encountered nonlinear equation
%ccAT+qexp(—-§~) (1)
Source in right side of (1) approximately describes thermal divisions during
chemical reaction, and constant E signifies activation energy of reaction.

Let us examine simplest one-dimensional boundary value problem for equation (1)

T(i‘,i):r‘, T(x,0)=T, (=il (2)
or the same,
TU =T, 31"'(5%—‘)— =0, T(x,0)=:T, (3)

We will introduce dimensionless variables

b= t=Tr, oy=—A 7o kt3 Al (&)

i it . =g °¢=E' e="F

Let, further, G(.%:v—1) = Green's function of heat-conduction equation

for unit saction. Problem (1) - (3) will be reduced to integral equation

1
Q(E.f)='@(‘.-f)"r'—SSG(E.&':T—f')exp‘s'(gz"'_‘;"}‘di'd" (5)
se
¢t =0 — -,2? {6, — 6q) 2 f'—_*_i,)/: exp[— at (n—i- -17)’ t]cos (n-{--%——) at 6)
Awrg

Greenis function has form

Ct %5 1 —¥) = [02 (" (§ + £ int (T — 1) + 03 (P (5 — E% i — )] (7)
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Thata functions in right aide ot (7) are determinsd by equality (3]

w
Sa s, ir) =2 E exp [—n (n+ —;—):r}ros 2n -} 1)u

LA ]

Let us note that Green's function (7) is symmetric about arguments § and &’

ard in considered region is nownere negative.

Equation (5) can be solvad by sequertial approximations of form
t1

% ) = S T e tn e n ! ‘g
BY=¢R ", . 8 (5.1)—V(E',r)+zs‘écl(:,=i:\’-Ut‘rpmffidf (8)

During soluticn of boundsry value problams analogous to (1) - (3), usually
interesting are conditions of exdstencs cf such temperatures distribution which when
1--oc would change to stationary. It is not diffizuit to show thel such distribution
exists, if paramester , is sufficiently amall., Here, sequence of functions e™(t. <)
is evenly reduced to solution of integral equation {4}. In order tc show this, we

will compose fcllowing expression

T4
{ — -1
(het) __aln) £ R x -
’ e §§ c (;b E- ¥ f') i\axp e(n)(ep. .‘:) exp el.n'llei’ o ) X

(nt sqr _.aln-1pe _»
(T, )9 ("tz-—d‘;,'dr’
0 (&, ¥) — 6" (", 7

(9)

Let us note that o™ g0y o since () >d CE Liv—1) 0. We will in-
20,

troduce designation

max (B"’ —_ pcu-x)) =i, »0

From (9), it follows that

1t
Tfe. Vv —1) 1 —t 3
M AM o= —— | e gt
el S o A = mex {e;\§ o) _gtn-1) iI:exp oin — exp pr=} J X dt df‘}

It is easy to check that A<t 1f e<ige, In this case there exists limiting
function of sequence (8), which will be solution of equation (5).
For chemical kinetics, case of o1 is of interest. It is easy to show that

in this case inequality for ¢ has form .

{ =t
'<p~exp..
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where on - the biggest value in conaidered region of of(t. .

Let us note that describe« method of successive approximations irdicates the
existence of a solution. Applying known theorems of theory of integral squations
(see, for esample (4]) it is easy to show that equation (5) has at least cne solutior
at any values of parameter . Meaning of result is that in a certain interval of
values, solution will be unique. We will return to this question below durirg in-
vestigation of the stationary problem.

Method of successive approximations allows to receive approximate solutions in
certain simple extreme cuses., Let us consider, at first, solution during rather
long times.

1. We will consider that parameter ¢ is rather small, so that in all tiines
there is a unique solution of equation (5) which can be obtained by iterations of
(8). We will calculate am (z,1)taking, for gzero approximation, stationary temperature

distribution, 6@, «)=¢0() satisfying relationships

a0 (¢ i .y
—di’—)+'°"’(’ 8 (5) )=°- 6()=12, '“‘7?')‘=o (29)
Solution of problem (10) has form .
— —d -,
umnvu=g[8np714’¢
et (11)

where o -~ the biggest value of function ¢y) in section ot i1, which due to
syemetry is attained at t=o.
Stationary solutior of 6 (i is unique if equation {11) at =0 is
unique for every e value of constant o.: here integrals enterirg in {11) are
not expressad in elementary functions. However, general character of dependence
6,() can ve investigated withcut resorting to numerical inhegration. It is easy
to see, first of all, that sguation (11l)at £=0 has at least ons solution for o,

at any values of e; indesd, takes place appraisszl

;"‘ exp(1 /28, )d: 1 (12)

S VEITE exp

’m .m
P """d ]
m';eg {5 v T Voare, PE,
S <

t

D




Conaequently, values of ¢ can be as large as desired. Lot us note that after

replacement in work [2]

oxp rexp 5 expz (13)
solution at sufficiently large * does not exist. This is intelligible because a3
& result of replacement of (13) in equatioh (10) instead of bounded function -
exp(--1/8 there is an infinitely increasing function of exp(%8).  and known conditions
of existence of solution (see, for example, [5i)ars unfullfilled.

Expansion of (13) is valid under twc conditions; o,<<1 and o, —60 <6, Preserving
the firat of them and comparing result obtained in [2] with estimate of (12), it is
simple to conclude that during fixed o, function () has at least two extremes
among which is a region of ambiguity of solutions, where every value of ¢ corre-
sponds to more than one (in reality three) values of 6, Hore detailed consideration
shows that minimum of function (0,) lies in range of values ¢ _~ t,and also that
there is such a critical value 6., so that 6.>>06. solution of stationary problem
exists znd is unique at all e These romarks may be of interest in case of re-
actions with low activation energy.

Taking solution (11) for zero approximation, we obtain value of function e(t, 1)
similar to steady state. Result has form

1
4 ( i) n

o at Yeosn 4 dy|
0, 1) =6{f)-i — exp —T)CO’T[&—’Z—‘S 6 (8) cos n d&J (15)

If in entire region ¢(z)<«z1, it is possibie, using method of steepest descents,
to simplify initia) integral =2quation, Omitting calculations, we obtain result

04t %)= 0(¢) — —f‘-ew (—"—;)cos% [Oc—%+2 V?;E“m exp (—‘.’%:)] (16)

Formulas (15) and (16) are true during cendition r>4/x.
2. Let us consider solution at brief times, In this case for zero approxi-
mstion it is natural to take initial temperature p, Nucleus of integral equation
(5) we simplify, using known relationship for Theta functions
01 (u, iv) = o™ exp (__:1;-'_’) 00( ; "i')

iv ' ¢
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Leaving at y_o only main members of Green's function and executing integratio

we obtain in result

—t —
8. 1) =9, +£CXPW{1 — ! ‘v/% [“ — ) exp (_~ {4 :5),).*.

+a + e (- ) e Tl {a—o 4o [EE 44] x

=i 1—-% (1+F)’ —1 i+8
xexp errl(z V;)}+{00—6¢'f‘ [ 4T ]oxpwcrl( Vg)}—-

.-.{e. —0,. - eexp o~ l2+flerf(7—)} (erl ) =_2_§= c"'d.‘)

(3]

(18)

3. Let us consider, at last, case when parameter ¢ is small., Soluticn in
this case can be obtained in the form of series by degrees of ¢ taking for zero
approximation ¥(. 1) (see (5)). Let us note that during e-o¢ differenceo, —0 —u
This allows during sufficiently long times to disregard in (6) second member as cox
pared with first, The same can be done for all times, if |0, —6,1<0,.

In first order of approximation for ., result has form

0.0 = 0 +eenp g [LSE 25 U (19)
=g

X exp[-—- n (n + .;_)’ x] cos (n -+ 1_) n&]

For receipt of highest approximation in corresponding calculations it is con-
venient to use method of steepest descents, applied above to calculation of ex-
preasion (16).

L. We will show, in conclusion, that in process of establishment of stationar
temperature distribution (¢ <r,) temperature in any point monotonely strives duri

T w0 toward corresponding stationary temperature, Intuitively, this reault i

sufficiently obvious. For proof, we will formulate difference A(;.7)=08( v -—-0(3).
The latter sstisfies integral equation

t1

g =0 @9+l {oa vien)en

1
O FAE, T °“’0(c;]" v (20)

0 1

0=2 5t swiems(vs §) eafon s+ L o enfrt 4]

ety




tion,

‘0

coln~-

uring

t is

))

To equation (20) we apply method of successive approximations, considering
AR Y = 0% )

Considering that o, r)<o (in physically interesting case 6.> 6, when medium
is heated with time), and repeating reasonings conducted during proof of existence
and singleness of solution of boundary value problam (1) ~ (2), we find that a™ g
at all ¢ and difference A™ — A"V .0 during t— c.
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ON HEAT EXCHANGE AT CRITICAL POINT OF A BLUNT
BODY AT SMALL REYNOLDS NUMBERS
I. N. Murzinov

(Moscow)

On basis of analysis of flowing around spheres by hypersonic flow is revealed
parameter determining heat exchange at critical point at small Reynolds numbers.
Certain results of calculations are given which were approximated by analytic ex-
pression depending upon this parameter. Obtained function is compared with ex-
perimental data.

Using main assumptions of work [1], equations of momentum and energy in environ-

ment of critical point of sphere are written in the form

oy pofpe gt 2o PR\ ot =
(PW/Y +2f — [+ T =0, (F)- z{‘ 0 (1)
v
— V_ re
-2 __Ym L _VER R, = Po’e
u=2zf'(n), v=— L, = o \ pdy, o
( PVRoo § boo )

Here zr, yro - distances along generavrix and on normal to bedy, ry - radius of
sphere, uV.. v Vg, PP, Bieor V! PPos Ve! - accordingly constituent velocities on axes
: and y, density, viscosity, enthalpy, and preasure of gas, Po: B, Voo = density,
viscosity, and approach stream velocity, ¢ - Prandtl number, dash signifies dif-
ferentiation by variable .  Quantity b determines pressure gradient at critical

point of body, so that 3
P
B = T x
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Boundary conditions are condition on body and in shock wave:

;‘giw /=/':0 at 1']=0

(2)

i=05 [= .K?é-, l'=71,‘ gt 1=m
where rery - radius of curvature of shock wave, n, - uniknown quantity characterizing
position of shock wave.
At given b and r, are six conditions (2) sufficient for solution of system (1)
and determination of n,.
Considering pressure distribution on sphere to be Mewtonian, we can be obtained
b = (1 - 1/2k), where k - ratio of densities in direct shock wave., For spherical
blunting at low wall temperature, thickness of displacement, of boundary layer is
small, Therefore, we will consider that magnitude of r; will remain the same as
during ambient flow around a sphere by inviscid gas., In calculations were used
values of rj determined by data of [2, 3] as functions of k.
Product of density by viscosity at constant pressure was considered power
function of enthalpy
Pl e o™ (3)
Constants ¢ and n (r~0,3) wers dstermined from results of [4]. Prandtl number
in calculations was relied on as conatant ¢ = 0.72.
Calculations showed that last member of first ecuation nf system (1) weakly af-
fects its solution at i, <1. Thus, during change of magnitude ¢f b in interval
b = 0.5 to 1.5, calculated heat flow changes by only 2 to 3%.
Therefore, density entering in last member of first equation was approximated
by expression p = (2ki)~l. This approximation, practically, is accurate in inviscid
region of flow and very weakly affects amount of heat flow.

Equations of (1) and condition of (2) can be converted to form
(i) 4-2q@° — @ + 4bki = 0

" (L)
(i—‘.) + 2’ =0
3
i=ic, ¢=¢=0 a3t (=0
. (5)
I H
i=0.5, ¢=%%?. v=; ati=04
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there _
J=VeoQ.i=i)) (= .V"_c_ Cx=%—

Considering earlier state relationship

of weak dependence of heat flow on member

,ﬁ;, — coupled with pressure gradient (see Lees [5]),
and also fact that at hypersonic speeds ri=t
w
\R\ o 03 and for strongly cooled wall :,<!. from (L)
¢ LA N7
ie \‘n , and (5) it follows that unique quantity which
e s determines influence of small Reynolds num-
1.0 "
03 Lo .3 ZJ 108N bers on heat exchange is value of ¢ at(-=1¢.
This valve with aid of {3) we easily con-
Fig. 1, 1 - Voo = 11,000 m/sec,
k =0.,065 2 ~ Vo = 8,000 m{;ec, verted to form
k=0,06;3- Voo = 6,000 m/sec, e e
k=0,07; L - Vo = 4,000 m/sec, 9:_}:@’_2@-5_)2‘ (R Poyz‘o’o) (6)
k = 0.09. ’
where R, - Reynolds number calculated by parameters of deceleration behind the direct

shock -ave,

In such a manner, heat exchange in environment of critical point at <mall
Reynolds numbers will be determined by parameter N = Rokz. Usually, results of in-
vestigations ara presented as function of R, Mach number and adiabatic coefficient
(6 - 8].

System of equations (1) was in numzrical solved by Runge-Kutta method. Calcu-
latione conducted for sphere showed that heat flow normalized to its value without
regard for interaction with shock wave, practically, depends only on parameter N.
Quantities of heat flow for small Reynolds numbers without regard for interaction
with shock wave were determined by results of calculations at large Reynolds numbers
(R o~ 106) on the assumption that heat flow ¢~ V7%, Heat flows thus normalized
for various velocities depending upon parameter N are listed in Fig. 1. Results of
calculation can be well approximated by dependence

Quetg —2t (7)

Y ioan 1. 95)3 1




which is also shown in Fig. 1.

1t is possible to expect, due to normaliration of results of calculation, that
use of a different kind of assumption will not strongly show up in (7).*

Comparison of calculations by dependence (7) with experimental data of {6, 7]
is shown in Fig. 2. It is clear tlat calculation satisfactorily agrees with ex-
periment and parameler N is ectually the determining parameter of the problem,

Investigations of influence of small Reynolds numbers on heat exchange are us-
ually limit to the sphere, It is interesting to reveal influence of amall Reynolds
numbers on f{lowing around environment of stagnation point of bodies of other
configurations. We will originate from assumption that, just as for sphere, for
strongly cooled wall on such bodies, thickness of displacing of boundary layer is
negligible as compared with departure of shock wave from blunting.

It was noted [10, 11] that for dimensionless departure of shock wave from body

of rather general fcrm can be obtained
N k
nTITVE (8)

In [10] was indicated also that if
q radius of curvature of shock wave was used

as characteristic dimension quantity b de-

9 \\\ pends weakly on forms of body. This means
e\ p o) o2
SR that the same radius of curvature of shock

12 ‘{go\ 00% ]
| l%hng%&rkiéf% wave, flow in enviromment of critical point

10
! 05 10 15 20 logWN of various bodies will be identical at

identical incident parameters and conditions

Fig. 2. 1 - experiment (6], k = 0.167; on body. From this ensues following ap-
2 - experiment [7], k = 0.07 tc 0.09.
proximate method of calculation of

#At R_~10* results of calculation agree with data of [9] (when Lewis number
L = 1) with discrepancy not over 5%.
1 ]
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influence of small Reynolds numbers on characteristics of flow in environment of
stagnation point of blunt bodies., We determine departure of shock wave (or its
radius of curvature on axis) for given body as function of quantity k. By departure
of shock wave we find radius of sphere Tox which forms shock wave with that same
departure and radius of curvature., By quantity roy and k we calculate parameter N
and make correction for small Reynolds numbers according to (7).

Thus, for calculation of thermal flow at critical point of considered body, it
is necessary to determine radius of sphere Tox with that same departure and radius
of curvature of shock wave and to find thermal flow at critical point of sphere.
Departures of shock wave for considered body and sphere with r, = T,y are equal,
therefore, in enviromment of critical point radiation thermal flows from gas volume
will be equal and heat exchange at critical point of sphere with T = Tox will com-
pletely model heat exchange at critical point of considered body.

Author thanks V. V. Lunev for discussion of work and remarks and N. G.Kas'yanov

whe made calculations. Submitted
7 March 1963
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DETERMINATION OF AVERAGE SECTION OF COLLISIONS OF ELECTROHS
WITH NEUTRAL ATOMS OF WEAKLY-IONIZED GAS MIXTURE
E, P, Zimin and V. A, Popov
{Moscow)
Described are experiments on determination of average section of ccl-
lisions of electrons with neutral atoms at temperatures of 1900 - 230Q0° K.

Sections are determined by data on attenuation of radio waves in products
of combustion of a methane-oxygen mixture with addition of potassium.

1. As was shown in (1, 2], under certain conditions, attenuation factor of
radic waves in conducting gas is coupled with electrical conductivity of this medium
by following relationship;

o0 = 55410 (1 + ) ] (1)

Here o~ electrical conductivity to direct current (Sec-l);(gangular frequancy
radio emission; v - effectiva frequency of collisions of electrons with heavy
particles of gas; ¥ ~ attenuation factor (db); and 2z ~ length of investigated obe
ject.

From equation (1) it follows that knowing the experimental values of 4, it is
possible to calculate values of electrical conductivity to aliernating current
oo(l+w?/v?) and further through known v to delermine quantity o¢.. Unfortunately,
quantity v, at low energies of electrons, i.e., at temperatures less than 5000°K,
for majority of gases is not accurately known. Knowledge of it prssents great

practical interest.
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However, from equation (1) it follows that by measurements of attenuation factor
of radio waves on any two fraquencies, one can determine both o, and v, here

3
Rt

o = 7= (2)

Here n, - concentration of electrons, m and ¢ - mass and charge of electron
respectively.

Further, effective frequency of collisions of electruns with heavy particles

of gas is axpediently determined by following relationship:

v::vnx(Qi-%-Q::TE'*‘Qt%.]) (3)
which is a result of condition that resistance of gas can be represented as sum of
resigtances of weakly-ionized gas in which elastic collisions of electrons with
neutral atcoms predominate, and of strongly ionized gas in which Coulomb interactions
of electrons with positive ions [3] predominate. In equation: (3) v - average ther-
mal velocity of electrons; ny - concentration of atoms of nonionizing component cf
mixture; n, - concentration of atoms of ionizing component of mixture; 0, and G, -
average sections of collisions of electrons with atoms of corresponding components

of mixture; and QG - apparent section of collisions of electrons with ions.

Above is assumed that: 1) mixture contains neutral atoms o° oniy two gases-
practically nonionized diluent (n;, Q) and slightly ionized admixture (n,, Q); 2)
concentration of admixturs is very small {np <€ n3); 3) only single ionization takes
place and L) degree of ionization of admixture is small n, / n, < 1.

Assuming form of function Qi(qe) given, it is expedient to use experimental
measursments of attenuation of radio waves for determination of concentraticva of
electrons and effective section of collisions of electrons with neutral atoms of
mixture Q, = Q; + Qono/n; .

Problem reduces to solution of system of two algetraic equations

= ~! 1
”"(Q"tat"’ nai[iJ";'Tll’(Qri-WJ (=12 (%)
He
ere «=A [n, 3j=5-5"10‘7,-/:
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It is necesaary to note that since Q, is linear funciion of relative concen-
tration of admixbure «= nz/nl, knowing expsrimental dependence ( (), ore can de-
termine average zecticn of collisions of clectrons with neutral atoms of diluent
(Q;) and 21so of admixture {Qy).

Resclving system (L), we obttain (ui>wy)

ze?- aet §1 wyt VR
Q""23v“r+[(23-ﬁw) - v'"t’] —a0, (5)
- i TEI R O W
@ eIy ( ‘/‘19_:-_1) ( , 51) (6)
{,87.102 '
or Qa:"b;;—?:' {H (1 —1.15. :o-T°"3‘) ] 2Q,

s T ) o) ey

Tt M- T

Apparent section of collisions of electrons with iovns is determined by expression

(k - Boltzmann constant.)

- < - 3_.
Q=818 A, b=, A"zy"_.i YV (73
For simplification of calculations, expreassion (7) is conveniently cenverted to

form
2.9-10-¢

Q= (o9 T —logp —loga — 14)

2. If n, < n; and Q2 insignificantly differs from Ql, determining parameter
will be section of collisions Ql which one can determine by the simpler graphic

method [L]. Putting constunts in equations (1) and (2), we obtain

1 :
=;‘%+z (a = n, | 2.i6)

(8)

-t | o

It is obvious that dependence plotted in system of coordinates (v-'. «?), has
linear cnaracter and allows to Jdetermine, from angle of inclination of strsight line

to axds ou.* and ordinate (r'%),., beth n, and v
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Of course this method cannot be used for determination of average sections of
collisiuns of electron with neutral atoms of both diluen. (Q)) and admixture (Q,).
3. Investigations were conducted on products of combustion methane-air and
methane~oxygen mixtures. Mixture was burned on burner of torch type with formation
of sufficiently uniform region of products of combustion. Temperature was medi-

fled by means of change of cumposition of mixture, Pressure was equal to 1 atm.
Slightly ionized admixture was introduced into flow of oxidizer directly before
preliminary mixing chamber of burner in the form of aqueous solution of K2003 of
various cencenti-a*ion., Temperature of products of combustion was measured by meth-
od of peversal of lines of Na, Method of use of waveguide lines w; = 10,000 MC

and w, = 40,000 MC is analogous to that described in [1, 2].

T°K V. 10"l sec'l Q - 1015 cm2
1900 1.49 1.30
2000 1.64 1.47
2100 1.82 1.67
22m 2039 2.21&
2230 3.33 3.19

Experiments were conducted at three various values of concentration of solution

of K5C03 fed into torch differing by 102 times.
Given results were obtained at various temperatures; error does not exceed

3 - 5%,
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FLOW BETWEEN PARALLEL WALLS IN PERIODIC MAGNETIC FIELD

I. B. Chekmarev

(Leningrad)

S. A. Regirer [1] investigated flow between parallel plane walls in nonuniform
field on the assumption that velocity of liquid does not change throughout flow.
Recently, stationary flow of inviscid electrical conducting medium in a flat duct
in the presence of a nonuniform external magnetic field was investigated in work of
Sakurai and Naito [2]. Magnetohydrodynamic boundary layer in nonuniform fields was
studied by Sherman {3] and Turcotte and Lyons (4].

Below is considered stationary flow of viscous electrical conducting liquid be-
tween parallel plates y = + a created by drop of pressure along axis x. Constitu-
ents of magneti~ induction of external potential field are considered periodic
functions of coordinate x and have following form:

2nz 2 2z 2m:
By=—Bysin - sh3’, B,=B, Gochpr, B,=0

’ (1)
Since in considered case all magnitudes are indeperient of coordinate z, con-

fining ourselves to small magnetic Reynolds numbers, we have:

ou ou

dp Pu Olu du  dv )
Pu3r HPP Gy == 3r s v+ﬁ(é;?+'a?)' nta =0 (2)
ar a0 dp 3o I .
pu'5+Pv'@=--3;+i,nx+n(37+a—y7). jy=3(uB, —vB,)

Here B and By a~e determined by formulas of (1), and external electric field
b e
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of

is absent. We will introduce dimensionless variables

u-!- O_..f. ._..E. v P & -
y* «' ¥ =% ut = e ' ’.=e_m," p.-—:}_\;' 5='f. lo=§Q; (3)

Here u, -~ aversge velocity of medium; p, - certain scale of pressure. System

(2) in these variables has form (asterisks are omitted in the future)

4 )
(u-;-‘--i-ku)n—s&‘v& — § cos 25tz ch 2ney (u cos 2xxr ch 2xey +

+ulln2x;r8h288.?l)+ﬁ(°'_{"+5§i)

(.-g.*.g%-):.-E%—Ssmmsh 2xey (u cos 2nzch 2nzy +

+ o sin Tnx sh my)-*-ﬁ{e‘a:a‘*‘ay-)

'g-?w““ (B‘p%”‘ﬁ_"g' =&:1ﬁ)

Let us consider case A% a. Under this condition, magnetic field strength and
velocity of liquid will change slightly along flow as compared with their lateral
change in channel., We seek a solution of system (4) in the form of a series by de-
grees of small parameter ¢ = a/A <. Considering E£=1/e, we {ind for zero

approximation of equation

1 Pu dp dp Ny "I 1)
Fay.—S(COSZ'vr)‘.‘_az, ’E:‘:O. .6—:+'557=0 (5)

Differentiating the first of equations (5) on y, we exclude pressure p and ob-
tain equation for velocity

Fu s 2u 1o SR
ay,-—(.lcoszxu) -a—y-—_—() (M3 =SR) (6)

resolving which under condition:

+1
“hes=0 §udisz Q
-1
we find
ch (M, cos 2xz) — ch (M coc 211z)
¥ =W cos 2nz)-s sh (M cos 2nz) — ch (AR cos 2:1z)

(8)
. i
When -0 formula {8) changes to known solution of Hartmann problem for
uniform magnetic field ch My —ch M
¥™M-Tsh M —ch M (9)
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It is curious to note that at points =x=1,a, where cos oxr=(—1)", we also

obtain Hartmann profile. At points 1/4 (2n + 1), where cos 2ar=0, formula (8)
gives usval Poiseuille profile u = 3/2 (1 - v2).

J
1 Thus, durin, motion of liquid in per-
A\
) - ; iodic external magnetic field, wave length
[~ of which is significantly longer than
-1

height of duct, distribution of velocities
is determined by formula (8) which is analogous formula (9) taker with certain ef-
fective Hartmann number i |cos2ar|. Here, velocity profile is periodically de-
formed from the Hartmann when lcos2ar|-.-{ to Poiseuille at cos 2xr =\.
Transverse velocity » can be is found from last equation of (5) by known constituent

u.

For determination of pressure distribution in duct, we have relationship

— —

gt
dp 1‘ [gj: ~ (M cos 2nx)? u]

Calculating its right side with the help of (8), we find

dp (M cos 2nx)? ch (M cos 2rr)
dx — H (M cos 2nx)~t sh (M cos 2azy — ch (M cos 2xc) (10)

In the figure is shown change of velocity profile as a function of longitud-

inal coordinate x.
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ABOUT MODELING OF MAGNETOHYDROYNAMIC FLOW
IN CHANNEL IN ELECTROLYTIC BATH

V. V. N--arenko
(Moscow)

For flow of electrically conductive incompressible liquid in flat channel in
presence of magnetic field at values of Reynolds magnetic number Rep < 1 it is
possible to disregard influence of induced magnetic field on motion of liquid.
Furthermore, in a number of cases, the hydrodynamic problem can be separated from
the electrodynamic [1]. Velocity of liquid V can be determined from hydrodynamic
equations, and distribution of current density j and electric potential ¢ in
channel is found from Ohm's law and equation of inseparability for ]

’zd(._.v(p.{-EVxB),divj:O (1)

Here, B - magnetic field strength, 7 - electrical conductivity of liquid, ¢ -
velocity of light in a vacuum. Here, V and B are considered given functions of
coordinates. Problem reduces to Poisson equation for function of ¢ .

If channel is composed of sections of conductors and dielectrics, boundary con-
ditions will be constancy of potential of ¢ on conductors and absence of normsl
component, of current density, on dielectrics jn = O.

For flow with variable velocity V¥{¥(y),0) in constant magnetic field (y - coord:-

nate in transverse direction of axis of channel) problem also reduces to solution

nf lLaplace squation for certain auxiliary function u determined by relationship
v

i ,




Cartain particular problems reducing to Laplace equaticn are considered in [2].

It is expediont, for sclution of similar

i kind of problems in those cases when cbtain-

ing of analytic solution is difficult, to
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L z uge methods of slectric modeling, in partic-
;~7§AJ@ wiar - the electrolytic bath [41].
Lower are given certain results of
Fig. 1.

investigation of flow of incompressible
electric conductive liquid in flat channel with the help of electrolytic bath.

Flow was modelled in channel of width 2 6 , walls of which were composed of
sections of conductors and dielectrics (Fig. 1). Velocity of flow of liquid V was
considered given, independent of x, &nd arbitrary even function of y. A pair of
symemetrically located electrodes of length 22 was connected by a certain external
load R. In entire extent of channel perpendicularly to its plane was applied con-
stant magnetic field cf intensity B {O, o, - B} .

During motion of liquid in channel, on electrodes appears difference of poten-
tials 29, and in external circuit flows electric current I. On external load R
will be distinguished power & =2g,.

Under shown assumptions, function u determined by equation (2) astisfies Laplace

equation [2]

D
x
]
(=

(3)
with boundary conditions:
u=+4u at y=46& on electrodes (L)
dujoy=0 at y=198 on dielectrics
0.6 P I Values of function u on electrode is
r'l Ro: Ui‘/,?,/’i/
- 1 determined from following relationship
- - A‘
A
L A .
1 1 3 A 16 - B o )
0 0.8 .6 2u “‘-‘Fl—‘;§"dy (§1— G2 =29, > 0)
Figo 20
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where ?] meaning of potential on electrode

Q15
‘,/’ z Power separated on axternal load can be
.
1A determined by followi ression
@10y o 1.6 v v ng exp i
Fig. 3. N 1 (29,\? B,

Expression for Joule dissipation Q in channel given in [3] in considered case

has form
. Q 1 (29,\* 2 2,\ 29,0
¢=ap=-m(F) +5(-F)+ T
A

L

29,
Determining efficiency n as the ratio of power ito sum of power and Joule dissi-

pation, we have

N N°
"ENFQ- N +Q (7)

Let us note that for determination of power, dissipation and efficiency it is
sufficient to know quantity 2¢, and distribution of potential on dielect;ic wall of
channel at given V, B, R and s Due to symmetry of problem it is sufficient to
know value of ¢ (or ¢ ) in section A<x< e, y=8.

In electrolytic bath geometricallv similar to considered channel, was modelled
function cf u determined by expression (2) with those same boundary conditions as in
the channel. Here, value of u at corresponding points of channel and bath coincide.
Using Ohm's law for electrolytic bath and external circuit of channel, we obtain

following relationships between parameters of channel and bath

1 1 29, aR
sl=gIm E T RF¥S.H, (8)
w—uy=29,—E
where o and Iy - electrical conductivity of liquid and current intensity fo.
bath, and R, - resistance of slectrolyte between slectrodes of bath,

By values of u found experimentally is found distribution of potential ¢ in

channel at givea E (or Ro).
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For appraisal of accuracy of modeling,

c:ézzf;j-—anmﬁ comparison was made of quantities determined
d v - yL“;L’ il in electroiytic bath with analogous quan-
F ¢ :A ]’ tities received from theoretical solutions
*E*i;l__r_zgir:; (2, 3. In Fig. 2 are plottel theoretical
Fig. 4 and experimental magnitudes of efficiency

n as function of x/8 at nre = 0,5.

In the same place is given an approximate solution for 7n. which is obtained on
assumption that electric field is considered constant between electrodes and equal
zerc outside electrodes, i.e., a solution which disregards longitudinal edge effects
"spreading" of current. In last case

_ R:ZA/L
N =TT (9)

In certain cases, for decrease of

0417 — "spreading" of electric current, {hin die-
A

//V' lectric plates varallel to axds of channel

] (Fig. 1). Influence was investigated of

!
, x ) ,
a%? 05 T3 T4 these baffles on electric current, power
Fig. 5 and efficiency in channel. To boundary
8
conditions of (4) is added condition £}==—-5§==0 on surface of baffles.

In determination of total Joule dissipation in this case, integration is per-
formed also on surface of baffles, on which ¢ endures a break.

Investigated were symmetric groups of plates A and B of various length a and
at various distances on axis x between plates,

It was found that during closing of baffles there is a decrease of both electric
current and power in channel and of efficiency all the inore intense, the bigger the
size of plates a and -.he more the plates in the group. In Fig. 3 is given depend-
ence of n on distance xl/; between baffles for symmetric baffles of type B (Fig.

1) of dimension a/ & = 1.0 in channel with */6 = 0.5 at #e = 0.5,
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As sxperiment shows, application of dielactiric baffles to obtain increase of
power and efficiency takes from electrodes was found impractical. In addition, in-
vestigation was made of influence of distance between two pairs of symmetric elec-
trodes with 2/8 = 0.25 coupled in parallel (Fig. 4) on power and efficiency in
channel,

It was found that with increase of distance betwesn elsctrodes, power and ef-
ficiency monotonely increase from theoretical values corresponding to a solid elec-
trode of total extent */8 = 0,5 at flo = 0,5, Function of n on distance between

electrodes is shown in Fig. 5.
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VARTATIONAL METHODS OF SOLUTION OF PROBLEMS
OF DEFORMATION AND STABILITY OF PLATES
AND SHELLS UNDER CONDITiCNS OF CREEP

G. V. Ivanov

(Novosibirsk)

Variational methods of solution of problems of deformation and stability
c¢f plates and shells under conditions of oreep were considered in [1, 21.
In [17 is shown variational equation during condition of variation of
speeds of stresses and speeds of shifts. In {21 is given variational
equation during condition of variation of only speeds of shifts.

V. I. Rozenblyum [31 (see also [41) by variational method solved provlem
of stability longitudinally compressed rods having initial (in undeformed
state) deflection. Stress and displacements were modified, satisfying
equations of equilibrium and boundary ccnditions. Below is derived an
analogous equation for a mildly sloping, circular, cylindrical panel
(figure). For plates and closed cyclinderic shells it has the same form.

1. In fixed moment of time t, real stresses 04 Oy ¥ and displacements

u, v, W in pansls are connected between themselves and with speeds of stresses and

speeds of displaceaments by equations of {4, 51:

67‘, aTﬂ ) aTV xy
=ty =0 Tt =0
¥, an  FM, ane {1, Pw Fo
ETIREN Y "37'4'7:'&?""7,(7'*’7?)"“27:'5:’“‘*""0
ar, ot af, &t,,
'0—:‘+_—3y =0, —a—'—-*-———‘as =0 (l.l)
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oM, t | e 1n, Pw
(o ‘“axa,* ax' ‘H"xas* ‘*'"-(T'*”"‘)"”‘Txaaxay*'
+3'st3"*‘ a,"*’”'xuaxay“""“o (1.2)
. é [l . L4 o . 4 an
.‘— ‘-—“3‘ (A+ "), ‘.u&:(ﬂ-" 7] ). ::a‘(A+..3T)
do de P - _ v e mpy
wrEmas a:* "°37+'?373v—‘3?" "
] ow de v Mo Fto
T'n*a+asu Oy U T aay (1.3)

Curvilinear system of coordinates for points of middle surfsce cbtained here is
shown in figure; Tys Ty, Txy’ M. My, H- forces and moments in middle surface, R -~
radius of panel, w - "full" deflaction, i.e,, sum of initial (in undeformed state)
deflection and that appearing in proceas of deformation, q - intensity of surface
load (point signifies differentiation by time) A - function of stresses and time,
nm -function of stresses (energy of slastic deformations), z - coordinste of points
of panel counted off from middle surface in the direction of internal normal.

Besldes above-indicated equations, real
stresses and displacements in panel satisfy
given conditions on edges x =0, 1, y =
= 0, b (figure). We assume that these con-

ditions are given in forces, moments and
gero displacements., For example, on edges
x =0, x =1 are given either

. v d M, a
M, T, T‘,'. 18’5;+183-5;+.-0_3-+ L/

or accordingly,
dwldx =G, nex, o0, w=0

Caszes when on edges of panei instead of forces and moments are given non-zero

apeads of displacements are not considered.

2, We will compars, in fixed moment of time t, the true stress and deformed




.e
A

state with another characterized by the same speeds of stresses and speeds of dis-

placements, but with different stresses and displacements, namely stressas

0, + &9,, 0, + b0, T+ 67, and displacemenis u - du, v 4 bv,w + dw, iufinitely near to real

value satisfying equations of equilibrium, equations of equilibrium in speeds and
given boundary corditiony. T.wi4 < ~es3es and displacement will bes called
permissible,
Putting permissible stresses and displacements in equations
L 3
0, Ty Ty + 55Ty =0

a [

* .. iat * Pw i P
g M 2 O it o7, 5 o (o + )+

- Pw Pw #uw Fw
+2.6Txvazay +7'367’;".:—’+T1463§7+2Txv66_x"a§ =0 (2.1)

v Aw PAw s FPw . Pw . Suw
T 5=+ GTV—a-ST;+26Txvm;TT‘63;?+Tvb—a;;+2TW6 Wx:o (2.2)
According to (1.3), variation of speeds of deformations depends on variation

only of displacement w

s w4 dw . dw, dw s _dw dw , O (O
de, =528, &,_é.y.a.a?. a.-.a_xaﬁ '«W'SGT (2.3)
3. DBecause real stresses and displacements satisfy equations of equilibrium

and boundary nonditions, it follows (see, for example, [5], section 7)
& (By2z + 08,4 TV = 4

where V - volume occupied by panel, A - power of external furces applied to panel.
Permissible stresses and displacements also satisfy equations of equilibrium and
given boundary conditions (let us remember that these conditions are considered
giver. in forces, moments and zero displacements; cases, when on adges of panel, in-
stead of efforts and moments, are given non-zero spseds of displacements, are not

considered).
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Therefore

5 (3 + 83,0 (6 + 8e,) + (3, + 83,) (& -+ 82,) + (1 + 60 (T4 Y oV = 4 (3.1)
i.e., power of deformationa in class of permissibls stresses and displacements is
stationary. Omitting in (3.1) the product of variations as an infinitesimal éuan—

tities of the second orduzr, we find

& (a0, + 0 B¢, + 587) dV +& (2,03, +'é,es, +18t) dV =0 (3.2)

Validity of (3.2) is simple to prove and is directly integrated by parts with
use of squations (2.1) and relationships of (2.3).
L. From equations of (1.2) it follows that second component in (3.2‘ is a vari-

ation of integral

S'(A+%1)dv

Under certain conditions, the first component in (3.2) is also a variation of

certain expression,
Using the first two of equations of (2.1) and the first two equations of (1.1),

we write (2.2) in the form

(57':3:)'*' Oy( v 0y)+ 0:( i d 3‘;)+ ay (erv g:)+
ow
+ 5 (P8 57) + 35 3y (1 )+ 3 (P8 avl) o v (78 ay) (4.1)

Multiplying (4.1) by w und integrating by area of middle surfoce 0, we find

, :§> [ar

+1, 256

™) o ow d o o dw
2 T8y 5y 5y 0T (ay =t oy)

(4.2)

il
ox
dw do  dw do o Do dw\l
'.‘J—""'Tu 2y 8oy +T"(33 rm +W6-57)]d0-'
a:r

- x:-l

oz
- »
Sl by e B e J s B S L

Using {2.3) and (4.2), the first component in (3.2) can be written in the form
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5 (3.8, +3b¢, + xpi)dv =

-y [ e ) e e @)

¢ 4 t
MSM%( 0y+Txvaé‘:) d:-—-S[rG dl( xax +Txv28%)]‘:.£y
®

If boundary conditions are such that contour integral in (4.3) disappears (for

example, in case, when on all edges of panel w = 0), the first component in (3.2)

is full variation and (3.2) takes foim

4o =2 {S(A""%IT’) Gty %’So[rx (3) +7, (%")”*‘ 2T 5 ?:]“Q} O (4.4)

Under these conditions, among all permissible stresses and displacements, true
distribution of atresses and displacements is characterized by stationariness of
functional @,

It is not difficult to perceive that determination of deflection with the help
of variational equation (4.4) reduces to integration of a system of resolved (rela-
tive to derivatives) nonlinsar differential équations of the first order. Increase
of number of parameters during assigmment of class of permissible stresses and dis-
placementc shows only on increase of number of equations of system subjectei to in-

tegration.
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APPROXIMATE METHOD OF CALCULATION
FOR CREEP BUCKLING
S. A, Shesterikov
(Moscow)

Survey of solution of certain of the simplest particular problems con
buckling of rods can be fourd, for example, in [1, 2]. Investigation of
plates and shells was conducted, basically, in direction of development
of criteria of stability for linearized formulation c¢f problem of buck-
ling. In works devoted to thia problem [3-5], basically was studied be-

havior of thin-walled elements in initial phase after loading, Below is
described a method for approximate calculation of buckling during creep.

1, The offered method is based on the assumption that for rods and thin-walled
elements under the conditions of longitudinal compression the connection between
streases and deformations can be replaced by anslogous functions for bending moments
and warping.

A similar method was used earlier during investigation of other problems (ses
{61). We emphasize that this assumption in certain cases can appear too coarse.
Therefore, a critical appraisal of obtained results and indication of region whera
they are appliéable is necessary sach time. At the same time, such a hypothasis
for a large class of prcblems considerably simplifiss calculation without distorting
the essence of the phenomenon.

For the uniaxial case, the taken hypothesis means that there is depsndence

G(x, % mmT) =0 (1.1)
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where x -~ warping of element; m - bending momsnt of internal or external forces
about, the middle. of saction; T - average temperature by section; by dot is desig-
nated differentiation by time., For plates we assume that ralationship (1.1) ia exe-
cuted for invariant characteristics M and H

OH HMMT)I=0 - (1.2)
Here MY = M3 — MM, + M+ 3M8

For H, two .various determinations are possible

w Sw \2 (l. )
(%) +2(55%) ’
or

i = (35) + (52) +2(orss)

In accordance with selected condition (1.3) will take either deformation re-
lationships of form

= = oM, (L.4)
or relationship of flow type

P w M3

=ra_ (1.5)

We will take equations of equilibrium for a plate in the following form [7]:

FMs | SN, | M, N B Py O, (1.6)
T gt = (s Mogmmt Ny 53+ 5y

"zw +l'“,

Here w , - initial deflection; N,, Ny, NJW - forces acting on planes of plates
which we consider known. System of equations (1.2) - (1.6) allows to determine de-
flection as a function of time.

2. Lat us consider a rod compressed by longitudinal force P. Bending moment
for the rod will be written in the form

m = i—’:(u-{-u“) (2.1)

where h - thickness; u - dimensionless additional deflection; u,, - initial
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dimensionless deflection. Relationship (1.1) is written in the form
—hx=f(m+Y (m) (2.2)
First component in the right part corresponds instantaneoxs deformation, and
second characterizes process of creep. Let us note that relationship (2.2) does not
consider possible unloading in separate parts of section of rod. This naturally
can lead to deviations during comparison with experimental data. Let us examine a
hinged supported rod. We seek solution of equation (2.2) by method of combination.
Tren, assuming that deflections can be approximated by one half-wave of sinusoid, we
obtain for amplitude of deflection u equation
bis=flputua]+ YIp(utuw)]  (k=nh/LY p=Pk/m) (2.3)
Specifying functions £ and ¥. solution of number of concrete problamo can be
obtained.
Buckling of a rod under action of constant force P. Solution is divided into
two stages. First stage corresponds to instantanecus application of force P, as a
result of which rod receives deflection u,. Value of u, is determined from solution
of equation corresponding to instantaneous deformation
Eus == [ [p (e + buc)] (2.4)

Furthsr process ccrresponding to build-up of deflaction in time is characterized

by equation
*—f'lP("’?-"u)l}’d“_d‘
Y 1P v + uw)l = (2.5)
It is obvious that when condition is fullfilied
E—7lp(mtua)lp=0 (2.6)

speed of build-up of deflection will turn into infinity. Value of full deflection
uj + u, determined by condition (2,6) corresponds to value of critical deflection

also for purely instantanecus deformstion, Indeed, if in {2.4) condition dp/dus =0
is used, it will lead to aquation coinciding with (2.6), This property, during so-
lution of problams of buckling with regard to creep; is analyzed in more detail in

[(2]. This phenomenon was firat discovered by [Freiys de Vebek] {8]. It is necessary-

to note that independence of critical deflection from properties of creep follows
<04

L 2 s s oo B TP AATLYET ¥ Tt oA I gl Wi e e gy 22 S A N S AL Whries SR Sty AR AT T e
RO < Lol




from monoparametric nature of considered system.
If accepted that functions of £ and ¥ can be presented in the form

1) =A™ ¥ () =Bs" (2.7)
then solution of equation (2.5) will be written in form

- ! _ P
B"(M — 1) (u. .h uw)m-l (u + u.)m—l} \208)
_ " 1 _ i .
Bim— n) Yug+ ued™™" (4 F ™™ }

Moment of destruction t; is determined from (2.8) if instead of u we place u
found from condition (2.6).
Of great interest is the case of slow change of applied force, starting from

zero. We obtain solution of equation (2.3) by semi-inverse method. Let us assume

that is satisfied relaltionship
,(u-{-—u..):D(V"_;— le———;)- (2.9)

Then for case n = 2 and m = 1 we obtain

L 2 r-2YT=xt(t—V1I—9)

“ S ——
¢ 1—Vi—=1
P= g 3—<x —2Vi—3+yc(i—Yi—09 (2.10)
200y, | C*4 BCt — 1
(Tu—a—k:‘ ———ux Uge + 321. C=D Vl“(: “)

Solution in final form can be obtained for any whole m and n, but here for sim-
plicity we are limited !y shown values, It is obvious that when r--fu—oaie.,x =1
corresponds to moment of destruction (at > 1 solution does not exist). As main
given parameters we take initial deflection u and initial speed of loading p,.
Then t, and C are determined ‘f.hrough these parameters and

-1

M"'“P.. - 1 <t — 3k C = 2“ " ! (2011)
B foows 12A4ugpst — 28pe wpet

As illustration, in Figs. 1 and 2 are given graphs of v.x/u00 and p/potl as
functions of dimensionless time t {or a number of values of parameter 71 At

1<t there is almost proportional loading.
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3. Let us consider the simplest case of buckling of an evenly compressed, free-
support,ed, square plate. We will take that

by ¢ n b ¢ b1
w = u (f) sin ’;{lin "ay Voo = Ugo 8in _E-Sin gy (301)
. nr AW .
M, = M, =m(1) sin——sin —= (M, = 0in the cente r)

We satisfy equations of (1.2) in median point, then obtain dependence between m

and u aralogous to dependence for a rod (2.3)
kgt = } (kym) + ¥ (%ym) (3.2)

It is taken that for H and M there exists dependence analogous to connection be-
swaen x and m for a rod., From {1.3) it is easy to obtain linear connection between
mand (u+ uoo) p, wiere p ~ uniform pressure on planes of plate. Cons-quently, for
plate in considered case, equation connecting u and p coincided with equation (2.3)
with accuracy up to constant factors charzcterizing geometry of considered element.
Therefore inveztigation of solution conducted in part 2 is also valid in the present
case. Wa rote also that solution does not depend on which relationship ~ (1.4) or
{1.5) is taken during investigation. It is obvious that this takss place in case
when M iy completely determined by one unknown parameter depending on time as it
was in the coi.sidered case, When two or more parameters are prescrved equation for
plate during use of (1.5) does not reduce to first order equation and solution dif-

fers considerably from solution obtained for a rod,
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TORSION OF PRISMATIC RUDS OF IDEALLY PLASTIC
MATERIAL WITH CAILCULATION OF MICROSTRESSES

- I, A, Berezhno~ and D. D, Ivlev
(Voronegh)

Theory of torsion of rods of ideal rigidly-plastic material is presented
in [1-4]. In [5] is considered toraion of prismatic rods of rigidly-
plastic andsotropic reinforcing material under linearized condition of
plasticity. In present work is considered torsion of rods polygenal cross
section. Material of »ods is assumed ideally plastic, where ideally
plastic state is attained during transition through resgior strengthening
[6]. In the material appear residual microstresses [7]. Similar material
can be called material with termingl strengthening.

1. Let us consider problem of torsion of rods, material of which conforms to
dependence between shear stresses and the nonreversible part of shear given in
Fig. 1. We will select a coordinate system as shown in Fig, 2. In the future in
designations of strains T.. 7, and deformations ¢..¢, we will omit index z,
Initial relationshins for problem of torsion of rods of anisotropic reinforcing,

rigidly-plastic materisl with terminal strengthening have form
a‘x a‘v

i g B (3.1)

(v.— 'x)' + (T' -~ 'V), =kt 134 'U' S ket, Ky, kg = const (1. 2)
de, de, dx, dx,

T,— = 1’ oy s, (1.3)

s, =ce,—x%), s,=c(e, —x), ¢ = const (lch)

If e2+s2<kt, then x == x, = 0.
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Here s,, s_ - components of micro-

y
stresses, %, ¥, « components of micro-

deformations, and ¢ - parameter of strength-

’, ening.
ol b ¢ Condition of plasticity (1.2) in
Fig. 1 planes T T, represents a circle with co-
ordinates of center s, 8y In initial moment of plastic flow
,=12=0, =Ty 1= ‘l'v" (. + 'v" = k)

Condition of plasticity (1.2) can be interpreted as rounding family of plas-
ticity tangentisl to given condition. In the futurs, following [5], linearized con~
dition of plasticity, considering that stress state at each point of the body corre-
sponds to a tangent tc circle of conditions of plasticity preserving its own di-
rection in planes . v, in process of deformaticn of bhody,

Ot — 1)1, (1, — 1) = kit (1.5}

Similarly for microstresses ws can assume that after attairment by them of lim-
2 + 02

8 = k22) takes place linearizsd condition

iting values s,°, syo, (:axo y

0t 81 Sk (1.6)

Considering conditions (1.5) and (1.6)

as plastic potentials, we obtain, instead
of (1.3), relstionships

de, de, dn,  dx,
Fig. 2 Eiair N i & B )
Since in process of plastic flow <+’ v, ad ax°, sy° do not depend on para-
meter of load, then integrating (1.7) we obtain
I I X X a0
Eaiiak + e (=, y) o =T Tabky (1.8)

Assuming that at initial moment, rod was in rigid, undeformed state and micro-

stresses was absent, we fird that ¢y = ey = 0, and finglly that relationships of
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(1.8) take Yorm
e — e, =0, | e %~ % =0 (1.9)

In the future it is necessary to exclude from initial relationships of quantities
of microstresses and microdeformations. Using (1.4), we obtain (1.5) and (1.6) in

the formm
i —ele,—x )l + o (3 —cley —x ) =kt (l 10)
. . ket
8 (.x"'”x)'*"y (ev--x“)z-—c-— (1.11)
Condition (1.11) can be written
k
Xty F S =g (q =t t 8y~ ?") (1.12)

Solving linear system of equations - relationship for microstrains of (1.9)
and (1.12), we obtain expressions for micro~dsformstions

P
x, = k ' x =T— (1013)

Then, taking into account relationships of (1.13), condition {1.10) it assumes

final form

o fram et [ (5 )]}

& cs’e (l.ll;)
'*""v.{‘u_“u'*‘[' ( x+ ‘- ]}

Components of deformations are determined by reiationships

wez(-o+E).  nog(es) (1.15)
where w (x, y) - warping of section, ¢ - twist, Thus, for +.%  and w, we have:
equation of equilibrium (1.1), condition of plasticity (1.14), and law of plastic
flow (first relationship of (1.9)).

2. Let us consider region gef of rod of polygonal cross section (Fig. 3a),
where oe - line of break of strains. Equation of lines of break . y=azr{z = const).
Here, axis x is perpendicular to free boundary of contour of rod ef.

From solution of tlsory of ideal plasticity [1-4] it follows

Y =0, t,'z:k; (2‘1)
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As was noted in (5], warping of cross section of rod of reinforced material
coincides with warping during ideally plastic flow of rod. Warping under the con--
ditions of rigidly-plastic torsion is determined by expression w = n e6d, where n -
distance from point P ( x, y) to line of break on normal to ef passing through point

P, For considered regicn we have

ey =0(r—L
( “,) ' (2.2)
.Sgoo ..”‘(8—’;)
y e § e Let us assume that in certain region
4 ] mgt (Fig. 3b) materizl of rod reached yield
h
-y point (BC in Fig. 1), then in ccnsidered
g, a
Z_ n | region
3 | 2 ] z
[/ . o —m b 1 8°=0, 8=k (2.3)
a b
Linearized condition of fluidity (1.14),
Fig. 3 taking into account (2.1) and (2.3), takes
form

st [n(F)]n

It follows from this that in regions mgf
r,= kit ks (2.5)

Putting expression (2.5) in equation of equilibrium (1.1), we find that
T, =T (v) On counter ef always ¢’ = 0, comsequenily, =0 everywhere in
region mgf,

In region cegm, state of material correspords to section AB shown in Fig. 1.
In this region ’x2 + syz < k22 and % =x,=0. Then, in region ocegm, condition of
plasticity (2.4) takes form

f.t:k(-*-“' (206)
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Equation of equilibrium (1.1) under condition (2.6) will be satisfied in con-
sidered region if

"".,-=h+c°(z—-;). vx=-f:—x+/(y) (2.7)
On boundary of region of ideal plas-

ticity mgf, we have 1, =ki+k, 7,=0,

whence, from expressions of (2.7) we find

d(r—yfa) = k; and £ (y) = —(0/a)y.

In region ohgme we obtain

e 2ot)-t o

Fig. 4

In region heg satisfying condition r,=0 on contour eg, we obtain

fxc‘-:z( -—b) (2.9)
On boundary hg, component of strass r, endures break. Break of component of
stress "x we assume sta’ic, since contacting stresses 1, during transition
through hg are continuous, Appearance of break is caused by use of Limiting cir-
cuit. We will designate length of region of ideal plasticity along free contour
ef through g/=s, then from (2.7) we have

k
«=(b—2)a (e=0  when 0 kych) (2.10)

3. Let us consider concrete examples.,

1) In case of 2 rod of square section (Fig. 4) with length of 21 in region oef,

equation of line of break oe has form V==sa=1 From (2.5), (2.7), (2.8), and
(2.9) we find
1'-k‘+k., 13:0 (in mi-')
ekt dE—y),  s,=cd(z—y)—k (in ohgm) (3.1)

sy kit 0 (z—V), L=c0(z—10) (in M)
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Torque for entire section will be

Nu((k.+k.)(la’—-%.~)+-g-k, (l’—%g'l .*..';_'.)_*_

-+ 2&'{(14’-—-.’) + 'g- c® (18 4 4Pa — 24 ita? 4 32 u? - 13°aY) (3 ¢ 2)
where
. R ° k’
am=0 at °<%.' 0=l—-:3'- at 0> (3.3)

Regions of plasticity corresponding
to state of ideal plasticity of maierial
(BC in Fig. 1) here and overywhere are
shaded,

?) Considering region cef of rod of

triangular section (Fig. 5) with side 2],
we obtain equation of line of break oe in

*ig. 5

the form y=3¥3 a=3V3.

Then from (2.5), (2.7), (2.8), ard {2.9) we find components of stresses
f!::kg-{-k;, ’(‘L’—"o (in m)

e D R I DERRE
3 3 3,
v B). BB o

Torque for entirs section will be equal to

M=tk (Gat—aun—F o)t u(Fr—orr )+

- , (3.5)
+k.(w-—.-;+co_‘%‘.’.(u-zp.—smq.sus—u)
where
My 3k 3hy
e=0 at 0 V&l ) ‘21—‘_—},-3-‘0 at 0> Yﬁd (3,6)

3) Solution for rod of rectangular section with sides 2h and 21 (Fig. 6) in

regioy gef is determined is analogous to rod of square section.
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In region ojomm;, gradient of line of break 2= , then fram (2.5), (2.7),
(2.8), and (2.9) components of stresses will be determined

f,:k‘-}-k.. fxﬂo (in mlmffl)

(3.7)
=ik, =0 (in o)omm)
Torque for entire section will be equal to
M o= 200 A & (h— 1) [(\ - ka) al - ke (18— al) - ks (la — a%) + Y3 0 (1 — o)) (3.8)

where M* - torque for rod of square section determined by formula (3.2). let us
note that dependence M = M ( o ) for rods of rigidly-plastic material with terminal
strengthening at values of twist within limits
0L6< % - -:—;-a

coincides with dependence M = M ( ¢ ) for ideally plastic material with linear
strengthening {5]. In interval of values of twist

-é}a<:c<h»
dependence ¥ = ¥ ( 6 ) becomes nonlinsar and by measure of growth of twist is
asymptotically similar to solution for ideally plastic material with yleld point

(kq + kz). This circumstance is shown in Fig. 7.

y
] . g‘
&h 0, A f x ?:1—"
1 ) e
= 1 - q
%/
J T
2t t
Fig. 6. Fig. 7.
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THEORY OF STRAIGHT LINES OF DISCONTINUITY OF
STRESSES FOR TRUE PLANE FLOW OF A
RIGIDLY-PLASTIC BODY

0. D. Grigor'yev (Novosibirsk)

Considered is connection between the condition of positiveness of dispersion
power and the picture of true plane flow near a straight line break., Kinematic
characteristic of existence of straight line of break of stresses is established.

We will prove the following kinematic characteristic of existence of straight
line of break. So that a certain straight line of break of stresses for true
plane flow of a rigidly-plastic body, it is necessary and sufficient, so that the
imicated straight line:

a) does not coincide with £lip line;

b) after exclusion of translational motion of plastic rugion iv is orthogonal
to flow lines, and divides trajectories orthogonal to flow lines of various
concavity (convexity); here line of break does not coincide with inflection points
of flow lines.

Necessity. Let there be a straight line of break of stresses. Obviously it
does not coincide with slip line. Excluding translational motion of plastic region,
we find what line of break is crthogonal to field of speeds. Since speeds sre
continuous riear straight line of break, the curvilinear grid in the form of flow

- &
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lines and trajectories orthogonal to them has here a continuous tangential.

Lengthwise along showm orthogonal grid take place relationships (3, 2]

1 . .
g:}ga;tkcosz!. 6"2(3;1-}-5“), Ci13 = ksin 23

Lor v Mo v _ v (2)
tllg—‘gu:”‘aql"'ﬁ"o El’=m0q3’!l 2tg - R’

Here o, §,; - physical camponents of stress tensors and rates of deformations;
Hy, Hy - Lame coefficients; g - angle betwesn direction of large main stress and
speed vector; v - modulus of speed vector; R2 - radius of curvature of trajectories
orthogonal to fiow lines,

According to (1), from both sides of straight line of break (after exclusion of
translational motion) we have .

sin 23* = sin 23-, - = 90° — B+ (2)

Here values from various sides of line of breck differ by plus and minus
irdices.

Let us consider condition of positiveness of dispersion power near line of
break, expressing the latter in the form (2]

Ry>0 for 45°<B<45® or 1B <PL225°
R<0 for 45°<B<L35* or 22B°IPIIUS (3)

Here, radius of curvature is considered positive if it is directed toward the
side of rise of parameter qj.

From (3)- (2) it follows that straight line of break splits orthogonal trajec-
tories of vartous concavity (convexity).

Sufficiency. Let there be true plane flow. Field of flow lines, after
exclusion of translational motion of plastic region, contains straight line
orthogonal to flow lines which dces not coincide with slip line and divides
or:hogonal trajectories of various concavity. By condition along indicated straight
line

Ry oo )
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Therefore, tensor of rates of deformation turns along iv into zero. On the
other hard, due tc various concavity of orthogonal trajectories, function 8 , during
trenaition through straight line endures a break (3). Thus, considered straight can
only be a line of break of stresses for true plane flow [3]. Let us note that from
investigation there was a case of straight flow lines, i.o., whan medium movas as a
solid body. We will show in conclusion thal line of breck dces not coincide with
infiection points of orthogonal trajectories., In view of (1), we have

dlny 4’):]*-[alnv 8.1]"

fut == -, ¥t =0, [Tu ~ n o ol T (5)

where &/dn - curvature of flow lines; a/dm - derivative along line of bresak.

Sincs translational motion is excluded, themn

dlnvt dlnr- .0t A~
Pty kgD Y (6)

Hence, due to the lemma about preservation of a continuous function in environ-
ments of a point, where its own sign, is, other than zero, we find that curvature
of flow lines dces not change sign during transition through line of break.
Conssquently, straight line of break is not locus of inflection of flow lines. In
Figs. 1 and 2 are depicted possible views of plane flow near straight line of break.

Fig. 1. Fig. 2.
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RELAXATION QF STRESSES IN THIN~WALIED PIPE
V. S. Namestnikov (Novosibirsk)

In work [1] during the investigation of relaxation of thin-walled pipe twisbted
and stretched simultanesously it was assumed that elastic instantaneous zomponents
of deformation satisfy condition of incompressibility. Let us consider this
problem disregarding requirement of incompressibility.

We dispose axes x and y in tangent plane, heading axis x parallel with axis of
pipe. Stress tensor in considered case leads to

)

g = G, Cccoxn =% ° G

xy ¥ = 0= Ty = Ty =0 (1)
Tensor of elastic deformations is expressed
e,=a/E, == —WIE, =04\ /E, e, ,=0,=0 (2)

(E-Young's modulus, +-Poisson coefficient)

Expressiona for creep have form

bemEa hehomgh b= FEG humhae=o (3)
p ard ¢, are connected by dependence
N e S I
In considersd case
a = Yot + att, T = Y EIF T 0 (5)




Lengthening and angle of rotation of pipe are kept constant. Therefore,
condition of relaxation reduces to
& = €, - py == const, - &y = Cgy -t Pyy = const (6)

From (2), (3), and (6) we obtain

. " Ep . Ep 2(t
c+-—;f-c-=0. 1+‘;"‘:""T=0 (m=..§._;'__')) (7)
Hence
. . ‘“ f.“
T -t
__:_,,..m_t_or—c—- ” (8)

Here s and t - initial values of stresses. Putting (8) in (5), we obtain
G m T (™Y 4 3 g =TT O (o =aof f1em) (9)

Hence from second equation of (7) we have

From (4) and (9) we obtain
o = wenp {4 904 g e 47 (1)

Thus, problem was roduced to solution of systems (10) and {11) with initial
conditions
Tmy, pm= at t=0 (12)
Solution of systems (10) and (11) has form

(@) s 4 [S @4 ha] x
) *r kL

(13)
X pr [-—-—;'}- (cln’"\-l +. 3)'/3__.'2?’_..(&“”-] + 4)1/']} d’l
Relationship (8) is resuit of hypothesis of proportionality deviators which for

elastically incompressible material (Y = 0.5, m = 1) reduces ‘o

z/6="Te/[0s OF A =A° (1)
(relationship (6) of work {1]). In [1] by experimental data on duralumin and copper
it was shown that in majority of cases divergence of left part from right in (1)

does not exceod 14%.

’-0‘ T
- oem=A3
to = =i 24 In this case we obtain somewhat better
R W o
_-‘..:E,:_____’____ 0 .
asl e [ ;4 s conformity of lef't and right sides in (8).
t.ac
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If for example, in first case of divergence wers compiled, - 14 + 4, - 16.7,
- 4.1,- 10.7%, then in second they are equal respectively to - 8.3, + 7.5, - 15,
+ 2.6, - 6.7%,

In the fiqure are given examples of camparison of relaxation curves, calculated
by (13) taking into account (m = 0.9) and without calculation of (m = 1) of
compressibility of material. As can be seen, curves turned out to be quite
similar in both cases, difference in Lime at the same level of stress is near 20%.
As one should have been led to expect, relaxation curves with respect to compres-
sibility of matzrial are lower than curves without calculation of compressibility,
i.,e., calculation of campressibility improves cor.formity of computed relaxation
curves with experiments, so long as the latter are always lower than computed
curves [1].

The fact that computed relaxation curves turned out to be above those of
experiments is partiy caused by the fact that elastic modulus obtained on the usual
testing machine is understated due to influence of creep. Error in determination
of E (equals k%) changes relaxation time during the same stress by not less than
(a+1) k&,

Calculations of relationship (13) were performed by S. N. Savchenko to whom the
author expresses gratitude.
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