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INTERPITETATION OF THE FLUCTUATING ECHO 

FROM RANDOMLY DISTRIBUTED SCATTERERS 

PART 3 

BY 

Paul L. Smith,Jr. 

ABSTRACT 

That the radar echo from a weather target comprising a random array of 

scatterers exhibits pulse-to-pulse fluctuations is a well-established fact. 

The interpretation of the fluctuating echo is an important problem in radar 

meteorology. The problem is usually to estimate the long-term mean echo 

intensity by examining only a rather small number of echoes. This "observers 

problem" is the principal subject of the present report. 

The solution to the observer's problem is obtained as a probability 

distribution of the long-term mean echo intensity. This distribution becomes 

narrower and raore sharply peaked as the number of independent echoes measured 

Increases. The exact form of the distribution depends on the assumed a priori 

probability distribution; however, the dependence becomes negligible when 

the number of echoes is sufficiently large. 

Averaging the echo intensities is the optimum method of processing the 

echoes; averaging intensity levels or amplitudes is less satisfactory. How¬ 

ever, the loss of precision when intensity levels are averaged is small, and 

it may be offset by other advantages of the logarithmic serle. Measuring only 

the intensity level of the maximum echo gives better results than averaging 

when the number of echoes is small, and somewhat poorer results when the 

number is large. 
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»PART 3» 

This scientific report constitutes a continuation of the two MW reports 

on the interpretation of the fluctuating echo from randomly aistributed 

scatterers. Part 1, by J, S. Marshall and W. Hitschfeld, and Part 2, by 

P. R. Wallace, of »Interpretation of the Fluctuating Echo from Randomly 

Distributed Scatterers» were published in 1951 as MW-4 and MW-6, respectively. 



1. INTRODUCTION 

The weather targets of interest in radar meteorology comprise enormous 

numbers of individual scatterers - cloud droplets, raindrops, snowflakes, or 

hailstones. Because the positions of these scatterers in the atmosphere are 

random, the mean intensity of the radar echo from a given point is just the 

sum of the intensities from the individual scatterers. Because of motions due 

to winds, turbulence, and the fall velocities of the hydrometeors, the scat¬ 

terers move about in space and the radar echo fluctuates with time. The flue* 

tuations normally appear as a pulse-to-pulse variation in the echo received 

from any point of the atmosphere. These fluctuations give weather echoes 

their familiar ''incoherent" nature. 

Interpreting the fluctuating echo from randomly distributed scatterers is 

a problem of great concern in radar meteorology. The equations relating 

meteorologically significant parameters such as rainfall rate to the radar 

observations are usually expressed in terms of the mean echo intensity. 

Therefore it is the mean intensity that one usually wishes to determine from 

the radar data. To determine the mean intensity exactly would require averag¬ 

ing an infinite number of independent echoes from the target. The time 

required for the hydrometeors to reshuffle themselves into a new and indep¬ 

endent arrangement, and hence yield an independent echo, is typically several 

milliseconds. Hence the rate at which independent echoes can be obtained is 

limited. But the necessity of scanning in range, azimuth, and /or elevation 

severely limits the amount of time available for probing any one point of 

the atmosphere. Hie observer’s problem is to derive a satisfactory estimate 

of the mean-of-many intensity from only a rather small number of independent 

echoes. 

2 
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The general problem of interpreting the fluctuating echoes from randomly 

distributed scatterers was investigated some time ago at McGill University. 

This work was published in a pair of papers (Marshall and Hitachi eld, 1953» 

Wallace 1953) which were revisions of complementary scientific reports that had 

been given limited circulation (Marshall and Hitschfeld, 1951» Wallace 1951) • 

These papers and reports will be referred to in the present report as MH and W, 

followed bv a »51* or a »53* if the reference is specifically to the report 

or specificnv tn the paper. The analyses by Marshall and Hitschfeld and 

Wallace yielded many important and useful ideas concerning the interpretation 

of the fluctuating echoes. They also considered in some detail the requirements 

for independent echoes, and various methods of achieving independence. Parts 

of their analysis were hampered by the lack of a digital computer on which 

large-scale numerical simulations could be carried out» In addition, the 

physical inplications of certain of their results are rather disturbing. 

The purpose of the present analysis has been threefold î first, to re¬ 

examine the problem of interpreting the fluctuating echoes in an effort to 

obtain a better understanding of the problem and a more meaningful solution; 

second, to carry out a more extensive numerical simulation, on a digital 

computer, to obtain more comprehensive results than are available in the 

earlier papers; and third, to attempt to find better ways of processing radar 

echoes to derive infoimation about the weather targets. Throughout this 

report, the observed echoes are assumed to be independent of one another; no 

consideration is given to the problem of achieving independence, or to the 

possibility of deriving useful information from partially-“dependent echoes. 



2. THE PROBAPTTJTY DISTRIBUTIONS OF INDIVIDUAL ECHOES 

The probability distributions for individual echoes from a random array 

of scatterers, derived by MH53, are given (in the notation of the present 

report) in Table 2-1. Some of these résulte were obtained earlier by Goldstein 

(1951). 

For the echo amplitude, P(A)dA is the probability that the amplitude of 

the echo will fall between A and A + dA, and ï? is the mean-squared echo 

amplitude. Since the intensity of the echo is proportional to the square 

of the amplitude, is proportional to the mean intensity. 

For the echo intensity, P(l)dl i* the probability that the intensity 

will fall between I and I + dl, and I is the mean intensity. 

For the echo intensity level, P(L)dL, the probability that the intensity 

level L ( - log I ) will lie between L and L + dL, is 

P(L)dL = exp(mL-(2-3) 
î I 

where m - In 10 » 2.3025Ö. If the target intensity level is defined as 

L0 » log Î (2-^) 

then equation (2-3) takes on the form given in Table 2-1. 

The above functions can be used to find the distribution of individual 

echoes from a weather target when the mean intensity ï is known. But in 

practice the mean intensity is never known, so the relationships as given do 

not relate explicitly to the observer»s problem of estimating ï. However, a 

knowledge of t1 3 above probability distributions is essential in the analysis 

of the observer*s problem. 

A 



TABLE 2-1: PROPERTIES OF THE PROBABILITY DISTRIBUTIONS 

OF INDIVIDUAL ECHOES (after MH) 

5 
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Fiß. 3.1: The probability distribution P(Jk) the average of k 

independent echo intensities, when the long-terr. ^iean echo intensity is Î 

(after /51). 

■MM 



3. PROBABILITY DISTRIBUTIONS OF THE AVERAGE OF SEVERAL IHDEFEWDEMT ECHOES 

The widths of the various probability distributions of individual echoes 

suggest that the measurement of a single echo cannot lead to a very precise 

determination of the mean intensity. To obtain a reasonably precise estimate 

of I, several independent echoes need to be measured. Since the quantity to be 

determined is the mean echo intensity I, an obvious approach would be to average 

the echoes to obtain an estimate of I, To aid in evaluating this approach 

it is useful to determine the probability distribution of the average value of 

several independent echoes. 

The problem can be stated as follows: given a target comprising a random 

array of scatterers for which the mean echo intensity is known to be ï, determine 

the probability distribution of the average of k independent echoes from the 

target. It should be emphasized that this kind of probability distribution has 

limited usefulness in practical problems, because the true value of the mean 

intensity I is never known. 

3.1 The probability distribution of average intensity 

MH calculated the probability distribution for the average Jjç of k indep¬ 

endent echo intensity values, where 

(3-D 

They found the probability distribution to be 

P(Jk)<JJk = —_!£- J k-1 e‘kV Í dJk (3-2) 

(I)k(k-1)! 

Curves for representative values of P(Jic) are shown in Pig, 3 1- (after W51). 

7 
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MH investigated the properties of the function P^) in some detail. 

They found that the most probable value of Jjç, i.e. the mode of the distri u- 

tion, is î(l-l/k)o When k - 1, the most probable "average” value is zero; 

as k increases, the most probable value of Jjc approaches the mean intensity T. 

The standard deviation of P(Jk), which is a measure of the width of the distr¬ 

ibution, is X//k\ Although the standard deviation decreases as k increases, 

the inverse square-root dependence suggests that the narrowing of the distri¬ 

bution with increasing k will be disappointingly slow; this has been borne 

out by experience. As k becomes large, the function P(Jk) approaches the 

Gaussian form, as required by the Central Limit Theorem. This fact aids 

in extrapolating the results to very large k. 

3.2 The probability distribution of average intensity level 

Because of the wide dynamic range of echo Intensities from weather 

targets, the intensities are often converted to a logarithmic scale by 

means of a logarithmic amplifier. The echoes are then expressed in terns of 

their intensity level L, where 

L * log I (3-3) 

It is therefore of value to determine the probability distribution Pk(^av) 

for the average intensity level, defined by 

The distribution of individual echo intensity levels given by equation 

(2-5) is so complicated that Pk(lav) be obtained in closed fora. 

T 



MH51 undertook to determine P^il^v) by numerlcâl methods. They gener¬ 

ated, by a random-number process, simulated values of L, and then determined 

the distribution of the values of Because they had no digital computer 

available at the time, they used a sample of cnly 1000 independent values of L 

Consequently, as k increased, the difficulties imposed by the limited size of 

their sample became increasingly troublesome. 

In the present investigation, a similar numerical determination of 

Pk(I*v) h*3 been carried out, using a digital computer to process a much 

larger sample. A description of the Monte Carlo technique used to simul¬ 

ate the individual echo intensity levels is given in Appendix A. It is poss¬ 

ible to study a sample of enormous size with the aid of the computer. However 

as the simulated echoes were generated, operations other than just averaging 

were carried out (specifically, the function Q^vLo) discussed in Section 4,2 

of this report was computed). The computation time required restricted the 

size of the sample somewhat; from 8,000 to .*2,000 independent echoes were 

used in various instances. The results were tested for convergence by plot- 

ing frequency distributions of LaV at intermediate points in the computation. 

These tests indicated that only minor changes in the resulting distribu¬ 

tions Pk(lav) would occur if tne sample size were further increased. 

The results obtained from the computations comprise a group of fre¬ 

quency distributions of l^y These distributions have been obtained for 

k - 2, 4, 8, 16, 32 and 64. The frequency distributions themselves are 

listed in Table B-l of Appendix B; Fig. 3o2 shows the distributions in the 

form of histograms representing P^(I^V)* 
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Fig. 3.2: Histograms representing the probability distributions 
MW w* MWx) of the w* the maximum respect¬ 
ively, of k independent echo intensity levels. Hie quantity 1¾ is re¬ 
lated to the long-tenn mean echo intensity by 1¾ ■ log I. 
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Class intervals of 1 db were used for the computed values of Lav as well 

as for the simulated individual echoes. There is theoretical justification 

for decreasing the size of the class interval for Lav in proportion to l/Zk, 

but this was not done in these computations. 

Also shown in the same figure are histograms representing the distributions 

pk(LInax) of the maximum echo within each group of k echoes. In other words, 

if the echoes are L]_, L2> L3 . . . then Lmax ^-3 largest of these echoes. 

The actual computed frequency distributions for are listed in Table B-2 

of Appendix B. These distributions are of interest in connection with a tech¬ 

nique discussed in Section 4.2.7 of this report, in which the unknown target 

intensity level L0 is estimated from a measurement of the maximum echo 

lmax only* 

The curves of Fig. 3.2 exhibit several interesting features, '.'hile the 

most probable value of a single echo is L0, the most probable value of Lav 

shifts from L0 toward L0- 2.5 db as k increases. This agrees with the result 

obtained by MH53 that the average of an infinite number of intensity levels 

is 2.5 db below L0. Because of the coarse 1-db class intervals used in the 

computations, no meaningful functional dependence of thu most probable value 

of Lay on k can be obtained from the results. 

The most probable value of Lmax, on the other hand, increases from L0 

when k = 1 to approximately Lq + 6.5 db when k = 64. Again, because of the 

coarse class intervals, no attempt has been made to derive a functional 

relationship. 
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The standard deviation of the distribution Pj^Lav) shown in Tig. 3*3 

decreases as l//k. This behavior is in agreement with the theorem (Hoel, 1947) 

stating that the standard 

deviation of averages of k 

independent quantities should 

decrease as 1//ÍT, regardless 

of the form of the distribu¬ 

tion from which the k quant¬ 

ities are taken. The standard 

deviation of Py(I^ffiY) decreases 

at first more rapidly, 

and later more slowly, than 

i/Æ 

3.3 Comparison of the distributions of average intensity and average 

intensity level. 

A comparison of the distribution of averare intensity levels, Pk^v)* 

with that of average intensities, P(Jjç), is of interest. To make such a com- 

parison is somewhat difficult, because the logarithmic and linear scales are 

not easily compared. The method adopted by MH5I is to compare "confidence 

limits", representing boundaries between which some given percentage (say 50^) 

of the values of or I^v would fall. These boundaries could be plotted on 

either linear or logarithmic scales of intensity, but since the accuracy of 

radar measurements is usually expressed in db, the logarithmic scale may be 

preferable. 

The "confidence limits" for 50% and 95^ of the values are used in Figo 3.4 

to compare the present results for Pk(*av) with the values of P(Jk) previously 

■ 
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Fig. 3.4: Comparison of 
the distributions P(Jk) and 
Pk(Lav) by means of confidence 
limits. The confidence limits 
are expressed in decibels with 
respect to the median value in 
the case of 1(½) > and with re¬ 
spect to the average value in 
the case of P^(L>t) . For each 
distribution, 50,^ of the values 
fall between the 75/í and 25f> 
curves, and 95/í fall between 
the 97.5Í and 2.5^ curves. 

obtained by Mi. The boundaries for P, (L ) were obtained from the frequency 

distributions in Table B-l of Apnendix 3 by linear interpolation within the 

1-db class intervals. Because of the slope of the frequency distributions, 

the limits thus obtained are slightly broader than the true values. The 

average value of Lav (i.e. approximately -2.5 db) has been subtracted from 

each boundary before plotting, to simplify comparisons with 1(^). 

It is evident in Fig, 3,4 that the spread of ’-alues of L is some- 

what greater than the spread of values of J^. Thus one may infer that 

averaging the echo intensities would lead to a more precise estimate of the 

mean intensity than averaging the intensity levels. However, this infer¬ 

ence is qualitative at best; to make quantitative comparisons, an analysis 

of the "observer’s problem" is required. Such an analysis is the subject of 

the next section of this report. 



4. THE OBSERVERAS PROBLEM 

The preceding section has been concerned with this problem: given a target 

with a known mean echo intensity I, determine the probability distributions for 

various parameters of • group of k independent echoes from the target. In 

addition to the average value of the k observed signals, parameters of interest 

might include the maximum signal within the group, the median signal, and 

others. In any real situation, however, the mean echo intensity I is unknown. 

The problem facing the radar meteorologist is usually to estimate the value of 

I by analyzing a small number of independent echoes from the target. This 

problem can be termed the wobserver,s problem,,j it is the central problem in 

the interpretation of the fluctuating echo from randomly distributed scatterers. 

4ol The observer^ problem for echo intensities 

The observer’s problem was investigated by W (51#53) and MK53 for the case 

of echo intensities. Their solution is disturbing, however, because it implies 

that the measurement of a single echo intensity yields essentially no informat¬ 

ion about the mean echo intensity I. The analysis to follow will demonstrate 

that this feature of their solution is a consequence of an unrealistic assump¬ 

tion made in their treatment. 

The problem can be phrased as follows: given an observed set of independ¬ 

ent echo intensities, say li, I2# I3 . . • Ik, determine the mean echo intensity 

I. The quantity I is the mean that would be obtained from an infinite 

number of independent echo intensity measurements, and not just the average 

of the k observed intensities. Henceforth ï will be referred to as the 

"target intensity". The essential problem is to estimate I from a finite 

14 
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number (k) of measurements. 

Clearly, the observed set of echo intensities could have come from a target 

having ï anywhere in the range from zero to infinity. However, the observed set 

of echoes is more likely to have come from some ranges of target intensity 

than others. The mari mum information that can be derived from the observed 

set of k independent echoes will be the probability that this set of echoes 

came from targets having various values of Î. The description of the unknown 

target must be given in terms of a probability distribution for target inten¬ 

sity. The use of a single value, such as the most probable value of ï or the 

mean value of Î, may be preferred, but these values are merely condensations 

of the information contained in the probability distribution. 

4*loi The case k=2. - To calculate the distribution of target probabil¬ 

ities, consider first the case k s 2. Suppose that the two observed (and 

independent) values of echo intensity are and I2. The probability of obtain¬ 

ing this particular pair of intensities if the mean echo intensity is known to 

be Î is 

p( } ^2^ = P( » * )p( *2 * * Jdlidlgdl 

= -i- e~(<1l+12^ dl, dlpdl 

Here p(li;î)dlidl denotes the probability of receiving an echo intensity in the 

range to Ii + dli when the target intensity is in the range I to ï + dï, and 

so on. Equation (4-1) gives essentially the joint probability density for two 

independent echoes, the probability density for individual echoes being given 

by equation (2-2). Since the differential quantities dl^, dl2, dï make the 

equations rather cumbersome, they will be omitted from subsequent equations. 
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It should be understood that they must be reinserted in the equations to follow 

before the results can be interpreted as probabilities. 

The relative probability that the two signals I]_, I2 were actually received 

from a target having mean echo intensity I is 

o,(!) = (?(!) p(I1,I2;í) 

= SÜLL e-l1! * I2>/ I_ 
(ir U-2) 

where 1? (ï) is the a priori probability that the mean echo intensity of the un¬ 

known target is in fact I. To obtain from equation (4-2) a numerical probability 
s<X) 

value, the result must be normalized by dividing by yielding 

Q2(i) 8Ú1 e 
-(V X2)/ ï 

(il fl 1 -(I1 ♦ I2)/ ï - 
^ dl 

(4-3) 

03(1) then represents, apart from the differential factors, the probability 

that the unknown target intensity is Í. This quantity represents the maxi¬ 

mum information about the unknown target that can be obtained from the two 

observed values of echo intensity. 

The result contained in equation (4-3) has two important features. First, 

the observed intensity values appear only in the combination (¾ + I2). 

The probability distribution of target intensity is thus a function only of 

the sum of the observed echo intensities, or equally well of the average echo 

intensity. The implication of this statement is that averaging echo inten¬ 

sities entails no loss of information about the target. If the individual echo 
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intensities are added or averaged initially, one can still proceed to obtain 

the probability distribution given by equation (4-3) « The second important 

feature is that the form of the probability distribution of target intensity 

depends on the functional). This function represents the a priori probability 

distribution of target intensities. In the absence of any knowledge concerning 

the frequency of occurrence of various values of ï, an arbitrary assumption 

must be made about (P(ï) to complete the evaluation of equation (4-3). 

4.1.2 The distribution function (P(l)u - In the prior work of W53 and MH53, 

the a priori distribution function was implicitly assumed to be<?(ï) = constant. 

With this assumption, the evaluation of equation (4-3) ie straightforward. The 

result is 

q2(D 

+ I 
2 i2)/1 

(?(î) « Constant 

(4-4) 

This result should be compared with the result obtained by MH W. For the case 

k = 2, their solution to the observers problem becomes 

q2(í) 
2J. -2J,/ I 
—- e 4 

(f-2 

(4-5) 

(P(I) = Constant 

Since by definition ¿2 “ (¾ + ^2V2* equations (4-4) and (4-5) are identical. 

This substantiates the observation, made in the preceding section, that the 

probability distribution of target intensity will be the same whether the ob¬ 

served echo intensities are considered as individual entities or whether only 

their average value Jjç is used. 
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The applicability of the results contained in equations (4-4) and (4-5) is 

limited, because of the assumption that (p(ï) - constant. This uniform distribu¬ 

tion function is the simplest choice, but it is physically unrealistic. To dem¬ 

onstrate this, let the constant be C, so that(P(ï) = C. Then the a priori 

probability that the target intensity lies somewhere between zero and some 

- / 

arbitrary value I is 

(p( Target intensity ^ Í ) (4-6) 

for any finite value of ï/. But this means the probability that the target 

intensity is in any finite range, however large, is zero. Of course this con¬ 

dition is unacceptable, if for no other reason than that the echo power received 

by the radar cannot exceed the transmitted power, and hence must be finite in 

any case. 

The implicit assumption that (P(I) - constant led MH W to the conclusion that 
the measurement of a single echo intensity provides essentially no information 

about the target intensity. This conclusion is intuitively unsatisfactory, and 

the preceding paragraphs suggest that the unrealistic assumption (P(î) = constant 

is the underlying cause of the unsatisfactory conclusion. To investigate this 

matter further, the analysis of the preceding sections will first be generalized 

to the case of an arbitrary number of observed echo intensity values. 

4.1.3 The case of arbitrary k. - The preceding analysis can easily be 

extended to the case of an arbitrary value of k. For a group of k independent 

echo intensity observations, equation (4-1) must be replaced by 
k 

(i)k 

i 
plh’h Vi) = (4-7) 
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As before, the relative probability that the observed group of signals came 

from a target having mean intensity ï is 

k 

After normalization, the probability distribution of target intensity becomes 

k 

(4-9) 

k 

The observed echo intensities enter into 0^(1) only in the fora 

for any k, the probability distribution for I depends essentially on the aver¬ 

age echo intensity, and the intensities can be averaged without loss of infor¬ 

mation about the target. 

When the a priori assumption that(p(ï) = constant is introduced, the value 

of Qk(I) is found to be 

I ) - constant 

as long as k > 2. When k = 1, the normalization integral in the denominator of 

(4-9) fails to converge, so that 0^(1) = 0 for all finite values of ï. The 

result previously obtained by W53 for the distribution of target probabilities was 

(P(I) = constant 

‘&ÊÈWUiâ&â Ktßunum 
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I 
Fin. 4.1: The probability distribution <3^(1) of the target intensity 

Î, when the average of k measured echo intensities is (after ’./51). 
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Since by definition “ k ^ , equations (4-10) and (4-11) are identical. 

Representative values of the distribution function <^(1) given by equation (4-11) 

are shown in Figa 4.1 (after W51)# 

The failure of the normalization integral to converge when k =* 1 led MH W 

to the conclusion that the measurement of a single echo intensity provides 

essentially no information about the target intensity. However, the failure of 

the integral to converge is a consequence of the assumed form of the a priori 

target distribution function (P(ï). Equation (4-6) shows that the assumption 

(P(I) - constant is equivalent to assuming that the probability of having a 

finite target intensity I is vanishingly small. Thus it is not surprising 

that the receipt of a single echo of finite intensity fails to convince us that 

the target intensity is finite. As the number of observed echoes of finite in¬ 

tensity increases, the situation changes and when k exceeds 2 or 3 we finally 

recognize that the chance of I being infinite is very remote,, 

4.1.4 The need for an alternative form for Mí). - Evidently the results 

would be more satisfactory if a more realistic assumption about the a priori 

distribution (Î) were introduced. However, selecting a suitable assumption 

presents considerable difficulty. In the mathematical analysis, any function 

(1) which decays (as I-> ao) at least as l/(ï)a(a > 0) will cause the normal¬ 

ization integral in (4-9) to converge when k = 1. This convergence would re¬ 

move the anomaly that occurs for k * 1 when (P(î) = constant. In addition to 

satisfying the mathematical requirements, it would be desirable to use for(P(î) 

some function related to the actually observed frequency of occurrence of var¬ 

ious target intensity values. Thus the best approach may be to study past 

records of echo intensity to establish a frequency—of—occurrence history from 
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which a suitable form for(?(T) can be derived. 

The preceding analysis demonstrates the dependence of the form of the prob¬ 

ability distribution of target intensity Qjcil) on the assumed form of(P(T). 

However, it should be emphasized that the influence of (?(1) on 0)((1) will be 

significant only for small values of k. Even when k a 4, the distribution 0^(1) 

is narrow enough that wide variations in the form of ß(l) will have little effect. 
In physical terms, the assumption (?(T) - constant means that all target intensi¬ 

ties from zero to infinity are equally probable. In view of the 60-db dynamic 

range of precipitation echo intensities, one alternative assumption would be that 

all targets within a range of 10¿ are equally probable, with 0^(1) * 0 outside 

this range. In most cases the difference between these two assumptions will 

have negligible effect on QjçU). 

It should also be emphasized that introducing any other assumption than 

C(î) * constant will almost certainly reduce the width of the distribution 0^(1). 

Thus the standard deviations calculated by MH W for estimates of target intensity 

based on their values of 0)((1) are probably conservative. For a given value of 

k, the standard deviation will be somewhat less than their value kJ^/(k-2)yk-3’ , 

but the difference will be negligible for values of k greater than about 4. 

4.1.5 The assumptions (P(î)<x~ 1/ î and(?(I) vc l/V I. - Two special forms of 

the function$(1) are of some interest, at least academically. The first is 

(?(!) ^ 1/ I, which corresponds to assuming that all target intensity levels 

(intensities expressed on a logarithmic scale) are equally probable. This simple 

form off?(I) also permits analytical evaluation of equation (4-9), the result being 

(kJk)k e‘kJl</ f 

(4-12) 

(?(í)ocl/ I 

(k-1 ) ! ikil 
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This result is quite similar to that for'j^ï) = constant given in equation (4-11). 

Numerical values derived from (4-12) would be useful for comparison with values 

Qk(lo) obtained under the corresponding assumption (?(lo) = constant in 

Section 4.2 of this report. 

It should be emphasized that the assumption !?(I) oc 1/ ï is no more realistic 

than the assumption (?(l) = constant. When one attempts to find the constant of 

proportionality by normalizing the function (?(!) * C/ ï, the integral 

¿DO 

mï) dï (4-13) 

is found to diverge at both ends of the range. This behavior of (P(I) can be 

interpreted to mean that there is some probability that the value of I is zero, 

some probability that it is infinite, and zero probability that it lies anywhere 

in between. This is hardly a more satisfactory assumption than was (ï) » constant. 

It does have the desirable property of causing the normalization integral in 

equation ¢4-9) to converge when k = 1, but its meaningfulness is still questionable. 

The second special form of (P (I) of interest is (P(I) oc l/u). This form cor- 
i 

responds to the assumption that all target amplitudes are equally probable. In 

this case also, an analytical solution to equation ¢4-9) is possible. The 

result is 

Qk(i) 
(kJk)k ' 4 e‘kJk/ 1 

roc-è) W7^ (4-14) 

Again the result is similar to that given in equation (4-U). Also, it is again 
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important to note that the aeeumptionC? (T)oC l/'fï is unrealistic because the nor¬ 

malization integral diverges as ï-*oO» 

For reference purposes. Table 4-1 lists the various a priori assumptions 

that have been introduced in this report. Included in the table are the forms 

these assumptions take when echo amplitudes, intensities, or intensity levels 

are considered. In the table, and Kq represent respectively the logarithm 

and the square root of the mean echo intensity I, 

Table 4-1: Various Forms of Several a priori 

Target Distribution Functions 

Physical Statement 

?f 

All amplitudes 

equally probable 

All intensities 

equally probable 

All intensity levels 

equally probable 

Mathematical Form_ 

Intensities Intensity Levels Ami 4 tuda« 

tf(Ao) - constant 

CC Aq 

(f(Ao)OC.“^ 

sa) cc iA/r 

(ftI) « constant 

<?(Lo) oC. 

0(U>)<X 

(P(l^) " constant 

4.1.6 Numerical determination of - For the elementary forms of (?(!) 

discussed above, and for a few others, analytical evaluation of equation (4-9) 

is possible. For other cases, particularly for distributions of (9(1)that are 

obtained from empirical data, ^(T) must be evaluated by numerical techniques. 

For a given value of k, the numerical procedure for determining Q^(l) is as 

follows. First the form to be assumed for the a priori probability distribution 

(P(I) must be established. Then a hypothetical value of the observed average 

intensity Jfc is selected. The relative probability q^ï) that the unknown 
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target intensity is ï can then be computed using equation (4-8). 

In principle, the quantity (ï) must be computed over the range of I from 

zero to infinity. However, the computations can be terminated when a value of 

I is reached such that contributions from higher values to the end results are 

negligible. The normalization integral in equation (4-9) is then computed by 

numerical integration of q^ï). Dividing the values of <1^(1) by the value of 

the normalization integral yields the desired result Q^U)* 

For the cases discussed in the preceding section, the fom of 0^(1) will be 

the same, regardless of the value of selected. Thus, using just one value 

of Jk, the results already obtained analytically could be obtained numerically. 

For other forms of i: (ï), however, the form of 0^(1) will depend on the value 

of Jk selected. Thus in general, for each value of k, a whole family of curves 

corresponding to various values of Jk would be needed to display Qk(l)> instead 

of the single curve shown in Fig. 4.1. 

No numerical computation of Ç^(l) using the method outlined here has been 

made as yet. For such a computation to be meaningful, a meaningful form for 

the a priori distribution function $(1) is needed. Further investigation is 

needed to determine a suitable form for (?(T). 

4.2 The observeras problem for echo Intensity levels 

Because of the wide dynamic range of echo Intensities from weather targets, 

it is often easier to measure. Instead of the actual echo intensity I, the 

intensity level L given by 

L * log I (4-15) 

Logarithmic amplifiers are widely used for this purpose. The problem of 
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detennining the unknown Urget intensity Î when the observed echoes are expressed 

on a logarithmic scale is thus of great practical importance. 

For the case of intensity levels, the observer’s problem can be expressed 

as follows: given a group of measured echo intensity levels I*i, 1$ • • • Ifc* 

detemine the unknown Urget intensity ï. It is convenient to express the target 

intensity on a logarithmic scale as well, so that the objective becomes to 

estimate the "target intensity level" 

1¾ - log I 

Here the symbol 1¾ is used in preference to ï, since 1¾ cannot be interpreted 

(as can Î) as the mean of an infinite number of observed echoes. 

The analysis for intensity levels is quite similar io that for the case of 

intensities. The maximum infonnation about the target that can be derived from 

the observed group of echoes will again be a probability distribution, this time 

of target intensity level, designated by 0^(1¾). For intensity levels, however, 

the complicated form of the distribution function for individual echoes given in 

equation (2-5) prevents the evaluation of ^(Ij in closed form. Therefore the 

use of numerical techniques will be required to obtain useful results. 

4.2.1 The case k = 2. - As before, the simple case k = 2 will be considered 

first. The problem is to determine Lo, given two observed echo intensity levels 

Li and L2. The probability of receiving this particular pair of echoes when the 

Urget intensity level is known to be Lq is 

pd^iLj = p(Li;L0) p(L2;L0) 

em(L^ - Lq) . eml^2 ' k<>) 
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The relative probability that the observed pair of echoes has actually come 

from a target L0 is then 

q2(L0) = (P(L0) m2 exp ^ L2 “ 

where (?(!<,) is the a priori probability that the unknown Urget intensity level 

is in fact Lq. To obtain a numerical probability value, equation (4-18) must 

be normalized by dividing by the quantity óLq» The result is 

Q2(L0) - (?(L0) exp fmd^ + L2 - 2L0)-e'f e"11-1 + e^)) 

jr<^(L0) exp Í m(L1 + L2 " 2L0^“e ( + ^2) | 

Q2(Io) represents, apart from the omitted differential factors, the probability 

that the unknown target intensity level is 1¾. Thus QaCl«) comprises the maxi¬ 

mum information about the unknown target that can be extracted from the observed 

pair of echoes. 

Aside from difficulties involving the function (Lo), the normalization 

integral in equation (4-19) ia Already too complicated to be evaluated in closed 

form. Thus quantitative results for Q2(Lq) c*n only be obtained by numerical 

techniques. 

In the case of intensities, the observed echoes entered into 02(1) only in 

the combination (¾ + I2). As a result, the observed echo intensity values can 

be averaged without loss of information about the target. In the present in¬ 

stance, however, the value of QgClq) cannot be expressed in terms of the com¬ 

bination (Li + I12) alone. Consequently, averaging the observed echo intensity 

levels would involve discarding part of the information needed to determine 

(Lo). Therefore any attempt to determine the unknown target intensity after 

(4-18) 

(4-19) 
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averaging echo inteneity levels will give poorer results than could be obtained 

after averaging the intensities themselves. Stated another wsy, averaging the 

intensity levels (logarithms of intensity) is equivalent to taking the 

geometric Fran of the intensities. Sirce the arithmetic mean leads to the best 

possible detennination of the target intensity, it is reasonable to expect that 

the geometric mean will be less satisfactory. This does not mean that 

equation (4-19) is inferior to equation (4-9) »• *n expression of the probability 

distribution. These two equations incorporate the same input information, and 

when applied correctly they will give identical results. 

One important point is that the obvious assumption ^1¾) - constant is not 

equivalent to the assumption made previously that (P (I) — constant. As indicated 

in Table 4-l,(P(Lo) - constant corresponds to the form(P(î)c^ 1/ ï. Therefore 

values obtained for ^(1^) when assuming (?(I<>) - constant cannot be compared 

with results obtained for Qk(ï) while assuming(?(I) = constant. Of course as 

k increases the influence of the a priori distribution function diminishes, so 

that comparisons for large values of k will be valid regardless of the assumed 

a priori distribution functions. 

4,2.2 The case of arbitrary k. - The extension of the preceding analysis 

to other values of k is straiditforward. For the probability of receiving a 

particular group of signals Li, I«2, 1*3 • • • ^k when the target intensity lev¬ 

el is known to be I«, equation (4-17) is replaced by 

, 2 ( 
p(L^,1.2 • • • ^ 6xp ^ m 

r k 

s- 
- kL 

i o 
-mL - e o - mL, 1 

'4 f 
(4-20 
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The relative probability that the unknown target is actually 1¾ is 

qk(L0) = (P(L0) nr exp m J-Li - kL 
rrr 

-e 
- mL0 ^— pmLi e xj (4-21) 

After normalization, the probability that the unknown target intensity level 

$(L0) exp 1 m 
k 

y^Lj “ kLo 

•H o
 

TÉ 1 0) 1 
I 

1 NL0) exp 1 m 
0 

- mL — mL. ] s dLo 

(4-22) 

As was noted for k » 2, the result cannot be expressed in terms of the 

sum (or of the average) of the observed intensity levels alone. Thus any 

attempt to determine the unknown target intensity level Lq by first averaging 

the observed echoes will be less accurate than the direct application of 

equation (4-22). However, because of the difficulty of using (4-22), in 

contrast with the simplicity of averaging, it is worth inquiring into the degree 

to which the averaging technique is inferior. To examine this question, it is 

necessary to turn to numerical techniques. 

4.2.3 Procedure for numerical computation of 0^(1^). - There are several 

possible ways of investigating the properties of the function 0^(1¾) numeric¬ 

ally. The procedure used here consists of two essentially separate parts. 

The first part comprises the generation of simulated echo intensity levels by 

the computer, playing the role of the unknown weather target. For this part 

of the computation, the Monte Carlo routine described in Appendix A can be used. 

The second part then comprises the analysis of the simulated '»observed" echoes 

by the computer, this time playing the role of the observer at the radar. 
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The computation proceeds as follows; First the target intensity level is 

assumed to be 0 db (representing the class interval ~ 0.5 dbss Lq ^ + 0.5 db 

in the present instance). Groups of k simulated independent echo intensity 

levels are then generated using the Monte Carlo routine. 

In the second part of the computation, the simulated echo intensity levels 

are analyzed by the computer acting as the observer. In practice the observer 

does not know the actual target intensity level, so the value assumed in the 

first part of the program when generating the simulated echoes cannot be re¬ 

vealed during the second part. The observeras problem is to estimate from 

the observed echoes alone. To do this most accurately, equation (4-22) must 

be used to compute the function Qk(Lo). 

Direct evaluation of Qk(l«) from (4-22) is extravagant of computation time, 

however, because the computation of the various exponentials is slow. It is 

preferable to employ the basic definition of the (unnormalized) probability 

distribution of target intensity levels; 

q^l©) = (F(lo) p(L^> 4oy p(k2J Lo) « 0 • PÍ1*» Io) (4-23) 

The probability distribution for individual intensity levels, given in 

equation (2-5), is a function only of (L - Lq). Thus a table giving values 

of p(Lii Ifc) for various values of (id - 1^,) can be entered in the computer 

memory.* For any particular group of echoes, it is then a simple matter to 

look up the necessary values of p(li; Lo) and multiply them together as 

required by equation (4-23). Normalization to obtain 0^(1¾) can then be 

accomplished by numerical integration of q^ilo). 

* The table actually used for this purpose is quite similar to Table A-l in 

Appendix A. 
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Now in general the probability distribution ßiven by equation 

(A-22) will be different for each different group of ")bserved" echoes. How¬ 

ever, a remarkable feature revealed ly the computations-.s that when<?(Lo) ■ cons¬ 

tant (or more generally when the form of ?(LQ) is exponential) the shape of 

the distribution i3 the same, regardless of the specific values of the 

"observed" echoes L^, . . . L^. An analytical proof of this fact is given 

in the next section of this report. For the present, however, the inference is 

that tinder the assumption(?(Lo) ■ constant (or an exponential) only one group 

of k echoes is needed to determine the general form of ^(L0). Thus extensive 

numerical computation is not really necessary, since the group of echoes could 

be taken as - L2 * ... * Lk and could be calculated manually. 

(In fact, this is exactly how the results shown in Figs. U.3 and U.U were 

obtained). In defense of the extended computations performed, it should be 

pointed out that the similarity of 0^(^) for various groups of echoes only 

became apparent after examining the results of the computations. 

For other forms of (£(1^), a more complete numerical simulation will be 

necessary. A large number of groups of echoes must be simulated when the 

target is assumed to be 0 db, and in addition the simulation must also be 

performed for other values of the target intensity level. Since the form 

of <yLo) will in general be different for each simulated group of echoes, a 

wide range of values would have to be covered in the simulation. It is evid¬ 

ent that display of all the results will be impossible; all that can be hoped 

for is to obtain representative values of 0^(^). 

4.2.4 Results for k - 2. - The results of the computations are illustrated 

by the typical values of with ^(Lq) assumed constant, shown 
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Fig. 4,2: Topical probability distributions Q2(Io) 
of the target intensity level Lq when the intensity levels 
of two independent echoes are measured. The two echoes in 
each case are: Curve A, -4 db and -4 db (average -4 db); 
Curve B, -18 db and +3 db (average -7.5 Curve c, -3 db 

and +8 db (average 0 db). 

in Fig. 4.2. Each pair of "observed^echoes was obtained with a simulated 

target intensity level of 0 db (this fact was of course unknown to the 

"observer”). For comparison, the average of the two observed intensity levels 

is also indicated in the figure for each case. 

When the two observed echoes are equal, as in curve A, their average val'.e 

gives a good estimate of the most probable target intensity level. .Jhen the 

two echoes are separated by several db, however, their average value is a less 

satisfactory estimate of the most probable value of Lq. In some cases such as 

curve C, the average value is nearer 0 db than is the mode of ^o^* 

must not be interpreted to mean that averaging gives a better estimate of the 

target intensity level than does Q2(Eq) itself. For example, on any occasion 

when the observed echoes are -8 db and +8 db, the unknown target intensity level 

is much more likely to be +5 do than 0 db. 
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The curves of Fig, 4.2 substantiate the previous assertion that when 

?(l^) * constant is assumed, the form of Q2(lo) is the same regardless of the 

specific values of the observed echoes. This fact is certainly not obvious 

from an inspection of equation (4-22). Therefore, that equation was investi¬ 

gated more thoroughly in an effort to obtain a general proof of the assertion. 

Such a proof was obtained when Lq) = constant; a similar proof is possible 

when takes an exponential form such as e1^. 

The point to be proved is essentially that Q2(l\>) for any one pair of 

echoes can be transformed into for any other pair of echoes by a simple 

translation along the Lq - axis. To prove this, consider first the case of 

two identical echoes Li » ■ L, for which 

expi 2m(L - LQ) - 2em(L ' 

C(L0) = constant iU-Zk) 

where (N.l) represents the normalization integral. Now consider any other 

W 

pair of echoes Li, L2 for which 

W 

exp Ím(L^ + L2 - 2L¿)-e" "^o (e™1! 

(p(L0) = constant 

(N.l.) 

(4-2^) 

To prove the point, it suffices to show that (4-25) can be transformed into 

(4-24) by the translation 1^, * I« + x. Such a translation can in fact be made, 

by taking 

r log cosh 
m(L^ - L2) 
-*2- 

k . 2 (4-26) 
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Fig. 4.3: The probability dletrlbution of 
the target intensity levei for different forms of 
the assumed a priori probability distribution <P(lo). 
Each curve has been plotted with the most probable 
value of designated as 0 db. 

The point just proven means that, as long as one is willing to assume 

(P(L0) - constant (or more generally (?(1^,) << e^o), the form of the probability 

distribution (^(Lo) will be independent of the actual values of the observed 

echoes. Since the location of the mode or of any other characteristic point 

of the distribution is not fixed in relation to the observed echoes or their 

average value, this knowledge might seem to be of limited value. However, the 

mode of the distribution can easily be positioned by adding x as given by 

equation (4-26) to the average value of the two signals. 

Of course, the probability distribution of target intensity level does 

change when the assumed form of the a priori distribution (?(l^) changes. 

This behavior is illustrated in Fig. 4.3. This figure shows that the distri¬ 

bution Q2(L0) is narrowest when the assumption (P(I^) - constant (i.e. all in¬ 

tensity levels equally probable) is made. The distribution is sometihat wider 

when (p(A0) - constant (all amplitudes equally probable) is assumed, and it is 
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widest when (P(I) * constant (all intensities equally probable) is assumed. 

These curves support the contention that assuming (P(ï) » constant probably 

leads to the broadest form for the target probability distribution. 

^•2.5 Results for other values of k. - The results of the computations 

for other values of k are similar in many respects to those for k - 2. The 

function Qk(l<,) has been calculated for k - 1,2,4,8,16,32 and 64 under each 

of the three different ajsumptions listed in Table 4-1. typical results ob¬ 

tained for (PCI^q) ■ constant are shown in Fig, 4.4. The decreasing width of 

the curves as k increases implies increasing precision in the estijiate of 

T 
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-<P(L0):corstan» 

‘ ‘ P( ï ) ^consluni 

Fit;. 4.5: Standard deviation of the 
probability distribution QjL ). for the 
assumptions^(L ) ■ const. andv(I 

Standard deviations of the ^(Lq) 

curves are shovm as a function 

of k in Fig. 4.5; also shown 

are the standard deviations of 

\(Lq) under the assumption 

($(ï) ■ constant. It is inter¬ 

esting to note that under the 

assumption <?( I) ■ constant, 

the function '^(L0) is zero 

J everywhere when k = 1. This 

agrees with the difficulties 
assumptions■ const, anavvl) ■ const. ,nt ,r L . 
hlienOCL ) - const., the std. dev'n follows encountered by MH ./ when trying 
a 1/VÎ? law. 

to determine while assuming(?(!) « constant. 

As was true for k = 2, the shape of the curves of for other values 

of k are independent of the specific values of the observed echoes. That this 

is true can be proved as long as ^(Lq) = constant or e 0 is assumed. 

The proof follows the same argument that led to equation (4-26) when k = 2; for 

any value of k, the translation distance x turns out to be 

X = log em(Li - Lav) - log k (4-27) 

where L is the average of the observed intensity levels, 
av 

As k increases, the diminishing effect of the assumed a priori distribution 

(?(Lo) on the resulting Qk(L0) is evident in the results of these calculations. 
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DB FROM MOST PROBABLE L0 

Fig. 4.6: The 
probability distribu¬ 
tion of the 
target intensity level 
Lq, for various values 
of k. Curves are shown 
for both (?(!*)) - const, 
and CP(J) - const; the 
distributions for 
(P(A0) ■ const, would 
fall between those 
shown. 

Typical curves of Q^Lq) under each of the assumptions (P(L0) - constant and 

(ftï) - constant are shown in Fig. 4.6; curves for(P(A0) ■ constant would fall 

in between the other two. As k increases, the curves for the different forms 

of <P(Lo) become more nearly identical. When k - 8, the differences among 

the curves have become practically negligible. 



4,2.6 The ob5eiverfs problem when the intensity levels are averaged. 

r 

As an alternative to the complicated procedure of calculating Qk(Lo)> estimating 

the target intensity level by averaging the observed intensity levels appears 

attractive, It has already been noted that in averaging the observed intensity 

levels part of the information needed to determine Qj^Lq) would be discarded. 

Thus estimates of Lq obtained after averaging will of necessity be inferior to 

estimates obtained directly from Qi((L0). A problem of great practical impor¬ 

tance is the degree to which the precision of the estimate suffers when aver¬ 

aging of the intensity levels is employed. 

To determine the loss in precision, the observeras problem must first be 

solved in the following form: given an observed value I*v the average 

of k independent echo intensity levels, determine the unknown target intensity 

level Lq. It is clear again in this case that the observed value I^v could 

have come from a wide range of possible target intensity levels. Therefore 

the solution to the problem must again be expressed as a probability distr¬ 

ibution for target intensity level, which will be designated QjçV(Lo) • The 

form of this distribution may be anticipated to oe similar to, but rather 

broader than Qk(Lo)^ 

The determination of 0^(1^) relies entirely on numerical techniques. 

The Monte Carlo routine described in Appendix A is used to generate lar^e 

numbers of simulated independent echo intensity levels. For a given value of 

k, the procedure used to determine QfçV(T»0î is as follows, With the target 

intensity level initially assumed to be 0 db (representing the class inter¬ 

val -0.5 db Lq -K).5 db) a group of k independent intensity levels 

1^,1.2 . . . is generated. For these simulated echoes the average intensity 
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level 

L av U-28) 

is calculated, and the result classified in the proper class interval.* In 

the computations, class intervals of 1 db, centered on half—integer values, 

were used. Thus if - 2.20 db, the appropriate class would be 2.0 db< 

LqC 3.0 db, and the nominal value assigned would be 2.5 db. 

The determination of is then repeated for a large number N(0) of 

groups of k signals, to obtain a frequency distribution of the various values 

of Lav* The number of values of L^v generated must be proportional to the 

a priori probability that the target intensity level is L© * 0 db. That is 

N(0) » a 9(0), where 

and "a” is a constant of proportionality large enough to ensure that the total 

size of the sample used will be adequate. 

This procedure yields a frequency distribution of I*v for the assumed 

value of L0. This distribution should be identical in form to the probability 

distribution P(Lav) for average intensity levels from a known target intensity 

level. In fact, the frequency distribution required can be (and has been) 

obtained without additional confutation by calculating N(0)P(I*V) from the 

values of P(I^V) given in Section 3. 

To continue the analysis, a new target intensity level of 1 db (represent¬ 

ing the class interval 0.5 db ^ Lq< 1.5 ib) is assumed, and a new frequency 

distribution for obtained in the same way. This time, however, the total 
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number of vmlues of needed is N(1 db^ where 

1 5 db 

N(1 db) = a(P(l db) = af ’ (p(L0) dl0 (4-30) 
/ 0.5 db 

The neceeeaiy frequency dietributlon ie obUlned by tricing N(1 db)P(L,T) when 

1,, - 1 db. 

How the probability distribution of indlsidual echo intensity levels 

pdijLo) is a function only of the difference (¾ - 1¾). The sane will be true 

of the probability distribution of average intensity levels, p(I*t¡Io). There¬ 

fore the new frequency distribution of with Lo “ 1 db, can be obtained 

directly fron P(I.t) lust a» was done with I« - 0 db. 

This procedure mist in principle be repeated for all values of 

and for Iç-»-00 as well. However, it will normally be possible to terminate 

the calculations at some point where contributions from higher (or lower) values 

of Lo to the determination of QiT(I<>) can be neglected. 

The procedure Just described will yield a large array of numbers, which 

can be conveniently arranged in the matrix depicted in Table 4-2. The numbers 

shown in the matrix correspond to the case k - 4 with<?(I») assumed constant. 

The complete matrix can be filled in column by column simply by multiplying 

the probability distribution P(lav)» S11™' in Se'U°n 3 of this report, by the 

appropriate value of NOo) and entering the results in the proper rows of the 

matrix. Each column of the matrix comprises the frequency distribution of the 

nlues of I,v obtained with the value of the target intensity level 4» given 

at the head of the column. Each r» of the matrix is a frequency distribution 

„h-t-g the number of occasions on which, with the observed value of 1*T being 

as indicated, the target intensity level was I* - • • • -1,0,1,2,3 db etc. 
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Table 4-2: Display of the results of the numerical analysis in the form 

of a matrix. Numbers in the matrix were obtained for k « 4 and V?(L0) =» constant. 

Any row of the matrix represents in the for* of a frequency distribution. 

Eâjch row of the matrix therefore represents a. frequency distribution which, 

when normalized by dividing each number in the row by the row total, is Just 

<$V(L0). This rather involved procedure has thus generated a solution to the 

observer’s problem of estimating the unknown target intensity level L0, when 

an observed value of I*v is given. 

When the matrix in Table 4-2 is examined, certain features are readily 

index be i (numbered from I*v - ^0.5 db) and the column apparent. Let the row 
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index be j (numbered from L0 = 0 db). Then the matrix element (i,j+r) is ident¬ 

ical to the element (i-r, J). Coneequentlj the ith row of the matrix can be 

obtained as the mirror image of the jth column about the element i 0 j. (This 

turns out to be true only when P(L0) - constant). In effect, any row of the 

matrix can be obtained from any column. Thus all the rows represent frequency 

distributions that are identic« in form. The form of q£t(L0) when $(1^) “ const, 

is therefore independent of the specific value of I^y. This is consistent with 

the fact, previously noted, that the form of 0^(1^) is independent of the 

specific values of the observed echoes when (P(Lo) * constant. Moreover, the 

distribution Q£v(lfc) for the case (?(L0) - constant is Just a mirror image of 

the distribution P(l^v), given in Section 3 of this report, about the line 

ifcv " ^o* 

For other assumed forms of (?(L^), the matrix becomes more complicated. 

In general, the ratio of the element (i,J+r) to the element (i-r,J) will be 

the ratio of N(j+r)/N(j), that is essentially the ratio of the a priori 

probabilities(piLjj) for the two columns. If this ratio depends only on r (and 

not on J,) each row of the matrix will give a distribution <^T(1^,) of the same 

form. That is to say, the form of Q^V(L0) in such cases will be independent 

of the specific value of I^v. The ratio N(j+r)/N(j) depends on r alone only 

if (P(lo) is exponential in form, i.e. if Wlo) & eP^o. For other forms of 

$(l^j), each row of the matrix will give a different form of the distribution 

of target probability QjT(l^). <$*(!*) will no longer bè independent 

of the observed value of In such cases the results of this analysis can¬ 

not be expressed in any convenient, compact way. 

The frequency distributions in the rows of the matrix can also be used to 

! 
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assign a specific estirnated value to the target intensity level, for ary oi - 

served average intensity level. In the example shown in lable 4-2, the most 

probable value of the target intensity level is 1.5 db greater than the ob¬ 

served average (and not 2.5 db greater, as might be supposed). That is, 

the most probable value of Lq is + 1»5 f°r conditions on which 

Table 4-2 is based. However, because the distributions qJV(L0) are skewed, 

Table 4-2: (Reproduced from page 41) 

Values of 

\L0 (db) 

Values 

of I^v (db) 

• • • -2 -1 0 12 3 

• • • 

• • • 

• • • 

4 

-1.5 

-0.5 

40.5 

1.5 

2.5 

3.5 

4.5 

COLUMN 
TOTAL 

. . 176 261 303 

. . 107 176 261 

. . 28 107 176 

. . 14 28 107 

..1 14 28 

..0 1 14 

..0 0 1 

• • • 

t • • 

• • • 

ïïnr ïïctt Ntsy 

279 

303 

261 

176 

107 

28 

14 

TOT 

258 

279 

303 

261 

176 

107 

28 

ïrsy 

192 

258 

279 

303 

261 

176 

107 

ÑB7 

121 . . . 
192 . . . 

258 . . . 
279 . . . 

303 . . . 

261 . . . 

176 . . . 

SŒT 

NMMM aun* «ami 
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A4 

L0 in db from most probable l0 

Fif. 4.7 Comparison of the probability distributions Q^V(L0) 

and t^ÍLo). For k = 2 and k - 4, curves are shown for both oHIq) » const, 

and (?(I) - const; for larper values of k, the differences between the 

curves would be insimificant. 
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the most probable value is not necessarily the best estinate of Lq. If the 

criterion of minimum mean-squared error is applied, then for an observed Lav 

ftV/ the best estimate derivable from Q. (L ) will be the mean value of L . When K o o 

) ■ constant is assumed, the mean value turns out to be L « L ♦ 2.5 db o ' o av 

for any k. It should be understood that the value 2.5 db is a consequence 

of the assumption that P(Lq) = constant, and will not apply in all other cases. 

Of course, when k is large the specific form of (?(Lq) becomes unimportant; 

thus the best estimate oi L approaches L + 2.5 db as k increases, what- o av 

ever the form of(?(L ). 
o 

Tynical probability distributions Q^V(Lq) are illustrated in Fig. 4.7. 

For k * 2 and k = 4, curves corresponding to each of the assumptions 

6>(Lo) ■ constant and(?(I) = constant are shown. For the assumption Aq) = constant, 

the curves would bs intermediate between the two cases illustrated. Fig. 4.7 

) and ^(L0), for purposes 

of comparison; the function '^(L0) is derived from the maximum observed echo, 

and is discussed in Section 4.2.7 of thij report. For k = 1, of course, the 

curves ^(Lo), Q^V(Lo) and Q^(L0) must be identical, since the observed echo, 

the average value, and the maximum value are one and the same. 

Fig. 4.7 indicates that the average intensity level Lav gives a less 

precise estimate of the target intensity level than does '^(Lq) itself. 

However, in no case is the difference very great; standard deviations for 

) and Q^(L0) are shown as a function each of the distributions 0^(1^), o£V(L 

also shows typical probability distributions 



Fin;. 4.F Standard 

deviations of the dis¬ 

tributions QULo), 

QT(Lo) ^Lo) 
shown in Fi^. 4.7, 

corresponding to the 
assumptions (?(L0)=const. 

and (?( «const. The 

two sets of curves 

are nearly identical 

for k > 8. 

Fig. 4.9 Comparison 
of the probability distr¬ 
ibutions Qk(I) and 0^(1^) 
by means of confidence 
limits. The values shown 
correspond to the a priori 
assumption (?(I) - const. 
The confidence limits 
are expressed in db with 
respect to_the median 
values of Î and res¬ 
pectively. For each 
case, 50% of the values 
would fall between the 
75% and 25% curves, and 
95% would fall between 
the 97.5% and 2.5% 
curves. 
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of k in Fig. 4.?. The loss in precision resulting from averaging the intensity 

levels is a modest penalty to pay for the great simplification achieved in 

processing the observations. Another interesting point revealed by Figs. 4.7 

and 4.6 is that, at least up to k = 8, estimates of Lq derived by taking tne 

maximum observed echo are as good or better than those derived from averaging 

the echoes. This fact may be of importance when methods of Implementing the 

various techniques in operational equipment are considered. 

The assumption (P( I) “ constant was used by MH W in their determination 

of 4^(1). Therefore a comparison, under this assumption, of the precision 

with which the target intensity level can be estimated after averaging the 

observed echo intensity levels with the precision of the estimate obtained 

when the echo intensities themselves are averaged is of interest. Such a com- 

parison can most easily be made by comparing "confidence limits" of the two 

distributions ï) and q£V(L0)* The respective confidence limits are shown 

in Fig. 4.9 as a function of k; the confidence limits obtained by 11H for 0^(1) 

have been expressed in decibels above or below the median value of I, and the 

confidence limits for ^v(Lo) have also been taken about the median value. 

The curves in Fig. 4.9 show that averaging the intensity levels leads 

to a less precise estimate of the target intensity level than that obtainable 

by averaging the intensities themselves. For k = 1, neither *^(1) nor ^ (LQ) 

give a meaningful result under the assumption 

* The term "confidence limits" is somewhat misleading here, since the degree 
of confidence in the estimate of Independa in large measure on the degree 
of confidence in the assumption (?[!) ■ constant. As pointed out in 
Section 4.1.3, this confidence cannot be very great. 
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that^CÏ) = constant. The superiority of 0^(1) i» consistent with the 

previously noted fact that in averaging intensity levels part of the infor- 

Bfttion needed to determine the distribution <^(1*) is discarded. The same 

general conclusions would be expected to hold for other assumed forms of 

although confidence limits have not been determined for other cases. 

4.2.7 The observer*s problem when maximum intensity levels are measured. - 

In considering possible ways of processing the observed echoes to derive an 

estimate of the mean intensity ï, Professor J. S. Marshall suggested that 

measuring only the maximum echo might be a useful technique. The basis of 

this suggestion is easily understood by considering the hypothetical probability 

distribution P(L) for individual echoes, 

shown in Fig. 4*10. If k is large, 

there would be a high probability that 

one of the echoes would be very close 

to the sharp upper boundary of the dis¬ 

tribution. Therefore, if X is subtracted 

from the measured nuximum echo a good 

estimate of should result. 

Of course the ^ctual probobility distribution P(L), also shown in Fig. 4*10, 

does not have such a sh^rp upper bound ..ry, but the technique is worth consider¬ 

ing. The frequency distributions obtained for Lmx in Section 3»2 suggest that 

the idea may indeed be useful. For small values of k the distribution of I*«* 

values is somewhat narrower than the distribution of values. As k increases, 

however, the width of the I1nax distribution decreases slowly sc that, at large 

k, Pk(Lkv) is narrower. It appears then that at least for small k, the 

Fig. 4.10: a hypothetical prob¬ 
ability distribution P(L) of echo in¬ 
tensity levels, having a sharp upper 
limit, and the actual distribution. 
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technique suggested by Professor Marshall would be attractive. Practical 

considerations of ease of implementation may extend its usefulness to larger 

values of k as well. 

The observer's problem when only the value of the largest of the k ob¬ 

served intensity levels is measured can be stated as follows: given the value 

L ^ of the largest of k observed independent echo intensity levels, determine 
rtcix 

the unknown target intensity level Lo. As before, the solution to the prob¬ 

lem must be expressed as a probability distribution which will be designated 

The procedure used to determine LQ) is almost identical to that used 

to determine (Lq). The only difference is that for each group of k simu¬ 

lated echo intensity levels, the value determined is L instead of L . 
mx av 

The sequence of operations leading to a matrix array similar to Table 4-2, from 

which .£(Lo) is then obtained, is otherwise exactly the same as for Q^V(L^). 

Furthermore, the general features of (L0), such as its dependence on the 

assumed form of G(Lq), are also characteristic of ^(Lo). i/hen (?(Lo) * constant 

is assumed, the mirror-image property can be used again to derive ^(L0) from 

the p(Lnax) distributions given in Section 3. 

The significant results with regard to o£(L0) have already been mentioned 

in connection with Fig. 4.7. Up to k * 8, the distribution ^(LQ) gives 

av 
estimates of L that are at least as precise as those given by ¿ (L ). 

O K O 

When k l6 the situation is reversed and the distribution ^ (L0) is narrower 

than 0£(Lo) . Since computations have not been carried out for values of k 

between 8 and 16, the exact "cross-over" value of k where ^V(L0) 



50 

begins to give more precise estimates of is not known. 

It is obvious that the best estimate of the target intensity level is not 

L . but rather some smaller value. For example, when $(1¾) = constant is 
fMY' max 

assumed, the most probable value of Lq is “5 db, when k ■ 16. As in the 

av 
case of Qfc (L0), the dis¬ 

tributions c£(L0) are 

skewed and the moat pro¬ 

bable value is not nec¬ 

essarily the best estimate 

of L0. The mean value of 

L minimizes the mean- 
o 

squared error in the 

estimate, and may there¬ 

fore be preferable. 

Accordingly, the mean 

"best oatimte" of tho target intensity 
level Lo, as a function of k. 

values of Lq when (jP(Lq/ * constant is assumed are shown in Fig. 4.H» 

Returning to Fig. 4.7, the distributions ¢(1^) are seen in every case 

to be broader than the corresponding distributions Qj^Lq) obtained by taking 

account of the vr Lues of each individual observed intensity level when estimating 

L0. The distribution 0^(1^) represents a fundamental limitation on the prec¬ 

ision with which can be estimated from the available information. No oper¬ 

ations that may be performed on the observed echoes can lead to a narrower 

distribution indicating greater precision of the estimate of Lq. As the results 

presented in this report show, the general tendency of any operations made 

to siaçlifÿ the observed data is to decrease the precision of the estimate. 
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In deciding how to procese obeerred intensity lerel values, then, a comprom¬ 

ise he.s to be node between ease of processing and loss of precision. 

4*3 The observer*8 problem for echo •"mUtnri»« 

MH also consider d the measurement of the echo amplitudes. For ampli¬ 

tudes, the observer*s problem is as follows: given a set of observed echo 

amplitudes Ap A2, A3 . . . Ak, determine the unknown target intensity ï. It 

is convenient to represent the target intensity in terms of the "target 

amplitude" A0 where 

(4-31) 

The constant of proportion ality is Just the ratio between the square of 

the amplitude and the intensity. The observer’s problem is then to estimate 

the unknown target amplitude A0. 

The analysis of the observer’s problem for echo amplitudes is similar 

to th« analysis for intensities and intensity levels. When k - 2, for 

example, the probability of obtaining the echoes Ap A2, when the target 

amplitude Js known to be AQ is, from equation (2-1), 

(4-32) 

The relative probability that the observed echoes were received from a 

target having target amplitude A is 
0 

q2(A0) - <P(A0)p(A1;A0)p{A2;A0) U-33) 
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where 0(AO) is the s priori probability that the target amplitud* will be A0. 

The probability that the unknown target amplitude ie in fact A0 is obtained 

by normalizing ¢2^0) £^Te 

q2(a0) = 

+ a| )Ao 

-(Ai + A^)/^ 

dAo 

(4-34) 

For any arbitrary value of k, the corresponding result is 

-¿Ai/Ao 
g>(A )e i^T 

Qk(A0) = —j ;tT 

2k 
rO0^Art)e'^-Ai/A! 

■2F 
dA. 

(4-35) 

This result resembles the form of 0^(1) given in equation (4-9). An 

evaluation of equation (4-35) in closed form can be obtained for each of 

the forms of <Ka ) listed in Table 4-1. The respective results are: 

«k(Ao> 

k-¿ K 0 0 

TtK 
rik-è)A 2k 

(?(A0) • constant 
(4-36) 
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(4-37) 

S A0) « A0 

1-1 

k 

(k-l)I Aq^*1 

(?(Ao) « 1/A0 
(4-33) 

The properties of these functions have not been investigated. Since 
k 

the sum of the observed echo amplitudesJ does not appear 

i-1 
explicitly in the equations, there is nothing to suggest that averaging the 

observed amplitudes would lead to a useful estimate of the target amplitude. 

However, the calculations made by MH51 indicated that averaging the amplitudes 

might lead to u better estimate of the target intensity than averaging the 

echo intensity levels. Cf course, neither method will yield an estimate as 

good as that obtainable by averaging the echo intensities themselves. An 

investigation of the properties of the function and of the results 

obtainable by averaging echo amplitudes would be very useful. 
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5. CONCLUSIONS 

Hie interpretation of the pulae-to-pulse fluctuations in the radar echo 

from a weather target is a problem of paramount importance in radar meteorology. 

The observeras problem is usually to estimate the long-term mean intensity of 

the echo from a target by examining only a finite (and usually rather small) 

number of echoes.This report has been concerned primarily with an invest¬ 

igation of this ’’observer’s problem". The interpretation of the fluctuating 

echo was investigated by earlier workers* but several important additional 

findings have emerged from the present investigation. 

The most important concisions of the present report are as follows: 

1) The solution to the observer’s problem is basically a probability distr¬ 

ibution of the long-term mean echo intensity (called the "target intensity"). 

A single value, such as the most probable target intensity or the median 

target intensity, may be easier to use, but such a value is merely a 

condensation of the information contained in the probability distribution. 

2) If the intensities of k independent echoes from the target are measured, 

the probability distribution of the target intensity is a function of the 

average of the observed echo intensities. Consequently, averaging the 

echo intensities entails no loss of informaT.ion about the target. Averag¬ 

ing the intensities is thus an optimum method of processing the echoes. 

3) The probability distribution of the target intensity depends on the 

a priori probability distribution of target intensity assumed before any 

echoes are received. This means that the observer’s problem has no unique 

solution; the solution depends on the initial a priori assumption. The 

concluaion reached by earlier workers that a single echo provides essentially 

no information about the target is a consequence of the particular 
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â priori assumption that all tarret intensities are equally probable. In 

general, other a priori assumptions do not lead to the same conclusion. 

4) When the number of independent echoes is sufficiently larre, the influ¬ 

ence of the a priori assumption on the resulting probability distribution 

Of target intensity is small. The results of the present analysis 

suggest that k * 8 is adequate to render the effect of the a priori 

assumption negligible. 

5) If* instead of the echo intensities, the echo intensity levels (or ampl¬ 

itudes) are measured, the solution to the observer’s problem is a prob¬ 

ability distribution that does not depend on just the average intensity 

level (or average amplitude). Consequently, when intensity levels (or 

amplitudes) are averaged, some of the information needed to obtain the 

probability distribution is discarded. As a result, estimates of the 

target intensity derived from average echo intensity levels will be 

less precise than those derived from the average intensities; this fact 

is borne out by examples considered in the report. However, the loss in 

precision is rather small, and it may be a modest price to pay for the 

well-known advantages of the logarithmic scale of intensities. 

6) As compared with averaging echo intensity levels, measuring only the max¬ 

imum of k observed intensity levels yields an estimate of the target 

intensity that is more precise for small k (k - 8) and somewhat less 

precise for larger k. This fact may be of practical importance because 

of the relative ease of implementing means for measuring the nunHnrnm echo. 

A number of points brought out in this report would merit further study. 

For example, the a priori distributions assumed in the report were chosen 
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primarily for mathematical convenience. It would be useful to introduce a 

physically meaningful a priori distribution, based for example on past 

observations of rainfall rates. Another problem worthy of further investi¬ 

gation is the use of average echo amplitudes to estimate the target intensity. 

Earlier workers found that averaging amplitudes was somewhat better than 

averaging intensity levels, but this question has not been investigated in 

this report. Hie problem of threshold-crossing techniques also should be 

re-examined in the light of the findings of the present analysis. Other prob¬ 

lems deserving further attention will no doubt suggest themselves to the readers. 



57 
APPENDIX A: THE HONTE CARLO TECHNIQUE USED TO 

SIMULATE ECHO INTENSITY LEVELS 

Because of the complicated forte of the probability distribution of 

echo intensity levels, as given by equation (2-5), numerical techniques are 

required to investigate the properties of groups of independent echoes. In 

these numerical investigations, a method of generating simulated independent 

radar echoes is required. The simulated echoes must conform to the probabil¬ 

ity distribution of equation (2-5)> but thçy must appear in a random 

sequence. To generate simulated echoes meeting these requirements, the Monte 

Carlo technique described in this appendix was used* 

It was first necessary to establish intensity level classes, and to 

calculate the probability that an echo would fall in each respective class. 

Choosing the class intervals, i.e. intervals within which all echoes will 

be assumed to have the same intensity level, is largely a matter of Judge¬ 

ment, When wide classes are used, the number of samples needed in the 

numerical investigation will be small, but very coarse approximations of 

the desired frequency distributions will be obtained. Narrowing the classes 

to improve the detail in the frequency distributions increases the number of 

samples needed to smooth out the statistical fluctuations in the results. 

In the present investigation, the class intervals were chosen as 1 decibel. 

The probability that an echo will fall in any particular class is Just 

the integral of P(L), as given by equation (2-5), over the appropriate 

class interval. For example, the probability that the echo intensity level 

will be L* db, or more precisely that it will fall within the range L*+ 0.5 db, is 

/ 
L + 0.5 db 

P(L = L ) P(L) dL ( A-l ) 

L - 0.5 db 
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APPENDIX B: TABLE B-l FREQUENCY DISTRIBUTION OF Iay 

k *= 2 k»A k-8 k = 16 k - 32 k - 64 

-21.5 
-20.5 
-19.5 
-18.5 
-17.5 
-16.5 
-15.5 
-14.5 
-13.5 
-12.5 
-11.5 
-10.5 
-9.5 
-8.5 
-7.5 
-6.5 
-5.5 
-4.5 
-3.5 
-2.5 
-1.5 
-0.5 
0.5 
1.5 
2.5 
3.5 
4.5 
5.5 
6.5 
7.5 

0 
1 
1 
5 
6 

10 
15 
19 
24 
23 
40 
48 
76 

127 
155 
205 
267 
313 
379 
452 
.415 
429 
357 
280 
192 
115 
31 
13 

2 
0 

Total No. 
of Staples ) 4000 

0 
2 
0 
4 
9 
8 

21 
42 
65 

109 
121 
192 
258 
279 
303 
261 
176 
107 

28 
14 

1 
0 

2000 

0 
2 
9 

14 
20 
68 

no 
177 
200 
192 
146 

46 
13 
3 
0 

0 
3 
10 
34 
93 

229 
303 
197 
108 

21 
2 
0 

1000 1000 

0 
10 
63 

227 
432 
211 

56 
1 
0 

0 
7 

107 
279 
101 

6 
0 

1000 500 

Ay. Value ) -2.81 -2.68 -2.63 -2.59 
of I** ^ 

-2.56 -2.52 

Standard ) 
Deviation f 3.91 2.81 1.94 1.41 

(db) ) 
1.00 0.77 



TABLE B-2 FREQUENCY DISTRIBUTION OF y 

k - 8 k - 16 k » 32 

-a 
-20 
-19 
-18 
-17 
-16 
-15 
-14 
-13 
-12 
-11 
-10 
-9 
—8 
-7 
-6 
-5 
-4 
-3 
-2 
-1 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0 
1 
0 
0 
0 
1 
3 
4 
8 
6 

13 
18 
16 
40 
64 
88 

125 
165 
216 
286 
345 
423 
493 
445 
450 
353 
214 
123 
67 
26 
7 
0 

0 
1 
6 

10 
23 
28 
65 

113 
164 
256 
292 
335 
294 
198 
115 

67 
26 
7 
0 

0 
4 
6 

18 
73 

113 
197 
219 
169 
106 
63 
25 
7 
0 

0 
1 

12 
37 

126 
213 
244 
191 
114 
48 
13 

1 

0 
2 

23 
116 
263 
274 
208 

87 
25 

2 

Total No. f 4000 2000 
of Samples ' 

1000 1000 1000 

Ar. Value ) 0.44 2.46 3.94 4.99 5.89 
of loue I 

Standard j 
Deviation ( 3.68 2.56 

(db) ) 
1.90 1.61 1.33 
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1 

2 
7 
14 
21 
22 
23 
24 
25 
27 
30 
31 
32 
33 
34 
36 
37 
U 
42 
43 
44 
46 
47 
50 
51 
52 
53 
54 
55 
60 
62 
63 
64 
66 
67 
70 
71 
72 
74 
75 
76 
77 

100 
101 
102 
105 
107 
HO 
in 
112 

APPENDIX C: FORTRAN SOURCE LIST 

DIMENSION LS(41,2),ANTIL(4l),L(64),IFREQL(4l),IFRLAV(4l),IFmy(lO 
11 ), P(41 ) * AL(64 ). Q(8l) > SQ(81 ). QQ(31 ), IFRIAP(81 ), IFRIAM(8l), IFRIAW(8 
21 ), NL(64), IFRMAL(41), IFRW(8l) 
READ(5,201)( LS (1,1) »1"1»41) 
READ(5,202)(ANTIL(I),>1,41) 
READ(5,204)(P(I),>1,41) 

201 FORMAT(2014) 
202 FORMAT(10F8.0) 
204 FORMAT(16F5.4) 

0011=1.41 
1 LS(I,2)=1-31 

K=8 
X=0.1 
D05 M=l,41 
IFREQL(M)=0 
ifrmal(m)=o 

5 IFRLAV(M)=0 
DC31 M=l,101 

31 IFRIAV(M)=0 
D023 M=1.81 
IFRIAM(M)=0 
IFRIAP(M)=0 

23 IFRIAV/(M)=0 
D097 LLL=1,5 
DŒL9 NNN=1,20 
D018 MW-1,10 
D02 J=1,K 
CALL RANDR(X) 
IR=5000.+5000.*X 
D03 M=l,41 
IF(IR.LE.LS(M,1)) G0TQ4 

3 CONTINUE 
4 L(J)=LS(M,2) 

IFREQL(M)=IFREQL(M)+1 
2 AL(J)=ArJTIL(M) 

AVL-O. 
AVI-O. 
D06 J-1,K 
AVL=AVL+FLOAT(L(J)) 

6 AVI=AVI+AL(J) 
AK-K 
v-avi/ak 
LV-V+31-99 
IFRLAV(LV)=IFRLAV(LV)+1 
MV=L(l) 
DQ32 J=1,K 
IF(L(J).GT.MV)MV=L(J) 

32 CONTINUE 
MV-MV+31 
ifrmal(mv)=ifrmal(mv)+i 
A VI=AVI/A K-K). 05 
rv=io. *a vi+i. o 
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113 IFRIAV(IV)=IFRIAV(IV)+1 
114 DO? «1*1, K 
115 71m'L(J)=L(J)+?1 
11? 020=0. 
120 DOe J-1,81 
121 Q(J)»1. 
122 M=J 
123 MK=M+40 
124 D010 JJ=1,K 
125 IF(NL(JJ).LT.M.OR.NL(JJ).GT.MM) G0T011 
130 10 CONTINUE 
132 D09 N=M,MM 
13; DO? JJ=i.K 
134 IF(NL(JJ).NE.N) GOTO? 
137 NJ=N-J+1 
140 Q(J}=Q(J)*P(NJ) 
141 9 CONTINUE 
144 G0T012 
145 11 Q(J)=0. 
146 12 S2Q-S2Q+Q ( J )*FLQAT ( J-41 ) 
147 IF(J.NE.l) GOTOI4 
152 SQ(1)-Q(1) 
153 coroe 
154 14 SQ(J)=SQ(J-l)+Q(J) 
155 8 CONTINUE 
157 QMAX-Q(l) 
160 DOI5 J=l,81 
161 IF(Q(J) .LE.QMAX) GOTOI5 
164 QMAX=Q(J) 
165 IAP*J-4l 
166 15 CONTINUE 
170 31=00(81)/2. 
171 D016 «1=1,81 
172 IF(SQ(J).GE.Sl) GOTOI7 
175 16 CONTINUE 
177 17 IAM=J-41 
200 3=320/30(81) 
201 JAW=S+4l.49999 
202 JARW=S-41.99999 
203 JAP=IAP+ia 
204 JAM=IAM+41 
205 IFHW(JABW)-IFIW(JAFW)+1 
206 IFRIAW ( JAW) =IFRIAW( JAW ) +1 
207 IFRIAP(JAP)=IFRIAP(JAP)+1 
210 IFRIAM ( JAM) =IFRIAM( JAM) +1 
211 MV=MV-31 
212 WRITE (6,302) 
213 WRITE(ó,301) (l(j), J=1,K) 
220 18 WRITE(6,303)V,AVI,IAP,IAM,S,MV 
222 301 FORMAT(1HJ,1616) 
223 302 F0RMAT(1HK, 11HVALUES OF L) 
224 303 F0RMAT(1HJ,6HL(AV)=.F6.2,5X,7H I(AV)=,F5.2.5X,7H A(OP)=,I4,5X,7H A 

1(0M)=,I4,5X,7H A(0W)=,F6.2,5X,7H IMAX =,14) 
D020 J«l,81 225 
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226 
230 
236 
237 
240 
241 
242 
243 
244 
245 
246 
247 
251 
252 

253 
254 
255 
256 
260 
261 
262 

263 
264 
265 
267 
270 
271 

272 
273 
274 
276 
277 
300 
301 
304 
305 
306 
307 
310 

311 
312 
314 
315 
316 
317 

20 QQ(J)~Q(J)/SQ(81) 
19 WRITE(6,304)(QQ(J),J-1>81) 

304 FORMAT(IHK/(1HJ,9F12.5)) 
URITE(6,305)K 

305 FORMAT(3H1K-,12) 
WRITE(6^306) , v . . N 

306 FORMAT(43HKFREQUENCY DISTRIBUTION OF L(AV) AND L(MAX)) 
WRITE(6,329) y 

329 FORMAT (IHK, 10X, 1HL, 10X, 6HL(MAI) ) 
D021 J“l,41 
LAV«J-31 

21 WRITE(6,307)LAV,IFRMAL(J) 
307 F0RMAT(lHJ,10X,I4,10X,I4#10X,I4) 

WRITE(6i328) # 
328 FORMAT(liïl,10Xÿ1HL,1QX,5HL(AV)) 

DC43 J-1,41 
XJ=FLOAT(J)-31•5 

43 WRITE(6,299)XJ,IFRLAV(J) 
299 FORMAT(1HJ,10X,F7 *1»10X,14) 

WRITE(6 308) 
308 FORMAT(32HLFREQUENCY DISTRIBUTION OF l(AV)//lHK,10X,19Hl(AV) 

1 FREQ) 
D022J»1,101 
A V«FL0AT ( J-l ) *0.1 

22 WRITE^6,309 )AV, IFRIAV( J) 
309 F0RMAT(lHJ;,9X>F5*2,10X,I4) 

WRITE{6 ^10' 
310 FORMAT(¿¿HIFREQUENCY DISTRIBUTION OF A(0P),A(0M) .A(W)//lHK,10X,47 

1HA0 A(OP) A(CH) A(OW)) 
DQ3C J-liSl 
lA^J-Zf! . . . N 

30 WRITE(6,311)IA,IFRIAP(J),IFRIAM(J), IFRIAW(J) 
311 FORMAT(ÍHJ,9X,I4,9X,I5>10X,I5,10X,I5) 

L037 .>1.81 
XJ=nX)AT(J)-41.5 

37 WRITE(6s313)XJ,IFRW(J) 
318 FORMAT(lHJ,F7.1,nO) 

WRITE(6,312)K 
312 FORMAT (3H1K-., 12) 

1í/RITê(6,313) 
D099 J-1,41 
LJ-J-31 

99 WRITE(6,314)LJ,IFREQL(J) 

313 FoStÍ^SHK^QUMCY^ISTRIBUTION OF l//lHJ,10X>lHl»lQX>l»HFREQ) 
CALL EXIT 
END 
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For each l-db class, values of P(L) were calculated (by referring to tables 

of the exponential function) at each end of the class interval and also at 

the center, i.e, at L* - 0,5 db, L*, and L» + 0,5 db. The value of the 

integral in equation (A-l) was then approximated by Simpsonfs rule. The 

resulting probabilities are shown in the second column of Table A-l, As a 

check on the values, equation (2-5) was plotted on graph paper and the area 

within each class was determined by counting squares. The differences between 

values of P(L ■ L*) determined in the two ways were all less than the error 

inherent in the square-counting technique. 

Next a ranrçe of 4-digit numbers was assigned to each class, the range 

being in proportion to the probability that an echo will fall within the 

class. The 4-digit numbers assigned to the respective classes are listed 

in the third column of Table A-l, For example, the probability of the echo 

intensity level being Lq - 10 db is, according to Table A-l, 0,02089. There¬ 

fore, out of the 10,000 possible 4-digit numbers, 209 (from 0845 through 1053 

inclusive) were assigned to the class representing intensity levels of 

Lo - 10 db. 

To simulate an echo, the computer first generated a 4-digit "random 

number", using a standard routine for generating pseudo-random numbers. 

Then it lookea up this 4-digit number in Table A-l to determine the cor¬ 

responding echo intensity level. Since the sequence of 4-digit numbers gen¬ 

erated by the computer is random, the order of appearance of the various echo 

intensity level values will also be random. A sample sequence of echoes 



59 TABLE A-l: PROBABILITY DISTRIBUTION OF ECHO INTENSITY 
LEVEL FOR 1-db CLASS INTERVALS* AND THE 

CORRESPONDING ¿.-DIGIT NUMBERS 

ECHO INTENSITY LEVEL L P(L) x 10^ 4-DIGIT NUMBERS 
RELATIVE TO lo (db) 

-30 
-29 
-?S 

-27 
-26 
-25 
-24 
-23 
-22 
-21 
-20 
-19 
-18 
-17 
-16 
-15 
-14 
-13 
-12 
-11 
-10 
-9 
-8 
-7 
-6 
-5 
-4 
-3 
-2 
-1 
0 
+1 
+2 
+3 
+4 
+5 
h6 
+7 
+8 
+9 

+10 

23 
29 
36 
46 
58 
73 
92 

115 
145 
182 
229 
287 
360 
452 
566 
708 
883 

1100 
1368 
1693 
2089 
2562 
3121 
3770 
4506 
5314 
6162 
6994 
7729 
8259 
8460 
8217 
7467 
6239 
4693 
3095 
1731 
788 
277 
71 

_14 
TOTAL: 100003 

0000-0001 

0002-0004 
0005-0008 

0009-0013 
0014-0019 
0020-0026 

0027-0035 
0036-0047 
0048-0061 

006;.’-0079 
0080-0102 
0103-0131 
0132-0167 
0168-0212 

0213-0269 
0270-0340 
0341-0428 
0429-0538 
0539-0675 
0676-0844 
0845-1053 
1054-1309 
1310-1621 
1622-1998 
1999-2449 
2450-2980 
2981-3596 
3597-4295 
4296-5068 
5069-5894 
5895-6740 
6741-7562 
7563-8309 
8310-8933 
8934-940. 
9403-9711 
9712-9884 
9885-9963 
9964-9991 
9992-9998 

9999 

* This table was also used in computing the function discussed in Sec¬ 
tion 4.2. Actually, to avoid floating-point traps in the computation, it was 
necessary to multiply each value of P(L) by 40 before entering the table 
into the computer. Since only relative probabilities are needed in calculat¬ 
ing qUIo), this caused no difficulties. A probability of zero was assigned 
to all values of L less than -30 db or greater than +10 db re L0. Actually. 
about one echo in a thousand will be less than Lo-30 db; virtually none will 
be greater than Lo+10 db. o > .r . 
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Fig* A-l: Histogram of the first 8000 simulated echoes generated 
by the Monte Carlo routine. The theoretical probability distribution 
is shown for comparison. 
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generated by this technique is given in Table A-2. 

TAB1£ A-2: SAMPLE SEQUENCE OF ECHO INTENSITY 

LEVELS GENERATED BY THE MONTE CARLO TECHNIQUE. 

Values of L in db (Lr> B 0 db) 

-5 -1 -1 

3 2-9 

-3 2 0 

-2 4-4 

0-7 2 

-7 -2 -9 

-5 -2 -2 

2 -20 -2 

1 -1 -10 

1-6 6 

10-4 

-5 2 1 

1-8-1 

6 -2 -1 

-2 4 -4 

-2 -7 -8 

-3 -3 -4 

0 0-3 

-21 -5 -1 

-12 -8 -3 

The real test of the technique is, of course, the frequency distribution 

of a large number of simulated echoes. Such a frequency distribution is 

shown in Fig. A-l, for the smallest number of samples (8000) used in the 

numerical simulations discussed in the body of the report. The "ideal " 

distribution, corresponding to equation (2-5) and plotted from Table A-l, 

is also shown for comparison. The agreement is obviously good. 
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