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ABSTRACT

The theory of sipnal detectabihity s extended to mnclude optimum adaptive receiver
designs for the detection of sipnals with a4 nonperiodic time structure. The specific
problem considered s that of detecting o recurrence phenomenon in nowe. This
phenomenon is a fixed waverorm that recurs in time. The hixed waveform is selected [rom
4 hintte class of possible wavelorms, and the receiver s imtially uncertiain as to the
wavetorm selection. Three basic recurrence patterns are considered: (1) Sporadice -
Porsson, (2) Synchronous-Porsson, and (3) Perodic. For (1) and (2), the recurrence
ttme 1s o random variable.  The approach to the detection problem is Bayesian and the
intttal uncertamties of the ixed waveform and “ecurrence times are expressed in terms
of a priort probabilities, For the Sporadic- and Synchronous Poisson cases, the
recurrence time is always uncertain, but an adaptive receirver can learn the fixed
waveform.

Several realizations of the optimum receiver are presented for each of the three
bastc recurrence time patterns.  The recervers are designed by solving an over-all
optimization probiem o which the Hikelihood ratio of the entire 1inpe observation is
formed, A difficelty in the design of the optimum recerver for signals with a nonperiodic
fime structure s the exponentially growing memory required by the classical non-
sequential reahization. To obtain a receiver desipn with a practical memory size, a
basie techmque s presented in which the signal ensemble is described indirectly in
terms of the fixed waveform and the time structure by which these waveforms are
assembled. The receiver design is obtained by realizing the likelihood ratio in a
sequential manner rather than by postulating a sequential learrving model per se,
Therefore, the use and proper updativg of the contents of the temporary receiver
memory dre specified by the design procedure.

Although equivalent for detection purposes, different realizations of the same
optimum receiver appear to operate in different manners. Receiver designs are

xvii



3

presented in which the receiver appears to “learn” the fixed waveform which oo being
transmitted.  Such a receiver was sunulated for a special but useful case totllustrate
its operation. Other receiver desiygns are presented which, althouph opticium, do not
incorporate this learning feature 1o an obvious manner  The tmpartant feature of the
adaptive realizations is their fixed-stize memory requirement and aviatability of a
classification output,

The cffect on detectabihity of the uncertamty taarrival ttmes of the fixed wave-
form is investipgated. The detection porformance tor the case of a fixed w etorm, known
exactly, that recurs with a Synchronous Poisson Tume St ructure s presented in terms

2t
¢
-

(9}

ol the recerver operating characteristic (ROCY as 4 tunction of averape duty tactor,
and time. ix(‘ 1s the energy an the hixed waveform and .\'” 15 the nose power per unit
bandwidtl . This s a useful case sincets, perforaance is an upper bound onthe attain
able performancse when the fixed waveform s uncertain or recurs with the Sporadie
Potsson Time Structure. The performance results show that even when the hixed wave-
form is known exactly, the uncertam arrival times can have a substantial effect on
detectability,

The tmportance of storing and updating hikelhthood ratio terms tn the temporary
memory was investigiated by comparing the performance of the optimum receiver with one
that simply recirculates the input waveshape, It was tound that storimg and updating
hkelthood ratio terms rather than reciroulating input waveshape becomes mare mmportam

2L
o

as g increases and the average duty factor decreases,

t

xviii



CHAPTER 1

INTRODUCTION

1 1 Nature of the Froblem

The problem of reception of a signal bured in nowse 1s common to sonar, radar,
and commumeation situatiens an general.  In some cases, such as arise in the reception of
specch, the voal is that of recovering the signal so that 1ts waveshape 1s as close as possible

the ompimal transmitted sigrnal. However, i many avplications the primary goal 1s often
deciding whether a signal s present or not, and there 1s no particular need to reconstruct
the orginal waveshape

Iv the early 1950's several authors formulated a theory of signal detectabihity i
which the making of the best possible decistons was the primary goal (Refs. 1-3). Since
the notse s considered known only in g probabihistic sense and since there are uncertainties
regarding the sipnal, one cannot decide with certainty whether or not a signal is present in the
noyse. The early work an sygnal detectabndity ther vy recogmezed the detection of sipnals an
notse as o problem which could be solved by the appheation of statistical decision theory.

Sipnal detection theory encompasses recerver design and performance. The branch
of signal detection theory that 1s wiven primary emphasis i this study s the design of re-
cervers that are optimum in the sense of making the best decisions. In particular, rather
poenerdl technigques of designiny optimum recervers which operate in a sequential mode are
coenstdered. Such recesvers trequently exhibit adaptive characteristics.

Both the design and performance of an optimum receiver depend upon the signal
uncertamties and the noise. The optimum receiver usually takes on its simplest form at
cither of the two xXtremes of knowledge regarding the signal; 1. e., precise knowledge of the
signal on the one hand. or at the other extreme, a large amount of initial signal uncertainty
tn which parameters of the signal cannot be learned. The performance of the optimum re-

cenver usually decreases as the amount of signal uncertainty increases
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Most of the literature on signal detectabihity has been concerned with periodie
signals which may be, for example, uncertiun in amphitude and phase. This 1s understand-
able since a primary application of signal processing 1s to active sonar and radar syvstems
where a periodic transmission 1s characteristic. The knowledge that the signal s perodic
or neariy periodic s definite information that a recerser designer can use to advantage,

One class of signals studied here s a type that 1s more hikely to be encountered tn
a passive situation. Here, the syrnal emitted 1s bevond the control of the designer of the
over-all transmutter-recerver system and s often nonperiodic. A broad class of such
signals is one in which a fixed but quite unknown waveform is emitted recurrently 1 a non-
periodic and quite unknown way.  The interest s in detecting the presence or absence of the
entire recurvence phenomenon rather than making a local detection of the presence or absence
of an individual fixed waveform. I the signal-to-noise ratio were high, individual local
detections could be made relatively easily. However, a case of special interest 1s wnen the
unknown waveform has a low signal-te-noitse ratio and a low duty factor. Then, local detection
becemes difficult  If one has sufficient time to observe the recerver anput, however, the
recurrence of the same waveform permiats the possibithty of “learmnay or “adapting too the
wavetorm sent. This learning or adaptation must be done tn spite of the nomse and the
Tunknown cpoch of the wavelorm,

The general type of signals considered are shownan Fig. 11 This sketeh shows
possible noise-free signals that might appear at the recerver input.  The particalar local
waveform that s sentan a gwven stgnal burst s uncertan and 1s one out of 4 fintte number
of local waveforms.  Although the same local waveform s recurrent (n cach signal burst,
the precise ttmes of recurrence are uncertain, It can be scen that a wide variety of signal
bursts can result, the receirver must be designed to detect any one of them.

Three basic types of recurrence-time processes are considered.  They are:

1. Sporadic-Poisson process
2. Synchronous-Poisson process
3. Peruadic process.
These three processes differ in that they represent three degrees of knowledge regarding the

manner of recurrence of 4 waveform. The Sporadic-Poisson process involves the least
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Fig. 1.1 Four ‘“typical” bursts of signal.

amount ot knowledge reparding the structure of the signal in time. The Periodic case,
representing the most knowledge regarding the time recurrence, s included in this study for
comparison purposes.  Precise mathematical formulation of the possible signuls that could
necer s postpeted until Chapter TV,

The basie techmque of destgmng adaptive or sequential reahizations of optimum
recervers s considered an this study.  As we shall see, there is no unique adaptive realiza-
tion.  Adaptive realizations of the optimum receiver are presented, in general block diagram
form, tor cach of the three basic recurrer o-time structures discussed above.  The
recenver s designed to be optimum in the sense that 1t makes the best decision as to presence
or sabsence of the entire recurrence phenomenon.  Itis provided, sequentially in time, with
two outputs; a deciston output and 4 classification output,  The detection output provides
formation for deciding presence or absence of the recurrence ghenomenon and the classifi-
cation output provides updated probablities of the various possible {ixed waveforms that
could oceur.

When the recurrence time process 1s nonperiodic, the design of tne optimuin receiver
15 compheated by recetver memory requirements. A nonsequential realization of the optimum
recenver requires an exponentially growing memory. It will be shown that this difficulty can

be eifminated by realizing tne receiver in a sequentiai mode.
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The foundation of this study 1s the theory of signal detectabihty as developed by

Peterson, Birdsall and Fox (Ref. 1), This theory emphasizes the central role of hkelihood ratio

in the recerver design, Related basie material can also be found in Helstrom (Retl. 5).

A number of authors have applied “adaptive” techniques to the problenm of the detec-
tion of signals 1n nose (Refs. 10, 11, 15, 16, 17, 18). The problem of designing an adaptive
filter for a fixed waveform whose time of arrival 1s unknown has been constdered by Glaser
"Ref. 10). In this work a statistical decision theory approach as used  Local wavelorm
uncertatnty 1s expressed i terms of an a4 priorn probabihity density tunction but recurrence
time uncertainty 18 not  The epoch s instead detected on a local basis and the assumption
1s made that the epoch measarement 1a accurate.

Jakowats, Shuey and White (Ref  11) bave proposed an adaptive filter for detecting
a recurrent fixed waveform. A simphilied block diagram of therr origimal adaptive filter s
shown i Fig.o 1.2, The basic operations of this alter as desceribed by Jakowats are:

(1) comparison of a sample of the tncoming waveform, x{(t), with an estimate, m(t), of the
unknown signal, st by correlation of x(0) and m(t), (2) on the basis of the correlator output,
A, puess whether or not g sipnal os contained 1n the current sample of s(0, and (3) at
those times when a signal 1s puessed to be present, torm a new estimate of the sipnal which
consists of g werghted average of that sample of the tnput with the prior estinnate

Althouph basic purdehnes teom stgnal detectien theory are used o the adaptive
frlter of Jakowaty ot al, the destgn approach is not an optimal one as the authors aindeed
recognized. Two characternstic features are apparent in this adaptive filter First, o
locai detection s required betore any modificatvon of the memory s made  Secondly, the
recepver memory s used to remoember a o single wavelorm, Thrs s undoubtedly an
madequate memory lor the recerver to be optimum - Therr adaptive friter maay be, however,
a practical recerver when the local waveform signal-to-noise ratioas larpe enough to
permit pood local detection. In such cases the sumple tmplenentation of 4 recerver with
4 svgle wavetora, mesnory may justify its suboptimum detection pertormance,

Several authors have constdered a tocal detection problem an which a hived local
waveform recsrs i oa synchronous manner (Refs. 15 and 18).  In the local detection case

the problem becomes that of detecting where each of the local waveform recurrences are,
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Fig. 1.2 Jakowatz, Shuey and White original adaptive filter.

using all pastanformation.  The approach s Bayesian and one of optimum receiver design.
One central problem s comrmon, however, and that is the problem of implementing an

optimum receiver which requires an exponeatially growing memory.  As Scudder (Ref. 18)

potnts out, the standard nonscquential realization of the optimum receiver 1s very comptex,
grows exponentially with ttme, and the analysis of s performance s close to impossible
cven using present day computers. Marcus and Swerling have recognized a similar problem

of providing suttictent recerver memory in regard to a multiple-resolution-element radar
problem (Ret 12)

1 3 Method of Attack of the Problem

The Bavesian viewpoint is adhered to in this work.  That is, it is assumed that
some knowledpe 1s avatlable to the receiver desiymer regarding the signals and noise that
will be recerved. The particular knowledge available must be expressible in terms of
probabihity distribution functions.

Since the primary goal 1s the making of the best decision about the presence or ab-

sence of the entire recurrence phenomenon, rather than determining the location of each

recurrent waveform, the problem is to decide between the two hypotheses; presence of

recurrence phenomenon and noise or noise alone. If one prefers correct decisions to mis-




takes, Birdsail (Ref. 9) has shown that the optimum receiver 1s one which realizes the like-
lihood ratio of the observation and this fact does not depend on any specific quantity to be
maximized or minimized.

Likelihood ratio plays a central role in the design of adaptive receiver realizations
as it did in the design of optimum recewvers in classical detection theory,  The adaptive
receiver realization is obtained by forming the likelthood ratio of the observation which s
optimum for deciding the presence or absence of the entive recurrence phenomenon and then
reahizing this hkelthood ratio in a sequential manner. Ttas interesting that receivers
destgred on the basis of sequentially realizing the optimum receiver often exhibit “adaptive”
charactenisties. The adaptive feature s, however, a result of the particular form of the

realization chosen. This approach to the problem s an contrast to ones in which a block

diagram of a recerver s chosen by analogy to a biological adaptation mechanism, or by

extension of electrome techmques used i tracking devices,

1.4 Organmzation of Materal

Chapters Tand H provide backpground material for this work,  Chapter 11is a review

of the basic signal detection theory that is relevant to the problem considered here. This chapter

introduces the problem and expresses the in portance of approaching optumum receiver
design vii hkelthood ratio In Chapter T the extension of the fixed tinie theory to a time
varving situation s presented as well as methods of reabizing the optimum recerver ath an
adaptive form The anherent tole that the classiticatten problem plavs in the optimum
detection s also pointed out, In Chapter IV the particubar types of transmitted signals
considered are described in detal and defined. In Chapter Vo the optimum adaptive receiver
design s developed i detail, Mour reahizations are presented for cach of the three basic
types of ttme uncertanty. This demonstrates the necessity of the adaptive receiver design
for the sporadic and synchronous cases due to practical sory requirements. This is
contrasted with the periodic case where no such memory problem exists Chapter VI
presents some special but interesting cases of the recervers of Chapter V.

In Chapter VII the detection pertormance of the optinym adaptive receiver s
presented in toims of the ROC (recetver operating characteristic) for some specific cases,

primarily for the Synchronous-Poisson tume uncertairty  Alsoncluded in this chapter are
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Monte Carlo runs whichdemonstrate the “adaptive’ features of the adaptive realization.

In Chapter VII conclusions to this work are presenied




CHAPTER I

REVIEW OF BASIC SIGNAL DETECTION THEORY

2.1 Classical Signal Detection ]

cory
_

Since the basis of optimum receiver designas the work of Peterson, Birdsall, and
Fox (Ref. 1), it is appropriate that it be reviewed. This theory s now called classical,
fixed-time detection theory, Tt applies to sttuations where the receirver input 18 observed
over a fixed interval of time and a decision s then made concerning the presooce or absence
of signal during that interval. A block diagram s shownan Frgo 2.1 The transmitted signal
and added noise or nose alone 1s presented to the recerver input. . The question s whether
the switch is open or closed. Classical detection theory encompasses optimum receive”

design, recewver realization, and cvaluation of receive rperformance

Sipnal r\ Optimum

Transmittor  p—pm——0o-o =
Recerver

Noise

Fig, 2.1, Basic detection problem,

Optimum recerver designas approached from a deciston theory viewpornt - When
the input wavetorm to the recenver s bandlinated, 1t can be characterized by sample values
(Ref 1), Typically, there are 2WT independent observation samples, (.\'l_x,), . ‘\QWT)'
1f Was the bandwidth over which the observations are defined wind 7 oas the total length of
observation.  The total observation, (X, ,X,, .., Nowu.+). 15 considered to be made on either

1'72 2WT
noise alone or signal plus noise At the end of the observation interval, a single terminal

decision is made by a device which can make two alternative decisions, conclude that

2 oo ai e



e

signal was present during that entire ovservation interval or conclude that signal was not
present during the entire observation interval,  The time sequence in which observations
and decistons are made in the fixed time theory are represented in Fig, 2.2, When the
actual cause is signal plus noise, the decisions correspond to a detection and a miss,
respectively. Sumnlarly, when the acteal cause 1s notse, there are a corresponding correct
and mcorrect decisiton. There are, therefore, two correct and two incorrect responses.
There are values and cos's assoctated with these four possible responses, and the theory
prescribes the optimum recetver which makes the balance between correct and incorrect

responses which optimizes some function of these values and costs.

(1) |start observation
stop observation
]

: make terminal decision

_—W&‘?M—» time

0 t + T
0

Fig. 2.2. Observation-decision scheme for fixed time theory.

The cost of making an observation 1s not considered 1n this theory,  As a result no
premium s attached to making decisions rapidly. The theory of sequential analysis (Ref. 7)),
aor deferred decisron theory (Ref. 8) considers such a cost of observaticn,  In the classical
theory, the optimum recerver is one which calculates the likelihood ratio of the input observa-
tton. .\ decision level or threshold is then put on the hikelihood ratio. When the likelihood
ratio exceeds this threshold the response 1s Usignal present” and when it falls below this
threshold the response 1s "noise alone”. The recerver design is still that of a likelihood
ratio processor in deferred decision theory, but the simple output threshold is replaced
with a time-varying comparison function,

Receiver realization is specification of equipment, in block diagram form, that
realizes the hikelthood ratio. In general there is no unique way of specifying a block diagram
which realizes a mathematical equation. However, one realization may have an advantage

over another in terms of equipment complexity or cost.  There is no procedure at present
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for selecting a hest” recerver realization. Such a theory would need to incorporate an
equipment cost perhaps best charactertzed by memaory caost.

Anamportant agpect of detection problems 1s evaluation of detection performance,

It s often useful to evaluate the performance of suboptimum as well as optimum receivers
The evatuation of cottmum receivers puts an upper bound on attainable pertormance. Evalu-
ation ol suboptimum recetvers may revead a recerver vhose performance justilies its
simpler form. In the fixed tme theory, the error performance for all possible hkelthood-
ratio thresholds s the complete evaluation, and this (s summarized by the recerver operating
charactenistic (ROC), This 1s a plot of probabihity of correct detection versus the probabiiity
of false alarm.

Analytical evaluation of receivers frequently becomes o difhicult task. An alternative
te “hmque 1s an experimental approach such as stmulation on a computer (Refl. 22)0 In the
present study, a digital computer simulation of several recervers was employed (See
Chapter VII).

2.2 Opuimumness ot Lakehthood Ratio

In the formulation of the detection problem one considers the mnput to the recerver
as bemng due to erither of one of two causes, e, nowse alone or a nuaxture of signal and noise
One of the primary conclustons that has resulted from the fixed observation theory is that
the optimum recenver s one which realizes the hikehhood ratio, In tact, 1t has been proved
that the optimumness of hikelthood ratio does not depend oo any specilic quantity to be
mistakes (Ref 9. This s a powerful result which gives perspective to any investigation of
new processing techniques since the hkehthood atio recerver puts an upper bound on attiann-
able performance.  Although the optimumness of likelthood ratio s not restricted to additrve
noise, most of the examples in this study will assume added white Gaussian noise.

The hkelthood ratio for the fixed observatien time detection problem, when the

signal 1s known exactly, 1s given by

gy — 1 e - (2. 1)
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where fix,, x

X X S, SN is the probabihity density function of the joint observation

RV IEEE "\"\\'T) under the condition the signal 1s known exactly and signal plus notse s

present and H.xl..\ NYas the density function of tie joint observation

20 Naw

PTRRER ‘\2\&"]‘) under the conditton nowse alone s present. The entire signal vector,

;" ‘2, S S 'I‘) 1s denoted by s As an example, 1o the classic case of a signal known
exactly o added whete Gausstan noise one may work with the logarithm of the hikehhood ratio

Calso optimum sinee 1t 1s a monotome function of the hkelthood ratio) yielding the famihir

crosscorrelator as tie optinwum recewver.  In this case

{n(('(l.\, s) (x s - ) (2.2)

2 2w z (I 2
where s are the sample values of the known signal.
1
2.3 Composite Hypothests Problems
In the spenal-known-exactly example, the likelthood ratio gives the optimum strategy
ter choosing between two hypotheses (1) observation was due to noize alone, N, and
(2) observation was due to stpgnal mixed viath nomse, SN, For the signal-known-exactly

case, both hypotheses are termed simple hypotheses,  If, however, the observation under

cither hypothesis depends on some B;n‘.lﬂ)ﬁ(_v_x_',__{_h._l_l lmut_h(_s‘l_s is (';lll(l({ a4 composite hypo-
thests An example of 4 composite-signal-hypothesis problem that has appeared in o ¢ liter-
ature is the problem of detecting a signal known exactly except for phase, There the parameter
15 the unknown phase angle, ».

The sporadic problem which will be formulated later 1s a composite-signal-hypothesis
problem. the parameter s the signal vector, s, The optimum recerver is then one which
realizes the average hikelthood ratio
e f{x

all
s¢ S

((x,,x

R TR TIVE 1 Xgeo -0 X

T s) p()(s!S.\') (2. 3)

l 2w

The probability p )(s 'SN) 1s the probability a signal s (51,52, S ) is sent under the
t

SowT

condition that some signal-plus-notse is sent. It is based on information available prior to

A N E R e i e . i » “he likeli ati X oo pd .I‘ i
the observation (1. e, at time t()),. The likelihood ratio, ((xl,\z, "(2WT s), is the

likelihood ratio of the joint observation, (xl, APYRR ), conditional to each specific
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signal s that could occur.  The entire ensemble of signals 15 denoted by S0 Formally,
Fq. 2.3 says that the detection output of the optimum recerver s obtained by torming the
individual likelihood ratios, ”‘\1' x,z. L. ,,\2“,,] s), for cach signal and averaging them
over the ¢ privri probabilities of the various signals that could ceur,

As remarked carlier, the theory of sipnal detectabrlity s a theory which provides
for the insertion of the 4 priory knowledpee, 0t can hardly be doubted that the destgner of the
receiver has some knowledpe about the types of sipnals for wheh the recenver s being
designed to observe. This a priort knowledpe appears an equattons tor ikelthood ratvo
the form of the probabihities, p”'.foN)_ A wade tange of inttral knowledpe about the spnal
can be specified by desceribing the entire signal class, S, and assigning values to the prooa-
bilities, p“(h'S.\'). As a special case, this recotver reduces toa sainple crosscorrelator

when only one possible stgaal could boe sent, since p (s SNF 1 for that signal and sero tor
]

all others.,

2.4 Meamory and Signal Detectabulity

The classical theory of signal detectabihity s o tull memory theory the imphent
assumption is that an unliroited amount of memors s avatlable with which to realize the
optimurn receiver. The cost of providing such a tull memory s an obvious practical
problem in certain situations. The optimium recervers for the synchronous and sporadie
recurrent wavelorms present this problem.  Unless special care s taken in obtaming the
proper recerver realization for these cases, an mmpracthical amount of memory may He
required. It turns out that realizing such optimum recevers in a seqeential form results in
receivers with practical memory requirements

Although optimum receiver design in this study will be based on the full menory
theory, emphasis s placed on obtamimg optimum recerver reahizations with adequate but
practical memory size. There s no theory yet deseloped on the proper utihization of
receiver memory but the study of the manner an which the memoryas utthzed in adequate

and full memory receivers should contribute to an eventuai theory of the use of memory in

signal detectability,

T T



CHAPTER 1

ADAPTIVE REALIZA TION OF THE OPTIMUM RECEIVER

3.1 Adaptive Kecerver Desyn Philosophy
Qualitatively . the term adaptive recerver conveys the requirements of a time-varying

structure and a “learning” feature.  As s cvident from scanming the literature, adaptive

processing schemes are not unique. The philosophical discussion of what constitutes a “true

adaptive device 1s not corsidered here.

In this chapter, a technique s developed for the design of full-memory, adaptive,
cptimum receivers.  In the tuli-memory theory evolved here, the term Tadaptive” or

adaptive realization s used to abel forms of optimum recerwvers which exhibit adaotive

characteristics. Although not consudered here, a different theory of adaptation would
utdoubtedly result of o recerver were to be designed with an madequate memory.

Full-memory adaptive recepver design may be approached from the basic viewpoint
of Classteal signal detection theory, The theory must center on the primary goal of making
the best decistons, The mathematical operations that an adaptive recernver must make are
then speciliea by the theory Tt wall be shown how the existing theory o signda! detectablity,
because of 1ts tundamental approach, enables the synthesis of adaptive realizations of the
optimum receiver. This puts full-memory, adaptive signal processing within the framework
of the theory of sipnal detectability. Tt has already been pointed out in the previous chapter
that the optimum recerver under many criteria is one which realizes the likelihood ratio,
There may be several different realiza 1ons, equivaient i3 that each processes the input to
realize the same required hikelihood ratio, or a menotene function of this likeliliood ratio
The pertormance of these reahizations may be equivalent, however, the different realizations
may have untque advantages or disadvantages from a practical point of view, It will now be

shown how the likelihood ratio can be realized in an adaptive manner,

13
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[t is convenient to consider first the adaptive receiver form foir directly described
signals.  Direct description is the traditional description of signals in the classical theory.
It becomes more converient to use an indirect signal Ggescription in subsequent chapters
Therve the signal will be desceribed indirectly in terms of a smaller ensemble of wavetorms

and a time structure whereby these short waveforms are assembled.

3.2 Adaptive Rv;\h_z;mo.._()_f_ the Optimum Recewver - Directly I_)u_'s_(‘_r_m(-d_b‘-:yn.ll Ensemune

The adaptive recerver realization which will be developed 1n this section aperates

sequentwatly, so that in every 70 seconds the observations an the past " seconds are processed

1

Except where otherwise noted, the notation used throughout 15 that Xk denotes a(t) tor

O t= le aind Ny denotes x(t) tor (k-l)?l e k.’1 In other words, a capital letter

indicates the observation from the begimeng of e to now (¢, k= ) and the lower case
1

letter refers to the present observation which s to be processed as a unit Sequentially
in time the recerver updates whether the sipnal wias or was not present in the entire
observation, Xk, and the opmmon s updated as to which signal 1t s b aindeed signal s present

Classical signal detection theory s o fined-time theory  That 1s, much of the work
1 the pastanvolved recenver design an which the processing tume was chosen belore bulding
the recerver. However, inoan adaptive approach the processing time remains viartable,
Actually, classical fixed-time theory only appears to specify a hined observation, .\'k
The theory s castly generahized to permit g reconver which operates over a variable bime
interval.  In particular, f the optimum recenver s oo be desyned to work on the time
interval (00 k7). then the ptimum recenver s one which ceahzes the sequence of the

]

hkelihood ratios, {(Xl . H.\'z). ] I'Xk,‘ This recenver provides the output which s
necessary for making the best decision as to presence or absence of signal from time zero
Lo tine k'l_ anag does son a runmng or sequenttal fashion The optimeimness of hikelthood
ratio gaarantees that all avalable information prior to time zero, along wath that avarlable
from the observation itsell, has been used to make an optimum decision as to presence or
absence of signal in the entire runmenyg CGme anterval (0 kTI)A This s cailed a long-term

detection problem.

), 11X,

The sequence of Likelthood ratios, (1.\'1 5

Vow..o ., ((Xk). could be obtained at

cach time k?l by repeated apphication of Fg. 2.3 This equation suggests, however, that
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ane store dll past observations as well as all the probabihities up to time k'l. A gross

block diagran of this realization is shown in Fig, 3. 1. The samples of the observation

are stored oan nput memory,  Inoaddition, 1118 necessary to make prosviston for storage

of all the a priort probabihties, p()(s SN). The storage requirements for both these purposes

1 redase as time inereases, which makes this type of realization impractical 1o many ciases,

luput, .\'k
] .\'k Input Memaory
|
Likel hood Ratnio Computer %= Detection Outpul
(X))
( 3
Memory for Probabilities
n (s SN}
9]
Fig, 3.1, Gross block diagram of a nonsequential receiver reatization,

Another way of fornnng these hkelthood ratios s to derive ((X ) from the previous

k
ane, ((J\’k‘]}, together with the Kth observation, and a4 set of cpdated probabihties.  Several
ol the torns which these reahzations can take will be considered later  This study is con-
cerned primarily waith this approach and its implementations,  This approach 1s especially
mteresting because 1t leads to reahzations which exhibit the features of an adaptive type of

processor First, however, these full-memory adaptive realizations are showii to be

related divectly to the orgmal hikelthood ratio by an equivalence transformation,

3.2, 1 Sequential Reahzation of Likehhood Hatio - Independent Observations
Conditronal to SNO Many classical detection problems have dealt with the sttuation where
cither the sapnal transmitted was ndependently chos. n from the signal ensemble in each
unit of observation, Npoor where only one possible known signal could be transmitted

throughout the entire observation, X The latter is the classie SKE (sipnal koown exactly)

K
case,  Under certiun condittons, this results ina simple recursive equati n for obtaining the

likehthood ratio of the observation, .\'k, from the likelthood ratio of the »oservation xk—l




soitbe

To illustrate this, consider that the likelthood ratio of the olbse vation, Xk, 15 by

definition

X SN
{( K )

) N
S U N

It is assumed that the observations are indepencentiyv distributed under the background

cenditton of noise alone.  The independence of the observations under noise alone permits
computation of the probability density function for a section of observation from . stmlar
probability function for shorter sections multiphied by the provabihity density function for

the most recent section, Thus

(X IN) - X INy N
XN XN I TN 3

Since the observations are assumed independent under the ¢ ondition SN, the probability

density function of the observation under the condition signal plus nose can be similas |y

separated so that

(X, SNi HX, | 'SNif(y SN) (3.3

Substituting Eqgs. 3.2 and 3.3 imnto 3.1, the hkehhood ratto ¢can be written as

X, SN L H 1SN)
(X)) [ ———| | ——

X, ,IN N
(XN ]y

=

3.4

2.1

Applying Eq. 2. which s the defimiion of hikehthood ratio, Eq. 3.4 can be wnitten as

f(Xk) {()\k_l) ((xk) (B2

For independent observations under SN with independent noise, the hikelthood ratio of the

total observation, Xk‘ is the product of the likelthood ratios of the independent parts.

For example, this is the assumption 1 Helstrom, _S_IIN_ELU(‘Z{I Theory of Signal Detection,
Chapter I, Section 4, “"Sequential Testing of Hypotheses,

— e e
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It Detection Output

——p Compute f(\k) - Product HX )
k

Memory

(X, )

4

Delay

Fig, 3. 2. Optimum sequential receiver, independent observations.,

A simple block diagram of a receiver which reahizes Eq. 3.5 s shown in Fig. 3. 2.
After the first iyt of observation, a hkehhood ratio {(Xl) 1s computed.  This is stored.

Then the hikelihood ratio (.,

o). of the next unit of observation is computed and multiplied by

{(Xl‘ toform ((X,)) which s stored. This procedure s aterated.  This is a sequential form

o optimum recenver,

3.2.2 Sequential Reahization of the Likelihood Ratio - Dependent Observations

Conditiona, to b‘_\ [ this section at s shown how the hkelihood ratio of the observation over

ananterval (0, k‘]) can be reahized, inoa fashion equivident to the above, for cases where

the obsersations, Xpoodre dependent under ihe hypothesis SN, This is the situation in a com-

postte hypothests problem. The dervation begans with the likelthood ratio, {(Xk\“ 0. the

cntite observation, Xk‘ which 1s known to be optimum under many criteria, and transforms
{(Xk)'n‘.(u an equivalent sequential form.

Once more, we start from the hikelihood ratio of the observation X, , given by

K’
[SN
f()(k SN)

{(Xk) ——— (3.1)
I(XklN)

As belore, the observations, X,.oare assumed independent when noise alone is present, so

Eq. 3.2 applies.  In composite signal hypothesis problems, however, Eq. 3.3 does not hold
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and f(XRISN) 5 written, instead, by definition of conditional probabilities, as

’ _‘A‘ 3 ':\' 3 ] '«‘\- ] o
((.‘\k SN) l("(k_IIS )f(\k Xk-l‘s ) (3.6)

Thus, {(Xk) can be written as

(X, .ISN) fix, X SN)
(X, SO S S | S % (37
N { N
“xk-l N f.\k )
Or
(X)X ) fa X)) (3.8)
where we have delined
£l , SN)
s, ‘% )= — K KU (3.9)
K k-1
f(.\'k NI

Note that Eq. 3. 81s similar to Eq 3.5 except that the furction (x Xk 1) 15 dependent on

Kk
the entire past observations in addition to the umt observation, X
Let us now determine {(.\k Xk-l)' To do this, let us consider in more detail the

numerator, f(\k'Xk_l_S.\';, of Fq. 3.9 Solving Eq 3 6 for l‘(.\K'Xkﬁl,S.\‘) one obtains

f(,\'k SN)
iy 'X SN)Y - - (3.1,

. N
(X, 'SN)

The numerator of Eg. 3 10, by definition of a composite stgnal hypothesis, s

(X, SN) (X, 15, SN) p (s518N)ds (STl
K S K 0

s, SN) 1s the probability deasity function of the observation X, under the condition

here f(X
where fl( K

k
SN and where a specific signal, s, 1s beng transmitted. At the start of the obscrvation,
specified as time t, the observer s uncertain as to the specific signal to be sent.  This

uncertainty 15 expressed by the probability density function, p”(s-S.\'). If the sigral s simply

added to the notse, then the observations, conditional to a specific sygnal, s, are independent.




Thus
Y . N - N ' b SN e
f(..k 5, 8N) I(.\k_1 s, SN) f(.\k s, SN) (3.12)
Substituting kg, 3 12 anto 3. 11 results n
X, SNy 5,SN) f{x, s SN s SN)ds S Ild
l(\k S . “\k-l s, SN) f(\k s SN) p”(s SN) ds (3.13)
FEquation 3. 10 therefore becomes
”xk-l s, SN) p”(s SN)
f(\k .\'k_l,SN) : — f(xk s, SN) ds (3.14)
S fx SN)

k-1

whet e ”Xk- i "SN) has been meorporated ain the integrand since it is independent of the variable
It 1s natural to define a new probability function for the signal ensemble based

of mtegration,
This is done by singling out the bracketed term

upon all the observations up to tume (k-l\rl.

of Eq. 3. 14 and defining it as

I(Xk_ ; I's, SN) p”(s 'SN)
p. .l(s‘S.\') (3.15)
® ,
f(Xk_1 SN)
Substituting Eq. 3. 15 1nto 3. 14, one can wnte f(xk xk-l‘ SN) as
(3.16)

f(.\k )\k_l,b.\) S I(.\k s, SN) pk_l(b SN) ds

except that the werghting pi Dability is not the

wittch is in direct parallel to Eq. 3011,

ortginal defiming density ar t but s an up-to-date probability function based upon the obser-
- {
vations over all the time up to the last umit of observation. The probabilities, l)k(S'SN)‘

can also be obtained trom pk_l(.s SN) rather than pU(s'SN). We can rewrite £a. 3 15 with

the subscript indexed ahead by one,

I()(k 5, SN) p((slSN)
pk(sls;\') ok e (3.17)
[(X, 'SN)
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Solving Eq. 3. 15 for p“(s'SN) and substituting this mto Eqo 317 results

f(X, s, 8N) X 'S.‘\')j
})k(h SN) | — ki il -

X 5. SN) f(X, SN}

k-1 L K

The ratro i the first bracket s condittonal to the sipnal s and so FEq.o 312 holds  Simadarly

pk_l(s SNy (3.18)

the reciprocal of the ratioan the second bracket s fix, X SNV by g 3,60 Theretore

K k-1
Eq. 3. 18 becomes
ln(,\k‘h,s.\w
p s!SN) — Loby l(hfS.\') {3.19)
o . .
LH.\k '\k—l'S' )J

Weoe have still to get the form of Fg o 3.8 for hkehhood ratia. Using Fqg. 3.9 for the

definition of {(x, X ) along with Eq. 3. 16 ane gets

k k-l

f(xk s, SN)

"X — 5 SN ds 3.2
((xk \k-l) e pk_l(s ) ds ( O
S AR

where 1(.\k N) has been brought inside the integral since 1itas independent of the varable of

integration,  Define a hikelthood ratro of the unit observation, N condriionsd to a specitfic

sipnal as

f{n. 5,SN)
({x, 's) — — . (3.21)
fix, N)

then the conditional hkelhthood ratio, ((.\k..‘(k l) can be written as

f X ) S SN ds A G
{ \k k-1 ; f(xk s) pk_](s SN) ds (3.

(8%
(8%

Similarly, of numerator and denomnator of Eq. 319 are divided by Hx, N) and Fgs. 3 9 and

k

3 21 are used, the updating equation can be written as

f(.\'k's)

pk(s!S.\') —————| (s SN) (3.23)
{ [X
L(‘\k \k-l)
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Equations 3.8, 3,22, and 3. 23 form the basis of design of the sequential receiver. Table 3.1
summarizes the basie sequential recerver design equation for both dependent and independent

observations under SN,

TABLE 3.1

BASIC RECEIVER DESIGN EQUATTONS

SEQUENTIAL REALIZATION OF THE LIKELIHOOD RATIO

Independent Observations Conditional to SN

Detection Output

f(Xk! ((X, ) (3.5)

Dependent Obscervations Conditional to SN

Detection Output

f(Xk) {(Xk—l) {(.\klxk_l) (3.8)
Sequential Average Likehihood Ratio
((xlek_l) . {(.\kls) P (sISN) ds (3.22)
Classification Output
f(xk|s)
l,k(s SN) .~ Py l(sISN) (3.23)
{(xkl‘\k-l)

By comparing Egs. 3,22 and 3. 23 we observe the primary earmark of adaptive
operation: the feedbaci, of results to modify the processing of subsequent observations.

Thus, trom p (s SN) and x, one can caleulate pl(slsr\'). This is used to determine the
(@]

1
werghting on Ny (Eq. 3.22) which n turn is used to compute ;)Z(SISN) and so forth. The

quantities calculated are shownn Figo 3.3,




b
"

X 22

(X, (X,

\

4 ) 1 4
L4 T T
\ X
k-1 k kel
trme
e —
Fig. 3.3. Sequential realization representation,

Itas hikely that one could arrmve at Fgs, 322 and 323 by proper apphication of
Bayesian logic. The author has overtly chosen not to do this so that 1t s obvious that the
alorementioned equations tor condititonal hkelthood ratio and for updating know ledpe are a
result of symiple mechanteal manipulation of the tormula for hkelthood ratio of a complete
observation, Xk'

A block dragram indicating the operation of this adaptive recerver 18 shown i Fipo 3.4
The hikelthood ratio of the yncoming observation s computed for cach possible sypnal that
could occur These mndividual hkeithood ratios are then werghted by up-to-date probatnlhities,
pk_](.s SN s to whieh signal s berng transmitted, and these products are added over all

s¢S to obtarn the condittonal hkehhood ratio f(\k X ). Theantormation regarding which

k-1

stpnal is present, as expressed by p (s), 15 then updated using the quantities {(xk shand

k-1

{(.\k xk—l) which contarn new information from the kth observation as to which signal s being
transmitted,  This forms ithe up-to-date probabihities, pk(.s SN, which will be used tor
wetrtphting the individual hikelthood ratios of the (ke st observation  In addition, pk'.s SN)
can be displayed U provide classification intormation, The purpose of this section has boen
to show how to design optimum detection equipment which has a property normally associated
with adaptive equipment  namely, the property of utiiizing observations to orease know -
ledpge and using this knowledgs inanterpreting subsequent aobservations,

We have seen how the equation for updating knowledge as to which signal was being
transmitted (Eq. 3.23) gave a “learning” feature to the receiver design. This feature was
abt:sent in the realizations discussed in Section 3, 2.1 since it was assumed that either (1)

the signal was known exactly, in which case only the central question of its existence remains,
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or {2) the signal samples in suceessive observation units were andependent i which case
what is learned in one umt s irrelevant to observations toany coner untt,

3.3 Classification of Signals 1n Noise

Frequently, more than just pre ence or absence of sigaal ainformation s wanted trom
the recerver, In classionl detectivon problems, ainformanon as to which stenal was being
transmiutted was often appressed  This resulted from the facet that the roconver was desypned
to answer the question ol presence ar absence of sienal recardless of the partionlar sienad
transmitted. The realizatton of Fig, 34 displavs the classthication intormation whie h has
always been inhercint an Jhe formation of the tocerver detection output

p”(s SN) s the probabihity density function that represents our optiton, prior to
any obscervation, as to which signal will be present This as the classtiication output at time
. As has been shown i the previous section, updated versions of this density funetion,
pk(.\ SN}, are obLained sequentiaily in time by the recerser and used to torm the detecting,

output, 1. e., the hkelthood ratios Thus, the detection and classifrcation outputs are obtaimed

stmultancous!ly and ar<antimately relatea,




CHAPTER TV

I" DIRECT DESCRIPTION OF SIGNAL ENSEMBLE

In Chapters T iv wa o shown that an opttmum, full-memory, adaptive receiver design
could be put within the framewark of classicat frxed-tume theory,  The basie form for an
optvinum, full-memory, adaptive recernver was obtained there for the case where the signal
ensemble is descrmbed directly, I the desipgn equations (Eqs, 3.8, 3,22 and 3, 23) are applied
directly tothe case of recurrent wavelorms, the resulting realizations stitl require a contin-
udally proang memory for storing updated probabilities, as we chall see in Chapier V,

in the next twe chapters, it will be shown that eptimum adequate-memory ™ adaptive
recener designs will be obtained tor detecting the recurrence vhenomenon,  An optimum
Tadequatesmemory  receiver s oone thit has sefficrent memory,  In developing a theory for
the destgn of an adequate~-momory” receiver, anindirect description of the signal ensemble

proves usefus,

4.1 Componeni Ensemble and Tine Structure

The input voltages to the recerver, which are functions of time, are assumed to be
defined for all ttmes i the observation interval, 0 © t - T, They are assumed to be
Limiated to a band of frequencres of width W By the sampling theorem, ecach receiver i put
can be thought of as a porat in a 2WT dimensional space, the coordinates of the point being
the valae of the fanction ai the sample ponts 2—\{7 cfor Loy 2WT, The notition

X, denoies aorecenver anput, {x,, N,

k

e ,\k), where ko 2WT and xJ denotes the jth sample

value, o coordinate,

To state the problem of detecune presence or absence o the recurrence phenomenon
within the ternmmnolopy of signal detection theary, it is necessary to clarify what is meant
here by the word “swynal, 7 This word is often used toose by and sometimes means the notve-

free emission [rom a transmiteer, whereas at other times it reters (o the noise -contaminated

25




waveform at the receiver input,  In this study « signal s the voltage waveform at the recetve:
input when noise s not present,

In Fig. 1 7 four “typical” segments of signals of the tope of interest here were
shown, A possible sipgnal 1s shown in Fig. 4.1 There are mntervals of no enerpy interrupted
by occasional occurrences of the same waveform,  This short waveform s called o signal

component or simply a4 component, A signal consists of a4 recurrence of the same

component and the blank spaces in between,

Sipnal
! A
o I I L T T N T T SN T A Y S (3 4y ] + e by
0 t
45 ‘
Lo
—_— v < ! v g ' “v
Y - =
Component
Occurrerce s
Fipgo 401 A signal composed of components
The notation s denotes the swenal, R PO R 1t would appear at the recenver

" . A
mmput 10 the absence of noise where s denotes the jth sample value, or coordinate. (
)

denotes a particular component, H'l l_('l Do ¢ 4('1 1 I, where L'l denotes the jth sample of
. v~ 0 l .

the 1ith corponent. Any value, iicluding zero, 2an be assigned to these samples By the
sampitng theorem, a4 component can be thought of as a4 pornt 1 g 2\\"’11 dimensional space,
T, 1s the duration of the component.  Since the duration, 1T | of 4 component can be

1

different for cach component, the number of component samples or coordinates 1 g compornent

where

is denoted by ny where RIS equal to ZW’I’] for the ith component.  For example, if the
1 .1
comnonent in Fig., 4.1 1is labeled C | then Hy T and it is written as C (-1, 1,1, -1,-1,1,-1

and the signal in the interval (0, t45) is written as

N
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s (0.0 1rlo-1 -1l 1,0.0,0,0,0,0.0,0.0,0,0.00,0,0 1,11

l,-1,0,u,0,-1.1,1,-1 -1,1,-1,0,0,0,0 (4. 1)

In order to define the detection problem it as necessary to specify the mmtal signag
uncertainty,  This s most conveniently done by describing the signal indivectly i terms of
components and their timaing, thus distinguishing two types ol ancertainty: uncortainty as o
component chdracter and recurrence-tec uncertarnty, Consider the block diagram shown

Ore comporest out of o frate elass Hf b components 1s chose s by the ¢ mponent

te

TR R TURE 5

penerator to be characteristic of a transmisaton ot 1ts outset,  Transmission of the character-
1IsUc componen! wours only upon cotimand by the trigger generator which introduces the
recurrence -time uncertatnty,  Lrgggoeers may occur only at diserete times and may not oceur
within a component Thiee bastc distrbutions of pecurresce-time tntervals are considered:
the Sporadic-Paisson, the svnchronous Porsson, and the Periodic, Signals of the three types
are llostrated o P UV 3 and dehined below. The ¢ imponent s not restricted to a binary
warcform but s shown as such for llustrative purposes,  In particular, a component can

Bave zeto sample values, thus pernntung signals composed of pertodic puises to be described,

E —

Trieet Companent .
NN f Stignal

Cot-nre 1 0ty senerator

Fiap. 4.2 Biock duagram of signal generator.

Fhe stipest temporal distribution of components within a signal occurs for a

Peavodie Tone Structure, Inthis case a con porent s transmitted periodically with period

l.l' where I1 15 the duration of a component,  Such a signal is shown in Fig. 4.3 ¢. Witn

the Sporadic-Poisson Time Structure, there is a probability ot inittation ol a compaonent at

edch of the times (k : le that is zero within a component and invariant at otner times. This

type of signal is shown in Fig. 4.3 a, For the Synchronous-Poisson Time Structure, there
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b, Svnchronous-Poisson Process
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time

¢ Perodie Process

Frg, 4.3, Tyvpreal signals.

(s a4 probabbity that o trgger will occur at tinges T seconds apart. In the ne U three sections

1

the thiee types of time proce sses will be mathematically defined,

4.2 Sporadic-Poisson Time Structure
Fhe sipnal enscmnle for s time structure can be indirectly described 0 terms of
the coraponents and time structure, The kth sample of the signal, .sk, can be defined in

ietms of the (k-Dst sample, s . and a set of transition probabilities,  In other words, the

signal can be defined by a one-step Markey process,  In the sporadic case, a sample of the
signdal can be i any of the states ¢ 1O e © fori 1, 2,...,b, where ¢ | corres-

1, 1,2 1, n i,
\ ]

ponds to the jth position of the ith component.  Theie are b components in the component
ensemble and the ith component has n sample values.  One other state is possible and thit

is where the ith component has been selected but is off.  This s designated by e

’



Only certain transitions from one state to another are possible,

the component has seven samples and 1.1

29

Ci,3'

then s

For example, if

4 with probability one.  This

15 a4 result of the fact that once a component starts it must be completed and also no new

componcnt mav start until 4 component is completed,

visualized with the aid of Fig., 4. 4.

Fig, 4.4,

kth signal samples

The various possible transitions are

The arrows indicate the possible transitions.

didgram are the probabtlities of the various transitions,

the Sporadic-Poisson process are dehined as:

) ‘
L(.sk hk—l' SN)

'l for<

1-1" f()x‘<

This fipure shows the possible states of the (k-1)st and

Sporadic-Poisson process for the ith component,

Also included on the

More specifically, the properties of

k-1 7,0
(4.2)
sk—l ' Ci.ni J
N
“k-1 51,0
> (4. 2)
Sk-l - Cl,ni _J
S =
k-1 S, -1
(4. 4)




(s, | SN Twise 5
g k! Swop St ) =0 otherwise (4.5
The interpretation of Eq. 4, 2 is that if the ith component is cither off, Ci o OF dat its last
component position, Co at time lk-l' then it is off at time lk with probability 1~l'i.

"

Similarly, from Eq. 4.3, {f the ith component is either off or at its last component position

at time lK , then the ith component starts agoin at time t

) with probability by Equation 4, 4

k

says that if the (J-1)st posite o of the ith component is present at time ot then the jth

sample of the ith component s present with probability one at time ( Equation 4, 5 says

K’

that no transitions other than the ones expressed by Fgs. 4.2 through 4. 4 are possible,

4.3 Synchronous-Poisson Time Structure

The Synchronous~Porsson Time Structure is intermediate in recurrence time
uncertainty between the pertodic and sporadic processes,  The component selected at the
start of transmission is one of a figite number of b possible components,  Due to the
synchronous nature of the time structure, there s no detailed positional uncertanty of
components s was true in the sporadic case.  If a component is triggered, the time
position of component samples is known exactly,  This enables the component sample vaiues
tu be combined into one state,  C (¢ ¢ 50 2 o Gk O‘ 15 the state that results of the ith

1,0 i,0' 1,0 i,

component 1s selected but the component 15 ff, ('l 1 ((‘l R P IR RRE ) 15 the state
. h ! o 1)

that results il the ith component s selected but the component is on. The signal vector can

be “blocked off " into ni-dinn‘nhinn.ll sepments, cach segment being desipnated by Sk For
' N
example, if the component o Fige 403 boas labeled CF ) then this signal s
s SRS LS IS S (| O e L0 ) (4 6
i 1" 7273 45 ( LoD Ll 00 1,1 b)

The possible states an b transition probatnhties are shown g Fig 4 5. The properties of

the Synchronous-Porssaon process are defined as

L!(SR!SN) 1-1'i for Sk Cl 0 (4 7)

g(SleN) b for § C (4. 8)

i 9 P Y, T —————
e
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Fig. 4.5. Synchronous - ’oisson process for the 1ith component,

The above two equations express the fact that Ly is the probability that a component will
appedar i the kth synchronous interval and l-xl ts the probability that it will not appear in

the kKth interval independent of 1ts presence or absence in any other synchronous interval.
4.4 Pervodie Trme Structure
The pertodic process represents the least amount of time uncertainty of the three

types constdered  One of a fisite number, b, of components 1s selected and recurs period-

1cali Vs recurrence process 15> completely determimstic, The possible states of sk and
the transition probabihities are shownan g 4.6 The properties of the Peaviodic process
BRES
' SN tor ;
TR % S ke Siget
(4 9)
., on,
b g
a SN 1 for i S C 4.1
Y ke "G Tk Sy o]
misy bk-l's'\‘ 0 otherwise (4. 11)

Fquation 4 9 expresses the tact that the jth component sample of the ith component occurs at

if the ()-1)st component sample of the ith component 15 present at time tk I The

time L
n Kk
interpretation of Eq. 4. 10 is that the first component sample occurs at time tk il the last

component sample occurred at time (k-l' Equation 4. 11 states that no transitions other

than the ones defined by Eqs. 4.9 and 4. 10 are possible.
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In the next chapter the design of optimur adaptive receivers will be presented for

cach of these three time structures.,

k-1 Kk
¢ -
14 1,1
¢ ¢
1, o I
¢, ¢ ,
i 0 kks]
{
1.4
"
[
“Ia
« .
1. n |
!
Fig. 4.6, Pertodic process forath component,




CHAPTER V

OPTIMUM ADAPTIVE RECEIVER DESIGN

In this chapter optimum adapiive receiver design is considered for a component that

recurs with Sporadic=Poisson, Synchronous-Porsson, and Periodic Time Structures, A

cummadry of the signal cateeories considered are shown in the chart of Fig, 5. L.

One of b possible components that

recurs throughout a transmission

~

//

r

Sporadic Trme Structure «'_k'm'hrunnus Time Structure

1 Uncertaan time of occurrence 1 Uncertain time of occurrence
: , ) (svnchronous times)
2 Uncertain composont length :

g 2 Known component length
3 No component overlap | g

(Fgs 4 2-4 %

illgs 47,4 8

Periodic Time Structure

Uncertain repetition frequency,

fixed throughout transmission

(Eqs 49 -4 11

Fig, 5. L Sumimary chart: signal categories,
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It {s necessary to consider the adaptive reahization for the Sporadic-Porsson and
Synchronous - Poisson Time Structures because of practical nremory requirements,  This s
a facet of optimum receiver design that did not exist in the periodic case,  In the Periodic

Time Structure, for components of duration T there are the same number of signals 1 the
I 14

E
signal ensemble as components v the component ensemble after observing for a time k'I'l.
For the Synchronous-Poisson Time Structure, however, there are 2k tmes as many signals
in the signal ensemble as there are components in the component ensemble after ¢ time le.
In this latter case, the receiver designer s faced with an exponentialiy growimg signal ensemble
If the recerver design s a nonsequential one, Fq. 2.3 1s realized directly, This s the reali-
zation represented ain Fig, 301 and 1t mequires an exponentially growiny memory {or
p‘)(.s{SN). The nonsequential realization s therefore usually too complex to be practical,

The question arises as to whether an adaptive realization mght provide a practical
optimum receiver design, The optimum adaptive realization was discussed ain Chapter 111
The basic equations for the adaptive realizations are summarnized in Table 3. 1 and presented
in the biock dhagram of Fig, 3.3, The form of the adaptive design equations tn Table 3. 1 s
unsdatisfactory since «n updated probabihity, pk(sls.\'), of cach of the entire signal vectors, s,
up to time lk must still be stored, and this requires an exponentidally growing memory,

I this chapter design equations are obtatned of optimum recerver realizations which
bave a memory that remains fixed 1o size, The order of presentation of the receivers s from
the one for the least certain time structure, the Sporadic-Poisson, to the most certatn, the
Periodic,  Four realizations dare presented for cach of the three time structures. These
realizations of the optimum recerver show how the detection output can be formed i nany
different ways.  The derivation of Realization Tis presented oo this chapter o detanl for
cach of the three time structures, as are the results of Reahzation IV, The remanning
realizations are presented in Appendices A through Co Following the presentation of the

recerver redlizattons for cach titne structur o, the operation and use of the memory are

discussed.

5. 1 Optimum Adaptive Recerver Design, Sporadic-Poisson Time Structur
In this section an adaptive reahization of the optimum recenver 15 presented for
detecting signals with a Sporadic-Poisson Time Structure,  One of b components 15 selected

for transmission and the same component recurs throughout a total observation, Xk. The
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components need not have the same duration nor recur with the sanmie duty factor,  Due to the
Sporadic - Poisson Time Structure, there s local positional uncertaimty of a component
occurrence,  The probabihity of triggering a component at any of the times krl conditionil
to selection of the ith component 1s iy unless a component 1s in progress  The state diagram
for the ith component has been shown an Frg, 4, 4,

Lo review, the following basie steps are tollowed in the derivation of the optimum

adaptive receiver realization.
1. Form the Iikehhood ratio, ((Xk), of the total obscervation, Xk
(kqg. 24
2. Obtain cquivalent sequential realization of the hikelhhood ratio,
(X 1 tnwhich the recerver apdates information after each umt observation, x

13
SR 228 SR

(kgs. 3.8,
K 1
3 Describe signal ensemble i terms of components and a hime
structure (Chapter IV,
In this section the properties of the Sporadic-Porsson Tune Structure signal are

used along with kgs, 3.8, 3,22 and 3, 23 1o obtain the adaptive recewvers,

L1 Sporadic-Posson Tene Structure Realization L The dermvation o, thas
sequential realization begins with the specithication of the Likelthood ratio of the observation

cver the tnterval (0 lk) which 1s Keown to be optimum. This hikelithood ratio as

(X X, sip (s SNids (51
{ o k O
all
)

L Chapter T ot was shown that this hkelthood ratio could also be realized in a

scequential fashion The result was

(X, 0 (X Min X ) (3 8)
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wlere

(%) Xk_]) ,1‘“ fix, s)p

s¢ S

s SNids (3.22)

and the information regarding which signal is present is updated by

f{x

K s)pk_l(s Sr\_)

{s SN)

Py

For a finite number of possible signals, the average sequential likelihood ratio as given by

Fqg. 3.22 can be written as

((x, X !’)"‘ fix s)pk_

‘s SN) (5 2)
s¢ S S

1

where the integration has beer replaced b summation.  If the likelihood ratio of the kth

sample of the obse rvation depends only on the kth sample of the signal, then ((x, s)  ({(x

K S ).

kK "k

This 1s a condition which holds for sipgnals in added nowse. In this event, the average sequential
[ [

likelthood ratio of Eq. 5.2 can be written as

((x, X oY x

RS o (s SN) (5. 3)
S6S

bk Pk

This 1s stil a summation over all the possible signal vectors that could occur during the

observation X One can rewrite p

K k--l(s SN) s0 as te include the generator process. The

vector s oo sampled torm is
S * ‘ . S 5 R O
pk_l(% SN) P15y 89008, SN) (5. 4)

By cefinition of a joint probaln vy, p (s 1SN) becomes

k-1

(s S} 5. .S,.....8 >N) s ls s .. ..
(s pk-l(sl'SZ' .S S ,pk_l(s S S, .S

e NEREH SN) (5.5)

P

Now, Py 1(bk SpeSoc s SNj s the probability, before taking the kth observation, of
the kth sample of the transmitted stpnal under the condition that signal and noise are present

and one has exact knowledge of the k-1 samples of the transmitted signal,  This probability



15 not a function of the observation but only of the previous samples of the signal, However,

the state of the kth sample of the siginal depends only on the state of s In other words,

k-1
PeoqfSe Spesy, ..,sk_l,SI\) = g(sk Seo1 SN) (5.6)
since the state of s Cis indetendent of the states of SpeSge 8y o Therefore Eq. 5.3 can
be written as
X je X, &) S, LS. M) gl(s, s N
(\\k )(k_1 {(\l: s pk-l( 1y Sy S )L,(ak bk_].Sl) (5 7)

Now, the summation s over ali the vectors, s, an the totai space S of signals that could
possibly occar.  Expandive this summation to sum over one dimension at a time of the signal

vector cor each of the kK passible samples gives

((x, X ) . (ix

k k-1 =t : K 5kr!»l(5k bk_l,s.\')p
1 . . (\

k-l‘sl'SZ""

Since the sums dare finte, the order of summation may be interchanged 1n any d-sired

tashion. Thus. Eq. 5.8 can be written os

((xk sk)u(aK sk_l_S.\)pk_l(sl,sz,. SR SN) (5.9)

Now ((xk sk) depends only on the summation over S and g(sk Spo1 SN) depends only on the

summation over Sk and Sk-l Factering these terms out gives
¢ C C (€ c
1. h i.n 1n, N i, n
b t 1 . i i R
{{» K4 ) ( ol 9 . LONT
ket LR LI T = Bqfsp-- 88N
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The term in brack.ts is a joint probability of K-2 variables summed over the first k-2

variahles. This, by definition of marginal probabilities, can be written as

i, n i,n i, N,
1 i i
: : : : ;SN s, . BN
. e T . .s N pk_l(s] Sy Sy SN) l)k-1(°k—1 5N) (5 1)
1 71,072 "1,0 "k-2 "i,0
This permits us to write Eq. 5.10 as
G <
b b l i
. y A " . M N ¢ A' . . p‘. r
{(.\k Xk_l)- 16T ((.\k .sk) . . [_,(:’k bk-l'S\”'k-l(bk-l SN) (5.12)
‘ k “i.0 k-1 1,0
Muary of the g(sk:sk_l. SN) terms of Eq. 5. 12 may be zero, depending upon the generator

process.  From Chapter IV the properties of the generator process for tne Sporaaie-

Pois:son process are:

s " .
kYo k-t Yo
g(sk 5k_-.'5‘\') 1-1'i for (4. 2)
_sk ‘0 “k-1 S ny
(s -c S
kol k-1 1,0
g(:.k hk-l'S\ l fnr< (¢ 3)
Ck S ke S
y : SN ¢ o T d
;,(bk Sy } 1 for Hk kl.]' Sk-l Li -1
(4 4)
7
=23 n‘
8N 2 0 otherwise (4. 5)

K( "k Sk_l-

Substituting these penerator properties into tg. 5 12 gives
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C. ' SN} (5. 13)
i, )-1

Now, cl 0 has the value zero and for & known signal (o added white Gaussian noise,
5 2
[
IR
(s R T ik 3 (5. 14)

where Nis the noise power 1 the bandwidth Woo Therefore

((x s ¢, ) - x s 0) -1 (5.15)

For convenience, let us use the notation

! (s : SN (5.
)i.Jk) Ps, (l.} SN) (5. 16)

Fhe titerprotation of the probabiisty, b\ ]\k) 15 that 1t s the probability that the signal sample

at time lk 1s the jth sample of the tth component under the condition that signal and notse are

present and that the previous k observations have been seen. Using the b, J(k) notation
i

along with the detintion of f(mk-s ('l 0) for signals 1 added white Gaussian noise as given

k

by Eq 515 one obtains

b -
((,\'k .\k_l) - :l*l'iJ[Ui‘O(k-l) . hi-“i(k-lﬂ. xl{(.\:k sk Ci. l) [?'i'c’(k-l) . l)i'ni(k-l)i]

{1y 5 » -1
v Sk (i.J} bx,]-l(k 1) (5.17)
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Factoring out bi O(k-l) + l)i {k-1) permits Eq. 5 17 to be written as

n,
1
b
( <, | N ’l - + (K- -1 ) . { 2 9
X XK [i.‘.)k IR s lﬂ [’ U R Ca,lzl
I,
1
+ \ f y 5 l - f 3
= (\k Sy Li'J) )i,j'l(k 1) (5 18)

which is the expression for the average sequential likehthood ratio for the Sporadic- Poisson
generitor process.
In this realization the probabilities hi J(k) must be updated as ecach umt obscervation,

X 1s taken. I Chapter IH the general equation for updating information was shown to be

K’

P, s SNIf(N s)
P, (s 3N} k-l K (=223

We now need to put this 1o the torm of the hl J“k' probabinities as n kq. 5. 18,

Note that the denominator, f(.\k Xk-l" Is 4 normaliz o factor siven by Eq o 5018

Also, as before, let {(,\k s) ”'\l\ hk) As remarked earhier, this assumption holds for

problems of signals in added norse. Expending the signal voctor, s, terms of 1its samples

permits kg 3 23 to be written as

TS .5 S.\‘((xk hk'

;)k(bl,sz.ﬂ.,sk SN) - : 5 19)

& ¢ ¢
i, B 1. n 1.1
i 1 1
.. S .S, . SN
S, 7 ( ¢ 5 pk(sllsz' Tk |
10 72 0 k-1 L0
(i n Ci n (x n
" T i P, (8, 8,00 . a0 SNI(N, 5 )
| : -1
LS S S0 (5. 20)
S,-C S, ¢ 5 ((x, X )
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The sequential average likelihood ratio, ((xkixk_l), is independent of the summation over
the k-1 sample values of the signal so that the denominator may be removed from the sum-

mdations, | (xk S,/ ts also independent of the summations and can be factored out. This means

that Eq. 5. 20 can be written

. ¢
i,n i.n i,n
v . ! SN
e - : . pk(sl,bz, a8y N)
15,0 "2 5.0 k-1 0,0
o c ¢
((x, s b b Uot
_—— p 5.,8,.,...,8 ISN) (521
fix, X b Sheg S, € s c [sm b=t 2 s
"k Tk-10 7100 T2 00 k-1 10
The left hand side of Eq. 5. 21 15 by definttion of marginal probubihities
( ¢ ¢
1. n 1, n 1.0
1 1 i
S8 . .S, SN B N 2
. . i | pk(sl‘si).. VB SN) pk(sk SN) (LSg2re)
5o "2 %0 k-t Yo
Fheretore Eq. 5 21 becomes
¢ ¢ ¢
1t i.n in
S i 1
X ) S \l
r(\k s S oy . . Py !(51'52' i S
N 1,0 T2 1,0 k-1 0
@ N ST S 51 - oM
LN SN) ({528
((xy xk-l

As before, by definition of @ jornt probability, we can write

IS, .S s . SN)

SN 3 R 5Ny s ‘
SN) (s..8 S ] pk-l(sk P8 Sy

pk_l(sl,sz,....sk N b s s

24)

Now consitdering generator processes, which can be expressed as a function g(sk Sk 1.5M.

we can write Eq. 5,24 as

(s,.s ,SN) (5.25)

P15 2""‘Sk S =

_1;SN)g(s 'S

P13 89005y k %k-1

Inserting this expression into Eq. 523 results in




42
C C ¢
on, 1,0 i,n
v \ \ '
~ “ Ky o !“" y . ~. N
{(xk’bk)sd-.c ‘e b - . pk-l(sl’bZ""'bk 1 b\“‘(bk Sk-l'b )
5 (s, ISN) = — 1 7,072 "i,0 k-1 "{,0 B )
Lt ((x, I X )
k' k-1
(5. 26)

Since this equation involves finite summations, the order of summation can be interchanged.

Summing with respect to Sk"l first and factoring out g(skisk 1,SN) from the summation

over the first k-2 samples of the signal, since 1t is independent of that summation, results

in
(l,ll‘ ('1 ni (‘l.ll (“i nl
((x, 5,) \ Hs, 5, | SN ) Dy i3y S0 8y 1SN)
C 5,0 C ¢ n S
pk(bk SN) B k-1 71,0 1 1,072 1,0 k-2 1.0 )
((\k xk-'.)

{5 27

OQunee more by defimtion of marginal probabilhities, the summation i the numerator over the

first k-2 samples can be writter as Py . l/bk-l SN Therefore Eq. 5 27 can be written as
&
e
1
{ q SN L SN
et A S LS A
p s SNy o I U {5. 25
K Cix, X
k k-l
Insertion of the penerator process, L"sk S SN), for the Sporadic-Porsson process results

toa toduction ol terms under the summation sinee only ¢ rtan transitions are permitted
These properties were previoushy defined by Eqgs 4.2 through 4 50 Equation 5 24 then tikes

m three basie torr s

% Mk- (5 29)



o (5. 30)

(Sg7¢, -1

{(xlek_l

ISN)f(x, Is, =¢ )
sNy - k-1 k_k 4] (5. 31)

pk(a;k»ci'J |

fOTj=2,3,...,Hi

I we use the bi (k) notation as defined by Eq. 5. 16, Eqgs. 5.29, 5.30 and 5. 31 become

(1-1,1;Lbi‘0(k-1) ; oi,ni(k-lz'

b (k) = — (5. 32)
b ((x, X )
]
volb (k-1) « b (k-l-‘-] ({x, s =¢c. )
il i, 0 i,n, J k "k 7i.1
b, vk = —— SR (5.33)
Xy
b (k-Df(x, s -c. )
b, (K) IRt SE A LS (5. 34)
t-) {(x, ' X )

k k-1

for j 2,3,...,11i

5.1 2 Operation of the Adaptive Recetver.  The basic equations of Realizailon | for

the Sporadic-Poisson Time Structure are summarized in Table 5. 1. These equations can be

terpreted by corsidering a simplified, iHustrative example.  Suppose there are two possible

By

.1 2 g 2
components, and ¢ b-=2andn ny = d.

cach with three possible sample vajues; 1 e, 1

Table 5 2 summaitzes the recenver design equations for the example
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TABLE 5.1

BASIC RECEIVER DESIGN EQUATIONS, SPORADIC-POISSON TIME STRUCTURE

REALIZATION |

Optimum Detection Output

v (X L lx. X
(()\k) (\k-l‘ {(\k \k-l)

Sequential Averape Likelihood Ratio

(3. 8)

by
“'\k ‘\k-l) | E’l‘()‘k-“ ' hl_x.l(k-l][l-ll ’ il( '\k bk (.l. I]
L

t K-1iflx, ' )
= )l.J'l(k il \k sk (l.J

Classitication - Component Ide ntinication and Position

llv;l)[hl.u'k-l: . t)l.“l!k~l
b 'K
1. 0 -
{ \k ‘\k-l
l - . K - l"
l[)l ((k 1 hl"-l K 1‘1,{ \k 5 O
hl l\k) = =
{ \k '\k-l
b (k-1,0(x ¢
b, ) Loy bk
{l.\k Xk_]
for )y 2
Classificaton - Component Identification
n
i N
p, (C iSN) b, (k)
K )20 i.)

|

(5. 18)

{5 32)

(1SR HKE

(5 34)

(5 35)
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TLLUSTRATIVE EXAMPLE OF THE BASIC EQUA I'TONS

SPORADIC-PUISSON TIMY STRUCTURE
REALIZATION |

Optimum Detection Output

g-(yn_‘ull'dl__z\y( tage Likelthood Rato

(3 8)

Y -1, b, Gtk | -1) . (k- T .
((x, X, ) EJLO(k Lo by gl ]( L) ll:l‘utk D e by ylk 19 SUESTE

. -1 3 ) . -1 { » )
1)1' l(k 1/f(xk .sk (1-2) hl,Z(k 1)((.\k >y (‘.3.

-
. -1 . { = - . - . o=
E"z.o‘k D« by ik 1)J 1-1,) E’z,o'k 1) by glk-1

. (k-D(ix, s ¢y ) - -1, s ¢
1)2_1 K 1)((\k Hk (2.2; 1)2‘2“\ 1 (\k Sk (2‘3)

Classitication - Comporent dentification and Position

I - . - .
. o [_)I:O(k 1) 1)14‘3(_k 11(1 ‘1.)
1.0

( b
(\k Xk—l)
B’ (k-1 + b (k-l]r‘(x s, z¢,
ST L'1,0 L3 T Tk Tk 1
1 T
(‘\k'xk-l)
by (k-Lif(x Is ~c. )
by LK) Shbe o Tk kL2
. " I‘ )
fi.\kl\(k_]
b, S(k-Ui(x Is ¢, .)
b e 2t KK 13

((kuX )

k-1

] 12((,\

K °k

C

2.1

{5 3¢)

(5 37)

(5.38)

(5, 39)




b

- r—

4

[b, (k-1) + b (k-lJ(‘w")
e (R e 2 O R e 230 2 (5 41)

2,0

Lbz 0(k-l) ’ b2 .(x-lﬂ 19”'\k sk ('2 1)

- 2 . %
1)2.1“() R (5.42)
k-l
b, (k-D{x Is ¢, o)
p 2
b, s 2l KK 2 5 43)
{l\k Xk_l'
b, Jk-D(x, s, ¢, .}
b, olk) e —2e k k2, (5 44)
2.3 fix, 1 X0 )
k k-1
Classitication - Component Ideatification
1
QLIRS , - . { q
pk(( SN) 01.0”0 bl,ll‘k bl_'2(k) bl‘li(k) 5 45
p (C2 SN) b (k) + b (k) « b (ki + b (k) (5 46)
k ) 2.0 2.1 2,2 2.3

Each term 1o the sum of Eq. 5. 36 and cach numerator on Egqs 5 37 through 5 44 s
Jie product of three basie factors One foctor i~ a probability or combination of probabilitres
of the b‘ J(k- 1) type. These probabihities cont e all past mnformation relevant to the optimum
detection.  The second factor 1+ a probatality assocrated with the penerator process which is

S, e 1-r 0 or ] The thrd tactor s a hikehhood ra r i{ S . This
ity 1 o ¢ ) itkelhthood ratio term, (\k "k (l.}) I'his

15 the tactor which extracts the proper new informdation from the umt observation, x In

k

addition, a noermahizing factor, (o, X

K 'k-l}' appedars in the denominator of kqs. 5. 37 through

5. 44, In Fiy 5.2, the scequentias quantities that are calculated are represented on a time axis

Tre bl Lk-1) terms redate to the time Just pitor to che kth observation. The probability
)

assoctated aath the generator process 1s combined with the bi J(k) terms to obtain an

4 priort probability about what will voccur during the observation X These are combined

with a ((xk sk (‘l' J) term to get {(Xk) and a new set of bi.J(k) terms
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1 (3
(X, ) (X,)
(k)

I,

! A 1 1 _
T ¥ 1 1
N X X
k-1 k Kol
e
Fig. 5. 2. Sequential quantities, Sporadic-Poisson receiver, Realization L

In Fig 5 3 a state diagram is showi, for our illustrative example. Using this figure
as a reminder of the various possible component positions let us interpret each term in the

sum of Eq. 5 36 The term l)l O(k~ IFE bl 3(k-l) 15 the probability after k-1 observations

Fig. 5. 3. Sporadic-Poisson process, illustrative example.
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.
that component C° has been selected but is cither off, ¢ or at its last component sample,

1,0

¢y g attme lk-l This 1s multiplied by the probabntity, -4 x that the component will not

. N -
start at time tunder the conditcon component Co has been selected  This s then multrghed

3

1
by the hkelibood ratio of the kth observation it the component €7 had been selected but s oft

at time (k' This liketibood ratio has the value one

The interpretation of the second term an the sum of g 5 36 1s that

[hl U(k- | AP 2N (. l_\]- 1< the neabahilite 9ftor -1 ohaservatvana that component (] has been
. & ~ J Y

selected and will start at time lk' This probability as multiplied by the hkelihood ratio of the

1
kth observation if the first sample of the component C 0 which s ‘Y 1S present at time lk
In the third term of kg 5. 36, l)l lik- bas the probability after k-1 observations
N
that the first sample of component €0 denoted by Cp o was present at ime o1 Also

1
hdden s a factor of one which 1s the probabnlhity that the second sample of component €,

. . . N
¢ Loceurs at time o if the first sample of component € ¢ 0 occurred at e t

1.2 k 1 K-1

This is then multiplied by the likelihood ratio f(\k S0 5). Ol the observation, Xy This 1s

.
the likelihood ratio of Sy had the second sample, ¢ . of component C occurred at time t

I 1.2 k

The interpretation of the fourth term of kg, 5 36 s analagous to that of the thied
term.  The tifth through erghth terms refer to component C70 and therr interpretation s

analagous to that of the first four terms  The reader will notice that terms of kg 5 36

appear individually 1 the numerators of Fqgs. 5037 throagh 5. 44 The denompator, fix X

k k-1

+

1s a4 normalizing factor  All cight probabrhtics & Jlk) could be displayed as a classitication

output, but 1t is more hkely that the only wnformation wanted s which of the two components
1s presented. The component wdentithiecation output, which can be displayed s given by
Egs. 5 45 and 5 46 o Table 5 2

In Fig. 5.4 a block diagran: of Reabzation s shown for the gencral case. This
recetver operdates sequent.aliy an ttime, extractuing and updating information after each

sample of the observation, x Two outputs are provided sequentielly in time. One is the

K
logarithm of the likelihood ratio from time zero to time (k' which s (A;((Xk“. the detection

output.  This output is used to decide presence or absence of « recurrence phenomenon in the
interval (0.t

). The otier output is the classidfication output, p (C' SN). This output provides

Kk k

information, in the form of updatea probabilities, as to which component has been recurrent

from time zero to time [K
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The summer stores a number which represents the logartthm of the hkehthood ratio

of the observation Xk When the next observation, X 15 made, the possible component

1

aveform samples, ¢ y stored in fixed memory dare used to form the hkelthood ratio ot the
| 3

kth observation for each of the possible components and component positicns  These individual
likehthood ratios are weighted by the updated probabilities of the various components v
component positions which are stered in the temporary memory and which are the result of

combining ymtial knowledge and information from the observation, X This werghting s

k-1

performed in the box labeled :'l.(.\k Xk- l). The output of this box s added to {n((Xk_ 1)‘

which is alveady in the summer to form !n((Xk), the detection output cer (0, IP‘A This output

1s compared with a threshold to provide a yes-no decision

Simultaneously, information irom the observation, x . as provided at the output of

k

the average hkelthood ratio box is combined with classification information from the observa-

tions, xk-l' 1 the probabtlity updater. The probabihity updater performs the operations

specified by Egs. 532 throush 5 39 The updated probabilities, b j(k). repiace hl Jlr(-l)
1 .

10 the temporary memory, and the recewver 1s ready to accept the kel observation. A
classitfhivation output could be taken dircctly from the temporary memory It e wore hikely
1

that a display of the updated probabihties, po(C

K SN kg 5 3500 Table 5 1, 1s wanted and

th.s can be obtatned by summiny h, j"k? aver ali)

5.1.3 Other Receiver Realizations and the Use of Memory, In Section 50101, a
cealization of the optimum receiver for a4 sporadic-recurrent component ts presented
Although the recoenver realization discussed here was obtarned by tormai manmpulations ot a
hkelthood ratio equation, ats nature s antuibively sacstving. It uses cach observation, N
to learn” as tauch as possible which component s prosent This information s store § o
the form of the hl Jik; matrix 1 the temporary menory  This knowledpe 1s Kept current by
combining knowledpe of the generdator process, the information contained n all previous
observations, and wformaticn obtarned 1o the kth obsorvation  As time progresses, ths

recerver Cadapts T to the particular component waveshape that s recurrent, and it “adapts ™

lecally to position withir o component
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[n this realization hl J(k 1) must be kept up to date as vach observation is taken

Ihese probabuiities express up-to-date knowledge on which component 1s present as well as
component posttronal inforewation. Although the receiver takes into account all the possible

time patterns of components, 1is memory need not store all of these patterns Keahization |
b
has o temporary memory whichas continually apdated and which has a fiite size of - n

words  This finite memory 1s a primary practical feature of this realization.

Realizatton s not umigue. In Appendix A, three other reanzations of the optimum
receiver are presented  Reahzation 1T (see Appendix A 1 as similar to Realization T except
for the fact tLat intormation about component identification and component position are

updated separately,  Therefore, Realization I requires a finite-size temporary memory of

b
roowords Lor component posttional information and b words for component identifcation
!

il
ndormation

Another recerver realization s Realizatior HI (see Appendix A 2). This s a
recerver which his a chancel tor each of the b possible components.  Each channel calculates
the hikeithood ratio of the observation conditional to presence of the ith component and the
channel outputs are then werghted by the a priore probabilities, ;)“(Ci‘SA\'), of the selection

ot cach of the components, and thaen summed  This recerver looks “less adaptive™ since
b
A g
P, (C7 SN) s not exphatly updated at each step i time n, words of temporzry memory
) )
(I

dare needed to store component ddentification information and posttronal information and b

" .1
words to store H)\k C') terms.

Antmportant practical reashzation s Realization IV (see Appendix AL 3). Tt is a
b-channel recerver that appears to require the least number of computations of the four
realization presented. The basice design equations are summar.zed 1n Table 5 3 and a
Dlock diagram s shown 1o Figo 5.5 By comparing Table 5 3 with Table 5 1| one can see
the simplification i computations of Realhization IV In this realization a quantity
Ql I(kl (X )bl (k). instead of b‘ ](k). 15 stored in temporary memory for each possible

i )
. ) b
component and component position. A hinitesize memory os n words is needed to store

to 1
the Ql J(k) terms  The updating equations for the Q, J(k) terms are, however, s:mpler than
i

’ .

those required for the b, ](k) terms i Realization 1. Morcover, in Realization IV, the

likelthood ratio 1s caiculated by sumple addition of the Ql J(k) terms and the classification

output is obtained almost as simply
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TABLE 53

BASIC RECEIVER DESIGN EQUATIONS, SPORADRIC - POISSON TIME STRUCTURE
REALIZATION TV

Optimum Detection Output
(X Y QK (A 39

P 1 5 0 ATNReD
Information Updating

i : (k- (1= & A 35
Q K [()L“k 1 Qll'lk 1] e A 35

] ¢ (k-1) « C (k- T s : (A 36
Ql.l(k) {)lok ) )l,lnlk 1] l \k sk(l,l '

Q (kI Q (k-1it(xn, s ¢

1.) 1.)-1 Kk 1y
A 37
r 2.4 n
tor ) ) :
Ql‘assiﬁ('.lllun - (‘umpulu'nl Identiircation and Position
W (k)
b (k) o A 45
1) { .\k
Classification - Component Identifreation
l1
L Q) K
: | 0 1.
p (L' SN) bk ! A 46)
0 o (X
! k

o)

Figures 5 6 and 5 7 show o more detaled block diapram of Realization TV for signals
1 added white Gaussian notse. Figure 5 6 shows one channel of the fivst portion of the

I - .
Jp € SN). kach channels only “looks™ for the ith comparent,

receiver which computes (X K

Kk

taking into account all possible time patterns of that component. Figure 5.7 shows how each
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ot these channel outputs are combined to form the detection and classiicetion outputs.  This
realization uses the logarithm of kgs. A 35 through A 37, New information obtained in the

untt observation, x, ., 1s combined with information obtained from previous observations in the

k

sertes of adders shown te the left of the = delays where " is the smallest possible time

1

shift ona component  The unit observation, x, . is first processed to determine how likely

K

1t arose from the various possible positions of the tth component.  This processing consists

ol correlating Xy with cach of the possible positions that a component could be in and adding
2

bias terms, (mi - ('l ) 2. These ouputs are then applied to a series of adders, each

delay.  The outputs of these adders are the togarithms of the Q. (k) terms

separated by a ¢
) 1 1)

which contern all the information about the hkelihood of the jth position of the ith component
berng present durtng the kth observation.  These terms are summed over ) giving the likeithood
that the tth componen: has been recurrent. As one can see from Eq A 37, the Q. J_(k) term

i

15 obtained at tine lK and it s calculated from a similar quantity, Qi J(k-l), at time lk i
I'he | delays provide the memory delay for this computation  The “oop’ on the far left in
Fig 5 6 calcuiates ()l U‘k) . (JI ; (K along with ity logarithim which is used to make the

' "

compu tations specified by Egs. A 35 and AL 36

- A 1o . .
I'he outpat, UXk C ‘pk(( SN). becomes one of the inputs to the remainder of the

[

recetver shownan Figo 5 7 The detection ouiput, rn{(Xk), 1s obtained by summing the
terme, ((Xk (.'i)pk‘(,'l SN) of the b channels  The classification outputs are obtained by
taking logartthms of (()\'k Ll'.pk((.‘l SN} for each channel and sudbtracting the logarithm of the
detection output, (n({Xk’
Fipure 5 8 shows another version of one of the input channels, which could be used
i place of the realization shown tn Fig 5 6. It is quite similar except it implements
Lgs AC35 through A 37 directly, rathor than the logarithm of these equations.  Ar 3 result
some of the adders must be replaced by multiphier s
The tmportant feature in commaon to all tour realizations is the fact that the size
of the temporary memory remaios fixed and “slides™ in time.  This is of practical importance
not only for receiver design Lut also for recerver evaluation, A nonsequential reatization
would have requitod a growing memory  Such a realization {s impractical to buud. A
receiver must be designed before it can be evaluated, the sequential or adaptive realizations

rcovide stmpler expressions to work with,
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5.2 Optimum Adaptive Recewver Desipgn, Synchronous-Posson Tome Structure

in this section an adaptive reahization of the optimum recenver as presented for
detecting signals with a Synchronous-Poisson Time Structure. This time structure provides
tteresting cases 1o that the amount of time uncertamty s between the pervadie and sporadie
trme processes.  The uncertanty s in the exact component wavelorm transmitted and e the
component recurrence times assoctited with the Synchranous-Porsson Time Strueture One
of the b components s selected for transmssion and the same component recurs threughout
a total observation, Xk. Primarily for convemance and simpheity, 1t s assumed that all
components 1n the funite ensemble are of common duration and the possible startiog nes of
4 component are known

Due to the synchronous ndature of the time structure, there 1s no positional uncertainty
of components  Theretore, the component samples can be combined tnto one state Thus
(.’l' 0 “l,()' ool 0‘ represents absence and ('l' | ’('l L2 i brepresents

i

presence of the ith component The probabihy v of trgpering a comporent  conditional 1o
selection of the aith companent s O The state dragram tor the ith ¢component has been shown
i g 405

The basie steps e devetopment of the Fecenver reahizatron for detecting signals
with the Svinchrorous - Porsson Time Structure bepgan with steps 1-30 piven on page 350 Inths

section the properties of the syenal for the Synchronous Porsson Time structure are combined

with Fgs 3 5. 3 22 and 3 23 to obtain the adaptive recenver

5 2.1  Svnehronous-Poisson Tume Structure, Realization T I the Synchronous -

Porsson case, component position s known exactiy. but whether a4 component 18 present or
notas uncertarn. Therciore the recerver can operate sequentially i time blocks equal toa

component durationn o this section x> an lll-(ilnl(‘l‘.hlnll.ll observatios having the duration

k
of a4 component and Sk 15 dn |~l-d1mm stonal sepment of the signal, s Sl 52_ Sk' whiclhins
erther the tth recarrence phenomenon with the component on € g the ath recurrence
1.

phenomenon with the component off . ¢ With this change i the notation. the sequentyal
1

0

averape hkelthood ratio analagous to Eq. 5.2 1s

(a, X, 0 fix, S)p, (s SNI (5.47)
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The signal ensemble space. S, can be partitioned into b disjoint subspaces, Sl. Each Si

subspace contarns all those sygnals that maght result from the ith component alone. This 1s

il
a4 result of the restrrcthion that a given component, C s selected and fixed at the beginning

of vach ong transmission. Thus kg 5 47 can be written as

. ’ .
f(x, X ( s s O8N TSN { )
x, X, ) A s)pk_l(s ‘b\)')k-l(c SN) 5. 48)

Eaxpanding the vector, s anto sample form. Eq 5 48 becomes

‘ ¢
] Ll (1 1
b
. SN : © Lo .
b J o ({; S,.....8 )
AL = & Ll % RER k
‘ L1072 007k 10
| : 1|
5L S > 07 SN) (C° SN
pk_l(bl,bz, . ,b,{‘ .S pk-l\( SN) (5 49)
Since s 1s the recerver inputaf there were no noise,
5 q « &
{(.\k 51_52. . _Sk) {"\k bk) (5. 50)

Due to the radependence of the signal recurrence (see page 300 we write

. & S e 3 . A e W -
[T PR S, C.SN) |)k_l(51.b,2, "bk-l C _bf\)pk_l(bk C",8N) {5 51)

Substitution of kgs 550 and 5. 51 into Eq. 5. 49 results in

) S T I
\ [ o ~0 ,N
r(\k Xk-l‘ s 6 ¢ ; r(xk Sk)pk 1‘51,52 ..... bk-l C . SN)
: 1 71,072 "0k 1.0
(5.52)
3 S v S[rpu ey
pk-l(bk C _b.\)pk_l((, ISN)

Since we are dealing with finite sums, the order of summation can be interchanged. Re-

ordering the summations and factoring, Eq. 5.52 can be put in the form



! S . !
s fix, S (8 N
{(\k xk-l) Py SN ‘ (\k P15k S
[ bk ( 0
SN
C (
(l 1 (I 1o}
. A
S| P C7, 8N S
s ¢ s ¢ s e Pea®erte S 58 A
I 71,072 710 Tk-1 10 j
where the term an brackets is equdal to one. Therefore
b i |
fixn, X (COSN) s, s € S TSN
(\k \k-l) i l)k-l( > )[ *k k 1.()“)3(4{ k (1_() & skl
. . A
. 0 5 C W (7. SN 0.
(n bk L\_l"k-lﬁk Ll.l ,b] 5. 54

By defisition of the signal penerator process considered here, (hgs, 4.7 and 4. 81,
Pk-l‘sk (:l,() oSN lwl and ;'k-l‘sk (:".. | (‘l_S.‘. | Alsofor zero energy stenals n

. . . ]
added norse, ((xk.b ( J) 1. We can then put Ego 5054 1 ats fined torm.,

It s also necessary to obtamn equations that update which component vs berng

transmntted. The updating equation s

(3.23)

Ustny the definttion of conditional probabilities, this equation can be written as

1 s
Aun expression simtlar to kg. 555 with b T v which case pk_l(t SN} 1arose from a

Synchronous-Potsson trigger process 1in the paper, A Sequential Test for Radar Detection

of Multiple Tarpets "W, B, Kendall and 1. S, Reed, IRE Trans. on Informaticin Theory,
Vol. IT-9, January, 1963,
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.1 1
b S EN) ) SN
sip, (s C, \,pk_l((. S»)

M{x k-1

g E (5. 56)

e (:‘,s.\')pk<c'| SN

Writing s o sample torm and summing both sides of Eqg. 5. 56 over all possible signals for

the ith component gives

( .
”(I 1 1] (l 1
o0 g . !
p e SNy PSS, S, C . SN)
. hRNCI SR s WG by 12 5
1 5072 ok o
¢ . . ¢
o, 1 (1,1 (1 1 1.1
v~ op, 1S, ChUSN) ' ) ph (508 s 1Ct, s
- kok k-1 7k s ¢ soc s, e Pertie kol
" LN k 1,0 1 1,0 2 4,0 k-l 1,0 - o
5o (s, % )
kK k-l
{5.57)

The bracketed terms on cach side of kg 557 are equal to one so that we have

S s . 1o S-S 1

(x, § C  p,_ IS +C _JC' SN}« Hx 48 =C p_ (S C c‘s.\'ﬂ

(s “k.ll(“l o~ [ K 'k 1,0"k-1""k 71,0 7 Sk kL PPk o
{(x, X )

Py
k k-1
(5. 58)

. x'l((.\ S =1C l).

. as before, 1-1l fas T

The terms 1 brackets o the numerator of kg, 5. 58 become
Phe updatiag vquation for component information 1s

I-y « Mx IS 1C Jp (C' sN)
(G [—-‘ Lk kL] ked P (5. 59)

l’l
((.\k '\k-l)

Fquations 5,55 and 5. 59 are the basic equations for the adaptive realization,  Definming the

componert condittonal sequential hkelthood ratio as

{5. 60)
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e canoput bgo 5 585 o the torm:

b
1 .1
f X < oSN f X ¢ (5.61)
STkl e A
wod By 5 9% ca be put i the Lorm
. , !
P, ( SN X ) (
p(lS\ o 3= y 62
k ( A% \ i
k koI
The Dasic receiver desipr cquations for this realizabvon ate summarized v Table 504
TABLE 5 4

BASIC RECHIVER DESIGN FQUATIONS SYNCHROLOUS- POISSON TIME STRUC TURE
CCOMMON COMPONENT DURATTION
REATIZATION

Uptimum Detedtio Outpult

s
e
-

s
8
x

b
; o » R
{ ] i SNl p 561
( M \k~l 1 pk_l( N \k-l C 561
Component Conditional Sequential ke lrthood Ratie

1
{ X O = e (I, S U y (5 6f
(\k k-1 ) l\ 1 \k S| 6ol

SN e 1
¥ (C 8NN, X L Ch
pk(c‘ O M S e =L : (5.62)
f(x. X )

k k-1
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|

.2.% Operatton of the Adaptive Recewer, Figure 5.9 s a block diagram of

Realization T for components inadded white Gausstan notse. T this case

{ ¢ 0]
el T T
kool 2 |
(ixn, S C b ¢ 15 63
“h kot ’
where Noothe nowse power an the reconver bandwadth, s anes The recerver nput, Do IR
correlated with cach possible component that could occur, and the bias ( 0 ('l | &
subtracted. These outputs arce then passed through a nonlinearity,
( C
( r\ ¢ i o 11
l Lk 1. 1 2 )
firifx, X O A L (5. 54
kK k-1 ) 1 a I ’
|

This nonhinedarity depends on the trigper probability, g which s also the duty Lactor i the
Synchronous - Porsson Tome Structure. This nonhinearity s cailed the o nonhincarnity 7 Orne
could wrete ths equation o waords as (v X bootl- 0 thikelthood ratio ol X0 piven the
k k-l 1 k
sclection of the ath component but no component occurrencer < thkelthood rateo ol e
|

pive  the sclection of the ith component and component occurrencel  Thus, the ftke hibood
ratio ol the observation Moot computed as 1t a component occurred and thiis s watered

down  becduse of the recurrence uncertarnty Figure 5 10 shows a plot of the © nonlinearyty

for severdl vatues of

The outputs of these nonhinearities f-‘.\k Xk . CY e then we 1ehted by updated
Know ey Py 13('1 SNI U as tawhich component os berng sent Ihis torms the sequential
averaye Lkel hood ratio) (".\k xk-l Swhichas combioe Uwath ((Xk_l.’ to provide the detection

output f(Xk'.

a NI
The recerver also updates pk_lt(, SNIL the companentinformation, to pk(( LS\ and

stores theso upddated probabilities o preparation for the next obscivation,  These probabihities

can be read out to form a classification output,

5 2 3 Other Recetver Bealizations and the Use of Memory I Section 5 2 10 4
reabization of the optumum recenver for a synchronous-recurrent component 1s presented

Realization T has a temporary memory which s continually updated and which has a finite

L.
"
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size of b words.  Although the recerver takes vto account all the possible time patterns of

components, tts memory need oot store all of these patteras This fumte memory as

provary practical teature of this reahzation.

Two other redlizations of the optimum recenver are derived v Appendiy 13

Realization 1 (see Appondin B Droas a b-channel recenver. The hikehhood ratio ol the

observation Xk condittonal to presence of each of the b components 1s computed sequentially

ol
i separate chaannels and the outputs are werghted by the a priorr probabihities, o 0 C0 SNy
i)

ol the selection ol cach of the components and then summed. o this recorver b words of

. ‘ 1
memory are needed Uoostore the Tikehhood rateos, '\k C

Reahization IV s animportant practical recemver since 1 appears to be the simplest

(see Appendia B 2) Ihe basie design equations are summarized o Table 5 5 and a block

dragram s shown o g oo 11 Fhis is a b-channel recenver Phe tth channel correlatos

TABLE 5.5

BASIC RECEIVER DESIGN FQUATIONS, SYNCHRONOUS-POISSON TIME STRUCTURE
REALIZATION IV

Optimem Detoction Qutput

b
(X QI 119
K )1 K
v |
tetormation l'i)d.lllag
[ 7 |
ik Qitk-1 j1-0 - St : V1T
)l )1 ‘ ! 1 \k Kool y
-
Classthoatyon Component ldentibicatyo
(.,)l<k:
S
(¢ SN - 2
l)k {)\k B 20

N -
the tput with the ith comporent and subtracts o bias term C-C 20 This quantity as then

fed into a o nonlinearity to torm Ql(ki. The (..)l(k' terms are stored and accumulated tor ecach

ol the components by means of the channel adders and the Tl delavs  Theso terms art

exponentiated, summed  ood the Togarithm tormed to o o the detection output I'ne
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classification output is obtamed by subtracting fn((,\'k) from the cutput of cach of the rear
culating delayvs, By compartag Table 505 wath Tabl 5 4 one can see the stmphibication
computation of Reanzation IV In this realization b words of meniory are required to stors

Q‘(k) (X p (Ch SNy temporary memory.

k' Py

The receivers presented i Section 5 2 are ditterent realizations of the optimurn
recerver. The particular realization of the optimum recerver Chosen determires whethes
the recerver "looks™ adaptive Realization T has an adaptive feature 1o that component
information s updated. On the other hand Reabizations T and TV have a sepatate channel
tor each passible component o od the Tearnoe of which component s being sent s aot an
obvious leature,

A problom o recarvor desten that has cine reed whensdealing with time uncertainty
and nonpertodic componcnts s the problem of 1 occiver complexity or memory  Sinee itoas
uncertatn whether a component will stert or not the recenver destigner s presonted with an
exponentially vrowang number G i patterns or o cenals, Lo the Svnchronous - Porsson Thine
Stiucture, e ensemble of possible stpnals prows Jike l)L’k where KXas the andex on time and
bos the sumber o compoents oo the comprae et cosemble, The rmphemies tation on somulaton
of such 4 recorver despned o the bases W this e s cosomble e raprdly bocome mmptae -
teal, O the otner hand, the adaptive a0 soquentiad realizations prosorced have b desod
by desc b userul signal cosombles oo ety n terms o connpote s The Tesult s a
recenver destpn which utthizes a fived siee memorny Fhe tmiportant reason lor wantnn
sequential or adaptive realizations s not therr adaptve-looking natare, but the fact that this

i~ d way of realizing the optinium recerver with a fined s17¢ menmory.,

5 3 Optimum Adaptive Recenver Design, Pervodie Tome Structure, Unkoows Hepetition
Frequency.

In this section an adaptive realization of the optimum recenver s presented tor
detecting signals with o« Pertodie Time Structure, This is the most certarn of the three time
structures constdered and it differs from the sporadhe and synchronous cases 1 that 1t is

learnable. One of b comp nenis s selected for transmis . onoand toe same component recurs

periodically thr ughout a total observation, X, The repetition frequency and start of the
JE LY (S e SR (ool WAL I

pertod are matiatiy unknown but fixed throughout a transmission.
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The development of the recerver i this soction s stmidar to the development of
the reconver desiged for the Sporadie- Porsson Time Structure (see Section 5. 1), The
nrst three steps are given on page 35 T this section the properties of the signal for the
Pervodic Tune Structure are combared with Fags 3 80 3,22 and 3 23 1o obtain the adaptive

receivet

5 3.1 Permodic Time Structure, Unknown Repetitien: Frequency, Reahzation T This
reahization tollows the development of the recerver tor the Sporadic-Porsson Time Structure

prver an Section 5 1 Tupto Fa 5 120 That cquation for the sequential iverage likelrhood

Fatio was

« ¢
b ‘ l1 l 1
(i X 1 S ) AUCTE. SN ) SN) (5 12)
L) | ( S S SR 7
% Y0 k-1 1.0
Recall that the sipgnal properties are defined 1o terms of the generator process, g'sk sk_l,S.‘\').
by bgs. 4.9, 4010, ca 4, 1L The possible stat s of a signal sample, Hk' are the possible
component samples, (‘l ¥ for 1,2, . band) P2 . The number of samples, ”i'

of a4 comporent can o general be variable so that b possible components can be defined to

represent b possible renetitton frequencies ¢ o 1" not an alfowed state 1in the periodic case
1

Since some portion ol ¢ component 1s alwavs present I oae development in Section § 11

up through Fq 5 12 0s modifired for the periodic case by summing over the allewed states,

© ¢ it C oAb andiagous equation becomes
o2 Lo
¢ (‘1 I
.l) | |l1 L
fit) ( 18 . SN ( SN (5. 6F
[R5 e e L S S TR G
Pk Y k-1

1 N 3 5

RS Sy SNy 1 fon Sy (:.J i1 (l' 1 for j 2,3, oy
14.9)

s, .8 >N S 5 10}

L'sk ﬁk-l's yo 1 for S, Cl,l Sl (\‘”i (4

S 3 SN Sy Je ]

;,(sk hk-l's )0 otherwise 4 11




Using these properties and the notation of Fq. 5. 16, b

{ k) (‘ N S\ f VoCdn oy .
l‘Jk, L NCLY (1.) ), one can wrile
g, 5 65 as
! 8
b ol
( X ) i (k-Difix s ¢ ). -t : 36
\k k-1 - )I.I‘.l K \k sk (l,l = hl,J-l k-1 \k Sk ll.J 5 66

This 1s the equation for the sequential average kehhood ratio
The equations that update component wdentification and pasttiong information are

obtarned by following steps stmilar to those that Tead to kgs. 5 32, 5 23 and 5 34 for the

Sporadic-Potsson Time Structure  Inthe pertodic case the sums are only over the states

‘1, T - Thus Fq. 5 28 becomes

LN SN k-1 1.l 5 67

Substituting the properties of the penerator process “bgs 4 9,4 100 and 4 10 anto kg 5 67

and using the notation b K PGS ! SNI, ane canowrite the component updating
i, .
equations as
t = ] L
0 K { "k (‘.1
bk ‘ 5 6H
1 :
' X )
K k-1
b (k-Dix, s«
b J‘k) L] k_ K iy 5 691
1
' fix, X
k = ||
k for ) 2.3 n
where component wdentification information 1s obtained by forming
m
1 1
p, CSN) b ki (5 70
K )1 1)

I'he desipgn equations for this realization are summarized 1o Table 5.6



TABLE 5.6

BASIC RECEIVER DESIGN EQUATIONS, PERIODIC TIME STRUUTURE
UNENOWN REPETITION FREQUENCY
REALIZATION |

Optimum Detection Cutput

(X ) (X Jix, X ) 3

1 k-1 k “k-1 o

S.('ghl'lllldl f\\!‘l‘:l};t’ [aikelhthood R.mg

i
b 1
f : (k-1)101x S - . (K- X o . ( 26
M (k-l) l)l‘” k-1 Ny Sy (1,1) bi‘J-l k l)((\k Sk (l.J) 5 €6
Ll 1 =2
Classification - Component Identification and Position
1V w 2
b| x k-1 \.\k bk (1_1
btk — : (5 68)
. ( .
1 \l\ )\k_li
b (k-1 X, s, ¢ )
b, K el b Sl (5. 69)
((\k Xk-l’
for ) 23, n,
('l;tsmhc;ﬂﬁnn - ('muponvnl idmmm-_.‘}l_nln
n
i i
p (C° SN) ' b (k) 5.70)
K = ife)

5.3.2 Operation of the Adaptive Recerver. In Realization I, the Periodic Time
Structure, the optimum recerver stores information obtained from the past observations, Xk-l
i Jfk-l) (see Table 5. €).

»

and initral knowledge of the situation, 1 the form of probabilities, b

Since the interpretation of the terms bi J(k-l) and l(xk $1.°¢ J.) is similar to that given for

the Sporadic-Poisson Time Structure in Section 5. 1.2 it will not be repeated. Note that in the




periodic recerver there 1s no state, ¢ This 1s reflected 1o the absence of hl ”’k-ll‘ 1-

1,0
and b terms in the recerver operdations

5.3.3 Other Recenver Realizations and the Use of Memory o Realization 1 comi-
ponent identification and posthional information are stored 1o o tempordary memory as the
probabilities b lik-l‘x‘ These probabilittes are updated after each unit obseryvation, Xy

V- 1
b !
noowords of memory are needed to store these probabilities
{ )

In Appendix C, three other realizations of the optimum recener ace presented  In

Realization I tAppendix C. 1 compoaent identification and positional intormation are
b
updated separately. " words are required mnoa tenmporary memaory to store component
1

positional information and b words to store component identification information

In Realization 1 there s a channel for cach of the b possible components  Each
channel computes the Iikehnood ratio condittonal to presence of the ith component and the
ciannel outputs are then weghted by the a prior prebabilities of cach of the possibh

b
components that ceuld occur. ! words are needed to store component wdentification and
1l l

posttional information and b words 1o store the {le'(' terms.

Realization IV tAppendin €31 15 the sumplest of the foar realizations.  These recenver

design equations are summaritzed o Table 5 7 and a block diagram s shown in Fig. 5 12
TABLE S5 7
BASIC RECEIVER DESIGN EQUATIONS, PERIODIC TIME STRUCTURE
UNKNOWN REPETITION FREQUENTY

REALIZATION IV

Optimum Detection Output

b 1
(X)) l (C 13)
{ ,\k (,)l' d
[EN B
Information Updating
S JI's ¢ con
Qi,l(k) Qi.n_(k D x, Sy (l.l)
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WO kQ ik-11C1x, 5 ¢

1) )= k ko) QI P
{or ARy
(31 ] ll
Classitication - Component Iden fication and Positiorn
W
bk -3t A 44
e d (0¥
Classification - Component Tdentification
5
W 'k
R
prctsw L (A 45)
K (1X, )
K

Here the recenver updates the quantities (‘)1 th (-‘.‘(k)l)l J’k directly csing Fgs C 11 and
C. 12 From the Q J‘k? terms the hikelthood ratio can be caleutate d by simple addition
1,

nowords are required to store the ()l (K terms Just as 1o Realizatton T However, by
ot ol &
comparing Tables 5.0 and 5.7, 1t can be seen that the operations performed by Realization TV
are much siumpler

Inall four recerver realizations for the Pertodic Time Structure, the receiver

memory s tunte, This result s not surprising here stnee this signal ensemble does not

grow with time.

5.4 Optimum Adaptive Recever Desyn, Perodic Time Structure, Koown Repetitien Frequency
In this section an adaptive reahizetion of the optimum receiver s presented tor
detecting stgnals with a Periodie Time Structure v which the repetition frequency and the start
ol the pertod are known,  This as the usudal ciassical pertodie case, One of b components s
selected for transinission and the same component recurs pedtodically throughout a total
nbservation, Xk. In this case the observations can be processed i blocks of time equal to

G4 component auration.  The notatton used is the same as that used in the Synchronous -

Potsson Time Structure.  In other words, X 18 an nl-dinu-nsn.:m] observation having the



duration ¢! a compuonent and S 15 an nl-dlnu-nmnn.ll segment ar the sipnal. The optimum

Kk

recenver is the same as that which would result (f poweie set equal to onen kg BO1T,

Table 5 5. The equations tor the recerver design are presented in Table 5 8.

TABLE 5 8
BASIC RECEIVER DESIGN EQUATIONS, PERIODIC TINE STRUCTURE
KNOWN REPETITON FREQUENCY ., KNOWN START OF PERIOD

REALIZATION 1V

Optrmum Detection Output

b
(X ) Q (k) B 14)
K 1
(I
Information Updating
, 3 N
W (k) Qtk-1)1(x, S 9.7
)l k) .)l k-1 (x5 ) (
Classification - Component Identification
I Ql{k.
(GlasN) (1. 20)
[ (X)) LIRAT

et us constder this recenver in more detay] for the case of added white Gaussian

ninse. Inthat case, for the notse power, N equal to one,

(5.72)

and so

[ i ot ]
x €=
QK Q k-1 e : (5.73)

But by repeated apphication of Eq. 5,73, Qi(k) can be written as
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From this equation one can sce that the observations themselves can first be added 1o
synchronous imtervals and this sum correlated waith cach ot the possible compor ents
When the component s known exactly, o monotone tunction of the hkelithood ratio,

which is also optintum, 1s simiply

el

.
<
~
e

n
fog’

In this case, the observations themselves may be stmply accumulated and the sum correlaten

N
with the known component, €

5.5 Comparison of Recervers for Synchronous-Poissaon and Pertodie Time Structures

Itis interesting to compare the optimum reconvers for the Svonchrosous - Porssos
and Pertodic Time Structures when the repetition frequency s knowsn First, consader the
casc of companent known exactly CCKE o added white Gaussian nonse A block diagram
of the optimum recerver for the Periodie Time Stracture, obtarned by setting b4 the
equations of Table 5 8, 1s showe o Figo 5 130 A realization of the optimum recenver for
the Synchronous-Poisson ime Structure, obtamed by setting b1 Table 5§ 5, 18 shows
in Fig. 5 13bL

In the periodie case, the adder and T delay recirculate the wput waveshapes,

1

SN Recall that in this pertodic case, N represo ts an input observation of 2\‘»"1"1

K
samples.  After the observation Ny the recerver has formed XpeXgeoo Xy and this average
waveshape 1s correlated wath the component.

The optimum recerver {(see Figo 513 b1 for the Synchronous - Poisson Time Structure

does not simply add the mmput waveshape (n synchronous intervals,  Instead, a more abstract
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quantity, a hikelthood ratio, s recirculated. The observation, ‘\k is first correlated with the
Keown compo oot waveshape, a bias termoas subtracted, and thes quaniity 15 then fed into g

nonhnearvts - which s a function of the duty factor,  The synchionous sum of such non-
Linear funictions of the vuput signal and nonse waveshapes are stored

Next, let us compare the optimum tecevers for the Syichronous-Poisson aad Perodie

Time Structures when the comporect s known statistically (CKS: A block diagram of the
recenver for the Pertodie Tune Structure was shown in Fig.o 5 12 and the receiver for the
Syrchronous - Porsson Time Structure was shown i Fig 5 1L The recerver for the periodically
recurrest component s stmpler mnotwo respects, the number of reairculating delays and the
novlinearities. o the pertodic case, the observiations are recirculated by means of 4

stnple adder and a T delay. These outputs are fed into b parallel channels where they

1
are corcelated waith cach of the possible components that could occur. exponentiated, and
summed noa final summer o the recerver tor the synchronous case, however, 4 likelihood
ratic, rather than an mput signal plus norse waveshape. s airculated  The imput observiation
1> correlated with each of the possible components, fed tnto a nonlinearity which depends on
the duty factor. . and then stored and recirculated  Those outputs are then summed !

form the detection output Thus  the reconver for the pertodic case s much simples since

the thput waveshape can be recirculated with a sigle adder and delay

[1
l)n'l.l)‘
7
Thpeut ) ' Jetection
N »— (Input)- € —p
K 4 '\\—*__/ S » : Output

Fig 5. 134 Optimum receiver, CKE. Perrodie Time Structure
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Fig 5 13b  Optimum recenes. CKE O Syichroncus-Porss o Time Structure

5.6 Summary of Chapter V

In this chapter optimum receiver deostigns have been developed to detect o recurse ce
phenomenon i notse. The receivers wre time varvig 1o the sense 1t they are capahle of
processing anancreasingly looger observation and are capable of making o corresponding
optimum decision as to presesce or absence of the recurrence phenomenon 1o that observation
There s uncertamty in whie! componest, out of a hinnte class of component .. will be selected
and there s uncertamty i the recarrence times of a componest Three Lasie types of
recurrence-time uncestainty are considered, Sporadie - Parsson, Syicchronous - Porsson and
Pervedie

The approach ased i desygoang the recerver has been to solve an over-altl optimizatio
problem and then tao reahize this optimum recerver tna sequential manner that works on
component basts o other words, since the promary goal s detecting the recerrence
phenomenon during the observation Xk the hikelithood ratio of the observation, .\'k, 1s formed
and put tito an equivalent form i which component information s updated  Since the
recenver development starts with the hkelthood ratio of the observation Xk, s optimum
We are cssured that the operation ol the recernver ona local compaonent basis 1s correct since
the recerver design s a result of transtorming this hkelthood ratio into an equivalent form
A contrasting method of attack would be to formulate the detection problem on the hasis af
detecting @ stngle comporent and to then combine these tesults inoa manner that would result
odan opttmum decision over the enitre observation,

Providing the required amount ol recenver memorv s o« basie difficulty which emerges

10 the design of the optimum recenver for nonperiodic components. There are as many signals

o —_—



10 the stpnal ensemble as there are components in the component ensemble multiphed by the
number of passible component time patterns  This 1s a fixed-size ensemble for all time for
companents recurring with & Pervodie Time Structure . However, for the Sporadic-Poisason
and Synchronous-Porsson Time Structures, the signal ensemble prows with time  1f the
roecenvers are designed using classieal terminology, they become too complex To obtan
recervers with a hixed size memory or recerver structure, the signal ensemble 1s described
odhrectly i terms ot components and the time structure. Other time structeres besides the
thiee constdered could be studied

We have seen how the optimum recetver can be put into different forms Different
aspects of the tecesver operanions dare explicitly displioyved by the particular realization
Choser It s ananteresting sidehght that sequential realizations, such as Reanzations |
and I often appear to work ain an adaptive manner  These reahzations display an explicit
updating of component intormation, piving them o “learning” fegture,  On the other hand, in
Realizations DL and TV, 1t s not so obvious that the receiver 1s learning the component
clected stice the recenver does not explicitly work with component quantities.  In any of
the reabizations, classithication wformation can be obtined 1egardless of whether the recewver
Appedars ta use 1t or not

The quantities stored 1o the recever memory depend on the time structure of the
signdl and the particular realization chosen. For the Sporadic- Poisson Tiume Structure,
component identthication and Tocal component positional information are stored and updated.

b
In Reahrzation T this information s combined an the l)l )'k- mdatrix. n words are
‘ il
required ihoo temporary memory to store this information  In Reahization 11, component

(! SNI and local component positional tnformation, b’ (K),  are storea
b Sl
N Sepdardate tempordary memories, noowords of memory are needed for b’ (k) and b
) (I b b
words tor pk’(" SN terms. In Reahzation i, n worrds of temporary memory are needed
(N .
to store component identification and positional information and b words to store {(XkﬁCl)
b
terms. In Reahzation IV, ‘ words of memory are needed to store Q. (k) terms,
11 i)
For the Synchronous-Posson Time Structure, only component ideatification information

identification, Py

must be stored since there is no uncertanty about component position.  'n Realization [ this
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N B
information 1s stored as pkf( SNI and b words of temporary memory are required Iy
Realizatioes T ond 1V, b branches are necdod tor ecach of the possible compenente,

For the Periodie Time Structure, viknown repetition frequency  component

identification and local positional tformation are stored wa temporary memory 1 ‘
b
Reahzation 1 this tnformation is combined in the b K matoiy and nowords are needed t
1) TR 1
store this information.  In Realization L comporent wdentificatio n and positional information
bh
have bheen separated so that H words are needed to store positional information and b
q b
words forwdentificatton information. In Realization {11 nowords are used to store
!
component iddentthication and posttional information and b words to store ( Xk CY terms
b
In Realication 1V, noowords arc used to stare the (.)‘I CRVterms When the repetition
1 -

frequency s known as well as the start of the pertod, only b words of campeanent identification
information must be stored

The fixed-s17e memory or recerver structure of the adaptive reahizations presented
1 this chapter s tmportant for two reasons First. atas o necessary realization 1o terms
of providhng a practical recenver implementation  The secaond mterest is 1o regard to optimum
recevel performance  Inorder to examane the eftects of time uncertanty o detectabnlity
tor the optamum recerver 1t s hirst necessary to desypn this recenver Fhe adaptine
realization provides a4 recenver that s 0o e manageablos nomany cases and car therdcfore
be evaluated analvtically or by simulation techingues with o digital cormputer I'he much

stpler adaptive realizations enable us t study how time ancertaniy affects che pecformance

of the optimum recenver, This s anarea of study that begins an Chapter VI



CHAPTER VI

GPTIMUM RECEIVER DESIGN - SPECIAL CASES

Lo Chapter Vothe destier of optimum recervers was carried through an rather
vere ral torms Tonthes chapler several misccllanvous cases of recoiver design will be

constdered o The reader whoas interested v recenver pertormance and the effect of time

cettatnty can go to Chapter VIEwithout Toss of continuity

o 1 Fonte Class ot Porrodie Bqual Amplitude Pulses, Koown Exactly Except for Repettion
Frequency.

Constder the problem of optimum detectinn of a periodic pulse sequence when the
pulse waveshape 15 koown exactly but the repetition frequency can be one of a fintte number
4ovalues Ihis class of sipnals can be thought of as a fumte class of periodically recurrent
Componeats whore cach component has b sample values, Raci component 1s then of the
torm & 1.("(*,(), SO whieh the number of component samples s equal to h.

The various possible repetition frequencies are speciboed by stating the class of n values.

Any of the haste tour realizations could of course be constdered, but Reahzation 1V
is the simiplest and we wilb consider ot From Table 5.7 the ratormation updating equations

Al givern by

[ { < (k-1)0(x 3 ' }
)l Jk) Qn.]-lk ) \k sk(L

{C. 12

(8%
[y

for )
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H2
But for sipgnals 1o added white Gaussnuin norse
((\k S 1 toryp 2.3 l b.o.
50 kg, C 12 becomes,
Q (k) (W) Ik-l\ful‘) 2.3 ! 6 2
] 1.)-1 1

The detection output, the hikelthood ratio of the observation X0 1s piver by

which can be written using Eq. Co 1L and 6.2 as

b ”[ —]
(X)) ( b 1 -1y ( (6
\k (\k K )l I k-1 | ')l.J-l k-1 3
1l ! e
Iall pulses are of cqual amphtude “a” then ¢ p tor all vand Eq. 6.3 can be written as
i,
.h 1) “1
(X {(x H C RS o 4 R |
("(k Wk oV )l'l. k-1 ’ )!.,_I(k 1) (6 )
v 1 | INRILER i
But
0
Q (k-1 - Q k-1 bR 5l
)2 1,)-1 Loy

So kg 6.4 can be wrtten

\k) b “w 5 1 IJ‘ ] )",‘IL \ H.f

From Lg 6.8 one can see that the optimum recerver forms the hke ithood ratio of the unt

observation, N piven d pulse s present and subtracts from ths the value one. Thisas
b b b
multiphied by the sum (.?l‘ N (k-1 which s (‘.\'k_ . P 1" C . So (.)1‘ |
11 | ] 1 v !
has the titerprotation of berng the hkehhood ratio of the observation .‘(k 1 times the probabihity
olter taking th (ke List obscrvation that thelk-1 st observiation 1s the last sample value just
ll
prior to g putse occurrence. Bven though f Xk' requires only the sum, Q 1 (k-1),

11 l'll



83

both Comp ot adet cation and pos tional information must be updated to keep the sum

up o dat

6 2 Urkrown Duaty Faet g
The possibnhits b a ¢ omponent recurring with a duty factor which is one of b
possible duty tact s has alvcady been incorporated into the receiver design equations since
L have a ditterent valoe £ cach possible component. For example, 1f the component 1s
hnown oxacthy CCKE G and the e structure 1s Synchronous - Porsson, Realization 1V becomes
asingle crosscorrelator that Correlates the unit obscorvation, X with the component C and

subtracts the bras term C ¢ 2 Thsas then fed into b parallel 1+ nonhnearities and these

outputs arc sumimed  The block diagram of such a realization is shown in Fig, 6. 1.

6.3 Overlappr ¢ Recurret Component Versus Nonoverlapping Recurrent Component,
Example

Ioprevious sections, ail sipnals considered have been assumed to be composed of
nonoverfapping recurrent components., Overlapping component examples can be formulated
o stmilar manner The recerver design, however, rapdly increases in complexity
stnce over lappiiy medns mdany more states are now possibie,

Foallustrate an overlappmnge component case, consider a two-sample sporadically
recurtrent component,  Since there are only two samples to the component, there is only
vie possibe overlap posttion. . This overlap situation s defined as the ('l. , state.  The
state diagram for this case is presented in Fig. 6,20 The updating equations follow the same

gencral patterns as before, The results for Realization IV are

[0 ten . D 5 7
Ql'olk) QLU_k 1) Qi’m( Dyt ;i) (6.7)

¢ } (k-1) + € = {((y s -
)l‘ 1(k Q\.O k-1) )i.2(k 1] H (>K Sy Ci‘ l) (6. 8)
Q‘ k) ("1 k-1 QI ?(k-l) (1-;}\-’(xk:sk.—ci 2) (6. 9)

Q. z(k) [Qi_ 1(k-l) . Qi,z“‘-” li{(.\lk sk-:ci'z) (6. 10)
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1.0 1.0
¢ ¢
ol 1.1
(.l. 2 (ll, 2
¢ ¢
1Y 1 2
Fig. 6. 2. Sporadic - Porsson process for ith component, overlappig components.
and the over-all hkehthood ratyo, ((Xk)’ becomes
3 (
X ) - . - (1- . (>, s o
((.\k, Q\,U(k 1y Q\_Z(k l)]l:l ll) b ('k Sy (l.lﬂ
v 1 L
. . .
5 || Ao (& (k-1 -1 (N, . I : .
Ql_l(k 1 )1./lk 1yl nl) (\k Sk(l.2) 'y (\k sk<:.[) (6. 11)

—

The state diagram for two nonoverfappiay components s shown in Fig, 6.3, Now, the

updating cquations for Reahzation 1V become

-
Q otk {Q kb ()1.2(k-1](1-xl) (6. 12)
L
[ ]
Q L()l‘u(k-ll CQ kD sy e ) (6. 13)
-
( Lk ¢ - i ) ( E
K 3otk Dl s e ) 6. 14)

and the detection outpat 1s

l) r —]
(. O] (k-1 « C - ( S e f{x, = ] . (k-Uif{x R
lhaSr o t‘)l.uk ER AL 1] Ll p o i S e 1’J Q (k-Diftxy s e )
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1. Y]
( ¢
i ol
( ¢
1,2 .
Fie, 6. 3. Sporadic-Poisson process for ath comporent, nonoverlapping components,

Comparning Fgs 6,11 and 60 15 1t s apparent that of component overtap s possible
the recerver complexaty incrvases. It is tmiportant to note, however o that the recernver can

still be realized with a fined stz miemory when compoient ove rhip s possible

—— e
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CHAPTER VU

PERFORMANC OF PHE OPTIMUN ADAPTIVE RECEIVER

Chapters Voand VI considerod several optimum recenver designs Although these
recoivers arc optine for signal detection, the detection performance remdins to be investy-
gatia. Detection performance  which may be sunimarized by o receiver operatning
characteristic tROC)H . depends upon wavetform uncertamties and notse of the particular
problem The recenver desypns i Chapter Voare rather peneral.  In this chapter the
portormance of the cptimum recever s evidludated for several specific signals. Emphasis
will be placed on cvaluation of some special, uscful examples of the Synchronous - Potsson
and Periodic Trone Structures. The evaluation of an optimum receiver for the detection of a
stgnal with a Synchronous - Porsson Time Structure s new work.,  The evaluation of the
recenver tor o Pervodie Trme Structure sicndl s taken from the hterature and s ineluded for
Compdatison purposes (Refo )

We are tnterested in the tollewaing items

1. The operat.on of an adaptive recerver redalization,

'

Detection performance of the optimum adaptive recetver for some

spectal cases,

3. Eftect of component uncertainty on detectahity.

4. Fltect of componert recurrence time uncertainty on detect” pihty,

5 amparison hetween the optimum adaptive recerver and the simple
vhorpy detector,

6. Comparnison of the performance of other suboptimum receivers
with the optimum reconver
Betore considering these items. let us brietly review the basic tecnniques of recerver

vvaludtion.,

87
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7.0 Review of Recerver Evaluation
The detection performance ol a recerver performance may be summarized ona

receiver operdating charactersstic JHOC The ROC s w graphical means of portrayog the
qudality ol detection i sttuacton tnvolving stpnal, corse and a reconver (Rets Dand T,
When noise s proseat, the detection process s always accomparied by the possibility ol
kg crrors, nothe baste decisiton problem there are two types of errors, false alarms and
misses  and two hvpes of correct decistons, correct detection and corroct rojection, A false
alarm s the result of respornding snned prescnt whern the dorse was adctually the cause ond
4 miss is the result of respondine siccal absent when sienal was ndeed prosont, A corredt
detection s the resuit P responding scal presont when sicnal was actually present, aod
acorrect rejectt s the yesult o respooding s al absort whe dsipral was nde el

absent. Inoadetectoon problem there are probabnlintes ass e ated wath cach of these types of

crrors and correct decistons The notatv o used For toese probabilities s

Pea Ny probability o tadse alarm

P SN probabrhity ol a mirss

PA SN) probabnlity of g correct detoction

PO N) probability of @ correct rejechion
where

A Is the resporse sl prosendt

I 1s the resjporse senal absent

SN the Dyvpothests sgnal mved with nonse

N the Ivpothesis norse alons

Fhe provathire s ot errrs ad corrvct de s s e ot indepeident sce

P SN - Pl oSN 1 T
and
. N 2
PCA N PN 1 :

Theretore all of the avarlable Cdormation can be conveyod by a plot of the telationship




K4

between the probabihite of detection, POA SN) and the probability of false wlarm, P(A NI,

Such a plot s made by determmng the probability of detection versus the probability of
Lalse alarm for all possible threshold settings on the rocerver sutput
A ROC s called  cormal” bt can be parameierized by the normal probability

distrbution as tallows

. ’U‘(l'l‘
! TR
PiA SN) ¢ du 7S
J- It
whet
2
) u
, ] - T
PitA N) o " odu 0o
/?T &
If we use the notation
2
u
1 ' 2
& t du (7 4
25 1
then it becomes convernent to desortbed the normal ROC as
PATSNY  @iv o d'), when PIAGN) oo (7 6}

ITheretore  when the ROU s normal we can charactorize the entire curve by the parameter

d It s trequenthy conventent to plot the ROC an double prosability paper which hrcarizes the

normal ROC curves

[tas tnteresting that tor swenals o added white Gaussian notse the twe oxtremes of

Kiowledee regarding the sipnal resualts vna normal ROC T IHa o sipral of enerpy Boas knowr,

enacthy and the norse power por cvele per o second s N then the ROC tor the optimum recenver
]

is normal and the parameter d has the vaiue
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This caseas a vaduable reference cane since 1t s an upper bound on possible detection per-

2
formance. t:s sometines comventert to plot the ROC a5 adunction of the pararscter d - (407,

The ROC's for the signal known exactly case for several values of the parameters o l(i"2 A
pletied in Fig 71
When the parameters of the signal wavelorm are very ance rtan and distrrbutoed
over wide ranges we are at the other oy ceme of Knowledee reparding the syl Tove
normal ROC 1S trequesthy o foming curve e such situations Foresamole wihier it
stenal tselt s a sample of winte Gaussiarn norse of boseconds duration cnoa bandwadeh W

cveles per second avde  vad the senal to norse tatto s suthiarentay small and W T s

sulfiocentiy faree then d s approvimiated by (Het 1
Py

AR
W T 7
(’ \/ I\\/ s
1
S
where | o 1> the mnpuat stenal-to-nolse ravo

B

ncencral, tnoorder to evaluate an optimum receiver wo need the distribution of
the hketthood ratio o a monotone tunctions on it ander both ipnal and norsc and poase aloe
These dessyety fanctioms maas be oas shows o by 702 For a peven threshold settuy the
striped ared under the Cosit st curve s equal to PIATSN and the ercas-hatched area under
the Conit carve s equal G0 PO N An ROC 15 obtamned by plotting PIATSNY versus Pra's
tor all possable threshobd setting s Do practice there s often constder, ble a thealty an
exproesstng anaiytroal sy the protatalety deosoty functions of the ike hrhood catio under senal
aned nonse aad norse alon A thouwn the appropryate pnteg<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>