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ABSTRACT 

This paper applies the concepts of the "ideal" informa- 

tion processor and rational decision maker to a typical problem 

in social psychology—that of group problem solving.  The 

structure of the selected task is seen to be that of a nonzero 

sum game.  A strategy is derived and is shown to be the equiva- 

lent of the Nash solution to the game.  The notion of level of 

aspiration is discussed and defined within the analysis and two 

theorems  are proved relating level of aspiration to type of 

group decision strategy employed. 
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BAYESIAN DECISION THEORY, GAME THEORY, AND GROUP PROBLEM SOLVING- 

It is the general purpose of this report to attempt to apply concepts and 
methods of analysis derived from Bayesian decision theory and the theory of non- 
zero-sum games to the social psychological problem of group decision making and 
group problem solving. Attention will be restricted to a specific type of task 
often used in social psychological experiments.  It is hoped that the value of 
this approach will become obvious as the analysis develops. 

The task to be described is one of a type which is used not infrequently in 
studies of group problem solving.  The task is such that a problem is presented to 
a group of individuals. The problem is of such a nature that there is no single 
deductive solution with which the group members can be certain of their answer 
being correct. An example of such a task might be one in which the Ss_ are to esti- 
mate the number of beans in a jar, or the number of lines in a brief visual display. 
The group members must communicate and eventually reach a single Joint decision 
which represents the group solution.  If they fail to come to an agreement, the 
payoff to the group is zero. We will consider only tasks in which the group deci- 
sion is either correct or incorrect.  If the group decision is correct, then the 
group wins a payoff, a; if incorrect, the group wins b, where a>b>0. The payoff, 
either a orb, is then divided among the group members by a predetermined schedule. 
It is assumed that the schedule for distributing the payoff is not a function of 
the group decision rule« 

Let us suppose that the group has two members, person 1 and person 2.  Fur- 
ther, let us use as an example of the class of tasks mentioned above, one in which 
the two members are to estimate the proportion of black balls in an urn containing 
100 balls.  They receive a sample of n1   and n balls, respectively, drawn with 
replacement from the urn.  In their samples they observe rx and r2 black balls. 
Given that they are allowed to communicate, we want to attempt to specify the value 
they "ought" to choose as their group estimate of p, the proportion of black balls. 
If the joint estimate, d', is correct, they jointly win a dollars.  If It is in- 
correct, they win b dollars. We will assume that the utilities of both 1 and 2 
for money are linear with dollars, at least for the range involved in this task, 
and also that the persons try to behave so as to maximize their individual expected 
utilities. 

From Bayesian decision theory we will take the assumption that each of the 
persons can be conceptualized as having a subjective probability distribution over 
p on the interval 0<p<l.  The further assumption will be made that this distribu- 
tion has the form of a beta distribution with parameters a. , b,, where ai,bi>>l, 

i = 1, 2.  (We use the subscript i to denote the ith individual.)  The beta density 
function is defined by 

(1) f±(p) = B(ai,b1)-
1 p^"1 (l-p)01"1 , where 

(2) B(ai,bi) = r(a1)r(bi)/r(a1+b1). 

- 1 - 



If the group member's uncertainty about the value of p can be summarized 
by a beta distribution with parameters (a^b«) before a sample is drawn from the 
urn, then we further assume that his uncertainty will be represented by a beta 
distribution with parameters (a^+r^, b^+n^-r^) after observing a sample of r\±  balls, 
r^ of which are black.  The posterior density function will be given by 

(3)        fi(Pir1(ni) = B(a1+ri, b^-ri)-
1 p"!*1"!"1 (l-p)bl+ni-ri-1 

Finally, we are going to assume that the individual would, if forced to give 
his estimate without communicating or in any way considering the other person, state 
as his estimate the mode of his posterior distribution, given by 

(4)        dj - a1+ r±-  l/fc^ bi+ nf 2}. 

So far all we have done is to specify that the Ss in our imaginary experiment 
will behave like "thou," Savage»s (1962) ideal decision maker. 

Let us now make the realistic assumption that our Ss_ come from different 
environments (which can be experimentally controlled) and have, in general, dif- 
ferent pasts regarding p. This is to say that ai ^ a2 and/or bx  ?  b2.  They each 

see a sample drawn from the urn containing 100 balls in which p*100 of the balls are 
black. They are allowed to communicate and they must state a single joint decision, 
df, upon which they agree. 

We first notice that each S's utility function is a linear function of f.(p), 
his subjective probability distribution.  This is easily enough shown.  The Ss 
agree to divide the payoff so that 1 gets  e  and 2 gets  k  dollars if they are 
correct (e + k = a); and 1 gets g while 2 gets h dollars if they are incorrect 
(g + h = b).  Then l's expected utility function is 

(5)        uj(p) = ef (p) + g[l-f (p)] 

f (p)[e-g] + g. 

Likewise, 2's expected utility function is 

(6) u'(p) = f (p) [k-h] + h. 
2 2 

Assuming that utilities are measured up to a linear transformation we can transform 
each utility function so that 

(7) u'»(p) = f^p) 

(8) u"(p) = f (p) 
2 2 
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To get back to the problem at hand, we would like to find a value, d1, which 
our two idealized Ss_ will be willing to give as their joint estimate of p.  They 
are starting in the task with different subjective prior distributions and they have 
seen different samples.  Now, inasmuch as we are assuming the cost of communication 
to be zero, the Ss_ will exchange messages consisting of the samples they have seen. 
Thus, each will effectively have a sample of nx +  n2 = n balls, of which r = rl +  r2 
are black.  After having processed this information and accordingly altered their 
respective distributions, they discover that their respective estimates do not 
agree, d^ d .  Moreover, there is, in general, disagreement as to the probability 
of any particular p.  Thus there will also be disagreement as to the utility of an 
estimate of any value of d' ■ p. 

The situation at this point can be visualized as two different probability 
distributions over the inverval (0,1).  It is in this form that we can see the 
correspondence between the decision theoretic formulation and the theory of non- 
zero-sum games.  If we divide the interval (0,1) Into small equal subintervals of 
width .01 and assign to each a probability proportional to the ordinate of the 
mid-point of the interval, this will give us a good discrete approximation to the 
continuous function fi(p).  We will continue to refer to the probability of a 
value of p (and hence the utility, or expected utility of that value) as f(p) 
inasmuch as the solutions suggested later will be invariant for the functions f(p) 
under multiplication by a positive constant.  Having approximated the continuous 
distributions by discrete ones we can represent the situation as a two person 
game as in Figure 1.  Since there is a constant zero payoff if the Ss fail to reach 
an agreement, we will have zeros in all cells outside of the main diagonal.  The 
entries in the main diagonal will be greater than zero although they may be very 
small. 

S 2 

.01 .02   1.00 
.01  f (.oTTT f (oi)  o7ü~ ^57ff 

1 2 
.02      0,0       f (.02),f (.02) 0,0 

si. . 

l.oö    0,0        0,0  .'. f (l.oo), Mi.oo) 

Fig. 1.  The group decision problem summarized in the form of 
a non-zero-sum game.  All off diagonal entries are zero. 

Our next step is to determine the set of outcomes with which our Ss will 
concern themselves. It is clear that the only set of decisions, D, the Ss will 
consider in their communication is 

(9)        D ■ (df = p; d < p < d ) , d <d , 
I-   -  2     12 
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where d. Is defined by Eq. (4).  In other words, the Ss_ will only consider those 
values Of p for their joint decision, d1, which fall between the modes of their 
respective posterior distributions.  This is obvious and can be shown quite easily. 

The functions  fj(p)  and f2(p)  (which we shall henceforth abbreviate as 
fj and f,)  are both monotonically increasing on the interval (0,d.), assuming 
as we shall throughout the remainder of this paper that d< d?. Thus 
f1(p)<f1(d1)  and f2(p)<f2(dj) for all p<dx.  Likewise both  Tx   and f2 are 

decreasing monotonically on the Interval (d2,l). Thus, for p>d2, f1(d2)>f1(p) 
and f2(d2)>f2(p).  Thus, by the assumption of expected utility maximization, 

values of p  less than di and greater than d2 will not be considered in the 
decision process. 

D has been defined as the set (or interval) of values of p which lie 
between the modes of the two posterior distributions.  This set D is the Paretian 
optimal set for this decision situation.  It is true that there is no value of p, 
pf, not in D such that f (pf)>f (p") and f (p')>f (p") where p" is any p in D. 
This follows from the argument above.  Moreover, there is no p, p", in D such 
that  fjCp'MM^Cp*)  and f 2(p" )>f 2(p«) where p* is any p in D,  p* f' p".  This 
follows from the fact that f1 is constantly decreasing on the interval (dj, d2) 
while f is constantly increasing.  Thus any small increment in f1 will be accom- 

panied by a decrement in f and vice versa. 

Our ideal Ss_ now find themselves in what has been called a conflict of 
interest situation and which has been summarized by a non-zero-sum game.  It is 
tempting to say that having specified the set of values or outcomes satisfying the 
conditions of Paretian optimality we can do no more, and that the actual value of 
p which is selected will be a result of the relative bargaining abilities of the 
two persons, on their relative abilities to persuade the other that one knows best 
what is going to happen, on personality variables, and so on.  This argument has 
been made by Fellner (19*19) and has therefore been called the Fellner hypothesis by 
Siegel and Fouraker (I960).  There is no doubt but that these things do make a dif- 
ference.  In fact, Siegel and Fouraker report evidence which suggests that this 
hypothesis does in fact predict and provide a good fit to some of their data.  This 
is true, however, only when the Ss_ (in a bargaining situation) have knowledge only 
of their own payoff function.  When both Ss in these experiments had complete know- 
ledge of the other's payoff function as well as their own and when they knew that 
the other person also had complete information, the data (the negotiated contracts) 
were fit much more nicely by what the authors call the "marginal intersection 
hypothesis."  It is of some interest to note that the price predicted by the marginal 
intersection hypothesis is exactly that price which would be the Nash solution to 
the particular bargaining problem used (see Table 4.3c, p. 58, and Appendix C in 
Siegel and Fouraker). 

It is difficult to envisage just how two problem solvers would go about 
communicating their respective posterior distributions.  For this reason it might 
be realistic to assume that each S knows only his own utility function.  If we do 
this we may be satisfied by the Fellner hypothesis that choice of p will be a 
function of the eloquence and persuasiveness of the Ss_.  This in turn might lead us 
to neglect the method by which the particular value of p is selected from the 
Paretian set.  However, having a model or a series of models which prescribe selec- 
tion strategies may lead to a fruitful analysis of this social psychological 
problem. 

Actually, the most interesting aspect of our problem arises with the con- 
sideration of selection strategies.  We will consider a strategy which does not 
permit randomization to begin with.  We will then discuss the conditions in which 
our ideal Ss_ would prefer to flip a coin or use some other randomizing device to 
choose between two possible values of p.  We will conclude by suggesting some 
psychological interpretations which seem related to the type of analysis being 
considered. 
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Let us assume that our ideal Ss_ are temporarily without any means of perform- 
ing a randomization.  They have no coins and no dice and the experimenter believes 
that gambling is sinful.  They must select one value of p  to state as their joint 
decision, d1.  A method they might consider is to maximize the joint probability that 
they are both correct.  They decide then to use a selection strategy which will 
always guarantee a single value of p.  That value of p will be the one which maxi- 
mizes the probability that they are both simultaneously correct.  They therefore 
define a function, g(p), which is proportional to the product of their individual 
functions. 

(10) g(p) = K-f^p^f^p), 

where K is the normalizing constant. 

-l   ai-i     bi-1 -1 ao""l/-,  N
13
?-

1 

(ID       g(p) = K BCa^b^ L    pai L   (1-p) l        -B(a2,b2)   P 
2  (1-D) 2 

(12)        g(p) = K-BCa^b^"1 B(a2,b2f
X pal+a2~2 (l-p)bl+b2-2 

The joint decision function, g(p), is also a beta distribution, setting 
K = B(a1+a2-l, bj+b -l)"

1 B(a ,b )B(a ,b ), with parameters (a^a -1, b +b -1), 

This value of p, p, is 

(13) p , 
a1+ a2- 2 

a + a + b + b - 4 
12    12 

The solution, p, derived from this strategy is also the Mash solution to 
the bargaining problem implied by the experimental task (see Luce and Raiffa, 1957, 
pp. 12*1-128).  If  f, and  f2 are conceived as utility functions rather than 
probability density functions, as was done earlier in this paper, then 6  is seen 
to be the outcome which maximizes the product u"(p)u2*(p).  Thus,  p, in addition 
to the properties discussed in the following paragraph, satisfies the four assump- 
tions from which Nash derived his solution (Luce and Raiffa, 1957, pp. 126-127). 

This strategy has certain other desirable properties.  If, for example, 
ai= bi= !» then p = a2- l/(a2+ b2- 2) = d2.  Thus if one of the Ss has no informa- 
tion at all concerning p, then the other S will make the decision to the best of 
his ability.  In general, the greater the magnitude of a^ and b^, the more influence 
will person  i  have, where influence is taken to be inversely proportional to the 
ratio, |p - d.|/(d2- d ).  This solution has another feature which seems to have a 
possible "meaning1" psychologically speaking.  We have been dealing v/ith posterior 
distributions.  Suppose the S_s have seen a composite sample (r,n) from our urn. 
Then 8j" aj + r and bl=  bj+ n - r, where the primed parameters are the parameters 
of the prior distribution.  The^same is true for the parameters of 2's posterior 
distribution.  We can express  p  as a function of the prior distribution and the 
observed sample by simple substitution. 

- 5 - 



(11) 
aJ+a^-2+2r 

: _______________________________ 
aj+a»+bj+bj-1+2n 

aj+a»+2(r-l) 

a;+a^+b|+bJ+2(n-2) 

The interesting feature is that the data variables are weighted twice (and 
in an n person group they would be similarly multiplied by  n).  It seems that 
this decision strategy maintains a roughly constant balance between the prior 
opinions and the observed data.  It does not become a simple weighting of prior 
opinion if the size of the group is increased. 

This selection strategy guarantees each of our ideal Ss an expected utility 
of fj(p) and f2(p) respectively. We will now drop the restriction that randomiza- 
tion is impossible and will now attempt to discover when our Ss_ will prefer to let 
the choice of p depend on the result of some probabilistic experiment. 

Pi  and p2, will be symbolized 
will be chosen and 1 - x is the 

A randomization between two values of p, say 
by r(x;p1,p2) where  x  is the probability that px 

probability that p2 will be selected.  The expected utilities for a randomization 
are 

(15) u1[r(x;p1,p2)] = xfjtPi) + (l-x)Tl(p2) 

for S 1, and 

(16) u2[r(x;p_,p2)] - xf2(Pi) + (l-x)f2(p2) 

for S 2. 

If a randomization r(x;p',p") exists such that 

u1[r(x;p',p1')] > fjCp),  and 

u2[r(x;p»,p»)] > f2(p), 

then the Ss will prefer to use the randomization strategy, rather than the Nash 
strategy for selecting p.  This, of course, follows from the assumptions made con- 
cerning the intent of the S_s. 

To help in conceptualizing the problem, let us define a function U(p) which 
is the mapping of every point  p into a two dimensional space with f2(p) on the 
ordinate and f2(p) on the abscissa.  The domain of U is taken as  d,<p<d .  The 
first derivative of U which gives the slope of the function is found to be 

(17) U'(p) = f»(p)/f2(p), 
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where fj(p) is the first derivative of f with respect to p.  It is clear that 
Uf(p) will always be negative since fj is negative and f» is positive over the do- 
main.  Furthermore, there is no randomization which will satisfy the conditions for 
domination given above if U(p) is concave downward which is to say if Ufl(p) is 
never positive.  If U''(p) is positive on some interval, then a randomization will 
exist which will dominate some points on U(p).  This can be seen graphically in 
Figures 2 and 3. 

It is possible conceptually to find the best randomization, with respect 
to the points p' and p".  To do this we will first assume that U''(p) is greater 
than zero on some interval in the domain.  We will also assume that the sign of 
Ufl(p) changes just twice so that there is only one interval on which UM(p) is 
positive.  We want to find the two values of p, p'* and p"*, such that no other 
randomization and no points on U(p) provide greater expected utilities simultaneous- 
ly for both 1 and 2.  Recall that a randomization between two points in the U-space 
falls 'on the straight line joining the two points and that every point on the 
straight line is a randomization with some value of x. The points p1*, p"*, of 
course, must be on U(p). 

These values of p which provide the best randomization will be those two 
values which satisfy the following equation. 

f^p'*) - fjCp"*) 
(18) U'(p'*) = U'(p"*) =  ' 

f2(p
f*) - f2(p"*) 

First, if U(p) is concave downward over the entire domain then U'(p) will be con- 
tinually decreasing.  Thus the first relationship in Eq. (18) can never be true. 
There will not be two values of p  such that U'(p') = U'(p") for p' ji  p".  Eq. (18) 
says that the best values of p to use in the randomization will be such that the 
slope of U at p'* is equal to the slope of U at p"* and that this slope is 
equal to the slope of the straight line joining the two points U(p'*) and U(p"*). 
It has not yet been proved that only one such pair of values exists, but under the 
assumptions it seems certain that this is true. 

A final matter which is quite intriguing and which will receive attention in 
this report has to do with the notion of level of aspiration developed by Siegel (1957) 
and further discussed by Siegel and Fouraker (I960).  If outcomes on an achievement 
scale are ordered in the reverse order of the S's preference for them, and equi- 
distant from adjacent outcomes, so that the least preferred is first, then the level 
of aspiration as defined by Siegel (1957) is that outcome which is just above the 
largest interval on the corresponding utility scale.  If outcomes are placed 
equally distant on the abscissa and utility of outcomes plotted on the ordinate, and 
all the points (x, u(x)) are plotted and all adjacent points joined by straight lines, 
the level of aspiration will be that value of x which corresponds to the upper 
point of the line with the maximum slope.  Siegel assumes that outcomes below this 
level of aspiration (l.o.a.) will be accompanied by feelings of displeasure and dis- 
satisfaction, while this outcome and all outcomes more preferred than this one will 
be accompanied by feelings of satisfaction.  Siegel equates these with negative and 
positive utility, respectively. 

Even though we are dealing with continuous utility functions and our utility 
functions are not over an achievement variable in the sense that Siegel uses the 
term, it is felt that the notion of l.o.a. might have some meaning in the present 
context.  Let us, by direct analogy to Siegel's definition, define an l.o.a. for 
each S in our context.  For Sj, the l.o.a. is elf that value of p  corresponding to 
the inflection point of fj at which fj is zero and at which fj changes from negative 
to positive.  For S2, the l.o.a. is e2, that value of p  corresponding to the 
Inflection point of f2 where f• is zero and where f" changes from positive to nega- 
tive.  These points are logically analogous to the definition of l.o.a. for the 
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Clearly since U(p) is concave downward, our ideal Ss 
will not use any randomized selection strategy. 



U(p'*) 

r(x;p'*,p"*) 

fx(p) 

U(p"*) 

f2(p) 

Fig. 3.  Hypothetical U(p) showing the relationship 
between the sense of concavity of U(p), the points 
U(p'*) and U(p"«), and the randomization r(x;p,«,pn«). 
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discrete achievement variables with which Siegel was concerned.  Moreover, by putting 
this concept of l.o.a. to use we can prove two theorems regarding the behavior of 
our ideal Ss. 

Theorem 1:  If el
<e2,   Ss_ will not choose their df such that e1<d

t<e2.  They 
will use rather a randomized selection strategy between two points, pT an"d p", such 
that p^<el  and e^p". 

To prove this theorem it is sufficient to prove that U(p) is concave upward 
between ex   and e2.  This will be true if U"(p) is positive on this interval.  By 
Eq. (14) we know the first derivative of U(p) is 

(14) U'(p) = fVf , 
1   2 

where primed functions are derivatives with respect to p.  Therefore, 

(19) 

fi. 
U"(p) =   (—) = 

df2  f« 

121 1    l 1*2 

(fi)3 

The denominator in the last term of the equality will always be positive since f* is 
positive in the domain of U.  The sign of U"(p) will thus be determined by the sign 
of the numerator.  We know that f is always positive and f is always negative in 
the domain of U.  We also know the following relationships by definition. 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

f"<0;  p<e 
ll 

f">0;  p>e 
ll 

f">0;  p<e 
2 2 

f"<0;  p>e 
2 2 

fM = 0;  p = e 
l l 

f" = 0;  p = e 
2 2 

For e!<p<e2, f">0  and f2>0.  Thus the first term in the numerator of Eq. 
(19) will be positive and the second term will be negative.  The numerator will 
therefore always be positive.  For p = elt f" = 0 and the first term of the 
numerator vanishes, leaving -1 times the negative second term.  Again the numerator 
will be positive.  For p « e2, f-J = 0 and the second term in the numerator of 
Eq. (19) vanishes leaving the first term, which is positive, to determine the sign 
of U"(p).  Thus the theorem is proved.  At a later time, we hope to be able to 
state what the values of p1 and p" will be.  They will be such as to satisfy Eq. (18) 
In a similar manner, we can prove the following theorem. 
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Theorem 2:  If e^d,, and e,!^, the Ss_ will never use a randomized selec- 
tion strategy. 

To prove this theorem, we prove that U"(p) is always negative on the entire 
domain of U under these conditions, it is clear that fV is always negative in the 
domain and that f" is always negative as well.  Thus the first term in the numerator 
of Eq. (19) will Be negative and the second term will be positive in the domain of 
U.  Thus the numerator will always be negative.  If e^ d2 then the first term in 
the numerator will vanish leaving a negative second term.  (Actually, at this point 
U"(p) is indeterminant because the denominator is zero.  U"(p) remains negative as 
this limit is approached, however, so the proof is not invalidated.)  Likewise, at 
e2= dj,  U"(p) is zero, but as this limit is approached U"(p) is negative. 

In terms of our interpretation of l.o.a., Theorem 1 says that if there is 
no possible decision which is simultaneously above both Ss_' l.o.a., then the Ss 
will always choose a pair of decisions such that one is above S^s l.o.a. and that 
the other is above S2's l.o.a. and use some sort of randomization to choose between 
these decisions.  The randomization could be done by flipping a coin, tossing dice, 
or in many cases, by submitting the problem to arbitration.  To the extent that the 
results of an external arbitration are not known beforehand with certainty, the 
arbitration method of problem solving can be seen as a meaningful randomization. 

Theorem 2 tells us that if all values of p  in D (defined by Eq. (9)) are 
at once above both Ss/ levels of aspiration, then the Ss_ might well be content 
with the Nash strategy,  d1 ■ p (defined in Eq. (13)).  In no case will the Ss use 
a randomization. 

Although the two theorems which have been derived here specify the behavior 
of our conceptual subjects in only two of the several possible states which can 
obtain regarding l.o.a. and dt and d2, it is important to point out that the 
theorems are not specific only to the experimental task discussed.  The theorems 
are general to any family of prior (and posterior) distributions having a single 
mode and no more than two points of inflection.  Thus the theorems hold for normal 
and gamma distributions as well as the beta distributions used in the example. 

The aim of this report has been modest.  It has, first and foremost, 
attempted to show that the use of normative mathematical models is not alien to 
social psychology.  We have shown that meaningful predictions can be obtained 
from such an analysis.  This type of model also provides a precise and explicit 
framework against which the effects of other variables not explicitly included in 
the model can be evaluated.  This paper has barely opened the door to the possible 
applications of formal decision theory to social psychological problems.  What are 
the consequences, for example, of increasing the size of the group?  What happens 
when we place restrictions on the communication facilities?  What would be the 
result of using a linear group payoff function instead of an all-or-none function? 
More will have to be known of the relationship between the Nash strategy and the 
level of aspiration.  How might we predict the formation of bargaining coalitions 
in groups of more than two Ss?  These are just a few of the meaningful and impor- 
tant questions which may eventually be answered by a combined approach of 
decision theory and game theory. 
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