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Abstract 

In this report a new two-port structure,  referred to as a "Perfectly Coupled 

and Shunt-Augmented T",  is defined and its properties described.    The classical 

Brune two-port can be recognized as a particular example of this general class of 

two-ports.    There are three feasible types (A, B,   and C) of perfectly coupled and 

shunt-augmented T's.    A tandem of two matched T's of type AC or BC is equiva- 

lent to a lattice two-port.    Suitable impedances can be transposed from one port to 

the other over the T whereby only the magnitudes of its elements are changed.    The 

dual of this   T   is the "Perfectly Coupled and Series-Augmented Pi".    The discus- 

sion ot these new kinds of two-ports is supplemented by ten numerical examples. 

in 



Contents 

FOREWORD ix 

TWO-PORT TERMINOLOGY xi 

PART I —  THE DEFINITION AND THE PROPERTIES OF A PERFECTLY 
COUPLED AND SHUNT-AUGMENTED T 1 

1. DEFINITIONS AND CHAIN MATRIX 1 

1. 1 The Definition of a Perfectly Coupled T 1 
1. 2 The Definition of a Perfectly Coupled and Shunt-Augmented T 4 
1. 3 The Chain Matrix of a pcsa T 6 

2. A SHUNT TRANSPOSITION BETWEEN THE PORTS OF A pcsa T 8 

Theorem 1 (concerning the transposition of port impedances) 15 

Theorem 2 (concerning the transposition of port impedances) 15 

3. MATCHED AND PERFECTLY MATCHED TANDEMS OF TWO pcsa T's 16 

3. 1 Definitions 16 
3. 2 Equivalent Perfectly Matched Tandems 19 

Theorem 3 (concerning the equivalence of perfectly matched tandems) 25 

4. SYMMETRICAL PERFECTLY MATCHED TANDEMS                          . 25 

5. A PERFECTLY MATCHED TANDEM AND ITS EQUIVALENT 
LATTICE TWO-PORT 25 

Theorem 4 (concerning the equivalence between a perfectly matched 
tandem and a lattice two-port) 37 

6. PERFECT MATCHING IN A TANDEM OBTAINED BY THE TRANS- 
POSITION OF PORT IMPEDArCE 38 



Theorem 5 (concerning the transformation of a matched tandem 
into a perfectly matched one) 

7. SOME PARTICULAR STRUCTURES OF A PERFECTLY COUPLED 
AND SHUNT-AUGMENTED T 

8. THE pcsa T WITH DUAL SHUNT COMPONENTS 
AND ITS REALIZATION 

9. THE DUAL TWO-PORT OF THE PERFECTLY COUPLED 
AND SHUNT-AUGMENTED T 

Theorem 6 (concerning the dual of a pcsa T) 

PART II — NUMERICAL EXAMPLES 

1. EXAMPLE 1 (referring to Section 1) 

2. EXAMPLE 2 (referring to Section 1) 

3. EXAMPLE 3 (referring to Section 1) 

4. EXAMPLE 4 (referring to Section 2) 

5. EXAMPLE 5 (referring to Section 3) 

6. EXAMPLE 6 (referring to Section 3) 

7. EXAMPLE 7 (referring to Section 5) 

8. EXAMPLE 8 (referring to Section 6) 

9. EXAMPLE 9 (referring to Section 8) 

10.     EXAMPLE 10 (referring to Section 9) 

REFERENCES 

46 

48 

49 

53 

56 

59 

59 

61 

62 

66 

76 

82 

90 

94 

99 

108 

111 

Illustrations 

Orientation at a Two-Port 

A Tandem of Two Two-Ports 

1. A Perfectly Coupled T Section 

2. Inductance Star and Its Equivalent Perfectly Coupled Transformer 

3. The Perfectly Coupled and Shunt-Augmented T (pcsa T) of Types (A) 
and (B) in Part (a) and of Type (C) in Part (b) 

4. Orientation of the Positive Voltages and Currents 
at a Passive Two-Port 

5. pcsa T with (a) In-Port and (b) Out-Port Impedance 

6. pcsa T of Type (C) with (a) In-Port and (b) Out-Port Impedance 

xi 

xi 

1 

2 

8 

a 
14 

vi 

'I 



7. Tandem of Type (AC) or (BC) 16 

8. Tandem of Type (CB) or (CA) 20 

9. Lattice Two-Port 25 

10. Impedance Transposition Between the Ports of a Tandem 38 

11. Lattice Terminated at the Out-Port 39 

12. Lattice Terminated at the In-Port 43 

13. Impedance Transposition Between the Ports of a Tandem of the 
Reverse Sequence Compared With Figuie 10 43 

14. pcsa T With the Frequency Function 0(s) = s 48 

15. pcsa T of the Brune Type 49 

16. pcsa T of Type (A) or (B) in (a) and of Type (C) in (b) With 
Dual Shunt Components 50 

17. pcsa T With Dual Shunt Components Terminated by  Z.fs) 50 

18. Balanced Bridge Structure 51 

19. Bridge Equivalence With That of Figure 18 51 

20. Realization of the Driving-Point Impedance of a pcsa T of Type (B) 52 

21. AT Two-Port (a) and Its Dual Pi Two-Port (b) 54 

22. The Perfectly Coupled and Series-Augmented Pi of Types (A) or (B) 
Left,  and of Type (C) Right 56 

23. Example of a PerTectly Coupled T of Type (B) 60 

24. Example of a Perfectly Coupled T of Type (C) 62 

25. Example of a pcsa T 62 

26. pcsa T With In-Port Impedance 67 

27. pcsa T With Out-Port Impedance 68 

28. pcsa T With In-Port and Out-Port Impedance 73 

29. Realization of the Impedance Function 0(s) 78 

30. Realization of the Impedance Function 4(s) 79 

31. Circuit of the Problem in Example 5 79 

32. Block Diagram of the Circuit in Figure 33 81 

33. Realization of the Impedance Function <Ms) 84 

34. Realization of the Impedance Function ♦(s) 85 

35. Tandem Computed in Example 6 86 

36. Tandem Equivalent to That in Figure 35 89 

37. Lattice Two-Port Equivalent to the Tandems in Figures 35 and 36 93 

38. Lattice With Out-Port Termination 96 

39. Terminated pcsa T of Example 9 100 

40. Block Diagram of the Realization of Z(s) in Example 9 100 

41. Shunt Realization 105 

42. Realization of the Impedance ZQ(S) 105 

43. Realization of the Impedance Z0(s) 105 

44. Realization of the Impedance Z  (s) 105 

vii 



3k 45. Realization of the Impedance Z   (s) 
a 

46. Circuit Realization of Z(s) in Example 9 

47. Block Diagrams for Parity Checks 

48. Example of a pcsa Pi 

49. Circuit Dual to That in Figure 46 

106 

106 

107 

109 

vui 



Foreword 

In 1963 Fusachika Miyata published an article concerned with the realization 

of certain one-port impedance functions in the form of a lattice two-port.    He has 

shown that under certain conditions the impedance function can be developed as a 

tandem of two classical sections (Brune,   1931),  and that under further conditions 

this tandem is equivalent to a lattice. 

The author of the present report has discovered that Miyata's findings,  and 

with them the classical Brune concept,  can be generalized.    For this purpose he 

defines and uses a class of two-port sections which he refers to as "Perfectly 

Coupled and Shunt-Augmented T Sections" (abbreviated in the report by   pcsa T). 

This two-port section represents an entirely new concept.    It is the aim of this 

report to show and to prove some of its properties in Part I.    In Part II we will 

present some numerical examples.    Although the pcsa T can be considered as a 

fundamental structure in one-port realizations,  we will not discuss how the section 

can be derived irom a given impedance function; this is a major problem and will 

be discussed in another report. 

IX 



Two-Port Terminology 

In this report we are only concerned with passive two-ports;  these are two- 

ports which incorporate only resistances,  capacitances,  and indvictances with and 

without mutual coupling (transformers).    A two-port has two pairs of terminals 

1 and 1*,  and 2 and 2* as shown in the figure on the left.    The terminal pair 1 and 

1' is referred to as the in-port, the terminal pair 2 and 2' as the out-port.    This 

terminology seems to be reasonable since a passive two-port traditionally is sup- 

posed to be energized at the left-side in-port.    For this reason we will also define 

the direction from the in-port to the out-port as the forward direction,  and the 

opposite direction as the backward direction. 

A tandem is a chain structure of at least t\\o two-port sections such that the 

out-port   of one section is connected with the in-port of the next section in the for- 

ward direction as shown in the figure on the right. 

An impedance branch that is connected to a port is referred to as an in-port 

impedance or as an oui-port impedance respectively. 

FORWARD 
w           r- 

a. IO- -02 5 o K 
Q. 

I 
■ 
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f lACKWAF D 
4 C  

Orientation at a Two-Port A Tandem of Two Two-1 orts 



THE PERFECTLY COUPLED AND SHUNT- 

AUGMENTED T TWO-PORT 

Parti 
The Definition and the Properties of a Perfectly 

Coupled and Shunt-Augmented T 

I.   »KHMTIONS  \M) CIIMN MATHIN 

I.I   Tin- Definition of a PrrfeciK Coupled T 

Assume that the branches of the T section shown in Figure i have the imped- 

ances   U ,   V ,  and   W   such that 

U-u>U} W-w4U} 

U   =   u • Ms)   , 

V   =   v • «(s)   , 

W ■ w 0(s)   . 

(la) 

(U)) 

(lc) 
V«V^(t) 

Figure 1.    A Perfectly 
Coupled  T  Section 

In Eqs.   (la, b, c) are the u,  v,  and w  real constants, 

which are not necessarily positive.  The notation 

(Ms) in these equations represents a positive real 

and normali/ed frequency function.   We understand 

the normalization in such a way that if we write 

function as a quotient of two polynomials  p(s)  and 

q(s)   as in Eq.   (2),  the coefficients associated 

(Receivecl for publication 10 December 1964) 



with the highest powers of   s   are   1   in the numerator and in the denominator and 

the factor before the fraction is   1: 

(Mb)   '    1 

i m , m-1 . 1• s + a .s +  m-1  
,      n   J. u n-1 1 • s     + b     -s + n-1 

(2) 

where the degrees are either   m = n,or   m-n±l. 

As usual,  the frequency variable   s   is   s = CT + ju» (with tr  = 0). 

Since  U,   V,  and  W denote impedances,  we contribute the dimension "imped- 

ance" on the right sides of Eqs.   (la. b, c) to the constants u,  v,  and w,   and we say 

that  u,  v,  and w  arc constants of impedance character and the   (Ms)   is a scalar 

frequency function.     We have to admit that this yields to somt controversy when 

0(s) = s   or if   Ms) =  l/s .    In this event,  for example,  u-s   is an impedance; but  u 

is considered as an impedance character rather than as an inductance- similarly 

in u/s ,  u  is also considered an impedance character rather than an inverse capa- 

citance.    But in connection with all frequency functions of higher order it is con- 

venient to consider thes'   functions as scalars. 

Assume now that the constants are interrelated by the equation 

1/u + 1/v + l/w 0 (3) 

Equation (:0 postulates that one of the constants, u, v,  or w,  has the opposite 

polarity of the other two.    Without restriction we can agree l!ial one of the polari- 

ties is negative and the other two arc positive. 

Equation (3) is not a strange one in circuit theory.    Assume the particular fre- 

quency function   Ms) ■ s   and let   u - L ,  v = M ,  and   w = N ,  then the two-port 

shown in Figure  1 as a block diagram be- 

comes the particular two-port shown in 

part (a) of Figure 2.    It is an inductance 
oSVm-gTPr^o      o lvii/r-^> star that by 

fcM 
o I 0 

sN 

itM 

M - Lp L. 

3£ 1 /L + 1/M + 1/N   =   0 (4) 

(0) (b) 

FifUTC 2,    Inductance Star and 
Its Equivalent Perfectly 
Coupled Transformer 

has the technical equivalence of a perfectly 

coupled transformer,  as it is shown in 

part (b) of the figure.    The Ir-insformer has 

the primary inductance 



L      ■   L + M . 
r 

and the secondary inductance 

(5a) 

N + M . (5b) 

It is customary in transformer theory to identity the product 

L    •  L     =   IT 
P       s 

(6a) 

and the quotient 

L  /L     ■   n' p'    s (6b) 

and to call   M   [the same as in Eq.   (4)] the mutual inductance and   n   the turn ratio 

of the transformer.    It is evident from Eqs.  (5a, b) and (6a, b) that the equations 

L   ■   M(n - 1)   , (7a) 

and 

N   =   II (H ■ (7b) 

satisfy Eq.  (4). 

Let us now return to Eq.   (3).    This equation it. satisfied when 

u   ■   v(n - 1)   , (8 a) 

and 

w "(M (8 b) 

In Eqs.   (8a, b)   n   is a real constant,  not necessarily a positive one.    But,  when 

we postulate that only one of the   u ,  v ,  or   w   is negative and the other two are 

positive, then   n   must have the same polarity as   v .    When  v   is positive,   u or 

w   is also positive,  depending whether   n   is greater or smaller than 1  but positive. 

But when   v   is negative,  u   and  w   are positive only when   n   is negative. 

Relating to the perfectly coupled transformer let us now define 

v   as the mutual constant (9a) 



and 

n      as the ratio constant (9b) 

When   v   and   n   are negative we will use the notations 

v   =    - v (10a) 

and 

n   =   - n (10b) 

We refer to the   T   shown in Figure 1 for which Kq.   (3) holds,   as a perfectly 

coupled T and now distinguish three types of perfectly coupled T s; 

Type (A) Type (B) Type (C) 

u positive u negative u positive 

v positive V ■ • V negative 

w negative w positive w positive 

n positive n ■ -n negative 

n >   1 n<   1 

1.2   The Definition of u Perfeell) Cuupled ami Shunt-Xupnenled  I  (peM T) 

A block diagram of the perfectly coupled and shunt-augmented T,  the main 

objective of our discussions,  is shown in part (a) of Figure 3. 

U-u^U)     W» w»(«) u>(t)       w-^(t) 

u$0 

if 

v,x>0 
o 

V-v*(t)      Q^>0 

v<0 

X-x •(•) 

-o o 

(a) (b) 

Figure 3.    The Perfectly Coupled and Shunt-Augmented T (pesa T) 
of Types (A) and (B) in Part (a) and of Type (C) in Part (b). 



The upper part of the T  is the same as shown in Figure 1.    It has the impedance 

branches   U = u • (Ms) ,  V = v • Ms) ,  and   W = w • (Ms) , w.iere   (Ms)   is an arbi- 

trary positive r^a.\ and normalized frequency function.    The constants   u,  v,  and w 

have impedance character and are given by Eqs.   (8a, b).    In the lower part of the T 

we find the shunt-augmentation X 

X   =   x •  <|.(s)   . (11) 

which is an impedance. 

In Kq.  (11)   x   is a positive real constant of impedance character and   «Ms) 

denotes a positive real and normalized frequency function with no dimension.    In 

general,  we assume that   «Ks) is also an arbitrary positive real and normalized 

frequency function which is in no way relateu with    ^(s) .    We assume that the per- 

fectly coupled part of the  T in part (a) of Figure 3 is of type (A) or (B) so that   v 

and   n   are positive constants. 

In part (b) of Figure 3 we show a perfectly coupled and shunt-augmented  T 

where the perfectly coupled part of the T is of type (C).    In this event   v = - v   and 

n = - n   are positive.    Merely for formal reasons we used the notation   x   for the 

augmentation constant; but,  note that this constant is positive.    Hence   x = x ,  but 

v = - v . 

We distinguish between three types of pesa  T s : 

Type (A) Type (B) Type (C) 

u ■ v(n - 1) positive u - v(n - 1) negative 

w = v (H 
v positive 

negative w = v I ll posit ive 

u = v (n+ 1) positive 

v = - v negative 

w = v( — + 11 positive 
' n        ' 

-L 
n positive n = - n negative 

n > 1 n <  1 

x positive x = x positive 

Coupling frequency function <Ms) j 
(   positive real and 
(   normalized functions 

;tion ♦( s) ' Augmentation frequency funct 

According to the preceding table a pesa T .   in addition to being determined by 

the frequency func.ions (Ms)  and «Ms) ,  can be determined by the three constants 



v ,   x   and   n , and  v ,  x , and n ,  respectively.    The branches   U   and   W   are 

determined automatically by Eqs.  (8a, b). 

1.3   The Chain Matrix of a pt-sa T 

Any two-port is completely described by the chain matrix 

d 

i) 

A B 
1 

=       5C 

A 
A 

c D E A c 
(12) 

The chain matrix on the left side of Eq.   (12) is based on the two-port equations 

Ej    ■   A B • I. (13a) 

1, C • E 2 
D • Ir (13b) 

where   E.   and   E«   are the port voltages and   1.   and   !„   are the port currents as 

defined in their positive sense by the arrows in Figure 4.    The physical meanings 

of the ABCD matrix are as follows: 

C 
ui k 

Figure 4.    Orientation 
of the Positive Voltages 
and Currents at a 
Passive Two-Port 

A   -    ^ 

B   = 

C   =    «« 

D   « 

h = 0 

1 

2 E2=0 

i2=o 

1 V0 

(14a) 

(14b) 

(14c) 

(14d) 

According to Eqs.   (14a, c) the elements   A   and   C   can be measured or computed 

in the status of the open-circuit outport; according to Eqs.   (14b, d) the elements 

B   and   D   can be measured or computed in the status of the short-circuit out-port. 

In general,  the elements of the ABCD matrix are fractions.    It is sometimes 

more convenient to separate a common denominator   E   from the numerators   A , 

B ,  C ,  and   D .    For this reason we prefer to use the matrix that is shown on the 

right side of Eq.   (12). 



By the definitions in Eqs.   (14a, 

part (a): 

, d) we find,  in accordance with Figures, 

A U -t- V + X A = —vnr ' (15a) 

C   = u+v+x      v+x   • (15c) 

D   ■ V + W + X 

v + x 
(15d) 

B \ u    v+w+x / 
UV -*■ UW + VW -f- (U + W)X 

V -^ U + X 

-   X U -t- w 
v + x 

D 

(15b) 

Note that by Eq.  (3) 

UV + UW + VW  ■ 0 in Eq,   (15b).    From Eqs.   (15a d) we derive the elements 

A   ■   U+V+X   =   vn.(i)(s) + x.*(s)   , (Kia) 

B   ■   X(U + W )   -   vx   (n "n Ü      <D(S) • *(a)   . (l«b) 

C   =    1    , 

D   ■   V+W + X   ■   --(Ms) + x<Ks)   , 

E   =   V + X   =   v • Ms) + x-*(s)   . 

(16c) 

(16d) 

(lüe) 

The elements presented in Eqs. (16a, . . . , e) describe a pcsa T of type (A) or (B). 

They are also true for type (C) ; however, when we prefer to use the notations v , 

x ,  and   n   for this type,  we obtain by the respective replacements: 

A   =   v n • (Ms) + x • <l>(s)   , (17a) 

g   =   vx   ÜL1Ü1   .Ms).4.(5)    , (17b) 



6:1. (17c) 

— Ma) + x . Ms) ; 
n 

(17d) 

E - v • (Ms) + x •  ♦(s)   . (17e) 

The elements presented in Eqs.  (17a,. . . , e) describe a   pcsa T  of type (C) . 

2.  A SHI NT THANSPOSITION BKTRKKN THE PDKTS OF  \ |H sa T 

Assume a pcsa T of type (A) or (13) that is defined by the constants   v ,  x ,  and 

n besides by the frequency functions   0(s)   and   *(s) ,  and assume that this   T   has 

an in-port impedance   X    = x    . «Ks)   as shown in part (a) of Figure 7. 

».♦(•) 

Figure 5.    pcsa T of Type (A) or (B) with 
(a) In-Port Impedance and (b) Out-Fort 
Impedance 

Thus the port impedance and the shunt-augmentation imply the same frequency 

function  ♦(s) ,    The matrix elements of the port impedance are 

n 

c 

Ds 

0 , 

1 . 

E xs<l»(s)   . (l«a. d. e) 

(18b) 

(IHc) 

Remember the rule of matrix multiplication: 



1 
/\ 
E2 e2 D2 

.      1 
F   i 

^^ /\/S /\^ ^\/\ 
A.A., + B.C«       A.B,. + B-D 1^2 1"2     "1^2 

C1A2 + D1C2       C1B2 + D1D2 

(19) 

Since the matrix of a tandem results from the product of its two-ports,  we obtain 

the elements of the pesa T with its in- port impedance as 

A   =      v n x   • 0(a) + x x    . ^(s)    ♦(s)   , 
;i 9 9 J 

(20a) 

B   -   vxxa    (n '* )     0(3) - if2 (a)   . 
a 11 

(20b) 

6   =   vn •  0(s) + (x + xs)*(s)   , (20c) 

Ö -   [J ( x(n - I)2 + xg ) 0(s) + I xg • *(s) ♦ (s). (20d) 

E   =      v • 0(s) + x • *(s) xs • *(s)   . (20e) 

The elements in Eqs. (20a, . . . , e) are obtained by the rule, Eq, (19), where the 

index 1 refers to the port impedance given by its elements in Eqs. (l«a, .. ., e), 

and where the index 2 refers to the pesa T given by its elements in Eqs. (16fc, . . . , e). 

Consider now the structure in part (b) of Figure 7.    The pesa T of type (A) or 

(B) in this part is defined by the constants   v',  x',  and   n'   besides by the frequen- 

cy functions   0(a)   and   ♦(s) .    The   T   has an out-port impedance   X'   =   x' • ♦(s) . s s 
By the same rule used previously we find the elements of the two-port in part (b) 

of Figure 7 as 

Ä'    -       v'(n'Xg+x'    ^^r^irt(s) + x'x^ ■ *(s)     *(s)   . (21a) 

B'   -   v' x' x'   {n' '>ir 0(a) ■ *(s)   , s n (21b) 

C'   -   ^ 0(8)+ (x' + x')«J.(s)   , n s (21c) 

r^0(8)+x'-*(s) i \'a \y \p 0(3) + ♦(S)    , 

E'   ■ F v' • 0(a) + x''<Ks) 1 x^ • «Ks) 

(2 Id) 

(21e) 



10 

Equations (21a, ..., e) are obtained by applying the rule,  Eq.  (19),  so that the 

index 1 refers to the elements of the pcsa T  given in Eqs.  (16a,. . ., e) and index 2 

refers to the elements of the out-port impedance given in Eqs.   (IHa, . .., e) . 

We will now show that both two-ports in Figure 5 can become equivalent. 

Two-ports are defined as equivalent if they have the same chain matrix.    That 

means that both chain matrices have the same elements   A ,.. ., E . 

The two-ports in Figure B are equivalent when we can ascertain that the 

elements in Eqs.  (20a, . . ., e) are the same as those in Eqs.  (2 la), .. . , e).    Note 
/\ /\ 

that a matrix remains unchanged if wo multiply all numerator elements A, .... D 
/\ 

and the denominator element   E   by the same factor.    We start the enforcement of 

the element identities conveniently with the denominator elements   E   and   E' . 

Suppose we divide all elements in Eqs.   (20a,.... e) by   v x   • Ms) ,  and we divide 

all elements in Eqs.   (2 la,... , e) by   v' x' • Ma) .    Then we obtain s 

E    =    0(8) + ^ »(8)  . (22e) 

and 

E'   ■    <Ms) + ^r Ms) (23e) 

If  E = E' ,   it is necessary that 

X X 
(24) 

Since   v   and   x ,  and   v'   and   x'   are defined as positive constants [we suppose 

that the pcsa T's are of types (A) or (B)J ,  the notation   K   in Eq.   (24) is a positive 

constant.    Dividing the numerator elements in Eqs.   (20a,. . . , d) by   v x   • ♦(s)   and 

the numerator elements in Eqs.   (21a,... , d)   by   v'x'• *(s)   we obtain: 

Ä   =   n • (My) + f «Ks)   , (22 a) 

A 
B   ■   x 

•A 

(n' ir Ms) • Ms)  , (22b) 

^ n      <Ms)   .    x + xs 
xs    «Ms) v xs 

(22c) 

A 
1) n 

s 
•Ms) + J  Ms)   , (22d) 



and 

11 

n, + *'   (nl-lT <t>{s) + ^r   ♦(s)   . (23a) 

B'    =   x '   (n ^^     *(*) • «Ks)   . n (23b) 

X8n' 

ili    +      § 
(8) V'X' 

(23c) 

D'     ^    ^r   0(8) +    ^-    »(8)    . (23d) 

In order to make  A = A'   it is necessary that 

n' 4.   x'     fel llL n   "   n   + P-   —1T^ (25) 

The identity   x/v ■ x'/v'   is already given by Eq.   (24). 

In order to make   C = C   it is necessary that 

1 
X8 ^^      ' 

(26) 

and that 

x + x„        x' + x' 
8    . 8 

V X, V    X. 
* • (27) 

Equation (25) expresses   n   by exclusively primed constants   x' ,  x'      and   n' . 
s 

With   n   known by this equation we obtain using Eq.   (26) 

x„   =   x   • nn   . 3 s (28) 

Substituting   v/x ■ K   and   v = xK   into Eq.   (27) we i   tai 

I   =   JL + _L . J_ 
x x' x'   ' X     ' 

8 8 
(29) 
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Finally by Kq.   (24) 

v   =   x . K (SO) 

Hence,  if the two-ports in Figure 5 are equivalent,  we are now able to compute 

the constants of the two-port in part (a) when the constants of the two-port in part (b) 

are known',  we need only to apply Eqs.   (25),  (28),   (29),  and CO) in sequence.     But 

the proof of the equivalence is not yet finished;   we still have to compare   B   and   B , 

and   D   and   D' .     In order to make   B = B' ,  it is necessary that 

.,    (n'-T =   x (n-1)' (31) 

In order to make   D = D' ,   it is necessary that 

n ■   n 
+ x(n- I)' 

(32) 

Like Eq.   (25), Eq.   (32) presents   n'   exclusively by the constants of the two-port 

in part (a) of Figure 5.     Knowing   n' ,  we are able to compute by Eq.   (26) 

ks       nn' (33) 

Knowing   x'   by Eq.   (33) we obtain by Eq.   (29) 

1     =   1+   ± 
XX x s s 

. ' • (34) 

Finally by Eq.   (24) 

K   . (35) 

Henco,  if the two-ports in Figure 5 are equivalent,   we are able to compute the con- 

stants of the two-port in part (b) when the constants of the two-port in part (a) are 

known; we need on1 / to apply Eqs.   (32),  (33) and (34) in sequence.    These equations 

are the inverse ol Eqs.   (25),   (2H),   (29),  and (30). 
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We will now prove that Eq.   (31) is true.    By this equation 

x n_     (n' - 1) 
^        n' 

In- l) 2 
(3«) 

f^y Kq.   (3 2) 

Ar   -    1  ^ — (n - I)2   . 
n xs 

(37 a) 

and 

(n'  -I)2   -    (n -  I)2 
1   - x(n -  l)/x, 

I + x(o - i)2/> 
(37b) 

Then 

K' 

1 - x(n- D/x. 

1 +x(n- l)*/x. 
(38) 

On the other hand,   by Eq.   (34) 

\ 
X' 

- 1+ i 
xs 

-   -2- n 
Xs 

n' 

■ 
l+«. 

2 
1  "                          > 

1 + x(n- l)''/xa 

1 - x(n - l)/xs 
2 

1 + x(n- l)-/xs 

which is the same result obtained in Eq.   (38). 

Thus we proved that if either the set of Eqs.   (25).   (2H).   (29),   and (30),  or the 

set of inverse Eqs.    (32),  (33),   (34) and (3.r)) is true then the two-ports shown in 

parts (a) and (h) of Figure 5,   are equivalent. 

The two-ports in Figure 5 may also be of type (C).    The equivalence also holds 

for the following sets of equations: 

, 
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n   =   n' + x'    (n'+l)- 
xs         n' 

s          s nn'   . 

1          1 1           1 

X           X' s          s 

(39) 

(40) 

(41) 

v   =   x • K   . (42) 

and 

n     =   n 
xg + \ (n + I) 

(4^) 

(44) 
n n' 

J.= -L + -L   .4. 
—^ - X X 
X X s s 

(4b) 

x'   •   i<    . (48) 

The equivalence is shown in Figure 6 where for the pcsa T of type (C) the constants 

marked hy a bar are used. 

«.(•) <•♦(•) 

Figure 6.    pcsa T of Type (C) with  (a) In-Port Impedance 
and (b) Out-Port Impedance 
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We are now able to state the following theorem. 

THEOREM 1   (concerning the transposition of port impedances) 

A pcsa T of type   (A) or (B) that has an impedance X    = x   ■ Us) 
S o 

at its in-port is equivalent to a pcsa of the same type that has an 

impedance   X' ■ x' • ♦(s)   at its out-port when the port impedances 
a S 

impl> the same frequency function   ♦(s)   as the shunt-augmentation 

and when the set of Eqs.   (25),   (2H) (29).  and (30) or of Eqs.   (32), 

(33),   (34) and (35) holds.    Also,  two pcsa T s of type (C),  each 

having port impedance   X     and   X' ,   respectively,  are equivalent 
3 3 

if the port impedances imply the same frequency function as the 

augmentations,  and when either the set of Eqs.   (39),. . . , (42) or the 

set of Eqs.   (43) ,   (4G) holds. 

The equivalence between the two-ports in Figures 5 and 6 can also be inter- 

preted in such a way that it looks like the respective port impedance has been trans- 

posed to the other port,  whereby unprimed constants change to primed ones and 

vice versa according to the respective set of the aforementioned equations.    Hence, 

we can also state the following theorem; 

THEOREM 2 (concerning the transposition of port impedances) 

When a pcsa T has an in-port impedance   X     »hat implies the 

same frequency function   ♦(s)   as the shunt-augmentation,  then 

the por  .mpedance can be transposed to the out-port where it ap- 

pears as   X'  and vice versa.    By the transposition,  unprimed 

constants are changed to primed ones and vice versa according to 

the sets of equations,   Eqs.   (25).  (28),  (29),   (30) or Eqs.   (32), 

(33),  (34),  (35),   if the T is of type (A) or (B).    If it is of type (C), 

the constants   change according to the sets of Eqs.   (39).   (40), 

(42) or Eqs.   (43).   (44).   (45). (46). 

Note that by the transposition the constant   K   given in Eq.   (24) remains un- 

changed.    It is essential to recognize that by the transposition we are able to change 

the ratio constants   n   and   n'  .  or   n   and   n' .    If we transpose in the forward 

direction.  Eq.   (32) shows that this ratio   decreases from   n to   n'    if the pcsa T 

is of type (A) or of type (B).     It is therefor»' possible that a type (A) T becomes a 

type (B) T after the transposition.     Equation (25),  which is the inverse of Eq.   (32). 

shows that by a transposition in the backward direction the ratio constant increases 

from   n'   to   n   if the T is of type (A) or of type (B).    Similarly,  we recognize by 
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Eq.   (43) that by a forward transposition the magnitude of the ratio constant also 

decreases from   n   to   n' ,  whereas it increases from   n'    to   n   according to 

Bq.   VW) by a backward transposition if in both events the T is of type (C). 

:\.  NATCMED  \M) I'KHUCTI^  MVMIIKI)  I \MJKMS W  \W |»tsa l\ 

3.1   llefiniliiMi^ 

In Figur«- 7 we show a tandom consisting of two pcsa T sections,  the left one 

being of type (A) or of type (B),  the right one being of type (C). 

Let us assume that the two sec- 

tions in Figure 7 are not completely 

arbitrary.    Reasonably we presume at 

least that both sections imply the same 

frequency function   Ms) (marked by 

diagonal shading) and the same fre- 

quency function   <l>(s)   (marked by dot 

shading).    In addition to this we pre- 

sume that 

peso T 
TYPE 

(A)or(B) 

l 
peso T 
TYPE 

(C) 

l 

i 

—  =   —   =   K (47) 

Since the constants   v   and   x   in a 
Figure 7. Tandem of Type (AC) or (MC) ■_    tl ... .„.        , tl 6 J' pcsa T of types (A) or (B) and the con- 

stants   v =  - v   and   x   =   x   in a pcsa T 

of type (C) are defined as positive,  the notation   K   in Fq. (47) is necessarily a 

positive constant,  too.    Equation (47) also allows us to introduce another constant 

k     that is defined as a 

(48) 

3. 1. 1    DFFTNITION OF A MATCHED TANDEM 

The pcsa T sections in a matched tandem are such that the sections imply the 

same frequency functions Ms) and *(.s) and tint the constants v, x and v, x of 

the shunt impedances of the   T s are proportional,  as shown by Eq.   (47). 
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We will now develop the elements   A , . , . , L   of the chain matrix of the tande 

shown in Figure 7, 

By Eqs.   (47) and (4H) we can reduce the number of notations: 

By Eq.   (47) 

m 

a 
K' ' (49) 

by Eq.   (48) 

(50) 

vb        Kk (51) 

The matrix elements of the section shown at the left in Figure 7 are obtained by 

Fqs.   (Kia,.... e) as 

A     =    n   •   (Ms)   +   17 •   *(.s)   , 
a a rv 

(52a) 

v        (n   - 1)* 
B    -    T*     -*  a K n <Ms) •   «(s)   , (52b) 

^ 
a        v 

(52c) 

D,   ■    -f- Ms)   +   -^ Ms)   . an i\ a 
(;')_'<!) 

Ea -   -^*(.s) + ö(s)   . (52e) 

The elements of the matrix of the section shown at the right in Figure 7 are obtained 

by Eqs.   (17a, .... e) as 

Ab =    nb •   d(s)   +   ^   «Ms)   , (53a) 
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A a b 
Kk 0(.s) •   Ms)   , (53b) 

^ a 
^b        v (53c) 

nb 

(53d) 

Eb   =   j^- «(s) - «(s) (53r) 

By the multiplication rule of matrices that is given in Kq.   (19) we obtain the matrix 

elements of the chain matrix of the tandem in Figure 7.    In order to distinguish the 

result from a later one we use the subindex (AB)C .    This index shows that in 

Figure 7 either a section of type (A) or of type (B) is followed in the forward direc- 

tion by a   section of type (C). 

Ä (AB)C ■ n
a
nb *2<8)+:T2*2<S) + R K 

(n  -1)' 
(n  + n, ) + —2- a      b n (Ms)   *(s)  ,   (54a) 

(AB)C 
\ lu k n   n.     / \ b   a ab/ 

i Zivil!. 5viilL., 
\    ^"b "a      / 

ö(s) 

Ms) ■  <Ks)  , (54b) 

(AB)C hli^k) 6(3) + -^ (l + ka)<|.(,s) (54c) 

ö 
I) (AB)C 

—   Ö2(S) +  -L   ♦2(s)+-i: 
K- K n   n, a   b 

1 + 1 

% 

+ K + ir 

"a n, K 
b a 

rMs) • <l>(s)   ,    (54d) 

g(AB)C   =   ^ *2(S) ' o2(a)   ■ (54e) 
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Let us now impose a stronger restrain on the matching of the   T's .    Let us 

demand that the ratio constants   n     and   n,    be inverse each other,  given by 
ä D 

(55) 

The constant   n-   is positive and greater than 1  if the left side section in F'igure 7 

is of type (A),  and it is smaller than 1 if it is of type (B). 

3. 1. 2 DEFINITION OF THE PERFECTLY MATCHED TANDEM 

If in a matched tandem the magnitudes of the ratio   constants of the sections 

are such that they are vice versa inverse,  we refer to such a tandem as being 

perfectly matched. 

.1.2   l,<|iiivalriil  IVrfci lb  Mali heil Tundt'ms 

Assume that the left side section in Figure 7 is of type (A) and assume that 

Eq. (55) with   n0 >   1    holds.    Then the matrix elements of this tandem are: 

AC   =   02(s) +  j^  *2's) +  K^ nn" + 1 + (n„ - I)2 k Ms) ■ Ms)   . (5(ia) 

AC K k. K + l)2 + k  (n. - I)2 ' I (Ms) + -T^- Ms) a    0 / , Kn0 
(Ms) • *(s)   . (56b) 

AC 

1 +k 
-f   Ms) + j^r  <J.(s) n0 K (56c) 

AC 
6-(s) +  -^ *-(s) + T^ 

K" ^ n0 
Ms)    *(s)    . (56(1) 

^ 1 2. 2 EAC    -   -4f    ♦  (s) - ^"(s)    . (56e) 

When the left side section in Figure  7 is of type (B),  the matrix elements 

AB„ , . . . , En„   are the same expressions as given in Eqs.   (56a, . . . , e) with the 

only exception being that in this event   n« <   1   . 
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pcta T 
TYPE 

(C) 

i 

pcta T 
TYPE 

(B)or(A) 
1 
l 1 

Figure   8.    Tandem of Type (CB) 
or (CA) 

Consider now the tandem shown 

in Figure 8.      In this tandem,   inverse 

in the section sequence to Figure 7, a 

pesa T of type (C) is followed in the 

forward direction by another section 

that is either of type (H) or of type (A). 

We will relate the tandems In Figures 

7 and R   somewhat later; hence,  we 

assume that the right-side section in 

Figure 8    is of type (B) if the left-side 

section in Figure 7 is of type (A) and 

vice versa.   We assume that the sec- 

tions in Figure 8    are matched,  too, 

so thai 

xc        xd 

(57) 

and 

v x c c 

(58) 

We now relate the two tandems shown in Figures 7 and 8   by assuming» that the con- 

stant    K   In Hq.   (.r)7) is of the same value as the constant   K   in Eq.   (47).    We do 

not postulate that the constants   k     and    k.    in ICqs.   (4H) and (58) to be the same, 
a U 

however, it should be noted that the constants   k     and   k, ,  which express ratios 

between the mutual impedance constants   \   and   v   and the augmentation constants 

x   and   x   ,  are defined such that the unbarred notations arein the numerators and 

the barred notations are in the denominators. 

Again let us reduce the notations by using   v ,   only;  we set 

\1_ 
K (59) 

v (60) 
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Applying IJqs.   (17a, . . . , e) we obtain the matrix elements of the left side section in 

Figure  8   as 

Xc   -   nc •  (Ms) -^  «(s)   , (62a) 

A V (H     +   I)2 

Bc   «   w-S-     -4     «-Ms) •  •(•)   , (62b) 
b 

C     =   -^    , (62c) 
c        vd 

Dc   =   —   Ms) + £-  *(s)     . (62d) 
nc 

Ec   ■   -^    *(s) - (Ms)   . (62e) 

Applying Kqs.   (Kia, . . . , e) we obtain the matrix elements of the right side section 

in Figure  8   as 

Äd   =   nd • M-s) +-pr  *(s)   , (63a) 

A v .      (n i - I) 

d K n() 

C. =   —    , (63c) 
d vd 

D .   -   -^    0(s) + ^    *(.s)   . (63d) d        nd K 

Ed   •   jr   ♦(s) + Ms)   . (63e) 
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By matrix multiplitation we obtain the flements of the tandem in Figure  8   as 

^C(MA) nc nd '   <i,2(s)   +   ^J *2(s) + 

C(BA) 

1 
K n   + n , + c        d 

(n   + I)" 

b   c 

ö(s) •   *(s)   , 

| '   ' d kb nc nd / 

\      d kbnc   / 

Ms) 

Ms) ■  Ms)    . 

I 
C(BA)        v (t*^) 6(s) + p; (l+kb) *(s) 

(ß4a) 

(fi4b) 

(fi4c) 

I) C(BA) n   n . c   d 

D \s; '       ;   •*■  is; 
K- 

r •) 1 

>i + 1          ("d-ir 

nd             nd       . 

Ms) «(s)     , (f)4d) 

gC(BA)        Z2    *2ls) - *
2M 

is. 
((i4e) 

Let us now assume that the tandem in Figure 8   is also perfectly matched by 

setting 

"c  r TT   =  no   • 
d 

(65) 

and let us assume that   n«   is of the same value in Eqs,  0)5) and (55).    Thus,  when 

n0 >   1   ,  the right side section in Figure 8    is of type (B) .    Substituting   n*.   in 

Eqs.   (t>4a, . . . , e) we obtain the following matrix elements; 



« 

iZ 

CI3   ■    ^(S) + ^ *L,(S) + KIT 
rv U 

fag » 1) 
2 

o(s) • «Ks)   . (Ma) 

(Fi 
ji 
K 

9        <n0+1) 

^o - ^ +       k Ms) + j^-  «(s))    , (s) • Ms)   . (fiGb) 

CH 

1 + lu 
■^-    6(S)  +    ^r     <|.(S) (f)6c) 

CB 
2 12 1 

.    <<•)+ -^   ♦-(s)+   j^- 
K 

no + 1 + (no"1)2 kb '(i)(S!   ■Ws' 

^CB - i *'(s) -ö2(s) • (fi6e) 

In Eqs.   ((»(ia, . . . , e) w e assume that   n«   is greater than 1 .    If it is smaller than 1, 

then the right side section in Figur    8    is of type (A) and the respective elements 

of the matrix   Ap. , . . . , E/-»    are given by the same Eqs.   (fifia. . . . , e) with the 

only exception being that   n« <   1   . 

Similarities in the system of Eqs.   ((Jfia, . , . , e) and of Eqs.   (Mft, . . . , e) suggest 

investigating wh"thor it is possible that a perfectly matched tandem shown in 

Figure 8   is equivalent to a tandem shown in Figure 7 wnen Eqs.   (65),  (55) and 

Eqs.   (47),   (57) are truo.    The tandems are equivalent when their chain matrices 

are the same in all their elements.    We will now find the conditions under wh. :h 

equivalence can be obtained. 

Equations (Sfie) and (GRS) are completely identical. 

Equations (Sfia) and (fifia) become identical if 

a    b 

n0+ 1 

"() ■  1 

(«7) 

Under the same condition,  Eq.   («7) and Eq.  (56d) become identical with 

Eq.   (fißd). 

Equations (5fib) and (Gfib) become identical if 

vd       ka(.vir+(n0+i)2 
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or by Kq,   (67) 

1 + k 
  _§ 
1 + k,. (88) 

Under the same condition Eq.   ((ifi) and Kq.   (5(>c) become identical with Eq. (G6c). 

Let us now draw the following conclusion;   let the tandem shown in Figure 7   be 

a perfectly matched one by Eq. (55);  let the tandem shown in Figure 8   also be 

perfectly matched by Eq. (()5).    Then 

1 1 (89) 

It n() 1 , then the left side pesa T section in Figure 7 is of type (A) and the right 

side pesa T section in Figure 8 is of type (B). Types (A) and (B) are interchanged 

If   n0 <   1 . 

By Eqs.   (47) and (57) 

K        _i  .   -£ (70) 

We defined   k     oy Eq.   (48) and   k,   by Eq.   (5!i). 

The tandems shown in Figures 7 and  8   are equivalent 

(1) if Eq.   (70) holds; 

(2) if their sections are perfectly matched and Kq.   (69) holds; 

(,*)    if Eqi.   (67) and (68) hold. 

The equivalence allows us to determine the perfectly matched tamF;.i Figure 8 

when the tandem Figure 7 is known.    By   Eqs.   (47),   (48),  and (55) we know   K ,  k    , 

anil   n^ .    Then   by Eq.   (67) we obtain   k.   ,  and with this by Eq.   (68) we obtain v. . 

Eq,   (57) now gives us   x . = v ,/K ,  and Eq.   (58) gives us   x    = x ,/k,    and   v    - v ,/k. 

Finally by Eq.   (65) the ratio constants   n     and    1 /n ,   are known and thus the com- 

plete tandem in Figure  8   is known. 

We are now able to state the following theorem: 

• 
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THEOREM 3 (concerning the equivalence of perfectly matched tandems) 

A tandem in which a pesa T of type (A) or of type (B) is followed by 

a pesa T of type (C) has an equivalent tandem in which a pesa T of 

type (C) is followed hy a pesa T of type (B) or of type (A) if in each 

tandem the pesa T sections are perfectly matched and Eqs.   (67) 

and (6H) hold. 

4.  SYMMETRICAL PKRKKCTIA MATCHED TANDEMS 

A two-port is defined as being symmetrical if the elements   A   and   D   of the 

chain matrix are the same.    We can easily recognize that if 

"0+  1 

(7 1) 

then   A.p   in Eq.   (r)6a) becomes identical with   0*^   in Eq.  (56d).    Similarly,  if 

n0+  1 

(72) 

then   Arri   in Eq.   (fiGa) becomes D/-.n   in Eq. (66d).    In both events it is assumed 

that   n« >   1   .    If   n„ <   1   ,  the same statements are true.    Then the element   A™ 

becomes identical with the element   D_,p   by Eq.   (7 1) and the element   ApA   be- 

comes identical with the element   D_,.    by Eq.   (72). 

\ PKRFKCTIA  M\T(IIK» TWDKM  XM) ITS KQIIWI.KNT LATTICE T^OPOKT 

Consider the lattice two-port shown in Figure 9.      In a lattice we can evidently 

distinguish two pairs of branches:  one pair of branches in Fiqure  9   has the numeri- 

cal indices 1  and 4,  the other pair has the in- 

dices 2 and 3.    Let the branch notations in this 
o   ,   ^7777777\      o 

L,       jTr^ figure be impedances.    As indicated by the 

I   i.     ; ■ n | diagonal shading,  the branches 

x,- v+(') 
WZZZk* 

VZZZZZb-L* JS 
X 1 

X 

1 

■   x 

«(s) 

•Ms) 

and (7 Ha) 

(7 3b) 

Figure  &,    Lattice Two-Port 
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imply the normalized frequency function   (Ms)   that is also implied in the perfectly 

coupled branches of the pesa T .    Dot shading indicates that the branches 

X»   =    x„ • *(s)   ,  and 

X^    x3-  *(S, 

(7 4a) 

(7 4b) 

imply the normalized frequency function   ♦(s)   that is also implied in the augmenta- 

tion of the pesa T .    Since   X. , . . ., X .   are positive impedances,  the   x.   .   and 

X2 o   in Kqs.  (73a,b)   and (74a,b)   are positive real constants of impedance charac- 

ter. 

It is well known that a lattice has the following elements of its chain matrix: 

Ax   -    (X1+X3)(X2 + X4) (7 5a) 

Bx   =   X1X4(X2 +X3) +X2X1(X1 + X4) 

Cx   -   X   + X9 + X    + X     . 3 4 

Dx   .   (X, + X2)(X3 + X4). 

EX   =   X2X3 " X1X4   ' 

(7 5b) 

(75c) 

(75d) 

(7 5e) 

Let us now substitute the explicit expressions given in Eqs.   (73a,b) and (7 4a, b) and 

let us divide all the elements by the product   x. x, .    We then obtain: 

2 X2X3      2 X1X2+X3X4 A..  -   ö-(s) + -±-2  *-(.s) +    i ; -  i       <Ms) • ♦(■)  . 
IN 1 M 

(76a) 

Bx   -    (x2+X3) 
X2X3      Xl + X4 
x1x4      x2+X3 öia) • *(s)   , (7 Gb) 

(Xj + x4)   6{s) + (x2 + x3)*(s) 

X X1X4 
(7 6c) 

« ^.2/ « .  X2 X3    .2, .       X1X3 + X2X4 Dv    ■    <*>  (■) + -    ;      *   (s)  +    ——  A x   x4 xx Ms) ■ *(s)   , (7 6d) 
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X 

X2 ^        2 2 
xlx4 

(76e) 

There are similarities which suggest investigating whether the elements presented 

in Eqs.   (76a, , . ., e) can become identical u ith the elements presented in Eqs.   (56a, 

. . ., e) and in Eqs.   (66a, . . . , e).    This means that there is a possibility that a per- 

fectly matched tandem of two pcsa T s as discussed   in Section 4 is equivalent to 

the lattice shown in Fig".re   9.     Let us first find the identities between the elements 

in Eqs.   (76a, . , . , e) and Eqs.   (56a, . . . , e). 

Equations (76e) and (5Ge) become identical if 

X1X4    a   K2 
x2 s:i 

(77) 

Thus 

K 
\ X2 X3 

(78) 

since   K   is defined as a positive constant. 

Equations (56b; and (Vfib) become identical if 

irf (("o+ "2 + kaS -l)2) ^s) + irt" ♦<s) K n0 

- ^W xlx4     x2        3 
(7 9) 

By the expressions in the brackets in Eq.   (79) we find immediately that by Eq. (7H) 

X2 + X3     ^Fl* 
n0 x1 + x4     Y^x 

*3 
(«0) 

Equations (56c) and (76c) become identical it 
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1 +k 
ö(.s) + £  •(•) 

a      '    0 

x   +x x   + x- 
d(s) +  -i-—S  <t.(s) 

x1x4 xlx4 

X.. +  X,3        W Xi xi /  W x. X , i  3       3*14     VXjXgXjx^ *    I   4    VXj x2 x3 x4 

x2      x3      f xlx4 f xl x4 

Vx3 

Comparing the expressions in the brackets in Eq.   (til) proves that Eqs. (78) and (HO) 

are correct.    Equation (81) also shows that 

1  + k. S + «a 

Vxlx2x3x4 
(82) 

By Eqs.   (78) and (HO) 

KM 
X2 + X

:J    
X1X4 

0 x1 + x4     )t2Xg (83) 

Using the result in Eq. (83) we find »hat Eqs.   (5Ga) and (7()a) become identical if 

n0
2
+ t Mn0-l)2ka 

x.x.,+ x„x4      x„ + x? 

X2X3 xl + x.) 

(84) 

and that Eqs.  (56d) and (7fid) become identical if 

no" + 1 f 
(np+1) xix3+x2x4     *2* x3 

X2X3 xl + x4 
(85) 

2 2 Note that   (n0+ 1)"     (nn + 1) + 2 iin   .     Hence with Eq. (80),  Eq.   (84) can also be 

written as 
0 0 
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(n0+l)2+(n0-l)
2ka 

X2 * X3 
(VX4)N/V^ 

x    x2+ x„x 
3   4 

N/V^ 
♦■ 2vx7x7 1    4 

(86) 

By Eq. (79) 

K~k 

x2 + x. 
3 

a        (n0+ I)2 + (n0- I)2 ka 

(87) 

Therefore with Eq. (7K) 

(n^D-MMy-l)4^ J*2*3 
1   X1X4 

1 x1x2+x3x4 

V        +    V                                           '' Xl+X4 x2+ X3 
2 

| v/x1x2x3x4 

(^x. \„  +   \'x3 x4 )' 

+   2 

(XJ + x4)sx1x2x3x4 

(88) 

By Eq.   (82) 

k x    "^ x 
_L   + —a. . ^ L. go that with Eq.   (88) 
v v x. x., x„ x     ' M 

a a 12   3   4 

^        (x2-K x3)(x1 + x4) - (x1x2+ x3x4) - 2N/X1X2X3X4 

va (XJ+ x4)v/x1x2x3x4 

which yields 

_    ^1  + x4WxlX2X3X4 (89) 

Then,  Eq.  (88) yields 

(N/XJX^,   +   Vx3x4)" 
    > 

(VXjXg        -        VX2X4) 
(90) 
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It can easily be shown that with the results obtained so far,  all comparisons between 

Eqs. (56a, . . . , e) and (76a, . . ., e) are consistent.    When the lattice two-port is 

known by the constants   x. . . . . , x. ,  we are able to compute the constants   K ,  n„ , 

v    ,  and   k     which determine the equivalent tandem in the sequence where a pcsa T 
a a 

of type (A) or type (B) is followed by a pcsa T of type (C).    Eq.   (78) gives   K , 

Eq.  (80) gives   nn ,  Eq,  (89) gives   v   ,  and Eq.   (90) gives   k    ,    In the anticipated 

sequence of the sections in the tandem the ratio constants are  n    = 1/ n.   = n- . 

It is unnecessary to show the equivalence between a lattice two-port and a 

tandem in which a pcsa T of type (C) is followed by a pcsa T of type (B) or of 

type (A) by again equating the Eqs.   (66a, . . . ,e) with the Eqs.  (76a, . . ., e).    The 

constants   K   and   nn   in this structure are given by the same Eqs.  (78) and (80). 

ByEq.   (67) 

I.       •     1 [v1 

[v1 

By Eq. (86) 

1 

(n0+l)2     a kb 

— v2 
1 <

X
2-

HX
3

)(N/
V

Z
2
+,S/7

3
X

4
) 

(n0+I)' 
(Xj +x4)x2x3 

(91) 

By Eq.   (80) we find that 

(n0+l)' 
(x2 + XgWxj x4 +   (Xj + x4Wx2 x3 

(x. + x,r x.,x 2^3 

Hence, 

Kb 
(x. +x4)(x2+ x3) 

(Vx1x2 +  \/x3x4)' 

(x2 + x3)^x1x4 + (Xj + X4)N/X2X3 

and 

[(X2+X3)N/X1 X4 +   (Xj + x4)\/x2x3 

(x1+x4)(x2+x3)(N/x1x2 + ^x3x4)2 - |(x2+x3)Vx1x4+ (x1 + x4)««/x2x3 
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After some computation we obtain 

[<X2+X3)N/Vr4 +  (xl + x4Wx2X3) 
kb = ; ^  

'xl x2 " X3X4' 

(N/xlx3 + N/V^)2 

(92) 

By Eq.   (68) 

1 + k^ 
vd        va   1 + k 

By Eq.  (92) 

1 + k. 
(xj  + x4)(x2 + x3) 

(93) 

By Eq.   (90) 

1 + k. 
(Xj + x4)(x2 + x3) 

(<jT[r3 - 'G^i) 
(94) 

By Eqs.   (89) and («8) 

(x1 + x4)Vx1x2x:)x4 

^xlx2 ■ ^V^J)2 
(95) 

When the lattice two-port is known by its constants   x, , . , . , x . ,  we are now 

able to compute directly the constants of the equivalent perfectly matched tandem 

in which a pesa T of type (C) is followed in the forward direction by a pesa T of 

type (B) or of type (A).    The constants   K   and   m,   are given by Eqs,   (78) and (HO). 

The ratio constants in the tandem are   n    ■ l/n,i .i0 ,    The constant   k.    is given 

by Eq.   (92) and the constant   V ■   by Eq.   (95).    Thus the tandem is known completely. 

From a computational point of view the use of Eqs.  (H9),   (90),   (92),  and (95) is 

not very.practical since these equations necessitate the computation of some square 



M 

roots.    Knowing   K   and   n«   it is preferable to compute 

1 a   s -»  ^X—   T? " (Mo + » 
2   3 

(96) 

and,  respectively, 

1 
kb S+1) 

VV X3X4 
X2 X3 

_2. 
K (n-+l) (97) 

instead of using Eqs.   (90) and (92). 

Instead of using Eqs.   (Ü9) and (95) we compute by Eq.   (H7) 

(x, + x„) K kQ 

(n0+l)2
+(n0-l)2ka 

(98) 

and similarly we obtain 

(x2 * ^3] K kb (99) 

Equations (98) and (99) can also be verified. 
More important than the derivation of the equivalent perfectly matched tandems 

from the lattice two-port is the derivation of the lattice from the tandems.    This 

reverse derivation can most elegantly be performed in the following way: 

Consider Eq.  (5(ib) and let us introduce 

(,Vi)2 + ka(n0-ir (100) 

Since Eq.  (5()b) is identical with Eq.  (TKb). 

S   -   (x2 + >t3)K (Kil) 

But,  Eq.   (5()b) is also identical with Eq.   (()6b).    Hence 

(nü+ir + kb(n0-ir (102) 
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By Eq.   (83). 

S   =    (X, ♦ x4)n0 (103) 

Consider now Eq.  (56c) and let us introduce 

1 + k 
P   • K (104) 

Since Eq.   (56c) is identical with Eq.   (76c),  also 

P   = 
X2+X3 

X2X3 

But Eq.   (56c) is also identical with Eq.   (66c),   so that 

(105) 

1 + k 
fe-K (106) 

By Eq.   (83) 

P   =      K n„ x1x4 0 
(107) 

Let us now compute the product   SP .    By Eqs.   (103) and (107) we obtain 

SP 
<   1  ^/Kn0- 

xlx4 
(10H) 

By Eqs.   (101) and (105) we obtain 

SP  -- 
(x2 + x3r K 

X2X3 

Let us further compute using the result obtained in Eq.   (10K): 

(109) 
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.f^f*    {> 4X1X4 Xl -X4 
/ .2 x, + x, (X. ♦ X J 1 4 

Hence 

1 + 
xl -X4 
Xl + X4 

2x, 

xl'  X4 
and 

2x 
1 - 

xl "^ 
Xl + X4 Xl + X4 

Note that by Eq.   (103) 

'i + »4-^- ■ 

so that 

S 
2ii 0 -   /~1? (110a) 

and 

S 
2ri 

0 -v: 4K"o~ 
SP (110b) 

Equations (llOa.b) can briefly be written as 

1,4 
_S 
2n 

0 - V^P (111) 

where the   +   sign refers to   x.   and the   -   sign refers to   x , .    Note that auto- 

matically by Eq.   (110a)   x. >  x, . 
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Using the result obtained in Eq. (109) an'J with so far undecided polarities lei 

us compute: 

V^l «f7^. 2 "8       _        x2 " X3 

(x2 + x3)2 ^  x2 + X3 

Intermediately let the   +   sign be true,  assuming that   x., > x, .    Then 

1 + 
x2 ' x3 "a 
X2+X3 x2 + X3 

X2 " X3 2X3 

,    and 

X2 + X3 X2 + x3 

Note that by Eq. (101) 

x2 + X3   :   K   ' 

so that 

S. 
2K 1 + l1      SP 

(112a) 

and 

S 
2K 1 - l1      SP 

(112b) 

If in our ambiguity the   -   sign holds,  if   x, > x« ,  then 

2K 
Vl-   i£ 
^1       SP (li;<a) 

2K V        SP (113b) 

We now have to find a condition that decides whether for a given tandem the pair of 

Eqs.   (112a.b) or of Eqs.  (113a,b) is the correct one in order vo obtain the imped- 

ance branches  X2   and  X3   of the equivalent lattice. 
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Note af,'ain that Eqs.   {76a) and (56a) are identica) if 

xlx2+ X3X4 
X1X4 

1 

0 
(n0 + « + ka(n0 - 1)2 (114) 

and Eqs.  (76d) and (56d) are identical if 

W X2X4 
xlx4 Knr 

2 ^O^^ (115) 

Then 

X1X2+X3X4        X1X3+X2X4 (Xj - X4Hx2 - x3) 
X1X4 X1X4 X1X4 

(116) 

Since we assumed that   x.   >  x . ,  the result in Eq.   (116) is positive if  x„ > x„ 

On the other hand 

(xj - x4)(x2 - x3) 

~4 

_1 
Kn 

Ü 

ka(n0 - 1) 2     (Vir 

K
 ka n0 

2   S'1* 
ka  2    ■ 1 (117) 

The final result in Eq. (117) can onlj be (...sitive if 

k     > a n0-l (118) 

But then by Eq.   (67) simultaneously 

b I n0 - 1 (119) 

If   X. > X» « then the result in Eq.   (116) is negative and consequently the opposite 

signs of inequality are true in Eqs. (llii) and (119).    Hence,  we can combine 

Eqs.   (112a, b) and/or Eqs.   (113a, b) in 
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%i 2K 1  ± "        SP (120) 

where the   +   sign refers to   x2   and the   - sign refers to   x„   when 

k     > a 
V1 

n0-l > K (120a) 

and where the   +   sign refers to   x„   and the   -   sign refers to   x.,   when 

k   < a 
v_i 
n0-l < k. (120b) 

We are now able to state the following theorem: 

THEOHEM 4 (concerning the equivalence between 
a perfectly matched tandem and a lattice two-port) 

A perfectly matched tandem of pesu T s where a section of cither 

type (A) or type (B) is followed by a section of type (C),  or a 

tandem where a section of type (C) is followed by a section of 

either type (B) or type (A) is equivalent with a lattice two-port. 

The lattice implies in one pair of its branches the normalized 

positive real frequency function   (Ms)   and i'  the other pair the 

function   *(s)   as indicated in Figure 9. 

Assume now that one of the tandems is known and we want to find the constants 

which determine the lattice.    We compute as follows; 

Depending which section sequence   (either (AB)C   or   C(BA))   is given,  we com- 

pute   S   and   P   by Eqs.  (100) and (104) or by Eqs.  (102) and (1ÜG).   respectively. 

Then we compute   x.    and   x,   by Eq.   (Ill) in which the indices are clearly identi- 

fied.    We know   n0   by Eqs.  (55) or (65),  respectively; hence,  we can compute 

n  +1 
-—^-r    and we can compare this quotient with the known   k     or   k,   .    This enables 

us to decide about the relation between the signs of polrity and the components x„ 

and x„ in Eq. (120) according to the relations in Eq. (120a, b). Eq. (120) can now 

be evaluated. 

In general, the lattice two-port is not a symmetrical one.    It becomes symme- 

trical if   x. 1 x,   and   Xo * X. .    This is the case when Eqs, (71) and (72) hold. 
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The stated equivalence is of extreme importance.    It allows us to find a very 

simple and transformerless realization for the otherwise highly complicated per- 

fectly matched tandem.    One will agree,  however,  that a tandem in which the sec- 

tions are perfectly matched is a rare situation.    More often,  supposedly,  we meet 

a tandem in which one section is of type (C) and the other of type (A) or of type (B), 

where the sections are matched (v/x ■ v/x),  but not perfectly matched.    It has been 

shown in Section 2 that if port impedance implying the frequency function   *(s)   is 

available, one can change the ratio constant by transposing this impedance to the 

other port.    In this situation, there is hope that only a matched tandem can be 

changed to a perfectly matched one.    To investigate this is the aim of the next 

section. 

6.  PERFECT VUTr.HIV; \\ \ TANDEM OBTAINED BY THE TRANSPOSITION 
OK PORT   IMPEDANCE 

Consider Figure IO which shows two matched tandems terminated by port im- 

pedances.   The   T   svi lions are matched (v /x    ■ v,/x.    and   v'/x'  = vr/xu) Jn a'   a       b'   b a'   a       b'   b 
both tandems.    The frequency functions   0(s)   and   ♦(s)   are expressed in the 

familiar way of shading.    The figure contains only the necessary notations of the 

impedance constants and of the ratio constants. 

SECTION o '   SECTION b 
of        ! of 

TYPE(A)or(B)        TYPE(C) 

SECTION a  [    SECTION b 
of        I of 

TYPE(A)or(B)|      TYPE (C) 

nh - l/n 

Figure 10.    Impedance Transposition Between the Ports of a Tandem 

Assume now that the left side two-port has an in-port impedance   X    = x   • ♦(s) 

and assume further that its pesa T sections are not perfectly matched 

(n. * l/n ).    We suppose from our discussions in Section 2 that we are able to 

transpose the in-port impedance to the out-port,  where it appears as X' = x' • ♦(s) 
3 O 
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and we hope that we can find a proper magnitude   x     such that by the transposition 

the two-port becomes perfectly matched (n,'  - l/n' ).    The constant   x     of course 

has to be a positive one.    If we succeed in this attempt,  then the perfectly matched 

two-port at the right in Figure 10 becomes equivalent with a lattice two-port;  then 

the two-port shown at the right in Figure 10 has a 

realization that is shown in Figure  11 

We transpose the in-por*. impedance (see the two- 

port at the left in Figure 10) in two steps.    First we 

transpose it to the out-port of Section 2 where it ap- *2 
(£332! 

A     £ 
Figure 11.    Lattice 
Terminated at the 
Out-Port 

pears as   X|! By Eq.   (32) we obtain 

■   n 
x   + x  (n s       a    a IF 

(121) 

By Eq.   (33) 

n   n a   a 
(122) 

By Eq.   (34) 

By Eq.   (35) 

(123) 

v     =   v    — a ax (124) 

We now perform the second step of the transposition.    We transpose   X"   to s 
the out-port where it appears as   X' .    By Eq.   (43) s 

n.    =   n.      b b     ,, ^ - (125) 
x;' + xb(nb+1)' 

By Eq.   (44) 

nbnb 

(126) 
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By Eq.   (45) 

J_ ♦ _L (127) 

By Eq.   (4(i) 

v.     r   v.  —= b b   — 
(128) 

Wc postulate that 

=  ii -i. 

x   + x  (n    -  I)2 

s       a   a 

(129) 

By substituting   x''   from Eq. (122) into Eq. (125) we obtain 

nb   =   % x   + x, n   n' (n, + 1)' s        b   a   a     b 

(130) 

By substituting   n'   from Eq. (121) in Eq.   (130) we obtain 

nb   =   nb  2 = = T 
x   + x  (n   - 1)   + x. n  (n. + 1)" s       a   a b   a     b 

(131) 

By Eq. (129) we obtain the following equation in which   x     is the unknown: 

— 2—2—2 x_ n   n.     ■   x   + x  (n   - 1)   +x, ii   (n.+l) 
sab s       s    a 'b   a'   b 

Solved for   x s 

n   n.  - 1 
a   b 

^"a-^V^V1)2 (132) 

Recall that   x     has to be positive.    The expression in the brackets in Eq. (132) is 

definitely positive,  since   x     and   x.    are defined as positive constants of impedance 
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character.    The c ^nominator   n   n,   ,  however,  is only positive if 

a   b (133) 

Therefore,  the success of obtaining a perfectly matched tandem depends not only 

on the magnitude of   x     but also on the ratio constants   n     and   n.    before the 

transposition.    Only if the inequality in Eq. (133) holds,  the aim of the   transposi- 

tion can be obtained.    Evidently,  the limit   n   n.   = 1    postulates   x    -• ou .    In this 

event the sections are already perfectly matched and no in-port impedance has to 

be transposed. 

Assume now that we have a tandem of matched (but not perfectly matched) sec- 

tions in the type sequence (AB)C  and we ask:   what in-port impedance   X      is neces- 

sary to obtain perfect matching by the impedance transposition?   To answer the 

question we first have to check whether or not the inequality (133) holds.     If it does 

not hold,  we know that perfect matching cannot be obtained.    If it holds,  we com- 

pute   x     by Eq.   (132).    The constants after the transposition are known by the s 
respective equations in the series of Eqs. (121) through (128).    The constants 

x'. ,. . . , x^ determining the lattice in Figure  1 1 are obtained by Eqs. (Ill) and (120) 

in the preceding section.    The lattice two-port,  of course,  has a termination im- 

pedance   X' = x'• *(s) . s       s 
Next assume that (with other values of the constants than before) a tandem 

such as shown at the right in Figure 10 is matched,  but not perfectly matched.   Let 

the tandem be terminated by the out-port impedance   X'   and let this impedance 

be such that by transposing it to the in-port the tandem becomes perfectly matched. 

Let us now answer the question:    what constant   x'   is necessary tnat perfect 

matching can be achieved. 

In the backward direction we transpose   X'    in two steps.    First we transpose 

it from the out-port to the in-port of section b in the right part of Figure 10.     {% 

appears there as   X^ W<   apply in sequent   Eqs.   (39) through (42) and obtain: 

nb + 

(n^l)2     x^ 
(134) 

\ 

x   n,   n. s    b    b (135) 

< 
(136) 
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-,    Xb 
VH    =   Vb — (137) 

Next we transpose   X'' to the in-port of the tandem where it appears as   X     in the 
9 S 

left part of Figure 10. We apply Eqs. (25), (28), (29),  and (30) in sequence and we 

obtain: 

n     =   n   + ,    —7T a a n xD a s 
(138) 

"   .. ^ x      =   x    n   n     , s s    a   a (139) 

xa xs 
(140) 

x 
,     a v       =   v   —7- a ax a 

(141) 

We postulate that 

n     ■  1 / n, a '    I (142) 

ami we obtain that the necessary   x'    is given by 

n' n.'d -n' n.' ab ab 

x'(n' - I)2 + xr n'2(n.' + I)2 

a    a b   a       b (143) 

The constant   x'   has to be positive.    In Eq. (143) the expression within the brackets 

is definitely positive since   \.'    and   x'   are defined as positive.    Hence   x'    is posi- 

tive when the denominator in Kq. (14,1) is positive.    Therefore,   in order to make 

x'   positive it is necessary that 

n' n.'   <    1 a    b (144) 

before the transposition. 

When we intend to match perfectly a tnndem that is shown at the light in Fig- 

ure  10,  we check first whether or not the   inequality (144) holds.    If it does not 

hold,  we know that perfect matching cannot be achieved.    If it holds,  we compute 
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the necessary   x'   by Eq. (143) and the constants after the transposition by Kqs. 

(1H4) through (141). 

«2 

The perfectly matched tandem that has the termination   X     at 

at its in-port as shown at the left in Figure 10 has an 

equivalent lattice structure as shown in Figure 12.   The 

lattice of course has the impedance   X     at its in-port. 

Ü pBEBEgH 

Figure 12.    Lattice 
Terminated at the 
In-Port 

Its constants   x 1' x.   are obtained by Eqs. (Ill) 

and (120). 

For completeness we will now assume that the 

sections appear in the opposite sequence.    First assume 

that,  as shown in the left part of Figure   13 a pcsa T 

section of type (C) is followed by a Section d that is 

of type (A) or of tyne (B).    Let the sections be matched 

(but not perfectly matclied).    Assume that   n . *  1/nc • 

What is the in-port impedance   X     that has to be trans- 

posed to the out-port where it appears as   X'   so that 

perfect matching (n^ = l/n )  is obtained? 

We first transpose   X     over Section c.    By Eqs. (43),. . . , (46) we obtain: 

n     =   n c c x    + x  (n  + '/ s       c    c 

(145) 

n   n c   c 

(146) 

SECTION c'   SECTION d 
of       I of 

TYPE (C) 1 TYPE (A) or (B) 

SECTION e      SECTION d 
of of 

TYPE(C)   I TYPE CA) or (8) 

n^* l/l^ 

Figure 13.    Impedance Transposition Between the Ports of a Tandem 
of the Reverse Sequence Compared With Figure  10 
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1 1 
- + 
x„ x„ c s 

(147) 

v      =   v c   — 
X. 

(148) 

Next we transpose   X''   to the out-port where it appears as   X' .    By Eqs. (25), s s 
(28), (29),  and (AO) we ohtain: 

d   *s   + "d^d - 1)2 

(149) 

s        n . n . d   d 
(15J) 

1 1 (151) 

■d   x 
(152) 

In order to make 

"H   '   l/'V (153) 

it is necessary that 

n   n , - 1 c   d 

x (n  + I)2 + x .n  (n . - I)2 

c     c d   c     d (154) 

The constant   x     is positive only when 

n   n.   >    1    . c    d (155) 

The inequality (155) shows that perfect matching can only be obtained when,  before 

the transposition in the forward direction,  the product of the ratio constants is 
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greater than 1.    This is qualitatively the same postulation as we met in (133) in 

performing the first forward transposition. 

If in a tandem which is not perfectly matched and where a type (C) section is 

followed by a type (A) or (B) section the inequality (155) holds,  an in-port impedance 

X    ,  given by the constant   x     in Eq.   (154),  can be transposed to the out-port.   The s s 
constants after the transposition can be computed by Eqs. (145) through (14!i) and 

Eqs. (149) through (152).    The perfectly matched tandem obtained after the trans- 

position is equivalent to a lattice such as shown in Figure 11.    The lattice is 

terminated by the transposed   X' ;   its constants can be computed by Eqs. (Ill) and 

(120). 

Finally,  consider the tandem that is shown at the right in Figure 13.    Assume 

that (with values other than those used previously) the Sections c  and d  in this 

tandem are not perfectly matched (n ■ *   l/n' ).    What is the out-port impedance 

X'   which has to be transposed to the in-port so that perfect matching (n ■ - 1/ n') 

is achieved? 

We transpose   X'   from the out-port over Section d and we obtain by Eqs. (24), 

(28),   (29),   and (30) 

"d   =   nd + 

(n-1)^ 
(156) 

x    n , n , s    d    d (157) 

(15!!) 

d rd   - (159) 

Next we transpose   X"   over Section c  to the in-port.    We apply Eqs. (39) through 

(42) to obtain! 

n     =   n'  + c c 

(n' + l)2    x' c c (160) 

's 

^ ^    ..,       -» ^ x     =   x„   n   n        , s sec' (161) 
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i.  .   J. ♦  J L     . 062) 
cess 

-    xc 
vc   =   v'-r-    . (163) 

c   x' c 

Postulating that 

nd   ■   l/nc (164) 

yields 

xs n' n'(l -n' n') cd cd 

Xc(nc+1)2 + Xd"c2<ndi)2 (165) 

The constant   x'    is only positive when 

H^ n^  <    1  . (166) 

When the inequality (166) holds,  the necessary constant   x'   of the impedance to be 

transposed from the out-port to the In  port can be computed by Eq. (165).   The 

constants of the tandem after the transposition are obtained by Eqs. (156) through 

(163).    After the transposition the perfectly matched tandem has an equivalent 

lattice structure as shown in Figure  12.   The constants of the lattice are obtained 

by Eqs. (Ill) and (120).    The lattice is terminated at its in-port by the impedance X   . 

Note that the inequality postulation (166) demands that the product of the ratio 

constants before the transposition be smaller than 1  in the second backward trans- 

position, also.    Hence,  it is common to the forward   transposition tl   t this product 

is greater than 1  and to the backward transposition that this product is smaller 

than 1. 

We state the following theorem: 

THEOREM 5 (concerning the transformation of a matched tandem 
into a perfectly matched one) 

A simply (not perfectly) matched tandem   can be transformed 

into a perfectly matched tandem by a forward or a backward 

transposition of port impedance if before the transposition the 

magnitude of the product of the ratio constants is greater than 1 
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for an anticipated forward transposition, and if the magnitude cf 

this product is smaller than 1  for an anticipated backward 

transposition. 

For practical purposes it is not sufficient to answer only the question about 

the necessary magnitude   x     and   x'   of the impedances to be transposed.    For s s 
instance, if .ve intend to transpose the impedancp X in the forward direction, a 

sufficient amount of in-port impedance X„ must be available. If X^ = X , then 

the impedance is transposed totally.    Assume now that 

X X. (167) 

In Eq. (167) the more general case is shown where the available port impedance X^ 

is split into two components.    The component  X     is transposed and acts in per- 

forming perfect matching.    The other component  X^   remains at the in-port of the 

now perfectly matched tandem as well as at the in-port of the equivalent lattice. 

In order to achieve perfect matching,  therefore,  not only must the inequalities (133) 

and (155) hold before the transposition,  but it is also necessary that 

*S   < (168) 

in order to make   X     in Eq. (167) positive.    Likewise in the event of a backward 

transposition where the available out-port impedance is split acco-ding to 

x; X' s X' (169) 

besides holding the inequalities (144) and (166),  it is necessary that 

xs < *; (170) 

in order to make   X'   positive in Eq. (169). 
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7.  SOMK PAKTICI L\R BftUCTUtlfl 8f \ PKRFKCTI.V CO! Pl.K.n \ND 
SIN NT-M KMEMED T 

In Section 1 where we defined the pcsa T,   we assumed that the normalized fre- 

quency functions   <Ms)   and   ♦(s)   are unrelated and we only postulated that they be 

positive real functions.    Let us retain this postulation for   *(s) ,  but let us assume 

that 

0(s) (171) 

Kquation (171) presents the particular frequency functionthat causesthe perfectly 

coupled branches of the   T   to become perfectly coupled inductive impedancea    But 

we know by Spction 1 that an inductive star,  for which the sum of the inverse induc- 

tances disappears, has a perfectly coupled transformer as an equivalent circuit. There- 

fore,  a pcsa T in which   0(s) ■ s 

can be realized by the circuits 

shown in Figure 14.    In part (a) 

of Figure 14 we assume that the 

transformer ratio is positive,  in 

part (b) we assume it as negative. 

The shutu-augmentation can be any 

positive real impedance function. 

The case where   (pis) = s   is 

the only one where a   pcsa T   can 

be realized as such.    If port im- 

pedance is available this impedance 

Therefore,  we have a certain free- 

st »N 

r 
x«(s) x«(«) 

0 

Figure 14,     pcsa T With the Frequency 
Function 0(s) ■ s 

can be transposed either totally or partially 

dom in this event in regard to the design of the transformer. 

Assume that in addition to Eq. (171) tne other frequency function 

*(s) 1/s (172) 

By Eq.  (172) the shunt-augmentation becomes a capacitive impedance.    Then,  if 

Eqs,   (171) and (172) hold, the pcsa T becomes the well known and classical Bi une 

section which for a positive transformer ratio is shown in Figure 15.    Since the 

publication of Otto Brune's famous paper (1931),  the Brune section shown in Fig- 

ure 15 has always been considered as a general configuration of a two-port section 

in network theory.    By Eqs. (171) and (172),  however,  this section appears as a 

particularity of a much more general section,  the pcsa T,    A first step towards the 

generalization has stimulated the author to write a Letter-to-the-Editor (Haase, 

1964) after having read Miyata's paper (1963).    A* that time the author thought it 
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Figure  15. pcsa T of the Brune Type 
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necessary to stick to Er.  (171) and that 

Eq. (172) seemed to be an unnecessary 

restriction.    He later found that Eq. (171) 

can also be dropped if one disregards 

that if  0(s) # s .  but if  Ms) and *{s) 

are normalized positive real frequency 

functions, the general p. sa T cannot be 

realized as such;  nevertheless it is a 

most valuable model of a two-port 

section. 

A more or less trivial pcsa T of type (A) or type (B) is the one that degenerates 

to a shunt two-port by the particular ratio constant   n =  1 . 

Since we know by Section 3 that by a forward transposition of a port impedance 

the ratio constant decreases,  and by a backward transposition it increases, one 

may ask:    is it possible to find a port impedance such that by a respective trans- 

position a ratio coefficient   n = 1   can be achieved     This would be something 

similar with the achievement of perfect matching as discussed in the previous 

section.    In the present question it would mean that a degeneration of a pcsa T of 

types (A) or (B) can be obtained.    The answer to this question however is   NO. 

Equations (25) and (32) show immediately that   n - 1   also postulates   n' = 1; 

hence, the ratios   n   and   n'   are as singular events always simultaneously equal 

to 1. 

8. THE pcsa T »ITM DIAL SHUNT COMPONENTS AND ITS REALIZATION 

Assume now a pcsa T with the normalized frequency function   ^(s)   in the per- 

fectly coupled branches and let the other normalized frequency function be 

♦ (s)   ■    l/0(s) (173) 

Of such a  T   we like to say that its shunt components are dual.    When tne one shunt 

component is of the impedance   v • 0(s)   and the other of the impedance   x/0(s) , 

their product is   v-x  that is the square of the duality constant.    Figure 16 shows 

such a   T   in part (a) when it is of type (A) or (B) and in part (b) when it is of 

type (C) 

Let the   T   be of type (B) with   n> 1   so that   v(- - 1 ) <Ms)   is negative and 

v(n -1) 0(s)   is positive, and let the two-port be terminated by an impedance function 

ZAa).    This two-port is shown in Figure 17. 
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u,w>0 

v<0 

x-V>0 
o »■ o 

(0) (b) 

Figure 16.    pcsa T of Type (A) or (B) in (a) and of 
Type (C) in (b) with Dual Shunt Components 

v(n-l) v(|-l) 

Z(t).*. Zt(t) 

Fißurc 17. pcsa T With 
Dua) Shunt Components 
Terminated by Z (s) 

Call the impedances 

v(n- 1)   (Ms)   ■   Z0(s)   . 

v (^ - 1)    0(s)   ■   Zb(s)   , 

(174a) 

(174b) 

v •  0(s) + x/0(s)   -   Z  (s) (174c) 

Then the driving-point impedance measured at the in-port of the circuit in Fig- 

ure 17  is 

Z(s)   --   Za(s) +  —j- 1 
1 

Z^TiT   +    Zb(s) + Zt(s) 
(175) 

Evidently, when at a frequency   s = s0   the sum of the impedances 

Zb(s ) + Zt(s0)   =   0 (176) 

Then 

Z(s0)   -   Zav30) (177) 

Such a frequency s0 certainly exists; the sum in Eq. (176) implies the branch 

elei:ir>nt Z. (s) that is negative as we know. Hence, even sQ will be real and 

positi/e. 
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There i3 also a complex frequency   s     for which 

Zq(8q)   -   0, (178) 

so that 

Z(sq)   -   Za(sq) (179) 

Let us summarize: whenever either   Z (s)   or the sum   Z, (s) + Z.(s)   in which 

Z, (s)   is a negative impedance,  becomes zero,  we measure   Z (s)   as the driving- 

point impedance of the two-port in Figure 17. 

Consider now the lattice that is shown in the left part of Figure 18.    It has the 

pair of branches   T • (Ms)   and   T/^(s)   and the other pair of branches   T/F(s)   and 

I • F(s).    In the right part of Fig- 

ure 18 the circuit is redrawn and 

shows a bridge representation that 

may be a more familiar picture of 

the circuit.    One will recognize 

immediately that this bridge is 

balanced by the proper choice of 

tne branch impedances.    Hence,  it 

does not matter whether or not this 

balanced bridge is terminated at the 

terminal pair   2 and 2' ;    we may 

even short circuit these terminals 

and thus obtain the circuit shown 

in Figure 19.    This circuit is equivalent in regard to its in-port impedance to 

the circuit in Figure 18.    The correspondent oairs of branches in Figures 18 and 

and 19 have the same constant of duality that is   T   since 

Figure 18.     Balanced Bridge Structure 

|T • 0(s)| T/0(s)   ■   T- F(s) •  T/F(s)   ■   T' (180) 

T/F(t)       TF(i) 

lo- 
T-^t) T/*(t) 

I—^E2B_L_£ss^3J 

Figure 19.    Bridge Equivalence 
With That of Figure 18 

In order to relate the shortened lattice cir- 

cuit with the pesa T with dual shunt compo- 

nents, we will introduce somewhat different 

notations and,  furthermore,  refer to 

Figure 20.    In Figure 20 the branches in the 

left part of the circuit have the impedances 

V Z (s)   and   Zn(s) .    The corresponding 
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Zo(t) 2j(t) 

IM 
«-^////xx/i—»—iSWvVVN»-' 

Z*(t) 

branches in the right part of the circuit have 

the impedances 

Z*(s)   -   T^/Zjs)   , (181a) 

and 

Figure 20.   Realization of the 
Driving-Point Impedance of 
a pcsa T of Type (B) 

Z*(s)   ■   T2/Zn(s)   . ('8lb) 

Thus,  when for example   Z« (s) = 0 , then 

Z0(s)   ■  oo ,    Assume now that   Zl (s)   is 

simultaneously zero when   Z  (s)   is zero and vice versa.    This means that the zeros 

of   Z^(s)   and those of   Z  (s)   are the sanvj. 

The driving-point in-port impedance of the circuit in Figure 20 is 

Z(s)   =   Z1(s) + Z2(s)   , (182) 

where 

Zjfs) Za(s) v5» 
Za(s) + Z0(s) 

Za(s)Z1(s) (183a) 

and 

Z2(s) 
«:« Z0*(s) 

■    T* Za(s)+ Z0(s) (183b) 

Hence 

Z(s) 
Za(s)Z0(s) + T' 

Za(s) + Z0(s) (184) 

We measure   Z(s) = Z (s)   when either in Eq. (184)   Z0(s) = oo ,  or for   s-   as shown 

previously.    Hence in Eq.   (184) 

T =  ^^o) (185) 

where   30   is a real solution of the equation 
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Zb(s) + Zt(s)   --   0 
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(186) 

We now know   Z(s) ,  Z  (s)   and   T   in Eq.   (184) and we a-e thus able to determine 
a. 

T* - Za(s)Z(s) 
Z0(S)   r       Z(s) - Z  (s) 

d 
(187) 

liquation (184) can also be written as 

Z(s)   - 
Za(S)ZQ(s) 

Za(s) + Z0(s) 

Tl 
Za(s) + Z0(s) (184a) 

Since   Z(s)   and   Z  (s)   are positive real impedances and   T   is a positive constant, 
a. 

Z0(s)   must also be a positive real function.    Thus,  Z0(s)   and its dual   zlUs)   are 

realizab'r and with them the complete circuit in Figur.1 20.    This circuit is similar 

v. j'h a Bott-Duffin (1949) circuH but is more general.    It has the same driving- 

point impedance as the circuit shown in figure 17,   but otherwise it is not equivalent 

to this circuit. 

We have shown in this section that a positive real impedance function can be 

realized as the driving-point impedance function of a transfoi merless and Bott- 

Dufiin - like circuit.    We assumed that the implied pcsa T was of type (B) and had 

dual shunt impedance circuits.    It can be shown that a similar realization is also 

possible when the implied pcsa T is of type (A) or of type (C).    It is not the purpose 

of this report to discuss all these realization problems; we intend to devote other 

reports to these problems in the near future.    But,  it has been felt worthwhile to 

mention here one of the   realizations in which a pcsa T is implied. 

<>.  TIIK »I \\. fft-Ntf W TIIK I'KRFKnn  (01 PIKI)  \M) SHI M-\M;MKNTK!) T 

We call two two-ports dual when the one is described h. the Kirchhoff voltage 

equations in the same way as the other is described by the Kirchhoff current equa- 

tions.    As an example consider the circuits (a) and (b) in Figure 21.    The circuit (a) 

in this figure is a   T   with the branch impedances   X. ,X   ,  and X., .    It has the 

following elements of the chain matrix: 

AT = xi + x2 (188a) 
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Figure 21.    AT   Two-Port (a) and 
Its Dual Pi Two-Port (b) 

BT = Xi*2 + X1X3 + X2X3 . 

cT = 1 . 

(188b) 

(188c) 

DT = X2 + X3 ' 

ET = X2 * 

(188d) 

(188e) 

The circuit (b) in Figure 21 is a   Pi   with branch admittances   Y. , Y«, and   Y» 

It has the following elements of the chain matrix: 

APi   =   Y2 + Y3   ' 

Bpi   =    1    . 

^Pi        YlY2+YlY3+y2Y3   ' 

Dpi   =   Y1 +  Y2   . 

Ki   -   Y2 

(189a) 

(189b) 

(189c) 

(189d) 

(189e) 

Assume now that we make 

Xl   =   Yl    ' (190a) 
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(190b) 

X3   =   y3 (190c) 

This is possible when the impedances and admittances are referred to the resis- 

tance R0 = 1 by an immittance normalization. It is easy to show then that,  numeri- 

cally, the impedance matrix of the T section is the same as the admittance matrix 

of the Pi section and vice versa.    Hence, under the assumption of Eqs. (187a, b, c) 

the T and the Pi sections are duals of each other.    We also observe that the 

duality reflects in the elements of the chain matrices: In their numerals the ex- 

change between  A-,   and  D^,   and the exchange between   B—   and  C-,  yields 

APi ' DPi ' and  BPi ' CPi * 
It is well known that a two-port in the structure of a ladder network that implies 

only passive R, L,  and C elements always has a dual two-port.   Hence, the per- 

fectly coupled and shunt-augmented T— including eventual port-impedances — is 

also a network of the ladder type,  implies R, L, C elements, positive or negative, 

and has a dual two-port.   Its dual is a perfectly coupled and series-augmented Pi. 

This circuit is shown in Figure 22.    The branch notations in this figure are ad- 

mittances.   In order to enhance this fact,  we added an asterisk to the notations 

u,v, and w .    Similarly, as in considering the pesa T, the equation 

1/u* + 1/v* + 1/w*   ■   0 (191) 

holds.    This equation justifies referring to the term "perfectly coupled". It is evi- 

dent that, depending on the magnitude of the positive ratio coefficient   n , we can 

discriminate between a type (A) and a type (B) Pi;  when n is negative v* = - v * 

also is negative resulting in a type (C) Pi.    In accordance with the oarlier observa- 

tions, the perfectly coupled part  v* • (Pia)   of the series branch in tht   Pi is aug- 

mented in parallel by the admittance   x *• ♦(s) .   The elements of the chain matrix 

of the perfectly coupled and series-augmented Pi  are as follows; 

Api   ■   W* + V* + X*   =   ^r0(s) + x*- «(s)   . 

Pi 1 . 

(192a) 

(192b) 

Cp.   =   (U*V* f U*W* + V*W* ) + X* (U* + W*) 

+ v*x*   (n I ir   0(s) • *(a) (192c) 
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U*-uV(»)^ 

J- 

V'-S+It) 

xWtfM "T0 

~^H   0... 

I   a 

i H "^J-1   .... 
|W -w">(t) 

1 
u#-v*-(n-l)^0 If w"-v*(i-l)>0 u'-v^H+ 1)00(1 w*-v*d+l)>0 

v*and »*>0 

Typt (A)-» u*< 0 

Typ« (B)-♦*»*< 0 Typ«(C) 

v*--?*ond n--n<0 

Figure 22.   The Perfectly Coupled and Series-Augmented Pi 
of Types (A) or (B) Left,  and of Type (C) Right 

I) Pi U* + V* + X:;:    =   v* •   n- 0(s)   , (192d) 

Ep.   ■   V* + X*   =   v*  • Ms) + x* •   *(s) (192e) 

Equations (189a,. . . , e) apply to pesa Pi's of type (A) or (B); when applied to type (C) 

v* is more conveniently replaced by -v'     and   n   is r   placed by  -n , as we used 

to do in the case of a pesa T of type (C). 

We can state the following theorem: 

THEOREM 6 (concerning the dual of a pesa T) 

The dual of a pesa T is a perfectly coupled and serics-augmente '. 

Pi.    Its branches are the dual circuits of the corresponding 

branches of a pesa T.    It has the same properties as a pesa T 

when the well known rules of finality are properly applied. 

It is easy to show that all the previous discussions on the pesa T are likewise 

true for the  perfectly eoupled and series-augmented Pi when the rules of duality 

are correctly applied.    In correspondence to Section 2 of this report,  series ad- 

mittances can be transposed from one port to the other over a Pi causing a change 

of the ratio constant.    In correspondence to Section 3,  perfectly matched tandems 

implying perfectly coujued and series-augmented Pi's are equivalent and 

have an equivalent lattice two-port in accordance with Section 5.    Perfect matching 
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can be obtained in a tandem by transposing series port admittance in accordance 

with Section 6.    In Section 8 we realized the driving-point impedance of a pesa T 

of type (B).    The driving-point impedance of a pesa T of type (A) can be realized 

by realizing the driving-point admittance of a perfectly c oupled and series-augmented 

Pi in which the second shunt admittance is negative. 
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Part II 

Numerical Examples 

The purpose of several numerical examples presented in this part is to 

supplement the theory on the  perfectly coupled and  shunt-augmented   T    that is 

presented in  Part I.     The examples are chosen in  such a way that they make 

the problem as clear as possible.     In practical applications one  usually has to 

expect  numei ical values containing a much higher  number of digits.     Each ex- 

ample   refers to a particular  section in Part I.    We  utilized an earlier report 

(Haase,  1963)   in which formulas  are  presented by which the elements of im- 

mittance  functions can immediately be  computed and  in which these  functions 

for a transformerless  realization are cataloged.     References to this report are 

made as Report AFCRL-63-506. 

I.   KWMIM.K  I MmiiiK lo Sfdion 1) 

I.I   I'robh'm 

Show that the circuit presented in Figure 23 is a perfectly coupled T . 
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R2|      ==C2 

» I o 

Figure 23,    Kxample of a Perfectly 
Coupled T of Type (H) 

Cj   .  I/« 

C9   '   7« 

1/1. T) 

R, 

H. 

10 

to/s 

1.2  Sululion 

The impedance functions of the branches of the  T circuit are of the type 

Qj 
-1 1 

k (s + a0") 

according to Table 4 in Report AFCRL-63-506.    According to the same table we 

find the impedances 

t. 
1 s + 6/10 s + 0. (i hence   u = 6 

Z.. + (i/l() s + 0. (i hence   v = 2 

Z, 1. 5 1. 5 
s +  1. 5/2. B s + 0.1     , hence   w = - 1. 5 

It is essential that   Z. , Z^ ,  and   Z„   have the same normalized polynomial   s + 0. (i 

in the denominator,   so that 

Ma)   --    l/(s + 0. D   . 

It is further necessary that Eq.   (3) be true.    This is the case since 

1/u +  1/v +   1/w    -    1/6 +  1/1 -  1/1.5    -    0 . 

This check can also be performed as 

uv + uw + vw   ■    12-9-3   ■   0 
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We find by Eq,  (8a) or by Eq.  (8b) that the -atio constant     n = 4 ,    The circuit 

presented in Figure 23 is a perfectly coupled T of type (B) since   w   is negative 

and   n   is positive and greater than 1 . 

2.   KWMI'I.K 2 (nfminj: lo vriion I) 

2.1   Prohli-m 

Show the circuit of a perfectly coupled I of type (C) for which the normalized 

frequency function is 

(Ms) s + 0. 8 

and in which the ratio constant is 

and the mutual constant is 

v = - 5. 

2.2 Solution 

We introduce according to Eqs.   (10a, b) 

v   =   - v   =   5 and n   =    - n   =   3 

Then by Eqs.   (8a, b) 

u   =   v(n + 1)   ■   20 

Consequently 

••Mi-)  * 

U   -    18 s + 0.8     ' 

V   -   - 5 s + 0.8     ' 

W   ■   4 s + 0. 8 

I 
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By Table IC of R'-port AFCRL-63-506 we recognize 6{s) as being of type P' 

By Table 4 of this report wc find the circuit and the circuit elements as follows: 

•I 

o-    R 

L3 

R 
L-WArJ 

I Hi 

J    L-vs 
Lj   --    22.5 

L2   -    -6.25 

L,   -   5 

Hj    -   18 

K. 

R3   '   4 

Figure 24.    Example of a Perfectly 
Coupled T of Type (C) 

Wc check the constants of the perfectly coupled T and we find 

1/u +  1/v + 1/w   ■   0. 05 - 0. 2 + 0. 15   ■   0 o. k. 

3.   KWMPI.K  3 (refernnplo Secliun I) 

3.1   Problem 

Show that the circuit presented in Figure 25 is a pesa T.    Of what type is it, 

what are its characterizing constants,   and what are the elements of its chain matrix? 

14. 4 Hl 11.52 

■   4.1 R2   - S.84 

--    -3.75 H3   ' -1. 125 

■   none R4   - 1/2.4 

■   24 

--    8 

-    -2.25 C4    ' 4   ■ 

Figure 25.    Example of a pen I 
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3.2 Solution 

We find by Table 5C of Report AFCRL-63-506 that the circuits U md W of 

the T   are of the same type   Q,. .    Applying this table we obtain the impedance 

functions 

s + a 
U   =   k, s 

i 
11 

s + b 11 

where 

L1L5 
Ll + L5 

345. Ü 
38. 4 9   , 

R 1 11.52 
11 '1 

14.4 =   0.8    . 

11 L. + L,. 
1 n 

11.52 
38. 4 0.3   . 

We find the impedance function 

V   .   k2s 
s+ a,., 

s + b 
2   ' 

12 

where 

k2 

L2 4 
4  +  H 

38. 4 
12.8 •    I    . 

12 ~  ''    0-8 all     ' 

2 2 n   „ .2 
•12 = nri c " 0-3 z bii 

£ b 
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Wc find the impedance function 

s + a 
W   ■ k3S 

s + b 2     ' 
13 

where 

k3   =   L7 2.2'    . 

a13 "j      L3L7 

=    -  1   !•■        ~C        -       ('.75      .   n   H   -    o    ^ 
'' l-0   9. 4375 8. 4375   '    "'ö        a12 

013 I... 
-1. 125 n   .. .2 
-3775-   "   0-3   "    bi2 

Ry Table 4 of Report AFCRL-f^-SOfi we find the impedance function of the shunt- 

augmentation as 

X   = 1 

kx<s+ax> 

where 

kx   =   C4   -   4   =    l/X 

and 

x H4C4        0.6 

From the results obtained so far we find that 

^/ x s + 0, « 
0(s)   =   s   3>0.3    ' 

*(.s) 
1 

s + 1/0.I     ' 

u   =   kj   =   9   .        v   -    k2   -   3   .        w   -   k3   =    -2.25 
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We check 

uv + uw + vw   =    27-20.25-6.75   =   0 o. k. 

By Eq.  (8a) or Eq.   (8b) we find that   n = 4 .    Hence the pcsa T presented in Fig- 

ure 25 is of type (B).    Its matrix elements are obtained by Eqs.   (16a, . . . , e) as 

follows: 

* ,,,       s + 0.8 
A   =    12 s —.  „   ..   ■ 0. 25 

s + 0. 3 s +  1/0.6     ' 

B 
„   _,    9  ,   s + 0.8 0. 75    -r s 

4       s + 0. 3     s + 1/0.6     ' 

1    , 

£        n  ~c       s + 0.8 0. 25 D   =   0-75sTrö!T +    s+ 1/0.6     ' 

E   =   3s 
s + 0.8 
s + 

0. 25 
0. 3   +    s +1/0. 3 

In order to get rid of the numerator polynomials we multiply each element by 

(s + 0. 3) (s + 1/0. 6)   =    s" + 0. 59s/0. 3 + 0. 5 

and we obtain: 

A   ■    12s3 + ?9.6s2 + 16.25s + 0.075   , 

B   -    1.6875s(s + 0.8)   . 

p. 2 ^        1. 18   .-  - 
C   =   s   + s    i i    +0.5   , D.B 

D   ■   0.75 s3 + 1.85s2 +  1.25 s + 0.075   . 

E   ■   3 s3 + 7. 4 s2 + 4. 25 s + 0.075 

We will now perform a check whether or not tne matrix   elements thus obtained are 
-^ /v      -% /^      ^2 

correct.    Sim e the pcsa T is a passive two-port   AD - BC ■  1    or     AD - BC - E 

must hold. 
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For the purpose of this ehe,    we have to multiply the polynomial   A   with the 

polynomial   D ,  the polynomial   13   with the polynomial   C ,  and we have to square 

the polynomial   K .    This is somewhat cumbersome work to do,  especially when 

the polynomials are of higher degrees,   but we cannot avoid doing it.    But since the 

previous check equation must hold for any frequency s ,  we will first perform what 

we refer to as a parity check.    We substitute   s = 1  ,  then this evaluation is just 

the algebraic sum of all the coefficients in the polynomial.    In our- example 

2.08/0.6 
*...■ 57.925, ■    3.0375, Cs=l 

D s= 1 3.925, ES:l      ' 14.725   . 

We obtain 

57.925X3.925-3.0375X2.08/0.6    ■    227,355625-10.53 

=   216.825625 

14.7252   ■    216.825625. 

Hence, our result is correct as far as the parity check is concerned.    The parity 

check of course is not as reliable as the substitution of the polynomials themselves. 

But as to the author's experience in many computations,  it is very rare that a com- 

putational error is not turned out by the parity check.    Throughout these examples 

we will be satisfied when the parity check finds no errors. 

I.   KWMIM.K   I (n-fiThnu lo Seelion :.») 

t.l   Prubh-m 

Figure 26 shows a pesa T in which the perfectly coupled branches are induc- 

tances and the shunt-augmentation is a resistance.    At the in-port we also find a 

resistance.    The figure also shows the technical equivalence using a perfectly 

coupled transformer.    Transpose the in-port resistance to the out-port,  and for a 

check retranspose again. 
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0,2 K 

H 

1 

0. 3 L2    ■   0.5 

L.   -    1/3 

Figure 26.   pcsa T With In-Port Impedance 

4.2  Solution 

Since the elements in *!ie perfectly coupled branches are all inductances,  the 

implied normalized frequency function is 

Ms)   --   s . 

The shunt-augmentation is a mere resistance,  hence the frequency function implied 

in the augmentation is 

♦ (s)   i    1  . 

We will now express the branches of the pcsa T in the familiar notations: 

U   =   u • (Ms)   ■    - 0. 2 s —•- u   ■   -0,2 

V   =   v • (Ms)   ■   0.5 s    —•-  v   ■   0, 5 

W  ■   w • (Ms)   ■    -r w = i/a 

We check 

1/u + 1/v + 1/w 

By E(j,  (8a) we find 

5+2+3   =   0     . o. k. 

u   ■   v(n - 1) or 0. 2   --   0, 5 (n - 1) 

Hence 

n -  1    -    - 0. 4 or n = 0, 6 
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The port impedance is a resistance.    Hence,  it implies the same I'reqm ncy function 

4>(s) ■   1    as the shunt-augmentation and can thus be transposed to the out-port.    In 

our familiar notation 

Km   --    K     =   0. 3   . s s hence       x     =   0. 3   . 
9 

Before we perform the transposition,  we will compute the constants of the perfectly 

coupled transformer in the circuit at the right in Figure 2fi.    By Eqs.  (5a, b) 

L      =    L. + L,,   =    - 0.2 + 0. 5    =   0. 3   , p 1 2 

=    L2 + Lj   --   0. b + l/l   ■    5/6 

By Eqs.   (6a, b),  the mutual inductance of the tiansformer 

M    ■      J"1-,,1^ JiJ.25        0.5     , 

t.ie transformer ratio 

n   = Vv-s   V^ 36   =    0. 6    . 

It is necessary that   M ■ L^   and that the transformer ratio obtained equals the 

previously computed ratio constant   n. 

We now transpose the in-port resistance to the out-port and w ? obtain the 

circuits shown in Figure 2". 

£      t 

«    » 

Figure 27     pcsa T With Out-Port Impedance 
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n'    =   n 
x    + x(n - 1)" 

0.6 0,3  o. 18 
0. 9 + 0. 16 0. 46 0.;i91304 

By Eq.   (SS) 

s 0.3 
s        nn' 0.6X0.391304 1.277781 

Bv Kq.   (34) 

1    , _L + _L   .     1 

~vr      x        \ .        ? s s 
■ 1+3. 333333 - 0. 7H2607 

■ 3. 550726   ■    1/0. 281633   , 

hence 

x'    ■   0.281633 

By Bq.   (35) 

v'    =   x' •   K   . 

where by Eq.   (24) 

K v 
X 

0. 5 
1 

0. 5 

lit lire 

V    .   O'28'833    :    0.140817   . 

With these results tlie elements in the circuit at the left in Figure  27 are: 

Lj v'dr-l)    -   0. 140817 X (-0. 6086."6)    ■    -0.085715   , 

L^   ■    v'    -    0. 140817   . 
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LI    •   v'/~r-lj    ■     0. H0817 X 1. 555556   =    0.219049   . 

Further, 

R'    ■   x'   =   0.281633 and «'    =   x'    =   1.277781   . A s s 

We will also check 

1/u' + 1/v' + 1/w'    =   -  11. 666569 + 7. 101415 + 4. 565189 

■   0.000035   . 

The fact that we do not obtain exactly zero is due to some inaccuracy that is brought 

in by rounding the last digits in the computation.    The deviation, however, can be 

tolerated. 

We are now able to compute the inductances and the transformer ratio in the 

circuit ahown at the right in Figure 27.     By Eqs.   (5a, b) 

1/    =    L". + L'    ■   -0.085715 + 0.140817    ■   0.055102   . p 12 

Ls   =    L2 + L3    r   0.140817 + 0.219049    ■   0.359866   . 

Hence 

M '    ■     JL   LS     -    Jo. 019829    ■   0. 140815   ■    L^    , 

n'    ■    J L  /Ls   =    Jo. ISSUa    •   0. 391303 

as it has been obtained previously. 

Both circuits shown at the left in Figures 26 and 27  imply pcsa T s of type (A) 

since   u   and   u'   are negative and   n   and   n'   are positive and smaller than 1 . 

Let us now perform the retransposition of   R'    in Figure 27 to the in-port so 

that the circuits in Figure 26 are obtained again.    By Eq.   (25) 

n' +   x'      ("y- til n   loiina +   0- 281833       0. 608696 n   =   n   +—^-    j—    =   u. .}yi.iü4 + 
J 

tT ".-—• 1.277781       0.391304 

0.391304+0.220408X0.946862    -   0. 6   ,       o.k. 
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x„   ■    x    •   n n s s 1. 277781 X 0. 6 X 0. 39U04   ■    0. 3   .     o.k. 

By Eq. (29) 

_1_    ! + J L 
x "  x'   x'   x, s    s 

3. 55072« + 0. 782607 - 3. 333333 

By Eq. (30) 

o. k. 

v = x • K ■ 1 X 0. 5 0. 5 o. k. 

Thus we obtain the same results as originally given. 

By the forward transposition we changed the original ratio coefficient   n - 0. ii 

to the value   n' ■ 0. 391303.    For this purpose we transposed the total in-port resis- 

tance to the out-port.    Evidently,  when we transpose only part of the in-port resis- 

tance,   v e could obtain any   0. 6 >  n' >  0. 391303 .    From a practical point of view 

it would be,  for instance,  advantageous for the production of the transformer when 

we could obtain   n'     0. 5 .    Let us ask therefore:    what is the necessary in-port 

resistance   R"   to be transposed over the pesa in Figure 26 in order to obtain a 

transformer with the ratio   1:2? 

By Eq.   (32) 

n     =   n 
xs + x(n- 1)' 

we obtain the answer immediately.    Wi   substitute 

n'    ■    0. 5 ,   n   ■   0. 6 ,   x   ■    1 ,       and      x     ■   R'' 
S o 

R" 0. 5       _        
0. I        R'.' + 0. n s 

with the solution 

K'    0-8 

This resistance   R''   has to be split off from   R    ■ 0. 3   in parallel.    By this split 

the resistance   R.   obtained from 
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1 1 

«1        H.s R! 
3.333:133-1.25   ■    2. 083J33    ■    1/0.4« 

remains at the in-port.    The transposed   R'.'   appears as   R'   at the out-port and 

the constants of the pesa T go over to the primed values.    By Kq.   (33) 

Ü. 1 
0. 5 X 0. (i 

By Kq.   (34) 

1            1     A 1             1 
1 + 1. 25 - 0. 375    ■    1. 875   = 1. 6 

hence 

R' x 
1. 6 

By Kq.   (35) 

4 . ir • K 0. H 

The circuits which we obtain by transposing the component   R'.'     0. Ü   in the 

forward direction are shown in Figure 28.    By Eqs.   (8a, b) we obtain the inductances 

I.'j   ■   U, ■ (n' - 1) -0. I -0. 4 

L3   =   L 

We check 

i/L'1+ i/LJ4 1/4   . .JL.-.JL- .  o  .     o.k. 

The perfectly coupled transformer shown at the right in Figure 28 has the induc- 

tances 

L'    ■   I '1 + 1'2 I       ' 
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The mutual inductance of the transformer is 

M' V L' L' 
P    s / 

0. 4 X 1. (i 0. H . , 
9 '      W L2 

and the transformer- ratio is 

n'   -     JL'/L'   ■        y .'     x '    -    0.5      as expected. 

C. L' 

L:  -   o. s/.i 
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L'    =    -0.4/3        R'   ■    l/a 1 's' 

L;   ■    0. 8/3 H'   i    1. 6/3 

H 0. 4« 

Figure 28.    pcsa T With In-Port and 
Out-Port Impedance 

At this point we would like to perform a parity check on the left side circuits shown 

in Figures 27 and 28.    We substitute   s =  1   and wr first compute the open-circuit 

driving-point impedance   Z0(l)   of the circuit at the I» ft in Figure 26.    It is 

Z0(l)   =  -y 

1 2 x 

In this formula the advantage of substituting   •• 1,  which is not a physically real- 

izable frequency,  becomes evident:    the t.heck implies the magnitude of the im- 

pedances,  but it avoids complex numbers which would occur when a physical fre- 

quency   s = j   would be used for the substitution. 

With the values enumerated for Figure 26 we obtain 

^^ 3. 333333 +  l/(-0. 2 + 0. 5 +  1)    :     3. 333333 + 0. 769231 

1 
4. 102564 0.243750 
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The drivinß-point impedance does not,  however,  include the element   L„   of the 

circuit shown at the left in Figure  26.    Therefore we also compute the drivinß-point 

impedance   Z  (1)   that is measured when the secondary terminals of the circuit 

are shorted. 

ZM) 
's J-  + 

3      W i i 
L„ + H L„ 

2        x I 

3. 333333 + I 
n ')  t —^^™  ^ 
""•'  1/(0.5 + 1) + 3 

1 

3.333333 + 1 
n 3 + ,  ^    ^^^ 
"•- ■ S.MMN 

1 i 

3.333333 + 1       17.083384 
0.072727 

0.058536 

The drivinK-point impedance   Zn(l) of the circuit shown at the left in Figure 27 is 

zji) --  L: + 
'0 l -^ + L' + R'        L' + H' 

2        x 3        s 

0.085715+    |^(0t 140817 •*■ 0. 2816SS) *  1/(0.210049+  1.277781) 

0.085715 + 2.367144 + 0.668079 

=    -0.085715 + 0.329465   -    0.243750   ,     o.k. 

The drivinj»-point impedance   Z  (1) of the shorted circuit shown at the left in Fig- 

ure 27 is 

1  z (i) ■  L: + V"       "1 i       .    1 

2x3 

0.085715 + 1/(0.140817 + 0.281633)+ l/O.219049 

(equation continued) 



75 

Zjl)   --    - 0.85715 + r- ' g,., w.«        2,367144+4.565189 

=    -0,85715+0.144252   ■   0.058537   ,    o.k. 

By the same formulas we check the circuit shown at the left in Figure 28.     The 

open circuit driving-point impedance   Zl(l)   that is in parallel to   R.   is 

ou' "  "~T" T 3 ,   —T- 
0.8 +   1. 6 0.8+8 

T   }  (-0-4+    1/2.4-J 1/8.8) 

"   3 \-0-4+ —TUT-} 

■   |   (- 0.4 +  1.885714)   ■   0.495238 

Hence 

^0*'       1 0.237715 
Z0(1)   =   Z'0(l) + Kj    =    o! 975238    "   0-243751   •      0-k- 

The short circuit driving-point impedance   Z'(l)   that is in parallel with   R.    is 

z:(i) - -W"« s ■ 3 3 
0.8 +  1. 6        0.8 

'   | (-0-4+    1/2.4! 1/0.8 ) 

= l(_o.4+i42<fl) 0.2 
3 

Hence 

Z's(1)   Hl 0.096 
Zs(1)   -   z"(l)+R      =  "Of1   ^   0-0585:37   '       ü-k- 
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%,   K\ XMIM.K  't (r«>fminn It .N-rtion .'<) 

'i I    I'mlilfiii 

Assum€' that the tandem shown in Figure 7 is given by the constants 

a . 

i , 

5   . 

a , 

nb   -   2.5   , 

cb   .    10/3 

Let the normalized frequency functions be 

*(s) s +  12 
s + 0. 4 and (s)   -- ] 

s + 0. (i 

Show that the tandem is a matched one.    Give the elements of its chain matrix 

and its circuitry. 

5.2  Solution 

According to the definition of e matched tandem,   Kq.   (47) must hold.    In fact 

S/5   ■   0. fi and -~   -   (i/10   -   0. (i 
x, 

are the same.     Thus the tandem is matched and the constant 

K   ■   O.fi 

According to ICq.   (4!i) the constant 

k     =   3/2   -    If)/10 1.5     . 

By substitution in Kqs.  (54a, . . . , e) we obtain the following elements of the chain 

matrix; 

K\B)C - 20^(s)+öJ^i*2(s)+7nr 10. 5 + 49X1. 5 ■)(s) • *(s) 

20 (t)2{s) + 2. 77777H • *2(s) + 32. «125    Ms) ■ *(s)   , 
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B (A B)r !(• 
s   la ajr 

UTTT) * 3, 5* 

(An)c 

2.5 X 1.5 

5   lit. MSSSS• #ilM  15. 65277K ■ «(s) 

>. 6875 • c!)(s) + 4. Iß(i6f>7 • *(.s) 

0(8)   •   «(S)     , 

(s) + -^|-*(s) 

I) (\B)C 2ö ö (s> + ö7??r ♦ (s) + "rir 0.125 + 0.4 + i. 5' 
2. 5X 1. 5 <M.s) ■ «(s) 

0. 05 • d2(s) + 2. 77777H ■ «"(s) + 6. 319444 • Ms) ■ «Ks)  , 

'(ABK 2. 777778 • *-(s) - 62(s) 

Next, we perform a parity check of these results.    For this purpose we compute 

6(1)   --   2.2/1.4   -    1.571429     , ö2(l)    =   2.469389      . 

♦ (1) 1/1.6    ■   0.625     . *~(1)    -   0.390625     . 

For s -  1   we thus obtain. 

A(AB)C(1) 

"(AB)C(1) 

C(AB)C(1) 

r)(AB)C(1) 

49.387780+1.085069+32.226571    •   82. 6994 ?0     , 

I     44.916678+9.782986       0.982143    ■    268.614460     , 

•^      4.223215 + 2.604167 2.275794   , 

0.123469+1.085069+6.206599   -    7,415137     , 

1;(\B)C(1) 1. 085069 - 2. 469389 1. 3}'4 320    . 

Then 

AD   -BC    -    613,277529-611.311176    --    1.916353   , 

E"   ■    1.916342    . 
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Thus the parity check proves the results to be acceptable. 

The constants of the perfectly coupled branches in the tancler.i are: 

uo   ■   vo (n    - 1)   -   ,V7   --   21   ■    1/0.04;619 

'a/-^-  - ij    •    - .'i • Ü.H75   ■    - 2.625   ■    -  1/0. 3H0952 w     =   v a 

Check;      1/u    +  1/v    +  l/w 0. 047619 + 0. 333333 - 0. 3H0952   =    0 'a        'a       'a 

"b   r   ^b("b+1)   =   2 • 3-5   =   7    "    1/0.142857     , 

w. ■   vb(-
1    +A   =   2-1.4   =   2.8   ■    1/0.357143     . 

Check;      l/ub + 1/vb + l/wb   --    0.142857-0.5+0.357143   ■   0 

According to Table IB of lUport  \FCKL-63-.r)06 we recognize thf function <$(*) 

as being of type   P, 

^(s) 
s + a, 

s + b, 

s +  1. 2 

s + 0. 4 

2 I 
so that   a.   ■   1.2   and   b."   ■   0. 4   ,    and   k =  1 

We compute the elements of an impedance function that implies   (Ms).    Whenever 

the constant is different from   k -  1 ,  we only have to multiply the inductances and 

resistances r>{ the circuit by this constant,  and we have to divide the capacitances 

by it.    According to Table 9 the circuit shown in Figure 29 has the impedance 

function   <Ms) 

n0l n02 

'02 

Figure 29.    Keal'/ation of 
the Impedance Function (Ms) 

R 01 1      , 

R 02 

02 

I      ,2 
a,   -b. 

X       i 
T      2.2 

al   -bl 

0.8/0.4   ■    2   , 

1/0.8   i    1.25 
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The frequency function   ♦(s)   can be recognized as being of type   Q,,     by Table IB 

of Report AFCRL-63-506. 

♦ (s) 1 

k(s + a0)        s + 0. 6 

so that   k • 1   and   a«    =0.6. 

According to Table 8 of the report we find that the circuit shown in Figure 30 has 

the impedance function   ♦(s) . 

n0 

Rn   ■    I/«"   ■    1/0,6 

Figure 30.   Realization of 
the Impedance Function ♦(s) 

The circuit of the tandem is shown in Figure 31. 

peso T of typt (A)    peso T ot typo (C) 

Figure 31     Circuit oi the Froblem in Example 5 
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Tlu> circuit elements in Figure 31 are as follows; 

H 

K. 

R. 

Ii 

H5 

R* 

R. 

R, 

R, 

R 

R 

R 

R 

R 

lu 

11 

12 

ta 

14 

W 

-v. 

w. 

w 

Wt 

R02 0. 09523H 

R02   ' 6 

R0      ' 5/0.6 

R02   ' - 5. 25 

R02   = 14 

H02   ' - 4 

R0      ' 10/1. H 

R02   = 5. 6 

R01 0.047619 

R01 3 

*D1   ' - 2.625 

nn. 7 l01 

R 01 
. 2 

c, 

'   C02/Ua 

' C02/Wa 

' C02/Ub 

r-C02/^b 

C9Vwh 

26. 250026 

0. »16667 

0. 2 

-0. 476190 

0. 17H571 

-0. 625 

0. a 

0.446429    . 

R 01 ■    2.H 

We now perform a parity check on our result.    The impedance of the circuit 

in Figure 29,  when we substitute   s -  1    is 

zoon) ' Roi + -r 
i 

- i + i 

Rn.,   +C02 
OTT1B '   lM1«9' 

For MM same frequency parameter   s -  1    the impedance of the circuit in Figure 30 

zo(1) = ZTTT    ^T " 0-6-5 ' 
R0   

co 

A block diagram of the circuit in Figure 31  is shown in Figure 32.    All impedances 

X, , .... X..   are evaluated for   si. 
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Fitiure 32.    Block Diagram of the 
Circuit in Figure 11 

x9 

X. 

X 

-  vzoo(1)      M 

'   va  
zoo(1)+ -aZo{1) '».•»•«' 

■  1/0. 1275fi3 

wa   Z00(l)   -    -4.125 

-   ub   Z00(l) |] 

= -vbZ00(l) + xbZ0(l) -  -  1.059525 

1/0. MS819 

X, wb.Z00(l)   ■    4.4 

Tlu' cireuit in Kigure 32  is a tandem of two   T   structures.    The first of them has 

the chain matrix 

'i + x1/x2      x1 + X3 + x1x3/: 

i/x. 1 ♦ Xg/X, 

5.209579 11.510487 

0. 1275ri3 0. 473803 

The second   T   structure has the chain matrix 

1 + X4/X5 N;+X(, + X4X6/X£ 

l/X, 1 + \/XH 

9.382009 30.2HO840 

0. 943« 19 3. 152804 

Therefore the circuit shown in Figure 32 in its block diagram has the chain matrix 

5.209579 11.510487 9.382009 30.280840 

0.127563 0.473803 0.943819 3.152804 

59.740133 194.040738 

1. 643981 5.356523 

The evaluation of the chain matrix which we found previously was 
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A     B 

C    D 

1 
1. 384320 

82.699420 

2.275794 

268. 614460 

7.415137 

59.740103 

1. 643980 

194.040728 

5.356519 

Both matrices are in good agreement thus validating the parity check. 

We want to emphasize that the circuit in Figure 31 shows more circuit elements 

than necessary.    Evidently since   RX. ■ RcC,, ,  these two parallel circuits can be 

combined to make one.    For the same token the resistances   R-.   and   R.^   can 

be combined to   make one resistance.    Then,  however,  the two-port would hardly 

be recognized as a tandem of two pcsa T s.    For this reason,   in this particular 

circuit,  as well as in all the circuits of the examples in this report,  we do not care 

about reductions and transformations which intend to make the circuits simpler. 

6.   K\ XMI'I.K b MerrinK to Section 3) 

6.1   Problem 

Assume that the tandem shown in Figure 7 is given by the constants: 

va   ^   5    ' 

na   ^   2.5   , 

x      =   4   , 

Vb   '    « 

0.4   , 

«b   =   0-8 

Let the normalized frequency functions be 

<Ms)   ■   (s + 0. 2)   H Q- | and *{s) s -t- 0. 9 
s + 0. 4 

Show that the tandem is a perfectly matched one.    Show its circuit and its chain 

matrix.    What is the equivalent tandem in accordance to Figure 8? 

(i.2  Solution 

Since   n    T  1/n.    the tandem is a perfectly matched one.    According to Eq. (55) 

n0   ^   na        l/nb   =   2-5 



sa 

By   n    >   1   the first section is  if type (A).    The constants   K   and   k     characteri/ing a a 
the tandem are,  according to Eqs.   (47) and (4H): 

K   =   va/xa   =   vh/xh   r    5/4   =    i-25     •      K     =    1.5625   i    1/0.64 a'   a 

v
a/

vh   =    xa/
xh   r    5 a'    b a'    b 

The elements of the chain matrix of the tandem in Figure 7 are obtained by 

Kqs.   (r)6a, . . . , e) as follows: 

AAC   '   ^^ + 0- f)4 ' *"(s) + 3   i>5   lH- 5 ' '•')(s) " ♦(s) 

=    (t>2(s) + 0. 64 • «l>"(s) -t- 5. 92 •   Ms) •  «(s)   , 

AC        "OS ^ 2:5.5 U(s) +Y-J^ «Ms)       ^(s) • *(s) 

■    1K.H    o(s) + 0. :v> ■ «Ms)      f.')(s) • <I>{s) 

6 
ih '^^T^s *(s) 

AC 5 

■   1 . 2 I 0. 4 <Ms) + 0. B#(a) 

bxc    1    ^2(s) ♦ 0. 64 »2(s) ♦ j   |n   9. 7 Ms) ■ »(s) 

■    0 (s) + 0. 64 ♦"(s) + 3. 104  ö(s) • *(s)    , 

EAC    ■   0. 64 ♦2(s) - e.2(s) 

Wf evaluate 

-.'.(1) • »44- 1 ■ - n 1.666667 *(!) 1. 9 
1. 4 

1. 357 143 

The evaluations of the matrix elements for   s ■  1    thus are; 

AAC(1)    1    2. 77777K + 1. 17H776 +  13. 39047H    -    17.347032   , 

BAC(1)   =    18. H X 2. 100953 X 2.261905   ■   89.340533   , 

CAC(1)   -    1.2X1.752381    -    2.102857    , 



M 

l)A(.(l)       I.T777Tt ••> 1. ITtTTt ••> 7.090959        10.977507 

K,,,(l)    -    -  1. 599003    . 

\\v check:     17. S470SI X 10. 977507  - H9. 3405,13 X 2. 102H57 2. BMMO 

I, 5990032   -   2. 55(itni   .    o. k. 

The frequency function   Ma)   is recognized as a function of the type   Q,    by Table IC 

of Report AFCRL-GJ-SOß. 

i ('s + ar) s +15 
*4    k (s + V 7T7^    (s + 0-2) fr^r (s +  b j ) 

By comparison:    k      1 ,  a^T        0.2 ,  a." -  1. 5 ,  b.      0.8 

A realization of the impedance   cMs) is shown in Figure 33 as it is obtained by 

Table  11 of the report. 

Auxiliary Constants: 

4 •>     ■>        ■> 4        •>     ■> 
a bi''ao + aP   "    ^''l  + ao ar' 

p    -    0.8 X 1. 7  - 0. 94   ■   0. 42   . 

LOfWi—Vs/v 

Figure 33.     Realization of the 
Impedance Kunction   t')(.s) 

aoai o. i 

0. 42 
0. 7 1428« 

I. 0 1 k   -    1   . 

S,    ^±JL^    •••■ 

.       i. t»*rt  ■ IN 8572 

B k   J   Ü y)' P 0.(142858    . 
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The frcqut-ncy function   <t>(.s)   is lecogni/ed as a function of type   P..   by Table  IB 

of Report AFCRL-63-50G. 

P3    ■    k 

s + a." s + 0. 9 

s + b" s + 0. 4 

9 ) 
F3y compaiison:    k      1,  a"     0.9,  b-   =0.4   . 

A realization of the impedance function   <I>(s)   is shown in Kigure 34 as it is obtained 

bv Table 9 of the report. 

Pos 

"04 
rAAAn 

♦ '04 

l-'igure 34,    Realization of the 
Impedance Function  <Ms) 

R 03 

R 

k ■  I , 

a" - b- 

04 

04 

b, 

1 1 

11. .. 

0. 4 

k        I 1 ar-br 

1.25   . 

The realization of the complete tandem is shown in Figure 35      The pesa T at the 

left end is of type (A) and has the constants   v    = 5 ,   x    -  4 ,   and   n    " 2. 5.    Hence, 
ad a 

u      =   v   (n - 1)   =    7. 5   , a a 

w    • yJ-J.- 1)      -3  . a a \ n / 

The pesa T at the right end is of type (C) and has the constants   v. 1 ,   \.       0. K , 

n.   - 0. 4   .    Hence, 

vb(nb+  1) 1.4   , 

■  v. l-L ♦ wb        Vb(--   +   ^ i-5 



Bfi 

l'o- 

L2     R2 
LrTnnp-vW 

L 
LA 

"C, 

I 

Lip    Rio Lie   Ri6 

L.6 

pcta T of typ« (A) pcta T of typ«(C) 

Figure 35.    Tandem Computed in  Example 6 

*? 

•'1 
= 

"a'-Ol 
7.5 ,{1 

- llaH01 6,75 

h « V-02   " 14.464290 H2 ■ UaH02   ' 4.821435 

L;j 
s VaL01 

5 Ra = VaH01   " 4. 5 

■•4 » ^''02 
9.642860 

«4 
= Van02 3. 214290 

«5 
r «.»os ' 4 

C6 
= C04/^a ' 

0. 5 R6 
^ V^H   " 5 

h s WaL01 - :i H7 = waR01 - 2.7 

4 s W*L0>    ' 
- 5. 7H5716 »i - 

%"OJ - 2. 142860 

L9 
« ubL01 

1   4 
«9 

r ubK()l 
1. 26 

Llü 
1 Ub,-02    ' 

2. 7 R10 
= llbH02    - 

0.9 

'■11 
= VbL01 -   1                                          ) ^1 1 

■ VbH()l 
- 0.9 

Lu = VoL02    ^ 
-   1   928572 

^12 ^n02   - - 0. 642i;58 

ll3 
■ *h*0i   ' o.a 

C14 
r wv 2. 5                                         1 {14 ^bH()4 i 

L1J , WbL01 S. 5                                     1 {i5 WbH01 S, 18 

'■1. 
I WbL02 

6. 75                                     1 
^16 WbR02 

2.25   . 
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Wc will now determino thi' equivalent tandem.    For this purpose we first need 

the constants   k.    and   v . .    They are obtained by Eqs.  («7) and (fiH).    From 

Eq.   (67) we obtain 

JU4   1 1 
k a 

I 5- 
1. 5*- 

1 
5 

12. tf 

"o-1 11. 25 1.088889   , 

and from Kq.   (HH) 

1 ♦ k 
2.088889 x 5 

I 1. 740740 

The tandem that is shown in its block diagram in Figure 8    is characterized by the 

following constants; 

M 

1. 740740 , 

l/n0        0.4   , 

vd(nd - 1) -  1. 044444   , 

v , /— -  l\ 2. «11111   . 

vd/K   -    I.S9SS89   as follows from Kq.  (70) 

By Eq.  (58) 

v      ■   v ./k. 1. 598639   , c d'   b 

and by Eq.   (57) 

x     =   v  /K   -    1. 278911 c c' 

The ratio coefficient 

n(.    <   l/n{J   •   n0   •   2.5 

Hence, 

u     =   v (n   + 1)   -   5.S95237 c c     c 



Hit 

Wc Mf • ■) 2. 2:iH095 

The matrix elcmt-nts of the second tandem can now be computed by Kqs.   (fifia, 

, e).    We obtain; 

ACB        ♦ W* •.•*♦(•! ♦y-fiy   1H.5 *(s) • <l.(s) 

=    0  (a) + 0. ()4 ♦"(s) + 5. 92 (Ms) ' *(s)   , 

•VM i n 
1. 7407 40   ...   -   K/ w  1       A./  i 

IS. J     <Ms) +"q~-p75   *ts) 0(s) • <t>(s) 

1H.K     «(•) 4> 0. 32 #(•)      #(•)*#(■)   . 

^ 2. 088889 
CB J. 740740 

0. 4 (Ms) + 0. H *(.s) 

1. a 0. 4 Ms) + 0.« *(s) 

ÜCI3       ^"<s>+ 0-fi-; *"<*) f I   j.,5   M $M ■ •W 

(i)"(s) ♦ 0. fi4 «l>~(s) + :i. 104 Ms) •   «Ms)   , 

EC.B        0. (14 *2{s) - o2(s)   . 

As we expected,  the elements   Ac„ , . . . , BM»   
are ">• same as the previously ob- 

tained elements   A . „ ..... ^ Ap • 

The circi'it of the tandem that is equivalent to the tandem shown in Figure 35 

is presented in Figure 36.     The magnitudes of the circuit elements are obtained by 

multiplying the rei,pcctive elements of the circuits shown in Figures 33 and 34 by 

the constants of the first and the second pesa T. 
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Iff 

LIT 

I'o- 

1-18      R|8 

P23 «25 

L24  "24 

L25|    L 
Ann- 

■20 

«20 
«19 

-rC22   <R22 

I 

L26    R26 
i^nnPAAAri 

R31 

Ls2 R32 
l^OT>AA/VJ 

L27 

L31 

T=C 

-0 2' 
peso T of <|pt (C) peso T of typ« (B) 

F'igure 36     Tandem Equivalent to That in Figure 35 

■'17    ' UcL01    : 5. 5952:i7 R17 :    UcR01    ' 5.035713 

''IM    ' UcL02 10. 790M17 R18 '   ucR02   ' 3. 596943 

L19   ' VcL01 -1.598639 49 '   VcR01   " -1. 438775 

'-0    ' VcL02    ' -3.083090 4o '   VcR02   ' -1.027698 

4i =   ^cR03   ' 1. 278911 

C22 C04/^c = 1. 5638 30 K22 ;   ^R04   ' 1. 598639 

hi   ' WcL01 2. 238095 43 :   WcR01   ' 2.014286 

^24 WcL02    = 4.316327 44 WcR02   " 1. 438777 

4« ■ »dh»! -1.044444 45 UdH01    ' -0. 94 

4 6 ■dsl ' -2.014285 46 WdR02   " -0.671429 

L27 ^i'-oi 1. 740740 47 VdR01    ' 1. 566667 

L2H VciL02    ^ 3.357142 R28 V(l R02 1   119048 

K29   : Xd R03 1. 393393 

C30 C04/Xd ' 1. 435345 
«30    " xdR04   - 1   741741 

4i WdLül    : 2.611111 4l    ' WdHül   '- 2. 35 

H2 - WdL02    ' 
5.035716 R32   ' WHR02   '- 1. 678574 



90 

7.   K* VMI'I.K  7 (refi-rrinj! lo IMNM I) 

7. I    I'rolilcm 

What is the lattice equivalence of the perfectly matched f .ndems obtained in 

the previous Example 6 ? 

7.2  Solution 

The tandem shown in Figure 3ü is characterized by the constants 

va   =   5      ' 

n     =   2. 5 a 

xa   ^4   ' 

vb   '   « 

0.4    -    1/2.5    . 

xb        0.«   . 

and the normalized frequency functions 

<Ms)   ■    (s + 0. 2) s ->- 1. 5 
s + 0.8 «J>(s)   ■ s + 0. 9 

s + 0. 4 

We found in solving Kxample 6 that 

K 

ka 

n0 

vJxa   =    V^b        5/4        ,»     ' 
=    > 

1/iL 

v  / v.     =    x  / x.    =   5    , a'    b s'    b 

First we compute the auxiliary values   S   and   P .    By Eq.   (100) 

ka    (    0 a    0 

3. 52 + 5 X 1.52| 

By Kq,   (104) 

1 + k 
-    K    -   I-   1. 25   =    1. 5 



Hence, 
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By Eq.   (Ill) 

S 
X1.4        2n0 -  V.-Js,"° 23. 5 

0 

■    4.7 ■ 4.7 

■ 4.7 

1   ±   V1  " 0.HH6525 

1 i0.336861 

I 

1 ± V 1 - 3 1. 28 
35. 25 

1 ± ^0. 113475 

Xj   ■   6.283247      .        x4   =   3. 116753 

We now compute 

"0^ 1 

n0 - 1 
3.5/1.5=2.333333 <  5 

The fact that   k    = 2. 333333 decides about the ambiguity in choosing   x9  ,,   according 

to Eqs.   (112a, b).    Thus 

v2, 3 
_s.l1± VT"^ 
2K \l  i     f'      SP 

23. 5 
2. 25 i ±    V*"-" 35. 25 

9. 4    [l ±   ^1  - 0. 141844 j   •    9. 4    [l ± ^0. 858150    j 

[l ± 0. 9.4 926367      . 

Hence, 

x2   ■    18.107850 x3   ■   0.692150     . 

As a check,  let us compute the elements of the chain matrix of the lattice.    Since it 

is supposed to be equivalent with the tandems obtained in Example 6,  we must obtain 

the same matrix elements as there.    By Eqs.   (76, . . . , e)   we obtain; 

ft            .2, >  .    12.533348   ^2,.^ .    113^776094+ 2. 157261      ..      .,> 
Ax   '-    0 (S) +   19. 583329  *   (s) +  19.583:^    ö(s) ' *(s) 

-   d) (s) + 0. 64 ♦"(s) + 5. 92 <Ms) • ♦(«)   ■   AAC    ,      o. k. 
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Bx    ■    I8.a   |d(s) + 0.(i4   ^^ii *(s)|   Ms) ■ ^(s) 

=    1H.8   U(s) + 0, 32 *(s) |   Ms)-  4>(s)    =    BAC .  o. k. 

^x = nnfaw I*-4 Ms)+11{-" *ls)\ 
■   0. 48 0(s) + 0. 9fi *(s)   ■   CAC   .    o.k. 

£            ,2, .   .  n   ,■ .  .2..  .   4. :J4.{940 ♦ 5fi. 437606      ,  .       .- » Dx   =    4 (s) + 0. 64 ♦   (s) +  19  5H:j:r)9   o(s) •   *(s) 

=    02(s) + 0. 64 ♦2(s) + i. 104 ö(3) ■   «l>(s)   -   DAC   ,    o. k. 

Ex    -    0. 64 *2(s) - 02(s)   -    EAC   ,    o. k. 

Our results have thus been proved to be correct. 

In accordance with Figure   9  the lattice has the following branch impedances; 

Xj Xj  •   Ms)   '-    6.283247(3 + 0.2)   i ^ jl |      . 

X4   ■    x4 • Ms)   --    3. 116753 (s + 0. 2)   {yfrj      . 

Xc x2 • *(s) 18. 107850 S -*- 0. 9 
s + 0. 8 

X.. X3 • ♦(«) 0.692150 s ^ 0. 9 
s + 0. 4 

In Mxample 6 we computed the elements of the circuit shown in Figure 33 that 

has the impedance function   6{s) and the elements of the circuit shown in Figure ^4 

that has the impedance function   *(s) .    Thus,  we have only to multiply the induc- 

tances and the resistances and to divide the capacitances in those circuits by the 

values   x. , . . . , \,   to obtain the elements of the lattice that is presented in Fig- 

ure 37, 
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Us  R«e 

I-'igure 37.    Lattice Two-Port Equivalent to the 
Tandems in Figures 35 and 36 

.   I 

With '01 

'02 

04 

1    , 

1.92H572   . 

l01 

l02 

l03 

R 04 

0. 9   . 

0.642H5H    , 

1     , 

1.25   . 

from Example 6 we obtain; 

Lxl   -   XjL^     -    6.283247 

Lxl? X1L02 
12. 117694 

Cx4   =   C04/x2   =      0-110449 

x6 = C04/x3 = ^.889547 

S. 116753 

6.0108H3 

04' 

Lx7    =    X4L01 

Lx8 X4 L02 

Rxl X 1 H0 1 5. 654922 

Rx2 '-    X1R02     ' 
4.039236 

Rx3 =   X2R03    = 1H. 107850 

Hx4 =    X2R04    ' it.e34tii 

Rx5 '-    X3R03     = 0.692150 

Rx6 =    X3H04 0.865188 

Rx7 -    X4H()1 2. 805078 

Rx8 ■    x4H0, 2.003630 
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H.   KWMPI.K » (refmin); lo Seolion h) 

H.I   Prublrm 

In Exaniple 5 we have computed a tandem that is shown in Figure 31,  its circuit 

elements arc presented there.    The tandem is matched,  bu'. not perfectly matched. 

What port impedance has to be added in order to obtain a perfectly matched tandem? 

What is the equivalent and terminated lattice two-port? 

8.2  Sululiun 

As it has been mentioned in Hxamplc 5,  the tandem shown in E-'igure 7 is a 

block diagram of the tandem shown in Figure 31.     It is a tandem such that its half 

on the left side is a pcsa T of type (A),  since n   = 8 >   1 ,  and its half on the right 

side is of type (C).    With   n.   ■ 2. 5,  we obtain the product 

a   b 
20 >   1 

According to Theorem 5 the tandem can only be transformed into a perfectly matched 

tandem with an equivalent lattice by a forward transposition of port impedance. 

Hence,  it is necessary that we add an in-p    t impedance   X 

must imply the frequency function 

The port impedance 

♦ (s) 
1 

s + 0. ß 

A block diagram of the tandem with the added in-port impedance is the left   side 

portion of Figure 10 with the upper line of the relation between the ratio coefficients. 

The necessary in-port impedance   X    = x    •  ♦(s)   is obtained by Fq.  (132) s        s 
that gives 

n   n,   - 1 
a   b 

x
a
(na-1)2 + ^bna   K+1)2 

-   yg 5 X 49 +—■ 64 X 12. 25 
7:<5 + 7K40 K57r) 

19X3        '      57 ■    1L0.438596 . 

This in-port impedance will now be totally transposed to the out-port as shown 

at the right in Figure 10. The priOMNl constants arc obtained by the following equa- 

tions; 
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By Eq.   (121) 
n     =   n 

a   X8+xa(ria-,)2 

150. 4.1H596 
150. 4;iH596 + 5 X 4n 

120.i. 50H7fi« 
.195. 438596 :i.04;j47H 

Hy Kq.   (121) 

S 150.438596 
n   n a   a 24. ;i47H24 6. 178729 

By Eq.   (123) 

X_ X X 
aas 

0. 2 + 0. 00ß647 - 0. lf;i«4(i    i   0.044801 1/22.320930 

By Eq.   (124) 

X' a 
a   x 

66.962790  1  13.392558 

By Eq.   (125) 

n.     =   n s 

b «^♦VV1^ 
2. 5 — 6. 178729 

'I. 178729 +  122. 5/3 

'47.'012062   "   0-328571    -"    1/^-043482   .    o.k.    .    l/n 

By Eq.   (126) 

. s 6. 178729 
's -   -, 0.821428 

nb nb 

7. 521936 

By Eq.   (127) 

—       -=- +      -—    ■    0.3 + 0.161846-0.132944 
x' x. x"        x' 

I) b s s 

0.328902   -    l/3.0-*0419   . 
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By Kq.   (128) 

vu   =    vi    — b b   xL 

6.OHOH:JH X 3 
 rc  1. H24251 

All the constants of tlu- pt-rfectly matched tandem are now known.    The tandem is 

terminated at the out-port by the impedance 

x: Kj Ms) 7, 521936 (s + 0.6)   . 

We are not interested with its circuitry,  since we replace the perfectly matched 

tandem by its lattice equivalence.    This circuit is shown in Figure 38 both as a 

block diagram and a circuit diagram. 

rAAAn 
C2 

«3 

C3 
HP 

R4 

C4 

n6 
r-WAn 

*- 

Figure 38,    Lattice With Out-Fort Termination 

The constants of the perfectly matched tandem which we just computed are; 

Left Side pesa T 
Type  (A) 

3.043478 

■ 13.392558 

■ 22.320930 

Right Side pesa T 
Type (C) 

n^ i 0.328571 

v^ -- 1.824251 

x'    ■    3.040419 



Thi-reforc,  we obtain the series branches 
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u'    ■    27.367397 a 

w'    ■    -H. 992152 

2.423647 

w'     -■     7.376319     . 
b 

The termination constant is 

x'    ■    7.521936 s • 

By Eq.   (47) 

K    "    x'         22. 
a 

39255H 
320930 

by Eq.   (48) 

■    0. 6 

13.392558   =    7.341400 
1.824251 

With   no   =   "a   "   3.043478 we obtain the auxiliary values   S   and   F   by Eqs.   (100) 

and (104): 

S   ■ 
V a 

a 
(n0 ♦ I)2 ♦ ka(n0 -  I)2 

1.824251 

1.824251 

4.0434782 + 7.341400 X 2.Ü434782 

16. 349714 + 7.341400 X 4. 175802 

■    1.824251   X   47.005947    ■    85.750646 

1 + k a K   ■ 8.341400   „   r 

13. 352558  0-6 
5.004840 MMM 

rrmTO 0.373703 

Hence, 

SP   --    32.045274  . 



Bv Kq.   (Ill) 

1,4 
S 

2n 0 

V4 K n " 
1 - 0 1 SP 

14.0H7607 

H5.75064Ü 
(i.0Hßf)5(i 

. J"!       22. 2:<0(ilf> 
' ;J2. 045274 

1 ± y 1  - 0. «9:1725    ■    14. OH7()07       1   ± ^Ü.:i06275 

=    14.0H7607       1  ± 0.553421 

Mtnce.  by Eq.   (110a) 

Xj    ■    14.087607X1.553421    '-    21.883985   , 

and by Eq.   (Hub) 

::4   ■     14.087607X0.446579   ■    6.291229 

We compute 

n0+ 1 

n0 - 1 
4   043478 ^ jtaaj' '     r     I   87ft724 <    k       ■    7   341 2.04347H ■•»»•TM  ^    Ka /. J41 400 

Therefore, 

■      f. ,      J. _   4K 
'2, 3 IIT   I1 *     ** "  SH 

with   index   2   referring to the   +   sign. 

k2. 3 
il5. 7 50646 

1. 2 

71. 458872 

71   458872 

1 ±       % 1 < 
2. 4 

32.04527 4 

1 ±   ^1  - 0.074894 

1 ± V0- 5i8T56 I 71.458872 1 ± 0. 961824| 

By Eqs.   (112a, b) 

x.,    •    71.458872X1.961824    -    140.189730 

x3   ■    71. 458872 X 0.038176   ■      2.728014 
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The impedances   Xj   and   X^   imply the normalized frequency function   (Ms) , 

the impedances   X, .  X^ ,  and X     imply the function   ♦(s) .    We have shown in 

Kxample 5 the circuits that have these functions as impedance fun« tions;  they are 

presented in Figures 29 and 30 with the element magnitudes noted there.    Hence, 

we are now able to compute the elements of the lattice circuit shown at the right 

of Figure 38.    They are: 

R, 

X1R01   = 21 883985 

X1R02    T 43. 767970 C2 
« C02/Xl ■   0. 057119 

X2R0      " 
233. 649550 C3 

■ C0/x2 --  0. 007133 

X3R0      = 4. 546690 C4 
s C0/X3 ■   0. 366567 

X4R01    = 6. 291229 

X4R02   ' 
12. 582458 C6 

a C02/x4 --   0. 198689 

X;RO = 12. 536560 C7 
« C0/Xs' =   0. 132944 

'».   i:\ WIPl.h: 9 in-f.-rrm^ to Section 8) 

•».I   I'roblpm 

Assume a pesa T of type (A) that is terminated by the impedance   A As)      1   ; 

thus the termination is the normalized resistance.    Let the pesa T have the constants 

n   =   2.5   . 2   . I    ; 

let 

<Ms)   ■   s + 0,8   , 

and 

♦ (s) l/<Ms) 1 
s + 0. 8 

A block diagram of the terminated pesa I is shown in Figure 39 
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Za(t)      Zb(t) 

i* 

I'iguri' 39.    Terminated 
pcsa T of Example 9 

Za(s) - v(n - 1) <t>(s) ■ ;<(s + 0. 8)   . 

Zb(s) ■ v(^- l) .Ms)     -  1.2(s+0.H)   . 

Z  (s) - v • Ms) + x/Ms) 

2 J* ♦ 1. la -t- 2. 14 
s + 0. H 

Zt (s) -   1    . 

What is the driving-point impedance  measured at the in-port terminals?      Realize 

this driving-point impedance by a circuit that is shown by its block diagram in 

Figure 40. 

ZoM Z>) 

20M z!(t) 
>• 

r 

Let      Z  (s) • Z*(s) a a T 

Z0(s)   • Z*(s)   ■   T- 

w ith the dualitv constant   T   to be determined. 

Figure 40.    Block Oiagram 
of the [Realization of   Z(s) 
in Kxampl^ 9 

f.|   Sululion 

The driving-point impedance according to Figure 39 is 

Z(s) Za(s) ♦ —p 1 

Zq(s)+    Zb(s) + Zt(s) 

Z(s)    ■    3s ;   2.4 + s ->■ o. a 

2s   + 3. 2s + 4. 28        1. 2s - 0.04 

,.   ..,    s" + 2. (i8s + 2. 104 (). 25    -;  
s" + 2. 85s + 5. 39 

Note that   Z(s)   is an impedance function in which the degrees of the numerator and 

of the denominator polynomials are   2   and for which 

1^5. Sfl -   V--104 I ' <    2- (i8 X 2- 85 



toi 

is true.    Thus   Z(s)   is a positive real function.    When we would intend to realize 

Z(.s)   in the classical Hrunc fashion,  it would be necessary to derive at first the 

mininun resistance function 

Z  (s) 
s   + a.s 

'd 
'k      2 

s" + bjS I bu 

with a constant   Zu   that lias impedancH' ch.aracter and for which 

(V^T - V%)2 ajb, 

Using the general   pesa T   instead of the pesa T with   o„(s) -  l/<t>   (s) 

impedance function   Z(s)   can be realized immediately. 

We are now going to realize 

s ,    the 

Z(s)   -    6.25   ^^s^.KM 
s" + 2. 85s + 5. :<9 

by the circuit shown in Figure 40 in its block diagram.    This circuit has the driving- 

point impedance given by Eq.   (1H4).    In this equation the impedance   /. (s)   as well 

as the duality constant   T   are unknown.    In Section 8 we postulated that th« dual 
•■t ^ 

impedance function   Z" (s)      f/Z. (s)   should have the same zeros a.s the shunt 

impedance   Z   (s)   of the pesa T .    Thus with positive and real constants   T   and   K 

and with denominator coefficients   a.   and   af)   all unknown 

Zj (s) T-'     s2 +  1. Cs + 2. 11 

s   + a.s + a() 

Hence, 

..                              s" + a.s + aM 

Zn(s)    ■    T-/^o(s)   '    K  "■ ■ 
s" +  1. (is + 2. 14 

We evaluate at   s - a» 

Z()(o,) K 
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and 

Zfoo)   ■   6.2b . 

At this frequency   s = oo 

ZJco)   -   a),  and   Z * (m)   ■   0. 
Si <& 

Therefoi L-,  at   s = au ,  according to Figure 40, the parallel circuit at the right in 

the block diagram is shoK circuited and the parallel circuit at the left in the diagram 

degenerates to   Z0((n)   since   Z  (en) is open circuit;  at the terminals of the complete 

circuit,  therefore,  we measure   Z(OD) - Z0((i)) ,  and therefore 

K 6.25 

Hence, 

Z0(s)   -   6.25 
s   + a.s + a- 

s" t 1. 68 + 2. 14 

in which formula   a. and   a«   are positive real coefficients,  so far still unknown. 

Let us now consider Eq.  (184).    According to this equation 

Z(s) 
za(s) • z0(s) + r 

Z„(.s) ♦ ZJs) 
'0' 

By the block diagram shown in Figure 39 we find that not only when   Z  (.s) ■ 0   do 

we measure   Za(s)   as the driving-point impedance of the circuit,  but also when 

Ab(s) + Zt(s) 
a 
0 Since   Z. (s)   is a negative impedance and   Z (s)   is a positive 

one, there is certainly a positive and real   s = k   for which 

Z(k)   -   Za(k) 

Evaluating at this frequency   Eq.   (184) becomes 

zaoo 
z0(k) + r za(k) 

za(k) + z0(k) 
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or 

Z*(W ♦ za(k) • z0(k)  ■  za(k) • z0(k) + T2 

Hence, 

T2   -   Za
2(k)   , 

or,  since   T   is assurmd to be positive and real 

T   ■   Z  (k) 
a 

The frequency   k   is a positive and real solution of the equation 

Zb(s) + Zt(s)        0 

or 

1. 2 s - 0.04   ■   0   . 

Hence, 

k   ■   0.04/1.2   --    l/:io 

Therefore, 

T   ■   Z  (1/iO)   -   0. 1 + 2.4        2.D   , 6. 25   . 

The inversion of Eq.   (1H4) is given in Eq.   (IHfi) by which we are now able to deter- 

mine completely 

Z0(S) 
T2 - Za(s) "  Z(s) 

Z(s) - /.(s) 

G. 25 (s2 ♦ 2. 858 + 5. 39) - 6. 25 (3s + 2, 4)(s2 + 2. 68s + 2. 104) 
 -; T  

6, 25 (s" + 2. G8s + 2. 104) - (3s + 2. 4)(s" + 2, 85s + 5. 39) 

s" + 2. 85s + 5. 39   -    (3s + 2. 4)(s" + 2. 68s + 2. 104) 
*1 1  
s" + 2. f)8s + 2. 104 - (0. 48s + 0. 384)(s*' + 2. 85s + 5. 39) 

(equation continued) 
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'i                   I 
38"   + 9. 448" + f). Hf)4s  - 0. 3404 
 g T  
0. 48s    + 0. 7528    +  1. OOKis - 0. 0M424 

(s -  1/30) (3s" + 9. 54s +   10. 212)  n  
(H -  1/30) (0. 488" + 0. 7(i8s +  1. 0272) 

Hence, 

Z0(8) 
.,   ..   s" + 3. 188 + 3. 404 
n. 2n .I, 

s" +  1. «8 + 2. 14 

/>) T"/Z0(s) s" I   L6gJ 2. 14 

s"+ 3. 18s + 3.404 

As we postulated,    Z' (s) has the same zeros (the same numerator) as   Z  (s) ,  but 

it has a different denominator and another constant of impedance character ahead 

of the polynomial fraction. 

We will now realize   ZQ(S) .    Since it has the same zeros as   Z  (s) ,  we assume 

it to be equivalent with a parallel circuit of the impedances   p • Z  (s)   and the 

resistance Z.fs) -  1   .    Thus 

Z0(s) 

n    I S +  0.8 0. 5 p —15  
s" + 1. 6s + 2. 14 

+ 1 

s" ♦ (1. fi ♦ 0. 5p)s ♦  2. 14 -M). 4p 

82 +  1,6s +  2. 14 

8    + 3. 18s + 3. 404 
 "5  

s    + 1   6s + 2. 14 

By comparing the coefficients we find that 

1. 6    + 0. 5p    •    3. 18 

2,14 + 0. 4p   ■    3. 404 

p   ■    3. It.     , 

p    -    3. II   . 

Hence,  the anticipated realization is possible.    The realization   of 

zq(s)  -  r .*<■) +x/4(«)  ■   (2s + 1.6) +  s ^0 1 

is shown in Figure 41. 
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Lql       Rql 
'Q2 

Rq2 

Figurf  41     Shunt Rralization 

C
q2    -    V* 

i; 
qi 

H 

1. (. 

The rralization of   ^n (s) is shown in Figure 42. 

The circuit implies a resistance    R«. ■  1     in 

parallel with the circuit given by   /-  (s)/p , 

since p    has been a factor by which we miiti- 

plied the achnittancc    1/Zf
:(s) . 

R* 

Lo2   Ro2 
"03 

R03 
UVVArJ 

I'igure 42.    Realization of the 
Impedance   Zi" (s) 

Rj, - Kql/P ' 0.60«9a« 

Rjj ' H     /p -   1. 186709 

Ln-, = ^  I/P ■ 0. 83281] 02 (il 

o:i cq2-p = s.ie/3. 

By the well known rules of duality   we find the 

elements of the impedance   Z„(s) that is dual 

to   Z„ fe ) .    The circuit of this impedance is s 

shown in Figure 43. 

■\\ 

'02 

R02 
USAArJ 

Los     Ro3 

Figur* 43.    Realization of 
the Impedance   Zn(s) 

La      Ro 

{•"igurc 44.    Realization of 
the Impedance   Z   (s) 

n02 '- T2/R02 '   ^•:{4;J75:j 

R03 - TVRjj ' 5- ^66667 

02 

'03 

- L'  /T2 

■ 0. 1012fi6 

- C*    •   T2 

^03       1 

fi. 583333 

The circuit realizing the impedance function 

Z  (a)   is shown in Figure 44. 

I. R 2. 4 

! 
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rWAn 

HI- 

Figure 45.    Realization of 
the Impedance   Z   (s) 

The circuit realizing the impedance function 

Z   (s) i T  IZ  (s)   is shown in Figure 45. 

C*    •   L  /"H   ■   0. 48   , a a' 

K*    -   T2/R      -   2.6041fi7   . a '    a 

The complete circuit by which the function   Z(s)   in realized is showi   in Figure 46. 

rWAH 

■\\ 

Cz 

R3 

L4    R5 

Re 

*6 
■AA/V 

Lr    Re 

t 9 

Rio 

i-WAn 

HI- 
Figure 46.    Circuit Realization of   Z(s)   in Example 9 

Rl 
= 

R01 
--      6, 25 

»1 ■ R02 
1    12.343753 

«5 
* R(W 

■    5.266667 

R6 
« R01 

-■    1    , 

R8 
■ R02 

0.506329 

H10 
s 

«0*3 1, 186709 

R,j s Ra 
2. 4 

P13 
- 
^ -■    2.604167 

L4   '-   L03   --   6.583333 

1 * ''02 ■   0.632911 

11 I>      ■   3 a 

C2   r   C0''   '   0- 1012fifi 

C„   -   C*     -    3.16/3 03 

14 a 0. 48 
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At this point we wouM like to perform a parity check on the circuit shown in 

Figure  46.    We compute 

Z(l)    ■   6.25   Q^
4

    --   3.912338    . 

Figure 47(a) is a block diagram of the circuit shown in Figure 46.     Into the block 

we have written tht  impedance evaluations for   s ■ 1   for euch branch element of 

the circuit in Figure 46.    Thus,  each numerical value in the blocks is an impedance. 

First we combined all series and parallel blocks obtaining the diagram in part (b) 

of Figure  47    We advanced in the same way and obtained the block diagram in 

part (c) of the figure.    Then we obtained the diagram in part (d) and finally the 

block in part (c) with a result that is a very good approximation of the expected value 

Z(l) ■ 3. 912338.    Thus we can trust the results obtained in the computation. 

l/o.l..l.'b6 

Kijym v 
H ■-.s*ii)i.'>..m,iA>7 

)  •   2,k 

y-1 

^.. IAUüK 

lü.6Ji911«0.JOt.J^9 

(•) 

_i u 1_| l^^J 1 

^.t,j<,lb7| 

H i/o.i.< h 

^1. M   XX) ^ 

)/J.16 Jl 

^L.litlJT^- 

(b) 

—c 
  rl0fe" h 

-|l.li74ü7H (a) 

(e) 
^J.»1^340 |^ 

(•I 

Figure 47.    Block Diagrams for Parity Checks 
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10.   KWMI'U:   Ml Irrfi-rrintMo N-.iJon'»I 

III I   Prohl.m 

U ith the sani" ruiMtrical values of the constants in Kxample 9 let us cietermine 

a perfectly coupled and seiies-augmentid Pi that is terminated by an admittance 

1//. (s) ■   1 .     The constants of the pesa I'i are 

n      -    2.5, 

v*    •   2 

x*   -   A     ; 

its normalized frequency functions are 

<Ms)   ■    !/#(•) s + 0. M   . 

U hat is th«' driving-point admittance of the pesa PI ,   what are its branch admittances 

Show that the driving-point admittance can be realized by the dual circuit of Fig- 

ure 4R. 

III.2  Niluiiiin 

A block diagram of the pesa Pi with its termination is shown in Kiuure  48.    In 

order to be in strict relation to the duality,  we consider the termination as the 

series combination of the impedance   Z.(s)      1   and a short circuit connection. 

The symbol   I   is used in this example to discriminate the values from those in 

Example 9. 

Branch admittances 

Figure 48.    Kxample of a pesa Pi 

l//*(.s)        v*(n-l)r,(s)     .Us ♦ 0.8) , 

- I. 2(s ♦ (i. ;t)   . 

l//.*(.s)        v ::-.Ms) + x;:M.s) 
•) 

■ I o. B 

I'crmination admittance    1/Z*(s) 1 



Note that 

1U9 

in Example 9 

Za(s) 

Zq(S) 

Zt(.s) 

in Kxample ID 

1/Z*(S) 

l/Zff») 

1/Z*(s) 

1/   Zt*(s) ♦ 0 

Thv driving-point acimiltance    1/Z   (s)   according to Figure 48 is 

1/Z#(s) 
Z*(s)       gfr)*      I      f1! 

Z*(s)     Z*(.s) 

3f ^2.4 + 
1 

is" + .i. 2s + 4. 2H 1. 2s - 0. 04 

con    8" -*•  2. (iMs ^-  2. 104 ■    6.25 —^  
s" ♦ 2. H5s + 5. 39 

which numerically is the same result as it has been obtained tor   Z(s)   in Kxample 9. 
M 

Therefore   1/Z  (s)   can be realized by the circuit shown in Figure 49 that is the 

dual of the circuit in Figure 46.    A test evaluation for   s      1   that is not performed 

here shows that the results are correct. 

-WAr- 

■STOP—WAr- 
L#

2    R? 

# 

R5 
UVWJ 

HH 
LvSA^J 

R* 

R6
# 

-\\ 
* 

R? l-(4      R|3 
-nnnp-vw-i 

L#       R# L9        "lO 

(H, L, C notations without the 

raised   |   refer to the circuit 

in Figure 46 of Example 9) 

Figure 49.    Circuit Dual to That in Figure   46 
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R*        1/Rj      ■    0. ti 

RJ - 1/R3 ■ 0.081013 

R* - 1/R5 ■ 0. 189873 

Rj - 1/R6 - 1 

RJ ■ 1/R8 ■ 1.970000 

RJ0   -    VRJO    '    0.842667 

Rj2   -    1/Rj., 0.416667 

RJ3   -    1/Ri^   '-   0.384000 

L*   =   C2    -    0. 101266 

L*   =    Cq    -    3. 16/3 

L14   '-   C14    '-   0-4H 

C*   ■    L.    ■    6.583333 4 4 

C7    ■    L7    -    0.632911 

CJJ LJJ I 
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