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MEASUREMENTS AND CORRELATION OF HEAT TRANSFER
IN A SOLID PROPELLANT ROCKET NOZZLE

by
Roland E. Lee

ABSTRACT: The two-dimensional transient heat flow in a conical
De Laval nozzle subject to a solid propellant exhaust flow was
investigated. Local temperature and heat transfer rates at the
internal surface were determined from a combined experimental
and analytical method developed at the U. S. Naval Ordnance
Laboratory. It was found that an analysis assuming one-
dimensional heat flow gave essentially the same results as the
two-dimensiona] analysis.

Local heat transfer coefficients were compared with the predic-
tions from a detailed solution of the turbulent boundary layer
flow and with the widely used empirical relation of Bartz. The
present results were in better agreement with the boundary layer
solution, particularly in the prediction of the peak value at
the nozzle throat.

The present rocket nozzle data expressed in Nusselt number form
showed very good agreement with the steady state heat transfer
data observed with a watei-cooled copper nozzle. The copper
nozzle data was measured at the U. S. Naval Ordnance Laboratory
using heated compressed air.

On the basis of the present data plus the copper nozzle data a
simple adjustment is derived to include the effects of compres-
sibility and geometry in the conventional Nusselt-Reynolds
number correlation. This adjustment decreases the scatter of
experimental data by 43 percent.
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This report presents the results of an experimental investiga-
tion of the heating of a solid propellant rocket nozzle and a
comparison with theories.
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SYMBOLS

A cross section flow area of nozzle

Cp specific heat of gas at constant pressure

cf local skin friction coefficient, 2Tw/p uWa

Cfi incompressible skin friction coefficient for zero
heat transfer based on free stream conditions

d diameter

h heat transfer coefficient, q/(Taw-Ts )

H enthalpy

H' reference enthalpy

k thermal conductivity

M Mach number

Nu. Nusselt number, hd/k.

Nue effective Nusselt number, see equation (11)

Nui incompressible Nusselt number, =see equation (9)

Num modified Nusselt number, see equation (10)

q time rate of heat transfer per unit area

Pr Prandtl number, cp W/kw

r coordinate in radial direction

Re. Reynolds number, p0 ,umd/ji.

Stm Stanton number, h/p u cpc

Sti incompressible Stanton number, JcfiPr'-
2 /3

T temperature

tj radial distance from nozzle surface to thermocouple
location, see figure 2 and Table I

u velocity

x axial distance, see figure 2 and Table I
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thermal diffusivity

y ratio of specific heats

Aviscosity

p density of gas

T time

T w shear stress

cb mass flow

Superscripts

n time reference

evaluated at Eckert's reference enthalpy

* nozzle throat

Subscripts

aw adiabatic wall condition

i space reference in the axial direction

jspace reference in the radial direction

r radial direction

s nozzle surface condition

x axial direction

o stagnation condition

local free-stream condition

,e
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INTRODUCTION

It is generally accepted that the exhaust jut from a solid
propellant contains nongaseous states even for propellants
without solid additives. The effect of these nongaseous states
on heat transfer to motor components is not yet well defined
(see, for example, refz (1)). Because of the lack of a good
understanding of rocket nozzle heat transfer the designer often
relies on empirical relations which have been developed for
liquid or gaseous flows to obtain the necessary heat transfer
estimates. It follows that the extension of these empirical
equations to determine the performance of rocket motors should
be verified by experimental results. It can be seen in refer-
ences (2), (3), and (4) that the agreement among empirical
relations themselves and between the empirical relations and the
limited experimental data available can vary considerably
depending upon the choice of correlation parameters. These
empirical relations can be improved upon or at least the limits
of application can be determined by comparing them with the
results from carefully controlled experiments. This is the
objective of the present report.

The very high exhaust temperatures of present-day rocket
motors, greater than 20000 K, increase the difficulty of
measuring heat transfer by conventional experimental techniques.
The author had previously developed (ref. (4)) a combined
experimental and analytical method for obtaining the transient
surface temperature and heat transfer rate at the throat of a
solid propellant rocket nozzle where heating is most severe,
The previous method assumed one-dimensional heat flow in the
radial direction. The present report is an extension of the
method to heat flow in both the axial and radial directions to
determine the surface temperatures and heat transfer rates over
all the nozzle surface. In an attempt to correlate the data,
the free stream Nusselt number has been modified for compres-
sibility and geometry.

ANALYSIS

A combined experimental-analytical method which employs a
finite difference approximation together with thermocouple data
was developed and successfully applied in reference (4) to
describe the one-dimensional heat flow at the throat region of
a solid propellant rocket nozzle. In the present work the
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method is extended to describe the two-dimensional heat flow
throughout the nozzle. The resulting temperatures and heat
transfer rates from the two-dimensional solution are then
compared with the original one-dimensional solution which
assumes heat flow only in the radial direction.

Figure 1 illustrates the mesh used in applying the f "e
difference approximation. The region R is defined by the
location of thermocouples on its boundary. The grid lines are
orthogonal, with each line crossing one or more thermocouple
locations. Therefore, the grid spacings are not necessarily
equal but are determined by the thermocouple locations.

The thermocouples, as can be seen in figure 2 and Table 1,
have been mounted no closer than 0.1 inch from the inner nozzle
surface. This was done to prevent the high surface temperatures
from destroying the thermocouples.

The heat flow within region R is described by the two-
dimensional transient equation in cylindrical coordinates
assuming negligible heat flow in the circumferential direction:

Equation (1) is solved numerically by the implicit method of
finite differences (ref. (5)) which has the important feature
that the solution is stable regardless of the choice of time
and space increments. This is in contrast to the explicit
method which is widely used in heat flow problems and which
requires a stability criterion dependent on the time step and
mesh spacing.

Several numerical methods are available for the solution
of two-dimensional problems in the implicit form. Some of these
are discussed in references (6) and (7). The method selected
is an alternating direction procedure similar to that presented
in reference (8) for steady-state problems described by
elliptical equations. This alternating direction procedure may
be illustrated as follows. (The actual grid used in the data
reduction is rather complicated, but the main ideas may be
illustrated with the simple rectangular mesh shown on the fol-
lowing page.)

2
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Assuming that all temperatures at time interval n are known, and
for the first half time-step the heat conduction in the r direc-
tion is neglected, the following finite difference-equation in
explicit form can be written for each of the grid points indicat-
ed by the crosses: (This neglect of the r heat conduction is
equivalent to dropping the r derivatives in equation (1).

x(i+x )  [ x(i*) x(i+1) - i  x(i - (i_1)

n k+ n (2)
n T. . -T i

-(PCp) iP _p pij AT

This results in 12 equations in terms of 20 temperatures. The
eight temperatures indicated by circles are known from the
thermocouple readings. Hence, the 12 unknown temperatures at
the time interval (n+j) and at the insition indicated by the
crosses may be found from the 12 equations.

For the next half time-step at time interval (n+l)., the
procedure is repeated but a somewhat different set of mesh points
is used in formulating the equations. The mesh points are
indicated by crosses, and the heat conduction in the x direction
is neglected.

,I _ _ _ _ _ _ _ _ ___ ___

r

x
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The finite difference equation for the second half time interval
for each of the grid points is then:

(j+ ) j r(j_j) (3)

r-r(j_-ij.) - r,

n+ n+4
Wpep) Ti, - T.i

(PCp)ij AT

Similar to before, the temperature at each of the ten stations
indicated by a cross at time interval (n+l) may be computed from
equation (3). At time interval (n+l*), the procedure is similar
to time interval (n+j). The alternating procedure is repeated
at a] succeeding times.

This alternatiig procedure which is equivalent to computing
the one-dimensioral heat flow in alternate directions simplifies
the macbine calculation on the IBM 7090. The numerical problem
is reduces to the- olution of a tri-diagonal matrix which can
be readily solved by Gaussian elimination.

The temperature at the inner nozzle surface is extrapolated
from the known results in region R by an equation similar to
equation (3). The use of equation (3) for extrapolation will
introduce errors which can be kept to a minimum by maintaining
the extrapolation distance small. The machine program selects
a grid at each extrapolation location. The surface heat transfer
rates are determined from the temperature gradient at the
surface.

EXPERIMENTAL PROCEDURE AND INSTRUMENTATION

Rocket nozzle firings were conducted at the Rocket Tunnel
Facility of the Applied Physics Laboratory, Johns Hopkins
University. The propellant used was of the standard double base,
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end burning, 10-second grain supplied by the Allegany Ballistics
Laboratory. This grain produces a nominal operating supply
pressure and temperature of 1150 psia and 25000 K, respectively,
in the combustion chamber. A detailed discussion of the trans-
port and thermodynamic properties of this propellant is given
in references (9) and (10).

A diagram of the heat transfer model consisting of a solid,
heavy-wall molybdenum heat sink nozzle is shown in figure 2.
The internal nozzle geometry is the standard conical nozzle
configuration used at the APL facility. The pertinent dimensions
are given in Table 1 and shown in figure 2.

The nozzle was instrumented with a total of forty-five
thermocouples placed in nine axial locations as shown. The
peripheral thermocouples were used to define the boundary for
the region R described previously and also the mesh spacing for
the two-dimensional numerical solution. The internal thermo-
couples were used for checking the results of the one and two-
dimensional numerical solution.

All thermocouples were made from platinum and platinum-
rhodium 30 gage wires. The junctions were spot-welded onto
one-degree tapered molybdenum plugs, with one plug for each
axial location. Each plug was inserted into a hand-fitted
mating hole which bottomed at approximately .01 inch from the
internal surface. All the thermocouples were located in one
plane that passed through the nozzle axis. The installation of
the wires into the tapered plugs was similar to that reported
in reference (4). The emf developed by the thermocouples were
recorded on two 50-Channel Midwestern Direct Recording Oscillo-
graphs.

The supply pressure was measured with a pressure transducer
connected to a static orifice located at the downstream end of
the combustion chamber. The supply temperature was measured
with an unshielded .020-inch diameter tungsten-iridium thermo-
couple located in the flow directly ahead of the nozzle inlet.

The nozzle was attached to the combustion chamber by a
slotted-thread connector wh-ch needed only a quarter turn of the
nozzle to seal the passage. This quick connector simplified
the installation of the nozzle and prevented damage to the
delicate thermocouple wires.

DISCUSSION OF DATA

The characteristic pressure and temperature histories in
the combustion chamber are shown in figures 3 and 4, respectively.

5
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The various "dips" in the temperature time curve of figure 4,
as concluded from previous tests (see ref. (4)), are caused by
the temporary insulation effect of nongaseous products deposited
on the bare thermocouple. For the heat transfer analysis, the
dashed curve through the maximum values represents the supply
temperature of the flow.

Continuous temperature-versus-time recordings of each of
the forty-five thermocouples were taken during the course of
the 9.5-second run. For the numerical solution the data at
time increments of 0.1 and 0.25 seconds were used. The dif-
ference in temperature distribution as calculated with these
two time increments is negligible.

The correlation between the experimental results and the
one and two-dimensional numerical methods were made at three
selected time stations. These were at three seconds; when
free-stream flow conditions should have stabilized; at an
intermediate station of six seconds; and just before burnout at
9.5 seconds. The temperature distributions at each of the nine
axial locations at these three time stations are shown in
figures 5 through 13. The computed two-dimensional solution
showed good agreement with measured data at the 9.5-second time
station. At the early times of three and six seconds, the
computed two-dimensional solution appeared to be lower than
experimental data; the lag was more severe at three seconds,
particularly at the thicker wall stations. Since there is no
reason to doubt the experimental data, the explanation for this
discrepancy is that the alternating procedure selected for
solving equation (2) introduces a time lag in the computed tem-
peratures at the early highly transient conditions.

Figure 14 is a graph of the computed surface temperature
at times 3 and 9.5 seconds. In addition to the anticipated
high temperature at the nozzle throat area, a second hot spot
occurred at slightly less than one inch downstream from the
nozzle throat (station G). This second temperature maximum can
also be seen in the map of the isotherms at 6 and 9.5 seconds
shown in figures 15 and 16, respectively. The exact cause of
this second maximum is not known; however, it may be associated
with the flow separation and reattachment observed with the
same nozzle geometry in other tests.

It is noted in figures 15 and 16 that the calculated iso-
therms are wavy near the inner surface. As one goes away from
this surface, the waviness is retained in the one-dimensional
curves but is diminished in the two-dimensional ones. One
expects the waviness to diminish as one gets further from the
hot surface--hence., it appears that the two-dimensional calcula-
tion is a more accurate description of the heat conduction process
than the one-dimensional.

6
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Local nozzle surface heat transfer coefficients are shown
in figure 17. The rocket nozzle data show fair agreement with
the turbulent boundary layer solutions of Persh and Lee,
(ref. (11)) which assumed ideal gas flow and constant wall tem-
peratures of 5550K and 22220K. Also plotted is the widely used
solution of Bartz (ref. (12)) which gives a higher heat transfer
coefficient at the throat and downstream. Unlike the ideal gas
flow calculation of reference (11) where maximum heat transfer
is predicted to occur slightly upstream of the nozzle throat,
the rocket nozzle results show the peak to occur slightly down-
stream. The upstream heat transfer coefficients are lower than
the boundary layer prediction possibly due to the observed large
combustion deposits in this region. The high data point at
approximately 0.9 inch is due to the probable reattachment of
separated flow discussed earlier.

For engineering purposes, the maximum temperature and the
maximum stress are of prime importance. Both of these occur at
the nozzle surface. The computed results show that the difference
between the one-dimensional solution and the two-dimensional
solution in computing the surface temperature and heat transfer
are within experimental accuracy for the test configuration used.

CORRELATION OF DATA

The conventional correlation of nozzle heat transfer data
in terms of Nusselt number versus Reynolds nmnber is shown in
figure 18. The steady state heat transfer data of reference (13),
which covered an extensive range of Reynolds number, is also
plotted and appeared to be in very good agreement with the
present rocket nozzle data. The scatter of the data may be
represented by the distance between the two dashed lines drawn.
The upper line is drawn through the higher data points and the
lower line is drawn through the lowest data point parallel to
the upper line. The two dashed lines deviate from their arith-
metic mean by + 49 percent.

It has been noted in reference (13) for air flow and also
reported in reference (2) for a simulated liquid propellant flow
that the heat transfer rates are higher in the subsonic nozzle
inlet region than at the supersonic expansion region for the
same Reynolds number. This is also true for the present rocket
nozzle data and is illustrated in figure 18. The subsonic data
are shown by the hollow symbols for both the air flow data of
reference (13) and for the present rocket nozzle flow data.
These appear to be in good agreement with the subsonic turbulent
pipe flow relation of Dittus and Boelter (ref. (14)) which is
represented by th,, line of the following expression:
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Nu = 0.0265 Re"' Pr0.3  (4)

From the observations described in the preceding paragraph.
it appears that a compressibility correction may reduce the
scatter of the data. This compressibility correction is intended
as an attempt to remove the Mach number and wall temperature
effects but not the experimental scatter or the difference
between the one- and two-dimensional solutions or between solu-
tions for different times.

Two relatively simple compressibility correction methods
which have been successfully applied to flat plate flow were
tried here for nozzle flow. The first is by evaluating the data
at a reference enthalpy (see ref. (15)) which is defined as:

H- = 1 + 0.032 + 0.58 1 (5)

The results of applying the reference enthalpy method,
shown in figure 19, showed no improvement in the scatter of the
rocket nozzle data. However, the cold-flow data of reference
(13) was reduced from the original scatter of + 44.6 percent
when correlated in terms of free-stream properties to a scatter
of + 35.7 percent when correlated by the reference enthalpy
method. A possible reason for the lack of favorable results
for the rocket nozzle data is that the constants in equation
(5) were empirically determined for a particular set of condi-
tions. These original constants, which were adjusted to fit
low temperature flat plate data as demonstrated in reference (16),
are not necessarily correct for high temperature nozzle flows in
which a pressure gradient exists. However, as shown, the method
does reduce somewhat the scatter of cold flow data with pressure
gradient.

The second method is by the empirical Winkler-Cha skin
friction formula (see ref. (16)) where the local skin friction
coefficient can be approximated by:

=f - l a P T a w ( 6 )
CfW, ITw Tsj

where cfi is the incompressible skin friction coefficient, which
is a known function of the momentum thickness Reynolds number.
The right hand side of equation (6) may be looked upon as a
function of Mach number and wall temperature which when multi-
plied by cf removes the Mach number and wall temperature
dependencieg. If one further assumes that Colburn's version of
Reynolds analogy holds, that is

8
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2 - St .Pr2V 
(7)

then it may be shown that

I T
Nuj - (11 Lapj N (8)

where

Nui Sti Re.Pr (9)

In other words, the same factors which remove these variations
from the skin friction coefficient for a flat plate should also
remove them f'rom the Nusselt number.

The results of using the Winkler-Cha method are shown in
figure 20. Similar to the result from the reference enthalpy
method, the rocket nozzle data showed negligible change while
the low temperature data was reduced from + 44.6 percent to
4- 34.1 percent. It should be noted that b-th the reference
inthalpy and the Winkler-Cha methods give nearly the same
improvement to the low temperature data and as shown in
figures 19 and 20 put the low temperature data in line with the
higher data points of the rocket nozzle results.

Another method of correlation was carried out as follows.i
In analogy with figure 22 of reference (17), the term (Taw/Ts)4

was omitted from equation (6). We define

Num (LT°) Nu,, (10)

Fig. 21 shows the results. The overall scatter of both the low
temperature and rocket nozzle data in figure 21 (excluding the
data at the second maximum temperature region which appeared
outside the band drawn) was reduced from the original + 49
percent to 36 percent. Comparison of figures 18 through 21 shows
that of the four methods tried, this modified version of the
Winkler-Cha formula, equation (10), does the best job in reducing
the scatter in the heat transfer data.

A closer look at the nozzle throat data of figure 21, which
is replotted in figure 22, shows that a straight line can be
drawn through these data points. Further analysis of the sub-
sonic data showed a systematically increasing deviation from
this straight line with increasing distance (decreasing Reynolds
number) from the nozzle throat. This is illustrated by the
crosses on figure 22 which represent the data of reference (13)

9
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for one test condition. The dashed line indicates the trend of
the subsonic data. Since the free stream temperature changed
very little in the subsonic region, the modified Winkler-Cha
compressibility correction is negligible at the nozzle inlet.
An inspection of the parameters used in the correlation suggest
that the nozzle geometry may not be fully accounted for in the
applied correction. Therefore, an added geometry correction
factor in the form of (d/d*)l was tried and appeared to work
satisfactorily. The exponent £ was determined by calculating
d/d* and adjusting i by trial until the data points fell nearest
to the line drawn through the nozzle throat data points. This
resulted in a value of t equal to 0.6. Combining the above
geometry factor together with the modified compressibility
factor of Winkler-Cha results in the following adjustment in the
Nusselt number correlation:

Oh C.6

Nue = Nu , To (1)

For isentropic one-dimensional flows where the diameter is
related to the Mach number, equation (11) can be written in a
different form:

3 3 (Y+. 7Y-13

Nue Nu= M (1' ) +---1+ 2 (12)

A constant effective value of y = 1.25 may be assumed. This
value is computed at the mean temperature between stagnation
and nozzle throat surface temperatures (see refs. (9) and (10)).

The graph of the effective Nusselt number versus Reynolds
number is shown in figure 23. The deviation of the data from
the mean value is reduced from the original + 49 percent to
+ 28 percent. A line drawn through the data-would result in
the following expression:

Nue ' 0.001 Re. (13)

The foregoing adjustment of conventional correlation para-
meters is an attempt to reduce the wide scatter of rocket nozzle
heat transfer data. The-extent of applicability of this cor-
relation will need further experimental support. Equations (11),
(12), and (13) were derived from data which extended over the
following ranges:

4.0 x l06 s Re= . 4.1 x 108

1.0 1 (To/Tw) o 2.,
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1.4 i (Taw/Ts) 1 10.3

0.35 !; (d*/d) 1.0

From equations (11) and (13) and the definition of the
Stanton number, the following equation can be derived to compute
the local heat transfer coefficient:

-0. -().a

h = 0.001 L 05 -{, (..2I (14)

In many instances the specific heat and Prandtl number change
very little throughout the flow temperature ranj;e. Equation
(! ,' can then be reduced further to a constant plus three terms
which involve only the mass flow, local diameter, and the local
Mach number. The local heat transfer coefficient computed by
equation (14) is compared with the present rocket nozzle data
in figure 17.

SUMMARY AND CONCLUSIONS

Detailed investigations of the two-dimensional transient
heat flow have been made for a heat sink nozzle subject to a
solid propellant flow. A finite difference implicit numerical
method was employed to describe the two-dimensional heat con-
duction and to obtain the internal surface heat transfer rates.
The surface temperature and heat transfer were compared and
were found to agree with the results from the one-dimensional
heat flow arialysis to within the measuring accuracy.

Peak nozzle throat heat transfer coefficients agree with
the predictions from a detailed turbulent boundary layer
solution. Propellant deposits and flow separation and reattach-
ment affected the heat transfer upstream and downstream of the
nozzle throat respectively. Nusselt number correlation showed
very gcod agreement with steady state heat transfer data
observed with a water-cooled copper nozzle.

On the basis of the present data plus the copper nozzle
data a simple adjustment is derived to include the effects of
compressibility and geometry in the conventional Nusselt-
Reynolds number correlation. This adjustment decreases the
scatter of experimental data by 43 percent. The data can be
approximated by the expression

Nue = 0.001 Re (13)

11m
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from which a simple equation for the local heat transfer coef-
ficient was obtained.

h 0.001 o)-0.6 -0.6

(t) (~ (14)

The above expression is applicable over the following ranges:

4.0 x 10s < Re. < 4.1 x 106

1.0 < (To/T,. )  . 2.1

1.4 < (Taw/Ts) 10.3

0.35 (d*/d) . 1.0

12
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TABLE I

Thermocouple Locations
(See figure 2)

Stations x, inches tj, inches

A 1.109 .187 .272 .492 972 1.456

B 1.475 .177 .262 .482 1.162 1.821

C 1.775 .135 .220 .440 1.120 2.004

D 2.015 .139 .224 .444 1.124 2.043

E 2.255 .122 .207 .427 1.107 2.026

F 2.500 .103 .188 .408 1.088 1.972

G 2.890 .117 .202 .422 1.102 1.886

H 3.395 .130 .215 .435 1.115 1.774

I 4.000 .170 .255 .475 .955 1.639
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