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Abstract

In this report a new two-port structure, referred to as a ''Perfectly Coupled
and Shunt-Augmented T'", is defined and its properties described. The classical
Brune two-port can be recognized as a particular example of this general class of
two-ports. There are three feasible types (A, B, and C) of perfectly coupled and
shunt-augmented T's. A tandem of two matched T's of type AC or BC is equiva-
lent to a lattice two-port. Suitable impedances can be transposed from one port to
the other over the T whereby only the magnitudes of its elements are changed. The
dual of this T is the "Perfectly Coupled and Series-Augmented Pi'". The discus-

sion of these new kinds of two-ports is supplemented by ten numerical examples,
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Foreword

In 1963 Fusachika Miyata published an article concerned with the realization
of certain one-port impedance functions in the form of a lattice two-port. He has
shown that under certain conditions the impedance function can be developed as a
tandein of two classical sections (Brune, 1931), and that under further conditions
this tandem is equivalent to a lattice,

The author of the present report has discovered that Miyata's findings, and
with them the classical Brune concept, can be generalized. For this purpose he
defines and uses a class of two-port sections which he refers to as '"Perfectly
Coupled and Shunt-Augmented T Sections' (abbreviated in the report by pcsa T).
This two-port section represents an entirely new concept, It is the aim of this
report to show and to prove some of its properties in Part I. In Part II we will
present some numerical examples. Although the pcsa T can be considered as a
fundamental structure in one-port realizations, we will not discuss how the section
can be derived trom a given impedance function; this is a major problem and will

be discussed in another report.
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Two-Port Terminology

In this report we are only concerned with passive two-ports; these are two-
ports which incorporate only resistances, capacitances, and inductances with and
without mutual coupling (transformers). A two-port has two pairs of terminals
1and 1“, and 2 and 2° as shown in the figure on the left. The terminal pair 1 and
1’ is referred to as the in-port, the terminal pair 2 and 2° as the out-port. This
terminology seems to be reasonable since a passive two-port traditionally is sup-
posed to be energized at the left-side in-port. For this reason we will also define
the direction from the in-port to the out-port as the forward direction, and the
opposite direction as the backward direction.

A tandem is a chain structure of at least two two-port sections such that the
out-port of one section is connected with the in-port of the next section in the for-
ward direction as shown in the figure on the right.

An impedance branch that is connected to a port is referred to as an in-port

impedance or as an oui -port impedance respectively.

FORWA

- I

s | O —0 2 § | &= —O-0— —0 2

a ]

[ -

z l'o—- —.2' 8 llo_,‘ . _czl
BACKWARD ;
—

Orientation at a Two-Port A Tandem of Two Two-}orts

xi




THE PERFECTLY COUPLED AND SHUNT-
AUGMENTED T TWO-PORT

Part |
The Definition and the Properties of a Perfectly

Coupled and Shunt-Augmented T

1. DEFINITIONS AND CHAIN MATRIN

1.1 The Definition of a Perfectly Coupled T

Assume that the branches of the T section shown in Figure 1 have the imped-

ances U, V, and W such that

U = u- ofs) , (1a)
Usugls) Wewgls) Viiz - dab (k)
o J=0
W= w- o), (1¢)
V= v-¢(s)
e % In Egs. (la,b,c) are the u, v, and w real constants,
which are not necessarily positive. The notation
Figure 1. A Perfectly o(s) in these equations represents a positive real

Coupled F Jection and normalized frequency function, We understand

the normalization in such a way that if we write
function as a quotient of two polynomials p(s) and
q(s) as in Eq. (2), the coefficients associated

(Received for publication 10 December 1964)
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with the highest powers of s are 1 in the numerator and in the denominator and c
the factor before the fraction is 1:

ofs) = 1 s (2)

where the degrees are either m=n, or m=nt1l,

As usual, the frequency variable s is 8 = ¢ + jw (witho =0),

Since U, V, and W denote impedances, we contribute the dimension "imped-
ance' on the right sides of Eqs. (la,b, c) to the constants u, v, and w, and we say
that u, v, and w are constants of impedance character and the ¢(s) is a scalar
frequency function., We have to admit that this yields to some controversy when
#(s) = 8 or if ¢(s) = 1/s . Inthis event, for example, u.s is an impedance; but u
is considered as an impedance character rather than as an inductance: similarly
inu/s , u is also consirered an impedance character rather than an inverse capa-
citance, But in connection with all frequency functions of higher order it is con-
venient to consider these functions as scalars.

Assume now that the constants are interrelated by the equation
1/u+ 1/v+t/w = 0, (3) :

Equation (3) postulates that one of the constants, u, v, or w, has the opposite

polarity of the other two. Without restriction we can agree that one of the polari-

ties is negative and the other two are positive,

Equation (3) is not a strange one in circuit theory., Assume the particular fre-

quency function ¢(s) = s andlet u=L, v=M, and w = N, then the two-port
shown in Figure 1 as a block diagram be-
comes the particular two-port shown in

Mtnl_pl_. part (a) of Figure 2. It is an inductance

sL N
star that by
sM oL, sL,
(a) (b)

has the technical equivalence of a perfectly

Figure 2. Inductance Star and
Its Equivalent Perfectly
Coupled Transformer part (b) of the figure. The iransformer has

coupled transformer, as it is shown in

the primary inductance
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Lp = L+M, (5a)
and the secondary inductance

Lg N+ M, (5b)
It is customary in transformer theory to identify the product

Lp : Ls = M2 (6a)
and the quotient

Ly/Lg = n? (6b)

and to call M [the same as in Eq. (4)] the mutual inductance and n the turn ratio
of the transformer, It is evident from Eqs. (5a, b) and (6a, b) that the equations

L M{n -1 , (7a)

and

N

M(%-l), (7b)

satisfy Eq. (4).
Let us now return to Eq. (3), This equation i« satis{ied when

u = vin-1) , (8a)
and

w = v(-—- 1) p (8b)

In Eqs. (8a,b) n is a real constant, not necessarily a positive one, But, when

we postulate that only one of the u, v, or w is negative and the other two are
positive, then n ruust have the same polarity as v. When v is positive, u or
w is also positive, depending whether n is greater or smaller than 1 but positive,
But when v is negative, u and w are positive only when n is negative,

Relating to the perfectly coupled transformer let us now define

v as the mutual constant , (9a)

IILIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII




and

n as the ratio constant . (9b)

When v and n are negative we will use the notations

V= -v (10a)

and

n = -n . (10b)

We refer to the T shown in Figure 1 for which Eq. (3) holds, as a perfectly
coupled T and now distinguish three types of perfectly coupled T s:

Type (A) | Type (B) Type (C)
u positive | u negative u positive
v positive = -V negative
w negative l w positive w positive
n positive n = -n negative
n> | n< 1

1.2 The Definition of a Perfectly Coupled and Shunt-Augmented T (pesa T)

A block diagram of the perfectly coupled and shunt-augmented T, the main

objective of our discussions, is shown in part (a) of Figure 3.

Usugls) W=wgls) T-¢ls) w-¢ls)
O LA Y=o ¢ :

]

% 7
uso % vavem) W0 § v-$ls)=-V-¢(s)
it g v<0 [
w20
< Xux®s) oo [ re)=Tenm)
v, x>0
(0) (b)

Figure 3. The Perfectly Coupled and Shunt-Augmented T (pcsa T)
of Types (A) and (B) in Part (a) and of Type (C) in Part (b).




The upper part of the T is the same as shown in Figure 1, It has the impedance
branches U=z u.¢(s), V=v- ¢(s), and W=w . &(s), w.acre ¢(s) is an arbi-
trary positive r.-al and normalized frequency function. The constants u, v, and w

have impedance character and are given by Eqs. (8a,b). In the lower part of the T

we find the shunt-augmentation X
X = x. &(s) , (11)

which is an impedance,

In Eq. (11) x is a positive real constant of impedance character and ¢(s)
denotes a positive real and normalized frequency function with no dimension. In
general, we assume that &(s) is also an arbitrary positive real and normalized
frequency function which is in no way relateu with #(s) . We assume that the per-
fectly coupled part of the T in part (a) of Figure 3is of type (A) or (B) so that v
and n are positive constants,

In part (b) of Figure 3 we show a perfectly coupled and shunt-augmented T
where the perfectly coupled part of the T is of type (C). In this event v =-v and
n = -n are positive. Mierely for formal reasons we used the notation X for the
augmentation constant; but, note that this constant is positive. Hence x = X, but
vs=-v,

We distinguish between three types of pcsa T s:

Type (A) Type (B) Type (C)
u = v(n- 1) positive u = v(n - 1) negative u = v(n+ 1) positive
v positive v = - V negative
w = v(%- l) negative w = v(% - l) positive w = V(é + l) positive
n
n positive n = - n negative
n>1 n<1
x positive X = X positive
1

Coupling frequency function ¢(s) '
~ positive real and
‘ normalized functions

Augmentation frequency function &(s)

According to the preceding table a pcsa T . in addition to being determined by

the frequency func.ions ¢(s) and &(s) , can be determined by the three constants




v, x and n, and v, x, and n, respectively. The branches U and W are

determined automatically by Eqs. (8a,b).

1.3 The Chain Matrix of a pcsa T

Any two-port is completely described by the chain matrix

A B A B
oy . (12)
E

o)

D

(@)d

C D

The chain matrix on the left side of Eq. (12) is based on the two-port equations

E (13a)

1 A'E2-B-12,

—
1]

C-E,-D-1, , ‘ (13b)

2
where El and E2 are the port voltages and I1 and 12 are the port currents as
defined in their positive sense by the arrows in Figure 4. The physical meanings
of the ABCD matrix are as follows:

1
= E
red| %5 A = =1 (14a)
E | le, 21,20
—0
2
Figure 4. Orientation B = - T (14b)
of the Positive Voltages 2 E2=0
and Currents at a
Passive Two-Port . I
c = (14c)
2 [1,=0
L
D- -1 (14d)
2 E2=0

According to Eqs. (14a, c) the elements A and C can be measured or computed

in the status of the open-circuit outport; according to Eqs. (14b, d) the elements

B and D can be measured or computed in the status of the short-circuit out-port.
In general, the elements of the ABCD matrix are fractions. It is sometimes

A ~
more convenient to separate a common denominator E from the numerators A,

B . ¢ , and D . For this reason we prefer to use the matrix that is shown on the
right side of Eq. (12).




By the definitions in Eqs. (14a,...,d) we find, in accordance with Figure 3,

part (a):
A= LYLX (15a)
_ A 1
C:gvvsx ° V5% tBe
D - V+W+X‘ (15d)
V+ X
_ WV + X) _ UV.+ UW+ VW + (U + WX
B'(U"_—*VHVH\)D‘ VWX B
U+ W
X VFX * (15b)

Note that by Eq. (3)

UV + UW + VW = 0 in Eq. (15b). From Eqs. (15a,...,d) we derive the elements

- A= U+V+X = vh. o(s)+ x.¥(s) , (16a)
A {n - 1)2
B = X(U+ \V) = VX ——n— ¢(S) C d’(S) » (lsb)
’~
cC =1, (16c)
D= vewsx = Logls)+x-als) , (16d)
)
E = V+X = v-¢s) + x&(s) . (16e)

The elements presented in Eqs. (16a,,..,e) describe a pcsa T of type (A) or (B).

They are also true for type (C); however, when we prefer to use the notations v,
X, and n for this type, we obtain by the respective replacements:;

A - Vn-és)+x- dls) (17a)

=2
B - vx (Nt e . as) (17b)
n




=1, (17¢) g

D = L g(s) + x- (s) ; (17d) .
n

2\ —— —

E = -v:¢(s)+ x- &s) . (17e)

The elements presented in Eqgs, (17a,...,¢e) describe a pcsa T of type (C).

2. A SHUNT TRANSPOSITION BETWEEN THE PORTS OF A pesa T

Assume a pcsa T of type (A) or (B) that is defined by the constants v, x, and
n besides by the frequency functions ¢(s) and &(s) , and assume that this T has
an in-port impedance XS = Xg . ®(s) as shown in part (a) of Figure 7,

Figure 5, pcsa T of Type (A) or (B) with
(a) In-Port Impedance and (b) Out-Port
Impedance

Thus the port impedance and the shunt-augmentation imply the same frequency
function &(s) . The matrix elements of the port impedance are

A A A A

As = DS = ES = xs-d’(s) , (18a, d, e)
A -

BS = 0, (18b)
A -

Cs =1 , (18¢c)

Femember the rule of matrix multiplication;
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~ Fa /N N A A A A A A AN
: A, B, i A, 82 : A1A2 + BICZ Ale + BIDZ
E—le B g—2 ¢ ﬁ-ﬁlﬁzé"+'ﬁ’c\ ¢, B, +D,D e
1 Dy 2 Dy i Tl ot T L Tl
Since the matrix of a tandem results from the product of its two-ports, we obtain
the elements of the pcsa T with its in- port impedance as
~
A = vnxs-¢(s)+xxs--b(s) &(s) , (20a)
fay (n - 1)2 2
B - VEXy S——— o(s) + " (s) , (20b)
C = vn. o(s)+ (x + xg) &(s) , (20c)
(A ' N 2 ;
D = |2 (xtn-0%+ x )ols) + xx, - #(s)|. #(s), (20d)
ay
B o= |veatsrex- ats) | x - als) (20e)
The elements in Eqs. (20a,...,e) are obtained by the rule, Eq. (19), where the
index 1 refers to the port impedance given by its elements in Eqs. (18a,...,e),
and where the index 2 refers to the pcsa T given by its elements in Eqgs. (16w,...,e).

Consider now the structure in part (b) of Figure 7. The pcsa T of type (A) or
(B) in this part is defined by the constants v°, x°, and n’ besides by the frequen-
cy functions ¢(s) and &(s). The T has an out-port impedance X; = x; - &(s) .
By the same rule used previously we find the elements of the two-port in part (b)

of Figure 7 as

# 2
X - [v’(n’x;+ x’ %i)é(s) + x% x7 . ¢(S)] ®(s) , (21a)
s
AYS - L2 L” (n’ 3 1)2 0 «
B” = v’x gL S o(s) *© &(s) , (21b)
Cr = Xoale) + (7 + x)) als) (21¢)
D- - [x— ¢(s)+x"¢(s)] x;  #(s) Ll
B - [v' . o(s) + x’-tb(s)] xg * #s) . (21e)

/
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Equations (21a,...,e) are obtained by applying the rule, Eq. (19), so that the
index 1 refers to the elements of the pcsa T given in Eqs. (16a,...,e) and index 2
refers to the elements of the out-port impedance given in Eqs. (18a,...,e) .

We will now show that both two-ports in Figure 5 can become equivalent,

Two-ports are defined as equivalent if they have the same chain matrix, That
means that both chain matrices have the same elements ’R P ﬁ .

The two-ports in Figure 5 are equivalent when we can ascertain that the
elements in Eqs. (20a,...,e) are the same as those in Eqs. (21a),...,e). Note
that a matrix remains unchanged if we multiply all numerator elements K. Fblo o ﬁ
and the denominator element ﬁ by the same factor. We start the enforcement of
the element identities conveniently with the denominator elements E and E’ q
Suppose we divide all elements in Eqs. (20a,...,e) by VXg: ®(s) , and we divide
all elements in Eqs. (2ia,...,e) by v’x; - #(s) . Then we obtain

E - ols)+Za0s), (22€)
and

A x'

E’ = ¢(s) + b &(s) . (23e)

A
If E-= B , it is necessary that
VN z
& K . (24)

Since v and x, and v’ and x” are defined as positive constants [we suppose
that the pcsa T's are of types (A) or (B)] , the notation K in Eq. (24) is a positive
constant. Dividing the numerator elements in Eqs. (20a,...,d) by VXg: &(s) and

the numerator elements in Eqs. (21a,...,d) by v’x;' #(s) we obtain:

A = n-¢u)+ % &(s) , (22a)

a (n - l)2

B = x '——n— l,')(S) '(b(S) » (22b)

A _on ools) , Xt .

¢ = xg #s) ¥ vxg 24

D = % [xi (n-12+ 1]¢(s)+§ &(s) , (224)
S
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and
' d ' d 2 ' d
X [n' + & (“—n%-l-L]usn :— &s) , (23a)
8
a {n” - l)2
B* = x* e o(s) * #(s) , (23b)
A, 1 ] i x;
C =x’n’%+7;’— . (23c)
) 8
D - L s+ X we) . (23d)
n v

In order to make A = A” it is necessary that

x’ (n’ - 1)2
n = n+ e (25)
S

The identity x/v = x* /v’ is already given by Eq. (24).

In order to make C = C’ it is necessary that

n 1
i E 73 7 ’ (26)
Xg xgn
and that
+ td + rd
xv xxs : - v’ :’s - (27)
s -]

Equation (25) expresses n by exclusively primed constants x’ , x; , and n” .
With n known by this equation we obtain using Eq. (26)

X, = x°.nn’. (28)

Substituting v/x = K and v = xK into Eq. (27) we «htain

1, 1 1
e o (29)
X Xs

e

X

0\
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Finally by Eq. (24)
vz x-K. (30)

Hence, if the two-ports in Figure 5 are equivalent, we are now able to compute

the constants of the two-port in part (a) when the constants of the two-port in part (b)
are known;, we need only to apply Eqs. (25), (28), (29), and (?0) in sequence. But
the proof of the equivalence is not yet finished; we still have to compare B and ﬁ’,
and 6 and ﬁ' . In order to make ﬁ = ﬁ‘ , it is necessary that

., 2 2
x’-‘n—n.;l-=x(n—-nl)—. (31)

Py N\
In order to make D = D , it is necessary that

¥s
N =N e—— . (32)
Xg + x(n-1)"

Like Eq. (25), Eq. (32) presents n’ exclusively by the constants of the two-port
in part (a) of Figure 5. Knowing n’ , we are able to compute by Eq. (26)

= 2 (33)

Knowing x; by Eq. (33) we obtain by Eq. (29)

L ool 1 1
I - . I (34)
X X Xg xg
Finally by Eq. (24)
vi = x*+ K. (35)

Hence, if the two-ports in lligure 5 are equivalent, we are able to compute the con-
stants of the two-port in part (b) when the constants of the two-port in part (a) are
known; we need on!v to apply Eqgs. (32), (33) and (34) in sequence. These equations

are the inverse of Egs. (25), (28), (29), and (30).
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We will now prove that Eq. (31) is true. By this equation

2
X n {(n” -1
- T = ——— (36)
X n - 1)2
By Eq. (3 2)
L A T L (37a)
n X
s
and
- o | 1 = x(n - 1)'xg
(n” -1)° = (n-1) - . (37b)
1+ x(u - 1)‘3/.\:S
Then

.

) [l - x(n - l)/.\:s]'2

X
L’ W 7 . (38)
X 1 +x(n- 1)2/xS

On the other hand, by Eq. (34)

X X X
w - Mt o m e
] S
2
X n
= + -
1 o 1 5
s 1+ x(n-1) /xs

[1 - x(n- l)/xs:l2

B
1+ x(n-1D"/xg

which is the same result obtained in q. (38).

Thus we proved that if either the set of Egs. (25), (28), (29), and (30), or the
set of inverse Egs. (32), (33), (34) and (35) is true then the two-ports shown in
parts (a) and (b) of Figure 5, are equivalent.

The two-ports in Figure 5 may also be of type (C). The equivalence also holds

for the following sets of equations:
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=7 = 2
- -, + .
n=n+{7(n_l) : (59)
-s nl
Xg = Xgc nn’, ~ (49)
ST S 1
X X’ s S
v = x-K, (42)
and
n° = n — . (43)
Xx_ +x(n+ 1)
Xs
Xg T —— (44)
nn
SRR S 1
gy = = 3 (45)
X X s s
voo= x XK . (46)

The equivalence is shown in Figure 6 where for the pcsa T of type (C) the constants
marked by a bar are used.

Figure 6. pcsa T of Type (C) with (a) In-Port Impedance
and (b) Out-Port Impedance
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We are now able to state the following theorem:

THEOREM 1 (concerning the transposition of port impedances)

A pcsa T of type (A) or (B) that has an impedance Xs i ®(s)

at its in-port is equivalent to a pcsa of the same type that has an

s
imply the same frequency function &(s) as the shunt-augmentation

and when the set of Eqs. (25), (28) (29), and (30) or of Egs. (32),
(33), (34) and (35) holds. Also, two pcsa T s of type (C), each
having port impedance XS and X; , respectively, are equivalent

impedance X; = x. + &(s) at its out-port when the port impedances

if the port impedances imply the same frequency function as the
augmentations, and when either the set of Eqs. (39),..., (42) or the
set of Eqs. (43),..., (46) holds.

The equivalence between the two-ports in Figures 5 and 6 can also be inter-
preted in such a way that it looks like the respective port impedance has been trans-
posed to the other port, whereby unprimed constants change to primed ones and
vice versa according to the respective set of the aforementioned equations. Hence,

we can also state the following theorem:

THEOREM 2 (concerning the transposition of port impedances)

When a pcsa T has an in-port impedance XS that implies the
same frequency function &(8) as the shunt-augmentation, then
the port .mpedance can be transposed to the out-port where it ap-
pears as x; and vice versa. By the transposition, unprimed
constants are changed to primed ones and vice versa according to
the sets of equations, Eqs. (25), (28), (29), (30) or Egs. (32),
(33), (34), (35), if the T is of type (A) or (B). If it is of type (C),
the constants change according to the sets of Eqs. (39), (40),

(42) or Eqs. (43), (44), (45), (46).

Note that by the transposition the constant K given in Eq. (24) remains un-
changed. It is essential to recognize that by the transposition we are able to change
the ratio constants n and n” , or n and n” . If we transpose in the forward
direction, Eq. (32) shows that this ratio decreases from n to n” if the pcsa T
is of type (A) or of type (B). It is therefore possible that a type (A) T becomes a
type (B) T after the transposition. Equation (25), which is the inverse of Eq. (32),
shows that by a transposition in the backward direction the ratio constant increases

from n° to n if the T is of type (A) or of type (B). Similarly, we recognize by
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Eq. (43) that by a forward transposition the magnitude of the ratio constant also

decreases from n to n”, whereas it increases from n° to n according to

Eq. (39) by a backward transposition if in both events the T is of type (C).

3. MATCHED AND PERFECTLY MATCHED TANDEMS OF TR0 pesa T's

3.1 Definitions

In Figure 7 we show a tandem consisting of two pcsa T sections, the left one

being of type (A) or of type (B), the rignt one being of type (C).

|

1 pesa T 5 pcsa T [~°
tvpe | | | TYPE

o] (A) or(B) ! © |

Figure 7. Tandem of Type (AC) or (BC)

l.et us assume that the two sec-
tions in Figure 7 are not completely
arbitrary. Reasonably we presume at
least that both sections imply the same
frequency function ¢(s) (marked by
diagonal shading) and the same fre-
gquency function & (s) (marked by dot

shading). In addition to this we pre-

sume that
v v
L Y (47)
.\'a .\'b

Since the constants v and x ina
pcsa T of types {(A) or (B) and the con-

stants v=-v and X = x inapcsaT

of type (C) are defined as positive, the notation K in Eq. (47) is necessarily a

positive constant, too. Equation (47) also allows us to introduce another constant

ka that is defined as

<
td

a "a
ka = = = =
v X

b b

(48)

3.1.1 DEFINITION OF A MATCHED TANDEM

The pcsa T sections in a matched tandem are such that the sections imply the

same frequency functions o(s) and &(s) and that the constants v, x and v,X of

the shunt impedances of the ' s are proportional, as shown by Eq. (47).
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We will now develop the elements A y -, E of the chain matrix of the tandem
shown in Figure 7.

By Egs. (47) and (48) we can reduce the number of notations:

By Eq. (47)
va
xa = _K'o (49)
by Eq. (48)
Vi e (50)
b ka
— \'a
% Rk, 6D
a

The matrix elements of the section shown at the left in Figure 7 are obtained by

Eqgs. (16a,...,e) as
Ro= n - ofs) + - @ls) (52a)
B, - V—Ka (nan:)z ols) © @(s) , (52b)
'?a = VL , (52¢)
a
b, - -n‘: ols) + L als) (52d)
ﬁa = Tl\,-tb(s)+ o(s) . (52¢)

The elements of the matrix of the section shown at the right in Figure 7 are obtained

by Egs. (17a,...,¢) as

A= 1
A, = n, - o(s) + N d(s) , (53a)

b




18

A LR (Hb+ l)2
B, = g 22— s #ls) , (53b)
a n
b
k
Gb -2 (53c)
a
D = = 3 o(s) + —l-tb(s) (53d)
= K . ‘
n
b
B, = 1E¢(s) - ols) . (53e)

By the multiplication rule of matrices that is given in Eq. (19) we obtain the matrix
elements of the chain matrix of the tandem in Figure 7. In order to distinguish the
result from a later one we use the subindex (AB)C . This index shows that in
Figure 7 either a section of type (A) or of type (B) is followed in the forward direc-
tion by a section of type (C).

2
(n_~1)
A = I . @2 A 23 1 - a _
AaB)c = Malp-® (s) + 2 ®°(s) + K[(na+ n,) + ——na ka]¢>(s) &(s) , (54a)
v (n_+1) (n_-1)
B =% [ > F =N o(s)
(AB)C K a - =
nb ka nanb
Y (G E UE (h
*K = ¢(s) | o(s) - @(s) , (54b)
k. n n
ab a
¢ . LG s Y e+ L aenane (54¢)
(AB)IC ~ ¥, i n_ ols) + RLICI) c
(n, + 1°
' B n
6(AB)C : 1_ ¢Z(S)+—12 ¢2(S)+-}-1<- [_1_ +-_L + ———E ](p(s)-tb(s) , (544)
nn K n n n,_k
a'b a b b a
o 1 2 3
Eapgic = T3 ¥7(8) - 0%(s) . (54¢)

K



Let us now impose a stronger restrain on the matching of the T's . Let us

demand that the ratio constants n, and Hb be inverse each other, given by

R 1o
na = H_ = no o (55)
b

The constant n, is positive and greater than 1 if the left side section in Figure 7

is of type (A), and it is smaller than 1 if it is of type (B).
3.1.2 DEFINITION OF THE PERFECTLY MATCHED TANDEM

If in a matched tandem the magnitudes of the ratio constants of the sections
are such that thev are vice versa inverse, we refer to such a tandem as being

perfectly matched.

3.2 Equivalent Perfectly Matched Tandems

Assume that the left side section in Figure 7 is of type (A) and assume that
Eq. (55) with n, > 1 holds, Then the matrix elements of this tandem are:

0
Al o2 (s) + é #2(s) + R‘TO n02 +1+ (ng- 1)° ka] o(s) - #(s) , (56a)
B -v—a ( +l)2+k( -l)z\lé(s)+;¢() (s) - &(s) {56b)
ac * Kk \Mo atfo” TPk Pl AR
1 +k
GAC - —2 nl ¢(s)+‘K ¢(s)] . (56¢)
a 0
~ 2 1.2 1 2 (ng + )
DAC = ¢ (s) + EE & (s) + K“o nd’ + 1+ T o(s) - &(s) , (56d)
a
EAC = _le «bz(s) -¢2(s) . (56e)

When the left side section in Figure 7 is of type (B), the matrix elements
Il

ABC b
only exception being that in this event ng <1,

N\
, EBC are the same expressions as given in Eqs. (56a,..., e) with the



I Consider now the tandem shown
® pcsa T l pcsa T ° in Figure 8. In this tandem, inverse
TYPE | TYPE in the section sequence to Figure 7, a
| wesa T of type (C) is followed in the
o— (C) } (Bor(A) | o I yp 0 in

forward direction by another section
that is either of type (B) or of type (A).
We will relate the tandems in Figures
7 and 8 somewhat later; hence, we
assume that the right-side section in
Figure 8 is of type (I3) if the left-side
section in Figure 7 is of type (A) and

vice versa. We assume that the sec-

tions in Figure 8 are matched, too,

Figure 8. Tandem of Type (CB)

or (CA) so that
T;c vd
-_— = —— = K . (57)
Xe X4
and
v X
e (58)
v X
c c

We now relate the two tandems shown in Figures 7 and 8 by assuming that the con-
stant K in Eq. (57) is of the same value as the constant K in Eq. (47). We do
not postulate that the constants ka and kb in Egs. (48) and (58) to be the same;
however, it should be noted that the constants ka and kb‘ which express ratios
between the mutual impedance constants v and v and the augmentation constants
x and x , are defined such that the unbarred notations arein the numerators and
the barred notations are in the denominators.

Again let us rcduce the notations by using 7 only; we set

\'
;- 4 .
-\d Y K ’ (‘)0)
- Vd
Ve Tl (60)



Applying Eqgs

Figure 8 as

IaS
AC

&>

X

(=24

1>
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v
d
(61)
K kb
. (17a,...,e) we obtain the matrix elements of the left side section in
n, - ols) + e #(s) (622)
v (EC+ l)2
K Kk — oLs) - ¥(s) (62b)
b n
c
k
b ' (62c)
v
d
1 1 .
= ols) + ¢ ¥(s) , (62d)
n
c
% @(s) - ols) (6:2e)

Applying Egs. (16a,...,e) we obtain the matrix elements of the right side section

in Figure 8 as

A\
Aq

x>

d

0>

d

P

d

=D

d

ny

K

L ols) + % bls)

4
(n,-1)"
d
e ——— (:)(S) .
ny

o(s) +-ll\= o(s)

& (s) + ofs)

&(s)

»

(63a)

(63b)

(63c)

(63d)

(63¢)
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By matrix multiplication we obtain the elements of the tandem in Figure 8 as

Acta) = B ngr ot + EIE #(s) +
y b (n_+ 12
Klhe*tngt —(‘—_— o(s) - &(s) , (64a)
kb e

2 - 2
(n,-1) {n_+1)
A _ 1(1 = d c
BC(BA) =K [ n, n + - o(s)
b e Md
1 (nd B 1)2 (Hc+ 1)2
tg = + — ®(s) | #(s) - &(s) , (64b)
d kb n.
A 1 1 ]
d n
c
A 1 2 1 2
D(‘(BA) o~ (s) + = ¢ (s)
nC nd K
n,-1)°
+ lk sl o4 sy - ais) (64d)
e M4 g
A 1 2 2
EC(BA) = F ¢ (s) - ¢"(s) . (Gde)

Let us now assume that the tandem in Figure 8 is also perfectly matched by

setting

Rl B (65)

c nd 0

and let us assume that ng is of the same value in Eqgs. (65) and (55). Thus, when
n, > 1, the right side section in Figure 8 is of type (B). Substituting ny in
Eqs. (64a,...,e) we obtain the following matrix elements:
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2
4 (n, +1)
2
‘?\CB - o(s) + _12 #°(s) + KL |n0'+ 1+ —Qk— o(s) - &(s) , (66a)
K 01 b
2
. v (n,+ 1)
Bep = 1 [‘"o -+ °—kb—— (¢(s) + e M) ols) - als) (66b)
0
1 +k
Cop = i [ag o) & ¢(s)] ; (66c)
0
2
BCB = ¢%(s) + K_lz $"(s) + _K]n n02+ 1+(n, - 12 Ky ] o(s) - &(s) , (66d)
0
A g 2
Ecp - EIZ d>z(s) - o (s) . (66¢)
In Egs. (66a,...,e) we assume that ng is greater than 1. If it is smaller than 1,

then the right side section in Figur - 8 is of type (A) and the respective elements
of the matrix RCA R ECA are given by the same Eqgs. (66a,...,e) with the
only exception being that n, <1.

Similaritics in the system of Eqs. (66a,...,e) and of Eqs. (56a,...,e) suggest
investigating whether it is possible that a perfectly matched tandem shown in
Figure 8 is equivalent to a tandem shown in Figure 7 when Eqs. (65), (55) and
Eqgs. (47), (57) are true. The tandems are equivalent when their chain matrices
are the same in all their elements., We will now find the conditions under whi:h
equivalence can be obtained.

Equations (56e) and (663) are completely identical.

Equations (56a) and (66a) become identical if

n

ot |
k, ky, - 1 . (67)

Under the same condition, Eq. (67) and Eq. (56d) become identical with
Eq. (66d).
lEquations (56b) and (66b) become identical if

2 2
Vs . kong - D7+ k_(ng+ 1) /kb

vy ' 2, + ])2
ka\(n0 -1) (nO



or by Eq. (67)

v 1 +k

4 . __ _a
v

(68)
d *+ ky

Under the same condition Eq., (68) and Eq. (56c) become identical with Eq. (66c).
L.et us now draw the following conclusion; let the tandem shown in Figure 7 be

a perfectly matched one by Eq. (55); let the tandem shown in Figure 8 also be
perfectly matched by Eq. (65). Then

e

— n, = — = n
n

c 0 (69)
b N

a

It ny > 1, then the left side pcsa T section in Figure 7 is of type (A) and the right
side pcsa T section in Figure 8 is of type (B).

if n0<l.

By Egs. (47) and (57)

Types (A) and (B) are interchanged

v =,
K‘a"c'

<

><|| <|
(]

(70)
x X

_d
a b Xd

(2]

We defined k_ oy Eq. (48) and k,, by Eq. (58).

The tandems shown in Figures 7 and 8 are equivalent

(1) if Eq. (70) holds;

(2) if their sentions are perfectly matched and Eq. (69) holds;

(3) if Eq3. (67) and (68) hold,

The equivalence allows us to determine the perfectly matched tandr:a Figure 8
when the tandem Figure 7 is known. By Eqs. (47), (48), and (55) we know K, ka s
and ng . Then by Eq. (67) we obtain kb , and with this by Eq. (68) we obtain Vg
Eq. (57) now gives us x, = v;/K, and Eq. (58) gives us ;c = x4/k, and Vc =vylk, -
Finally by Eq. (65) the ratio constants Hc and 1 /nd are known ana thus the com-
plete tandem in Figure 8 is known.

We are now able to state the following thecorem:




THEOREM 3 (concerning the equivalence of perfectly matched tandems)

A tandem in which a pcsa T of type (A) or of type (B) is followed by
a pcsa T of type (C) has an equivalent tandem in which a pcsa T of
type (C) is followed hy a pcsa T of type (B) or of type (A) if in each
tandem the pcsa T sections are perfectly matched and Eqs. (67)
and (68) hold.

4. SYWETRICAL PERFECTLY MATCHED TANDEMS

A two-port is defined as being symmetrical if the elements A and D of the

chain matrix are the same¢. We can easily recognize that if

n0+l
-1

Mo

(71)

then Z\AC in Eq. (56a) becomes identical with bAC in Eq. (56d). Similarly, if

(72)

then ACB in Eq. (66a) becomes bCB in Eq. (66d). In both events it is assumed
that n, > 1. If n, < 1, the same statements are true. Then the element ‘;\BC
becomes identical with the element f)BC by Eq. (71) and the element ‘:\CA be-

comes identical with the element D., by Eq. (72).

5. A PERFECTLY MATCHED TANDEM AND ITS EQUIVALENT LATTICE TRO-PORT

Consider the lattice two-port shown in Figure 9. In a lattice we can evidently

distinguish two pairs of branches: one pair of branches in Figure 9 has the numeri-
cal indices 1 and 4, the other pair has the in-

xl- ""(.) dices 2 and 3. Let the branch notations in this
77777 .

figure be impedances. As indicated by the
diagonal shading, the branches

.\'l = X - o(s) , and (73a)

X, = Xy o(s) (73b)

Figure 9, Lattice Two-Port
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imply the normalized frequency function ¢(s) that is also immplied in the perfectly
coupled branches of the pcsa T'. Dot shading indicates that the branches

X, = x,®s) , and (74a)

Xgp = xq° &(s) (74b)

3
imply the normalized frequency function &(s) that is also implied in the augmenta-
tion of the pcsa T . Since Xl 0" a d ,X4 are positive impedances, the X1 4 and

Xg 3 in Eqs. (73a,b) and (74a,b) are positive real constants of impedance charac-
ter,

It is well known that a lattice has the following elements of its chain matrix:

)

/N

BX = )\lh4()\2+h3)+hz)\3(hl+h4) , (75b)
(g i d id » 3. i d

CX = )\l+)\2+h3 g }&4 , (75c)
s - :

x = (X;+ X)X+ X)), (75d)
A - i Y id ‘

EX = ‘\2‘3-1\1‘4 . (75€)

Let us now substitute the explicit expressions given in Eqs. (73a,b) and (74a, b) and
let us divide all the elements by the product XpXg - We then obtain;

Xy Xy + XoX

Ny X 3

~ _ 2 273 2 172 3°4 .

AX = ¢ (s) + = 2 (s) + — o o(s) » ¢(s) , (76a)

174 174

A sz X + X

By = (x2+ x3) o(s) + = N o(s)| ofs) - @&(s) , (76b)
174 2 3

~ (x; +xy) a(s) + (x, + x5)#(s)

C‘ = T A (76¢)

) T
~ 2 Xg¥3 9 X X3t XXy
DX = ¢ (s) + ﬁ d“(s) + —\IT o(s) * &(s) , (76d)




X

3 2 2
X =x—l-x—4¢(s)-¢(s) . (76¢)

~A X2

There are similarities which suggest investigating whether the elements presented
in Eqs., (76a,...,e) can become identical with the elements presented in Eqs. (56a,
..,c¢) and in Eqs. (66a,...,e). This means that there is a possibility that a per-

fectly matched tandem of two pcsa T s as discussed in Section 4 is equivalent to
the lattice shown in Figpire 9. Let us first find the identities between the elemeants
in Eqs. (76a,...,e) and Egs. (56a,...,e€).

Equations (76e) and (56e) become identical if

X, X
L1 . k2 (17)
°273
Thus
X, X
K = + ‘1 ‘(4 , (78)
273
since K is defined as a positive constant,
Equations (56b) and (Y6b) become identical if
Va 2 2 1
K ka ((no + l) e ka(no = 1) ) é(S) + K no d)(s)
XyXg Xt X,
= (xy + xg) | o(s) + X X, N, ¥ ®(s) | . (79)

By the expressions in the brackets in Eq. (79) we find immediately that by Eq. (78)

) X 4 g XXy
g * ST+~ X, X : (80)
-1 74 2°3

Equations (56c) and (76¢) become identical if
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1+K l
a 1 | .
v I“ ¢(S)+K ‘I’(b)
a 0
N, ¥X Xy, + X
4 )
T oS ¢ 4 ()
X| Ny X%,
\1+Y4 .\2X3 x2+.\:3 X, .\'3 .\12+X3
= — ofs) + ®(s)
o X 3 P \/—— e
2 174 XXy Xg X, %1%4 VX Xy NgX,
\)*‘ X,; \ +)s X, X, sz
2 X 3
— 5 +\ <Y, o(s) + X ¥, (s) [ . (81
1727374 2

Comparing the expressions in the brackets in Eq, (81) proves that Egs. (78) and (80)

are correct, [quation (81) also shows that

1+ ka B X9 i X3 (82)
v . 2
a \x w<2 \3 X4
By Egs. (78) and (80)
X, + X X, X
T A W (63)

0 .\:l‘f-x«1 x2x3

Using the result in Eq. (83) we find that Eqs., (56a) and (76a) become identical if

.\;.\:.+x,x4 Ng t X

2 2 172 3 2 3
nS+ 1 +n,-1D"k = — . - o (84)
0 0 a Xy Xgq Xy + Ny
and that Eqs. (56d) and (76d) become identical if
_{ 2 . + ” »
9 (no - 1) Xy Ng Xy X,y X, + Xg
n0 e . k. X e X X, + X (85)
a it -1 74
2 .
Note that (nO+ 1)° = (noz+ 1+ 2 Ny - Hence with Eq. (80), Eq. (84) can also be

written as
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Xq t X X X BX o, X
(nO+l)2+(n0- D%k, - 2" 3 12 3 ey, | - (86)
(.\'1+x4)\/x2x3 Vx2x3
By Eq. (79)
A ) Xy + Xq I
Kk -~ 2 2 *
a (n0+ D+ (no- 1) ka
Therefore with Eq. (78)
+0% 4 %k 3 By X R X
ky g (ng - D7k, [XX3 ) ["1"2 r3 Xy ]
v X, + X, X, X X, + x e + 2
a 2 3 174 1 4 X)Xy XqX,
2
('\/xlx2 + '\/x3x4) )
(x1+ x4)\xlx2x3x4
By Eq. (82)
k X, + X
-vl— + 79- = ‘()2\_)\3\ , So that with Eq. (88)
a a T1727°37°4
1 (xg + X))+ x4) = X)Xy + XgX,) - 2VX) Xy Xg X,
a (x1+x4) X XgXgX,
which yields
(x) + X NN Xy Xgxy
v, *® (89)

r N ok
(w.\le Vx2x4)

Then, Eq. (88) yields

e — 2
(\ml.\2 + N\3.\4)

a N —_——2 (90)
( X{Xg - wx2x4)
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It can easily be shown that with the results obtained so far, all comparisons between
Eqs. (56a,...,¢) and (76a, ..., e) are consistent, When the lattice two-port is
known by the constants Xy reoasXy, Weare able to compute the constants K, ngy
Voo and ka which determine the equivalent tandem in the sequence where a pcsa T
of type (A) or type (B) is followed by a pcsa T of type (C). Eq. (78) gives K,
Eq. (80) gives ng» Eq. (89) gives v, and Eq. (90) gives k, . Inthe anticipated
sequence of the sections in the tandem the ratio constants are n_ = l/ﬁb =ng .

It is unnecessary to show the equivalence between a lattice two-port and a
tandem in which a pcsa T of type (C) is followed by a pcsa T of type (B) or of
type (A) by again equating the Eqs. (66a,...,e) with the Eqs. (76a,...,e). The
constants K and n, in this structure are given by the same Egs. (78) and (80).
By Eq. (67)

2
n,+1
a

b no-l
By Eq. (86)
{n, - 1)2 (xo+ x,)(Wx, x, + ¥y, x )2
0 _ 1 _ 1 2 3 172 ‘374
1+ 2 ka. - 1+T' 2 (X, +X )X, X (91)
(n0+ 1) b (n0+l) 1 4’7273

By Eq. (80) we find that

2
(x2 + x3)'\/xl Xy * (xl + x4)~/x2x3

(n0+l)2 3
(xl + x4) Xg Xg
Hence,
1 ('\lxlx2 + \/x3x4)2
L4 5 = (xpdxgdlcg+xg) — T
b (x2+x3) x1x4+(xl+x4)\/x2x3
and
2
. ¥ x)Vxy x4 + "‘1*"4“"2"3'

b 2 )
(x )+ x ) xp+ X (NX X5 + Nxgx,) I"‘z’“"a)“"l"‘a+ (x )+ xNx x4
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After some computation we obtain
2
_ [("2*"3“"1"4 tlxgt "4“"2"3]
5 (x,x, - X, X )2
172 374
2
i (\lex3 + VY2x4)
o, 2 * (92)
(Nx; x5 - \Ix3x4)
By Eq. (68)
vV, = Vv —1 +kb
d al+ ka
By Eq. (92)

(x, +x)(x, +x,)
1+k, = 1 - M 3 . (93)

b 2
(Vxlx2-~/x3x4)
By Eq. (90)
(x, + x,)(x, + x,)
14k, - = (94)
('\/.wclx3 - \/x2x4

By Egs. (89) and (68)

) (x1+x4)'~}x1x2.\:3.‘<4 o5
(NE[%, - Vg, )

Vd

When the lattice two-port is known by its constants Xy see.0Xy, We are now
able to compute directly the constants of the equivalent perfectly matched tandem
in which a pcsa T of type (C) is followed in the forward direction by a pcsa T of
type (B) or of type (A). The constants K and n, are given by Egs. (78) and (80).
The ratio constants in the tandem are ﬁc = l/nd =ng - The constant k is given
by Eq. (92) and the constant vq by Eq. (95). Thus the tandem is known completely,
From a computational point of view the use of Eqs. (89), (90), (92), and (95) is

not very,practical since these equations necessitate the computation of some square
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roots. Knowing K and ny it is preferable to compute

XNy b X5 X n 3
ka . : 2 l f X - -I?- . (nd‘+l) ! (35}
(nO - - o
and, respectively,
1 1 X g EXgXg  H 2
T = 3 X R I (o)
b (n0+ 1) "273

instead of using Eqs. (90) and (92).
Instead of using Eqs. (89) and (95) we compute by Eq. (87)

) (x2 + x3) K ka
PG ") S , (98)
(n0+ 1)° + (n0 -k

a

and similarly we obtain

(x2 + .\'3) K kb

Va -~ p)

2 (99)
(no+ 1N+ (n0 -1 k

b

Equations (98) and (99) can also be verified.

More important than the derivation of the equivalent perfectly matched tandems
from the lattice two-port is the derivation of the lattice from the tandems, This
reverse derivation can most elegantly be performed in the following way:

Consider Eq. (56b) and let us introduce
_ _a 2 Y
S = (ny+ ne+ ka(n0 1) . (100)

Since Eq. (56b) is identical with Eq. (76b),

S = (.\'2+x3)K c (101)

But, Eq. (56b) is also identical with Eq. (66b). Hence

v : .
S =4 (n,+ 1)2 + k, (n, - l)2 . (102)
i 0 b0

k




By Eq. (83),

S = (xl +.\'_;)n0

Consider now Eq. (56c¢) and let us introduce

1+ka
P s —i K
\Y
a

Since Eq. (56c¢) is identical with Eq. (76c), also

But Eq. (56c) is also identical with Eq. (66c), so that

1 +k

P = -T—b—K
d
By Eq. (83)
X, + X
P = ——-i < A Kno
174

Let us now compute the product SP .

(‘.;l + x4)2 Kn(;'2
SP =

X1%4
By Egs. (101) and (105) we obtain

. 2
(32 + x3) K

SP = _
32 x3

By Egs. (103) and (107) we obtain

Let us further compute using the result obtained in Eq. (108):

33

(103)

(104)

(105)

(106)

(107)

(108)

(109)
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2
4Kn0 ) 4x1x4 X) "X,
2 Ay - 2R, R W
(xl + x4) 1 4
Hence
X, - X 2x
l"’xl*l>x4=x -le ’ and
1 4 1 4
1_xl-x4 . 2x4
X1+ %, ¥y TRy

Note that by Eq. (103)

-
Ky T Xgr © ny :

so that
2
PV S B ‘/1_ dhag
1 2n SP 2
0
and
2
__S_ " "x ] 4Kno
X4 2no SpP *

Equations (110a, b) can briefly be written as

4Kn2
- |1 Y1- 52
X1,4 ° Zn, SP ,

where the + sign refers to Xy and the - sign refersto x

matically by Eq. (110a) X)Xy

(110a)

(110b)

(111)

4" Note that auto-
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Using the result obtained in Eq. (109) and with so far undecided polarities let
us compute:

4K ) 4x2 Xq Xg = Xq
& 1-gp 7 ¢ ) 2 T P T x
(x2 + x3) 2 3

Intermediately let the + sign be true, assuming that Xy > Xgq . Then

Xy - x3 2x

2
1+ = , and
Xg+ Xg  Xgt X4
. x2-x3 . 2x3
Xg+ X3 XgtXg

Note that by Eq. (101)

.S
Xg*t X3 =%

so that

- J . 4K :
Xy * 3K [l+ 1 SP] . (112a)

and
i _.S = = f_K
Xq = 3K \l Jl 3P ] c (112b)

If in our ambiguity the - sign holds, if Xq > Xy then

1 - 1- ﬁ , (113a)

Rl

X2

Rl

X3

1+ 1 - 5P | - (113b)

We now have to find a condition that decides whether for a given tandem the pair of
Egs. (112a,b) or of Eqgs. (113a,b) is the correct one in order o obtain the imped-
ance branches X2 and X3 of the equivalent lattice.

s
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Note again that Eqs. (76a) and (56a) are identical if

X, X, + X, X 1
*1%2 7 3%y 2 2
T~ xx,  Kng [‘"o““ka‘"o'”] ' (115)

and Eqgs. (76d) and (56d) are identical if

X Xg ¥ Xyxg 2 g+ D" | (115)
X, X " Kn (nO * D+ k
i B | 0 a
Then
Xy Xy + XX, ) X|Xg ¥ X, X, (.\:1-x4)(x2 -x3) a6
X, X kg X X, X
174 174 174

Since we assumed that X, > X4, the result in Eq. (116) is positive if Xy 2 Xg .

On the other hand

2
(x) - x)xy - xg) Al = A (ng+ 1)
X%y S Kn0 a'o ka
2 2
(n,+1) 5 (n,-1)
= #— [k: -l—z -l]. (117)
a0 (n0+1)

The final result in Eq. (117) can only be p_sitive if

n0+ 1
ka > n, -1 ) (118)
0
But then by Eq. (67) simultaneously
n0+ 1
kb < Lo . (119)
v 0

If Xq > Xy then the result in Eq. (116) is negative and consequently the opposite
sigas of inequality are true in Eqgs. (118) and (119), Hence, we can coinbine

Egs. (112a,b) and/or Eqs. (113a,b) in
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x2‘3=%[1t Jl-g—l;] , (120)

where the + sign refers to Xy and the - sign refers to Xq when
n0+ 1
Ka 7 | T 1| * (120a)
and where the + sign refers to Xq and the - sign refers to X, when
n0+ 1
k, < T <k, - (120b)

We are now able to state the following theorem:

THEOREM 4 (concerning the equivalence between
aperfectly matched tandem and 2 lattice two-port)

A perfectly matched tandem of pcsa T s where a section of either
type (A) or type (B) is followed by a section of type (C), or a
tandem where a section of type (C) is followed by a section of
either type (B) or type (A) is equivalent with a lattice two-port.
The lattice implies in one pair of its branches the normalized
positive real frequency function ¢(s) and i the other pair the

function &(s) as indicated in Figure 9.

Assume now that one of the tandems is known and we want to find the constants
which determine the lattice. We compute as follows;

Depending which section sequence (either (AB)C or C(BA)) is given, we com-
pute S and P by Eqgs. (100) and (104) or by Egs. (102) and (106), respectively,

Then we compute Xy and x, by Eq. (111) in which the indices are clearly identi-

4
fied. We know ng by Eqgs. (55) or (65), respectively; hence, we can compute
n0+ 1
] and we can compare this quotient with the known ka or kb . This enables
‘0

us to decide about the relation between the signs of pol-rity and the components x,,
and xq in Eq. (120) according to the relations in Eq. (120a, b). Eq. (120) can now
be evaluated.

In general, the lattice two-port is not a symmetrical one, It becomes symme-

trical if x; = x, and x, = x,. This is the case when Egs. (71) and (72) hold.
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The stated equivalence is of extreme importance. It allows us to find a very
simple and transformerless realization for the otherwise highly complicated per-
fectly matched tandem. One will agree, however, that a tandem in which the sec-
tions are perfcctly matched is a rare situation. More often, supposedly, we meet
a tandem in which cne section is of type (C) and the other of type (A) or of type (B),
where the sections are matched (v/x = v/x), but not perfectly matched. It has been
shown in Section 2 that if port impedance implying the frequency function &(s) is
available, one can change the ratio constant by transposing this impedance to the
other port. In this situation, there is hope that only a matched tandem can be
changed to a perfectly matched one. To investigate this is the aim of the next
section,

6. PERFECT MATCHING IN A TANDEM OBTAINED BY THE TRANSPOSITION
OF PORT IMPEDANCE

Consider Figure 10 which shows two matched tandems terminated by port im-
pedances, The T sections are matched (va/xa = Vb/xb and va/xa = vb/ch) in
both tandems. The frequency functions ¢(s) and &(s) are expressed in the
familiar way of shading. The figure contains only the necessary notations of the

impedance constants and of the ratio constants,

SECTIONa | SECTION b SECTIONo . SECTION b
of | of ot | of
TYPE(A)or(B)|  TYPE(C) TYPE(A)or(B)]  TYPE (C)

Figure 10. Impedance Transposition Between the Ports of a Tandem

Assume now that the left side two-port has an in-port impedance Xs = Xg" & (s)
and assume further that its pcsa T sections are not perfectly matched
(Hb # l/na). We suppose from our discussions in Section 2 that we are able to

transpose the in-port impedance to the out-port, where it appears as X; = x;~ ¢ (s)
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and we hope that we can find a proper magnitude Xg such that by the transposition
the two-port becomes perfectly matched (ﬁl’) = l/n;). The constant Xg of course
has to be a positive one. If we succeed in this attempt, then the perfectly matched
two-port at the right in Figure 10 becomes equivalent with a lattice two-port; then
the two-port shown at the right in Figure 10 has a
realization that is shown in Figure 11.

We transpose the in-port impedance (see the two-
Tz port at the left in Figure 10) in two steps. First we

transpose it to the out-port of Section 2 where it ap-

pears as X;’ . By Eq. (32) we obtain

X

s
n” = n -, (121)
a a 2
Xg + xa(na -1)
o
By Eq. (33)
Figure 11, Lattice
Terminated at the
Out-Port X
X7 = —ie (i22)
s n_n
a
By Eq. (34)
1 1 1 1
- L, L1 (123)
3 X, Xg b
By Eq. (35)
5
ve = va = (124)

We now perform the second step of the transposition, We transpose X;’ to

the out-port where it appears as X; . By Eq. (43)

X
- - s
n’ = n = . (125)
b b ,e o (e 2
X’ + );b(nb + 1)
By Eq. (44)
‘\.I'/
S =i (126)
" Mb
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By Eq. (45)

_l = _1 + J Sl . (127)
‘(b Xb XS Xs
By Eq. (46)
;’
=, = b
Vb = Vb "’ . (128)
*b

We postulate that

X

L S
"a -F " Ma x_ +x (n_ - 1)2 . (28
b s a a

By substituting x" from Eq. (122) into Ea. (125) we obtain

X
no=h s
b b

— — 3 - (130)
xs+xbnana(nb+ 1) 3

By substituting nz’1 from Eq. (121) in Eq. (130) we obtain

2
x_ +x (n_-1)
S a'a (131)

nb=nb =

2 = 2
xg + xa(na 1) = Xh na(nb+ 1)
By Eq. (129) we obtain the following equation in which xg is the unknown:
- N2,z 2= 2
XgN Ny = X+ xs(na N°+ Xp na(nb+ ne .

Solved for Xg

_ 1 N2, 2= L2
Xg = e |x (0 - D+ x n (0 +1) . (132)

nanb- 1

Recall that Xg has to be positive. The expression in the brackets in Eq. (132) is

definitely positive, since Xq and ;b are defined as positive constants of impedance
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character. The ¢ 2nominator n, Ny however, is only positive if

ngny > 1. (133)
Therefore, the success of obtaining a perfectly matched tandem depends not only
on the magnitude of Xg but also on the ratio constants n, and Hb before the
transposition. Only if the inequality in Eq. (133) holds, the aim of the transposi-
tion can be obtained. Evidently, the limit naﬁb = 1 postulates xg = @©. In this
event the sections are already perfectly matched and no in-port impedance has to
be transposed.

Assume now that we have a tandem of matched (but not perfectly matched) sec-
tions in the type sequence (AB)C and we ask: what in-port impedance XS is neces-
sary to obtain perfect matching by the impedance transposition? To answer the
question we first have to check whether or not the inequality (133) holds. If it does
not hold, we know that perfect matching cannot be obtained. If it holds, we com-
pute xg by Eq. (132). The constants after the transposition are known by the
respective equations in the series of Eqs. (121) through (128). The constants
x'l Ty x; determining the lattice in Figure 11 are obtained by Eqs. (111) and (120)
in the preceding section. The lattice two-port, of course, has a termination im-
pedance X = x;' ®(s).

Next assume that (with other values of the constants than before) a tandem
such as shown at the right in Figure 10 is matched, but not perfectly matched. Let
the tandem be terminated by the out-port impedance X; and let this impedance
be such that by transposing it to the in-port the tandem becomes perfectly matched.
Let us now answer the question. what constant x; is necessary tnat perfect
matching can be achieved.

In the backward direction we transpose X; in two steps. First we transpose
it from the out-port to the in-pcit of section b in the right part of Figure 10. It
appears there as X;’ . We apply in sequence Egs. (39) through (42) and obtain:

- (men?
ng = n;) + — R (134)
ny &
xg = xinonl, (135)
_L S '_l" + L‘ - -'l— ' (136)
X}, Xy x5 X
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v, = v’ . (137)

= |

L4

Next we transpose XS to the in-port of the tandem where it appears as XS in the

left part of Figure 10. We apply Egs. (25), (28), (29), and (30) in sequence and we

obtain:
) (nz’l-l)2 x;
na = na+ = " , (138)
xg = xJn n., (139)
S
a “a S [}
b's
L 4 a
v, = Va?;- . (141)

n,2 = 1/ng (142)
and we obtain that the necessary x; is given by
’ - l , . 2 T ’2 o’ 2
xg = xa(na 1)° + S ("l) + 1) . (143)

nJ nb(l -n; ng

The constant x; has to be positive, In Eq. (143) the expression within the brackets
is definitely positive since x;'l and :{) are defined as positive. Hence x; is posi-
tive when the denominator in Eq. (143) is positive, Therefore, in order to make

x; positive it is necessary that

n; ng < 1 (144)

before the transposition.
When we intend to match perfectly a trndem that is shown at the right in Fig-
ure 10, we check first whether or not the inequality (144) holds. If it does not

hold, we know that perfect matching cannot be achieved. If it holds, we compute
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the necessary x; by Eq. (143) and the constants after the transposition by Egs.
(134) through (141). The perfectly matched tandem that has the termination X at
at its in-port as shown at the left in Figure 10 has an

equivalent lattice structure as shown in Figure 12, The

. —0 lattice of course has the impedance XS at its in-port.
%, Its constants x,,...,x, are obtained by Egs. (111)
1 R TR and (120).
“:‘ %y For completen‘ess we will now assume that the
: 25 sections appear in the opposite sequence. First assume
Xe that, as shown in the left part of Figure 13apcsa T
) section of type (C) is followed by a Section d that is
of type (A) or of tyne (B). Let the sections be matched
Figur.e 12. Lattice (but not perfectly matched). Assume that ny# l/ﬁc c
'Il;le_rigg;r:ated atthe What is the in-port impedance XS that has to be trans-
posed to the out-port where it appears as X; so that
perfect matching (nj * l/?{c) is obtained ?
We first transpose X  over Section ¢. By Egs. (43),..., (46) we obtain:
n, =, — xi 3 (145)
xg t xc(nc+ 1)
X
g K — 2=, (146)
n_n
cc
SECTION c! SECTION d SECTION ¢ l SECTION d
of | of o | o

TYPE(C) | TYPE (A) or (B) TYPE(C) | TYPE (A) or (8)

[T T

ng= I/Me
LW ng# I/R,

Figure 13. Impedance Transposition Between the Ports of a Tandem
of the Reverse Sequence Compared With Figure 10
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|

-, i T '7 » (147)

X X X X

c c s s

_ = . E

Ve ® Vc? . (148)
Ko

Next we transpose X;' to the out-port where it appears as X; . By Egs. (25),
(28), (29), and (30) we obtain:

X
S
n, = n : (149)
d d rEd - ’
Xg +.\cd(nd 1)
x’l
X’ = _g_’ , (159)
s nygngy
I e (151)
d d s s
Y’
o I “d
Vd V(IW . (152)
In order to make
ng = 1/n, (153)

it is necessary that

o 1 - - 2 -2 S
xg T ——— xc(nc+l) +x4n; (nd 1) . (154)
n nd-l

The constant Xg is positive only when

n.ng > 1. (155)

The inequality (155) shows that perfect matching can only be obtained when, before

the transposition in the forward direction, the product of the ratio constants is
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greater than 1. This is qualitatively the same postulation as we met in (133) in
performing the first forward transposition.

If in a tandem which is not perfectly matched and where a type (C) section is
followed by a type (A) or (B) section the inequality (155) holds, an in-port impedance
XS , given by the constant Xg in Eq. (154), can be transposed to the out-port. The
constants after the transposition can be computed by Egs. (145) through (148) and
Egs. (149) through (152). The perfectly matched tandem obtained after the trans-
position is equivalent to a lattice such as shown in Figure 11. The lattice is
terminated by the transposed X; ; its constants can be computed by Egs. (111) and
(120).

Finally, consider the tandem that is shown at the right in Figure 13. Assume
that (with values other than those used previously) the Sections ¢ and d in this
tandem are not perfectly matched (nd # l/.ﬁé ). What is the out-port impedance
X; which has to be transposed to the in-port so that perfect matching (nd = l/ﬁé)
is achieved?

We transpose X; from the out-port over Section d and we obtain by Egs. (24),
(28), (29), and (30)

(n,-1) X’
0 d d
nd = nd+ na <’ 0 (156)
s
xg = oxgngng o, (157)
-‘-(l—=;17-+-\{l,---\%,-. (158)
-d -d s s
X
_ e _d
Ve Vd_x(’j . (159)

Next we transpose X;’ over Section c to the in-port. We apply Eqgs. (39) through
(42) to obtain:

n_ = n’+ —_, (160)
C Cc l—] \//

c “s
x_ = xZn_.n. (161)
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4.2+ L L (162)
X, X2 X Xg
x
g =, %
LI = (163)
c
Postulating that
ng = 1/n, (164)
yields
%, @ e s w02+ xgi g - 02| (165)
ncnd(l -ncnd)
The constant x; is only positive when
ning < 1. (166)

When the inequality (166) holds, the necessary constant x; of the impedance to be
transposed from the out-port to the in-port can be computed b:;* Eq. (165). The
constants of the tandem after the transposition are obtained by Egs. (156) through
(163). After the transposition the perfectly matched tandem has an equivalent
lattice structure as shown in Figure 12. The constants of the lattice are obtained
by Egs. {111) and (120). The lattice is terminated at its in-port by the impedance X_ .
Note that the inequality postulation (166) demands that the product of the ratio i
constanis before the transposition be smaller than 1 in the second backward trans-
position, also. Hence, it is common to the forward transposition tl. .t this product
is greater than 1 and to the backward transposition that this product is smaller
than 1,
We state the following theorem:

THEOREM 5 (concerning the transformation of a matched tandem

into a perfectly matched one)

A simply (not perfectly) matched tandem can be transformed
into a perfectly matched tandem by a forward or a backward
transposition of port impedance if before the transposition the

magnitude of the product of the ratio constants is greater than 1
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for an anticipated forward transposition, and if the magnitude cf
this product is smaller than 1 for an anticipated backward

transposition.

For practical purposes it is not sufficient to answer only the question about
the necessary magnitude Xg and x; of the impedances to be transposed. For
instance, if ve intend to transpose the impedance Xs in the forward direction, a
sufficient amount of in-port impedance XS must be available. If XS = Xﬁ , then

the impedance is transposed totally. Assume now that

<l =

1 1
T y (167)
Xs g <

r

In Eq. (167) the more general case is shown where the available port impedance XS
is split into two components, The component XS is transposed and acts in per-
forming perfect matching. The other component X remains at the in-port of the
now perfectly matched tandem as well as at the in-port of the equivalent lattice.

In order to achieve perfect matching, therefore, not only must the inequalities (133)
and (155) hold before the transposition, but it is also necessary that

Xg < Xg (168)

in order to make Xr in Eq. (167) positive. Likewise in the event of a backward

transposition where the available out-port impedance is split accoding to

1 1 1
_—F = + = . (169)
)\S )\S Xr

besides holding the inequalities (144) and (166), it is necessary that

Xg < Xg (170}

in order to make X’ positive in Eq. (169).
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7. SOME PARTICULAR STRUCTURES OF A PERFECTLY COUPLED AND
SHUNT-AUGMENTED T

In Section 1 where we defined the pcsa T, we assumed that the normalized fre-
quency functions ¢(s) and &(s) are unrelated and we.only postulated that they be
positive real functions. Let us retain this postulation for &(s) , but let us assume
that

ofs) = s . (171)

Equation (171) presents the particular frequency functionthat causesthe perfectly
coupled branches ofthe T to become perfectly coupled inductive impedances But
we know by Section 1 that an inductive star, for which the sum of the inverse induc-
tances disappears, has a perfectly coupled transformer as anequivalent circuit. There-
fore, a pcsa T in which ¢(s) = s
can be realized by the circuits
shown in Figure 14, In part (a)

of Figure 14 we assume that the
transformer ratio is positive, in
part (b) we assume it as negative,
The shuni-augmentation can be any

positive real impedance function.

The case where ¢(s) = s is
Figure 14, pcsa T With the Frequency the only one where a pcsa T can
Function ¢(s) = s be realized as such, If port im-
pedance is available this impedance
can be transposed either totally or partially, Therefore, we have a certain free-
dom in this event in regard to the design of the transformer.

Assume that in addition to Eq. (171) the other frequency function
#(s) = 1/s . (172)

By Eq. (172) the shunt-augmentation becomes a capacitive impedance. Then, if
Eqs. (171) and (172) hold, the pcsa T becomes the well known and classical Biune
section which for a positive transformer ratio is shown in Figure 15. Since the
publication of Otto Brune's famous paper (1931), the Brune section shown in Fig-
ure 15 has always been considered as a general configuration of a two-port section
in network theory. By Egs. (171) and (172), however, this section appears as a
particularity of a much more general section, the pcsa T. A first step towards the
generalization has stimulated the author to write a Letter-to-the-Editor (Haase,
1964) after having read Miyata's paper (1963). A! that time the author thought it
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oL oN Hi- (. necessary to stick to Eq. (171) and that o
Eq. (172) seemed to be an unnecessary
sM oy oL, restriction, He later found that Eq. (171)
can also be dropped if one disregards
+;'§ ;% that if ¢(s) # s, but if ¢(s) and & (s)
- (a) © ® (b) - are normalized positive real frequency

functions, the general pcsa T cannot be

Figure 15. pcsa T of the Brune Type realized as such; nevertheless it is a
most valuable model of a two-port
section,

A more or less trivial pcsa T of type (A) or type (B) is the one that degenerates
to a shunt two-port by the particular ratio constant n= 1,

Since we know by Section 3 that by a forward transposition of a port impedance
the ratio constant decreases, and by a backward transposition it increases, one
may ask: is it possible to find a port impedance such that by a respective trans-
position a ratio coefficient n = 1 can be achieved This would be something
similar with the achievement of perfcect matching as discussed in the previous
section. In the present question it would mean that a degeneration of a pcsa T of
types (A) or (B) can be obtained. The answer to this question however is NO.
Equations (25) and (32) show immediately that n = 1 also postulates n” = 1;
hence, the ratios n and n” are as singular events always simultaneously equal

tol,

8. THE pesa T WITH DUAL SHUNT COMPONENTS AND ITS REALIZATION

Assume now a pcsa T with the normalized frequency function ¢(s) in the per-
fectly coupled branches and let the other normalized frequency function be

&(s) = 1/¢(s) . (173)

Of such a T we like to say that its shunt components are dual. When the one shunt
component is of the impedance v * ¢(s) and the other of the impedance x/¢(s) ,
their product is v:x that is the square of the duality constant. Figure 16 shows
such a T in part (a) when it is of type (A) or (B) and in part (b) when it is of
type (C)

Let the T be of type (B) with n> 1 so that v(;ll- - l) ¢(s) is negative and
v(n-1) ¢(s) is positive, and let the two-port be terminated by an impedance function

Zt(s). This two-port is shown in Figure 17,
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Usu-¢(s) Wmw-.¢(s) ugls) w-¢(s)

vin=1) =1

vé(s)= =V.¢(s)
X X
=
6 )
(b)
Figure 17. pcsa T With
Figure 16. pcsa T of Type (A) or (B) in (a) and of Dual Shunt Components
Type (C) in (b) with Dual Shunt Components Terminated by Zt(s)
Call the impedances
vin-1) ¢(s) = Z,(s) , (174a)
1 b
vig-1) els) = zy(s) , (174b)
v. ofs) + x/ols) = Zq(s) : (174c)

Then the driving-point impedance measured at the in-port of the circuit in Fig-
ure 17 is

Z(s) = Z,(s)+ ] - . (175)

Z® T e+ 2,6

Evidently, when at a frequency s = N the sum of the impedances

Zb(s”) + Zt(so) = 0 - (176)
Then
Z(so) = Za(so) : (177)

Such a frequency S certainly exists; the sum in Eq, (176) implies the branch

element Zb(s) that is negative as we know, Hence, even Sg will be real and

positive,
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There i3 also a complex frequency sq for which

Zq(sq) = 0, (178)
so that
Z(sq) = Za(sq) : (179)

Let us summarize: whenever either Zq(s) or the sumn Zb(s) + Zt(s) in which
Zb(s) is a negative impedance, becomes zero, we measure Za(s) as the driving-
point impedance of the two-port in Figure 17,

Consider now the lattice that is shown in the left part of Figure 18. It has the
pair of branches T - ¢(s) and T/#(s) and the other pair of branches T/F(s) and
T * F(s). In the right part of Fig-
ure 18 the circuit is redrawn and
shows a bridge representation that
may be a more familiar picture of
the circuit. One will recognize
immediately that this bridge is
balanced by the proper choice of

the branch impedances, Hence, it
does not matter whether or not this

balanced bridge is terminated at the

Figure 18. Balanced Bridge Structure terminal pair 2 and 2°; we may
even short circuit these terminals

and thus obtain the circuit shown
in Figure 19. This circuit is equivalent in regard to its in-port impedance to
the circuit in Figure 18. The correspondent pairs of branches in Figures 18 and

and 19 have the same constant of duality that is T since
T - o(s)] T/ols) = T-Fls)- T/F(s) = T? . (180)

In order to relate the shortened lattice cir-
T/F(s) T-F(s) cuit with the pcsa T with dual shunt compo-

—r—r{ nents, we will introduce somewhat different

notations and, furthermore, refer to

T-¢le) T/$ls) Figure 20. In Figure 20 the branches in the
left part of the circuit have the impedances
Za(s) and Zo(s) . The corresponding

Figure 19, Bridge Equivalence
With That of Figure 18
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& -
zo(.) zo(.) branches in the right part of the circuit have
- the impedances
zX(s) = T?/z(s) , (181a)
.
Z,(e)
and

Figure 20. Realizatior of the z3(s) = T?/Zy(s) . (*81b)

Driving-Point Impedance of
a pcsa T of Type (B) %
Thus, when for example ZO (s) = 0, then

Zo(s) = oo, Assume now that Z(’;‘(s) is
sirnultaneously zero when Z (s) is zero and vice versa, This means that the zeros
of Z(’; (s) and those of Zq(s) are the same,

The driving-point in-port impedance of the circuit in Figure 20 is

Z(s) = Zl(s)+Zz(s) 7 (182)

where

1 i Za(s)+ZO(s)
Zo(s) - Za(s)zl(S) t

e 20
Zl(s) - Za(s)

+ (1838)

and

! I N z (s) + zo(s)| . (183b)

Zy(s) - z¥e  zks)

Hence

2
Za(,s) Zo(s) + T

Z(s) = Za(s) + Zo(s) : (184)

We measure z(s) = Za(s) when either in Eq. (184) Zo(s) =, or for Sy as shown

previously. Hence in Eq. (184)

T = Za(so) (185)

where Sg is a real solution of the equation
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Zb(s) + Zt(s) = 0 . (186)
We now know Z(s) , Za(s) and T in Eq. {184) and we a‘e thus able to determine

2
T = Za(s)Z(S)

Z(8) = —ZTer - 2. VR
Equation (184) can also be written as
Za(s) Zo(s) T2
Z(s) = (184a)

Za(S) * ZO(S) 3 Za(S) + ZO(S)

Since Z(s) and Za(s) are positive real impedances and T is a positive constant,
Zo(s) must also be a positive real function, Thus, Zo(s) and its dual Z’g(s) are
realizable and with them the complete circuit in Figure 20. This circuit is similar
with a Bott-Duffin (1949) circuit but is more general, It has the same driving-
point impedance as the circuit shown in .figure 17, but otherwise it is not equivalent
to this circuit,

We have shown in this section that a positive real impedance function can be
realized as the driving-point impedance function of a transformerless and Bott-
Dufiin - like circuit. \We assumed that the implied pcsa T was of type (B) and had
dual shunt impedance circuits. It can be shown that a similar realization is also
possible when the implied pcsa T is of type (A) or of type (C). It is not the purpose
of this report to discuss all these realization problems; we intend to devote other
reports to these problems in the near future. But, it has been felt worthwhile to

mention here one of the realizations in which a pcsa T is implied.

9. THE DUAL TWO-PORT OF THE PERFECTLY COUPLED AND SHUNT-AUGMENTED T

We call two two-ports dual when the one is described by the Kirchhoff voltage
equations in the same way as the other is described by the Kirchhoff current equa-
tions. As an example considger the circuits (a) and (b) in Figure 21. The circuit (a)

in this figure is a T with the branch impedances Xl ,N,., and X3 . It has the

2
following elements of the chain matrix:

Ay = X1+X2 p (188a)

T
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la) (v

Figure 21. A T Two-<Port (a) and
Its Dual Pi Two-Port (b)

o0
"

XIX

+X1X + X, X

i 2 3 R T =
N

CT i TR

A

DT = )(2+X3 0

A

ET = X2 .

(188b)

(188c)

(188d)

(188e)

The circuit (b) in Figure 21is a Pi with branch admittances Y1 3 Y2 , and Y3 3

It has the following elements of the chain matrix:

A -

Rp; = Y+ ¥, ,

B = 1,

C Y Y Y
Cpi - Y Y+ ¥, Y+ Y,Y,,
~

Pal

Ep; = Y,

Assume now that we make

(189a)

(189b)

(189c)

(189d)

(189e)

(190a)
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X3 = Y3 s (190c)

This is possible when the impedances and admittances are referred to the resis-
tance Ro = 1 by an immittance normalization, It is easy to show then that, numeri-
cally, the impedance matrix of the T section is the same as the admittance matrix
of the Pi section and vice versa, Hence, under the assumption of Eqs. (187a,b,c)
the T and the Pi sections are duals of each other. We also observe that the
duality reflects in the elements of the chain matrices: In their numerals the ex-
change between A'I‘ and DT and the exchange between BT and CT yields

Apy» Dpy, and Bp,; , Cp; .

It is well known that a two-portin the structure of a ladder network that implies
only passive R,L, and C elements always has a dual two-port. Hence, the per-
fectly coupled and shunt-augmented T — including eventual port-impedances — is
also a network of the ladder type, implies R, L, C elements, positive or negative,
and has a dual two-port, Its dual is a perfectly coupled and series-augmented Pi.
This circuit is shown in Figure 22, The branch notations in this figure are ad-
mittances. In order to enhance this fact, we added an asterisk to the notations
u,v, and w. Similarly, as in considering the pcsa T, the equation

1u*+ v+ 1yw* = 0 (191)

holds. This equation justifies referring to the term 'perfectly coupled”. It is evi-
dent that, depending on the magnitude of the positive ratio coefficient n, we can
discriminate between a type (A) and a type (B) Pi; when n is negative v* = - v*
also is negative resulting in a type (C) Pi. In accordance with the earlier observa-
tions, the perfectly coupled part v* - ¢(s) of the series branch in the Pi is aug-
mented in parallel by the admittance x*.#(s) . The elements of the chain matrix

of the perfectly coupled and series-augmented Pi are as follows:

*
RPi : W*+v* 4+ X* - "?¢(s) + x*. @(s) , (192a)
ﬁPi ', (192b)
Gpi = (URV* + URW* + VEW® ) + X* (U* + W)
W
0 « (- 1)°
& +vex® 0" 27 4(s) - #(s) (192¢)

n
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V= vig(s)
T | x =s ) 2 °
TEBPTTD A 3 T .
u”=u"g(e) Waw'$8) y*ay"g(s) W w* ¢ls)
& -0
U= v {n=1) 20 It w'= v (x-D50 W'= TR +1) and wh= v‘('f +)>0
v"ond x*>0 "= x*<0
Type (A)»u" <O v'=-%"and n=-n<0
Type (B) »w"< 0 Type (C)

Figure 22, The Perfectly Coupled and Series-Augmented Pi
of Types (A) or (B) Left, and of Type (C) Right

D U¥+ V*+X* = v*. n. ¢(s) , (192d)

1]

Pi

'13 V¥4 X* = v¥* L)+ xF. d(s) . (192e)

Pi

Equations (189a,...,e) apply to pcsa Pi's of type (A)or (B); when applied to type (C)
v* is more conveniently replaced by -v* and n is r~placed by -n, as we used
to do in the case of a pcsa T of type (C).

We can state the following theorem:

THEOREM 6 (concerning the dual of a pcsa T)

The dual of a pcsa T is a perfectly coupled and series-augmente:!
Pi. Its branches are the dual circuits of the corresponding
branches of a pcsa T, It has the same properties as a pcsa T

when the well known rules of duality are properly applied.

It is easy to show that all the previous discussions on the pcsa T are likewise
true for the perfectly coupled and series-augmented Pi when the rules of duality
are correctly applied. In correspondence to Section 2 of this report, series ad-
mittances can be transposed from one port to the other over a Pi causing a change
of the ratio constant. In correspondence to Section 3, perfectly matched tandems

implying perfectly coupled and series-augmented Pi's are equivalent and
have an equivalent lattice two-port in accordance with Section 5, Perfect matching
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can be obtained in a tandem by transposing series port admittance in accordance

with Section 6. In Section 8 we realized the driving-point impedance of a pcsa T

of type (B). The driving-point impedance of a pcsa T of type (A) can be realized

by realizing the driving-point admittance of a perfectly coupled and series-augmented
Pi in which the second shunt admittance is negative,
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Part Il

Numerical Examples

The purpose of several numerical examples presented in this part is to
supplement the theory on the perfectly coupled and shunt-augmented T that is
presented in Part I. The examples are chosen in such a way that they make
the problem as clear as possible, In practical applications one usually has to
expect numerical values containing a much higher number of digits. Each ex-
ample refers to a particular section in Part I. We utilized an earlier report
(Haase, 1963) in which formulas are presented by which the elements of im-
mittance functions can immediately be computed and in which these functions
for a transformerless realization are cataloged. References to this report are
made as Report AFCRL-63-506,

1. EXAMPLE 1 (relerring Lo Section 1)

1.1 Peoblem

Show that the circuit presented in Figure 23 is a perfectly coupled T .
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e
R, C, =1/6 R, = 10
I c, = /2 R, = 10/3
R, c, 2 2
Cy =--1/1.5 R, = -2.5

Figure 23. Example of a Perfectly
Coupled T of Type (B)

1.2 Solution

The impedance functions of the branches of the T circuit are of the type

-1 1
Q2 Z
k(s + a

2

0

according to Table 4 in Report AFCRL-63-506, According to the same table we

find the impedances

_ 6 .| 6
1 s+6/10  s+0.6 °*

hence u=6

2 3

22 - 6/10 -~ o hence v = 2
. 1.5 - 1.5 L
Z3 = s+ 1.5/2.5  5%0.6 , hence w=-1.5

It is essential that Zl , Z,, and Z3 have the same normalized polynomial s+ 0.6

in the denominator, so that
#(s) = 1/(s + 0, 6)

It is further necessary that Eq. (3) be true. This is the case since
1ju+ 1fv+ 1w = 1/6+1/2-1/15 = 0,

This check can also be performed as

uww+uw+vw = 12 -9-3 = 0,
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We find by Eq. (8a) or by Eq. (8b) that the ratio constant n =4 . The circuit
presented in Figure 23 is a perfectly coupled T of type (B) since w is negative
and n is positive and greater than 1,

2. EXAMPLE 2 (referring to Section 1)

2.1 Problem

Show the circuit of a perfectly coupled T of type (C) for which the normalized

frequency function is

o) = 530,85

and in which the ratio constant is
n=-3

and the mutual constant is
v =-35,

2.2 Solution

We introduce according to Eqgs. (10a,b)
v e -ve=$§ and n=-n=3

Then by Egs. (8a,b)

u = vin+1) = 20 w=V(Tl+l) =%
n
Consequently
o S
¢ ® $+0.8 °
s
¥ 5 s+0.8 '
W o= o4 —
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By Table 1C of Report AFCRL-63-506 we recognize é(s) as being of type P;l
By Table 4 of this report we find the circuit and the circuit elements as follows:

L, Ly
m m : L, = 22,5 R, = 18
L, = -6.25 R, = -5
Re L2 L, = 5 R, = 4
o o

Figurc¢ 24, Exaraple of a Perfectly
Coupled T of Type (C)

We check the constants of the perfectly coupled T and we find

1fu+ 1/v+1/w = 0.05-0.2+0,15 = 0 o. k.

3. EXAMPLE 3 (referring to Section 1)

3.1 Problem

Show that the circuit presented in Figure 25 is a pcsa T. Of what type is it,
what are its characterizing constants, and what are the elements of its chain matrix?

L R Ls L, = 14.4 R, = 11,52
Ls L, = 4.8 R, = 3.84
Ly = -3.75 Ry = -1.125
i"" Ly = none R, = 1/2. 4
L, = 24
Rs TCa by = 4
. = Lo = =2.25 C, = 4

Figure 25, Example of a pcsa T




3.2 Solution

We find by Table 5C of Report AFCRL-63-506 that the circuits U aind W of
the T are of the same type Q3 . Applying this table we obtain the impedance

functions
S+3112
N R
s+ bll
where
S - TRy R s
1 L1+L.5 38. 4
R
| 11.52
5y “ 14.4 0.8 ,
LR RS el 1
11 | e & 38.4 i
1 5
We find the impedance function
S+a122
V = k2s 3
gy
where
Y~ M ¥ Sk
2 L2+ LG 12, 8
R
£ .28 - 2
B $* Byg s
R
2 _ 2 4 . 2
big "t g Wk & By
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We find the impedance function

s+al32
W = ks >
s+b13
where
kg = Ly = -2.25 ,
L T
R L ke M -6 . 675 e
313 = Ry 2 il 1125 53375 = B.4a375 * 0-8 = 2y,
R
2 Ry 1125 .8
bz = SR % i B 0.3 = by

By Table 4 of Report AFCRL-63-506 we find the impedance function of the shunt-

augmentation as

X = 5"
kx(s+ax)

where

kx = C‘4 = 4 = 1/X
and

2 1 1

% " ET. " TR

474 °

. ..8+0.8
e ¢ BigEtw ¢

- 1
*s) = STI0.6 ¢
we=bky =9, v=k -3, ws=ky= -225
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We check

uv+uw + vw = 27 - 20,25 -6.75 = 0 o, k.

By Eq. (8a) or Eq. (8b) we find that n = 4, Hence the pcsa T presented in Fig-
ure 25 is of type (B). Its matrix elements are obtained by Eqs. (16a,...,¢) as

follows:
A= 12s :Igg - s+01.}205.6 i
B - 0.75 %s ;‘18:3 s+;/0.6 :
=1,
D - 0.75s X%, sf'127?).6 ‘
ﬁ . 1Y s+0,8 4 0. 25

s+0.3 s+ 1/0.6

In order to get vid of the numerator polynomials we multiply each element by
(s+0.3) (s+1/0.6) = s2+0.595/0.3+0.5

and we obtain:

3 2

A = 1283+ 20,65+ 16.25s + 0.075 ,

A
B

1.6875s(s + 0.8) ,

A 2 1.18
C = 8"+ s 0.6

+0.5 ,

0.75s5 + 1.85s2 + 1.25s + 0,075 ,

o>
"

3 2

E - 3s3+7.45%°+4.25s+0.075

We will now perform a check whether or not the matrix elements thus obtained are
A ~
correct., Since the pcsa T is a passive two-port AD - BC = 1 or AD - fiC - E2

must hold,
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For the purpose of this che. . we have to multiply the polynomia.I A with the
polynomial D , the polynomial B with the polynomial ¢ , and we have to square
the polynomial £ . This is somewhat cumbersome work to do, especially when
the polynomials are of higher degrees, but we cannot avoid doing it. But since the
previous check equation must hold for any frequency s , we will first perform what
we refer to as a parity check, We substitute s = 1 , then this evaluation is just
the algebraic sum of all the coefficients in the polynomial. In our example

[y N N

e = 57.925, B = 3,0375, C,., = 2.08/0.6

Al A
P__. = 80838, K., = 4735

We obtain

227, 355625 - 10.53
216, 825625

57.925 X 3.925 - 3.0375 X 2,08/0. 6

14.725% = 216.825625.

Hence, our result is correct as far as the parity check is concerned. The parity
check of course is not as reliable as the substitution of the polynomials themselves,
But as to the author's experience in many computations, it is very rare that a com-
putational error is not turned out by the parity check. Throughout these examples

we will be satisfied when the parity check finds no errors,

4. EXAMPLE 4 (referring to Section 2)

4.1 Problem

Figure 26 shows a pcsa T in which the perfectly coupled branches are induc-
tances and the shunt-augmentation is a resistance. At the in-port we also find a
resistance. The figure also shows the technical equivalence using a perfectly
coupled transformer. Transpose the in-port resistance to the out-port, and for a

check retranspose again,
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L, = -0.2 R, = 1
L, = 0.5 R, = 0.3
Ly = 1/3

Figure 26. pcsa T With In-Port Impedance

4.2 Solution

Since the elements in the perfectly coupled branches are all inductances, the

implied normalized frequency function is

o(s) = s.

The shunt-augmentation is a mere resistance, hence the frequency function implied

in the augmentation is

&(s) = 1.

We will now express the branches of the pcsa T in the familiar notations;

U= u-¢s) = ~-0,2s—=u = -0,2
V= v.¢(s) = 0.b5s —= v = 0.5
W = w- ofs) = % — w = 1/3 ,
We check
Ifu+ tfv+ 1w = -5+2+3 = 0 , o.k
By Eq. (8a) we find
u = vin-1) or -0.2 = 0.5(n-1) .

Hence

n-1:= -0,4 or n=0,6 ,
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The port impedance is a resistance. Hence, it implies the same frequency function
#(s) = 1 as the shunt-augmentation and can thus be transposed to the out-port. In

our familiar notation

)\S = Rs = 1058 4 hence Xy = 0.3
Before we perform the transposition, we will compute the constants of the perfectly

coupled transformer in the circuit at the right in Figure 26. By Eqs. (5a, b)

L

-0.2+0.5 = 0.3 ,
p

L + L

S 2 3

]
t-

0.5+ 1/3 = 5/6,

By Eqgs. (6a,b), the mutual inductance of the transformer

M = L L

pls 0:.25 = 05,5 ;

tae transformer ratio

n = ‘,LP/LS - Jo.sc = 0.6 .

It is necessary that M = L2 and that the transformer ratio obtained equals the

previously computed ratio constant n.
We now transpose the in-port resistance to the out-port and w- obtain the

circuits shown in Figure 27.

Figure 27. pcsa T With Out-Port Impedance



By Eq. (32)

N

. [} 0.3 0.18
n = n _2' = 0.6 r: = *
xs + x(n_ l) 0.J+ O. 16 0. 46
By Eq. (33)
i s ailly & 9.3 = 1,277781

s “"Tin® T 0.6 X0. 391304

oL L L. 143 333333 - 0. 782607
X X X X
s s
= 3.550726 = 1/0. 281633 ,
hence
x? = 0.281633
By Eq. (35)
W e S8 SOK
where by Eq. (24)
K=Y-03. 95,
X 1

Hence

v o= 0_28)@.3. = 0.140817 .

-

With these results the elements in the circuit at the left in Figure 27 are:

[}

lll

L = v = 0.140817 ,

0.391304

vi{n“ -1) = 0.140817 X (-0, 608696) = - 0.085715 ,

69
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Ly = v'(—;—,-- 1) = 0. 140817 X 1. 555556 = 0. 219049 .
Further,
R, = x* = 0.281633 and R, = x; = 1277781 .

We will also check

1/u’ + 1/v’ + 1/w’

- 11. 666569 + 7, 101415 + 4, 565189

0. 000035 .

The fact that we do not obtain exactly zero is due to some inaccuracy that is brought
in by rounding the last digits in the computation. The deviation, however, can be
tolerated,

We are now able to compute the inductances and the transformer ratio in the
circuit shown at the right in Figure 27. By Eqgs. (5a,b)

L") = L'l+ Lé = -0,.085715+ 0, 140817 = 0.055102 ,

L; = Lé+ Lé = 0. 140817 + 0. 219049 = 0. 359866 .
Hence

M® = LpLs = 40.019829 = 0.140815 = Lé "

0.391303

n’ JLP/LS Jo. 153118
as it has been obtained previously.
Both circuits shown at the left in Figures 26 and 27 imply pcsa T s of type (A)
since u and u” are negative and n and n” are positive and smaller than 1.
Let us now perform the retransposition of R in Figure 27 to the in-port so
that the circuits in Figure 26 are obtained again. By Eq. (25)

2 2
& wmremt 0.281633 0, 608696
T T 0.391304 + T=57o781 0. 391304

0.391304 + 0. 220408 X 0. 946862 = 0.6 , o. k.
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By Eq. (28)

Xg * x;' nn® = 1,277781X 0.6 X0.391304 = 0.3 , o.k.

By Eq. (29)

3. 550726 + 0. 782607 - 3. 333333

1 N 1
T = TRr .t TR - e
X X Xg Xg

== L B o. k.

By Eq. (30)

Thus we obtain the same results as originally given.

By the forward transposition we changed the original ratio coefficient n= 0.6
to the value n” = 0.391303. For this purpose we transposed the total in-port resis-
tance to the out-port. Evidently, when we transpose only part of the in-port resis-
tance, ve could obtain any 0.6 > n” > 0.391303. From a practical point of view
it would be, for instance, advantageous for the production of the transformer when
we could obtain n” = 0.5. Let us ask therefore: what is the necessary in-port
resistance R;’ to be transposed over the pcsa in Figure 26 in order to obtain a
transformer with the ratio 1:2?

By Eq. (32)

X
S

B 2
Xg + x(n-1)

,

n L (1|

we obtain the answer immediately. We substitute

n° = 09, B 0:6, x = 1, and .\'S=Rs

I{II
0.5 S 2 ,
= = with the solution
0.6 RS + 0. 16

Rs =0.8

This resistance R;’ has to be split off from RS = 0.3 in parallel. By this split

the resistance Rl obtained from
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= = i - =l = 3,333333-1.25 = 2,083433 = 1/0, 48
i W

remains at the in-port, The transposed R;’ appears as Ré at the out-port and
the constants of the pcsa T go over to the primed values, By Eq. (33)

I‘I’
= s 0.8 8

s nn’ 0.5X0.6 g -

By Eq. (34)

l = —l -—1— —_l_— = — = = .L
_R—r - l{ ; + I{I‘l = l{/ 1 + 1. 25 0- 375 1- 875 l. 6 ’
X X S Sl
hence
7 oo LB
R, = =3 :
By Eq. (35)
L2 = R K T

The circuits whick we obtain by transposing the component R;’ 0. 8 in the

forward direction are shown in Figure 28. By Eqgs. (8a, b) we obtain the inductances

. ’, 2 i $ '0. 8 & '0. 4
[‘l L2 (n” -1) “ T

Ly = L'-(]%--l) = L= B8

We check

, . 2 -__6 _—6 =
YL+ 1Lg+ L = -5 0. ok

The perfectly coupled transformer shown at the right in Figure 28 has the induc-

tances

e % IMeE % 0.4
Lp'L1+L2 -y
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Ls= L2+L LR SO T T

3 2

The mutual inductance of the transformer is

B s SO s 0.4X1.6 _ 0.8
L deLs' 9 =

and the transformer ratio is

‘2 "' 5 g 0.4x3 _ ;
n s Lp/LS = T ox3 - 05 asexpected

|
3

L] = -0.4/3 R = 8/3
Ly = 0.8/3 R, = 1.6/3
L; = 0.8/3 R, = 0.48

Figure 28. pcsa T With In-Port and
Out-Port Impedance

At this point we would like to perform a parity check on the left side circuits shown
in Figures 27 and 28. We substitute s = 1 and we first compute the open-circuit
driving-point impedance Zo(l) of the circuit at the left in Figure 26. It is

Zo(l) L 1 .

In this formula the advantage of substituting s = 1, which is not a physically real-
izable frequency, becomes evident: the check implies the magnitude of the im-
pedances, but it avoids complex numbers which would occur when a physical fre-
quency s = j would be used for the substitution.

With the values enumerated for Figure 26 we obtain

1 _ 1
Zo(D) = 37333333+ 1/(-0.2+0.5+ 1)~ 3.333333 + 0. 760231

C s 1032 = - 0.243750 .
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The driving-point impedance does not, however, include the element L3 of the
circuit shown at the left in Figure 26. Therefore we also compute the driving-point
impedance Zs(l) that is measured when the secondary terminals of the circuit

are shorted.

z () = — 1
b . Tl 1
S B o
1 1 o 1
L, +R Ly
- 1
3.333333 + 1 -
SALES 1/(0.5+ 1) + 3
= 1
3.333333 + 1 -
=0.2 + 37556666
Y ' = : = 0.058536
3. 333333 + ——t— 17. 083384 . L
) - 0.072727

The driving-point impedance Zo(l) of the circuit shown at the left in Figure 27 is

Ttk ¢ 1f+ =gty
L+ "L2+R,
= -0.085715+ l
. 1/(0, 140817 + 0. 281633) + 1/(0. 219049 + 1, 277781)
= - 0.085715 + ]

2,367144 + 0.668079

- 0,085715 + 0,329465 = 0,243750 , o.k.

The driving-point impedance Zs(l) of the shorted circuit shown at the left in Fig-

ure 27 is
Z.(1) = L'+ l
s 1 1 + 1
L+K "1,
= -0.085715+ ]

1/(0. 140817 + 0. 281633) + 1/0. 219049

(equation continued)



75

1
2,367144 + 4,565189

Zs(l) - 0.85715 +

- 0.85715 + 0. 144252 = 0,058537 , o.k.

By the same formulas we check the circuit shown at the left in Figure 28. The
open circuit driving-point impedance Z(’)(l) that is in parallel to Rl is

. 0,4 1
0.8+ 1.6 0.8+ 8

. 11 1
: 3( oaw l/2.4+1/8.8)
x Ll 2.4%X8.8
i 3( S = )
- % (- 0.4+ 1,885714) = 0.495238
Hence
Z:(1)-R
%0 1 _ 0,237715 _
ZoM) = ZZ+R, - 0.915238 - 0-243781 . ok

The short circuit driving-point impedance Zé(l) that is in parallel with Rl is

z;m = -y 3 l+ 3
0.8+ 1.6 ' 0.8
o (' ol o 1]2,4: 1/0.8 )
- %(_0.“ 2.43).(20.8) . 8.2
Hence
z (1) = i:::;+21 - 9996 . 0.058537 , o.k.
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3. EXAMPLE 5 (refeering 10 Section 3)

3.1 Problem

Assume that the tandem shown in Figure 7 is given by the constants

e =¥, Vb=2,
na=8, nb=25,
X, * 5 . x, = 10/3

Let the normalized frequency functions be

9
o(s) = ::—é; and (s)

e
s+ 0.6

Show that the tandem is a matched one. Give the elements of its chain matrix

and its circuitry,

5.2 Solution

According to the definition of ¢ matched tandem, Eq. (47) must hold. In fact

|-
(1]
(7]
S~
w
"

0.6 and ) X 6/10 = 0.6

are the same. Thus the tandem is matched and the constant
K = 0.6

According to Eq. (48) the constant
k, = 3/2 = 15/10 = 1.5

By substitution in Eqs. (54a, ..., e) we obtain the following elements of the chain

matrix;

N _ 2 1.2 1 49X1.5 .
A(AB)C = 20 ¢ (S)+—0.36¢ (S)+—0.6 |10.5+——8 |¢>(s) & (s)

r) Ly
= 20 ¢°(s) + 2. 777778 - #2(s) + 32.8125 - 6(s) - & (s) ,



17

2 2 2 2 :

A 3.5 7 3 e Y g .
Bamc * ° I(“ 35%x15 © sx2.5) )+ 56 (TBx25% 8 MS)! "e - i)

s 3 |28.583333-¢(s)+ 15.652778-¢(s)| o(s) - #(s) |
& 1 1.5 2.5
Binse = 3 |(2.5+—8 )<:>(s)+—0_6 d>(s)]

- 3 |2.6875 . 6(s) + 4. 166667 - ¢(s)| :
ﬁ .S 2(s)+ ] d>2(s)+—-l-— 01°’+04+-—3'—52-— (s) * &(s)
(AB)IC = 20 © 0.36 0.6 |98 0AYTIERT. 5| ** -

= 0.05 - ¢2(s) + 2. 777778 - #°(s) + 6. 319444 - 5(s) - &(s) |,
A - g 3
Eame = 2-777778 - 4(s) - 6°(s)

Next, we perform a parity check of these resuits, I'or this purpose we compute

¢(1) = 2.2/1.4 = 1.571429 o2(1) = 2.469389

(1) 1/1.6 = 0,625 |, ‘bz(l) = 0,390625

For s = 1 we thus obtain:

/\
£ 7 2.2 = 82 2
A(AB)C(I) 49, 387780 + 1.085069 + 32, 226571 82,.699420 ,
~
= 4 2 =
B(AB)C(I) 5 |44.916678+9.782986| 0. 982143 268. 614460
¢ (n + 4 |4 223215 + 2 604167| - 2.275794
(AB)C 3 bt Fe S -
~
= D) [t} 2 =
D(AB)C“) N. 123469 + 1,085069 + 6. 206599 7. 41808%
A
5 = 0 < 2 - = ] 2
L(AB)C(I) 1. 085069 - 2. 469389 1. 324320
Then
AN AN AN
AD -BC = 613.277529 - 611.311176 = 1.916353 ,



78

Thus the parity check proves the results to be acceptable.

The constants of the perfectly coupled branches in the tandem are:

Gy = Py a -8 =87 = 8L - 1/0,04/619
4 1 3 ' - =
w, - V“(Ta -1) = -3-.0.875 = -2,625 = - 1/0. 380952

Check: l/ua + l/va o l/wa = 0,047619 + 0. 333333 - 0.380952 = O

- Vb(ﬁb+1) = 2-3.5 =17 = 1f0.142857 ,

wp = Vb(_’ +1) = 2:1.4 = 2.8 = 1/0.357143 ,
n
b

Check: 1/uy + 1/$b+ 1/w, = 0.142857 - 0.5+ 0.357143 = 0

According to Table 1B of Report AFCRL-63-506 we recognize the function ¢(s)
as being of type Pa

ol %}

s+ a
ofs) = k T -
s+bl s+ 0.4

s+ 1.2

2
S0 that a12= 1.2 and bi‘ = 0,4, and k=1

We compute the elements of an impedance function that implies ¢(s). Whenever
the constant is different from k = 1, we only have to multiply the inductances and
resistances of the circuit by this cnnstant, and we have to divide the capacitances
by it. According to Table 9 the circuit shown in Figure 29 has the impedance
function ¢(s)

Ror  Roz Rgg = 1 .
aj - by
c02 I{OZ = 1 D) 3 0.8/0.4 = 2 0
b 2
o 1
1 1
G E A = 5= = 1/0.8 1. 25
Figure 29. Realization of 02 . /
the Impedance FFunction ¢(s) 1 |
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The frequency function &(s) can be recognized as being of type Qz.l by Table 1B
of Report AFCRL-63-506.

’(S) » l T 4 l »
k(s + ao) s+ 0.6
so that k=1 and a02 = 0.6 .

According to Table 8 of the report we find that the circuit shown in Figure 30 has
the impedance function &(s) .

Ro C= =

Co R

2
o = Y3y = 1/0.6 .

Figure 30. Realization of
the Impedance Function &(s)

The circuit of the tandem is shown in Figure 31.

pcsa T of type(A) pcsa T ot type (C)

Figure 31. Circuit ot the Problem in Example 5
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The circuit elements in Figure 31 are as follows;

R, = u, Ry, = 0.095238 C, = Cgplu, = 26.250026
R, = v, Ry, = 6 C, = Cyplv, = 0.416667
R, = x,-R, = 5/0.6 Sy o= CO/.\'a = 0.2

Ry = w_ Ry, = -5.25 C, = Cyplw, = -0.476190
Ry, = u,.Ry, = 14 Cy = Cgylu, = 0.178571
Rg =-Vb-n02 = -4 Cg =-Cpa/ Vv, = -0.625
R, = §b-RO = 10/1.8 C, = Cy/X, = 0.3

Ry = wy- Ry, = 5.6 Oy = C02/wb = 0.446429
Rg uy " Rgy = 0.047619

io * %5 Wpy ¢ 8

Ry, = w, Ry, = -2.625

Rig = U Roy = 7

Ryg =-Vp Rgy = -2

R14 = wb'ROI = 2.8

We now perform a parity check on our result. The impedance of the circuit

in Figure 29, when we substitute s = 1 is

= 1 o 1 2
Zoo(l) = ROl + —TTC— = 1+ m = 1.571429,
1{02 02

For the same frequency parameter s =1 the impedance of the circuit in Figure 30

is

Zo(l) = 1 o = x mie 0.625 .

A block diagram of the circuit in Figure 31 is shown in Figure 32. All impedances

X , X, are evaluated for s=1 ,

1" 0
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x4 = M -Zoo(l) = 88

1 a
X, X3 Xa Xe ! =
_._I_, o Xy = v - Zgo(D) + x_ - Z,(1) = 7.839287
| = 1/0. 127563
X2 I X X, = g : = ¢ 138
: Xy = wa~400(1) = - 4,12
r | X, = u -2 (1) = 11
e Tl G o
Figure 32. Block Diagram of the Xe ==V, +Z (1)+X,-Z_ (1) = -1 059525
Circuit in Figure 31 E b . b "8
‘ = - 1/0.943819
XG = Wb-ZOO(l) = 4,4.

The circuit in Figure 32 is a tandem of two T structures. The first of them has
the chain matrix

1+X1/X., X1+X3+I\'l.\' /X 5. 209579 11.510487

3072

/X, 1+ X,4/X, 0. 127563 0.473803

The second T structure has the chain matrix

1+ X,/X Xyt Xg+ X X /X, 9. 382009 30. 280840

5

1/X 1+ X /X 0.943819 3. 152804

6

5

Their-efore the circuit shown in Figure 32 in its block diagram has the chain matrix

5.209579 11. 510487 9. 382009 30. 280840

- 0.127563 0. 473803 0.943819 3. 152804
59,740133 194. 040738
i: 1.643981 5.356523

The evaluation of the chain matrix which we found previously was
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N N
A B 82. 699420 268. 614460
1 1
Sk & 1. 384320
C b 2. 275794 7.415137
59. 740103 194, 040728
1. 643980 5. 356519

Both matrices are in good agreement thus validating the parity check,

We want to emphasize that the circuit in Figure 31 shows more circuit elements
than necessary. Evidently since R4C4 = R5C5 , these two parallel circuits can be
combined to make one, For the same token the resistances Rll and R12 can
be combined to make one resistance. Then, however, the two-port would hardly
be recognized as a tandem of two pcsa T s. For this reason, in this particular
circuit, as well as in all the circuits of the examples in this report, we do not care
about reductions and transformations which intend to make the circuits simpler.

6. EXAMPLE 6 (relerring to Section 3)

6.1 Problem

Assume that the tandem shown in Figure 7 is given by the constants:

va=5, vb=l,
na=25, nb=04,
xa=4, xb=08

Let the normalized frequency functions be

_ g% 1.9 _ 8+0.9
¢(s) = (s+0.2) ST0 6 and ®(s) 1 3

Show that the tandem is a perfectly matched one. Show its circuit and its chain
matrix, What is the equivalent tandem in accordance to Figure 8?

6.2 Solution

Since o, * l/ﬁb the tandem is a perfectly matched one. According to Eq. (55)

ng * W l/nb *+ 2.5
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By n, > 1 the first section is »f type (A). The constants K and ka characterizing
the tandem are, according to Eqs. (47) and (48):

= = 2
K = va/xa = vb/xb = 5/4 = 1.25 , K% = 1.5625 = 1/0.64

b, = v,/ % = .\'a/xb = 5

The elements of the chain matrix of the tandem in Figure 7 are obtained by

Egs. (56a,...,e) as follows:
A ¢2(s) +0 64-d>2(s) + ot 18.5 ° ¢(s) + ®(s)
AC : 3.125 .
= 6%(s) + 0.64- #°(s) + 5.92+ o(s) - &(s) ,
e = i o )
Bye - mzs.s o(s) + 3195 tb(s)] o(s) «+ & (s)

- 18.8 | o(s) + 0. 32 - <b(s)l o(s) - &(s)

~ 6| 1 1
Cac = 1 |ﬁ *ls) + 7735 "’(s)l

- 1.2 |0.4 ¢(s)+0.8d>(s)| .
ﬁ 3 ¢>2(s) + 0. 64 <b2(s) +-¢- 9.7 &(s) - &(s)

AC : 3,125 -
2 2

= ¢7°(s)+ 0.64 °(s) + 3. 104 ¢(s) - &(s) ,

EAC = 0.64 ¢2(s) - ¢2(s)

We evaluate

o) = 1282 - 1666667 , #(1) = - = 1.357143

The evaluations of the matrix elements for s = 1 thus are:

RAC“) 2,777778 + 1. 178776 + 13, 390478 = 17. 347032 ,
A
BAC(I) = 18.8 X 2,100953 X 2, 261905 = 89, 340533 ,

1.2 X 1.752381 = 2, 102857 ,

CAC(I)
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~

I)Ac(l) 2,777778 + 1.178776 + 7,020953 = 10,977507

A
l"AC(]) = 1.598003 . 9

We check: 17.347032 X 10, 977507 - 89. 340533 X 2, 102857 = 2. 556800

1.599003% - 2.556811 , o, k.

The frequency function ¢(s) is recognized as a function of the type Q4 by Table 1C
of Report AFCRL-63-506,

2

(s+ a;)
Q4=k(s+302)——!,-=(s+0.2)-§—%
(s+bi‘) i

2 2
By comparison; k = 1, ad‘ = 0.2, al" =555 bi‘ = 0.8

A realization of the impedance ¢(s) is shown in Figure 33 as it is obtained by

Table 11 of the report,

Auxiliary Constants:
_ @R & 4 22
a’ bl(ao+al) (hl+ao al)
p = 0.8X1.7-0,94 = 0.42 ,

)
p 2L . g 71esms

0. 42

Figure 33. Realization of the .

Impedance Function ¢(s)

1401’kfl,

4 )
ki—“—:& 1. 928572

l)l

4
R k2Lt b . g gezssy

bl

02,
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The frequency function &(s) is recognized as a function of type P3 by Table 1B
of Report AFCRL-63-506,

: 2 2
By comparison: k=1, a; = 0.

A realization of the impedance function ¢(s) is shown in Figure 34 as it is obtained

by Table 9 of the report.

R Rog = kK = 1,
Ros a12 : bf 0.5
c o T s % Rl
b
€ = l——l_ z 2
Figure 34. Realization of the 04 kK al.p2
Impedance Function ¢ (s) 1 1

The realization of the complete tandem is shown in Figure 35. The pcsa T at the

left end is of type (A) and has the constants LV 5, Xp 4%, and n, = 2.5, Hence,

a
My, = va(n =) e 7B,
w,_ = v (-L = l) =3
a aln
a
The pcsa T at the right end is of type (C) and has the constants .‘_'b A 11 ;l) = 0.8,
n, = 0.4 . Hence,

U, - \'b(nb+ 1) 1.4,
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Lll

L

12

14
L

15 .

1’16

Figure 35,

pcso T of type (A)

7.5
14, 464290
5

9. 642860

- 5.785716
1.4
2.7

= 1

1.928572

(3%
(2

6.75

pcsa T of type(C)

Tandem Computed in Example 6

.75
. 821435
]

3.214290

2.7

2. 142860
. 26
.9

0.9
0. 642658

.8
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We will now determine the equivalent tandem. For this purpose we first need
the constants kb and Vg - They are obtained by Eqs. (67) and (68). From
Eq. (67) we obtain

2
n, + 1 2
0 1 3.5 1 12. 25
K, o« |2 —] L . daly L. 1228 . ; osseso |
b \ no l] ka 1.52 5 11. 25
and from Eq. (68)
(1+k)ve 2 088889 x 5
- = 2 = 1,740740

Vd T+ Kk G
a

The tandem that is shown in its block diagram in Figure 8 is characterized by the

following constants;

¥y * 1. 740740 ,
ng * l/no = 0.4,
uy - Vd(nd - 1) = - 1.044444 ,
: 1 s
Wi - Vd(n—d - l) = 2,611111 ,
Xgq * Vd/K -1, 393393 as follows from Eq. (70)

By Eq. (58)

¥, vd/kb 1.598639 ,

and by Eq. (57)

= KL 278
X oK = 1.278911

The ratio coefficient
= = = = 92
n, 1/n, Ny 2.5

Hence,

B, = Vc('ﬁc+ 1) = 5.595237 ,
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w._ = UC(—_L + 1) = 2.238095
n
C

The matrix elements of the second tandem can now be computed by Egs. (66a,

.,e). We obtain;

A = ¢2(s)+ 0.64 #2(s) + —L— 18.5 o(s) - #(s)
CB : 3125 18 |
= 62(s) + 0.64 #2(s) + 5. 92 o(s) - #(s) |
& L DMGTE0 -, 1 ,
Beg = =335 13.9 I¢(S) * TS o(s)| o(s) - &(s)

= 18.8 |¢>(s)+ 0. 32 q»(s)l o(s) © ®(s) ,

~ _2.088889
Ccn ° T 740740 |°-4 ¢(s) + 0.8 ¢(s)|

= 1.2 |0,4¢(s)+0.8 d»(s)l ;

~ 2 2 1

DCB = d (s)+ 0.634 &°(s) +m 9.7 &(s) + &(s)
= o2(s) + 0.64 #°(s) + 3. 104 o(s) - (s) ,

N .

Ecg = 0.64 #2(s) - 62 (s)

As we expected, ihc clements /‘SCB 3 -G ECB are the same as the previously ob-
tained elements AAC 5 6 ﬁAC .

The circuit of the tandem that is equivalent to the tandem shown in Figure 35
is presented in Figure 36. The magnitudes of the circuit elements are obtained by
multiplying the respective elements of the circuits shown in Figures 33 and 34 by
the constants of the first and the second pcsa T,



Ri7 R2s R2s R3

Liz Las) Lo La
14 L.g R|g | ‘ L3z Ra2

X L9 | ot Lo7

|
Ris :
Ry :
C22 2R22 | Tc,; Rio
for ;
pcsa T of fype (C) pcsa T of type (B)
Figure 36. Tandem Equivalent to That in Figure 35
1‘17 = ucL'Ol = 5.595237 Rl7 = uCROI = 5.,035713
Lig = Ucligy = 10.790817 Rig = u.Ryy, = 3.596943
ng = VCLOI = -1.598639 [{19 = VCROI = -1.438775
byg = Yilag = NG Ryg * VoRgy = -1.027698
Ryy = x‘»cnw = 1.27891)
Cyq = 004/§c= 1.563830 Ry, = §c Ryy = 1.598639
Loy = w.lg, = 2.238095 Rys = W.Ry, = 2.014286
ligy = Woligy = 4.316327 Ryy = W.Rpy = 1.438777
Log = uylg, -1.044444 Ryg = uyRg, = -0.94
Log = Uyl = -2.014285 Ry = wyRgy = -0.671429
Loy = vqlgy = 1.740740 Ry; = vqRgy = 1.566667
1428 T Ay 1‘02 = 3.357142 R28 = vdROZ = 1. 119048
Ryg = XgqRgy = 1.393393
C30 = C04/xd= 1. 435345 Ry = “‘dRo4 = 1,74174)
Lgy = wglgy = 2.611111 Ry, = wyRgy = 2.35
Lyg = wylgy = 5.035716 Ryy = wqRp, = 1.678574
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7. EYAMPLE 7 (referring to Section 3)

7.1 Problem

What is the lattice equivalence of the perfectly matched t:ndems obtained in

the previous Example 6?

7.2 Solution

The tandem shown in Figure 35 is characterized by the constants

Va 5 . vb = 1
n, = 2.5 n, 0.4 = 1/2.85 ,
xa = 4 , xb 0.8 ,

and the normalized frequency functions

. s+ 1.5 _ 8+0,
¢(s) = (s+0.2) st08 b(s) = S0 4
We found 1n solving Example 6 that

K = v,/xa = vb/xb = 5/4 = 1,25 ,

<

ta
'

va/vb = xa/xb =5 ,

ng R, = l/nb = 2,5

First we compute the auxiliary values S and P . By Eq. (100)

Va 2 2
S :Ta. ’(no+ 1) +ka(no-l) l

:~%l3j2+SXL54 - 23.5
By Eq. (104)
1+ Kk .
P s 2 Kk -$195: L5
v ]

a
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By Eq. (111)

s |, o: . 2% .85, Ji- 2L
1,4~ Zn SP 5 35, 25
1+ y1-0.886525| - 4.7 [1 + 0. 113475 ]

bed
"

= 4.7
s 4,7 l:t0.336861| ’
Hence,
x, = 6.2832a7 , x, = 3.116753

We now compute

ng+l

= §,6/1.56 = 2,838888< § = k
no-l

3

The fact that ka = 2, 333333 decides about the ambiguity in choosing X9 3 according
to Eqs. (112a,b). Thus

e TR [1* . sp]' 2. 25 [“ : 35.25]
. 9.4 [u V1 -o. 141844] = 9.4 [u\[o.sssxss ]
0.4 |

110, 926367] :

Hence,

Xy = 18.107850 , x4 = 0.692150

As a check, let us compute the elements of the chain matrix of the lattice. Since it

is supposed to be equivalent with the tandems obtained in Example 6, we must obtain

the same matrix elements as there. By Egs. (76,...,¢e) we obtain;
R 12, 533348 .2 113, 776094 + 2, 157261 |
Ay = ¢7(s)+ 15 5g3300 ¢ () + 19. 583329 ols) - &(s)

¢2(s) + 0. 64 ¢2(s) + 5.92 ¢(s) - (s) = ?\Ac , o.k.




0>

fe
E_
X

H

19. 583329

9.4

18.8 |¢(s) + 0. 64 ST <b(s)| o(s) « &(s)

18.8 |¢(s) + 0. 32 d>(s)| o(s) - d(s) = ﬁAC , 0. k.

1 l_q_ 4 o(s) + 18, 8 d>(s)|

0.48 o(s) + 0. 96 #(s) = C o. k.

AC

4. 343949 + 56. 437696

19. 583329 o(s) - @(s)

L)
o2(s) + 0. 64 #2(s) +

<,‘)2(s) + 0. 64 <b2(s) + 3,104 o(s) - &(s) = BAC ., OukL

2 2 A
0.64 d%(s) - ¢°(s) = E o. k,

AC

Our results have thus been proved to be correct,

In accordance with Figure 9 the lattice has the following branch impedances:

Xy

In Example 6 we computed the elements of the circuit shown in Figure 33 that
has the impedance function ¢(s) and the elements of the circuit shown in Figure 34
that has the impedance function &(s) .
tances and the resistances and to divide the capacitances in those circuits by the
values Xpseoos Xy to obtain the elements of the lattice that is presented in Fig-

ure 37,

. o 29 oy S+ 1.5
X, o(s) 6.283247 (s + 0. 2) = o A
ER - ; (e )
Xy of(s) = 3,116753 (s + 0.2) 307
B i ; s+ 0.9
.\2 & (s) 18, 107350 $T0 8

: s+0.9
¢(s) 0.692150 S04

X3

Thus, we have only to multiply the induc-
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-

C

01

02

04

Figure 37,

1

1. 928572 ,

from Example 6 we obtain:

CxG

Lx'l

x8

= Coa/xy

= Coalx3

le

*1

01

Loz

6.283247

1

3%

3

. 117694

. 110449

2, 889547

. 116753

.010883

=

01

Roz

Ros

R

04

i -

L.attice Two-Port Equivalent to the
Tandems in FPigures 35 and 36

654922
039236
. 107850
.654813
.692150
.865188

. 805078

.003630.

0.9

0.642858

1

1,25

Rxl ‘IROI z D)
Rya = X Bog = &
By * e = B
Reg = XpRgy = 22
Bas = Sghyg * @
R, = %gRgq = 0
Reg = XqRgy = 2
R, = & Roo 2
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8. ENAMPLE 8 (celerring to Section 6)

8.1 Problem

In Example 5 we have computed a tandem that is shown in Figure 31; its circuit
elements are presented there. The tandem is matched, bul not perfectly matched.
What port impedance has to be added in order to obtain a perfectly matched tandem?

What is the equivalent and terminated lattice two-port?

8.2 Solution

As it has been mentioned in Example 5, the tandem shown in Figure 7 is a
block diagram of the tandem shown in Figure31. It is a tandem such that its half
on the left side is a pcsa T of type (A), since n, = 8 > 1, and its half on the right
side is of type (C). With n, = 2.5, we obtain the product

n,n, = 20> 1,
According to Theorem 5 the tandem can orly be transformed into a perfectly matched
tandem with an equivalent lattice by a forward transposition of port impedance.
Hence, it is necessary that we add an in-po 't impedance XS . The port impedance

must imply the frequency function .

1

*e - 3700

A block diagram of the tandem with the added in-port impedance is the left side
portion of Figure 10 with the upper line of the relation between the ratio coefficients.

The necessary in-port in.pedance XS = x_ + ®(s) is obtained by Eq. (132)

s
that gives
Xg © —l (n -l)2+;n (A + 1)*
n.n -1[*a"a b"a '™
ab
- 10 _ 135+ 7840 _ 8575 _ ..
= l95>(49+ T 64 X 12,25 = 19 X3 = v e 120. 438596

This in-port impedance will now be totally transposed to the out-port as shown
at the right in Figure 10. The primed constants are obtained by the following equa-

tions:
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By Eq. (121)
4 nq, posr *s - 150. 438596
a M T 150. 438596 + 5 X 49

Xg + xa(na -1)

_ 1203.508768 _

395, 438596 ~ o 043478
By Eq. (122)
*s 150. 438596
xs = o = 24. 347824 = 6. 178729 .
a a
By Eq. (123)
7}- -4 +=- —> = 0.2+ 0.006647 - 0. 161846 = 0.044801 - 1/22.320930
“a “a s s

By Eq. (124)

P S T :Mﬁ&‘l = 13.392558
a a x 5

By Eq. (125)
xl’
2 «F B = 3.8 6, 178729
b b sz (R 6. 178729 + 122.5/3
S b b
_ 15, 446823 _ W k y
= o900 - 0-328571 = 1/3.043482 , o.k. = 1/n]
By Eq. (126)
—_ | Xg o B l00789 | . ooioas
Xg ==,  0.821428 ‘
bb
By Eq. (127)
2. . 1 1 .
— et - = (0.3+0. 161846 - 0. 132044
*b b Xg Xg

0.328902 = 1/3.040419
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By Eq. (128)

(S

6.080838 X 3
10

A}

= 1.824251

<|
"
<|
c
x| =l
o]

All the constants of the perfectly matched tandem are now known. The tandem is

terminated at the out-port by the impedance

= x7 @fs) = 7.521936 (s + 0. 6)

xS s

We are not interested with its circuitry, since we replace the perfectly matched
tandem by its lattice equivalence. This circuit is shown in Figure 38 both as a

block diagram and a circuit diagram.

R,
X “(‘) Rl
A< .
R
-AV\—
C,
R
Ry TC-,
Ca
"—"_' Rs
Rs
- Ce

Figure 38. Lattice With Out-Port Termination

The constants of the perfectly matched tandem which we just computed are:

Left Side pcsa T Right Side pcsa T
Type (A) Type (C)
n, = 3.043478 ng = 0.328571
v = 13.392558 v, = 1.824251
a b
x? = 22.320930 X, = 3.040419
a b




Therefore, we obtain the series branches

u, = 27.367397 uy
¥ = -8.992152 Wy

The termination constant is

Xg = 7.521936

97

2. 423647

7.376319

0.373703

By Eq. (47)
Va _ 13.392558
mARE T Yo
by Eq. (48)
Va
k, = —= _ 13.392558 = 7.341400
Vl') 1.824251
With ng = n; = 3.043478 we obtain the auxiliary values S and P by Eqs. (100)
and (104):
VI
LR 2 o aind
S = -Fa- I(n0+ H° + ka(no 1)
S = 1.824251 |4.0434782 + 7.341400 X 2.0434782I
= 1.824251 I 16, 349714 + 7. 341400 X 4, 175802
= 1.824251 X 47,005947 = 85, 750646
p oo X2 o 8341400 . . _5.004840 _
v; 13. 392558 - 13. 392558
Hence,
SP = 32.045274 .
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By Eq. (111)

<
t

1,4

[ ]

85, 750646

T6.086956 32.045274

[11 Jl

22.230619 |

Hence, by Eq. (110a)
Xy = 14, 087607 X 1. 553421
and by Eq. (110b)

!:4

We compute

= 14,087607 X 0, 446579

= 1,978724 < k_-=
a

ng + 1 4,043478
no - 1 3. 043478
Therefore,
= S _ 3K
X983 = IR [‘* Jl SP]

14, 087607 ll * Vl S 0.693725I= 14. 087607 Il t 40.306275 ‘

14, 087607 |1 10.553421|

21,.883985 ,

6.291229

7.341400

with index 2 referring to the + sign.

85. 750646

3.3 1. 2

71. 458872

71.458872

"

By Egs. (112a,b)

X, = 71.458872 X 1.961824

71. 458872 X 0.038176

¥3

¢ y1- RPR FEFITE |

1 £ Vl - 0.074894 I
* 40. 925106 I =

71. 458872 Il + 0.961824

140, 189730

2.728014
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The impedances )\'l and X4 imply the normalized frequency function ¢(s) ,
the impedances X2 0 X3 , and Xs imply the function @(s) . We have shown in
Example 5 the circuits that have these functions as impedance functions; they are
presented in Figures 29 and 30 with the element magnitudes noted there. Hence,
we are now able to compute the elements of the lattice circuit shown at the right
of Figure 38. They are:

Rl = leOI = 21.883985

R2 = leOZ = 43,767970 C2 = C02/xl = 0,057119
R3 = X RO = 233.649550 C3 = Co/x2 = 0.007133
R4 = Xg RO = 4. 546690 C4 = Co/x3 = 0,366567
R5 = Xy, ROI = 6.291229

R6 = Xy R02 = 12.582458 CG = C02/x4 = 0.198689
R7 = x'S RO = 12.536560 C7 = CO/X; = 0.132944

9. EXAMPLE 9 (referring to Section 8)

9.1 Problem

Assume a pcsa T of type (A) that is terminated by the impedance Zt(s) = LA
thus the termination is the normalized resistance. Let the pcsa T have the constants

let
of(s) = s+0.8 ,
and

®(s) = 1/e(s) = m

A block diagram of the terminated pcsa T is shown in Figure 39.




100

Z,) zb(.) Za(s) = vin-1)e¢(s) = 3(s+ 0.8) ,

Z,(s) - v(% 1) os) = - 1.2(s + 0.8) ,

Zq(s) = v ?(s) + x/¢(s)

)
s+ 1,68+ 2,14
s+ 0.8

= 2

IFigure 39. Terminated Z. (s) =1
pcsa T of Example 9 :

What is the driving-point impedance measured at the in-port terminals?  Realize
this driving-point impedance by a circuit that is shown by its block diagram in

FFigure 40,
Zofe) Z%(8) Let Z_(s):Z¥(s) - T? ,
l ' Zy(s) - z5s) = 1%,
Z,0) 250

with the duality constant T to be determined.

FFigure 40. Block Diagram
of the Realization of Z(s)
in Example 9

9.2 Solution
The driving-point impedance according to Figure 39 is
1

1 1
zq(s) + Ab(S) + Zt(s)

Z(s) - Za(s) +

Z(s) = 35+ 2.4+ — 1 ;
25+ 3,25+ 4.28 1.2s - 0.04
s2+ 2.68s + 2. 104
= 6,25 g2 :

s+ 2,858+ 5, 39

Note that Z(s) is an impedance function in which the degrees of the numerator and

of the denominator polynomials are 2 and for which

(\[5.39 - 2. 104) 2 < 2.68X2.85
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is true. Thus Z(s} is a positive real function, When we would intend to realize
Z(s) in the classical Brune fashion, it would be necessary to derive at first the

minimum resistance function

with a constant Zl\’ that has impedance character and for which

(V% - %) * - 2y,

Using the general pcsa ' instead of the pcsa T with 00(5) = l/dxo(s) s, the
impedance function Z(s) can be realized immediately.

We are now going to realize

2
s” + 2,.68s + 2,104

s® + 2,855+ 5.39

Z(s) = 6.25

by the circuit shown in Figure 40 in its block diagram. This circuit has the driving-
point impedance given by Eq. (184), In this equation the impedance ZO(S) as well
as the duality constant T are unknown. In Section 8 we postulated that the dual
impedance function Zg (s) - '1‘2/20(5) should have the same zeros as the shunt
impedance Zq(s) of the pcsa T . Thus with positive and real constants T and K

and with denominator coefficients a, and ag all unknown

9
¥ T
Zols) = —g

l')
s”+ 1.6 + 2,14

)
°+ +
s”+a;s+a,

Hence,

2
% s“+a,s+a
Zols) = 'l“‘/?.g(s) = K =3 L g
s™+ 1,68+ 2,14

We ecvaluate at s = o

Zo(u)) K
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and
Z(w) = 6,25,
At this frequency s = @
Z,(®) = o, and Z: () = 0.
Therefore, at s = @, according to Figure 40, the parallel circuit at the right in
the block diagram is shori circuited and the parallel circuit at the left in the diagram

degenerates to Zo(cn) since Za(oo) is open circuit; at the terminals of the complete
circuit, therefore, we measure Z(m) = Zo(m) , and therefore

K = 6.25
Hence,
32 +a; s+ a,
Zo(s) = 6.25 5 g

s+ 1.6+ 2,14

in which formula a, and a, are positive real coefficients, so far still unknown,
Let us now consider Eq. (184), According to this equation

Z,(s) - Zy(s) + T=
Za(s) + Zo(s)

Z(s) =

By the block diagram shown in Figure 39 we find that not only when Zq(s) =0 do
we measure Za(s) as the driving-point impedance of the circuit, but also when
Ab(s) + Zt(s) =0 . Since Zb(s) is a negative impedance and Zt(s) is a positive
one, there is certainly a positive and real s = k for which

Z(k) = Za(k)
Evaluating at this frequency Eq. (184) becomes

2
Za(k) : Zo(k) + T

Z,(k) =

Za(k) + Zo(k) 2
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2 " - 2
z, (k) + Za(k) Zo(k) = Za(k) Zo(k) +T°
Hence,
2 2
T = Za (k) ’
or, since T is assumed to be positive and real
T = Za(k)
The frequency Kk is a positive and real solution of the equation
Zb(s) + Zt(s) =
or
1.2s8-0.04 = 0
Hence,
k = 0.04/1.2 = 1/30
Therefore,
2

T = 2,(1/30) = 0.1+2.4 = 2.0, T° = 6.25

The inversion of Eq. (184) is given in Eq. (186) by which we are now able to deter-
mine completely
T - 2_(s) * Z(s)

Z(s) - Za(s)

Zo(s)

6.25 (52 + 2,858 + 5.39) - 6,25 (3s + 2, 4)(52 + 2,68s + 2, 104)
6.25 (s2 +2,68s+ 2,104) - (3s + 2, 4)(52 + 2.85s + 5. 39)

g2
.
]

+2.858+ 5.39 - (3s+ 2.4)(s® + 2.68s + 2. 104)
+92.68s + 2. 104 - (0. 485 + 0. 384)(s°+ 2. 855 + 5, 39)

(equation continued)
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3 2
; 38 + 0. 44s° + 9. 894s - 0. 3404
0. 48s° + 0.7525° + 1.0016s - 0. 03424
(s - 1/30) (3s° + 9. 54s + 10.212)
(s - 1/30) (0.48s° + 0. 768s + 1.0272)
Hence,

s2+ 3. 18s + 3. 404

Zy(s) = 6.25 —
s"+ 1.6s+ 2, 14

2
s"+ 1.6+ 2,14
2

% 2,
Z0 (s) = T /Lo(s)
s™+3.18s + 3,404

As we postulated, Zg (s) has the same zeros (the same numerator) as 7 (s), but
it has a different denominator and another constant of impedance character ahead
of the polynomial fraction.

We will now realize Zg (s) . Since it has the same zeros as Z (s), we assume
it to be equivalent with a parallel circuit of the impedances p - Zq(s) and the
resistance ZI(S) = 1. Thus

1., = 0.5p s+ 0.8

Z0 (s) 52+ 1.6s + 2, 14

+ 1

s+ (1.6+0,5p)s + 2, 14+0.4p

s®+ 1,65+ 2. 14

s?+ 3. 18s + 3. 404

sz+l‘65+2.14

By comparing the coefficients we find that

1.6 +0.5p

3.1 ——=p 3.16 ,

2.14 + 0.4p 3. 404 ——=p 3.16

Hence, the anticipated realization is possible, The realization of

3

Zgls) = v ols)+ x/ols) = (2s+ 1.6) + =557

is shown in Figure 41,




qu qu
) -"YIN-AANN—
qu

IFigure 41. Shunt Realization

”
Roi
AN\

»
Loz Ro2

C

Figure 42. Realization of the

Impedance LO‘ (s)

Figure 43. Realization of

the Impedance Z(s)

La Rao
TN V\=o

Figure 44, Realization of
the Impedance Za(s)
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qu = 2 qu = 1.6

1/3 Ryy = 3/0.8 = 3.75

O
"

The realization of Z:; (s) is shown in Figure 42.
The circuit implies a resistance RO*I =1 in
parallel with the circuit given by Zq(s)/p ;
since p has been a factor by which we muti-

plied the admittance 1/23‘ (s) .

sk % ‘
ROI =1 L02 = qu/p = 0,632911

% ‘
Rgg = qu/p = 0.506329

% _ _ % _ = .
ROS = qu/p 1. 186709 C03 qu-p = 3.16/3

By the well known rules of duality we find the
clements of the impedance ZO(S) that is dual
to Zg@ ) . The circuit of this impedance is s

shown in Figure 43.

o 2 3 ) " 9

Rgy = T7/Ryy = 6.25 Cop = LbslT

Roo = T2 /Ry, = 12. 343753 B i

X = L, - ‘C... 3 .P-
Ry, = T2/R¥, = 5. 266667 03 o3

> g = = 6, 583333

The circuit realizing the impedance function

Za(s) is shown in Figure 44.

[‘a = 3, Ra = 2.4
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R' The circuit realizing the impedance function
, zX(s) = T%/2_(s) is shown in Figure 45.
»
Ca C* « L.JT? = 0.4 ,
a a
T B
R, = T°/R, = 2.604167

Figure 45. Realization of
the Impedance Z_(s)

The complete circuit by which the function Z(s) is realized is showi. in Figure 46.

Figure 46. Circuit Realization of Z(s) in Example 9

R, = Ry, = 6.25
C, = Cyy = 0.101266
Ry, = Ry, = 12.343753
L, = Lgg = 6.583333
s = Rgy = 5.266667
.
W =B * 0,
- % - 3
L, = L¥, = 0.632011
* BY
Rg = R, = 0.506329
i o’k o P
) Cq Co3 3.16/3
Ry, = Rgy = 1186709
By # Lo 2 8
Ry, = R, = 2.4
Pyg = RE . 9 604167
C.. = C' = 0.88
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At this point we would like to perform a parity check on the circuit shown in

Figure 46. We compute

5,784

9 24 3.912338

Z(1) = 6.25

Figure 47(a) is a block diagram of the circuit shown in Figure 46, Into the block
we nave written the impedance evaluations for s = 1 for euch branch element of
the circuit in Figure 46, Thus, each numerical value in the blocks is an impedance.
First we combined all series and parallel blocks obtaining the diagram in part (b)
of Figure 47. We advanced in the same way and obtained the block diagram in
part (c) of the figure, Then we obtained the diagram in part (d) and finally the
block in part (e) with a result that is a very good approximation of the expected value

Z(1) = 3.912338. Thus we can trust the results obtained in the computation.

1/0.101266

-4 6.25

12.363752

0,632911¢0,500329

(a)

=4.1)9260 |=d 0.527426

1.157407

©43.506496 b= 0.40584s 0

p—

1,157407 (d)

(e)

(o)

Figure 47. Block Diagrams for Parity Checks
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10. EXAMPLE 10 (referring to Section 9)

10.1 Problem

With the same nunmerical values of the constants in Example 9 let us determine
a perfectly coupled and series-augmented Pi that i1s terminated by an admittance
I/Zt(s) = 1. The constants of the pcsa Pi are

n 2.8,
vk = 2
x¥ = 3 0

its normalized frequency functions are
o(s) = 1/&(s) s+0.8

What is the driving-point admittance of the pcsa Pi, what are its branch admittances

Show that the driving-point admittance can be realized by the dual circuit of Fig-
ure 46.

10.2 Solution

A block diagram of the pcsa Pi with its termination is shown in Figure 48. In
order to be in strict relation to the duality, we consider the termination as the
series combination of the impedance Zt(s) 1 and a short circuit conncction,

The symbol # is used in this example to discriminate the values from those in
Example 9,

Branch admittances
I/Zg(s) v¥-1)ols) = 3(s + 0.8) ,

l/zﬁ(s) vt (:_11' 1) o(s)

. *

| 2. 2w - 1.2(s+0.8) ,
Z:'l’ Z3 (s) 1/7‘2(3) v oals) + x¥ [ ols)

I'e o 8%+ 1 s £ 0

L)

<

s+ 0.8 '
FFigure 48. lxample of a pcsa Pi

I'ermination admittance l/Zf(s) 1




109

Note that

in Example 9 in Example 10
z,(s) 1/zg(s)
z,(s) 1/Zf(s)
Z () 1/2ks)
z,(s) 1/ Z:’(s) +0.

The driving-point admittance l/Z#(s) according to Figure 48 is

1 1
e 3 # ! ’
Za(S) Aq(S) + 1

1
-————
z{;(s) zf(s)

1/2%(s)

= 38+ 2.4+ ]

i i
9%+ 3.2+ 4.28  1.2s - 0.04
2,2 68s+ 2
= 6,25 S‘)+-.)S+-.104 '

s”+ 2,85s + 5,39

which numerically is the same result as it has been obtained for Z(s) in Example 9.
Therefore l/Z#(s) can be realized by the circuit shown in Figure 49 that is the
dual of the circuit in Figure 46. A test evaluation for s = 1 that is not performed

here shows that the results are correct.

RY ch

(R, L, C notations without the
raised # refer to the circuit
in Figure 46 of Example 9)

L9 RIC)

Figure 49. Circuit Dual to That in Figure 46
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#
5
#
6

1/R; = 0.16
1/Ry = 0.081013
1/Rg = 0.189873
1/Rg = 1

1/Rg = 1.975000
1/Ryg = 0.842667
1/Ry, = 0.416667
1/R,; = 0.384000

¥ . :
¥ - c, - 0.101266 |
c - L, - 6. 583333
4 4 - 58!
C, = L, = 0.632011
¥ . ¢, » 3.18/3
9 9 :
Vo i
Cpp = Lyy = 3

= C = 0,48
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