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AHSTHACT 

The IIKIHV öl signal dclcctability is extended to include optimum adaptive receiver 

designs for the detection of signals with .1 IU npcnudic lime structure.    The specific 

problem considered 'J that oi detecting .1 recurrence phenomenon in noise.     This 

phenomenon is a fixed w.iven rm thai  recurs in time.    The fixed waveform is selected from 

.1 finite class of possible waveforms,   and the receiver is initially uncertain as to the 

waveform selection.     Three basic recurrence patterns are considered:   (1) Sporadic- 

Poisson,   (2) Synchronous-Poisson,   and (3) Periodic.     For (1) and (2/,   the recurrence 

time is a random variable     The approach ti   the detection problem is Baycsian and the 

initial uncertainties of the fixed waveform and recurrence times :i'-e expressed in terms 

of a priori probabilities.   For the -Sporadic- and Synchronous Poisson cases,   the 

recurrence time is always uncertain,   but .111 adaptive receiver can learn the fixed 

wa veform. 

Several reali2.ations of the optimum receiver are presented for each of the throe 

basic recurrence time patterns.    The receive; s are designed by solving an over-all 

optimization problem in which the likelihood ratio of the entire in;.)'    observation is 

formed.    A difficulty in the design of the optimum receiver for signals with a nonperlodic 

time structure is the exponentially  growing memory required by the classical non- 

sequential realization.    To obtain a receiver design with a practical memory size,  a 

basic technique is presented in which the signal ensemble is described indirectly in 

terms of the fixed waveform and the time structure by which these waveforms are 

assembled.    The receiver design is obtained by realizing the likelihood ratio in a 

sequential manner rather than by postulating a sequential learning model per se. 

Therefore,   the use and proper updating of the contents of the temporary receiver 

memory are specified by the design procedure. 

Although equivalent for detection purposes,  different realizations of the same 

optimum receiver appear to operate in different manners.    Receiver designs are 

xvu 
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presented In which tiie receiver appears to "learn'  the fixed waveform which ;.   bein^ 

transmitted.    Such a receiver was simulated for a special but useful case to illustrate 

its operation.    Other receiver designs are presented which,   although optimum,  do not 

incorporate this learning feature m an ohvious manner     The important feature ol the 

adaptive realizations is their fixed-size memory requirement and a vailaluhu ol a 

classification output. 

The effect on detectaoil it\  ol the uncertatnts  In arrival tunes ol the fixed ^.ivc- 

form is investigated.     The detection p, rformani'e for the case ol .t fixed u   reform,   known 

exactly,   that recurs with a Svnchronous-Poisson Time  St ructure is presented in terms 
21- 

of the receiver operating characteristic I1U)(') as a function of average dut\  factor,    ..-    , 

and time.     K    is the enercv m tin   fixed wavtform and N    is the noise power per unit 
(' o 

bandwidtf.     This is a useful case since it^, perfor^ianci' Is an upper bound on the attain- 

able performance when the fixed waveform is uncertain or recurs with the Sporadic- 

Poisson Time Structure     The performance results show that evt n when the fixed wave- 

form is known exactly,   the uncertain arrival times can have a substanti.il effect on 

detectability. 

The importance of storing and updating likelihood ratio terms in the temporary 

memory  was investigated by c mipann^ the performance of the optimum receiver with one 

that simpl\  recirculates the input waveshape.     It was found that storing and updating 

likelihood ratio terms rather than recirculating input waveshape becomes more im|)ort.uit 
2^ 

as    -       increases and the average duty  factor decreases. 
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CHAPTER I 

INTRODUCTION 

1     !     N.IIMK      i|   i hi    i   :   ih,( :ii 

The prnblfni nl rcccj)!inn nl .1 si^mi buried 111 mnsr is commnn fn sonar,   radar. 

and c  JinnuinicaiiMü situatKnis 111 ^c'lcral.    In .sonic cases,   such as arise in the reception of 

speech,   ihe ^oal is that nl  recovering the signal so that its waveshape is as close as possible 

the original transmitted si^iul.     However,   111 many applications the primary tjoal is often 

deciding whether a signal is present or not,   and there is no particular need to reconstruct 

t h-.- 1 m^inal 'A a\ eshape 

I-i the early IQfiO's several authors formulated a theory of signal detectability in 

which the making of the best possible decisions was the primary ^oal (Refs.   1-3).    Since 

tin   noise is considered known only 111 a probabilistic sense and since there are uncertainties 

re^ardinn the signal,   one cannot decide with certainly whether or not a signal is present in the 

noise.    The early work in signal detectability thei ry recognized the detection of signals 111 

noise as a problem which could be solved b\  the application of statistical decision theory. 

Signal detection themy encompasses rtceiver design and performance.    The branch 

of signal detection theory that  is i^iven primary emphasis in this stuJy ,s the design of re- 

ceiv is that are optimum in the sense of making the best decisions.    In particular,   rather 

general techniques of designing optimum receivers whu h operate in a sequential mode are 

considered.    Such receivers frequently exhibit adaptive characteristics. 

Both the design and performance of an optimum receiver depend upon the signal 

uncertainties and the noise.     The optimum receiver usually takes on Us simplest form at 

either of the two   ■xtremes of knowledge regarding the signal;   1. e. , precise knowledge of the 

sign.il on the one hand,   or at the other extreme,   a large amount of initial signal uncertainty 

m which parameters of the signal cannot be learned.     The performance of the optimum re- 

ceiver usually decreases as the amount of jignal uncertainty increases 



Most of the literature on signal detectabilily has been concerned with periodic 

signals which may bv,  for example,   uncertain in amplitude and phase.    This is understand- 

able since a primary application of signal processing is to active sonar and radar systems 

where a periodic transmission is characteristic.    The knowledge thai the signal is periodic 

or nearly periodic is definite information that a receiver designer can use to advantage. 

One class of signals studied here is a type that is more likely to be encountered in 

a passive situation.    Here,   the signal emitted is beyond the control ol the designer ol the 

over-all transmitter-receiver system and is often nonperiodic.    A broad class (if such 

signals is one m which a fixed but quite unknown waveform Is emitted recurrently in a non- 

periodic and quite unknown way.    The interest is m detecting the presence or absence of the 

entire recurrence phenomenon rather than making a local detection of the presence or absence 

of an individual fixed waveform.    If the signal-to-nolse ratio were high,   individual local 

detections could be made relatively easily.    However,  a cast  of special interest is wnen the 

unknown waveform has a low signal - to-noise ratio and a low duty factor.    Then,   local detection 

becomes difficult      If one has .sufficient time to observe the receive!   input,   however,   tt.■, 

recurrence ol the iame waveform permits the possibility of   "learning" or "adapting to    the 

waveform sent.    This learning or adaptation must be done in .spite of the muse and the 

unknown'    'poch of the waveform. 

The general type of signals considered are shown in  Fig.    I    1       Tins sketch shows 

possible noise-free .signals that might appear at the receiver input.     The particular local 

waveform that is sent in .1 given signal hurst is uncertain and is one out   A a finite number 

ol local waveforms.    Although the same local waveform is recurrent  in each signal burst, 

the precise limes of recurrence are uncertain.     It can be seen that a wide variety ol signal 

bursts can result, the receiver must be designed to detect any one ol them. 

Three basic   types of recurrence-time processes are considered.    They are 

1. Sporadic-Poissun process 

2. Synchronous-Poisson process 

3. Periodic process. 

These three processes differ in that they represent three degrees of knowledge regarding the 

manner ol recurrence' ol a waveform.    The Sporadic-Poisson process involves the least 
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i'\^.   1. 1.        Four "typical" bursts of signal. 

.imiiunt 'it knuwlt'd^e regarding the structure "f the signal in time.    The Periodic case, 

representing the most knowledge regarding the time recurrence,  is included m this study for 

comparison purposes.    Precise mathematical formulation of the possible signals that could 

occur is postponed until Chapter IV, 

The biisic- technique of designing adaptive or .sequential realizations of optimum 

receivers Is considered In this study.    As we shall see,   there is no unique adaptive realiza- 

tion.    Adaptive realizations ol the optimum receiver are presented.   In general block diagram 

form,   for each of the three basic recurrei'-.'-time structures discussed above.    The 

receiver is designed to be optimum in the sense that it makes the best decision as to presence 

or absence ol the entire recurrence phenomenon.    It is provided,   sequentially In time,   with 

two outputs; a decision output and a classification output.    The detection output provides 

information for deciding presence or absence of the recurrence phenomenon and the classifi- 

cation output provides updated probabilities of the various possible fixed waveforms that 

ciIUICI oecur. 

vVhen the recurrence time process is nonperiodic,   the design of tne optimum receiver 

is complicated by receiver memory requirements.    A nonsequential realization of the optimum 

receiver requires an exponentially growing memory.    It will be shown that this difficulty can 

be eliminated by realizing (ne receiver in a sequendai mode. 
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1_._2_  üack^fduiul of Previous Work 

The foundation of this study is the theory of signal detectability as developed by 

Peterson,   Birdsall and  Fox (Ref.   1).    This theory emphasizes the central role of likelihood ratio 

in the receiver design.    Related basic material can also be found in Helstrom (Ref.   5). 

A number of authors have applied "adaptive" techniques to the problem ol the detec- 

tion of signals m iioise (Refs.   10.   11,   IS,   IG,   17,   18).    The problem of designing an adaptive 

filter for a fixed waveform whose time of arrival is unknown has been considered by (/laser 

'Ref.   101,    In this work a .stalistic.il decision theory approach is used      Local waveform 

uncertainty is expressed in terms of an a priori probability density function but recurrence 

time uncertainty is not      The epoch is instead detected on a local basis and the assumption 

is made that the epoch measurement is accurate 

Jakowat/,   Shuey and vVlnle (Rel    1!) have proposed an adaptive filter for detecting 

a recurrent fixed waveform.    A simplified block diagram of their original adaptive filter is 

shown in Vi^.   1. 2.     The basic operations of this filter as described by Jakowatz are 

( 1)   comparison ol a sample ol the incomli;^ waveform,   x(l),   with an estimate,   m(t).   ol the 

unknown signal,   s(t))by correlation ol x(t) and mit).   (2) on the basis o| the correlator output. 

,<{{),   ^uess whether or not a signal is contained in the current sample ol Ml),   and (3) at 

those times when a signal is guessed to be present,   lorm a new eMimah   ol the sicnal which 

consists ol a weighted average ol that sample ol the input u ith the prior estimate 

Although basic guidelines from signal d( lection theory are used m tin   adaptive 

filter ol Jakowat/ el al,   the design approach is not an optimal one as the authors indeed 

recognized.    Two characteristic features an   apparent in this adaptive filter      Hrst,   ,i 

local detection is required before any modification ol the nu mory is made     Secondly,   the 

receiver memory is used to remember a single waveform.    This is undoubtedly an 

inadequate memory (or the receiver to be optimum      Their adaptive filter may tie,   however, 

a practical receiver when the local waveform signal-to-noise ratio is large enough to 

permit ^ood local detection.     In such cases the simple implementation ol a receiver with 

a sr.igle waveform memory may justify its suboptimum detection performance. 

Several authors have considered a local detection problem in which a fixed local 

waveform recjrs in a synchronous manner (Refs. 15 and 18). In the local detection case 

the problem becomes that of detecting where each of the local waveform recurrences are. 

* 
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Fig.   1. 2, Jakowatz,   Shucy and White original adaptive filter. 

usiii); .ill pa.sl information.    The approach us Bayesian and one of optimum receiver design. 

One central problem is common,   however,  and that is the problem of implementing an 

optimum receiver which requires an exponentially growing memory.    As Scudder (Ref.   18) 

points out,   the standard nonsequential realization ol the optimum receiver is very complex, 

grown exponentially  with time,   and the analysis of u.s performance is close to impossible 

even using present day computers.     Marcus and Swcrling have recognized a similar problem 

ill providing sufficient  receiver memory in regard to a multiple-resolution-element radar 

problem (Kef.   12). 

1. 3   Method ..1 Attack ol _the Problem 

The [Bayesian viewpoint is adhered to in this work.    That is,  it is assumed thai 

some knowledge is available to the receiver designer regarding the signals and noise that 

will be received.     The particular knowledge available must be expressible in terms of 

probability distribution functions. 

Since the primary goal is the making of the best decision about the presence or ab- 

sence of the entire recurrence phenomenon,   rather than determining the location of each 

recurrent waveform,   the problem is to decide between the two hypotheses;   presence of 

recurrence phenomenon and noise or noise alone.    If one prefers correct decisions to mis- 

' 



taktä,  Blrdsall (Rt'f.  9) Iws shown that the optimum receiver is one which realizes the like- 

lihood ratio of the observation and this fact (lues not depend on any specific quantity tu be 

maximized or minimized. 

Likelihood ratio plays a central role in the design of adaptive receiver realizations 

as it did in the design of optimum receivers in classical detection theory.    The adaptive 

receiver realization is obtained by forming the likelihood ratio ol the observation which is 

optimum for deciding the presence or absence ol the enure recurrence phenomenon and then 

realizing this likelihood ratio in a sequential manner.    It is interesting that receivers 

designed on the  basis of sequentially realizing the optimum receiver often exhibit "adaptive" 

characteristics.     The adaptive feature is,   however,  a result of the particular form of the 

reali/.ation chosen.    This approach to the problem is in contrast to ones in which a block 

diagram of a receiver is chosi n by analogy to a biological adaptation mechanism,   or by 

extension of electronic techniques used in tracking devices. 

1. 4   Organization of Material 

Chapters 1 and II provide background material for this work.    Chapter II is a review 

of the basic signal detection theory that is relevant to the problem considered here.    This chapter 

introduces the problem and expresses the in p irtance ol approaching optimum receiver 

design via likelihood ratio     [n Chapter III the extension ol the fixed time theory to a tune 

varying situation is presented as well as methods of realizing the optimum  receiver '  ilh an 

adaptive form.    The inherent  roh' that the classification problem plays in the optimum 

d( lection is also pointed out.    In Chapter IV the particular types ol transmitted signals 

considered are described in detail and defined.     In Chapter V the optimum adaptive receive! 

design is developed in detail.     Four realizations are presented for each ol the three basic 

types ill time uncertainty.    This demonstrates the necessity ol the adaptive   receiver design 

foi  the sporadic and synchn nous cases due to practical        mory requirements.    This is 

contrasted with the periodic case where no such memory problem exists.    Chapter VI 

presents some special but interesting cases of the receivers of Chapter  V. 

In Chapter VII the detection performance of the nptimem adaptive receiver us 

presented in U ; n.s of the HOC (receiver operating characteristic) for some specific cases, 

primarily for the Synchronous-Poisson time uncertainty     Also included in this chapter are 



Monte Carlo runs which demonstrate the    adaptive" features of the adaptive realization. 

In Chapter VIII conclusions to this work are presented 



CHAPTER 11 

HKV1KW OF BASIC SIGNAL DETKCTION THKOHV 

2. 1   Classical Signal Ot'lct lion "I lirory 

Since the basis of uptiniuni recent r dt'si^n is the work i>( Peterson,   Bird.sall,   and 

Fox (Ref.   1),   it is appropriate that it be reviewed.    This theory is now called classical, 

tixed-lime detection theory.    It applies to situations where the receiver input is observed 

over a fixed interval ol lime and a decision is then made concerning the presence or absence 

of signal during that interval.    A block diagram is shown in Fi^;.   2. 1      The transmitted signal 

and added noise or noise alone is presented to the receiver input.     The question is whether 

the switch is open or closed.    Classical detection theory encompasses optimum receive'- 

design,   receiver realization,   and evaluation of receiver performance 

Transmitter 

:ignal 
V Opti mum 

Hecei v ei 

Noise 

Fig.  2. 1.        Basic detection problem. 

Optimum receiver design is approached trcmi a decision theory viewpoint      When 

the input waveform to the receiver is bancilimiled,   it can be characterized by sample values 

[Ref.   1)     Typically,   there are 2WT independent observation samples,  (x-.x,,. x2WT), 

if W is the bandwidth over- which the observations are defined and T is the total length ol 

observation.    The total observation,   (x-.x,,, . .    ,x„..,_),   is considered to be made on either 
\      l 2 v\ T 

noise alone or signal plus noise     At the end of the observation interval,   a single terminal 

decision is made by a device which can make two alternative decisions, conclude that 



.signal was present during that entire observation interval or conclude that signal was not 

present during the entire observation interval.    The time sequence in which observations 

and decisions arc made m the fixed time theory are represented in  Fig.   2. 2.    When the 

actual cause is signal plus noise,   the decisions correspond to a detection and a miss, 

respectively.    Similarly,   when the actual cause is noise,   there are a corresponding correct 

and incorrect decision.    There are,   therefore,   two correct and two Incorrect responses. 

There are values and costs associated with these four possible responses,   and the theory 

prescribes the optimum receiver which makes the balance between correct and Incorrect 

responses which optimizes some function of these values and costs. 

x(t) start observation 

i 
stop observation 

— ^KT ^V 
! make terminal decision 

-\/-t- t i m e 

t    4 T 
o 

Fig.   2. 2. Observation-decision scheme for fixed time theory. 

The cost of making an observation is not considered in this theory.    As a result no 

premium is attached to making decisions rapidly.     The theory of sequential analysis (Ref.   7), 

or deferred decision theory (Ref.   8) considers such a cost of observatii n.    In the classical 

theory,   the optimum receiver is one which calculates the likelihood ratio of the input observa- 

tion.     A decision level or threshold is then put on the likelihood ratio.    When the likelihood 

ratio exceeds this threshold the response is "signal present" and when it falls below this 

threshold the response is "noise alone".     Fhe receiver design is still that of a likelihood 

ratio processor in deferred decision theory,   but the simple output threshold is replaced 

with a time-varying comparison function. 

Receiver realization is specification of equipment,   in block diagram form,   that 

realizes the likelihood ratio.    In general there is no unique way of specifying a block diagram 

which realizes a mathematical equation     However,  one realization may have an advantage 

over another in terms of equipment complexity or cost.    There is no procedure at present 

I 
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for selecting a "best" receiver realization.    Such .1 theory would need to incorporate an 

equipment cost perhaps best characterized by memory cost. 

An important aspect of detection problems is evaluation ol detection performance 

Ii is often useful to evaluate the performance of suboptimum as well as optimum receivers 

The evaluation ol optimum receivers puts an upper bound on attainable performance.    K\alu- 

a'ion ol suboptimum receivers may reveal a receiver whose performance justifies Its 

simpler form.    In the fixed tune theory,  the error performance for all possible likelihood- 

ratio thresholds is the complete evaluation,  and this Is summarized by the receiver operating 

characteristic (HOC).    This is a plot of probability of correct detection versus the probability 

nt false alarm. 

Analytical evaluation of receivers frequently becomes a difficult task.    An alternative 

tt   hnique is an experimental approach such as simulation on a computer (Hef.   22),     In the 

present study,  a digital computer simulation of several receivers was employed (See 

Chapter VII), 

2_2   Optimuiiiness ol  Likelihood Ratio 

In the formulation ol the detection problem one considers the input to the receiver 

as beiny due to either ol one ol two causes. 1. e. ,   noise alone or a mixture of signal and muse 

One ol the primär) conclusions that has resulted hum the fixed observation theory is that 

the optimum receiver is one which realizes the likelihood ratio,     In lad,   it has been proved 

thai the oplimumness ol likelihood ratio dues not depend on any specific quantity to be 

maximized or minimized, but only on the condition that one prefers correct decisions to 

mistakes   (Kef.   9).    This is a powerful result which gives perspective to .my investigation of 

new processing techniques since the likelihood ratio receiver puts an upper bound on attain- 

able perfoi mane«'.    Although the optimumness of likelihood ratio is not restricted to additive 

noise,   most of the examples 111 this study will assume added white Gaussian noise. 

The likelihood ratio for the fixed observation tune detection problem,   when the 

signal is known exactly,   is given by 

f(xrx2 X2WT!S) 

f(xrV ' 2WT 
SN) 

f(xrx2 X2WTIN1 

(2. 1) 
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wliiTi' l(x    \    x. s.SX) is the probability density function of the joint observation 

(x.,x„ x')U'-r' u,1dt'r thi' '.'oiidition the signal is known exactly and signal plus noise is 

present and f(x.,x„, . . , .*•-,,,,-..   N! i-s the density function ol liie joint observation 

(x   , x    X
9U/T' 

lJn^t'r t'l(' fondilion nouc alone is present.    The entire signal vector. 

(s. , s    Snii,-T-) IS denoted l)\' s     As an example,   in the classic case of a signal known 

exactly m added white Gaussian noise one may work with the logarithm ol the likelihood ratio 

(also optimum since it is a monot me function of the likelihood ratio) yielding the familiar 

c iMsscor relator as tile optimum receiver.     In this case 

f 11 f (•<     x ?, •Ws) 
2WT 

i   1 
x s 

i   i 
(2. 2) 

«here s   are th(   sample values ol the known signal. 

2. 3   Composite Hypothesis Problems 

In the signal-known-exactly example,   the likelihood ratio gives the optimum strategy 

lor choosing between two hypotheses     (1)   observation was due to noise alone,   N,  and 

(2) observation was due to signal mixed v ith noise,   SN.     For the signal-known-exactly 

case,  both hypotheses are  termed simple hypotheses.    If,   however-,  the observation under 

either hypothesis depends on some parameter,  I ha t hypothesis is call ed a composite hypo- 

thesis.     An example ol a composite-signa 1-hypothesis problem that has appeared in tl e liter- 

ature is the problem of detecting a signal known exactly except for phase.    There the parameter 

is the unknown phase angle,   •• 

The sporadic problem which will be formulated later is a composite-signal-hypothesis 

problem: the parameter is the signal vector,  s.    The optimum receiver is then one which 

realizes the average likelihood ratio 

fix r  2' ^wr 
ail 

se S 

f(xrV x 's) p  (s ISN) 
2vVT o 

(2, 3) 

The probability p (s'SN) is the probability a signal s = (s    s       . . , s„       ) is sent under the 

condition that some signal-plus-noise is sent.    It is based on information available prior to 

the observation (i.e. ,   at time t   ),    The likelihood ratio,    flx-.x. x0,.,_.ls),   is the 
o I     2 2WI 

likelihood ratio of the joint observation,  (x  ,x„,. . . ,x„WT),  conditional to each specific 
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signal s that could occur.    The entire enscmblc of signals is denoted by S.    Formally, 

Fq.   2. 3 says that the detection output ol the optimum receiver is obtained by lorming the 

individual likelihood ratios,   f (\., x.,,..., x...      s),   for each signal and averaging them 

over the a priori probabilities of ihe various signals that could   'ccur. 

As r« m.irked earlier,  the theory ol signal detectability is .i ll'.i nv) which provides 

for the insertion of the a priori knowledge.    It can hardl\ be doubted thai the designer ol the 

receiver has some knowledge .ibnui the types of signals for ivhich the receive!  is being 

designed to observi.'.    This .i priori knowledge appears in equations for likelihood ratio in 

the form of the probabilities,  p (sISN).    A wid«1 range ol initial knowledge about the signal 

can be specified by describin;, the entin  signal e'lass,  S,  and assigning values to the proba- 

bilities,   p (s'SN).    As a special case,   this receiwr reduces to a single crossci rrelatur 

when only one possible signal could be sent,   since p  (sISN)      1 for that signal and zero for 

all others. 

2^ 4   Mt mnry and Signal Delectabilily 

The classical theory ol signal detectability is a lull memory theory    the implicit 

assumption Is thai an unlimited amount ol memor;   is availabb   with which to realize the 

optimum receiver.     The cost ol providing such a lull memorv is an obvious practical 

problem in certain situations.     The optimum receivers for the synchronous and sporadic 

recurrent waveforms present this problem.     Unless special cai.   is taken in obtaining the 

proper receiver realization for these cases,   an impractical amount ol memory may l>e 

required.    It turns out that  realizing such optimum receivers in a sequential form results in 

receivers with practical memory requirements 

Although optimum receiver design in this study will be based on the full memory 

theory,   emphasis is pi.iced on obtaining optimum receiver realizations with adequate hut 

practical memory size.    There is no theory yet developed on the proper utilization ol 

receiver memory but the study of the manner in which the memory is utilized in adequate 

and full memory receivers should contribute loan eventual theory of the use of memory in 

signal detectability. 

" 



CMAPTKH III 

ADAPTIVK i<KALIZATlQN ÜF THE OPTIMUM HKCKIVKH 

3. 1   Adaptive Hccciscr Jt'.sigii I'luln.sdphy 

Quiditativt'ly,   the term adaptive receiver conveys the requirements of a time-varying 

structure and a "learning" feature.    As is evident from scanning the literature,   adaptive 

processing schemes arc riot unique.     The philosophical discussion of what constitutes a    true 

adaptive device is not coi sidered here. 

In this chapter, .1 technique is developed for the design of lull-memory, adaptive, 

optimum receivers.    In the full-memory theory evolved here,  the term "adaptive" or 

adaptive realization    is used to label forms of optimum receivers which exhibit adantive 

cliaracteristics.    Although not considered here,  ,1 different theory of adaptation would 

undoubtedly result il ,1 receiver were to be designed with an inadequate memory, 

full-memory adaptive receiver design may be approached from the basic viewpoint 

ol classical signal detection theory.    The theory must center on the primary goal of making 

the best decisions.    The mathematical operat'ons that an adaptive receiver must make are 

then specified hy the theory.    It will be shown how the existing theory ol signal detectability, 

because ol its fundamental approach,  enables the synthesis of adaptive realizations of the 

optimum receiver.    This puts lull-memory,   adaptive signal processing within the framework 

11I the theory oi signal detectability.     It has already been pointed out in the previous chapter 

that the optimum receiver under many criteria is one which realizes the likelihood ratio. 

There may be several different realiza ions,   equivalent i i that each processes the input to 

realize the same required likelihood ratio,  or a monotone function of this likelihood ratio 

The performance ol these realizations   may be equivalent, however,   the different realizations 

may have unique advantages or disadvantages from a practical point of view.    It will now be 

shown how the likelihood ratio can be realized in an adaptive manner. 

13 
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It is convenient to consider first the adaptive receiver form for directly described 

signals.    Direct description  is the traditional description of signals in the classical theory. 

It becomes more convenier.t tu use an indirect signal description in subsequent chapters 

There the signal will be described indirectly m terms ol a smaller ensemble ol waveforms 

and a time structure whereby these short waveforms are assembled. 

3.2   Adaptive Heahzalion of the C)pl imum Receiver -    Direclly Described Signal Fusembie 

The adaptive receiver realization which will be developed m this section operates 

sequentially,   so that in every '. seconds the observations m the past  '    seconds are processed 

Except where otherwise noted,   the notation used throughout is that X    denotes x(t) for 
k 

0       t       k",  and x,   denotes x(t) for (k-l)T,        i       k",      In other' words,   a capital letter 
--Ik 1 -      -        1 ' 

indicates the observation from the be^incn^ ol Mme to now (i   e   .   k'.) and the lower  case 

letter refers to the present observation which is to be processed as a unit     Sequentially 

in time the receiver updates whether  the signal was or was not present  in the entire 

observation,   X   .   and the opinion is updated as to which signal il is il indeed signal is present 
k 

Classical signal detection theory is a fixed-time theory That is, much ol the work 

in the past involved receiver' design in which the processing time was chosen before building 

the receiver.     However,   in an adaptive approach the processing time remains variable. 

Actuallv.   classical fixed-time theory only appears to specify a fixed observation,   X, 
k 

The theory  is easily generuhzed to permit a  reci iver   which operates over   a variable time 

interval.     In particulai ,   11 the opt i mum receiver is .o be designed to work on the time 

interval (0,   k".).   then the optimum receiver" is one which .eahzes the sequence of the 

likelihood ratios.   fjX.),   f(X„), , ((X   1       This  receiver pro,ides the output  which is 
I z k 

necessary  lor   making the best decision .is to presence or' absence of   signal from time zero 

to time k" .,   and dois so in a running or sequential I as hi on      The opt inn nines.s of likelihood 

ratio guarantees that all available information prior' to time zero,   along with that available 

from the i ibserv at ion itself,   has been used to make an opt i mum decision as to presence or' 

absence ol signal in the entire runnivg time interval (0, ki   )      This is called a long-term 

detecln HI problem. 

The sequence of likelihood ratios,   f (X,),   f !X,J, . . . , CfX, ).   could be obtained at 12k 

each time kr.  by repeated application of Eq.   2, 3     This equation suggests,   however,   that 

.- 



15 

nur store .ill pd-.t observations as well as all the proliaLnlitles up to tin if k'..    A gross 

block dia^rani of ihi>> realization Is .shown in Fig.   3. 1.    The samples of the observation 

arc stored n   an input memory.     In addition,   if is necessary to make provision for storage 

of all the a priori probabilities,  p (s  SN).    The storage requirements fur both these purposes 

in   lease as tune nu reases,   which makes this type of realization impractical  in many cases. 

Input,    XL 

X    Input .Vlemory 

I.ikel. hood l(,ii HI Computer 

Memory for Probabilities 
D is ,SN) 

Detect ion CXjtpul 

f(X, I 
k 

Hg.   3. 1. Gross block diagram of a nonsequential receiver realization. 

Another way of forming these likelihood ratios is to derive f(X, i from the nrevious 
k ' 

one,   f(X.    .),   together with the kth observation,  and a set of updated probabilities.    Several 

of the forms which these realizations ran lake will be considered later      This study is con- 

cerned primarily with this approach and its implementations.     This approach is especially 

interesting because n  leads to realizations which exhibit the features of an adaptive type of 

processor      First,   however,   these lull-memory adaptive realizations are shown to be 

related directly I" the original likelihood ratio by an equivalence transformation. 

3. 2.J Sequential Healizalion of Likelihood Haliu - Iiidependc-nt Observatiiins 

Conditional to SN.    Man)  classical detection problems have dealt with the situation where 

either the signal transmitted was .ndependently chos. n from th>   signal ensemble in each 

unit nl observation,   \ ,   or where only one possible known siinial could be transmitted 
i 

throughout the entire observation,   X        The latter is the classic SKPJ (signal k..own exactly) 
K 

case.     Inder certain conditions,   this results in a simple recursive equati in for obtaining the 

likelihood ratio of the observation,   X, ,  from the likelihood ratio of the   ibservation X,    , 
k k-1. 

I 
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To illustriitc this,  consider that tin- likelihnod ratui »I the oLsc.vation, X, ,   us hv k 

definition 

1(X, ISN) 
f(Xk!    lur^Y 

k 
(3. 1) 

It is assumed that the observations arc indepeiu entiy distributed under the background 

cundition of noise alone.     The independence of ihr observations under noise alone permits 

computation of the probability density function for a section i it observation from a similar 

probability function for shorter sections multiplied by the probability density function for 

the most recent section.    Thus 

f(X, !N)      HX,    ,   N) f(x. IN) 
k k-1 K 

(3. ?) 

Since the observations are assumed independent under the c mdition SN, the probat)ility 

density function ol the observation under the condition signal plus noise can be similarl 

separated so that 

IX,    SN)      t(X,    , 'SN) fix,    SN) 
k k-1 k (3. 3) 

Substituting Kqs.   3. 2 and 3. 3 into 3. 1,  the likelihood ratio can be written as 

f 'X, 
f(X,    ,   SN) k- 1 

f,XkVN. 

K.v 'SN) 
k 

f(x. IN) 
K 

3. ■\) 

Applying Kq.   3. 1.  which is the definition ol likelihood ratio,   Eq.   3. A can be written as 

f(X, ) =   fIX,    ,) fix. ) 
k k-1 k 

13. 5) 

For independent observations under SN with independent noise,   the likehlMixi ratio of the 

total observation,   X   ,   is the product of the likelihood ratios of the independent parts, 
k 

For example,   this is the assumption in Helstrom,   Statistical Theory of Signal Detection, 
Chapter III,   Section 4,   "Sequential Testing of Hypotheses. 

■   ' ■ '■ 
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Inpul 
Compute /(x. ) Product 

I 
Memory 

Delay 

Delect ion Output 

r(Xk) 

Fig.   'i.2. Optimum seque.'itial receiver,   independent observations. 

A simple block diagram of a receiver which realizes Eq.   3. 5 is shown in Fig.   3. 2. 

Aftei  the first unit ol observation,  .i likelihood ratio f(X.) is computed.    This is stored. 

Then the likelihood ratio (l^^i.   of the next unil of observation is computed and multiplied by 

fIX.) to form HX.j) which is .stored.    Thus procedure is iterated.    This Is a sequential form 

i it an i i|)i imum recei \ er. 

3. 2. 2   Sequential Healixation of the Likelihood Hallo - Dependent Observations 

Condillonai to SN.     In this sectio'i it  is shown how  the likelihood ratio of the observation over 

an interval (Ü.   k~   ) can be realized,   in a fashion equivalent to the above,   for cases where 

the observations,   x.,   are dependent under the hypothesis SN.     This is the situation In a com- 

posile hypothesis problem.     The derivation begins with the likelihood ratio,  f(X, ),   o. the 
K 

entire observation,   X, ,   which Is known to be optimum under many criteria,   and transforms 
k ' ■ 

f(X, Innlo an equivalent sequential form, 
k 

Once more,   ue start from the likelihood ratio of the observation X      given by 
K 

f(xk) 
f(X,   ISN) 

k 

f(XklN) 
(3. 1) 

As before,  the observations,  x .  are assumed independent when noise alone is present,  so 

Eq.   3. 2 applies.    In composite signal hypothesis problems,   however,   Eq.   3. 3 does not hold 

- 
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and f(X, ISN) us written,   instead,  by definition of conditional probabilities,  as 

f(X, 'SN)     fIX,    , ISN) f(x. !X,    ..SN) 
k k-1 k     k-1 

3.6) 

Thus,  fIX, ) can be written as k 

f(Xk) 
f(X,    JSN) 

k-1 

,,Xk-l   N f(xk  N) 
(3. 7) 

or 

f(V    f,Xk-iMKkXk-r (3. 8) 

where ue have defined 

f(\   Xk-ll 

f(xkXk-rSN) 

f{xk   N) 
:3,9) 

Note that Eq.   3. 8 is similar to Eq.   3. b except that the fur ction fix,   X,    ,) is dependent on 1 k     K - 1 

the entire past observations in addition to the unit observation,  x. . ' k 

Let us now determine fix,   X,    ,).    To dn this,   let us consider in more detail the k     k-1 

numerator,  fix, IX,    ,,SN).   ol Eq.   3.9     Solvvni; Eq.   3.6 for fix   IX,    ..SN) one obtains 
k     k- 1 K     f,- 1 

^h-V^ 
fIX,   SN) 
 k _ 

fIX,    ,!SN) 
k-1 

13. io; 

The numerator ol  Eq.   3   10.   by definition of a composite signal hypothesis,   is 

fIX.    SN)       *    fIX, Is.SN) p  Is ISN) d.- 
s k 3. 11) 

where f|X   ls,SN) is the probability de.ioity function of the observation X    under tlu' condition 

SN ana where a specific signal,  s,  is being transmitted.    At the start of tin  obs* rvation, 

specified as time I   ,   the observer is uncertain as to the specific signal to be sent.     This 

uncertainty is expre.'sed by the probability density function,  p IsSN).    If the -iigpul is simply 

added to the noise,   then the observations,  conditional to a specific signal,   s,  are Independent. 
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Thus 

aX^s.SN)     f(Xk_1!s,SN) f(\k
i.s,SN| 

Suh.slitutin^ tq.   3. 12 into 3. 11 results in 

:3. i2) 

((X,   SN)       '    HX,    ,   s.SN) fix,    s   SN) p (s  SN) ds 
k k -1 k ' () 

(3. 13) 

Kquation 3. 10 tluTi'forc bfcomi'S 

f(xk  X^j.SN) 
f(X,    ,   s.SN) p (s SN) 

k-1 ' o  

fIX.    . ISN) 
k-1 

f(x,   s,SN)ds 
k 

(3. 14) 

whcic l(X       'SN) has been incorporated in Ihe integrand .since it is independent of the variable 

ol integration.    It is natural to define a neu probability function for the signal ensemble based 

upon all the observations up to time (k-Dr        This is done by singling out the bracketed term 

of Eq.   3. 14 and defining it as 

p.    jfsiSN) 
f(X,    , Is.SN) p (s'SN) 

k-1 ' o 
(3. 15) 

f(Xk_1 'SN) 

Substituting Kq.   3, 15 into 3. 14,   one can write f(.\     X     ., SN) as 
K        K - 1 

f(xk Xk-rSN) :  '. f(xkISiSN) pk-i(-s SN)ds (3. 16) 

wiiich is in direct parallel to Eq.   3. 11,  except that the weighting pr  lability is not the 

original defining density al I    l)ut is an up-to-date probability function based upon the obser- 

vations over all the time up tu the last unit of observation.   The probabilities,  p. (s'SN), 

can also be obtained from p,    .(slSN) cither than p  (s'SN).    We can rewrite En.   3   15 with 
k- 1 o 

the subscript indexed ahead by one. 

pJslSN) 
fIX. 's.SN) p (slSN) 
_k         |JJ  

f(Xk'SN) 
(3. 17) 
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Solving Kq.   3. 15 for p  (s'SN) und substituting this into lx\    3. 17 results in 

pk(s   SN) 
f(X, Is, SN) 

k 

ftX,    .   s. SN) 
K " 1 

Vi'SNI 

II X, ISN) 
K 

1 
Vi,s SN' 13, 1H) 

The ratio in the first brackrt is cunditional tu tin1 sigival s and Sd Kq.   3. 12 holds     Simiiarly 

the reciprocal nl the ratio m the se'-Miid bracket  Is f(x,    X,    ,, SN) by Ku.   3.6.     Therefor«1 

k     k- 1 ■ 

Ea.   3. 1H becomes 

p, (s'SN) 
k 

l(x, is.SN) 
k 

f(.\, IX. 
k     k- 

SN) 
p,    ,(slSN) 1 k-1 

(3. 19) 

VV" lui\f still In ^ci the form o| Eq,   3. H for likelihood ratio     Using Fq.   3. 9 for the 

definition of f(.\.    X,    .) along with h^q.   3. 16 one gets 

"Wi1 
fix.   s. SN) 

k 

fix, IN) 
k 

I),    ,1s   SNIds 
k-1 

13. 20) 

where f(x,    N) has been brought inside the integral .since ii is independent ol the variable o 
K 

integration.    Define a likelihood ratio ol the unit observation,   v .  condüioiuil to .i specific 

signal as 

f(x, 
f(.x.   s.SN) 
 k__ 

f(x.    N) 
K 

13. 21) 

then the conditional likelihood ratio,   f(.x,   X     .) can be v^rittin a.v 

k     k-1 

l{\ xk-l,    s  
f(xk ^iVi(slSN)di 3. 22) 

Similarly,   it numeratoi' and denominator of Kq.   3. 19 are divided by fix,    N) and KCJS.   3 9 and 
K 

3. 21 are used,   'he updating equation can be written as 

p. Is ISN) 1 k 

f(xklS) 

^k'W 
p^^sSN, (3.23) 
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Equations 3. H,   3. 22,  and 3. 23 form the basih of design of the .sequential receiver.    Table 3   I 

.sum in.in/es the basic sequential receiver design equation for both dependent and independent 

i ibserv atb ms under SN. 

TABLE 3. 1 

BASIC RECEIVEH DESIGN EQUATIONS 

SEQUENTIAL IDEALIZATION OF THE LIKELIHOOD HATIO 

Independent Observations C'diidilional to SN 

Detection Output 

f(Xk)    f(xk.1)r(xk) (3. 5) 

Depeiulent Observations Conditional to SN 

Detection Output 

nxk)^(xk_,)f(xk,xk_1) (3. 8) 

Sequential Average Likelihood Ratio 

r(xkIXk_i) (     f(xkl.s)pk_1(.slSN)ds (3. 22) 

Classification Output 

f(x   Is) 
p tslSN)  -     «        p     jl.slSN) [3. 23) 

By comparing Eqs.   3. 22 and 3. 23 we observe the primary earmark of adaptive 

operation:   the feedbacl. of results to modify the processing of subsequent observations. 

Thus    from \> (s   SN) and .\, one can calculate p.(slSN).    This is used to determine the 
' 11 1 1 

weighting on x,., (Eq.   3. 22) which in turn is used tu compute p„(slSN) and so forth.    The 

quantities calculated are shown in Fig.   3. 3. 
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f(Xk- 

Pk-I(s SN) 

f(Xk) 

pk(.s:sNi- 

\ 

k-l k.l 

linn 

Fig.   3.3. SpqutMitial realization rfpri'scntation 

II is likely lli.it nnc could arrive .u Kqs,   3. 22 and 3  23 by proper application o| 

Bayesian lo^ir.    The author has overtly chosen not to do this so that ii is obvious thai the 

aforementioned equations for conditional likelihood ratio and toi  updaim^ knowledge are a 

result of simple mechanical manipulation ol the formula for likelihood ratio of .i complete 

iibservation,   X, . 
k 

A block diagram indicating the operation of this adaptive receiver is shown in Fi^;.   3. 4. 

The likelihood ratio of the incoming observation is computed for each possible signal thai 

could occur     These individual likelihood ratios are then weighted l)\ up-to-date probabilities, 

p      (s SN),   as to which signal is being transmitted,  and these products are added over .ill 

st S to obtain the conditional likelihood ratio  f(\    X      ),    The information regarding which 
K       K " 1 

signal is present,   as expressed by p.    ,(s),   is then updated using the quantities f(x.   si and 

f(\     X,    .) which contain neu  information from the kth observation as to which signal is being 
K        K - 1 

transmitted,     Tins forms the up-to-date probabilities,  p (s  SN),  which will be used for 

weighting the individual i ike 11 hood ratios ol the ( k* list observation      In addii ion. p. 's  SN) 
K 

can be displayed to provide classification information.     The purpose of this section has Inen 

to slinw how to design optimum detection equipment which has a property normally associated 

with adaptive equipment:   namely,   the property of utilizing observations to i.a rease know- 

ledge and using this knowledge in interpreting subsequent observations. 

We have sein how  the equation for updating knowledge as to which signal was being 

transmitted (Fq.   3. 23) gave a "learning" feature to the receiver design.     This feature was 

absent in the realizations discussed in Section 3.2. I since il was assumed that either (1) 

the signal was known exactly,   in which case only the central question of its existence remains. 

—?-7— 
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or (2) tlic signal saniples in succcssivi' obstTvation unitt; wt'rc it)di'|)eiid«.'ül    in uiuch t'u.sc 

what is Icuncd in one unit us irrelevant to ubservalinius in apj   .inci  unit. 

3. 3   Classilication of Signals in Noise 

Frequently,   nit/re than just pit   emc or at)SfiK,>' o| smr.,il infointation is wanted Iroin 

the receiver.    In classie il detect o'ii problenis,   information as to utm h sirn.il was iiem^ 

transmitted was often    uppressed     This resuliet' fruni ilie l.iel ih.it the reeeiver was designed 

to answer the question of pi esenee or abseiu'e   ■! signal renaniless ol the parlu nlar signal 

transniiUed.    The realization ol  Fi^;.   3. A displays the classilicatiun inlormatr'ii whii h lias 

always been inherent in , he formation ol I hi   : eeeu er detect ion out put. 

p (s  SN) is the probability densit\  function th.it  represents oui   opnnoii,   prior to 
o 

any observation,  as to which signal will be iiresent.    This is the classilu alton output .it time 

I   .    As has been shown in the previous section,   updated \< rsions ut this density lui.clion, 

p (s   SN),   an  obtaini'd sequentially in tune In the recer.ei  and used to lorm the detectim; 

output,   i. e, ,   the likelihood ratio.     Thus,   the detection and classification outputs are obtained 

simultaneously and are mtimatelv related. 

•' "y 



CHAPTt H I\- 

V DIUKL1 DlSCmi'TION OF' SIGNAL KNSFMIU.I 

In C li.iptt .•• Ill it w.i    shown thai an outimum,   full-niemury, adaptise receiver design 

ciiuld !)(■ put within the Iraim-work d clasKical fxed-tinie theory.    The basic form for an 

Optimum,  full-memory,  adaptive receiver was obtained there for the case where tfu  signal 

eiusembh   is described directly.    II the design equation.-, (Kqs.   3.8,  3.22 and 3.23) are applied 

directl) to the case ol recum-nt waveforms,  the resulting realizations still require a contiii- 

uall) ^ro.vin^; memory for storing updated probabilities,  as we shall see in Chapter V. 

Ir, the ne.Ni two chanters,  ii v^ill be shown tiuit optimum   adequate-memory" adaptive 

receiver designs will be obtained for detecting the recurrence phenomenon.    An optimum 

"adequate-memor,     rec< i\er is one that has sufficient  memory.    In developing a theory for 

the design ol an "adequate-memory" receiver,   an indirect description of the signal ensemble 

pri i\ es useful. 

•L j_ (.'oniponeni  F.nsemhle and Tinie Structure 

The input  vi Itages to the receiver,   which are functions of lime,  are assumed to be 

defined for all times I in the observation interval,  0 '    t '    T.    They are assumed to be 

limited to a hand ol frequencies of width VV.    By the sampling theorem,   each receiver i iput 

ran be thought of as a point in a 2vVT dimensional space,   the coordinates of the joint being 

the value of lh(   function ai the sample points t JL 
2WT 

for 1 2WT.    The notation 

X    denotes a receiver input,   ix,,x„ \   ),   where k      2WT and x   denotes the jth sample 
k .       .. K J 

v allle,   or  i . lordi Hale. 

To state the problem of detecu^u presence or absence oi the recurrence phenomenon 

within the terminology of signal detection theory,   it i'- necessary to clarify what is meant 

here l)\ the word    signal.       This word Is ollen uäed loos* ly and sometimes means the noiae- 

hei  emission from a transmitter, whereas at other times it reters to the noist-contaminated 

25 
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waveform 31 the recetver input.    In this studs ,i signal is tin   voitan*' wawfurm .it the rcct'ivci 

input when noise is not present. 

In Fi^.   1. )  (our    typical    segnu nt.s of signals of the type of interest here were 

shown.    A possible signal is shown in  i \^.   4. 1      There are mlerwils o( no energy interrupted 

by occasional occurrences of the same waveform.    This short wa\eform is called .i signal 

component or simply a    component.      A signal consists of a recurrence of the same 

component and the blank spaces in between. 

Signal 

0 nuu        u uu u uu '«  
V Y ' " 

V 

('(imp' inenl 
ü<( urrerr( v 

V\y,.   4. 1. A signal composed of components 

Th" notation s denotes the signal,   ( •   , sn s   ).   as it would appear at tin   receiver 

input m the absence nf  noise where s   denotes the ith sample value,   or coordinate.    ( 
i J 

denotes a particular component,   (c     ,,c    „,    .    ,c        I,   where c       denotes the ith sample of 
i. I     i, 2 i.n i.j 

i 

thi   ith cor.iponent.    Any value, including zero,   ran be assigned to these samples      Ms the 

sampling theorem,  a compoiuml can be thought of as a point in a 2WT    dimensional space, 

where T.   is the duration of the component.    Since the duration,   T      of a component can be 

difteient tor each component,   the number of component samples or coordinates in a component 

is denoted by n. where n.  is equal to 2WT,  for the ith component.     For example,   if the 
ill ' ' 

component in Fig.   4. 1 is labeled C   ,   then n    = 7 and it Is written as C       (-1,1,1,-1,-1,1,-1) 

and UK
1
 slenal in the interval (0,   {,.) is written as 

45 
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s    (ü.ü   :.i.i.-i  -1,1    I.ü.O.O.O.O.ü.U.O.O.O.O.O.U.ü.O.-i, i, i, 

i, i, -1,0.0,0, -i, i, , -1,0,0,0,0) ;4. n 

In iirdcr to di'fim   iln   ilctcction pr .hlcrn  il  lb necessary to specify the initial sigiui 

uncertainty.     This is most cotnenientlj clone by dpscrtbln^ the signal indirectly in terms of 

components and their iiiiiu,,.,   thu^ tlistinguishing two types ol uncertainly:   uncertainty as to 

component cliaractei  and recurrence-tinn   uncertainty.    Consider the bh^k diagram shown 

in  Fit.:    4. J.     (> i   cnmpi >i t I.I uul ol a 11! ite class   i! b components is chose .i by the c   mponent 

generatoi  to In   i lui acten.stn   of a 11 ansmlssion at its outset.    Transmission of I'm' character- 

istK   componen!   ■•    urs   inh  upon command by the trigger generator vvlucli introduces the 

recui rence-lniK   uncerlainty.      I i Iggei s iiia\  o« i ui   only at discrete limes and ma\   not occur 

v. it t ii. a com pon en |      Three basu   dist ri but ions M|  I ecu r rein e-time intervals are cons i de red. 

the Sporadic -Poisson,   tlw   Svnchronous  I'oisson,   and the  Periodic.    Signals of the three1 types 

an   illustrated in Fig.   1   J and defined below.    Tin   i   unponent is not restricted to a binary 

waveform but is shown as such Iw illustrative purposes.     In particular,  a component can 

have zero sample values,   thus permitting signals composed of periodic pulses to be described. 

I rigger 

(jener.iloi 

('' .mpi menl 

«enerati 'I' 

Signal 

f-ig.   4.2.     Mn ,(k diagram of signal generator. 

The simplesl ten pmal dist ril)utlon of ciniiponenls within a signal occurs for a 

I'enodic   hint   Structure.    In this case a con p ment is transmuted periodically with perlcxl 

I ,,   where    I     is the duration of a component.    Such a signal is shown in Fig.   4. 3 c.    With 

the Sporadic-Poisson Time Structure,  there' is a probability ol initiation ol a component at 

each ol the times t    = k'. that is zero within a component and Invariant at otner times.    This 

type of signal is shown in Fig.   4. 3 a.    For the Synchronous-Poisson Time Structure,  there 
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^ifUlinJIr'-if' n u I IMlr 

.i.    SiKir.idK -Poissoii I'riTts.s 

I j it<tttt-|-*"(tt 

linic 

- 

i).     SvnchriiiKiu.s - I'liissnn  I'I'IKI- 

11 mi 

i       Prnodic  I'mct'ss 

F 1|4.   4. 3, "Typifiil" signals. 

is .i pn IIMIMIHV that .. tii^uii   will   Kein  .it tin,...   I    si'Coiid.s apan.    In liir n»-  i tdrct   sc.iKm.s 

tlii   thrt'c types ni imif proci »scs will In   niattii'matically Jt'fiiit'd. 

4. 2 ypnradic-I'nissnn Time Struoturt' 

Thf signal ciiMniiiN   for this lime structun   can lie indirectly described . i terms ol 

the (.■(n.ipnneiits and tun-   structun .    The klh s.inipli   ul the signal,   s      can be defined in 

tei ms nf the (k-1 )st sample,   s           .md a set of transition probabilities.    In other words,   the 

signal can be defined li\ .i one-step M.irk"\ process.     In the sporadic case,  .t sample nf the 

siuna 1 can be in any of the states c    ,. c c for i      1,   2 b,  where c,     corres- 
^ • I i       ' i     n II 1,1 1 ,   -' 1.   1 

ponds tu tlu   jth position of the ith component.    Thei e are b components in the component 

ensemble and the ith component has n   sample values.    One other state is possible and that 

is where the 1th component has been selected but is off.    This is designated by c 
1,0' 

-r^- 
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Only certain transitloas from une state tu another are posblble.    For example,  if 

the component has seven samples and s     .   ■ c then s    = c       with probability one.    This 

is a result of the fact that once a component starts it must be completed and also no new 

component may start until a component Is completed.    The various possible transitions are 

visuali7ed with the aid of  Fi^.   4. 4.     This figure shows the possible stales of the (k-l)st and 

k-1 k 

1,0 

:. I 

1.2 

1, n -1 
i 

i,0 

1, 1 

i, ? 

i, '' 

Fi^.   \. 4. .Sporadic-Poisson process for the 1th component. 

kth signal samples      The arrows indicate the possible transitions.    Also included on the 

diagram are the probabilities of the various transitions.    More specifically,   the properties of 

the Sporadic-Poisson process are defined as: 

r 
k 1,0 k-1        1,0 

^k'Vr^'    '"'i f"K 

>» 

L  k       i.O k-1        i, n. 

[4.2) 

S.      =     C. 
k        I, 

^k'Vr^   li   ""■< 

sk-i   ci,o 
■>> 

S.   = c,   ., s.    . = c 
^ k       i,l k-1       i, n. 

(4. 

gO^Vi.SN)      1        for    s^c^. Vl = Cl,j-l 

for    j = 2, 3 n 

(4.4) 

J' 
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g(SkiVrSN) = 0 other wise {A. o 

The Interpretation of Kq.   4. 2 Is that if the ith component is either uff,  c    „,  or at its last 

component position,  c.      ,  at time t,    ,,  then it is off at time I,   with probability l-i ,. 
i, ii k-1 k "i 

i 

Similarly,   from Kcj.   4.3,   if the ith component is either ofl or at its last component position 

at time l     .,  then the Ith component starts a^ain at tinu  t    with probability i  .    Kquation 4. 4 
K * i K 1 

says that If the (j-l)st posit'   i. of the ith component is present at time I then the jth 
K ~ 1 

sample of the ith component is present with probability one at tune t        Kquation 4. 5 says 

that no transitions other than the ones expressed by Kqs.   4. 2 through 4. 4 are possible. 

4. 3   Synchronous-Poisson Time Structure 

The Synchronous-Poisson  rune Structure is Intermediate in recurrence time 

uncertainty between the periodic and sporadic processes.    The component selected at the 

start of transmission is one of a finite number- of b possible components.    Due to the 

synchronous nature of the time structure,   there is no detailed positional uncertainty of 

components ;äs was true in the sporadic case.    If a component Is triggered,  the time 

position of component samples is known exactly.    This enables the component sample values 

to be combined Into one state.    C.   „     (c.   ,,, C.   ,, c.   ,.) is the slate that results il the ith 
i,0        i, 0    i, 0 1,0 

component is selected but the component Is off.    C.   ,      (c.   ,,   c    „ c        ) is the state 
1,11,11,2 i. n 

i 

that results 11 the ith component Is selected but tin   component Is on.    The signal vector can 

be "blocked off" into n -dimensional segments,   each segment being designated by S       For 
i k 

example,   il the component in  Fig.   4. 3 \> is labeled ('   ,   then this signal is 

s      (S1,S„,S,1.S.,SJ      ((      n.C     , ,C    .,.(■     ,.C     ,) 
1     2     3    4     5 i,0      i.l      i,0     1,1      i,l 

:4. 6) 

The possible st.ites an ! transition probabilities are shown in Fig    4. 5.     The properties of 

the Synchronous-Poisson process art defined as: 

g(S, ISN)  =  l-i 
k i k        i,0 

g(SklSN) -   e. for S,      C 
k        i, 

(4. 8) 
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i.O 

i. I 

i.O 

c. 
1, I 

Fig.   4. 5.        Synchronous-I'oisson process for the ith component. 

The .Uin\(  two equations express the fact that i    is the probability that a component will 

appear in thi   kth synchronous interval and I-i    is the probability that it will not appear in 

the kth interval independent ol its presence or absence in any other synchronous interval. 

•l.-l    Periodic Time Structure 

The periodic procesi! represents the least amount of time uncertainty of the three 

types i unsidered.    One of a finite number,   l>.   ol components is selected and recurs period- 

ical!        This recurrence process is completely deterministic.    The possible states of s    and 
K 

the transition proljabilities are shown in (■ u;    4.6     The properties of'.he Ptilodlc process 

g(s. Is,    .. SNi      I fur s.      c     ,  s.    ,     c. 
kk-1 k        i.j      k-1        i,J-l 

(4  9) 
) =  2, 3, ,      , n. 

,!sk,sk_1,SN)      1 forsk      CK1,   sk_l      Ci]iL [4. 10) 

.(sksk_1,SN)      Ü ilherwise (4. 11) 

Elquation 4 9 expresses the fact that the jth component sample of the ith component occurs at 

time t    if the (j-l)st component sample of the ith component Is present at time t,    ..    The 

interpretation of Kq.   4. 10 is that the first component sample occurs at time t    If the last 

component sample occurred at time t      .    Equation 4. 11 states that no transitions other 

than the ones defined by Eqs.   4.9 and 4. 10 are possible. 

r 
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In the next chapter the design of optimum adaptive receivers will l)e presented for 

each of these three time structures. 

k-1 k 

i. 1 

1.2 

i. 3 

i.n -1 
i 

i, 1 

'■, 2 

1, 3 

i. ') 

1, M 

Fij;.   4. 5.        Periodic process for ith component. 

■-      ■iyip||r 



CHAPTER V 

OPTIMUM ADAPTIVK Ht-XhIVKH DKSKA 

In this chapU'r optimum adaptivf ri-ceiver design in considered for a componeiil that 

recurs with Sporadic-Poisson,   Synchrunous-Pnisson,  and Periodic Time Structures.    A 

summary "I the signal categories considi-red are shown in the chart ol  Fi^.   5. 1. 

One of I) possible components that 

recurs throughout a transmission 

Sporadii   Tinu   St rui tui e 

1 Uncertain I ime ol o( currence 

2 Uncertain comi>oii( nl length 

3 Nu component overlap 

(F.qs    4  2-4   r>' 

Synchronous Time Structure 

1      Uncert; lin time of occurrence 
(synchi "onous 11 mi 'S) 

2       Known component length 

,L- qs    4 7.  4 H) 

Periodic Time Structure 

Uncertain repetition frequency, 

fixed throughout transmission 

(Eqs.   4.9-4   111 

Fig,   5. 1.        Summary chart:   signal categories. 

:u< 
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It is necessary tu consider the adaptive realization for the Sporadic-Poisson and 

Synchronous-Poisson Time Structures because of practical niemory requirements.     This is 

a facet of optimum receiver design that did not exist m the periodic case.    In the Periodic 

Time Structure,   for componen's of duration T      there are the same number of signals m the 

Signal ensemble as components in the component ensemble .»Itei  observing for a time kT 
1 

nk For the Synchronous-Poisson Time Structure,   however,   there .ire 2    times as many signals 

in the signal ensemble as there are omponents in the component ensemble after a time kT 

In this latter case,   the receiver designer is faced with an exponentially growing signal ensemble 

If the receiver design is a nonsequential one,   Kq.   2. 3 is realized directly.     This is the reali- 

zation represented in  Ki^;.   3. 1 and it requires an exponentially growing memory for 

p (sISN).    The nonsequential realization is therefore usually lou complex to be practical. 

The question arises as to whether an adaptive realization might provide a practical 

optimum receivei  design.    The optimum adaptive realization was discussed in ( hapti r III. 

The basic equations for the adaptive realizations are summarized in Table ^i. 1 and presented 

in the block diagram of Fi^.   J. 3.    The form of the adaptive design equations in Table 3. 1 is 

unsatisfactory since in updated probability,  p,(slSN),  of each of the entire signal vectors,  s, 
K 

up to time t    must still be stored,   and this requires an exponentially ^rowin^ memory. 
K 

In this chapter design equations are obtained of optimum receiver realizations which 

have a memory that remains fixed in size.    The order of presentation of the receivers is from 

the one for the least certain time structure,   the Sporadic-Poisson,   to the most certain,   the 

Periodic.     Four realizations are presented for each o! the three time structures.     These 

realizations of the optimum receiver show how  the detection output can be formed m many 

different ways.    The derivation of Realization I is presented in this chapter in detail for 

each of the three time structures,   as are the results of Realization IV.    The remaining 

realizations are presented in Appendices A through C.     Following the presentation of the 

receiver realizations for each timi   structu'! .  the operation and use of the memory are 

discussed. 

5. 1    Optimum Adaptive Pec eiver Design,   Spoi adic - Poisson Time St ructure 

In this section an adaptive realization of the optimum receivei   is presented tor 

detecting signals with a Sporadic-Poissun Time Structure.    One of h components is selected 

for transmission and Üie same component recurs throughout a total observation. X  .    The 
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rompiiiicnls need not luve the sanu' duraliun nor recur with the same duty factor.    Due tu the 

Sporadic-Poisson Time Structure,   there is local positional uncertainty of a component 

occurrence.    The probability ol triggering a component at .;ny of the times k:. conditional 

In selection ol the ilh component is r   unless a component  is in progress      The state diagram 

for thi   ith comjionenl  has been shown m  F ig.   4. 4. 

I'o review,   the following basic steps are followed in the derivation ol the optimum 

adaptive receiver realization: 

1. Form the likelihood ratio,   f(X, ),   of the total observation    X 
k ' '     k 

IK<1.   2  :<' 

2. Obtain equivalent sequential realization of the likelihood ratio. 

f(X, i,   in which tin   receiver updates information after each unit observation,   x,    (Eqs.   3.8, 
k ' k ' 

3. 22 and 3  23) 

3      Describe signal ensemble in terms of components and a time 

si ruclure (Chaptei   IV), 

In this section the properties of the Sporadic-Poisson Time Structure signal are 

used along with Kqs.   3. 8,   3. 22 and 3. 23 10 obtain the adaptive receivers, 

1   1   Sporadic-Poisson Time Structure,   Healization I.       The derivation ol this 

sequential reahzalion begin.-. 'Aiih the specification ol the l.k'i ihood ratio of the observation 

over tin   interval    (0  t, )    which is known to be optimum.     This likelihood ratio is 
k 

f;x. 
all 
S(S 

OX,    s)p  (s  SNIds 
k o 

(5   11 

In Chapter III.   ii was .shown that this likelihood ratio could also be realized in a 

sequential fashion     The result was 

f,V   ''Vi'^kVi1 (3. 8) 
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Wl LTl' 

Mxk Xk_1)       1    fix    s)p      (s SN)ds (122) 
all 
seS 

and the information rt^arding which signal is present is updated by 

f(x    s)p     As  S.N) 
p. (s SN) = !L-!  (3.23) 

r(Xk Vl1 

For a finite number of possible signals,   the average sequentia) likelihood ratio as given by 

Kg,   3  22 can be written as 

f(xk Xk  ,) -   ^    f{xk ■s)pk_1's  SN) (5 2) 
Si S 

where the integration lias been replaced b    summation,    H the likelihood ratio of the kth 

sample ol the obsi rvation di-jH-nds only on the kth sample of the signal,  then ((x.   s)     f(.x    s ). 

This is a condi! ion which holds fur signals in added noise.    In this event,   the average sequential 

likelihood ratio ol Eq.   5, 2 can be written as 

<{h Vi' V(xk s^k-i(s'SN) (53, 
si S 

This it> stiii a .'ummation over all thi  possible signal vectors that could occur during the 

observation X        One can rewrite p,    As  SN) so as to include the generator process.    The 
k K--1 ' 

vector s in sampled form is 

iVi(s SN) L pk-i(srs2 skISN) (5-4) 

By definition ol a joint probabi ity,  p     .(sISN) becomes 
k-1 

Pk.1(SiSN)   P.^VV    ^k-i 8N,^-i(sk!srs2 sk-rSN)       (5-5) 

Now,  IV_i(si<  ■si'-s2 t>k  ,, SN) is the prolMbiiity,  before taking the kth observation,  of 

the kth sample ol the transmitted signal under the condition that signal and noise are present 

and one has exact knowledge of the k-1 samples of the transmitted signal.    This probability 

7 
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is not a f'juction of the observation but only of thi- previous samples of the signal.    However, 

the slate o, the k'.h sampk ("f the signsU depends only on the state of s     ..    In other uords, 

1Jk-liSk Sv^ \-vSS) ^(\\-VSS) [5.6) 

since the state of s,   is indei.endenl of the states of s., s_, . . . , s,    „.     Therefore Eq.   5. 3 can 
!'. ■ I     2 K-2 

be written a.s 

f(xklXk.1) "x^lV^rV-      'Vl  SNlgfs^s^j.SN)       (5 7) 
Sf s 

Now,  the sumrnation is over all the vectors,  s,   in the total spare S n( signals that could 

possibly occur.     Kxpandinr, this summation to sum over one  dimension at a time of IV signal 

vector   lUr each ol the k possible samples gives 

c c c 
1. n. i.n I, n, 

b i ii 

f,xk  ^-l' 
1       1    0      2       1.0     k       1.0 

f,xk \^\ sk-rSN)pk-i(srs2 sk-i SN) 

15. 8) 

Sim e the sums .ire finite,   the order of summation may be interchanged m any d-'Sired 

[ashion.     Thus.   Eq.   5, 8 can be written ..'s 

k     k-1 

i, n. 1, .' i. n, i, 

k     i.O    k-.     i.O    1     1,0    2     1,0    k-2     1,0 

'(xk V^K 
sK-rSN)Vi(srs2 \-i SN) (5.9) 

Now f(x,    s, ) depends only on the summation over s. .  and g(s1    3.    ,, SN) depends only on the 
kk " kkk-l 

summation over s,   and s.    .      Factoring these terms out gives 
k k -1. 

i. n 
I) i 

c. 
i,n. 

i 

c c 
i, n, i, n, 

1 i 
\ \ 

i, n. 
i 

f(xk xk-l,   ' f(VV ^\\-v 
'   ' Sk Ci,0 sk-l Ci.O SrCi.OS2=Ci,oV2=Cl.O 

^-i(si Vi ISN) 
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The term in brackets is a joint probability of k-2 variables summed over the first k-2 

variables.    This, by definition of marginal probabilities, can be written as 

c c 
l.r..        i.n. 1, n. 

SfCi,0 S2=Ci.O   Sk-2=Ci,0 

This permits us to write Lq.   5. 10 as 

Pk-i(srV   -Vi ^     1Jk-i(äk-i yN) 5 11; 

I i, n, i. n. 

<i*k\.l)-'       i ' axksk) ^s
k'VrSN,Vi(Vi SN) 

i-l     s.    c,   n s c,   „ 
k     i, 0 k-1     i, 0 

(5. 12) 

Mai y .if the ^(s. is.    .,SN) terms uf Eq.   5. 12 may be zero,   depending upon the generator 

process.     From Ciapter IV' tnc properties uf the geiierator process for the Sporadic- 

Poisr.on process are: 

S '" s c 
k       i.O'        k-I     i.O 

^Sk   Sk_;.SN)       l-,i    Inr/ 

Sk     Ci. Ü'      Sk-1   Ci,n 

(4. 2) 

k    i. 1 k -1     i.O 

L'(S,   s,    .. SN)      r (m/ h    k    k-1 i > 

s.   C.   , s c 
^ k    i.l. k-1     i.n 

(4   3) 

*{\ \-vSS]    1     ""■  VS.j-     sk-i S.j- 

2. 3 n. 
14   4) 

,(:,ksk_!.SN)      0 otherwise 14. 5) 

Substituting these generator properties into Kq.   5, 12 gives 

~-^- 
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k-1    k-1     1,0 k-1    k-1     i,n. 
f(x. Ip  =c      ) 

k    k    i,0' 

^.fix.   s. =c.   .) 
i      k     k    i, 1 Pi     t(si     i-c-   n;SN)   •   Pi     I   si     i = c. SN 

k-1    k-1     i,0 k-1    k-1    i, n. 
i 

J=2 
fix,   s.   c.    )p,    .(s.    , = 0        , i SN) 

k    k    i, j ' k -1    k -1     i. j -1 (5. 13) 

Now,  c       lias the value zero and for a known signal in added white Gaussian noise, 

f(xk -v  •■ 
xk sk "    T 

;5.14) 

where N is the noise power in the h.tndwidth W.    Therefore 

f(VSk     'Kü'      f,\-\     0}      1 5. 15) 

For COIA enieiire,   let  us use till' notation 

I)     (k)     p. (s,      c       SN) 
i. J ' k    k        i. j 

(5. 16) 

The interpretation of the probability,  b     ik) is that it is the probability that the signal sample 

at time I    is (he jth sample of the ith component under the condition that signal and noise are 
K 

present and that the previous k observations have been seen.     Usini; the b     (k) notation 
l, J 

aloiiL; with the de'.initton oi  f(x, ■ s,      c    „) lor signals in added while Gaussian noise as given 
k     k        i. 0 

by Kq    5. 1!).  one otHains 

h 
f (x.    X.    .) 

k      k- 1 -. \ 
i   1 

b.   „(k-1)  •  b.      (k-1) 
1,0 i, n. 

i 

. ({\.   s.      c,   ,) 
i      k    k       i,l i.G 

k-1) b.      (k-1) 

J  2 

f'x,   s.      c.    ) b        .(k-l)' 
k    k       i, j     i. j -1 :5. n) 
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Factoring out b.  „(k-1) + b,      (k-1)   permits Eq.   5. 17 to be written as 
1,0 i, n r 

({\\-v I ,. k-1) . b       (k-1) 
1. ■■' ', n 

1 [- i.) ♦ r.h\, s, - c 
i i      k    k ^ 

)--2 

f(x, is.      c.    )  b.      .(k-1) 
k    k       i, j      i. j-1 

(5   18) 

which is the expression for the average sequential likelihood ratio for the Sporadic-Poisson 

generator process. 

In this realization the probabilities h.    (k) must be updated as each unit observation, 
i. ) 

x, .   is taken.    In Chapter III the general equation for updating information was shown to be 
K 

,.V1   Vi's SN,f,xk *' 
p (s   >N) 

''W-i' 
13. 23) 

vVe now need to put this in the lorni of the b     (k) probabilities as in Kq.   5. 1H. 
I, J       ' 

Note that the denominator,  ' (x,   X,    .'   is a normalw   ig factor given In   Eq    5. 1H 
k     k - r 

Also,   as before    lei  f(x,    s)      f{X,    s, I.    A.s remarked earlier,   this assumption holds fur 
k k    k 

problems ol signals in added noise.    Expanding the .signal vector,   s,   in terms ol its samples 

permits Eq.   3  23 in be written as 

SV|     'Vi'VV     ■•sk SN,r,xk V 
•WV- -^k "^ .;- Y-~7 (5   I'JI 

Let us now .sum both sides of Eq.   5. 19 over the first K-1 samples .if the ith component. 

c. c, c 
i, n. i. n i. n 

i i i 

•sr ci.O   "2 ci.O sk-l  ci,0 
^(srs2 sk SN) 

c. c. c, 
1, n 1, n. 1. n cVw, 1 1 ^  i p^^s^s,,.    . .su  SMflx^   sj \-r"r    2' vk  "k' 

S'T ^     - C S t' 
1     1,0       2    i.O     k-1    1.0 n\  \-l] 

if). 20) 
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The sequential average likelihood ratiu, ( (x. IX .), is independent of the summation over 

the k-1 sample values uf the signal so that the denominator may be removed from the sum- 

mations,   i (x.   s, ; is also independent of the summations and can be factored out.    This means 
K      K 

that Kq.   5. 20 can be written 

1, n 1, n. i, n. 

sfci,0   s2'ci.O   sk-fCi,0 
Pk(srs2 skISN) 

f(xk sk) 
c c 

1 

\ 

f(x.   X     .)     s,   c s    c       s c 
k     k-1 1     i.O     2     i,0    k-1     i.O 

'Vl^S2 Sk,SN) (521) 

The lett hand side (if Kq.   5. 21 is by delimtinn <il marginal probabilities 

c c 
i. n. i, n 

i I 
i. n. 

p  (s     s,,..      ,s    SN)     p  (s     SN) 

sl  ci.O     ■s2 Ci,0    sk-l  Ci,0 

Therefore Eq.   5.21 becomes 

c c. c. 
i, n i. n. i, n 

i i i 

[(xk sk)   ^ v Pk^(srä2'     •% SN) 

P.(S, SN. brci,o b2 ci,o bk-rci,o 
'k    k 

f(xkXk.l' 

As before,  by definition of a joint probability,   we can write 

:5  22) 

(5  23) 

pk_1(s),s2,....sk SN)     P^^.s,,,     ■.sk.1ISN;pk_1(skls1,s2 \.VSN) 

(5  24) 

Now considering generator processes,  which can be expressed as a function g(s   Is     ..SN), 
K       K * 1 

we can write Eq.   5. 24 as 

Vl(Sl-S2 Sk SN) = Pk-l(SrS2 Sk-1  SN)g(SklVl.SN) (5. 25) 

Inserting this expression into Eq.   5. 25 results in 
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c. c c, 
i, n i, n. i, n. 

Pk(skISN) = 

'k "k'   - -   ■••   _      ''k-r r-^  k i 
bl  Ci.O ^^i.O sk-f Ci.Q 

f(xkIXk.1) 

k    k-r 

5. 26) 

Since this equation involves finite summations,   the order of summation can be interchanged. 

Summing with respect to s        first and factoring out g(ö   ;s     ..SN) from the summation 

over the first k-2 samples of the signal,  since it is independent of that summation,   results 

in 

pkisk  SN, 

c c c c. 
1, 11 I. II 1. II 1, II 

f(xkisk)   ;_' ^is^.sM : '      \..   1
P 

bk-l  Ci. 0 'SrCi,0 -S2 Ci,0 '^-2 Ci. 0_ 
k-rVV 

f(xkxk- 

•sk-i,SN) 

5  271 

Once more by definition ol marginal probabilities,   the summation in the numerator over the 

first k-2 samples can be wnllei   as n,    ,(s,    ,   SN'      Therefore Ku.   5  27 can be wnllen as 
k- 1    k-1 

i. n 

i(x.   s) 
k    k -{\ VrSN)1,k rvi SN' 

'V^k SN' 
Sk-fCi,0 

'•■W-i' 
5. 2K 

Insertion of the generator proct is,  g(.->     s     .,SN).   forth«   Sporadic-Poisson process results 

iii .i i ( du( tion ol terms under the summation sine   only c   rlam transitions are permitted 

These properties wi re previousl) defined by F-C)s    4, 2 through 4   5.     Equation 5  2H then takes 

mi itin •   basic Ion   s 

"k^k c-, 0 ^^ 

l-i p.    ,(s c    „   SN)  • p     As c SN] 
k-1    k-1     i.O 'k-1    k-l     i.ii 

"^k-l1 
;5   29) 
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Pk(VCi.l SN) 
nx ix    ) 

k     k   ' (5.30) 

1V_,(s  =ci   i_1!SN)f(x   Is  =0.   J   
p.Cs, =c       SN) -       k'1    k    '.J"1 'k    k    U (5.31 

k   k    i, j 

for 1 = 2,3,..., n. 
i 

If we uav tlif IJ,    (k) nutation as defined by En.   5. 16,   Eqs.   5. 29,   5. 30 and 5. 31 become 
i, j 

[bi0(k-l)to.  ^(k-J] (l-cj   b.  n(k-l 
i  I    i. 0 

b.  r(k) -  (5.32) 

r.  b    n(k-: 
ii,0 

1) * b,     (k-\?. fix, Is, =c.   ,) 
l I     1. u 

'i,l>" 

k    k    i.l 
b    .ik; =   ——- —! ^— (5.33) 

?"'>   IX       ) 
•R   k-r 

b    j.,(k-l)f(x    s -c     ) 
b     (k) =   —^J-J_        _J^.K__1JJL (534) 

J f(\;Vi! 

for j =  2, 3 i 

5. 1   2   Operation of the Adaptive Receiver.    Tl.. basic equations of .Realization I for 

tin   S(i(.i adic-Pinssoi    lime Structure are summarized in Table 5. 1. These equations can be 

interpreted b> cni sidermn a simplified,   illustrative example.    Suppose there are two possible 

components.   C    and (    .   each with three possible sample values; i. e. ,  b = 2 and iij = i^ = 3. 

Table 5 2 summai i/es the recent i  design equations for the example 

"Wi' 
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TADLE; 5. i 

BASIC RECEIVER DESIGN EQUATIONS,  SPORADIC-POISSON TIME STRUCTURE 

REALIZATION I 

Optimum Detection Out|)ul 

^k1   "^-i^Wi1 ;3.8) 

Sequential Average LikelÜKH>ö Rati' 

f(Xk  ^-l1 "..ü1^ 
b       (k-1) 
,n

1        J 
l-i    -i   f(x,   s.   c    ,) 

i        i      k    k    i. 1 

J  -^ 

l)       ,(k-l)f(.\,   s,      i- 
,,      I • J ■' k     k        i. 

:5. 18) 

Class! I '.ca I ion - Compinitni  Idi i itifu alion and Posit u HI 

r- ~i 

11-. 

"W-i1 

1)       ik- 
i. ii 

i 

1 

(5   32i 

i, 1 

IK- 1)1 b   , ik- li  •  1)       ik- l)f(,\,    s, 
i, U i, n k     k     i, 1 

nxk xk-r 

(5   33; 

I)     (k) 
i. J 

(5  34) 

(i>r j     2.2.      . , n 

Classification - Component Identifieation 

p.lc'lSN) h     (k) 
K j = 0      U} 

5  35) 



TA ULK 5   2 

[LLCSTRATIVK EXAMPLK OF  Uli-   MASK    tQlATIONS 

SPOHADIC-POISSUN TIN''-: STHUCTL'RE 

REALIZATION I 

Optitnum DcU'CtiDU Outjjui 

f(X. J      c X,    ,ifix.    X,    .) 
K k - 1        k     k -1 

(3, H) 

Sfquciilial Avei.i^f LikrlihuiKJ Rati 

"•W-i1 bj 0(k-i; • bj 3(k-i) !)•[»',  0(k-l)  • b,^(k-l) 
'lf(Xk Sk ^.l' 

1),   .(k-Lflx,   s.    c.   .,) • b,   ..(k-l) «x.   s.   c.   „) 
1,1 kk     1,2 1.2 kkl.J 

t 2.0,k-1,-,)2,3,k-1 (l-.J b^^k-l)  •b2^.k-l) 
'2'{\  Sk r2, l1 

b^^k-Uflx^ >k c2i2) • b2]2(k-l!f(xk sk c2i3) [5 3P) 

CTasüitualion - Cotupoiifiil Idcnlificalion and PDMIIIDII 

bi.o(k) 
[ b1  0(k-l).bli3(k-l) 

f,Xk'Xk-l' 

(!-■,) 

5  37) 

b       (k) 
■Vo^11 <bi,3(k-T/(xk V^l.l' 

H^k-l' 
[5, 38) 

b      (k) 
b1 ^(k-l^ix^s^c^^ 

f'^k^k-l1 

(5. 39) 

bI.3'k) 

bl,2(k-1)-,xklskt'l  3' 

f(xkIXk.1) 
[5. 40) 



4ü 

b      (k-1) • b    Jk-l) (!-'  ) 
b      (k) = ^-^— -: ''    -J i- 

f(x. IX,    J 
k     k-1 

5  41) 

^.l'^ 

^b2 0(k-l) ♦ b2  3(K-1) 
'2(,Xk Sk C2, l' 

f<Xk  ^-l1 

15. 42) 

b2   2^' 

b„   .(k-Dflx. Is.    (■    9: 2,1 k     k     2, <: 

fi\ xk-r 

5  43) 

b    ,(k-l)f(x   Is    r       ) 
t,,    (k) "^ K    K    ^J 

^k'Vi' 
5  44) 

Classification - Ccjmpoiunt Idvnlificatioii 

p, (C    SN)     o.   n(kj • b.   ,(ki  • b.   „(k) • b,   .Ak) rk 1.0 1.1 1.2 1. J 
(5  45) 

2 
p (C   ISN)     b2 0(k)  -1)2   jlki • b2  2(k) • b2  ^ik) (5  46) 

Lach term in the .sum o( F.q.   5, 36 and each numerator ui  t.qs    5. 37 lhn)u^h 5  44 is 

>lu  product i>( ihri'f basic factors     One factor is a probabilit) or combination of probabilities 

of the b     (k-1) type      These probabilities coi.'-.ir all pa.st information relevant to the optimum 
i. J 

detection.    The secoi.d fai tijr :.' a probabiJitj associated with the generator process which i.s 

!,.i.,.   l-i,,   l-i,,,   or  1       ! lu   tliird factor is a likelihood ratio term,   Mx,    s        c      )      This 
12 12 k     k        i. j 

Is th»   factor which extracts the proper neu  information from the unit observation,  x.      In 

addition,   .i normalizing factor,   l(\,   X     .),   appears in the denominator of  tqs.   5. 37 through 

5. 44.    In  Fi^    5. 2,   the sequential quantities that are calculated are represented on a time axis 

Tie b     (k-1) terms relate to the time ju.st prior to Tie kth observation.    The probability 
1 ■ J 

associated Aith the generator process is combined with the b     (k) terms to obtain an 

a priori probability about what will occur during the observation x        These are combined 

with a  f(x,    s,    c      ) term to get  f(X. ) and a new set of b.    (k) terms, 
k     k     i, j k i. j 



f(X 
k-1 

I)     (k-1) 
i. J A 

\ 

k- 

■17 

b     (k) 
i. J 

Vl 

lime 

Fig.   5.2.        Sequential Quantities,  Sporadic-Foisson receiver,  Realization I. 

In Fig    5  !i a state dl igrani is shuwi; for nur illustrative example    Using this figure 

as a reminder ol the various possible component positions let us interpret each term In ihe 

sum oi tq.   5. 36      The term I),   „(k-1)  •  b.     (k-1) is the probability after k-1 observations 
1 ' * .   "J 

k-1 

1.0 

1, 1 

1, 2 

1. 3 

1,0 

1,2 

1,3 

2.0 

2. 1 

2.2 

2, 3 

2,0 

Fig.   5.3.       Sporadlc-Poisson process,  illustrative example. 



48 

that cumponeiu C    tws been selected but is either c.        or at its last component sample, 

<-.   .,    at time t     .      This is multtplied l>y the probability,   l-i ,.   th;ii the compunent will not 

start at time t,   under the condition component C    has been selected.     This is then mull lulled 
k ' 

by the likelihood ratio uf the kth observation II the component C    had been selected but is nil 

at time I,       This likelihood ratio lias the value on« 
k 

The interpretation of the second term m the sum ol  Kq    5  36 is that 

) (k-1l     .    H (lr 
1,  U L.  V 

is   th,-   M.-.-lvih-iilv    IO..--   1/ - 1   ..h 

J    ' 
(.rvTtinns that component  C    has been 

selected and will start at time t,       This probability is multiplied by the likelihood ratio ol the 
k 

kth observation, if the first sample of the component C   ,   which is c. is present .it time I 
1.1 K 

In the third term ol Kq.   5.36.   b     .ik-1) is the probability after k-1 observations 

that the iirsi sample ol   component C   ,   denoted by c     ..   was present at time t Also 

hidden is a factor ol one which is the probability that the second sample of component C 

c,   ,..   occurs at lime t,   If the first sample of component C   ,   c.    ..   occurred at tune t      . 
1,2 k 11 k -1 

This is then multiplied by the likelihood ratio f(x    s    c       ).   ol Hie observation,   x        This is 
K      K       1 , ^ K 

the likelihood ratio of s,   had the second sample,   c,   „,   ol component C    occurred at time I, 
k 1,2 k 

The interpretation uf the fourth term ol Kq.   5 36 is anala^ous to that ol the thud 

term.     The lifth through eighth terms refer to component C   ,   and their interpretation is 

analapius to that of the first four terms      The reader will notice that tern's ol Kq   5  36 

appear individually in the numerators of Kqs.   5.37 through 5.44     The denominator, f(x.   X       i 

is a normalizing factor     All eight probabilities \>     ik) could be displayed as .i classificatio'.i 

output,   but it is more likely that the only information wanted is which of the two components 

is presented.    The component identification output,   which can be displayed is given by 

Eqs.  5, 45 and 5. 46 in Table 5. 2 

In Kig.   5. 4 a block diagram of Realization I is shown for the general case.    This 

receiver operates sequentially in time,   extracting and updating information alter each 

sample of the observation,   x        Two outputs are provided sequentially in time     One Is the 

logarithm of the likelihood ratio Irom time zero to time I, ,   which is CnfiX, ).  the detection 
k k 

output.    This output is used to decide presence or absence of u recurrence phenomenon in the 

Interval (O.t  ).    The other output is the classification output.  p.(C    SN).    This output provides 

information,   in the form ol updated probabilities,  as to which component has been recurrent 

from time zero to time t, 

-■■"■—i 
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The summer stores a number which represents (he logarithm of the likelihood ratio 

of the observation X,    ,      When the next observation,   x, ,   is made,   the possible eomponenl 
k- 1 k 

waveform samples,   c      ,   stored in fixed memory arc used to form the likelihood ratio of tin 

ktti observation for each of the possible components and component positions     These individual 

likelihood ratios are weighted by the updated probabilities of tin  various components  inü 

component positions which are stored in th»  temporary memory and which arc the result ol 

combining initial knowledge and information from the observation,   X This weighting is 
K * I 

performed ii: the IMX labeled i'hl.v    X,    ,).    The output ol thi.s box is added to (iif(X     ,), 
k     k- 1 k- 1 

which is already in the summer to form fnf(X, ),  the detection output over (0, t, !.    Tins output 
k ' k ' 

is compared with .i threshold to provide a yes - no decision 

Simultaneously,   information from the observation,  x, ,  as provided at the output of k 

the average likelihood ratio \it>\ is combined with classification inlorm.ition from the obsei \a - 

lions,   X     .,   in the probability update;-.    The probability  updater performs the operations 

specified bv Las.   5.32 through 5  34     The updated probabilities,   b     (k).   repUce b     IK-1I 
■      ' i, j ' i. j 

in the temporary memory,   and the receiver is ready to accept the k-l observation     A 

classification output could be taken directly from ihe temporary memory      It i'j more likely 

that a displaj ol ilit  updated probabilities,   P, 1^     SS].   i'.q.   5  35 in Table 5   I,   is wanted and 

th.s can be obtained b\  sumlIunL, b     Ik) o'-'i r   ilJ  1 
i.,J 

5. 1. 3     Other Heceivtr Healizattons aid the I'se of Memory.     In Section 5. 1. 1,   a 

."ealization of the optimum receiver for a sporadic-recurrent co'iiponeni is presented 

Although the receiver realization discussed here was obtained by (ormai manipulations ol a 

likelihood ratio equation,   its nature is intuitively sat'sfying     ll uses each observation,   x 

tu   'learn    as much as possible which component is present      This information is stort I n 

the form ol thi   b     Ik) matiix n   the temporary  meiiiory      This knowledgt   is ki pt current by 

comlmung knowledge ol the generator process,   the Information contained in all previous 

observations,   and inform.tt ion obtained m the klh observation     As time progresses,   this 

receiver    adapts ' to ihe particular component waveshape that is recurrent,   and it   "adapts" 

locally io position witlin   .i component. 
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In this rrali/atimi b     lk-1) rnu.si lie kept up to date as fach observation is taken. 
i. J 

Tlu'se piobaln I iiics express up-to-daif knowledge on which Cümpuiient is present as well as 

cnmponeiit positional i nloie.iat ion      Altliou^h the receiver takes into account all the possible 

tune patterns ol components,   its memory need not store all of these patterns      Realization I 
b 

has a temporary memory which is continually updated and which has a linile size of n 
I   1     ' 

words       Ilus finite memory is a primary practical feature of this realization. 

Heahzation I is not unique      in Appendix A.   three other realizations of tin- optimum 

receiver are presented.    Heali/atmn 11 (see Appendix A   1) is similar to Realization I except 

for the fact 'l.at information about component identification and component position are 

updated separately      Therefore,   Realization tl requires a finite-size temporary memory of 
1) 

n    words for component positional information and I) words for component idenlifcation 
1   1     ' 

i i.formatii m, 

Another receiver realization is Healizatior III (see Appendix A   2).    This is a 

receivt r which has a channel lor each of the b possible components      Each channel calculates 

the likelihood ratio ol the observation conditional to presence of the ith component and the 

channel outputs are then weighted by the a priori probabilities,   p  (C    SN).   of the selection 

m each ol the components,   and then summed      This receiver looks "less adaptive" since 
b 

p (C    SN) is not explicitly updated at each step in time n. words of temporary memory 
i   I    ' 

are needed to store component identification information and positional information and b 

words to ston   f(X,    C )  terms, 
k 

An Important practical realization is Realization IV (see Appendix A. 3).     It is a 

b-channel receiver that appears to require the least number ol computations of the four 

realization presented      The basic design equations are summar.zed in Table 5  3 and a 

block diagram is shown in   Fig.   5. 5      M)  comparing Table 5   3 with "Fable 5   1  one can see 

the simpliticati m in computations ol Realization IV      In this realization   a quantity 

Q     (k)      f(X. )b     (k).    instead of 1)     (k).   is stored m temporary memory for each possible 
i. 1 K    i, J i,i ' ■ ' 

b 
component and component position     A finite-size memorv of n   words is needed to store 

i   I      ' 

the Q     (k) terms      The updating equations for the Q     (k) terms are,   however,   simpler than 

those required for the b,    (k) terms in Realization I.    Moreover,  in Realization IV,   the 
!. J 

likelihood ratio is calculaU'd by simple addition of the Q     (k) terms and the classification 
i. J 

output is obtained almost as simply 
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TABLE 5. 3 

BASIC RECEIVER DESIGN EQUATIONS,  SPORADIC-BOISSON TIME STRL'CTL'Rt 

REALIZATION IV 

Opiiniuni DfttH'tiun Output 

b i 
flX,)     ^ O     (k) 

k   ri jo   '-J 
(A ;HI 

InforniatU;!! Updatin 

Qi.o,kl 0     I k -1) • Q       i k -1 i 
l.O 1. ii 

ii-i  i (A   35) 

CVl(k) g  ,ik- n • g     ik-1) 
i 

i      k    k    i. 1 
i A   36) 

g     ik)      Q        .(k-Dfix,    s,    c      ) 
i. j i. j- 1 k     k     i, j 

ir j      2, 3,        . II 

Classification - t'nmpuiit'nl IclciiUficatuin and Pnsiiion 

IA   37) 

g    ik) 
1)     (ki 

lJL . 
i. j f IX, i 

k 
IA   4 5) 

Classificaticii - Cumponcnl Identififatii 

ii g    ik' 

p, (C1   SN1 I.     (k)        J  0 

k JO     '-' I,Xi 
K 

IA   46) 

Figuri's 5 (J and 5 7 .show .' mure ilci.uli-d block diagram of Realization IV' for signals 

in added whit«' Ciaussian iioisi-,    Et^urc 5 6 shows oiu1 ihanncl ol the [tisi portion of ())<■ 

receiver which computes f(X,)p,(C    SN).    Each channels only    looks'   for the Uli conijjonent, 
k    K 

taking into account all possible time patterns of that component,     figure 5. 7 shows how each 

—- 
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Dl these chamit'l outputs are combined to furm the detection and classification outputs.    This 

realization uses the logarithm of Eqs.   A. 35 through A. 37.     New information obtained in the 

unit observation,  x. ,   is combined with information obtained from previous observations in the 
K 

series ul adders shown tu the left ol the r    delays where T    is the smallest possible time 

shift on a component      The unit observation,   x      is first processed to determine how likely 

il arose from the various possible positions ul the ith component.     This processing consists 

of correlating x.   with each ol the possible positions that a component could be in and adding 
K 

2 
bias terms, f'u-, - c 2      I hese omputs are then applied to a series of adders,  each 1        i, J 

separated by a :    delay     The outputs of these adders are the logarithms of the Q.    (k) terms 

which cnni.Mii all the information about the likelihood of the jth position of the Wi component 

bein^ present during the kill observation     'I tiese terms are summed over ] giving the likelihood 

tlial the ith coniponen! lias been recurrent.    As one can see from Eq    A. 37,  the Q,    (k) term 

is obtained at time t      and il is calculated from a similar quantity,   Q     (k-1),  at time I, 
k i. J k- i 

The ■    delays provide the memory delay for this computation     The   'lojp" on the far left in 

He    5. 6 calculates Q    . (k)  • C,)       (k) alone with its logarithm which is used to make the 
1,0 i. n 

i 

; ompi tations specified by Eqs.   A. 35 and A. 36 

The output.   f(X     C Ip.K     SN),   becomes one of the inputs to the remainder of the 
K K 

receiver shown in Fig.   f)  7      The detection output,   fnHX  ),   is obtained by summing the 

terms, fIX    C )p, (C,    SN) of the I) channels     The classification outputs are ubtained by 

taking logarithms ol f(X    C IpJC    SN) for each clwniu-l and subtracting the logarithm of the 

detection output.   fnf(X, ) 
k 

Figure 5 H shows another versio" of one of the input channels,  which could be used 

lii place of the realization shown in Fig    5 6.    It is quite similar except it implements 

Eqs.   A   35 through A   37 directly,   rather 'han the logarithm of these equations.    Ar a result 

some ol the adders must be replaced by multipheis. 

The important feature in common to all lour realizations is the fact that the size 

ol the temporary memory remains fixed and "slides" in time.    This is of practical importance 

not only for receiver design '.:ut also for receiver evaluation.    A nonsequential resUzatton 

would have  requiiid a growing memory     Such a realization is impractical to buiid.    A 

receiver must be designed before it can be evaluated,   the sequential or adaptive realizations 

I . ovide simpler expressions to work with. 
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5.2   Optimum Acla|)lm' Rect'iver Design,   Synchronou.s-Pmssnn   linn   S t r u c 1 u r t' 

In this .section .in adaptive realization ol the optimum receiver is presented for 

detecting signals with a Synchronous-Poisson Time Structure This time structure provides 

interesting cases m that the amount ol time uncertainty is between iht periodic and sporadu 

time processes. The uncertainty is m the exact componenl waveiorm transmilt»d and in ih. 

component recurrrnce times associated with tlie Synchronous-Poisson Timi S'ructun Our 

of the I) components is selected for transmission and the same component recurs thrnuuhoul 

a total observation,   X, Primanlv  foi  convenience and simplicitv,   H  is assumed that all 

components in the finite ensemble a i *■ ol common duration and the possible start ing times ol 

a component are known 

Due to the synchronous nature of the time structure,   (here is no positional uncertainty 

of components      Therelore.   the i.  inipon'.'i.t samples can be combined into one stale      Thus 

C'.,U      Ui,ü   li   I)' 
,,1  represents absence and C 

it)' i. 
c l   i ( pit senls 

1 
1 

presence ol the ilh componenl      The probabili \  ol t nggtiing a ci-mpoiienl    condition.il to 

selection i il tin   iih component    is .        The state diauram for tin   itti ci mponent  ti.is bi'en shown 
i 

in li^    -4   5 

The basic  steps in ihe development ol the n cei vei   reali/at MMI for detect ing signals 

with the Synchronous - Poisson Tune Structure began with steps  1-3,   given on page J5      !n this 

section tin   properties ol the signal lor the Synchronous - Poisson Time structure are combined 

with l-.qs    3  Ö.   3   22 .met 3   23 to obtain tin   adaptive rectM\ir 

5.2. 1      S vnch; onous - Poi.ssi in Time Structure,   Heali/ation I.     In the Synchronous- 

Poisson case,   component position is known exactly,   but whether a component  is present or 

not is uncertain.    Therefore the receiver can operate sequenliallj  m time blocks equal to a 

component duration      In this section x,   i-. an n -dimensional observatio" having tin   duration 
' k i 

ol a component and S,   is an n  ■dimensional segment ol the signal    s      S,   S... . .      S   .   which is 
' k i 12k 

either the ith recurrence phenomenon with tlie componenl on,   ('    ,     or the ilh recurrence 
i   1 

phenomenon with the component off.   (' With this change in the notation,   tin   sequential 

average likelihood ratio analagous to Kq.   5. 2 is 

ukxk-i'       /,xks,1V 
s< S 

SN) (5, 47i 

■if 
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The .Signa! tMisemble space.  S,  can be partitioned into b disjoint subspaces,  S.,    F.ach S. 

sub.spaci- fimta'.ns all those signals that might  result from the ith component alone     This is 

a result ol the restriction that a given component,   C .   is selected and fixed at the beginning 

u( each long transmission.    Thus.   tq.   5  47 can be written as 

f(x,   X.    .) fix,    s)p,    ,(.s  c'.SNlp,    .(C1   SN) 
k     k-l ,     - k ■   'k-l 

i   1    sf S 
:5 4Hi 

Kxpaiidmg the vector,  s,  into sample form,   Eq.   5. 1H becomes 

C 
ii 

i,l i. i. 1 

"xk xk-i'    - -     ■■ nxk srs2' 
1      1,02      i  0    k      i  Ü 

|)     AS.. S„.        , S    C1, SNju,    .(C1  SN) 
k-l    12' 'k-l 

:5  49) 

Since s is the receivt r input it tht re were no noise 

fix,   SS,,.    .    . S, )      fix,   S 
u y If W k k    k 

(5. 50) 

Due to the independence of the signal recurrence (see page 301   we write 

'Vl,SrS2 Sk,C,'SN)     "k-l'W   ■.Sk.i:C,SN)Pk_1(SkIC1.SN)       (5  51) 

Substitution o( Kqs.   5. 50 and 5, 51 into Kq.   5. 49 results in 

f(xk xk-r' 

c   ,    c   .       c   . 
1,1 1,1 1,1 

i 1 s, c   n s„ c   ,, s,  c 
1     1,0    2     1,0    k     i,0 

r(xkS^k-i(SrS2 sk-i C'SN) 

[5. 52) 

Vi,skc'-SN),,k-i,cl,SN1 

Since we are dealing with finite sums,   the order of summation can be interchanged.    Re 

ordering the summations and factoring,   Eq.   5. 52 can be put in the form 
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C 
1, I 

.1 

k        1.0 

^kV^-i'^^^'1 

^ 

c  1     c  1 1,1 1. 1 

si S.Ü^S.Ü  sk-i c
l.o 

"k-l,SlS2'        'Vl   C-SNI 
c
). 53i 

J   J 

whcrt' the lein! m brackets is equal tu um'.     Thcrefun 

b 
,i 

"W-i1     , "k-i11 
1   1 

f(x.    S.    C    ,)(),    AS.   C    n  C . SNi 
k     k      i. U ' k -1    k     i.O 

flxi   S
L.   

c    I'IV   .(S,    C     ,   C'.SN k    k     i.lk-1    k     i.l 
(5. 54. 

By definition ul the signal ^«'iierator procebtj ennsidered hcri .  lEqb.   4.7 and 4. Hi. 

p,    ,(S,   C    ,,   C .SNI      !-.    and p,    .(S,    C     ,   C . S>.       i   .    Also fur ^t-ro energy -sinnals in 
' k - 1    k     i, 0 i k - 1    k      .. 1 i 

added noise. f(.x, ■ S,    (.     ,1      1.     We can tlun put  hci.   r). 54 in its Im.;! form. 
k     k      i, 0 

"W-i' P,    ,^A   SN)   l-i    • i   fix,   S.    C     ,1 
k- 1 i        i      k     k      i, 1 

if). 551 

II is also necessary to obtain i-quations that update which component is bein^ 

transmitted.     The updating equation is 

p, Is  SNi 
k 

fUk   slp^jls   SN. 

f'\   Xk-1' 

(3. 23) 

L'SIIIK the deflnitiüii of conditional probabilities,   this equation can be written 

An expression similar to Kq.   5. 55 with b      1    in which case p     .(C    SN)      li arose from a 

Synchronous-Poisson trigger process m the p.iper,  "A Sequential   Test for Radar Detection 
of Multiple Targets. " W.   li.   Kendall and I. S.   Heed,  IRE Trans,   on Information Theory, 
Vol.   IT-9,   January.   1963, 
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pk(s  c'.SNjp^C1  SN) 
f(xk s)p    jls i C1, SN)pk_ jfC1 'SN) 

5. 56) 

Writing s in samjjlc form and summing tjuth sidt's of Kq.   5. 56 over all possible .signals for 

I he i ill (i impi mt'iii gives 

n, (C    SN) 1 k 

C 1. I i.l 

si S.o^S.o'kS.o 
fVsrS2 \ (;SN N) 

1, i.l 1.1 
,.1 

i. ! 

k-1 

s   c    "^V'V.^^  ^s   c     s-c.      s.    c    "k-^rV 
,.i   ,.v   \  ^ i.ü bl   N.O  b2      i.O   \-l   Li,0 
(      SN) -1— — ■— —'  

f' \     X 
k     k-1 

S^^C.SN, 

5. 57) 

I lit   In .u keted lernia on each side of  f-.q.   5. 57 are equal to one so that we have 

lf,\ sk ci^k-i(Sk Li,o cl'SN)' f(\ VS.i'Vi'VS.r0'5^ PJt     SN)      p       (C    SM     l- -—  1 ' = 
l{\   \   i' k     k-1 

5. 58) 

The terms in brackets m the numerator ol Kq.   5. 5H become,   as before,   l-i    •  i   f(x,IS,    C"    .). 
i       i      k    k     i, 1 

1 he updating equation for componenl  information is 

pk(C    SN) 
J:^l;/ukSkCKj: 

<{\ xk-l) 

P.^IC    SN) 
(5. 59) 

Kquations 5. 55 and 5. 59 .ire the basic equations for the adaptive realization.     Defining the 

component conditional sequential likelihood ratio .is 

fix.    X,    , ,C )      1-,    •  ,   fix, IS. -C    ,] 
k     k-1 i        i      k    k     i, 1 

5 60) 
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me ran pul F.ij.   :'), fif) mti) th«   fi irii; 

|j 

' SN,f(xk xk-r' 
'  x,.   X,    ,) p     ,•(     SNif(x,    X,    ,. C  I (5. 61) 

nd  1 ii    5. Vt ( .i h Ix- pul  in I hi   luriii 

p.    . c'   SMfi.x     X        r1, 
, .1    ... k-1 r.        k- 1 ,    .,,, 

p i (     S\ i :i  b2 

'\\-l' 

I In   h.i -.u   i'( i i i'. • r 'i( .si^!   i-qudliims (ur t (us rcali/al um .i rr summari/i d i     I .ihli' ri   -1 

lAHLh   :')  4 

MASK    1U ( MV f H l)l-.Sli,\   f-gUATIONS    S YNCHHON'H'S-PÜISSü.N   IIM1-   STHIC   TlUi 

ICÜMM'JN L'()M!'C)NKN'I  DIKATIÜN 

HKA1 IZA I ION I 

0[il i nuiiu Di In I in!, Out^jul 

(IX (IX,    ^((x,    X,    ,) i3. Hi 
k kl        k      k   1 

St'(|ui'iitial AM i'.i^r l ikil i In ii K1 Halii 

(l.xk   X^,. ^p^^C1   SN.r.x,   X^j.C1, -5.61) 

Corii^oiii'iil t'iiiidil ii mal Setjuci:! ia I  L.ikclihiiod Halin 

(Ix,    X,    ,. C1)      l-i    •  ;   ((.x,   S,    C, 1 (5, 60) 
k     k- 1 i       i      K    k     i. 1 

Classification - Componrnt Idnil i Jicatinii 

p    (c  SNinx   x      cM 
p (C1   SN) K      k   i (5  62) 
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5. 2. ?     Otjfratiun of [he Adapt ivt Kt rfu >i .     Figure 5.9 is .i hl.ick ili.i^i.im ol 

Realization I fur conipoiu'iits in addi'd white (iaussian luiisc.    in this ease 

K        1 , 

c-   .c   .1 
1,1      1.1 

(,\sk(i.r " ( 5, ti3i 

where N,   the noise power in the reci iver t)aiidwidth.   is one.     The receiver input,   v ,   is 
k 

correlated with each pnssibh   componenl 1I1.H IHLIKI occur    and tin   hias (      ,■ C    ,    2 
! .   1 I ,   1 

subtracted.    These outputs are then passed through a nonlmeanty, 

fnrtx,    X,     ..C1!      fnSl 

(      i   t      1 i,l      i.l 
■> 

k      k i        i 
5. (34) 

v_ 

This iniiiliiie.uit\ depends on tht   tri^^er probability.   •       which is .IIM> the ilut\  factor in '.he 

Synchronous - Poi sson Time St rue tun .     Tins nonlinea nty is called the        nonhni ant \        One 

could wnti   this equatio'. in words as     H\,    X,    .1      ll-i   )   I likelihood ratio of .\    üivenlhi 1 k     k-1 i k 

select ion ol llie ith componenl liut no component occur rem e)   •  •    I likelihood ratio oi \ 
i k 

^iv(     the si lection ol the itli componenl and ( omponenl oecurrtMict I      Phus,   the likelihood 

ratio ol tin   observatioi .   x   .   is i ompuled as il .i compom nt  oci urred and tins is    vvatered 
k 

down    bei'a use ol the recur rem e urn ert.n i,t\       F i^ure  fi   10 allows .i plol ol t In   ,   nonlim arit\ 

11 ir si veral \ a lues o| . 

The outputs ol tin se nonlineanties.     f! x     X      ,   '. .in   then weiuhted l)\  uiKlated 1 k     k - 1 

kin "A ! i" It^i .   11     .1 C    UN i.   as to which component ,s bei n^ sent.      Phis forms the sequent la I 

.IVI i.I^I   i'.krl hood ratio,   fix     X     .).   which is coml)in<  ' with   ft X       ) to provide tin   detection 
K        k ^ 1 K" 1 

l lUtpUt , f ( X,   I . 
k 

Ihi   receiver also updates p     .IC  !SN),   the component information,   top (C    SN) and 
K ~ i k 

stores thesi   updated probabilities in preparation fo1   the next observation.     I lusi   probabilities 

can he read out to form a classification output. 

r)  2. 3     Other Receiver Realizations and !hi   Use of Memory     In Section S   2   1.   ,i 

realization ol the optimum receiver for a synchronous-recurrent component is presented 

Realization I has a temporary memory which is continually updated and which has a finite 
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.size of b words.    Although the ri-ci'ivcr lakes Into account .ill the possible linn   patterns o( 

compoiuMits,   its memory need not store .ill ol ttiesi' patti rns      This (mite menior\   is n 

pnm.irs  practical leatuieul this realization. 

Two i it her" realizations ol the optimum receive!   .11 >   deri\ ed in Apj)en(!i.\  H. 

Realization III (see Appendix H   li   is a b-ch.innel receiver.     The likelil d ratiu 1 il Hit 

observation X    conditional to presence of ea,h ol ilu   h components is computed sequential^ 

in separate i ."uiimels and the outputs are weighted bs  '.he a priori   probatjililies,   ,1  (C     SNi, 

ol the selection ol e.u h ol the components and then summed.     In this receiver b w.irds ol 

memor) are needed 1  ■ store ilu   liki'ii'iood ratios,   "X     C 1. 

Kealization I\' is an important practical recener since il appears to be the simplest 

(sec Appendix H   2).     The basic design equations arc summan/ed in Table ')   :'> and a block 

diagram is show n in  I' 1^;.   :>. 11       Phis  is a b-channel  1 • cei\ i 1        i he ith channel correlates 

TABLL 5. 5 

HASH.   RhCKIV'KH DISH.N  KQIATIONS.   S VNC MHONOIS   1'OISSON TIMl-  STHLCTLTU 

IU.AI.I/AI ION IV 

üpl Uli. (11   l)eli et loii   OvU|iul 

b 
flX, 1 g ik 

k 1   1     ' 

h   Pi 

Inlormat 11 m Updating 

y iki      g lk-!i   I-;     ■   .    f'x,    S,    C      , 
1 1 1        1      k     k      1. 1 

H   17 

CTassilu alion   -   Component  Identilicatioi 

g Iki 

k 
H  2(;i 

the input  with thi   illi compmn nt and subli.o Is a bias term (      C      2       This quantity  is then 

led into a .   m inl ineant v to lonn g (k).     The g Iki terms are stored and accumulated for each 
1 1 

ol the components by   means ol IIK   channel adders and tin   T    delays      Thesi   terms an 

exponentiated,   summed    .1 d the logarithm formed to ..      in the detection output.     The 
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classification outpul is obtained In subtracting fnfiX   ) (rom tin   output   ol c.n h ol tht   rccir 

culatin^ delays.     [}y compari'ij;   lal'lt   5. 5 with Tab)     5. *J one ian sei   tile simplification in 

computation of F^eaiization IV'.     In ilu.-i realization h words ol  metnorv  .in   required to store 

Q(k)      f(X  )p (C    SM in temporär)   memory. 

The receivers prest-nted in Section r)   2 arc different  realt/ations ol the optimum 

receiVIT.     The particular  realization ol the optimum  reci i \ i r chosen determn'es whether 

the receiver "looks" adaptm       F^ealizatmn I ki.s an adaptm   leatun   ii> thai i omponenl 

information is updated.     On llu   olhei   hand    Keali/alions  III and IV  have a separaii   i hannel 

for each possiljle componenl .■ id the    learning    ol which component  is hem^ sent  i^.  nol  an 

oljviilus feature 

A problem  n. recem i   design th.il  has emi r^ed when dealing with tune uncirtaints 

and nonperiodu   comj)onent.i  is llu   prol)lem ol  i    ct iver i omplexity or memory,     oinci   it  Is 

uncertain whether   a component uill ^t.'it or not    the receiver designer i.i presented with an 

expoiicni lalh  i i -« i ML; number ■!  tinn   patterns oi     ■i;nals.     In the Sy m hroiiDUs- Pois.son   Ii mi 

St. Lict'ji i .   li'ie enst tubli   i )l pnssibli   si^nal.s ^rows like b2     where k is t hi   index oil 11me and 

b is I tic i ui in In r  ol i   'iiiji H lent s  m iln   c unpi mi i.l  t I,.-M mbli .      I In   impli IUI i lal n m ■ n' simul.it n m 

of such a  n eel Vei   riesi^ned m    llu   ba.M.s    ■!   I ti;s  f. r 'A i; |.;  i :.M nilili   c.i;    i .iputl \'  In i   imi    imprac- 

tical.     Oi. tin   other hand,   (In   adapt ivi    'r .->equcnt ia.1 rcali/at n in-, prcsei n-d ha vi   bei i, lie.M^ned 

by des (    ibm^ useful signal in.sembles unli reel ly in terms    if n imponi i.ts       i In   result  is a 

receiver design w hu h ut ili/es a fixed sizi   memurs       llu   impoit.ml  reasm, lur   waul m^ 

sequeiilial or adaptivi   n alizations is cot  then   ada|)live-lookin^ nature,   liut the lad  that  this 

is a ua\  ol realizing the optimum receiver with a fixed size memory, 

5   3    OiMimum Adaptive Receiver  Design.   Pirnidu   Time Structure,  I'i.kiinAi. Hepelition 

Frequency. 

In this sccti in adaptive realization ol the optimum receiver   is presented for 

detecting signals with .i  Periodic  Time Structure.     This is the most certain of the three time 

structures considered and it differs from the sporadic and synchronous cases in that it  is 

learnable.     One of b comp ■nents is selected for transmiS'     in   md t_ne same component   recurs 

oenodicalh  Ihr .u^hout a total  observation,   X,       The repetition Irequency and start  ol the 
t—. i a   _        K 

period are initially unknown but  fixed throughout a transmission. 
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Ihr (icvflnpmi 'il   if the rt1'.-fivi'r in this svi'tion us similar In the development (if 

1 he receiver (it si^ it-d tor I lie Sporadic ■ Poisson Time St rue lure (see Sect ion b. I).    The 

Mrsl tliree steps are ^iven on pane .(5      In this section the properties of the signal for tfie 

I'enodu   lime Structure are coml)ii:('d wi'h Kqs    3   H,   3.22,   and 3  23 to obtain the adaptive 

receiv ci 

S   3, 1    i'ei MKIII    Tim!' Structure,   L'nknou n KepctitUMi FroqueiKy,   Uralization I     This 

reali/ation follows tlu   development of the receiver for ttu   Sporadic - f'oisson   Time Structure 

i.;r.ii   iii Section 5. 1   1 up to V.a    5   12     That equation for the sequential   iverage likelihood 

r.itm was 

l. n 
li l 

I. n 
1 

f(X,      X, i f IN,      S.   I 
k     k-1 , k     K 

1   '   sk l,.o Sk-I  S.O 

K's,    s,    , .^N' P,    ,'s,    .   SN) 15   12i k     k-1 ' k-1    k-1 

Kt call th..t the signal prupert ii'S are clef meet in terms i ■! the Generator process,   gls.    s     .. SN) 

by Kqs.   4.9.   4, 10,   a;.ü 4. 11.     I lu   possible stat   s ol .i signal sample,   s      ,iv the possible 

component samples,   c      ,   for i       1,2,   . , , b and i      1,2,   . .,n,,     I'he number of samples    n 
' i, j J i '        '     i 

nl a component can m general Ix   variable so that b possible components can be defined to 

represent b possible repetition frequencies     c        is not an allowed state in the periodic case 

simc some portion nl a component is always present      II '.ie development in Section 5   1   1 

up through It)   5   12 is modified for the periodic case by summing over the allowed states, 

c     , .c    _,        . c        .   an anaiagous equation becomes: 
i    1      1,2 1, n 

l 

k     k- 

i. n 

1   1   s     c 
k    i, t 

r(xksk) ^s
k VrSN)Pk-i'Vi SN)      '5-651 

■sk-l ('l,l 

The properties of the generator process for the Periodic Time Structure arc 

g(sk  sk_1,SN]      1     for    sk c.  j 

g(s. Is,    ., SN1      1     for    s,   c    , K    k    k-1 k    i. 1 

Vi ci.j-i   for   J   2'3' 

k- 1     I, n. 

(4.9) 

(4  10! 

g,sksk_1,SN)      0 otherwise (4   11) 



70 

Usrm ihesi' properties and Ihi' notation of Ko.   5. 16,   b     Ik)     p, (s,    c        SN),   one can write 
i. J ' k    K     i, j 

Eq.   5. 65 as 

n 

f,\   Vl1 
i   I 

i 

li       (k-Df'X,    s,    i'    , 1  • 
i. 11 k     k     i.l 

i J 

li        Jk- llflx,    s,    f      ) I 15   66i 
2     ' ■ J"' k    k     i ■ J  I 

J 

This is the equation for the sequential average likehhoiid latin 

The equations that u()ciale component identifieation and posiiioii.il mfm m.ition are 

obtained by follow mt; steps similar to those that lead to Kqs. 5 32, 5, 'i and 5 34 for the 

Sporadic-Polsson Time Structure     In the peruxiie ease the sums are only over the states 

Thus  Kq.   5. 2H becomes 
1,1     i. i. i 

('xk -v 

'V-Sk SN, 

l, n 

Sk-1   r,,l 
"k-i^k-i SN)^k sk-rSN' 

5  67) 

'•\ Vi1 

Sutjstitutmg the pr()()erties ol tlu   generator process i Kqs    4.9,   4   10.   and 4   111  Into Hq    fi  6' 

and usiilt! the notation li      Ikl      (), Is,    c SN),   one can write the '.-omponent  updating 
i.jkki.j 

equations as 

I)    ,ikl 
i, I 

b        Ik-llflx,    s,    c     ,i 
i. n k     k     ;. I 

i 

"XK    Vl' 
(5. 6HI 

b     ik) 
i. J 

b
1,J-l'k-1)f(XkISk(l,J

) 

"\ Vi1 
'5  69) 

f o r j     2.3.        ,II 

where component  identification information is obtained by forming 

p, IC    SN) b     Ik) (5   70) 

The design equations for this realization are summarized in Table 5.6. 
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TABLE 5. 6 

MASK   HLCKIVKH DESIGN EQUATIONS,   PERIODIC TIME STRl CTURE 

UNKNOWN REPETITION  FREQUENCY 

REALIZATION I 

Optimum Del'■( I ii MI Output 

f(X. i      f(X,    Jfix.    X,    ,) 
c k-1       k     k-1 

i3  8) 

ScquiMitial A\ci-;i)|f  I.ikciihoitcl Ratio 

f,Xk   ^-l' i        it" l   1 1 

1 

I)       (k-lK(x.   s,   c    ,) •  ''     1),       .(k-Dflx.   s,   c     )     (5 661 
i. ii. k    k    i, 1        - n    i. J-1 k    k    i. j 

Classification - Component Identification and Position 

i. 1 

I)       (k-li'(x,   s,   c    ,) 
i, n, k    k    i,I 

i 

f,Xk  Xk-ll 

(5  68) 

1) 'k-iwjx,   s,   c     ) 
b   (k)     '-J'1—  -JLJL_UI 

i. J 

Classification - Component Identification 

^k^k-l1 

for j     2, 3, 

(5, 69) 

p (C1  SN) b.    (k) ■5. 70) 

5. 3. 2   Operation of the Adaptive Receiver.    In Realization I,   the Periodic Time 

Structure,  the optimum receiver stores information obtained from the past observations,  X 

and initial knowledge of the situation,   In the form of probabilities,  b     (k-1) (see Table 5. 6). 

Since the interpretation of the terms b.    (k-1) and ((x. Is, =0.   ,) is similar to that given for 
I, J k    k    i, j B 

the Sporadic-Poisson Time Structure in Section 5. 1. 2 it will not be repeated.     Note that in the 
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periodic receiver Iherf is no state, c    ...    This Is refleiied in ttir absence of h    „Ik-D,   1-; 
i. U i. 0 i 

and i    terms in the receiver operations. 
i ' 

5. 3. 3   Other Receiver Realizations and the I'se of Memory     In Realization I    com- 

ponent identification and positional information are stored in a temporary memory as the 

probabilities b        ,(k-li.     These proliahilities are updaied after each unit obser\at|on    x, 
b ''J"1 k 

i   1 

n     words of memory are needed to store these proliahilities 
i 

In Appendix C,   three other realizations of the optimum receiver are presented      In 

Realization 11 (Appendix C. I    component identification and positional information are 
b 

updated separately. n    words are required in a temporarv memory to store component 
i   1    ' 

positional wifor mat ion and I) words to store component  identification inform.it ion 

In Realization HI.   there is a channel  for each .if the li possible components      Kach 

channel computes the likelihood ratio conditional to presence of the ith component and the 

channel outputs are then weighted by ihe a jjrinn proliahilities of each of the possibli 
b 

components that could occur. n       words are needed to store component  identification .ind 
i   1   ' 

positional information and b words to store the MX.    (' i terms. 
K 

Realization IV 'Appendix C. 3)  is the simplest of the four realizations.     These receiver 

design equations are summarized in   Table r)   7 and a block diagram is shown in  Fi^.   5   12 

TABLE 5 7 

BASIC RKCLIVER DESIGN  EQUATIONS,   PERIODIC TIM1-   STRUC   ITHl- 

UNKNOWN REPETITION  FREQUENCY 

REALIZATION IV 

Optimum Detection Output 

b ", 
f(X,) Q     Ik' 

k          . ,       i. J 
i   1 l   1 

IC, Ki) 

Information U^K^aU^ 

Q    ,(k)      Q.      (k-l)r(x,   s,   c    .1 
i   1 i. n k    k    i, 1 

i 

!C   111 
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g     (kl     Q       .lk-l)((x,   s,   i- 
i. j i. J" ' k    k     i  j 

C'hissit ualiuii - Ci ini[)iiiifnt Idt'iil'lication .uid I'DSII um 

lor 

iC   12 

1)     Ikl 
i. J 

Q 

(i X, 

(A   441 

Classification - Compoiu'iit Idi'iitificatw 

lVC    SN. 

g    ik' 

JL
: 

f(X, i 
k 

(A   4f 

Here Ihr rt'cnvtT updates the quar.titit'S g     ik)      f(X, U)     Ik) directly .'Sinu Kqs    C   11 and 
i. J k    i. j 

C   12      From the Q     Ik) tt'rnus the likelihood ratio can be calculate 1 by simple add it ion 
b ''J 

i   1 
ii   words are required to store the Q     Ikl terms juM as m Heahzation I      However,   b\ 

i i. J 

comparing Table.-i 5.6 and 5.7,   ii ran bv seen that the operations performed In  Realization !V 

a re muc h si mpler 

In all four receiver realizations for the Periodic Time Structure,   the receiver 

memory is finite.     I h;^ result is not surprising here since this signal ensemble dues nut 

^row with time 

5.4   Upliinum Adaptive I^eceivtT Desitjii.   Periodic Time Structure,   Known Hepeliticn  Frequency 

[n this section an adaptive realization ol the optimum receiver is presented for 

detecting signals uitli a  Periodic Time Structure m which the repetition frequency and the start 

ol th<   period .ire known.    This i.i the usual classical periodic case.    One of b components is 

selected (or I ransnussmn and the same compotu nt  recurs periodically throughout a total 

observation,   X, .    In this case the observations can be processed in blocks of time equal to 
k 

a componont duration.    The notation used is the same as that used in the Synchronous- 

Poisson Time Structure,    In other words,   x.   is an n -dimensional observation having the 
K I 
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dumtinii i;! .1 i i imijimciit mid S.   is an n -dinu'iisional st'^nn-iit or the signal.    The onlmium 
k I 

rfccivcr is the .same as that which would ii'sult  if i    wtse si'l f(iaal to one m  tq.   H   17. 
i ^ ' 

Table 5   r),      Iht   i-quatioiis  for the n-Cl'lVlT design art' prcscnlfU m TaflU' 5   H 

TAHt.K 5. H 

MASK   HKKIVKH DKSIGN  EQUATIONS,   I'FHIODIC   IIMF  STRUCTtHE 

KNOWN Hf-l'KHHON  FHtQUENCY.   KNOWN STAHT OF PKHIOD 

HKAI.tZATION IV 

Optimum l)ttf( tiiin Output 

nx 
I) 

k' Qi(k) 
k      i   1        ' 

H   141 

fnli iiniat r in Updati nj^ 

g,(k)      gik-DMx,    S,    C   I 
i i k     k 

15. 71) 

ClasHification - CiitnpoiuMil Idcnlific alion 

g (ki 
n. 20) 

lit us coiisuiir  this rt'icivcr in more drtail for- ttic case of added white Gaussian 

use.     In that case,  for' the noise power,   N,   equal to one, 

<l\\C) 
"k1 

,i      e'e1 

'5. 72) 

and so 

g ( k)     g I k - 1) e 
i i 

V c 
,,i ,.i 

.i      c ■ c 

(5. 7 3) 

But tn  repeated application of Kq.   5.73,   Q (k) can be written as 
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Q (kl     y (()) c 
. 
-k^(     .C1 

2 I  1    ] r;   7 4 

and 

f'X, g mi 

-k 
C1   ( ' 

1   0 

J 1 ' ^  751 

From this t-quation mic can sec that the obscrvatiiHih themselves fan first be added m 

synchrono'js inti'rvals and this sum rm rclalrd with each ol '.he [xissihle compoi ents 

When the foniponetil  is known ex.ictly.   .i monotone function of the likelihood ratio, 

which is also optimum,   is simply 

k 
MiX, i      C 

k 'r)   761 
I 

In this case,   the observations themselves may be simply accumulated and the sum correlated 

with the known component.   C 

5.5   Comparison of Receivers for Synchronous- F'oisson and  Periodic Time Structures 

It is int"restin^ to compare the o|)timum rec( ivers for the Synchro'.ous- I'oissi n 

and  Periodic Time Structures whi'ii the repetition Irequency is known      First,   consider thi 

case of component  known exactly 'CKKt  in added white tiaussian noise      A block diagram 

of the optimum receiver for the Periodic Tune Structure,   obtaiin.'d by setting b      1   in the 

equations of Table 5   H,   is shown in  Ki^.   5   13a      A realization of the optimum receiver f"i 

the Synchronous-Poisson Time Structure,   obtained by setting b      1   in Table 5   5.   is shown 

in  Fig.   5   13 I) 

III tin   periodic' case,   the adder and T.   delay  recirculate the input  waveshapes. 

x,,x„ x, .    Recall '.hat in this periodic case,   x    represents .in input observation n| 2VVT, 
12k i 1 

samples      After the observation x, ,   the receiver has formed \,-\n<   .    -x,   and this average ' k 12k 

waveshape is correlated with the component. 

The optimum receiver (see  Fig.   5. 13 b) for the Synchronous-Poisson   Time Structure 

does not simply add the input waveshape in synchronous intervals.    Instead,   a more abstract 



quiUitity,  •' lik« lihood ratu/,   i.s rt'Circulatt'd.    Thv observation,  x, . is first correlated uiih the 
K 

kiinwn ciinipi  t i i waveshape.   .1 bias term is subtracted,   and this quantity is (hen fed inln a 

.   iionlinearity.   whuti is a function of the duty factor.     The synchronous sum of such non- 

lunar fund i'ins 1 il 1 hi   11,put signal and muse waveshapes are slor«'d. 

^exl,   let us compare the optimum receivers for ihr Synchronous-POISSO.I a.id Periodic 

Iimi   Structures when 1 h<   compone..! is known statistically (C'KS).    A l)liick diagram "f the 

receiver for the Periodic Time Structure was shown in Fi^.   5   12 and the receiver for the 

Synchronous - Poisson Time Structure «A.is shown i,.  M^;    5   1!      The receiver for the periodic,ill\ 

recurrent componenl is simpler in two respects, t ,-.e number of recirculating delays and the 

nonlineanties.     In the periodic case,   the observations are recirculated by means of a 

single adder and .1   I . delay.     These outputs are fed into b parallel channels where they 

art   correlated with each of the possible components that could occur,   exponentiated,   and 

summed in a final summer      In the receiver for the synchronous case,   however,   a likelihood 

rat;o.   rather than an input signal plus noise waveshape,   is circulated     The input observation 

is correlated with each o( the possible components,   led into a iionlinearity which depends mi 

the dut\ factor.   ,     and then stored and recirculated      Fh  se outputs are then summed !■■ 

(orm tin   detecti lutput      Thus    the receiver for the periodn   1 ase is much simple.' since 

tin' input waveshape can be recirculated with a single adder and di lay 

'nput 

x. ■M4- 

Delay 

. i 

s (Input)- C J r 
detection 

Output 

^i^;    5. 13a     Opt.mum receiver,   CKE,   Periodic Time Structure 
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Input 

k 

M^    5   13b     Optimum rcc-fivci ,   C'KJ     SynfhrniKius-Pnussnu   Iinic Strurturc 

5. 6    Summ.ii v nl ('h.iptti   V 

In this fhapttT i «pi i mum n , ri \ t r d. si^ns h.u v bvov (ievrlojed tn detect .; iccurrti.ce 

pht'iiiiiiu'iii in in noise.    The reeei v 'la ai e t m\e v.u ymy m the seiis<   11, it the\  .i re ( ap.i'ilc i il 

processing an incredsmgly longei  ubsi'rvatinn and are capable nl making a corresponding 

optimum decision as to presence or absence o| the n currence phenoineiion in that observation 

There is uncertaint\  in whic'   componerl.   'lut ol a finite clash ol component .,   uill be selected 

and there is uncertamU  in the recurrence lime.s o( a com()one:it      Three basu   types "f 

recurrence-time uncertaihts are considered. Sportidic-POISMHI.   Synchronous-Poih.son    and 

P( n.-!u- 

I IK   approai'h used m desigwing the i eceiver has been to solve an over-all optimi/ation 

problem and thru to realize this optimuro receiver in a   st-cjuential manner ttiat works on ,i 

component basis      In otner words,   since the priniar> ^n.il is detei'tmg the recurrence 

phenomenon during the observation    X      the likelihood ratio ol the observation,   X   ,   is formed 

and put into an equivalent form in w hu h component information is updated     Since the 

receiver ile\ flMomenl  starts uilh the likel i hm K.1  ratio ol the observation   X, .   it  is uptimum 1 k 

We are ..-.ssured that (h<   ope ration oi the receiver on a local component basis is correct since 

the i ecei vei   design is a result i it ti ansfor ming this likelihood rat io into an equivalent form 

A contrasting method 11| attack VMIUU! be to formulate the detection problem on the basis ol 

detecting a single component and to then combine these results in a manner that would result 

in an optimum decision over the entire observation 

Providing the required amount ol  receiver memory is a basic difficulty utnch emerges 

in the design o| the optimum receiver for nunpertodic components.    There are as many signals 
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in the signal rnicmhlc da then- arc fompunt'iits in the coniponcnt cn.sciiiljlc mull iplicci l)\  tilt 

number nl |) is.siblf ( ninpnncni tinii' patterns.    This is a fixed-size ensemble for all time for 

i umponeiits rerurnn^ with a PeritxJU' Time Structure     Howeser,   for the Sporadic-Pois.son 

and SyiK'hronuus - Poisson Time Structures,   the signal ensemble «rows uith time     11 the 

reeeivers an1 designed usin^; classical terminology,   they become loo complex.    To obtain 

receivers with .i fixed-size memory  or receiver structure,   the signal ensemble is described 

i  directh in terms oi components and the lime structure.    Other lime structures besides the 

Ihi it- considered i mild be studied, 

VVr have seen Imw the optimum receiver can be put into different forms     Different 

aspects ol the receiver uperauons arc explicitly displayed by the particular realization 

chosen.    It is an interesting sidelight that sequential realizations,  such as Rpaiizalions I 

.Hid II    often appeal   to w n k in an adaptive manner.     These realizations display an explicit 

updating ill componenl information,   giving them a    learning" feature.    On the other hand,   in 

Realizations HI and IV.   it is not so obvious that the receiver is learning the componei.t 

-.elected since the receiver dues not explicitly work with  component quantities.    In any of 

the realizations,  classification information can be obtained legardless of whether the receiver 

appea is  to use  it  i n   m it 

The quanlities stored m the receiver memory depend on the time structure of the 

signal and the particular realization chosen.     For the Sporadic-Poisson Time Structure, 

component identification and local component positional information are stored and updated. 
b 

In Realization I this inlnrmation is coinbined in the b     'k; matrix. n. word;; are 
..J .-j    1 

requirea in a temporary memory to store this information     In Realization II,  component 

identification,  o, (C    SN1,  and local component positional iiiformation,  b'     i k),    are storeu 
k b ''J 

m separate temporary memories. n,   words ol memory are needed tor b'     (k) and b 
i   1    ' b ''J 

words lipr p. (C-1   SN1 terms.    In Rcali/.ition MI,       n     words of temporary   nemory are needed 
i   I   ' j 

to store component identification a.id positional information and b words to store f (X. I C ) 
b k 

terms.    In Heali/atmn IV, words of memory are needed to store Q.    'k) terms. 
i   I '"J 

fur the Synchronous-Poisson Time Structure,  only component identification information 

must be stored since there is no uncertainty about component position,    'n Realization I this 
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information i.s stored a.s p. (C    SN)   and I) words of temporary mcmor\ .ire r«-quirpd     In 

Realizatloi'.s Hi and IV,   b branrht'S arc nci-did liir each ol tht   possible (.'.miporient'-;. 

For the Periodic Time Structure,  uiknown repetition frequency    component 

identification and local positional information arc stored in a teniporar\  memory      In 
I) 

Realization I this information is combined in Ihr b     'ki inaiiix and        n   words an   needed t" 
,J i   1    ' 

store this information      in Realization II,   com|)onent  identificatii n and positional mlormatioi 
I) 

have been separated so thai n   wnrds arc needed to since positional inlormation and b 

unrds for identifu at pH, information.    In Realization II 
I) 

i   1 

words are used in store 

■ i, component identification and posili il information and b wnrds to store 'X     (' I terms 
b k 

In Realization IV. n     words ar<   used to store the CJ       K
1
 terms     When the rei)etition 

,   1    ' ''   ; 

frequency is known a.s well as the start of the period,   only I) worüi ol compo.ient identification 

information must be stored 

The fixed-size memory or receiver structure of the adaptive realizations presented 

in this chapter is important for tun reasons      Fust,   it is a necessary realization m terms 

of providing a practical  receiver implementation      The second interest  is in regard to optimum 

receive i   performance.     In order to exam in«   t he eltects ol time uncertamt v on detei tabi lit\ 

for the optimum receiver it is first nect ssary to design this receiver      Theadaptr.e 

realization provides a receiver that is n   ire niaiu«^eah!e,   m man', cases    and can therefore 

be evaluated analytically or b\  simulation techniques with a digital cor.i|)utei        I'he much 

simpler adaptne realizations enalib   us t    stud\  how linn   uncertainty affects (he pecloimane t 

ol the optimum receiver,      this 's an area ol sludv  thai begins in Chapter  VII 
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OI'IIMI M Kl (  MVKH OISKA      SPM IA1   i ASKS 

In ( li.q)! ( i   \' I In   'It ML i   nl uptunuin i ci i i \ i is u .is carnctl thrnu^h in ratlur 

I;II,I ral li i ins      In llns c h.ipli i  M'Vcral  misc i llaiifnus casi-.s nl rt'ccivci  df-si^n uill !)<■ 

( iiiisidtr i d        IMi   i i.ulrr wlm is mirrrstrd m rcccntr pcrfnrmaiuc and Ihr rllrct nl tinic 

Dhi i i i.in.c i an c<< In Chapter VI! withnul In.ss nl continuilv 

i,   I    Finil(   ( lass nl  I't-rnKln   K^ual Am^iliiudi   I'ulscs.   Kmiwn Exactly Except for F?ept'tUion 

1' requency. 

Cniisiilri   the prnblem nl nptinium detection nl a perindic pulse sequence when tin 

puls,   waveshape is knnwii exactly hut the repetition frequency can be one of a finite number 

■ 1  \aluis       llus ( lass nl signals ran be tlmu^hi  nl <is a finite (lass nl permdically recurrent 

( ninpnnt :iis 'A In ii   each cninpnnent has n   sample values,     tacii component is then nl the 
i 

Ini in ( c     ., 0. 0, Ü,        . U1  in which the number of component samples is equal to n . 

I In   various possible npii itmi. In'quencies are specified by stating the class of n   values. 

An\ nl the basic lour realizations could nl course be considered,   but  Realization IV 

is tin   simplest and we VMII cnnsidir it      from Table 5.7 the information updating eiiuations 

an   i^iven bs 

Q     ikj      W       ik-liMx,    s,   c 
i. j i, n k     k     i. 

IC. Ih 

g     Ikl     g       .ik-lifix,   s,   c     i 
i   I i. J *' k    k    i. j 

ii  j     2.3 n 

(C. 12) 

HI 
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Bui fur signals in acktrd white Ciaussian noisi 

(■(x,    s,       C      !       1  Inf  j      2.3, 
k     k        .. j 

'(>. '.< 

Ku.   C   12 1 HTiimcs 

Q     (k)     g ik- 1) lor j      2.2. 
i, j i. j-1 

id   2? 

The dcti't'tiun output,   tht   likt'lihoocl ratin rA tli<   obsiTvalnin    X   ,   i.s ^u< i   In 
k 

(X, i 
i   1 

g    (ki 
i. J 

[f   13i 

which can bf written usir,^ Kq.   C. 11 and 6.2 as 

f(X, i 
k 

i   1 

n 
i 

f(\,    ;,,    c      .1 g        tk-li   • (,) ,lk-11 
k    k    i. 1      i.n „      i. j- 1 

i j  2 J 

(6. 31 

II all pul.st .s arc ul equal amplitude "a",   then i a tor all i and Kq.   6. 3 can In   written a.s 

h li        i 
nx i    fix,  s,    a)       g     ik-D • g      .(k-n 

k k    k .      i. n ,        ., i. J-1 
i   I i i   1    j  2 

(6   4) 

Bui 

J  -' 

g       ik-11     i - g     ik-n 16. ül 

Si I Kq    6, -1 fan be written 

MX, )      I) • 
k % \   ■" • 

g     i k -11 16. 6i 

From  Kq    6. 6 mu   can see ihai iln   optiinum ri'eeivi r forms the liki lihoixi ratui of the unit 

observation,   x   ,   i^iven a |)ulse is present and subtracts from lln.^ IIK   value one      This is 
k I) b b 

nuiilinhed In   I hi   sum Q        lk-ll     which  is   HX.       i n       is ( I,     So g 
,i,n k- 1       ,     k - 1     k - 1      i, i; ,I,II 
ill i   1 i i   1 i 

has the inti rprt tali ( bein^ the likelihood ratio of ih<  observation X        limes the probability 
K -  1 

alter taking Ih    (k- list observation tlut thei k- 1 ist iibservati(m is the last sample value just 

I; 

prior to a pulse occurrence.     Kven thouuh T X, ) requires   ml\ the sum. g       ( k - 1). 
k ■ ,i,n 

i   1 i 
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Ixitli i "inp    i : t uli ui liiaiinn .tncl poa tional Information must bv updated to kvvp the sum 

U|)   I    •   lUl i 

6   2    l'i ki i >u n DuM   I-.K i   i 

T!ic po.sMhihis    il .i i   iniporifiit ifiurnn^ with .) duty factor which is one of b 

pu.s'-ihh  (lui\ hu i   is ii.is .ilii,iil\  IHTII incorporati'd into thf receiver design equations juice 

can have .i tlilN fcut  \.iK:c   :   i   i-ac'h pos.sihle cotnponent.     F'or example,   if the component is 

known exactly  (C'KI-i .mil tin   lime .structure Is Synchronous-Poisson,   Realization IV becomes 

a single cro.sscorrelati ii  iliat ! or relates the unit obst r vat I on.   x. ,   with the component C and 

subtracts the bias term ( ■ (     L'      This is then fed into b parallel i   nonlinearittes ;'.nd these 

(nitpiiis are summed,     ['he lilock diagram of such a realization is shown in Fi^.   G. 1. 

G   3   0\ t rlappr g Kecurri i I component Versus N'onoverlappuig l^ecurrenl Component. 

Kxa m^jle 

In pn vious  -.ections.   all signals considered have been assumed to be composed of 

IIOIIO\ eilappi nu recurrent components.    Overlapping component examples can be formulated 

in.i similai   manner      I he receiver design,   however,   rapidly increases in complexity 

since ovei lapping means many more states are now possible. 

In illustrate an overlapping component case,   consider a two-sample sporadically 

recurrent component.    Since there are only two samples to the component,   there is only 

i.r-e possib,    overlap position.    This overlap situation is defined as the c        state.    The 1 ' i, z 

slate diagram (or this case is presented in Fig.   G. 2.     The updating equations follow the same 

general patterns as before.     The results for Healizatimi IV are 

^ g     (k)       Q,   n(k-l) . Q.   Jk-1) 
1,0 1,0 1,2 

(1-e ) 
1 

(6.7 

i. 1 
Q   .(k-l) - g,  Jk-l)  i  f(y. Is. 

1,0 1,2 i      k    !■ ' i   w k "k Ci, 1* 
(6. H) 

Q.i2ik) Q    .(k-l) • g.    (k-1) (I- c.irix, is, =c.   J 
i.l i. z ',       k    k    i, 2 

(6.9) 

g.   (k) 
1. z 

g   ^k-u . g.   (k-u 
i.l i, z 

i-.f(x,   s  =c.     ) 
i      k    k    1,2 

(6. 10) 
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Fig.   6.2.        Sporadic-PoissDii procrss for ith component,  overlapping components. 

.mci ttic over-all likelihood ratio, MX. I.   becomes 
k 

f(X, 
i   1 

g     (k-l; • g   „(k-l) 
i. U i.2 

l-i .)  • i   f(x, is.    c-     .) 
i i      k    k    i. 1 

g   .(k-n • g    (k-i, 
1.1 1. z 

( l-i   lf(x,   s,   c.   .) • i   f(x.   s.   c      ) 
i       kki.2 i      kki./" 

(6. 11) 

IIK   si,ui  diagram for two nonoverlapping components is shown in Fi,;.  6.3.    Now,   the 

updating rqualiims for Healization IV' become 

QU0{M g  , (k-n • g   „ik-ii 
i.O 1.2 

l-i   I 

nil fix, is,   c g   .no     g  n(k-ii • g  jk-n h nx, is.  c   ,) 
i.O 1.2 ii      kki.l 

(6. 12) 

(6. 13) 

g   Jk)       g    .(k-Dflx,    s,    c    „) 
1.2 i.l k    k     i. 2 

(6. 14) 

and (he deli ction imtpul is 

flX,! 
k 

i   1 '][ ^   .(k-l) • g   „(k-l)       l-i    • i   f(x,   s,   c    . 
i.O i,2 i        i      k     k     i, 1 

g    .(k-Dffx,   s.   r 
i.l k    k    i, 2 

(6. 15) 
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Fig.   6. li.        Spoi'adic1-Pdisson process for ith t'oiripniifiit,   nonovt'rlaijping cornpt/iicrits. 

Cumparing tqs. 6. 11 aint fj. 15 n is appart'til lhat il i otiipnnfiil uvcrlap is possible 

the necner funi|)lt'.\itj iiiircascs. it is importanl to nolr, Imurvi t, that (In ri'CfiviT ran 

still he realized with a fixed si/t   memory  when mMipcun nl overlaj) is possibl« 



CHAPTfK  V'Il 

PKHFOHMANCi   C)(-   !lll   ()!'I l\HM ADA !• I I VI-   IH-( l-.I VI H 

t'h.iplrr.s  V and VI cinisidi i.d si vcr.il i)|)iinium rt-icivfr tlcsi^iis.    Alihou^h tin .sc 

rciii vcr.s .iii   opt imal Inr signal dt'lct'tiini,   I he dt'li il inn pirlnrma m •• rt" mains In be i II\ r.sl i - 

^a'.iii.    Di ii-ci 11 HI priliii-in.niri .   which may In  summarized l)\ ,i rect'ivcr npcraiin^ 

i luirai IITIMM   (HOC),   dipt nds upnn wavt'fnrm unciTtaini irs and nnisc nf the particular 

prnblcm      Mir Miri\ir drsi^ns in C'h.ipirr V art' rather ni-neral.    in this cliapter the 

perfnrmanfe nl the nptimum receiver i.s evaluated for several specific signals.    Emphasis 

will hi   placed nn evaluati ! snme special,   u.scful examples of the Synchrutious-Poisson 

and l'i nndic Time Structures.    The evaluatinn nl an nptimum receiver for the detection of a 

signal with a Symhrnnous-Pinssnii Time Structun   is new work.     The evaluation of the 

rei eiver Inr ,i I'ermdic   Iinii   Structure signal is taken from the literature .i.id is included fnr 

r i mi pa i is mi purposes I Hef.   1 ■. 

We are interested in the Inlli'uin^ items 

1.     Ilu   npeial.on ol an adaptive receiver realization 

?.     Detection performance ol the optimum adaptive receiver for some 

speiial cases. 

3.     flliit nl cnmpniienl uncertainty nn detectabilily. 

■!.     Kffecl nl componei'l recurrence time uncertainty on delect' bility. 

5.    <   impanson between the optimum adaptive receiver and the simple 

I'M IL:\ detector. 

6.    Comparison of the performance ol other suboptimum receivers 

with 1 he i ipt i mum ri'ii i \ IT 

Before considering these items,   let us briefly review the basic tecnniques of receiver 

e\ a luatmn. 
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7. 1 Review (.( Reffiver  Evaluation 

1 In- detection perfuriiianee DI .i reei'iver piTdirmance ni.i\ \n   sumniari/ed on a 

receiver operating charactt ri-stu   ifUX).     I In   H(X   IM a ^raplmai meaiih ol portraying tin 

quality   ol deti'dion in a situation involving .signal,   :ioi.s(   and a  i"eceiver (Hel.s.   1 and  191. 

When noise i -. presenl,   Ilu   dett ction pi n( t s.s  ii always acioinpanied 1)'.   t lit   possibility ol 

making i rrors.     In ihi   basic del ision problt in Ihi n   an   Iwo t\pes ol errors,   falst   alarms arid 

misses,   and tw o t\ |)(s ol  cor reel  decisions,   cor reel  delect ion and ci if reel   rejei'l ion.     A  lalsi 

alarm is tlu   resuli ol respoi.di n^;    si^ih'l present    u In i, 1 In   noi.ii   ^as actual 1\ tin   c.iust    md 

a miss is thi' result o|  responding    signal abseilt    win:, signal \K A-, indeed present.     A correct 

detct lion  is lln   resull     1   responding    signal pn s( ;.l     v^ In n  siniull  u,i-i actually present,   .md 

a cor reel   reject i   ,1  is I In   result • i|  respi mdiii^    signal alls et, t     wht n Mt;i..il w.is  mtli ed 

absent,    In  a detect 1 on problem the 11   .1 it   prob.ibilit ie.s nss^ n- Mied wii h each 11| t hesc   1 \pt > , i| 

errors and ctirreii det'isions.    Tin   in.1,ill 'i, ustil I >r 1 in ^t   prtibabilii ics is 

p(,.\ \) probabil lt\ it lalsi   alarm 

pi H SN I p''1 tb.lbi iil> ol n  m iss 

1>(A SM probabilit\ ot a ctirreel detection 

pi H S' 1 I"'1 ibabilit> 1 il a ct ir reel  rt JI 1 lion 

when 

A 

H 

SN 

N 

is tin   n spi inst M^na I pn si nl 

is lln   n spi msi SIL ii.i i  absent 

tin   hsp itht MS signal  mixed with noise 

I In    li\ pi ittiesiM 1,1 il >i    a b tin 

I In   pn in,. In III M s    .1  1 1 1    1 s  .1   il 1   ir n 1 :  dt , is !■.   s ., 1 .      1 il   mtii pt ndeiil  sn.ci 

I'(A   SN'   •   1"M   SN'       1 

a nd 

I>(A   N)  •   P(H   M      1 
1 7. ? 1 

'herelore all ol the available 1 ilormatioii can be loiiveyed b\  a plot nl tin   relationship 
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Ijctwfcn ihc probability   of rlr-tcction,   I'IA  SN),  and the probability of false alarm,   PIA   N). 

Such a pldi  i.s macii   by dcterminir^ Ihc prub.ibilily of dftcction versus Ihc probability of 

false alarm for all possible threshold settings on the nceiver output 

An HUC is (ailed    iMirmal" il  it can   be   parameterized by the normal probability 

iliM ribut ion a.i li)||iPWS 

P(A  SM 

iU-(l'l 

2 
du (7   J 

IMA   Ni '-,   -l 

II  u e use  I he  !;■ il.il i 

'tMi 

IIK ii it becoim s converjieiit to desi nbed the normal HOC .es 

du 17  hi 

P(AISN)      *(A   ,  d'i,   when  PIAIM i; t3i 

Iherelcin     when the HCK   is nnrmal we can characti n/e tin   entire curve l)\  the parameter. 

d        li  is I requenth  c on v en lent  In plot I hi   H(.)(    i m doul)l(   pro )al)ilit\  paper which li i.eanzes the 

rn ii ma I HOC i ui ves 

It   is  interest 114.; that  l"t   s'.^n.ils 111 aiitled white CJaussian noise     the I wo 1 \I lemes ol 

kimwled^e reu.i rdnii.; the signal  results  in .1 nuiinal  HO(        Il .1 signal ol  energy   h   is known 

1 \.i( 11 \   and 'he noise powci   pi 1   cycle pel   second is  N        then the HOC    jur the ■ ipt 111111 in  receiver 

is nnrmal and the paramelei   d    has ihi   vaiui 

i7   7i 
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This case is a valuable reftTrnc.   caiir .siiice it is an upper bound on puhsibh   driccM ion p<T- 

2 
fürmaiict'.    It :s somctirni s coiivcnu'i t In pint tin   IUX   ."s .1 (uni'tion ul tin   parai.u-tcr d    (d') . 

'> 
The ROC's fur the signal knowii exactly case li>r M-MIMI wilut S ol the paranuti r.s d     (d':'    ,111 

plctlt'd ill   |-'i|_;     7    I 

When the parameters ■; il the si^n.i) waveldnn an   \ ei \ unet rtam arui dist nbuled 

over wide ranges we are at the ol he 1   1 v   renn   o| kin iwledge reg.irdm^  tl !   MI :..tl       ! De 

IK ir m.i i RCX.' is I re(iu»':il Iv .i limiting ('ur\ e in such sit nation.1      I- ■ >[   exampli     ahei   < \\i 

signal it sei I is .1 sample o| u hi it   Cj.tussian noise ol T seconds du rat ion . n ,1 handwidth V*. 

cvcIes per set'ond A '.de     ''ul the signal   to  imisi   rat lo i.^ hullicient Iv .1 mall .iml V\'!   is 

sul I h o   ills  la ice    '. hen d' is approxi mated h\  1 Hel    I 

■y^ü \ J 
1    hi 

^here  ( -  1 is tin   input sign.tl-to  noise ratio 

In general,   in older to evaluat,' an optimum reieivt 1     we heed tin   distribution ol 

the Ukeiil il ratio    .11   a  monotom   lunction oi it     und« 1   lioth    ignal and nmsi   and noise alone 

I heie densit \  luiui lon.s ma\ be a.i show ;i in F ig    7   2      F 1 if a gi ven tlireshold M-t ting     tin 

striped ana under the flsUl  ■  ml11 curve is equal to PtAlS.Ni und the ( ri ..-,.s - hate hed area under 

the (1 null curve is equal b    ['(A ! M,    An lUK' is oMametl by plotting  P(A ISN) versus  |'(A ! M 

lor ail [»issibli   t hi'eshi Id sett 1 iifs      In pr.let iia     there is often cmisid« r. bb   d.ff icult\   111 

. xpresMiig an.iutii all\   tin   [irolialitl it\  1I1 nsits  ium tions o| tin   liki lihooiJ ratio umler signal 

and no',.s(   and no]M   a I OM       A I hi mL;h tin   iippropi'iate 1 ntegr.i Is cm b<   ipeci I teil,   t lit 11 

( <. a lual |oi, 1 itijui i.I I \   bei   PHU s dithi nil 

Air a III rnati \ (   11 i hniqui   lor n 1 1 1 \ i 1   c \ aluat ;on ■ s one in u Im li a digit.il computi r 

is used as ai. expel 1 up Tit.11 tool       I lu.s 1 s Mon' i   C a r lo ti chniqui        I In   reci 1 \ e r oj;t rat ions an 

simulated on 'In   du : la I  1 ■ iinpuli 1   and I he s; gna I  mixed vv il li not si   and in rise dt n.sitN   Ium t ions 

a re sa mpled       F.\ en lliouch I his 'echmque  is an appl oxi mate OIK      1 I  IS quite us el u I       However. 

I he uselulness o| this  met IIIK! IS limited li\  I he numbi 1   ol 'rials that can b<   run leasiblv  on 

1 In   1 ■ imputi 1 



(J1 

V 
■J 

P(A ' ^ 

fiK-   "• 1 IUX' 'or sigtial known ex.telly in ;iudcd white Gaussian noise 
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!• i^.   ". 2 Prnlutu'. il\ dchsity tu  ci   >■   n\ likchhi i> «i t'.it m uiicicr umsc .luci K:^II, 

p\US   IIOI-SC 

III   thlS   C h.i [it IT.     till     i   \ ,1 iu.ll p i|.   ' i|   | hi     tt'( fl\ I   I'   IS   clnlU    ,111.1 I \ I H .1 i l\    Will  1 l     |n >,■-, M l)ll 

and su|i|)!rnii'iii id l)\   rcsull.s 11 urn I In   Mniiti   C'a i |i i nict IUKI      lie lure i ilitaniin^ I lie IU )<    lor 

.si x i ral i a -M s.   u r wish ! i tlispl.i s i In   ii|n i .it ii ui s i 'I an .n l.i i it i \ i   I'll i \ IT rtali/at ii in 

7.2    Siniul.il ii ii, ,II (I Opt i at ii in.s i it  ,r. Aila^il i \ i   l<( ici \" I   Ht ali/aliiiii 

A It hi iut;li t In   (Icsi^h ui tin   i ipl inuiiu ,i lapli vi   ITCI i \ i i   rfali/ation has hcti   ilf\ tlnpi-d 

for a i. urn I II i   i )l casts in pvi v T 'us chaplir.s.   I hi   quest mi   i i mau s as lu how it opiratts. 

Kecali  I li.it tin   a))|)i i Mi Ii II I adaplu I   itci i \ er cicsi^h  has  hfcn an npti n ui I i mi        I In   ailapt i v i 

design  is a  it-sull  "'   i i  ill/in^  tin   i i|>tl iiiuin  i i n i \ i i   ii   .i  sccjuciit lal  manin i       Alt hi iur. h tin 

drl ret 11 M. pi a I1 'iina in i   i il  va I'll ius  i"cali/..U ions i il an i.;'t l iiuuii  n i i l Ma   ati   i iiul v a li nt     tin 

rt i ri\ i i   11 if in and tin   opci atl ons |)cl(oiriicd l)\  thcst   let ci veis nuiv  ai-p'-.i I   quit i   dilli t i nt 

In t nis MI t 'MI, u i   ri ii i Mill i   s; inulat n n, an ada | it i \ i   i i i i i \ i i   <ii   a digital loinpulci   |i if a 

rat her .spec tlu   c isc to ohsii s i   In iw I In   dclccti' in and classil icali' n   outputs ^i'1 'W i u   di i",r. 

A I t Ii   t I llll 

An i .pt i inn in adapt i \ i   i i i i i \ i i   i i nli /atioti was si ...ulati il lor a signal ha VIM.  a 

i iiinpoin nt tiisiniliir ■ it ci^ht i n't ho^i mal ' ' nnpi ■units and a SviU'lirotious   I'oisson   I um 

Struituit       Hoih ,i dctcctii'ii output,   fnf  X   l and a classtlu'at n m output    p    (      SNi.   wi ri 
k K 

printi'd out scqurnt iall\   in time,      I In   rcicut'i   sinml.itid was that  o|  Mcall/atlon  1\     whosi 

mnia t n ms an   sum ma i i/td in   lahlc r).f)      Ol rouisi,   fndX   I and p,'^      ■'"»V ari   .natiatjh 
K K 

from an} ol tin' lour rc/'li/atioiis      Thf adaptive' riiii\f;   si mulat nm was pro^rammi'd tor 

an IBM 7090 digital io npuici       Ik'cau.si' ol the lar^r amount  o( output data    tin   digital 

"•■-' — 
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i i Mill '  \iti   i MII\( rird In aiiaidj; lorm in .1 >li^il.ii   an.il   ^ fonvf rter and Hu   results pi mlcd 

■ ill    in a pci    ret 1 iri.lt 1 

I In   iiiir.[)iii,i   .1 iiiMini.l'   iliuM     '1 iii.-ii .^i.-i 11I n^hi cciUiil i:.(r^\  ml In i^imal 1 < Miipmirni • 

I ha I is 

T 

A 111 it 

F. 
( 

T, 

I 
(      l|!     I H   (It 

Ü 1     J 

i> Hu mi   ,   piiciil 1 iicr^v r 1     1 1 ihm 

1 s I hi it li 1    mpi 11 1 :.'   w.i \ 1 I   1 111 

is •   . 1   iinj.   ' 1 1,1 dural 1 11 

is I In hi rai   delta-l.i   ctioi 

(7. 9) 

I In    .DIM   almn   aiid signal plus hni.M   ilciusit)  IUM I!■ iii.s wen   appriiximatt'd t)\  ,1  ri'pivMentativi 

MI   11 S'J diM 1 1 11   pi ' ih.iinl ii 11 s      l)i 1.11 l.s ('111,1 1 1 : 1 :.L; i In   i ■ miputi i   M in u 1.111 > m trchiuques a IT 

i i Hilaiiicd Hi Appendix  I) 

2 E 
One huiidied runs were niadi        I In   I n^^ei m^ prulubilil > .   , ,   was     land C      I 

11 

Ajuiiiii   eaihi.ltht   t mhi p. I.S.MIIU  ciinipunents ua.s as.suined equally .hki'ly      li^uri'sT   3 

ihroui'l   '   13 sh   .*.  (In   i < >,ili nl Ihesi   runs       I'welve fui i inms nl Mm«   are displayed siniul- 

'•i   ' uush  lur each ru ! In   Inlal dural im   ol each nt the runs [jlnlti d is 1000 times a 

i i mip     i nt du rail' l,el us del i n«   e,ic h ■ il I he.M   lunct e ms       I hi   I unct i < m labeled "signal 

■    ' ■ s. s     i.s ' In   '   la I ai ■   IIIIIII.I ' i d - .i' nal i in i L:\  11 - 'in I ht   itail nf trai smission      F ul I ,M a li 

; : • -1 pi une.  ' - - I'A    ■>      . r li i i • s  . i|  the ci unpi 'm i.l       After (   1 nccur rences t he pen  i ->  reset  In 

/i ID.  i   t        tin    MI:I..I.  i ' i Is \   . - plntled  nii'd t)4 

! In    ' In :   I  i     i .n alie led   I     .    II xl t I   •   n  I ' ■     IS I In   sequent la I  del eel inn  nut put  when 

Mi. :.a I  plu     in i| s,   i ■■     i i   .i ■,!        1 lie seal ii.|.:    il  ' lit   detei. t n H, i lulput  i     I rum In • 9.     This 

nulpul  is the value "1 the IngaMlhm nl tin   hkelihi.nd ratio al each time,   t      fnr the particular 

MI nl iIII.M r\ati'ins nhtamed up i ' lh.it time. 

The fourth tin   u^h eleventh cnlumns are classification nutputs.     The scaling is 

tinm zern tn a lull scale of one,    Each of the cnlumns.   labeled PlC    SN) fnr i      12...    ,8 

is an updated probability of presence nl the ith component conditional tu the fact that signal 

plus noise (i. e, ,   the recui reiice phenumenun |)lus noise) Is present. 
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The final coiumn,  labeled  MAX P(C<ISN).  is a function constructed from the 
i 

classification outputs.    It is obtained by picking ihe largest of the eight classification 

outputs at each instant in time.    The scaling goes irom zero to one.    The second column, 

labeled Log f{n(t)),  is the sequential detection output when noise alone is present to the 

receiver input.    (The initial negative pulse in each of the traces of detection and classification 

outputs should be ignored.) 

In runs 0 through 99,  component C   was the actual component transmitted and it 

was recurrent in all of the runs.    A wide variety of detection and classification responses 

result.   The reader can obtain an idea of the number of component arrivals by looking at the 

signal energy plotted as a function of t:me in the first column. 

Since each of the eight components was assumed equally likely at the start of a 

transmission,  the probabilities, P(C ISN),  were each initially set at 1/8.    In a ma-ority 

of runs, the classification output,  P(C ISN),  rises abruptly after a sufficient number of 

components have recurred.    Due to the noise and the fluctuations in total signal energy 

from run to run,  the time of rapid build-up of P(C ISN) varies.    For instance,  in rans 0, 

3 and 71 the abrupt changes occur early whereas in a run such as 70 there is a considerable 

delay before the receiver "learns" which component is being transmitted.    On the other 

hand,  there are runs where no abrupt rise in the classification output,  P(C ISN),  occurs 

even though C   is being transmitted.   Such cases are shown in runs 20, 26, 35, 59,  68 and 74. 

Thrre are, in fact, a few runs in which the receiver has "learned" the wrong component. 

This has happened in runs 64 and 92. 

To see how the detection and classification outputs respond to noise alone,  an 

additional set of 27 runs were made.    These runs are shown in Figs.  7. 14 through 7. 16 

as runs 100 through 126.    The labeling and scaling in these runs is the same as in the first 

100 ruru except an additional quantity, labeled "Selected i",  is plotted in the last column. 

This is a plot of the component whose probability,  P(C' ISN),  is a maximum at each instant 

of time.    The scaling on the "Selects 1 i" column is quanti?ed in unit steps from zero to eight. 

In the noise alone runs of Figs.  7. 14 through 7. 16 the detection output,  in general,  drifts 

downward.    In general,  the classification outputs,  P(C ISN),  give no consistent indication 

of any particular component.    There are occasions, such as runs 115 and 122, where the 

receiver "learns   a component even though noise alone is present.    The fact that the 
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adaptive realization occasionally indicates the "wrong" component is of course not a fault 

of the adaptive realization but a reflection of the statistical nature of the noise and signal 

uncertainties. 

The 127 individual runs have been displayed in Figs. 7. 3 through 7. 16 in order to 

observe how an optimum receiver which has been realized by an adaptive realization operates. 

Recall that an important motivation for the development of an optimum adaptive receiver is 

the complex nature of the nonsequential realization (see Chapter V).    In the problem simulated 

here,  there are eight possible components in the component ensemble and 2 possible time 

patterns of component occurrences.    In terms of a formal nonsequential receiver realization, 

this would require the storage of a priori probabilities for 8 • 2 thousand-dimensional 

signal vectors along with 8 ■  21000 multipications of each of these probabilities by the 

likelihood ratio conditional to each of the time patterns.    Such a receiver realization is much 

too complex to be simulated even on modern digital computers.    Such a realization also 

appears "nonadaptive. "   On the other hard, by going to the adaptive mode,  the optimum 

receiver has been simulated by storing eight probabilities,  P(C ISN), and ccntinuously 

updating them as the observations come in.   Although the primary reason for operating the 

optimum receiver in the adaptive mode was to greatly reduce receiver complexity,  the 

resultant adaptive realization displays "learning" features which are hidden in the consequential 

mode of operation. 

Although it is interesting to look at each of the runs of the adaptive receiver,  the 

variety of receiver outputs is too great to tell just how well the receiver is performing. 

In order to evaluate the adaptive receiver properly we need to obtain the ROC (receiver 

operating characteristic).    This can be done by properly using the data from all 100 runs 

to obtain the approximate HOC at several points.    From these ROC s we can obtain a 

meaningful estimate of the way the detectability builds in time.    This will be deferred to 

Section 7. 3. 2. 3. 

7. 3   Hgceiver Performance 

In Section 7. 1 the basic problem of receiver evaluation in terms of the ROC was 

reviewed. In Section 7. 2 individual operating runs of an optimum adaptive receiver are 

displayed.    The ROC for a number of cases will be obtained in this section. 

T 



no 

It is necessary to determine the probability density function of the likelihood ratio 

or a monotone function of it under both hypotheses in order to obtain the ROC for the optimum 

receiver.    Two approaches can be used to obtain these density functions    - an analytical 

approach and an experimental approach.    While the analytical approach can lead to "exact" 

answers,  considerable difficulties in performing the necessary integrations frequently result. 

The experimental approach referred to is a Monte Carlo technique using the digital computer 

as an experimental tool.    In this approach it is necessary to represent the input noise and 

signal plus noise density function by a discrete set of probabilities.    It is also necessary to 

make a sufficient number of runs in order to obtain confidence in the results.    The total 

number of runs,  however,  is limited by the cost of computing time. 

The receiver evaluation is separated into three parts according to the time 

structure; the Periodic,  Synchronous-Poisson, and Sporadic-Poisson Time Structures.    The 

simplest time strui ture is the periodic structure.    This type of time structure is characteristic 

of many active detection and ranging systems working in a stable medium; the detection of 

such signals has been well understood for a number of years.    It is included here so 

comparisons can be readily made.    The next order of complexity in time structure is the 

Synchronous-Poisson Time Structure.    It is like the periodic case in that if a component 

occurs,  it starts only at synchronous times.    That is,  it starts only at integral multiples of 

a component duration.    If it were always triggered a periodic signal would be generated. 

However,  it is only triggered some small percentage of the time.    The third order of time 

structure complexity is the Sporadic-Poisson Time Structure.    In this time structure a 

component can start at times other than multiples of a component duration. 

The component uncertainty is represented by a component ensemble consisting of 

equal energy orthogonal components.    There are M components of common duration T.     The 

M 
minimum bandwidth must be   —^     so that 2WT. is at least M. 

In this chapter a number of experimental ROC's have been obtained for the 

Synchronous-Poisson Time Structure.    These will be compared with the known performance 

for the Periodic Time Structure.    Since uncertainty increases in going from the Periodic to 

the Synchronous-Poisson to the Sporadic-Poisson Time Structure,  and since performance 

necessarily drops as uncertainty increases,  the results of the Synchronous-Poisson case 

can be used as an upp( r bound on the detection performance for the Sporadic-Poisson case. 



Ill 

We are especially interested m case a where the duty factor is low and the input signal-to-nolse 

ratio is sufficiently small so that a receiver could not make a good decision on the basis 

of a single component occurrence. 

In the classical theoiy ,  the SK.E (signal known exactly) is an important reference 

case.    For this case there is no uncertainty regarding the signal.    In the recurrent component 

problems we will use the CKE (component known exactly) for various time structures as a 

basic reference case.    Since component uncertainty creates a more difficult receiver 

evaluation problem,  it is useful to have the detection performance of the CKE case as an 

upper bound. 

7. 3. I     Receiver Performance - Periodic Time Structure (Known Period,  Known 

Start). 

7. 3. 1. 1     CKE (Component Known Exactly).    When a known component 

recurs in time,  and the period and starting time of the component are known,  the signal is 

known exactly.    This is then an SKE (signal known exactly) case and the detectability is 

2E 
d = k- (7. 10) 

where 

k is the number of components observed 

E        is the energy of a single component of duration T. 

N        is the noise power per unit bandwidth 
o ' ^ 

Since k is a measure of time,  this equation shows that d increases linearly with time. 

7. 3. 1. 2     CKS (component known statistically).  One of M Orthogonal 

Components.   This is a case in which there is uncertainty about the component,  but the 

period and start of the component are known.    This is one of M orthogonal signals, and one 

can use the results in the literature to obtain the detectability,  d (Ref.   1).    At time t,   the 

total signal energy is k E   and the detectability is 

d = fn l-^r + -^r cx^ir (7. 11) 

where M is the number of orthogonal components in the component ensemble.    By varying 

M an idea of the effect of component uncertainty on detectability can be obtained. 
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7. 3. 1. 3   Performance of the Energy Detector.    A very simple detector 

which is not optimum is the power or energy detector.   It is interesting to compare the 

optimum receiver to it,  in order to sec how much performance is gained by the more 

complex optimum receiver.    For small signai-to-noise ratios,  the performance of the 

energy detector is (see Appendix E) 

d ^ ^r{-^) (7-12) 

7. 3. 1. 4   Effect of Component Uncertainty.    The effect of component 

uncertainty is shewn in Fig.  7. 17.    Using Eqs.  7. 10 and 7. 11,  the detectabilily is plotted as 

a function of time for no component uncertainty,  (CKE), and two degrees of uncertainty, 

(CKS,  one of eight and one of 100 orthogonal components).    There is no uncertainty in the 

time structure Mnce this is a periodic case in which the period and start of the component is 

known.    The detectability for the CKE case rises linearly with time.    Ttere is a threshold 

effect for the two CKS cases plotted.    The slope of the detectability curves for CKS 

approaches the slope of the CKE curve after the receiver has obtained sufficient evidence that 

a particular component has been transmitted.    The effect of component uncertainty is a 

rather mild function of M in that the vertical displacement of the CKS from the CKE -jurve 

is fnM for large processing times.    If one compares the detectability of the CKE and CKS 

case,  the ratio eventually approaches unity.    In cither case,  the CKE curve provides a useful 

upper bound on detectability. 

7. 3. 1. 5     Performance of a Receiver That Does Not Utilize Repeat- 

ability of a Component.    The optimum receiver for M orthogonal components,  whose 

performance is given by Eq.  7. 11,  would look as though it   'learned" which component is 

being sent if it had been realized with an adaptive realization.     Let us now consider the 

performance of a suboptlmum receiver that is optimum for a component duration but which 

does not utilize what it has "learned" about the component to process subsequent informati 

In other words,  at the start of each occurrence of the periodic component the receiver 

anticipates one of M orthogonal components and it can use no component information obtain 

from the previous observations.    The detectability for each interval T   (a component 

lation. 
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duration) is then 

: 

' 

fn ^ ^i + "F ^IV1" 
o 

and the detectability at time L,  is given by 

d - k fn 1 - 
1 

M 

'2E 

M 
exp (7. 13) 

The performance equation of this suboptimum receiver differs from that of the optimum 

receiver in the argument of the exponential,    in Eq.  7. 13 the argument of the exponential is 
2E 

simply N 
a quantity associated with a time interval equal to a component duration. 

The variable k,  representing time,  is outside of the logarithm and so the detectability 

eventually rises linearly with time although locally there are exponential segments.    In the 

case of the optimum receiver,  the time variable,  k,  appears in the exponential of Eq.  7.    1 

which gives rise to the knee in the detectability curve for the optimum receiver.    A 

comparison of the detectability of the optimum receiver,  which makes use of what has been 

"lean ed" about the component sent,  with the suboptimum receiver,  which does not,   is 

shown in Fig.  7. 13. 

7. 3. 1.6     Comparison of the Optimum Receiver with the Energy Delector 

In Fig.  7. 19 the performance of the optimum receiver for one of e'ght orthognal components 

is compared .vith the performance of the energy detector.    Once past the "threshold, " the 

detectability of the optimum receiver increases rapidly o'er the energy detector. 

7.3.2     Receiver Performance, Synchronous-Poisson Time Structure,  (Common 

Component Ouration).   In the previous section receiver performance was obtained lor detecting 

a component generated by a periodic triggering process.    In this section,  the Synchronous- 

Poisson triggering process is considered.    That is,  the probability that a component will 

occur in a synchronous interval is u,  the probability that it will not occur is 1-;-, and the 

occurrences are independent from one interval to another.    In the Synchronous-Poisson 

Time Structure v is also the duty factor and the average signal energy in t,  seconds is i/kE . 
K C 

Most of Uie ROC curves presented in this section were obtained by using tiie 

digital computer as an experimental tool.    This is an approximate but useful technique.    The 
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performance of the optimum receiver for CKE will occupy much of this section.    Comparing 

this performance with the performance where the occurrence times of the component are 

known exactly shows the effect of the Synchronous-Poisson Time Structure on detectability. 

Also,   the CKE case puts an upper bound on performance when there is component uncertainty. 

7. 3. 2. 1     CKE (Component Known Exactly).    When the component is 

known exactly a:;d the time structure is Synchronous-Poisson,  the optimum receiver cross- 

correlates the- input observation with the component waveform and subtracts a bias.    This is 

fed into a "r nonlinearity   and its output integrated.    A block diagram of this receiver was 

shown in Fig.   5. 12 b.    The performance of the optimum receiver for the case of a component 

known exactly was experimentally determined on the digital computer for values of v (duty 
2E 

factor) and N 
ihowii in Table 7. 1.    For each set of parameters,  500 simulation runs 

TABLE 7. 1 

VALUES OF PARAMETERS RUN 

CKE,  SYNCHRONOUS-POISSON TIME STRUCTURE 

2E 
 c 
N 

o 

0125 

0707 

0707 

1414 

1414 

1 

2 

4 

4 

.02 

1 

1.3 

2 

4 

2 

4 

4 

T- 
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were made on the digital computer to determine the ROC.    The duration of a run depended on 
2E 

the particular set of parameters.    For example,  for r - . 1 and   -rr—   = 1. a run lasted 1000 
o 

times a component duration.    The probability distribution of the optimum receiver output (the 

likelihood ratio) was obtained for several points in time under both hyptheses, SN and N.    Time 

is indexed by k,  the number of synchronous intervals.    From the probability distributions of the 

receiver output the ROC was obtained.    A normal approximation to the data points was made. 

Further details on the computer simulation are discussed in Appendix D. 

The ROC's for the parameters listed in Table 7. 1 are presented in Figs.  7. 20 through 
2E 

7. 30.     For a given set of parameters, u and ——  ,  one can see from the ROC's how 
IN 

O 

detectability builds in time as k increases.    It is easier to show this effect if we read the ROC 

along the negative diagonal {i. e. ,  read the ROC where the probability of each of the two 

possible types of errors are equal) and plot this detectability, d, as a function of time.   This 

has been done in Figs.  7. 31 through 7. 33 for the parameters listed in Table 7. 1,  except for 

2E. 
u = .0125 and -n— = 1.    From these curves one can see that detectability is nearly ;• linear 

IN o 
function of time.    In Fig.  7. 31 detectability, d,  is plotted as a function of time for u - . I 

2E 2E 
c c 

and-r^— = .02,   1,   1.3,  2,  and 4.    As   -n—   increases,  the slope ol the curves increase,  as 
IS r» 

O O 

one would expect.    In Figs.   7. 32 and 7. 33 detectability is plotted versus time with the duty 

factor,  i',  as a parameter.    These curves are also nearly linear and increase in slope as the 

duty factor increases.    Using this data,  the effect of the Synchronous-Poisson Time Structure 

and component uncertainty on detectability will be investigated in subsequent sections. 

7. 3. 2. 2     CKS (One of Eight Orthogonal Components).    ROC curves are 
2E 

plotted in Fig.  7. 34 for the case of one of eight orthogonal components for r     .1,    —r.— = 1, is 
0 

and k     100,  250,  500,  750,  and 1000.    The data for these ROC curves was obtained from the 

receiver simulation displayed in Section 7.2.    These ROC's were obtained from 100 runs 

rather than the 500 runs for the ROC's of the CKE case. 

7. 3. 2. 3     Effect of Component UncertaiiKy.    A preliminary idea of the 

effect of component uncertainty on receiver performance for the Synchronous-Poisson Time 
2E 

Structure is obtained by comparing the CKE and CKS curves for u = . I,       ; -    -  1. 
o 

This comparison is made in Fig.  7. 35 in which the detectability is plotted as a function of time. 

The CKS curve exhibits a threshold effect.    After approximately k = 100,  the detectability 
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Fig.  7.20.      ROC for optimum receiver,  CKE,  Synchronous-Poisson Time Structure, 
2E 

N 
1,  v = .0125. 
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Fi^.  7.21.      ROC for optimum receiver,  CKE,  Synchronous-Polsson Time Structure. 
2E 
-^p = 2,  i/ = .0707. 
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Fig.  7.22.      ROC for optimum receivrr,  CKE,  Synchronous-Poisson Time Structure, 
2E 
-^-  =4,  i--- .0707. 

o 
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Fig.  7. 23.      HOC for opttmuni receiver,  CKE, Synchronous-Poisson Tiiiie Structure, 
2E 
-rr^- = .02,  i- = . 1. 
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v. 
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.05 

Fit;.  7.24.      ROC for optimum receiver,  CKE,  Synchronous-Poisson Time Structure, 
2E 

N = 1.  i' = . 1. 
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Fig. 7.25.     ROC for optimum receiver, CKE, Synchronous-Poisson Time Structure 
2E 

N 
1. 3,  i- = . 1. 



125 

v u. 

.05   - 

PfAlN) 

Fig.  7.26.      ROC for optimum receiver,  CKE,  Synchronous-Poisson Time Structure, 
2E 
-^  =   2,  . = . 1. 

o 
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Fi^.  7.27.      ROC for optimum receiver, CKE, Synchronous-Poisson Time Structure, 
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Fiy.  7.28.      ROC for optimum receiver,  CKE,  Synchronous-Poisson Time Structure, 
2E 
-^- =2,  r=.I414. 
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P(AlN) 
.80 

Fig.  7. 30.      ROC for optimum receiver,  CKE, Syiichroiious-Poisson Time Structure, 
2E 

C      4,  v = .2. 
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. 80 
P(A IN) 

FIK   7. 34.      ROC for opUmum receiver,  CKS (one of eit;lit orthogonal components), 
2E. 

Synchronous-Poisson Time Structure,    -rp   = 1,  v=.l. 
o 
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rises almost linearly.    The slow rise in d,  below k = 100,  occurs during the time when the 

receiver is "learning" which componcnl. is being sent.    The effect of component uncertainty 

on receiver performance appears to be relatively small once a sufficient processing time 

has elapsed.    There is undoubtedly a tradeoff between component uncertainty and the time it 

takes for detectability to reach a constant slope.    These effects are similar to those observed 

in the periouic case shown in Fig.   7. 17.    The tilt in the ROC curves for high k values and the 

fact that the slope of the CKS curve in Fig.  7. 35 does not quite approach the slope for the CKE 

curve may be due to the smaller number of runs (100) used for the CKS data as compared to 

the 500 runs used for the CKE curves.    This analysis is only the start of a study of the effect 

of component uncertainty on detectability. 

7. 3. 2. 4     Effect of the Synchronous-Poisson Time Structure on 

Detectability.   The CKE is an important ease.    The performance of the optimum receiver, 

when the component is known exactly,  puts an upper bound on attainable performance when 

there is initial component uncertainty.    In other words,  the performance of the optimum 

adaptive receiver designed for a relatively known component can never exceed the performance 

of the optimum receiver designed for a component known exactly even after the adaptive 

receiver has "le;"-neci" which component is being sent.    Even then,   the receiver is still 

faced with uncertain component arrival times.    We now wish to investigate the effect of the 

uncertainty in component arrival times on the detection performance of the optimum receiver. 

To do this we will need to know the performance of an optimum receiver had the arrival times 

been known exactly. 

When the component and arrival times are known exactly,  the optimum receiver is 

one which gates on only when a component is known to occur,  and at those times crosscor- 

relates the input observation with the component waveform and subtracts a bias term 

proportional to the component energy.    These outputs are then integrated to form the detection 

output.    Although the signal is known exactly In any given transmission,  the number of 

components that occur in an interval,  (0,  t.) varies from one transmission to the next.    In 

fact,  the number of components that occur is described by the binomial distribution.    The 

detection performance is then a performance averaged over the various number of components 

that could occur. 
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2E, 
Tl;is case was simulated on the digital computer for r -- . I and   -^— =  1, 2,4, and 

o 
the resulting ROC's arc plotted in Figs. 7. 36 through 7. 38.    The detectability, d, is read off 

these curves along the negative diagonal and i lotted as a function of time.    Tins is shown in 
2E 

Fig.  7. 39 for v = . I, and    ,.—c  = 1,  2,  and 4. 
o 

Tlie average number of components that occur in the interval (0,  t, ) is i/k.    If the 

actual number of components that occurred on each transmission were equal to the average 

number,  the detectability would be given simply by 

2F 
d -- i'k-— {7. 14) 

o 

This analytical approximation is plotted in Fig.  7. 39 along with the experimental curve. 

Both the analytical equation and the curve that results from the experimental runs are 

approximations to the true curve.    The agreement between the two approximations is best 
2E 

for -j-j—   = 1.    The simplicity of Eq.  7. 14 makes it a useful rule of thumb equation for the 
o 

performance of a receiver which knows the component arrival times exactly. 

The analytical equation for detectability for the CKE,   known arrival times,  case is 

compared with the detectability for the CKE,  Synchronous-Poisson Time Structure in Fig.  7. 40. 
2E 

These performance curves are shown for r = . 1 and   —^   -   1,2,4.    The difference in the N 
o 

detection performance is due to the uncertain component arrival times.    This shows that 

even when the component is known exactly, a fairly high price must be paid in the detectability 

by even the optimum receiver when the recurrence limes of the component are this uncertain. 
2 E 

For example,  when -^— = 1,  for the same detectability,  signal processing time must be 
o 

increased 6. 85 times that required if the component recurrence times are known exactly. 
2 E , 2 E 

For   —r:— = 2,   it is 5.7 times longer and for  -r— - 4 it is about 3. 4 limes longer.    Thus, 
0 0 

it is at low component signal-to-noise ratios where component recuiien"e time uncertainties 

affect detectability the greatest. 
2E 

Figure 7.41 shows the same comparison for ——   = 2,  and u - .0707,  . 1,  and . 1414. 
o 

For ;  = .0707,  an increase in processing time of about 6. 4 times longer is required,  in order 

to attain the same detectability,  than would be required if the component recurrence    times 

were known exactly.    For i' = . 1,  it is 5.67 and for v - . 1414 it is 4.74.    These curves 

indicate that component recurrence time uncertainty affects detectability the most at low 

duty factors. 

^p» 
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Fig,  7. 36       ROC for optimum receiver,  CKE,  arrival times known exactly, 
2E 

N 
1,   i'= .1. 
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Fiii   7  37       ROC for optimum receiver,  CKE,  arrival limes known exactly, 
2E 
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Fig.  7.38.      ROC for optimum receiver,  CKE,  arrival limes known exactly, 
2E 

= 4,  v = . 1. 
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In general,  it can be seen that the effect of Synchronous-Poisson time uncertainty on 
2K 

detectabüity is substantial for the range uf values ui duty factor,  r,  and considered 

here.    Component recurrence time uncertainty,  of the Synchronous-Poisson Time Structure, 

degrades performance the most at low component signal-to-noise ratios and low duty factors. 

7. 3. 2. 5     Comparison of the Performance of the Optimum Receiver with 

the Energy Detector (One of Eight Orthogonal Components).    The optimum adaptive receiver 

has already been discussed for the case of one of eight orthogonal components (see Section 7. 2). 

It uses a temporary memory for storing probabilities of each of the eight components and 

continually updates these probabilities with new information obtained in subsequent observations. 

On the other hand,  the energy detect jr has one square-law nonlinearity followed by an 

integrator.    The energy detector also has no classification capability.    It is interesting to 

see how the detection performance of such a limited memory receiver compares with the 

performance of the optimum receiver.    The performance of the energy detector for the 

Synchronous-Poisson time uncertainty signals has been derived in Appendix E for one of M 
2E, 

orthogonal components,    and for small   -TJ— '.  it is 

d 

-1 

A 2E 
c 

4M N 
0 

(7. 15) 

The performance of the energy detector is degraded by a factor of r      which is the duty 

factor squared,  and by the component uncertainty,  expressed by M.    Figure 7.42 is a 

comparison of the detectability of the optimum receiver and the energy detector.    After 

about k -  100.  the detectability of the optimum receiver increases rapidly over the energy 

detector.    This shows the value of the optimal use of the receiver memory, 

7. 3. 2. 6     Effect of the "c Nonlinearity" On Receiver Performance. 

When the design of the optimum receiver for the Synchronous-Poisson Time Structure was 

compared with the optimum receiver for the Periodic Time Structure,  many striking 

similarities were found (see Section 5. 4).    In fact,  the primary difference was the presence 

of a "r nonlinearity" in the receiver designed for the Synchronous-Poisson Time Structure 

C • C 
(see Fig.   b. 13 b).    In the optimum receiver for the Periodic Time Structure,  x. •   C ^— 
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was circulated through the delay formii 

vk r       C- C 

Since this can be written as 

nxk)-   1     x.  C-  ^       -M^    +c.^x. (7   16) 
1=1 1.1 

one can see that far the periodic case the observations themselves could be simply added in 
k 

synchronuus intervals and this sum, x., correlated with the component C.    In the optimum 
Ul    ' 

receiver for the Synchronous-Poisson Time Structure,   however, the observations must first 

be correlated with the component,  passed through a ;■ nonlinearity and then summed.    A 

natural question arises as to how important this nonlinearity is.    Since the input to the 

nonlinearity is a random variable,   more than just the shape of the nonlinearity must be 

examined,    In this section the effect on detectability of the i- nonlinearity will be studied by 

evaluati.iu the detection performances of two receivers.    These two receivers are:   (I) the 

optimum receiver for CKK,  Synchronous-Poisson Time Structure,   (Fig.   5. I3b1 and (2) 

a suboptimum receiver for the CKK,  Synchronous-Poisson T'me Structure (Fig.   5. 13a). 

The first receiver is optimum and includes the v nonlinearity and the second receiver (which 

is suboptimum for the synchronous case but happens to be optimum for the periodic case) 

doe a not have a nonlinearity.    The optimum receiver has already been evaluated using 

Monte Carlo techniques.    The suboptimum receiver has been evaluated analytically and the 

derivation of this result is presented in Appendix F.    The performance of this suboptimum 

receiver is 

2       2Ec 
d = ,■    k   -^ (7. 17) 

o 

The performance of this receiver is affected by r squared.    One v accounts for the fact that 

signal energy is reduced by e and the other i- accounts for the uncertainty in recurrence times 

of components. 

In Figs.  7. 43 through 7. 45 the performance of the optimum and suboptimum receiver, 

are compared.    The performance curves for the optimum receiver are obtained from Monte 
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Carlo runs (sec Figs, 7. 20 through 7. 30).  and the performance of the suboptimum receiver 

is ^iven by E"q.  7. 17.    Lei us discuss each ul these three figures.    In Fig.  7.43 detoctability 
2 E , 

vs.   time is plotted for the two receivers for i      .1.    —,—   =   1,  2,  and 4.    The increased 
o 

processing time necessary for the suboptimum receiver to reach the same level of detection 

performance as the optimum receiver can be determined by comparing the performance of 

the two receivers at a constant d.    The ratio of optimum receiver processing time to sub- 

optimum receiver processing time required to reach the same detectability is: 

21: Ratio of optimum to 
suboptimum receiver 

N 0 proccssmg time. 

1 1.46 

2 1.76 

4                                                                                                 2.25 

2E c 
This data shows that tiie importance ol the n nonlinearity increases as   —rj—   increases. 

o 
In Fi^.   7. 44 the performance of the optimum and suboptimum receivers are 

2F. 
plotted for   —rr^-   = 2 and v = .0707.   . 1,  and . 1414.    In Fig.  7. 45 similar data is presented 

n, o i h 
for   -•,,-.--    = 4 nnd n = .0707,  . 1,  . 1414,  and .2.    The ratio of processing times required by 

o 
tiie suboptimum and optimum receivers to reach the same detectability is plotted in Figs. 

7. 46 and 7. 47.    The ratio of processing times for v = 1 is one since then the two receivers 

are identic;; 1.    It is difficult to obtain data for very low values of u because of the longer runs 

required on the digital computer.    Figures 7. 46 and 7. 47 show that the importance of the c 

nonlinearity increases as the duty factor,  u, decreases. 

In conclusion,  the importance of the r nonlinearuv in the ootimum receiver increases 
2E 

as -rr— increases and the duty factor decreases. 
N 

o 
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7. 4   Summary 

In this chapter an adaptive receiver realization was simulated on a digital computer 

for one of eight orthogonal components, Synchronous-Poisson Time Structure.    Individual 

runs of the detection and classificaUon outputs as a function of time were displayed to illustrate 

how such a receiver operates.   However,  it is difficult to judge receiver performance from 

the individual runs. 

The performai ce of the optimum receiver for a CKL,  Synchronous-Poisson Time 

Structure was evaluated experimentally on the digital computer for various values of the 
2E, 

parameters v (duty factor),    —^—   ,  and k (time).    The detectability builds up in time in 
o 

a nearly linear fashion.    The signal detectability is reduced when the arrival times are 
2E 

uncertain.    For example,  for 
N 

1 and a duty factor of 10f/f,   the processing time 

required to reach a specified detectability is R. 85 times longer than would be required if 

the component recurrence times were known exactly.    This extra required pioccs.'ving time 

increases as component signal-to-noise ratio and duty factor decrease. 

By comparing the detectability for one of eight orthogonal coi;i,..ments with the CKE 

case,  it was found that component uncertainty affects detectability in a rather mild manner 

after sufficient processing time has elapsed.    This effect is similar to that which occurs 

when the component recurs periodically.    The performance of the optimum receiver foi one 

of eight orthogonal components was compared with the energy detector to show the value of 

the optimal use of the receiver memory. 

The importance of the u nonlinearity in the optimum receiver for tlu CKE,  Synchronous- 

Poisson Time Structure was investigated by evaluating a suboptimum receiver which does not 

contain the e nonlinearity.    It was found that the importance of the e nonluiearity increases as 
2E 
-XT— increases and the duty factor decreases. 
N J 



CHAPTER VIII 

SUMMARY 

8. 1   Conclu-sloii.s 

An exciling new area of research is the application of adaptive processing techniques 

to the problem of detecting signals in noise.    Adaptive techniques have been considered by 

several researchers in regard to detecting an unknown,  but fixed,  waveform that recurs 

randomly in time.     For such a detection situation it seems quite natural to postulate an 

adaptive device to "learn" this waveform in order to aid the detection process.    However, 

a basic contribution of this study has beci to show how the theory of signal detectability can 

be extended to include techniques of optimum receiver design for problems of this type. 

Most past work in detection theory considers signals whose tune structure is 

periodic.    In the usual radar problem,  the time structure is basically periodic of known 

repetition frequency but unknown start of the period and parameters such as amplitude are 

assumed unknown.    A significant difference in this study is in the consideration of the 

detection of signals in noise in which the time structure is nonperiodic. 

A rather general problem is considered to which adaptive techniques have been 

applied by others.    A fixed waveform,  called a component,   is initially uncertain but 

learnable.    One of b components is selected prior to the start of transmission and the 

same component recurs at uncertain times which are unlearnable.    The receiver must be 

capable of detecting such a recurrence phenomenon in noise.    This problem is formulated as 

an over-all optimization problem in detection theory rather than as a problem in which an 

adaptive receiver is postulated.    Detection theory provides a mathematical model in which 

initial knowledge about component and recurrence time uncertainties are expressed in terms 

of a priori probabilities.    The component is uncertain in the sense that one of a finite 

number of b components is selected for transmission.    The recurrence-time uncertainties 

studied are of three basic types:   Periodic,  Synchronous-Poisson,  and a Sporadic-Poisson 

U3 
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Time Structure.    The basic philosophy is to design an optimum receiver which makes the 

best decision as to presence or absence of tiie recurrence phenomenon in the entire 

observation,   X. ,  and to realize this optimum receiver with an equivalent adaptive realization, 
k 

From detection theory it is known that the optimum receiver forms the likelihood 

ratio,   f(X ).  of that observation,    If the receiver is to run in time,   il must keep forming 

tiie likelihood ratio of the entire observation as  k  increases,    in Chapter III it was shown 

how this optimum receiver could be realized in an alternate equivalent form.    This is a form 

in which the likelih md ratio of the observation,   X   ,   is realized in a sequential manner.    The 
k 

operations performed by the sequential and nonsequential receivers appear quite different 

although the receivers are equivalent for detection purposes.    The sequential receiver 

is called an adaptive realization because of the explicit manner in which it updates knowledge 

of the situation.    A classification output,  which is a set of updated probabilities,  can be 

conveniently made available, 

A basic difficulty in receiver design emerges when considering signals with a 

nonperiodic time structure which does not appear in the classical periodic cases.    This is 

the problem of providing sufficient receiver memory to store probabilities of signals in an 

ensemble that grows rapidly in time.    To design a practical optimum receiver,   it was found 

necessary to develop an indirect description of the signal ensemble.    In an indirect description, 

thi' signal ensemble is described in terms of a component ensemble and a time structure. 

Optimum adaptive receivers were designed for the Sporadic-I'ois.son.   Synchronous-Poisson, 

and Periodic Time Structures using this technique and the sequential realization. 

The proper use and updating of the contents of the temporary memory for the 

adaptive realizations are specified by the design procedure.    When the time structure 

is periodic,   the starting limes of the component are known,  and the possible components 

are of common duration,   the temporary memory of the optimum receiver stores and sums the 

input waveshape to the receiver.    If the period is unknown or if the time structure is 

Synchronous-Poisson.   then the temporary memory stores a more abstract quantity such as 

an updated probability of each possible period or component.    Finally,   in the Sporadic- 

Poisson Time Structure,   the adaptive realization stores and continually updates component 

identification and local  component positional information in its temporary memory.    The 

updating proct.   es have been formalized and presented. 

'. ' 7,^rT-" 
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An adaptive receiver realization was .simulated on the digital computer, and its 

operation was displayed for a number of runs.    These displays show the "adaptive" nature of 

this type of realization.    However,  it was found difficult to judge receiver performance from 

any single run.    Instead, performance is presented in terms of the ROC (receiver operating 

characteristic). 

This study also contributes to the understanding of the effect of time uncertainty on 

detectability.    Since the adaptive realization provides a receiver of m uiageable form,  it 

becomes feasible to evaluate its p( rformance.    Evaluation of the performance of the optimum 

receiver for a particular time structure then sets an upper bound on the performance of any 

other receiver in that same environment.    The effect of Synchronous-Poisson Time Structure 

uncertainty on detectability for the case of a component known exactly (CKE) was investigated. 

This is an important first case.    Even when the component i;-  initially uncertain and lias been 

"learned" the performance of the optimum receiver for that case cannot exceed the CKE case. 

The performance of tlie optimum receiver for the CKE,  Synchronous-Poisson Time Structure^, 
2E 

was presented in terms of the ROC for various values of the average duty factor,     .,      , 
o 

and time.    The detectability,  d,  builds almost linearly in time. 

The price in performance that must be paid by even the optimum receiver,  because 

component arrival times are not known exactly,  was investigated.    For example,  for a 
2E 
-T-7- =  I and an average duty factor of 10%,  the receiver processing time required to reach 

o 
the same detectability is about 6. 85 times longer than would be required if component recur- 

rence times were known exactly.    This extra processing time required is a decreasing 
2 E 

function of -^—   and a decreasing function of average duty factor.    These results show that 
(j 

even when a component is known exactly,  the effect on detectability can be substantial. 

The results of comparing the detectability for one of eight orthogonal components 

with the CKE.  Synchronous-Poisson Time Structure, suggest that component uncertainty 

affects detectability in a rather mild manner after a sufficient amount of time lias elapsed. 

This situation is similar to that of the periodic case.    The performance of the optimum 

receiver for one of eight orthogonal components was compared with the energy detector to 

show its superior performance. 
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The importance of storing and updating probability or likelihood ratio tenr.o in the 

temporary memory for the optimum receiver,   CKE, Synchronous-Poisson Time Structure, 

was investigated by comparing its performance with a receiver which stores and modifies 

input waveshape.    From these results it was found that storing probabilitie;  or likelihood 

ratios in the temporary im r.ory rather than input waveshape became more important as 
2E 2E. 
-rj-   increased and the average duly factor decreased.    For > xample,  at  ——     2 and an 

o ' o 
average duty factor of .0707.  about twice as much processing time is required by the 

receiver that circulates input waveshape to obtain the same detectability as the optimum 

receiver. 

8. 2    Future Work 

There are a number of directions in which future work can go.     First,   the effect of 

time uncertainty on detectability has just begun.    Although the optimum receiver has been 

designed,   its actual performance in terms of the ROC remains to be determined.    The 

effect of the Sporadic-Poisson Time Structure and component uncertainties on detectability 

remains to be investigated. 

Tne problem of optimum receiver design for an infinite component ensemble 

with a learnable parameter and a Synchronous-Poisson or Sporadic-Poisson Time Structure 

is an area of investigation.    At present,  such a problem could be attacked in an approximate 

manner by re;.resenting such a component ensemble as finite and using the receiver design 

techniques presented in this study. 

Another area of investigation is the design of optimum receivers for learnable time 

structures which are initially uncertain.    In this study the design of the optimum receiver for 

detecting a recurrence phenomenon of unknown period was presented and this could be 

extended to more complicated time structures. 

Three basic time structures have been considered:   the Periodic,  Synchronous- 

Poisson,  and Spoiv.dic-Poisson.    The extension of the same op'.imum receiver design 

approach could be considered for many other types of time uncertainty. 



APPENDIX A 

OPTIMUM ADAPTIVE HLCEIVKH REAIJZATIONS 

SPORADIC-POISSON TIME STRUCTURE 

A. 1    H'.-:i':izati(m 11 _ 

The oplimuiii adaptive rect'iver realized in Section 5. 1. 1 is not unique     A slight 

modification of Rtalizalion I results it one writes the joint probability,  b.   .(k) as 

b   (k) = b'   (k) p,(cMs",) (A. 1) 

where b'.    (k) is tiu' probability of the jth componenl sample under the condition that the ith 

component and SN are present and that k observations have been taken.    Writing b.   .(k) 

in this manner emphasizes the classification output,  p. (C ISN).    Subsiituttng Eq.  A. 1 into 

Eq.   5. 18 for the sequential average likelihood ratio results in 

^■V^-i, 'W c'lSNK  b' „(k-1) ^ b'.     (k-1) 
i,0 i,n. (1-r.) + P.f(x, Is,  ■- c. 

i        i     k    k      i '   J 

* x    b'.   .   ,(k-l)r(x. Is.   - c.   .) (A. 2) 

where p. (C ISN) lias been factored out.    We can therefore define a conditional sequential 
k 

likelihood ratio,   f(x, IX.    ,,C ) 

f(\lxk-rc b'.  „(k-1) + b'      (k-i; i,0 i,n. 
l-u.) + vjis.. Is.   = c.   ,,. 

i        i      k    k       i,li 
] 

V 

r-2 
b'.   .   ,(k-l)f(x, Is,  = c k    k       i,j 

(A. 3) 
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The preceding equation gives the likelihood ratio of the observation x.  assuming tlie itii 

component lias been recurrent.    Substituting Kq.   A. 3 int i Kq.  A. 2 results in the average 

sequential likelihood ratio,   f(.\    IX.    ,),  becoming 
R      k-1 

k-k-i^.-, 'Vi(c,|SN')f(xklxk-rcl) 
i-1 

f(x. IX, (A. 4) 

The  ipdating of component information still requires equations similar to Kq.   5. 32 

through 5. 34.    If one makes th" substitution 

b.    (k-lj     b'.    (k-l)p,    .(C ISN) (A. 5) 

and factors out p     ,{C  lb"N),   then Kqs.   5. 3:1 through 5. 34 become 
k-l 

l-i 

b'.   JWp.CC'lSN) 
i,ü        k 

b'.   Jk-1, 4 b.     (k-l) i,0 i, n. P^C'ISN) 

^k'vl' 
(A.G) 

t. r.iu .  nyk-l) + b.      (k-l) 
i      i,0 1,11 

t, .   ^K)p,(ClISN) = —^ 
1,1 K 

'Vi^'^^k'^k^i.i' 

f^k^k-l' (A. 7) 

b'.   .(k)p,(CMSN) 
1, J K 

.                   b'.   .   ,(k-l)p.    1(C
llSN)f(x1 Is,   -- c,   .) 

iir..,v i,j-l k-l k    k       i, j 

^k'Vl) 
(A. 8) 

for j = 2, 3,. . . , n. 

Instead ef updating products of the form b'.   .   .(k-l)p,    .(C ISN),  b'.   .   .(k-l) and p,    ,(C ISN) 
' i, j~i k-l i, J-! k-l 

can oe updated separately by noticing that 

b'.i0(k) 

:I-K b'.  n(k-l) • b'.      (k-l! 
i,0v i,ii. 

f(Vxk-rc 'i\ 
(A. 9) 
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i. 1 
(k) 

',       ,(k-l)  • b'      (k-i:f(x   Is    : r      ) 
i, j-1 i. ii. k    k       i,l 

r(.kixk_1,C) 
(A, 10) 

1)'.    (k) 
'. J 

1)',       .(k-lKU. Is.      c.    ) 
i, J-l k    k       i, j 

<{\l\-vC) 
(A. 11) 

ana 

p.    .{c'lSNlflx. IX,    ,,(■') 
,rA |,...,         k-1                   k     k-1 

p (C   ISN) =   

^^k^k-l) 

[A. 12) 

The updating ol ccjiiipunent infunnaliun can be implenienled by updating ul the probability ui 

the ilii component,  pJt-' ISN), and updating the probability uf the jth ccmponent sample given 

the ith component,  b'.    (k).    This then gives an allernative realization of the optimum adaotive 
i. J 

receiver.    The design equations for Realization II are summarized in Table A. 1. 

TABLE A. 1 

MASK' HECEIVER DESIGN EQUATIONS,  SPORADIC-POISSON TIME «TPTifTURE 

REALIZATION II 

Optimum Detectioii Output 

rXk)^(Xk-l)f(-\IXk-l) (3.8) 

^i'ciu(-'nt'al Avej'ag'.' Likelihood Ratu 

nx.ix^^l  P^CMSNK^IX^.C
1
) 

1= 1 
(A. 4) 
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Component Conditional Sequential Likelihood Rath 

f(xkIXk_1,C b', n(k-l) 4 b'      (k-1) 
_ i,0 i, n. 

1-r. 4  r.Ux. Is,   = c.   .) [      i        i      k    k       i,) 

.  x      b'.   .   .(k-l)f(x. Is.  = c.   ,) 
-2      i,j-l K    k       i,j (A. 3) 

Classification - Coni])iiiient PosiUon 

l-r 

b'^Ck) 

b'. n(k-l) * b'.     (k-1) 
1,0                   1, n. 

_          1      _• 

f(-\lxk-rci) 

(A. 9) 

b' 

b'   _(k-l) * b',     (k-1) 
1,0 i, n. 

f(x. Is.   - c.   ,) 
k    k       i, 1 

i, 1 f(x,lX.    ,,C 
k     k-1 

(A.10) 

b'.      ,(k-l)f(x, Is,      c.   .) 
b'.   .(k)       -^1 M ^L 

i, J 
f(xklxk-rc 

(A. 11) 

for j = 2, 3, . . . , n. 

Classification - Comjjonent Ideiilificati( 

Pk(ClISN) =     ^^- 
p,.   .(C'lSN^a.xJX,.   ,,cu 

k     k-l' 

r(x.lx.   ,) 
k     k-1 

(A. 12) 

A block diagram ol Uu realization is illustrated in Fig.  A. 1.    This realization is 

basically the same as Realization I in Section 5, 1. 1.    In Realizatiun II,  however,  the informa- 

ti; n regarding which component is present is kept in a temporary memory separate from the 

updated coniponpiit positional information.    This mean:  that Realization 11 requires a greater 

amount of temporary memory.    On ihe other hand.  Realization I requires a summer, 
'■I 

b.    (m) to calculate the component classification information. 
j=0   u] 
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A. 2   Realization III 

There Is a third adaptive receiver realization which is a "b" channel receiver in 

which each channel "looks" for one of the components.    For a finite number of signals in 

the signal ensemble the integral in Eq.   5. 1 becomes a sum so that the likelihood ratio of the 

observation X,   is 
k 

f(Xk) = 1     f(Xkls)po(slSN) 
se S 

(A. 13) 

Now the signal space,  S,  can be partitioned into b disjoint subspaces,  S..    Each S. subspace 

contains all those signals that might result from the ith component alone.    This is a result of 

the restriction that a given component,  C ,  is selected and fixed at the beginning of each long 

transmission.    Tiius Eq.  A. 13 can be written, as 

f(xk) 
b 
V 

1=1    seS. 
f(X   ls)p (sIC ,SN)p (ClISN) (A. 14) 

where by definition of a joint probability,  p (siSN) has been written as 

p   (siSN) = p (slCl,SN)p (CMSN) (A. 15) 

First,   the summation in Eq.   A. 14 is carried out over each subspace,  S.,    Since p (C  ISN) is 

a factor for each sum over S.,   Eq.   A. 14 can be written as 
i 

f(X, ) = x     p (C1ISN) v    f(X   ls)p (sIc'.SN) 
K .     ,        O ~   r, K O 

1=1 seS. 
i 

(A. 16) 

or 

f(X. IC1) - x    f(X. ICl)p (C'lSN) 
I- 1 

(A. 17) 

Now the sum over the space S, is the likelihood ratio,   f(X   IC ) of the observation X    under the 
I K K 

condition the ith component is present.    In other words. 

f(X   IC1) =    )     f(X, ls)p (sIc'.SN) (A. 18) 
seS 
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This likelihood ratio,  f(X   IC ),  can in turn be realized in a sequential fashion for each of the 

b possible components.    So 

UX^C1) =  f(Xk_1IC
1)((xkIXk_1,C

1) (A. 19) 

where f(x, 'X        C1) is given by Eq.   A. 13 along with Eqs.   A. 9,   A. 10 and A. 11.    The class- 

ification output for component identification is given by 

p (CllSN)f(X  IC1) 
p(Cl|SN)-—  (A. 20) 

f(Xk) 

Table A. 2 summarizes the design equations.    This realization has a channel for each of the 

b possible components.    A gross block diagram of one channel of the receiver,  Realization III, 

is shown in Fig.  A. 2.    In this realization each of the branches calculates the likelihood ratio 

of the entire observation,  X. ,  under the condition the ith component is being sent.    The out- 

puts of each channel arc then weighted by the a priori probabilities,  p (C ISN),  of the 

selection of each of the components and these a. . bummed to form the likelihood ratio,  f(X,), 
K 

This realization looks "less adaptive" since p (C ISN) is not explicitly updaieti at each step 

in time.    It differs from Realization II in that it has a separate channel for each of the possible 

components. 

TADLE A. 2 

BASIC RECEIVER DESIGN EQUATIONS,  SPORADIC-POISSON TIME STRUCTURE 

REALIZATION III 

Optimum Detection Output 

b 
/(X. ) = v   f(X. IC)p (C'ISN) (A. 18) 

K .'  '- K O 
1=1 
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Component Conditional Likelihood Ratio 

f(xklcl) = f(xk_1lc
1)rixklxk_1,c

1) (A. 19) 

Component Conditiui.al Sequential Likelihood Ratio 

f(x. IX        C' 
k     k-1 

b'.  Jk-1) + b!.      (k-1) 
i,0 i,n. 

_ i 

l-i'. -i i'.f(.\, Is,   - c.   ,) i       i     k    k       i,l 

.   x    b'.   .   1(k-l)r(xl Is,   = c 
j=2 

i, j-1 k    k       i, j 
(A. 3) 

Classification - Component Positic 

(!-'<) 

b^ik). _        ' I . 

r(xkIXk.1,C') 
(A. 9) 

b'i, l(k) 

b'    (k-i) + iy  n(k--laxkisk.c   ) 
i       J 

f(xkIXk_1,C' 
{A. 10) 

b'        (k-l)f(x  Is   =c    ) 
b'.   .(k) =     ''J  1 ^^ ^L 

i. J ;(xkixk,_1.c') 

Classification - Component Identification 

(A. 11) 

. p (C1lSN)f(X, IC1) 
Pk(C'lSN). k 

(A.20) 

 r.,r—-r-r- 
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A. 3   Realization IV 

We now come to one of the most interesting and useful lealizations.    The receive! 

realizations discussed previously are adaptive and operate in an intuitively appealing manner 

A simpler sequential realization is possible.    Let us begin the derivation of this realization 

by considering the likelihood ratio of the observation X     ..    This likelihood ratio is 

b 
v 

i, n. i, n. 
V V 

i, n 

1    srci,o VS.o Vrci,o 
•VlJpolSl'S2 s k-l 

ISN) 

(A. 21) 

Since these are finite sums,  the order of summation may be interchanged.    Leaving the 

summations with respect to i and s,    , until last,  one can write 
' k-1 

f(X 
b 
\ 

i, m 

k-l' 
i=1 sk-rci,o 

i,n.        i, n. 'i ". 

SrCl,0 S2 = ci,0 Sk-2=Ci)u 
r{Xk-l,Sl'S2 Vl5 

Denoting the quantity in brackets by 

pofsrs2 ViISN1 (A.22) 

c c. c. 
S.n. '-"i L-i 

Q«    (k-1)=   - ■ f(xk-ilsra2 Vi)'3o(srs2--"sk-iISN) 

k-l SfCi,0   ä2=Ci,0 Sk-2rCi,0 

gives 

c. 
i, n. 

f(X, Q        (k-l) 
i"-1 sk-rci,o k-1 

Now,  the likeiihood ratio of the observation X,   is defined to be 
k 

(A.24) 

C c. c. i, n. i,n. i, n. 
b i ii 

({X. ) ^   'N X     ...     X        f(X       Is-.s, s.    ,)f (x. Is,)p (s,,s9 s.lSN) k     . —     ,  -- .   — .   — k-l     1     2 K-l       k    k ' o    1     2 k 
l'~l   srci.O h2~Cx.O sk"ci,0 

(A. 25) 
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and by definition of a joint probability 

"o'-V-^ VSN): 'Jo(srs2 sk-iISN)'5o(sk,si's2 sk-rSN)     (A-26) 

For the generator processes under cunsiderat ■ation 

t\,(sklsrs2 sk-rSN)   K(skisk-rSN) (A. 27) 

the state of the signal sample,  s      depends only on the state of the previous sample,  s       . 

Substituting Kq.  A. 27 into A. 26 results in 

"o(VV-   •sk
ISN)^o(srs2 sk-iISN)^sklsk-i'SN) (A. 28) 

and subsliluling Eq.  A. 28 into A. 25 gives 

f{X, 

c. c. c. 
i, u. i, n. i, n. 

I) i 1 1 
\' V v     . . .   x 

i=l   s.=c.   n s  =c,   ,   s   =e. 
1     i,0    2     i,(J    k     i,0 

flXk-llsl'S2 Vl^k1^ 

t;{sklsk_1,SN)p()(s],s2 S^JISN; (A. 29) 

One can select the order ol summation so that the sum over s,   and s,    , follows the sum 
k k-1 

over s., s s    „.    Also,  g(s   is.    ., SN) can be factored out of the summation over the 

first k-2 sums and f(x. Is ) factored out of the sum over the first k-1 sums.    Equation A. 29 

can be written then as 

, i.n. 
b i 

i. ii. 

1= 1   s, c.   „ s.    ,-c, 
k    i,0 k-1    i. 

(g(sklSk.rSN) 

r-           C. C. 
i, n. i, n. 

i 1 
\ \ 

c. 
i, n. 

■sl  Ci,0 S2  l'i.O    ■Sk-2  C'i.O 

^Xk-i,srs2 sk-i)po(srs2 sk-rSN) 
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Notice that the multiple sum in brackets is what we have defined In Eq.  A. 23 as Q        (k-1) 
Vi 

Making this substitution,  Eq.  A. 30 becomes 

b       Cl'ni ''-"I 
((\)'-\ \      '(xklsk)     ^ g(skIs SN)Q        (k-1).       (A. 31) 

i=1  VS.o sk-i=ci.o k-1 

Now in a mai ner completely analagous to that which resulted in Eq,   A. 24,  one can write the 

likelihood ratio of the observation X,   as 
k 

c. 
b i 

Therefore Eq.  A. 31 can be written as 

c c, c. 
b l'ni b       l'ni l'ni 

((x,)= 1     Q   (k)=L     '    f(xklsk)      ''     ^sk,skrSN)Qs    (k"1) 

^ Vci,o Sk      l=1 Vci.o sk-rci,o k-1 

(A. 33) 

c. 
i, ii. 

Qs (k) = f(xklsk)     ^ g(sklsk  j.SN) Qs      (k-1) (A.34) 
k sk-fci.o k-1 

We now want the updating equation for each state that s    can be in.    Lei us use the 
K 

notation Q (k) - Q    (k).    By definition of the Sporadic-Poisson generator process as 
k    i,j llJ 

given by Eqs.  4. 2 through 4. 5,  many of the state transitions in the formal sum of Eq. A. 34 

are zero.    For s    = c.  0, the only nonzero values of g(s   Is       , SN) are g(sk= c.  o'sk-l=Ci 0'^N' 

= I-v. and g(s,   = c.  nlc,      , SN) = l-u..    Since f (x. Is.  = c,  „) = 1 for signals in added 
i k      1,0    i, n ' i k    k      1,0 ^ 

white Gaussian noise,   Eq.  A. 34 becomes for s,   = c,  „ 
k       i, 0 

Qli0(k) = Q.  0(k-l) > Q.  n(k-l)j (1-^) (A. 35) 

f(Xj =   X S Q    (k) (A. 32) 
1=1      sk=c,)0      k 

By inspecting both sides of Eq.  A. 33 it can be seen that the general equation for updating 

Q    (k) in terms of Q    (k-1) is given by 
S': Sk 
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The siLiuil can only reach sUt'  s.   = c.   , from s,   , = c.  ,, or s,    , = c,      , and the 1 K       1,1 k-1       1,0 k-1        i, n. 
i 

probabi'itles associated with these transitions are K(S,   = C.   , IS.    , = c. „, SN) = v. and F &   k       t, 1    k-1       •.,() i 

u's.   = c   . Is,    , = c,      , SN) = v..    So for s,   = c.   ,,Eq.  A. 34 can be written as h    k       i, 1     k-1       i, n, i k       i, i    M 

Q:   ^ -- IQ.  n(k-l) + Q.  ., (k-l)! t'.fCx. Is,. = c;   J (A. 36) 
^ l.l^'-^l.O^'^^l.n^-^J    iMXk'bk=Li,l 

For any of the other states, c    .,  where j is not tfqual to 0 or 1,  the state s,   = c.   . can only 

be reached from s.   , = <-•.      ..    The probability of this transition is one.    In this case 

Eq.  A. 34 becomes 

\^--\^-xn\^-'\l (A-37) 

Now,  the likel'hood ratio of the observation X   was yiven by Eq.   A. 32 at. 

b     ''-"i 
f(XJ =   ^ \        Q0 (W (A. 32) 

,= 1    s.-c.^     k 

Usin^ the notation Q. (k) _ = Q     (k,,   Eq. A. 32 can be written as 
Sk       " Ci,j        l'J 

b i 

K       M     j=0     l,J 

Equations A. 35 through A. 38 are I. e basic equations of this realization.    This receiver Is 

much simpler than the previous oneü.    If o.ie compares the upoati ig equations for the Q.   ,(k) 
*-\ J 

matrix with thai for the b.    (k) matrix of Realization I in Section 5. 1. 1, one sees that they are 

quite similar except that the updating of b.    (k) is more involved.    In Realization I,  each 
i % J 

b.    (k) term had to be multiplied b> a sequential lik"llhood ratio,  f(x   Is.   = c    ,), to obtain 
I, j k    k      l, j 

the llkellhüod ratio,  f(X ),  of the observation X .    In Reall.-ai.on IV,  however, the likelihood 
K K 

ratio at time t.  Is simply given by Eq.  A. 34.    In order to see how a classification output is 

obtained from the Q    (k) terms let us first look at another Interpretation of Q   .(k).    We 
•» J i? J 

know from Eq.   3. 8 that 

^V ^k-l'^k^k-l' <3-8) 



no 

By definition 

b      »'"l 
c. c. 
l.n, i.n. 

\ 

l=lsl=Cl.082=Cf,.0   VCi.O 
•     -    'WW8!'^' .,s   ISN)       (A.39) 

K 

For generator processes which can be expressed as a function,  g(s. Is,   ., SN), one obtains, 

as before, for the average sequential likelihood ratio 

b        l'ni 
V V 

1, n. 

1=1 Vci,o sk-fci,o 

g(sklsk_11SN)pk_1(sk_1lSN) (A. 40) 

So the likelihood ratio of the observation X.  can be written using Eqs.  3. 8 and 5. 12 as 

, i, n. b i i, n. 
i 

^V^k-i' -,     -   l{\1^   -      ^k'Vr^Vi'Vi1^ 
1=1  Sk^Ci.O sk-fci,o 

(A. 41) 

Since f ■'—,    ,) 's independent of the summations over I,  s,   and s        one can bring ^(X     .) 

within thn summaiion signs and write Kq.  A. 36 as 

b       ""''i i, n. 
i 

f(Xk)=
n       -        '^^ - 

R      1, 0 k- 1      1, 0 

g(sklsk.1.SN)r(Xk.1)pk.1(Sk.1ISN) (A. 42) 

Comparing Eqs.  A. 37 and A. 33 one sees that 

Ql(.(k) = f(Xk)Pk(Sk = ClijISN) (A.43) 

Recalling Eq,   5. 16 

b.    (k) ^ p, (s,   = c      ISN) (5. 16) 

one can write Eq.  A. 43 as 

S./^VijW (A.44) 

Q     (k) may be interpreted as the likelihood ratio of the observation X,   multiplied by the 
I, J K 

probablll.y of the jth component «ample ol the 1th component,  under the condition SN,  and the 
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taking of k observations. 

If the classification output,  b.    (k; is wanted,  it can be determined from 

Q    (k) 

\iw-j¥r (A-45) 

If the updated component identification is desired,  it can be derived from 

n. 
i 

n. N Q.   ,(k) 
v1 .-"o l'J 
x   b.   (k)=   J"0 ,lv v  (A. 46) pk(CMSN)=lb    (k)=^7TO 

j=0 

The operations that the optimum receiver of Realization IV performs are summarized in 

Table 5. 3 in Chapter V and block diagrams are presented in Figs.  5. 5 through 5. 8. 
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APPENDIX D 

OPTIMUM ADAPTiVE RECEIVER REALIZATIONS, 

SYNCHRONOUS-POISSON TIME STRUCTURE 

B. 1   Realization III 

In Section 5. 2. 1 Realization I was presented for the Synchronous-Poisson Time 

Structure.    Realization III is a "b" channel receiver.    In this realization the likelihood ratio 

of the observation X,   may be written as 
k       J 

b 
f(X ) = '      p (C ISN) ^      /(X. Is) p isiC .SN) 

1=1 sfS. 
I 

(B. 1) 

This conditional likelihood ratio is to be realized in a sequential fashion for each of the b 

possible components,  so that 

nx^c1).- f(xk.1lc
l)r(xklxk_1.ci) ;B. 2) 

In the Sy.ichronous-Poisson Time Structure,  the component conditional sequential likelihood 

ratio has been previously determined and is 

f(xk1Xk-rC)= '-VV'-VVS.' (5.60) 

The classification output is obtained from 

. p (C'ISNKCX. IC1) 

Pk(CISN)- fix.) 
(B. 3) 

The design equations for this realization are summarized in Table B. 1.    A block diagram is 

shown in Fig.   B. 1 for added white Gaussian noise.    A feature of this realization is the separate 
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channel allotted for each of the b comDonents.    The receiver input, x, ,  is correlated with channel allotted for each of the b components. The receiver input, x. , is correlated wit 

each possible component that could occur and the bias C. , • C ./2 is subtracted. These 

outputs are then passed through nonlinear functions which depend on the average duty factor 

of each component. The output of the nonlinear element is the logarithm of the component 

conditional sequential likelihood ratio, f(x. IX .,C ). These values are summed by means 

of the recirculating T. delay and exponentiated to form the component conditional likelihood 

ratio, M'X   IC ).   These component conditional likelihood ratios,  weighted by the a priori 

probabilities of the possible components, are summed to form the detection output,   f{X ). 
k 

The classification output is obtained by taking the output of each channel and dividing it by 

the detection output,   f(XJ.    This is done in this particular realization on a logarithmic basis. 

TABLE B. 1 

BASIC RECEIVER DESIGN EQUATIONS, SYNCHRONOUS-POISSON TIME STRUCTURE 

REALIZATION III 

Optimum Detection Output 

b 
f(Xk) =    V_   /(XkIC1)po(C1ISN) (A. 18) 

i- 1 

CompoMFiit Conditional Likelihood Ratio 

f(XklcV ftX^jIcVUjX^.C') (B. 2) 

Cornpunenl Conditional Sequenlial Likelihood Ratio 

^VVi^'-^i^VVS,^ (5-60) 

Classification - Compniient Identification 

p (C'lSNWX   iC1) 
Pk(C

1|SN)=       ü      ^        (B.3) 
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B. 2   Realization IV 

This realization is somewhat simpler than Realization III although the contrast is 

nut so great as in the sporadic receiver. Let us begin the derivation of this realization by 

considering t^e likelihood ratio of the observation X.   ,.    This is 

C.   .       C.   . C.   , 
b i,l i. i i. ! 

-    .;    ' ■•    -     '(xk-ilsrs2 Vl^5!'^ Sk-iISN) k-r i= 1   S. = C. n Sr = C.  „ S.    , = C.  . 
1     i,0   i     i,0   k-1     i,0 

(B.4) 

Summing with respect to I and S      last one obtains 

b '1,1 

f(Xk"l)'171   sk-i;'Ci,o 

"c. .       c. , 
1, 1 I, 1 

\ s 
S2=Cl,0Sk-2""Ci,0 

^X
k-l

ISl'S2 \-l] 

Po(Sl-S2 Sk-1ISN) 

J 
Denoting the quantity in brackets by Qo      (k-1),   Eq.  B. 5 can be written as 

Vi 

(B. 5) 

f(X.    .)=   1 Q„      (k-1) 
iri   Sk-fc;,o   Vl 

(B.6) 

Now,  the likelihood ratio of the observation X.   Is by definition 

f(X 
K' 

c   .      c. .       c, . 
b      1,1        1,1 1,1 
v      \ \' v 
MSrCi,oVci,o    VCi,o 

^xk-ilsi.s2 Vi^VW8^ skISN) 

By definition of a ioint probability 

Po(srS2 SkISN) = Po(srs2 skISN)Po(Sk,srs2 \-vSN) 

(B. 8) 

But in the Synchronous-Poisson Time Structure, the generator process Is such that 

"T- 
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Po(SkISrS2 Sk_1.SN) = g(SklSN) (B.9) 

Substitutlnt; Eq.   B.9 into B. 7 ^ives 

C    i        C.   i        C    > i,l 1,1 i.l 
b 

f(X,) = v       v v_    • • •   N_ 
i=l s =c,    s =c  r s=c 

1     1,0    2     i, G    k     i,0 

Xk-ilsrS2 Sk-],f(VWsi'S2 Sk-^sk,SN) 

(B.10) 

Interchanging the order o! summation and factoring,   Eq.   B. 10 can be written as 

r 

MX ) = ^ ffW K(S. ISN)< 
1=1   VCi.O 

Ci,l 
\ 

sk-rCi,o 

c, .      c, .      c   . 
1,1 1,1 1,1 

■> 

\ \ 

L  SfCi,0S2 = Ci)0
Sk-2 = C;.0 

- „ f(xk-i,srs2 h-i^^vh Sk-iiSN) 

J 
(B. 11) 

But the multiple sum in brackets In Eq.   B. 11 is the same as the bracketed term in Eq,   B. 5 

which lias already been defined is Q„      (k-1).    Substituting Q        (k-1) into Eq.   B. 11 gives 
Vl Vl 

i,l 
C 

i, ! 

\ f(XJ = v f(.x. IS )glS   ISN) Q        (k-1 

k     i, 0 k-1     i, 0 

[B. 12) 

Now Eq.   B. 6 can be written with the subscript k-1 advanced to k resulting in 

b ^ 
f(X.) = Q„ (k) 

1=1   S^C   „   bk 
k     1,0 

[B. 13) 

Comparing Eqs.   B. 12 and B. 13 one see"" that 

C 
i, 1 

Q„   (k) =   f(x. IS )g(S   ISN) Q        (k-1) 
SK sk;rc     Vi 

(B. 14) 
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Lvi us use the simpler notations Q- is    .-      (W     Q.  n(k) and Q (k) = Q.   .(k). 
k"Li,ü l'0 k = Li, 1 ['1 

By definition of the Synchronous-Poisson generator process as giver, by Eqs.   4. 7 and 4, 8 

g(Sk!SN).l-.,      for    Sk     C.)0 (4.7) 

and 

K(SkSN)     .. for    S,   = C 
k        i, 

(4. 8) 

Therefore Eq.   B. 14 can be written as 

Q     (k)     (1-.,) Q.  n(k-l) * Q.   ,(k-l 
1,0 i,l ] (B. 15) 

and 

«t, i(k) = V( W S. i' Q.  n(k-l; * Q.   .(k-l 
i,0 i,I 3 (B. 16) 

Instead of updating Q   „(k) and Q.     (k) separately,  one ran update the sum,  Q.(k) = Q.   .(k) 

* Q.   .(k) 
i, 1 

[-. Q^dO^Q^k-Dl   W-'i'W0 ■..'] (B. 17) 

Using the notation intrcxluced above for the Q    (k)    Eq.   B. 13 can be written as 
bk 

f(Xk) 
b      r 

i   1 
Qj  0(k) + Q: 1, >(k] (B. 18) 

or 

f(X, ) = Q.(k) 
K      1=1      ' 

(B. 19) 

Equations B. 17 and B. 19 are the basic equations necessary to obtain the detection output. 

The interpretation of Q (k) is similar to the interpretation given of Q     (k) in the sporadic case 
i ' i J 

and is 
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i Qt(k) 

pk(c ,SN) = rrv (B. 20) 

Thus,  a classification output is easily obtained.    The design equations for this receiver 

realization are summanzed in Table 5. 5.    Block diagrams of this realization are shown in 

Figs.   5. 5 through 5. 8. 



APPENDIX C 

OPTIMUM ADAPTIVE RECEIVER REALIZATIONS, 

PERIOPIC TIME STRUCTURE 

C. 1    Uiiknowii Repetition Frequency,   Realization II 

A slight müdlficatlo.i 'if Realizatioi. I,  presented in Section 5. 3. 1 may be obtained by 

writint: the joint probability,   b     (k) in the form given in Eq.   A. 1,   b.    (k) = b'.    (kip, K''! SN) 
i, J i, J i, j       k '• 

and substituting into Eq.   5.66 for the sequential average likelihood ratio.      Factoring out 

Pk_1(C ISN) gives 

b 
(^JXy   i' = '     P.    ,(CllSN) k     k -1 ,    < -1 

i= 1 

1 
i 

b'       (k-I)f(x, Is.   = c,  .) +   N    b'.   .  .(k-Dflx, Is,  = c.   .) 
'. n. >•       i. 1       j=2     i,j-l k    k       i.j' 

(C. 1) 

Defining a component conditional sequential likelihood ratio,   f(x  IX        C ) as 

"i 

^^'Vr^^'i.n^-^^k'^^i.i^.r, h\,}-i{k-l)({^s^cJ   (C2) 
i j z 

one can put Eq.   C. 1 into the form 

^k'^Wv, vi(c ,SN)f(xk,xk-i'c 
i=i 

(C 3) 

The updating; equations for component positional Information are obtained by making 

the substitution of the form b.    (k) = b'.    (k)p (c'lSN) in both sides of Eqs.   5. 68 and 5. 69. 
11 J 11 J K 

The result is 

b'.   jfWp^c'lSN) = 

b'.      (k-1) p,    .(CiISNK(x. Is.   = c,   .) 
i.n. k-1 kk       1,1 

i 

f(Vxk-i! 
(C 4) 
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i                b'i   i-)(k-1)pk-l(ci,SN)r(xklsk = Ci   ^ 
b'     'k)p,(C iSN)=       ''J    -— —-- ^J- (C   5) 

^k'Vi' 

Instead of updating the products of the form b'.    (k-l)p      (C'lSN),  one can update 
1, J K — 1 

b' (k-1) and p     .(C ISN) separately by observing that 

b",       (k-l)f(x, Is,   = c.   ,) 
1, n. k    k        1,1 

b'    .(k) = !  (C.6) 

^•^k^k-l' 

b'         (k-l)f(x. Is    =  c.    ) 
b'     (k) =       ''J"' —= ii-J- (C 7) 

J ((\IXk-l' 

and 

for j     2,3 n 

p    (cllSN)r(x ix      c1) 
P.IC'ISN)   =  -2-! —5-L    (c. 8) 

■"•^k^k-l' 

The design equations for this realization are summarized in Table C. 1 

TABLE C. 1 

BASIC RECEIVER DESIGN EQUATIONS,   PERIODIC TIME STRUCTURE 

UNKNOWN REPETITION FREQUENCY 

REALIZATION II 

Optimum Detection Output 

"V^'W'-V'Vi' (3-8) 

Sequential Average Likclihcxxi Ratio 

f(xklxk-i)=-   'Vi(c ,SN)f(xkIXk-rC) (c:3) 

1=! 
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Comgonent Conditional Sequential Likciihotxl Ratio 

r^lx^.c') = b'.|nj(k-i)r(xklsk. c.j) + ^ b-^.^-iWx.ls^c^)     (c.2) 

Classification - Component Position 

b1,   .(k) 
i, 1 

^.n.^^V'V'i,!! 
C(\l\.J 

(C 6) 

b'     (k) = '»J-1 k    k     '.J   - 
l,] f(x.lX.    ..C1) k     !t-l for j = 2,3,..   ,n. 

Cla.s.sification - Coniponent Idcntii'icatic 

(C 7) 

Pk(ClISN) 
1Vl(C

i|SN)I(xkIXk.1.Ci) 

'^-J 
(C. 8) 

C. 2   Unknown Repetition Frequency,  Realization FII 

This is a "b" channel realization in which the likelihood ratio of the entire observi 

tion,  X      is obtained sequentially under the condition the Uli component Is presem.    The 
K 

b channels are then weighted by the a priori probability,  before taking any observations,  of 

each of the components.    The detection output Is 

V f(Xk) =   ^   nXjJC'p^C'ISN) (A. 18) 

Each channel forms 'he likelihood ratio of the observation,  X, ,  conditional to the 1th 
k 

component and this is formed sequentially as 

f(xkici) = f(xk.1ic
l)i(xklxk_1,c

i) (A   19) 

which becomes In the periodic case 

J. I 
f(xklxk-rc      ^.n/^V^V    r_9 1 J-iJ 

b-lJ.1(k-l)l(xkl8k-c1)])     (C.9) 
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and the updating equations on component identification and position are given by Eqs.   C. 6 

through C. 8.    The receiver design equations for this realization are summarized in Table C. 2. 

TABLE C. 2 

BASIC RECEIVER DESIGN EQUATIONS.   PERIODIC TIME STRUCTURE 

UNKNOWN REPETITION FREQUENCY 

REALIZATION III 

Optimum Detection Output 

b 
i(\.) -- x    f(X, ic'lp (C'lSN1 

k      i=I       k " 
(A. 17) 

Component Conditional Likelihood Ratio 

(xkic1) = f(x..1ic
1mxkixk.11c

1) 

Component Conditional Sequential  Likelihood Hat:.) 

a. i 

(A. 19) 

ä lxklx
k-rc,) = b i.n.(k-1,f(xk,sk = Ci) i» + -2 

b u-i(k-1)f(xklsk = ci,i] 

Classlflcation - Cümponent Positioi 

(C. 9) 

b'i, l(k) 

b'.      'k-l)f(x, Is,  - c    ,) 1, n k    k       1,1 
 I  

f(xk!Xk_1.C
i) 

(C 6) 

b'i   ,-l(k-1,f(xk,Sk = Ci   i' b'.    (k) =       l'J  ' Ü-^ U- 
i. J Mxklxk.1,c') 

(C 7) 

for j = 2,3, ... .n 

Classification - Component Identification 

p (C'ISNKIX.IC1) 
p (CMSN) - -2 ^  

K 
f(xk) 

(C 8) 
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C. 3   Unknown Repetition Frequency,  Realization IV 

This reallzaUon is the least adaptive looking cf the realizations but it is the 

simplest.    It is a "b" channel receiver and its development follows Appendix A. 3 for the 

sporadic receiver up U   £q.  A. 34 with the exception that the summations are over the states 

c    ,, c.  „,..., c rather than c.  „,  c    ,,c.   „ c Analagous to Eq.  A. 31 one can 
1,1      1,2 i, n, 1,0      1,1     1,2 i, n, 

write 

C.,nf 

Qs (k) = f(xklsk) Z{\]\-VSN)Q
S      (k-1) (C- 10) 

k s,   ^c.   , k-1 
k-1     i,l 

Usin^ '.he properties of the periodic generator process given by Eqs.   4, 9 and 4. 10 in Eq.   C. 10 

one can write 

QiilW = QliJ,^m(xklsk = c1(1) (c.ii) 

Q.i.(k) = QliH(k-m(xkIsk=clij) 
(C 12) 

for j = 2, 3,. . . , n 

where the likelihood ratio of the observation X    is given by 

n. 
b i 

f(X. ) = V Q.   .(k) (C. 13) 
k       r=l      j=l       1,J 

The classification output is obtained as before from Eqs.  A. 44 and A, 45.    The basic receiver 

design equations are summarized in Table 5. 7. 



APPKNDIX D 

COMPUTER SIMULATION TECHNIQUF 

The receiver realizations discussed  in Chapter VII,  from   which the HOC data  was 

obtained, were simulated on the IBM 7090 digital computer.    The general computational 

method used throughout was to replace all continuous random variables with a discrete 

random variable.    A 50-poinl discrete probability distribution was used to match the continu- 

ous probability distribution,  each point being assigned 2 percent probability.    That is,  the 

two probability distribution functions were matched at values of    01,   . 00, ..... 99.    This 

method gives a rather good representation of the random variables within the middle 

96 percent of the range,  and a crude representation of the smallest 2 percent and the 

largest 2 percent of the range. 

The optimum adaptive receiver realization discussed in Section 7. 2 for one of eight 

orthogonal components,  Synchronous-Poisson Time Structure,   was simulated on the digital 

computer.    The digital data was then converted to analog form on a digit.il-lo-analog con- 

verter and plotted out on a Sanborn pen recorder. 
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APPENDIX E 

DERIVATION OF PERFORMANCE OE ENERGY DETECTOR, 

PERIODIC AND SYNCHRONOUS-POISSON TIME STRUCTURE 

In thus section the detection performance of the energy detector is derived for the 

CKS (one of M orthogonal components),   Periodic and Synchronous Time Structures.    The 

detectablllty, d,  can bv expressed as 

d      r, 
2E 
N (E. 1) 

where r; is the efficiency (See Reference 20).    Lamphiear and Dirdsall (Ref.   21) have shown 

that the efficiency for the energy detector is approximately 

V 
iL 2*2 — 

n 

2 
I  t  

c~ 
n 

2*3- 

E. 2) 

where 

For 

a nd 

n      2WT 

2       2E 

2 ♦ 2 

2 + 3 

=   1 (E. 3) 

c2 
=    1 

2    n (E. 4) 
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Usint; those approximations,   Eq.  E-2 becomes 

1   c 
'1=7   — 

2E 

\N 
1  \   (i 

4    n 4    2WT (E. 5) 

For the Ptrlodlc Time Structure,   E = kE   and T = kT.,  where E    is the component c 1 ( ' 

energy and T    is the duration ol a component.    Therefore,   Eq.  E-5 can be written as 

'; = 

ojr 

\ N 
1       \     o 
4 2WT, E. 6) 

For M orthogonal components 2WT    is at least M.    L'sin^ M     2WT 

1      2Ec 
4M \   N 

E. 7) 

ana ihe d<HectabUlty as defined by Eq.   E-l becomes 

1 2E 

d = ^M Hir- iE. 8) 

which is Eq.   T   '^ in the text. 

so:   ' ie Synchr  ni.r - Poisson Time Structure,  and the occurrence of the average 

number oi (■     por.e1   -s,   „ = ekE     and the efficiency becomes 

1  n (E. 9) 

and d becomes 

d    n rk 
2E 
 c 

N 
1 2ul S)! (E. 10) 

which is Eq.   7. 15 in the text. 



APPENDIX  F 

DERI VATI ON OF P ERFORMANCE,  SUDOPTIMUM RECEIVER 

CKE,  SYNCHRONOUS-POISSON TIME STRUCTURE 

In this appendix the detection performance of a suboptimurn receiver is derived 

which crosscorrelates the component,  C, waveform with each unit observation, x., and 

integrates.    In other words,  the receiver forms 

k 
z=N_      x      C (F. 1) 

1=1 

where x. is an n.-dimensional observation and C is an n.-dimensional component.    This 

derivation assumes that the detection performance is the same as that had the average 

number of components occurred. 

vVhen the receiver outputs under the hypolheses N and SN are normally distributed, 

the detectability, d,  is given by (Ref.   20) 

2 
,    ('^SN.k ' ^N.k) 

d =  ^  < F- 2) 

where 

aN,k 

;J„N , mean of the receiver output conditional to SN and k observations 

;J N mean of the receiver output conditional to N and k observations 

2 
a variance of the receiver output conditional to N and k observations 

2 
Let us now obtain expressions for fioN  . ,  MM k 

and a M  i,-    Since the sum of any 
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number of Independent normally distributed variables is itself normally distributed with 

mean the sum of the means and variance the sum of the variances,  then 

'•SN.k    (1 -'■)^N^k1.CN (F. 3) 

where 

rk average number of component occurrences 

'1 - i)k average number of no-component occurrences 

'CN 
mean of tin- observation,   \ ,   under component plus noise 

i 

mean of the observation,   x .   under noise alone 
i 

The variance under noise alone after k observations is the sum of the variance under noise 

alone o( each observation.    Thus 

2 .    2 a .,  .   =  ko .. 
.s, k N 

( F. 4) 

Substituting Kqs.   F-3 and F-4 into the definition for d,   Eq.   F-2,  results in 

n \ 2 

d 
:N 

( F. 5) 

When component plus noise is present the mean of tin   receiver output is * ,-y-      2WE  . 

When noise alone is prese:,; tin  mean of the correlator output is i.        0 and the variance 

is a ., 
N 

2W'L  N.    Therefore,   Eq.   F-5 becomes 

2F 
( F. 6) 

which appears a;- Eq.   7. 1' 
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