
R.
L
G.

T I
T SUPERPOSITION IN A CLASS OF NONLINEAR SYSTEMS
c CID
H1 ALAN V. OPP::NHErMI
N

C
AL

S--COP~~W.Y .. OF -,•' •-

HARD COPY $N' i o
Ep MICROFICHE $ , 7.6
R -/

T 4

3
TECHNICAL REPORT 432

2
MARCH 31, 1965

DDC

DDC-IRA E

I

MASSACHUSETTS INSTITUTE OF TECHNOLOGY i

RESEARCH LABORATORY OF ELECTRONICS

CAMBRIDGE, MASSACHUSMTI'



S~The Research Laboratory of Electronics is an interdepartmental

i laboratory in which faculty members and graduate students from

E numerous academic departments conduct research.
The research reported in this document was made possible in

•W part by support extended the Massachusetts Institute of Technology,
i Research Laboratory of Electronics, by the JOINT SERVICES

ELECTRONICS PROGRAMS (U. S. Army, U. S. Ntavy, and U. S.
Air Force) under Contract No. DA36-039-AMC-03200(E); additional
support was received from the National Science Foundation (Grant
GP-2495), tihe National Institutes of Health (Grant MH-04737-04),
and the National Aeronautics and Space Administration (Grant
NsG-496).

Reproduction in whole or in part is permitted for any purpose
of the United States Government.

I

Ii
I!
, * •1m m • • m • N m m •, l NIII



MASSACHUSETTS INSTITUTE OF TECHNOLOGY

RESEARCH LABORATORY OF ELECTRONICS

Technical Report 432 March 31, 1965

SUPERPOSITION IN A CLASS OF NONLINEAR SYSTEMS

Alan V. Oppenheim

Submitted to the Department of Electrical Engineering, M. I. T.,
May 15, 1964, in partial fulfillment of the requ'irements for the
degree of Doctor of Sciences.

(Manuscript received November 27, 1964)

Abstract

Many nonlinear systems can be interpreted as linear transformations between vec-
tor spaces under appropriate definitions for the vector operations on the inputs and
outputs. The class of systems which can be represented in this way, is discussed here.
This class, referred to as the class of homomorphic systems, is shown to include all
invertible systems. Necessary and sufficient conditions on a noninvertible system such
that it is a homomorphic system, are derived.

A canonic representation of homomorphic systems is presented. This representa-
tion consists of a cascade of three systems, the first and last of which are determined
only by the vector space of inputs and the vector space of outputs, respectively. The
second system in the canonic representation is a linear system. Necessary and suf-
ficient conditions are presented under which all of the memory in the system can be
concentrated in the linear portion of the canonic representation. A means for classi-
fying homomorphic systems, suggested by the canonic representation, is discussed.
This means of classification offers the advantage that systems within a class differ
only in the linear portion of the canonic representation. Applications of the theory are
considered for a class of nonlinear feedback systems.
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1. INTRODUCTION

The analysis and characterization of linear systems rely heavily on the principle of

superposition which these systems satisfy. The superposition integral and system func-
tion representations, for example, are a direct consequence of the fact that the response

of a linear system to each input in a set of inputs determines the response to any linear

combination of inputs in that set.

In contrast, nonlinear systems do not satisfy this principle of superposition. The
determination of a means for representing nonlinear systems has been the subject of con-

siderable attention for many years. In 1887, Volterra formulated a functional expansion

of continuous nonlinear operators in the form of a generalization of the Taylor's series
expansion of a nonlinear function. This expansion, applied to systems, provides a repre-

sentation of the system operator. A representation of time-invariant, realizable non-2.
linear systems was presented by Wiener, in 1958. In his theory, system response to
shot noise is used to determine the parameters of the representation. Wiener's formu-
lation is based on the expansion of the past of an input in terms of Laguerre functions,

3which was first presented by Cameron and Martin. The response of a realizable time-
invariant nonlinear system is expressed as a nonlinear combination of the coefficients

in this expansion. Cameron and Martin repre:;ented the nonlinear combination of these
coefficients in terms of Hermite functions. An alternative r-2.resentation of the non-

4linear combination of the coefficients was developed by Bose, in 1956. Much of the
research being conducted, at present, on the representation of nonlinear systems is

based on Wiener's original ideas.

This report presents a different approach to the characterization of nonlinear sys-
tems, which is based on linear algebra. The fact that vector spaces of time functions

can be constructed under a variety of choices for the definitions of vector addition and
scalar multiplication permits many nonlinear systems to be representable as linear
transformations between vector spaces. Specifically, if f1 (t) and f,(t) represent any
two system inputs, let f1 (t) o f 2 (t) denote the combination of these inputs under a spec-

ified rule, such as addition, multiplication or convolution. If c is any scalar, let c>fl(t)
denote the combination of the scalar c and the input fl(t). Similarly, let o denote a
rule of combination between any two outputs, and / denote a rule of combination between
any scalar and any output. If the system inputs constitute a vector space when o is inter-
preted as vector addition and > is interpreted as scalar multiplication, and if the system

operator 4 has the property that

f .fl(t) 0 f (t) 41[f (t)] 0 4, T[f(t)]

and

q[c>fl(t)] c/4[f (t)]

then it is representable as a linear transformation between vector spaces. In the case



for which the operations o and o are addition and the operations > and / are multi-

plication, the system is a linear system. Otherwise, the system is in general nonlinear.

Systems representable in this way are referred to here as homomorphic systems, a

term motivated by the algebraic definition of a homomorphic mapping between vector

spaces.

The algebraic fundamentals for the study of homomorphic systems are presented in

Section 11. This presentation sets down the basic postulates of linear algebra and devel-

ops the algebraic theorems that are needed in the study of homomorphic systems.

In Sections III and IV the properties of linear transformations are used to investigate

homomorphic systems. It is shown in Section III that every invertible system is homo-

morphic for any choice of the input vector space. For noninvectible systems, necessary

and sufficient conditions are derived under which the systems are homomorphic.

In Section IV a canonic representation for homomorphic systems is developed. This

representation consists of a cascade of three systems, the first and last of which are

determined entirely by the input and output vector spaces, respectively. The second

system in the representation is a linear system. Necessary and sufficient conditions

are derived in Section IV under which the first and last systems in the canonic repre-

sentation are memoryless. Section IV also includes a discussion of the use of the can-

onic representation in treating a class of nonadditive feedback systems.

The canonic representation presented here offers a convenient means for classifying

homomorphic systems. Systems within a given class differ only in the linear portion of

their canonic representation and hence a comparison of systems within a class reduces

to a comparison of linear systems. Alternatively, the analysis of a homomorphic system,

when its class is known, reduces to the analysis of a linear system.



II. VECTOR SPACES AND LINEAR TRANSFORMATIONS

2. 1 INTRODUCTION

The results presented in this report draw heavily on the notation, concepts, and

theorems of linear algebra. Hence it is appropriate to introduce the fundamental prop-

erties of vector spaces and linear transformations, and to remind the reader who is

familiar with vector spaces of the properties used here. Although proofs of all theorems

have been included, it is the theorems themselves that will assume primary importance.

For the reader who is familiar with linear algebra, a quick review should be adequate

to convey the point of view toward linear algebra which is used in this report. Many of

the theorems and proofs presented here have been published by others.5-7 Some of

these were reformulated in terms that were more meaningful within the context of this

report. The remainder of the theorems were formulated and proved specifically for the

purposes of this report.

2.2 GROUPS, FIELDS, AND VECTOR SPACES

It is convenient to introduce the postulates of the algebra of vector spaces by intro-

ducing the postulates of groups, which constitute a weaker algebraic system.

DEFINITION 1: A group G is a cc!'ection of objects for which a binary operation

• is defined, subject to the following postulates:

1. If a and b are in G, then a*b is in G.

2. If a, b, and c are in G, then

(a*b)*c = a*(b*c).

3. There exists a unique elemen' e in G, called the identity element, such that for

all a in G,

a*e = e*a = a.

4. For every element a in G, there exists a unique element a- 1 in G. such that

a~a-I a a-l a = e.

If the group G has the property that for all elements a and b in G, a*b = b*a, then G

is referred to as a commutative or Abelian group. Often when discussing Abelian groups,

the binary operation associated with the group is denoted + to emphasize the fact that

the group operation is commutative. In this case, the identity element is referred to

as the zero element. This notation will be used now. Little confusion results when the

elements of the groups are abstract objects. When the group elements are real or com-

plex numbers or functions, however, the reader should remember that the element a+b

in the group is not necessarily the addition of the numbers (or functions) a and b. The

algebraic postulates can be satisfied, for example, if a+b is defined as the product of

the numbers or functions a and b.

3



DEFINITION 2: A field F is a collection of objects associated with which there are

two binary operations. The first operation is denoted a+b. The second operation is

denoted a.b. These operations satisfy the following postulates:

1. The field F is an Abelian group under the operation +.

Z. The nonzero elements of F are an Abelian group under the operation . . The

identity under this operation is denoted by 1.

3. For any a, b, and c in F,

a - (b+c) = . b + a c.

It should again be mentioned that the operations + and , although satisfying the same

algebraic postulates satisfied by addition and multiplication of numbers or functions,

are not necessarily restricted to be these operations when the elements of the field are

chosen to be real or complex numbers or functions.

DEFINITION 3: A vector space consists of

1. A field F of scalars;

2. A set V of objects called vectors and a binary operation called vector addition

(to be denoted +) under which the set V constitutes an Abelian group; and

3. An operation called scalar multiplication which associates with each scalar c in

F and vector v in V a vector cv in V called the product of c and v in such a way that

(a) Iv = v for every v in V

(b) (cI-c 2 )v= cI (cZvý

(c) c(v1 +v 2 ) =cvI + c%2

(d) (cl+c2 )V ClV + c2 v.

The inverse of a vector v is denoted -v. it can easily be verified that

(-I)v = -v
and

(O)v = 0

DEFINITION 4: Let V be a vector space over the field F. A subspace of V is a

subset V1 of V which is itself a vector space over F with the cperations of vector add-

ition and scalar multiplication on V.

A simple example of a subspace of V is the space consisting of the zero vector

alone. When verifying that a subset of a vector space is a subspace we need not verify

all of the postulates of a vector space, since many of the postulates are implied by the

fact that the set is a subset of a vector space. In general, it is sufficient to show that

if V1 and v2 are in V1 , then any linear combination of v 1 and v2 is also in V1.

DEFINITION 5: A vector space can be extended to what is termed an inner product

space by defining the inner product between any two vectors in the space. The inner

product assigns to each ordered pair of vectors v 1 , v 2 in V a scalar (v1. v 2 ) in F in

such a way that

4



1. (VI+vZV 3) (vlv 3 ) + (v 2 *v3 ).

2. (cvlV 2) =c-(vv2).

3. (vIv 2 ) = (v2 , v), where the bar denotes complex conjugation.

4. (v,v) > 0 if v*0.

Two vectors having the property that their inner product is zero are said to be orthog-

onal. The length of a vector v in an inner product space is defined as the square root

of (v, v) and is denoted 1v1. A set of vectors that are orthogonal to each other and have

unit length is termed an orthonormal set.

Vect.or spaces can be constructed for which the elements are functions of time, but

for which the operations of vector addition and scalar multiplication do not correspond

to addition of time functions and multiplication of time functions by scalars. For
v = enexample, consider the set of all time functions of the form v = e, where n is a real

number. If we associate with this set the field of real numbers and define vector addi-

tion and scalar multiplication as

nit nzt
vI + v2 = v1 (t) v2 (t) = e 1 e 2

and

cv = [v(t)]c = [ent]c,

then this set constitutes a vector space.

Many of the important and useful theorems concerning vector spaces and linear

transformations between vector spaces stem from the fact that a set oi basis vectors

can always be found for a finite-dimensional vector space. The notion of a basis is

presented in the following definitions and theorems.

DEFINITION 6: Let V be a vector space over F. A finite subset S of V is said to

be linearly dependent if there exist scalars cl, c7..... c in F, not all of which are 0,

and distinct vectors vI , v2 , n in S such that

clv +cv +... +c = 0.1 1 22 n n

A set that is not linearly dependent is called linearly independent. If a set of vectors is

infinite, then it is said to be a linearly independent set if every finite subset of it is

linearly independent. A set of vectors in V which is linearly independent and spans V,

that is, is such that any vector in V can be expressed as a finite linear combination of

the vectors in the set, is referred to as a basis for V;

It can be verified that any set containing the zero vector is a linearly dependent set,

and that the representation for any vector in terms of a basis is unique.

THEOREM 1: Let V be a vector space for which the finite set of vectors v1 , v2 ,

vn forms a basis. Then any other basis for V contains exactly n vectors.

5



PROOF: First, we shali show that any set of vectors containing more than n eie-

ments must be linearly dependent. To this end, let wI# wZ, ... , wm be a set of m vec-

tors from V -with m> n. Since the set v 1 , v 2 ' ... vn is a basis, each of the vectors

wi is expressible as a linear combination of the vectors v1 , v 2 .. , vn; that is,

n

w. c..v..
3=1

Let XI, X2 ... , Im be scalars from F. Then

m m n n

i= i=1 j=l j=l (2Ci
Since m > n, the set of equations

m C..xi.= 0, j = 1,Z,... n

mmi= 1

has a nontrivial solution for the unknowns IX2.. , m. Thus a set of scalars can

be found, not all of which are zero, with the property that

M
X.w. = 0.

i= 1

Hence the set w 1 , w? I... , wm cannot be a linearly independent set; therefore, no lin-

early independent set in V, in particular, no basis for V can contain more than n vec-

tors. Now assume that there exists a basis with p vectors, where p < n. Then, by

virtue of the discussion above, there could not exist a basis with more than p vectors.

But the set of basis vectors v 1 , v2 , #... vn has more than p vectors. Thus there could

not have existed a basis with p vectors, where p < n.

By virtue of Theorem 1, we see that any basis for a vector space with a finite num-

ber of basis vectors contains the same number of vectors, It is this property of vector

spaces that permits the definition of the dimension of a vector space independently of

any particular basis.

DEFINITION 7: The dimension of V is del ned to be the number of elements in a

basis of V. The dimension of a vector space V will be denoted dim V.

Many of the theorems of linear algebra center around finite-dimensional vector

spaces. Infinite-dimensional vector spaces present special problems and many theorems

concerning these spaces require special restrictions on the spaces. Infinite-dimensional

vector spaces will be considered. Before doing so, it is important that the properties

of finite-dimensional vector spaces be understood so that the extensions of these prop-

erties to infinite-dimensional spaces will be clearer.

6



THEOREM 2; Let S be a linearly independent subset of a finite-dimensional vector

space V. Then S is part of a basis for V.

PPOOF: Let W be the subspace of V spanned by S. Then, by definition, S is a

basis for W. If W = V, then S is also a basis for V and the proof is complete. If W

is a proper subspace of V (that is, contained An but not equal to V), let v be a vector

that is- in- V but not in W. The set {vI ,SA obtained by adjoining v, to S is linearly inde-

pendent, for if v could be expressed as a linear combination of vectors in S, then v1

would be in W.
Let V1 be the subspace of V spanned by vl ,S). If V1 = V, then {vl,SJ is a basis

for V, since it is a basis for V1 . If V1 is a proper subspace of V, let v2 be a vector

that is in V but is not in V1 . Then the set .5)vlS) must be linearly independent. Let

this process be continued until the set {Vn,Vn .. v*,vI,S} contains exactly dim V ele-

ments. Since these vectors are all linearly independent, the space Vn spanned by this
set must be all of V; otherwise, a vector Vn+1 that is in V but not in Vn could be

adjoined to this set, forming a linearly independent set with more than dim V elements.

In the proof of Theorem 1, however, it was shown that no linearly independent set of V

could contain more than dim V eluments.
By the procedure above, then, the set S was extended to a basis of V and hence is

itself part of a basis.

It follows from Theorem 2 that if VI is a proper subspace of a finite-dimensional

vector space V, then dim V1 < dim V. This follows from the fact that any basis for Vl

is part of a basis for V. Since V1 is a proper subspace of V, however, a set of vectors

must be adjoined to the set of basis vectors for V1 to form a basis for V, these vectors

being chosen by the procedure given in the proof of Theorem 2.
The existence of a basis leads to a representation of a vector as an n-tuple of

.calars. This representation comes about by expressing every vector in terms of an

ordered basis for the space V. A one-to-one correspondence can then be drawn between

any vector in V and the n-tuple of the coordinates expressing this vector in terms of the

ordered basis. This is done formally by first defining a vector space, the elements ci

which are n-tuples having entries from the field F.
DEFINITION 8: The vector space Fn is defined to be the vector space having ele-

ments of the form (a1 , a 2 ...-. an}, where a1 , a2 , ... , an are scalars from the field F.

The vector addition of two vectors (al. -,2. ... , an) and (bI, b2 t .... bn) in Fn is defined as

(al,a 2 , ... ,an) + (bl.b 2 ..... bn) = (al+b, a.+b2 ..... an+bn).

The scalar multiplication of a vector (a, a.. , an) in Fn with a scalar c in F is

defined as

c(a, *a 2 .... an)= (caI, ca 2 , ... . can).

Let V be a finite dinensional vector space over F with

7



dim V= n.

If v 1 . v?, ... ,vn is an ordered basis for V, then any vector v can be expressed in the

form

v= aIv1 +a2v2 + ... +anvn.

If we draw a correspondence between v and the n-tuple (alPa 2 1 .. -,an) in F n then this

correspondence will be one-to-one, since any vector v in V can be expressed in one
and only one way in terms of a given ordered basis.

2.3 QUOTIENT SPACES

A concept that will have application in the discussion of linear transformations, and

also in the discussion of homomorphic systems, is that of a quotient space. The essence
of the idea is to divide a vector space V into sets of vectors, S1 I S2, ... , Sn with the
property that the sets Sit S .2 Sn can themselves be considered as vectors in a
vector space.

DEFINITION 9: Let V1 be a subspace of V, and v be a vector in V. Let SI be

the set of all vectors in V which can be expressed in the form vI + w for some w in
V1. Denote this set by v1 + V1 . This set is called a coset of V generated by v1 and
V1. The set of all cosets generated by vectors v in V, and the subspace V1 is called

a quotient space of V, modulo V, and is denoted by V/V 1 .
THEOREM 3: Let V be a vector space over F, and V be a subspace of V. The

quotient space V/V is a vector space over F with the following definitions of vector
addition and scalar multiplication

(VI+V 1 ) + (v2 +V 1) = [vl+v2 ] + V1

c{v +V ) = [cv 1 ] + V1.

PROOF: To show that V/V 1 is a vector space we must verify that all the postulates

of a vector space as presented in Definition 3 are satisfied.

1. The set V/V 1 is an Abelian group, since

(a) If v + V1 and v2+vI are any two cosets of V, then their vector sum
(VI+v ) + V1 is also a coset of V, and

(vI+VI) + (v2 +V1 ) = (v1 +V ) + V1

= (v?+vI) + V1

= (v2 +V1 ) + (vI+V1 )-

(b) Let vI + VI, v 2 + VI, and v3 + VI be cosets of V; then

8



[(V'+vJ+(V_+V.)l + (v.+V.1 =v+vA+Vi + fvA+V
i . v z - r t I . "3 I-

= (lfv +v3]÷V

= [V + v +v 3)] + VI

'I (V2 +V3 1

= (V 1+V 1  [ + I+)+(V3+VI).

(c) It can be verified that the coset (O+V1) has the properties required for an

identity element in V/V 1.

(d) Let v + V be a coset of V; then (-v) + V1 is the inverse of v + V1 .

2. The four properties required of scalar multiplication are satisfied.

(a) I(v+V1 ) = v+ V 1 = v-+ V1.

(b) (cI' c 2 )(v+VI= cI c2v + VI = CI[C2 (v+V1 )].

(C) c[(Vl+V 1 )+(v 2 +V 1)I = c[(vl+v2 )+V1 ]

- [(cV +cv 2)+V I

= (CV1 +V1 ) + (cv 2 +V 1 ).

(d) (cI+C2 )(v+V 1) = [(c 1 +C2 )v+V1 ]

= Cl V+C v+V 1

= (C1 V+V1 ) + (cEv+V 1).

To aid in understanding the concept of a quotient space, consider a geometrical two-

dimensional coordinate system in the x-y plane. All vectors in this plane form a vector

space, which we can denote by V. Let VI be the subspace of V consisting of all vec-

tors lying in the x direction. Let v be a vector in V having a component in the y

direction equal to vy. Then the coset v + V1 is the set of all vectors in the plane having

vy as their y component. The quotient space V/V 1 is the set of all such cosets for

different values of v
y

THEOREM 4: Let va + V1 and vb + VI be any two cosets in V/V1 . If these cosets

have any element in common, then they are identical.

PROOF: Let v be any vector that is in va + V and also in r b+ V Then there

exists vI in VI such that

V = V a + VIP

and there exists v1 in V1 such that

v b= Vb+ v.

9



Hence.

va = vb + (vl-vl).

Consequently,

Va + V = (Vb+V'-Vl) + V1 .

But v1 -vI is in VI; hence,

V +V 1 = vb+ V1 .

2.4 LINEAR TRANSFORMATIONS

The properties of the class of nonlinear systems to be discussed in Sections III and

IV are based on the properties of linear transformations between vector spaces. The

theorems to be derived concerning these systems will be for the most part an interpre-

tation of theorems presented here, placed in the context of the discussion of Sections III

and IV.

DEFINITION 10: Let V and W be vector spaces over the field F. A linear trans-

formation from V into W is a function T from V into W which maps every vector in

V onte a unique vector in W in such a way that

T(cv1 +V2 ) = cT(vI) + T(v2 )

for all vectors vI and v2 in V and all scalars c in F. A linear transformation is said

to be one-to-one and onto if for each vector w in W there is one and only one vector v

in V such that

T(v) = w.

A linear transformation that is one-to-one and onto is invertible.

If a transformation is onto but is not necessarily one-to-one, it is sometimes

referred to as a homomorphic transformation. A transformation that is one-to-one and

onto is sometimes referred to as an isomorphic transformation, that is, an isomorphic

transformation is an invertible homomorphic transformation.

DEFINITION 11: The domain of a linear transformation is the set of vectors V over

which the transformation T is defined. The range R of T is defined as the set of vec-

tors in W onto which vectors in V are mapped, that is, T[V] = R. The null space N of

T is the set of vectors in V that map onto the zero vector in W, that is, T[N] = 0.

An example of a linear transformation is the identity mapping I of V onto V so that

I(v) = v, for every v in V.

The domain and range of I are V. The null space of I is the zero vector. Another

simple example of a linear transformation is the zero transformation Z from V to W

defined as Z(v) = 0; aAl v in V. The domain and null space are both the space V. The

10



range of Z is the set containing only the zero vector in W.

THEOREM 5: If T is a linear transformation from V to W, then T(O) = 0.

PROOF: T(0) = T(0+0) = T(0) + T(O). Hence, T(O) = 0,

THEOREM 6: Let T be a linear transformation from the vector space V into the

vector space W. Then the range of T is a subspace of W, and the null space of T is

a subspace of V.

PROOF: Let R denote the range of T. If the range contains only one vector, then

this vector must be the zero vector, since by Theorem 5 the zero vector must be in the

range. But the zero vector alone is a subspace of W, and hence in this case R is a

subspace of W. If R contains more than one vector, then we must show that, for every

pair of vectors w1 and w 2 in R, the vector c Iw 1 + c 2 w2 iE in R for any c 1 and c 2 .

But if wI is in R and w 2 is in R, then there are (not necessarily unique) vectors v

and v in V such that

T(v 1 ) = w 1

T(vz) = w .

The vector cIvI + cv2 is in the domain V for any cI and c 2 , since V is a vector

space. Hence T(cIvI+c2 vz) is in R, that is, c Iw 1 + cZw 2 is in R. Consequently, R

is a vector space.

To show that the null space N is a vector space, we must show either that N con-

sists of the zero vector alone or c1 v I+c 2 v 2 is in N for every c 1 and c., if v 1 and

v are in N.

From Theorem 5,- the zero vector must be in N. Hence if N contains only one vec-

tor, it must be the zero vector and consequently N is a subspace of V. If N contains

more than one vector, then let v and v 2 be in N, that is, T(vl) = 0 and T(v 2 ) = 0. Then

T(cIvl+c V2 ) = CIT(v1 ) + czT(v,)

Sc1 0 + c 2 0

=0

and hence c 1v +c 2 v 2 is in N for any ca and c2.

THEOREM 7: Let V be a finite-dimensional vector space over F, and {t V,, ... ,Vn

be a basis for V. Let W be a vector space over F, and { Iw 2l, ... ,Wn) be any vectors

in W. Then there is one and only one linear transformation from V into W such that

T(vi) = wi, i= 1, 2,...,n.

PROOF: Any vector v in V can be expressed as

n

v I Cj cV j
j=l

11



where the coefficients c- are unique. If we define T(v) c.w., then

j=l

T(vi) = wi, i= 1, 2, ... n.

It can be verified that, with this definition, T is a linear transformation. To prove

uniqueness, let T 1 be any linear transformation with the property that

Tl (Vi) = wi, i 1, 2, ... , n.

Then

Tl(v) = T ( cv)= cjTl(vj) = c cjw,

j=l j=l

since T is linear. Hence T 1 (v) = T(v) for all v; consequently, the transformation T

defined above, is unique.

THEOREM 8: Let V and W be vector spaces over F, ,.nd T be a linear trans-

formation from V into W. If T is one-to-one and onto, then the inverse transformation

T-1 is a linear transformation from W onto V.

PROOF: We must show that if T(W = v1 andv 2 , then T- (cwl+w2 ) =

cv1 + V 2 The fact that T(cv +v 2 ) = cw 1 + w2 follows from the linearity of T. Further-

more, cv 1 + v 2 is the only vector in V that maps onto cw1 + w., since T is one-to-

one. Hence T-1 is linear.

DEFINITION 12: A linear transformation T is defined to be nonsingular if the null

space of T consists of the zero vector alone.

THEOREM 9: Let T be a linear transformation from V into W. Then T is non-

singular if and only if T carries each linearly independent subset of V into a linearly

independent subset of W.

PROOF: First, suppose T is nonsingular. Let the set (Vl, v 2 ,... Vn} be a linearly

independent subset of V. If

2lT(vI) + c T(v2 ) + ... + C T(vn) = 0,1 1 2 2n r.

then

T(clvI+C2 v2 +. . .+CnVn) = 0.

But T is nonsingular and hence

ClV1 + c.v2 . + cnV= 0.

Since the set (Vl ,,...,Vn} is linearly independent, this then requires that ci = 0, i = 1,
2, ... , n. Hence the set {T(v ),T(v 2),....T(vn)} is a linearly independent subset of W.

Next, suppose that T maps every linearly independent subset of V onto a linearly

12



indenendp~nt subse~zt nf W I et vr beX anVy oecvetr:v*Thnh etonii

only of the vector v is a linearly independent subset of V. Thus the set in W consisting

only of the vector T(v) must be a linearly independent subset of W and hence must be

nonzero. Hence, T is nonsingular.

THEOREM 10: Let V and W be finite-dimensional vector spaces over F, with

dim V = dim W = n. If T is a linecr transformation from V into W, then the following

are equivalent:

(i) T is invertible.

(ii) T is nonsingular.

(iii) If {vl,v 2 ,.. .,v} is any basis for V, then {T(vl),T(v 2),...,T(vn)} is a basis

for W.

PROOF: It should be clear that (i) implies (ii), since the existence of an inverse

requires that the transformation be one-to-one.

(ii) implies (iii); for example, assume that T is nonsingular. If {v ,v ,...,Vn} is

a basis for V, then the set {T(vI),T(v 2),...,T(vn)} is a linearly independent subset of

W. Hence it is part of a basis for W. But any basis of W must contain exactly n vec-

tors. Hence the set {T(VI).T(v 2),....T(vn)) must be a basis for W.

To show that (iii) implies (i), we must show that for every vector w in W, there is

a unique vector v in V such that T(v) = w. Since {T(VI),T(v 2),...,T(vn)} is a basis for

W, the vector w can be expressed as

n

w c cjT(vj).
j=l

n

Hence the vector v = jcvj is such that T(v) = w. Assume that there is some other vec-

j=l

tor va in V such that T(va) = w. If Va is expressed in terms of the basis {vI1 ,vz,...,Vn A as

n

v a= a v A

j=1

then

n

T(va) = w= ajT(v3).

j: I

But the set {T(vl),T(v ),...,T(v)} is a basis for W; hence, any vector in W can be

expressed in one and only one way as a linear combination of vectors that form a

basis. Hence,

13



consequently, va = v.

Theorems 7 and 10 together imply that if we have two finite-dimensional v•±'tcr

spaces V and W of the same dimension, then an invertible linear transformation can

always be defined with domain V and range W, by mapping each vector in a set of basis

vectors for V. onto a different basis vector in W. When infinite-dimensional vector

spaces are discussed, this result will be extended to state that an invertible linear trans-

formation between V and W can always be defined when a one-to-one correspondence

can be drawn between basis vectors of V and basis vectors of W, that is, that two vec-

tor spaces V and W are isomorphic whenever a one-to-one correspondence can be drawn

between basis vectors of V and basis vectors of W.

THEOREM 1 1: Every n-dimensional vector space V over the field F is isomorphic
nto the sp ce F

PROOF: Let {vl,vZ,.. .,vn) be a basis for V. Then every vector v in V is express-

ible in the form

n

V ckvk.
i= I

Let T, a transformation from V to Fn, be defined as

T(v) = (cl cPC .,C)

n
It can be verified that T is linear, one-to-one, and maps V onto F

THEOREM 12: Let T be a linear transformation from V onto W with null space

N. Then the quotient space V/N is isomorphic with W.

PROOF: Let v + N be a coset of V. Define the mping T from V/N to W as

T(v+N) T(v).

We must first show that this mapping is well defined, that is, that T[(v+n)+N] = T(v+N)

for any v in V and any n in N. But

T[(v+n)+N] = T(v) + T(n) = T(v) = T[v+N].

since n is in the null space of T. Hence, T is well defined. T is linear, since

T[c(v1 +N)+(Vz+N)] = T[(cv1 +v2)+N]

= cT(v1 ) + T(v2 )

= cT[V1 +N] + T[v 2+N].

The null space of T is the coset (O+N); for example, assume that T(v+N) = T(v) = 0.
Then v is in N and hence is in the coset (0+N). Thus T is nonsingular and, by Theorem

10, is then invertible.

14



2.5 INFINITE-DIMENSIONAL VECTOR SPAC-PR

Many of the theorems that have been presented required that the vector spaces under

consideration bu fiffite-dimensionai, in Sectionis Hil and iV the primary concern will be

with infinite-dimensional vector spaces and linear mappings between such spaces. In

this section, therefore, infinite-dimensional vector spaces will be considered and some

of the important theorems previously discussed for finite-dimensional spaces will be

reformulated for the infinite-dimensional case.

Many of the properties of finite-dimensional vector spaces relied on the fact

that such spaces, by definition, always possess a countable basis. Theorems such

as Theorem 7, for example, rely heavily on the fact that the basis is countable.

Although it can be shown in general that any vector space possesses a basis,

some of the properties to be discussed in the rest of the report will require

that the vector spaces under consideration have countable bases. Hence, the discus-

sion of infinite-dimensional vector spaces to be presented here will be restricted

to spaces of countably infinite dimensions.

Even with the restriction that the bases are countable, it is important to reconsider

the meaning of a linear combination of an infinite set of vectors. We wish eventually to

carry over to the infinite-dimensional case a shmilar interpretation of the meaning of a

basis as a set of vectors spanning the space and providing a unique representation for

any vector in the space.

Many of the problems concerned with the extensions to the infinite-dimensional case

center around a precise definition of the equality of two vectors. When an inner product

is defined on the space, two vectors can be defined to be equal when their difference is

a vector of length zero. This definition enables many of the desired extensions to follow

in a straightforward manner. An infinite-dimensional inner-product space with certain

convergence properties is a Hilbert space. These spaces have been extensively studied

and are the most straightforward infinite-dimensional extensions of finite-dimensional

vector spaces.

DEFINITION 13: Let H denote an inner-product space. H is defined to be a

Hilbert space if for any sequence of vectors in H, v 1 , Sv, .... vn ...n having the

property that OV m-vnh1 -0 as m, n - oo, there exists a vector v in H such that

Ivt n-VII- 0 as n-w
DEFINITION 14: A sequence of vectors vn is called an orthonormal basis for an

Hilbert space if it is orthonormal and has the property that the only vector in H which

is orthogonal to all vectors in the sequence is the zero vector. A Hilbert space with an

orthonormal basis is called a separable Hilbert space.

THEOREM 13: If vn is an orthonormal sequence of vectors in a Hilbert space and
no n

Xnis a sequence of scalars such that < ~I <co, then the sequence w= Xv k
1 1

15



converges to a limit v in H denoted v = XkVk.
1

PROOF: We muzt first show that 'he sequence w has thbs prnperty that !11wnw! - o 0

as m, n -- o. Letting m = n + p for some integer p, we have

n+p

lwn+p-Wn1 XkVk
n+ 1

Since the sequence vn is an orthonormal sequence, however,

IIn+p n+p

)kvk _-2 k k
n+l n n+l

But

n+p n+p n+ 1

I Xkl = 1 IXkIZ I Xkkj
n+l 1 1

00

Since I IXkI2 < 0u however, we conclude that

n+p

n+ 1

Consequently, w -wm 11 -0 as m, n - ®; hence, there exists a vector v in H such that

w n W-v - 0 as n - -, that is, the sequence wn converges to the limit vector v.

THEOREM 14: Let v be an orthogonal sequence of vectors in a Hilbert space.
n 00

Given any vector v in H, the scalars Xk = (v, vk) satisfy the inequality I IxklZ < 00.
1

PROOF: Let v 1 ,..., v. be orthogonal vectors in H. By direct expansion, it can

be verified that for any v in H,

_ 22

v-' vk~vk = v12 (v, v ) v,2.

Since v- W (. v )vk must always be greater than or equal to zero, it follows that

116
11



J

Ilvila > I I(v'vk012.
1

Since this is true for any j, we have

1 1

THEOREM 15: If vn is an orthonormal basis for a Hilbert space H, then each vec-

tor v can be expressed as

CID

v = (v , (vk)Vk.
1

PROOF: We note, first, that the infinite sum is defined in Theorem 13, since the

sequence of scalars Xn = (v, v n) was shown in Theorem 14 to have the required prop-
0o

erty of being square summable. Consider the vector w = v - {v, vk)v We wish
1

to show that this vector is the zero vector. But (w,v) = 0 for any j, since

{w,.) ( v,V.) - (v-V) = 0;

consequently, the vector v (v, Vk)v is orthogonal to every vector in the sequence

vn. From Definition 14, however, the only vector orthogonal to each vector in an

orthonormal basis is the zero vector. Hence

00

v-I (V,vk)vk= 0
1

or

00

v= (vvk) vk.
1

These theorems provide a framework for the infinite-dimensional Hilbert spaces
that are to be considered. Theorem 15 requires the existence of an orthonormal basis

for the spaces. This set of basis vectors spans H by virtue of Theorem 15. It can be
verified that this set of vectors is linearly independent, by virtue of the property that

the only vector orthogonal to the entire set is the zero vector. In general, it is not true
that every Hilbert space possesses an orthonormal basis.

im example of a Hilbert space that has an orthonormal basis is the space of square

17



iniegrable functions either on ho oinfint interval (-co. 4oor on the semi-infinite inter-

val (0,+oo). This space on the infinite interval is usually denoted L 2(-oo,+co), and on the
semi-infinite interval L2 (0, +o). An orthonormal basis for L 2 (-oo,+cc) is the set of

Hermite functions. An orthonormal basis for L 2(0, +oo) is the set of Laguerre functions.

In both of these spaces, the inner product is defined as the integral over the interval of

the product of the functions.

In the previous discussion on finite-dimensional vector spaces, it was shown that the

domain of any linear transformation is a vector space. If the domain of the transfor-

mation is a Hilbert space, it is not true in general, however, that the range will also be

a Hilbert space. If continuity as defined below is imposed on the transformation, then,

as will be seen in the following discussion, the range of the transformation will be a

separable Hilbert space if the domain is a separable Hilbert space.

DEFINITION 15: Let V and W be inner product spaces, and ' be a linear trans-

formation from V onto W. T is said to be continuous at v if T(vn) - T(v) as n - oo if

vn - v as n-- c, where v is a sequence of vectors in V. T is a continuous transfor-

mation if it is continuous at every v in V. Continuity of the transformation T is not a

severe restriction when T is linear, for it can be shown that T will always be contin-

uous if it is bounded, that is, if there exists a constant M > 0 such that for every vec-

tor v in H, 1f T(v) I < M11v 11. (See, for example, Berberian. 8) The set of theotems

that follows is chosen to show that the range of a continuous linear transformation is a

separable Hilbert space if the domain is a separable Hilbert space. In carrying out the

proof the following prelhminary results will be demonstrated.

(1) The null space N of T is a closed subspace of H, that is, the limit of any

sequence of vectors in N is in N when this limit exists.

(2) From (1), it follows that H can be decomposed into two spaces M and N. The

space N is the null space of T, and the space M is the space of all vectors in H which

are orthogonal to every vector in N. Any vector in H can then be expressed as a unique

linear combina+ion of a vector in? M and a vector in N.

(3) On the basis of (2), it will be shown that the quotient space H/N is a separable

Hilbert space, and that the linear transformation T from H/N to the range of T is a

continuous transformation.

(4) It follows directly from 13) that the range of T is a separable Hilbert space.

Steps (1)-(4) will be stated formsiy in Theorems 16-19. In each of these theorems H

denotes a separable Hilbert space, and T denotes a continuous linear transformation

with H as the domain.

THEOREM 16- The null space N of T is a closed subspace of H.

PROOF: Let n 1 , n 2 , ... be any sequence of vectors in N, and v in H be the limit

of this sequence. We wish to show that v is in N. Since n 1 , n 2, .... are in N, T(n 1 ) =

T(n 2) = ... = 0. The limit of any sequence in T[N] is in T[N] because T(N] = 0. Since

" is continuous, T(n.) - T(v) as p - c, that is, T(v) is the limit of the sequence T(n p

in T[H]. Hence T(v) = 0, and v is in N. Thus N is a closed subspace of H.

18



THEOREM 17. LEt M de,,nt+,e th -s.. to ,, voCtlS ,v ec which are orthogonal to

every vector in N. Then every vector in 1 can be expressed in one and only one way

as the linear combination of a vector in M and a vector in N.

PROOF: Let v be any vector in H. It is stated without proof that there exists a vec-

tor n0 in N such that Jjv-no0 1 IL11-ni1 for all n in N. (The proof of this statement is

found in Berberian.9) Define n 0 = v - n We must show that m is in M, that is, mo

is orthogonal to every vector in N.

Let n be any vector in N, and ) equal (mo n). There is no loss in generality if

n is assumed to be unity, since, if m 0 is orthogonal to every vector of unit length

in N, it is orthogonal to every vector in N. It can be verified by direct expansion that

1mo-_XnI112 - 11mOA 2 - Ix 12.

Now, mo -\n= (v-n 0-kn= v- (no-Xn). But no +Xn is in N; hence,

ji v-n 0I 9 JJ v-(n0 +Xn)II

from the choice of n . Hence

0

ll1m !I -< IJ m-Xnll

and the,- •fore

1fm 112 11 Dllmojf -1 •,2

Consequently, X)1L= 0, i.e. (m, n) = 0. Thus m is in M.

We see. then, that any vector v in H can be written as the sum of a vector m in M

and a vector n in N. We must show, next, that for any vector v, in and n are unique.

Assume that mI and m 2 are in M, n1 and n2 are in N, and

v= r.1 +n 1 -i= 2+n 2 .

Then (m 1 -nm2 ) + (nJ-n 2 ) = 0. But mnI - m 2 is in M and n1 -n 2 is in N. Taking the

inner product of (ml -m) + (nl-nz) with (nl-n 2 ), we have

1i ( -nz) Jn 2  - 0.

Similarly,

(M Ii _m 22 = 0.

Hence nI = n 2 and in I m 2 .

THEOREM 18: The quotient space H/N is a separable Hilbert space, and the linear

transformation T from H/N to the range of T is a continuous transformation.

PROOF: To prove that H/N is a separable Hilbert space, we must first define an
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inner product in H/N, This can be done with the aid of the preceding theorem.

Let iv+N] be any coset in H/N. Since v can be wrAten uniquely in the form v = mr+n,

the coset [v+N] is equal to the coset [m+N], since n is in N. Furthermore, any coset

of the form Tm+N] for some m is in H/N. Consequently the set of cosets of the form

[m+Ni is equal to the quotient space H/N, that is, every coset has a representative ele-

ment in M_ Furthermore, for every coset [vi N] in iI/N, there exists only one element

in in M such that

in + N = v + N,

since the component of v in M is unique.

Let [ma+NI and [mb+N] be any two cosets in H/N, and define the inner product of

these cosets as

([ma+N], [mb+NJ) =(flin b)

It can be verified that this inner product satisfies the required conditions stated in Defi-

nition 13. Let [rn +N?. [mz+N],... denote any sequence in HiN having the property that

(inm +N]-[mn +N] 1 -0 as re,n--.. But 1i[mmn +N]-[nn = + iron m-a , and hence

inmm-mnI!- 0 as mn - a. Since H is a Hilbeet space, there exists a vector v in H

such that 0 mI-v -v 0 as n- w. In particular, v is in M. This follows directly from

the statement without proof, that if n0 is any vector in N, tnen (nn, nr)- (v, n ) as

co (the proof of this statement follows from Berberian. I Hence 1[[mn+N]-[v+N]l -0

as n - o, and thus H/N is a HLbert space.

To show that H/N is a separable Hilbert space, we must demonstrate that H/N has

an orthonormal basis. Let vI, vz. ... be an orthonormal basis for H, and let

v. = r+ ni3 m. inM and n. in N.
3 3 1~ 3 3

Any vector m can be expressed as a linear combination of the m j, since

go 00 00

m= L Ckvk Z 'kmk+Z ckn k

But m can be written in only one way as the sum of a vector in M and a vector in N;

hence, since m -= m + o, it follows thai

C0

m = ckmk-
1

Let in be the subsequence of the sequence m 1 , mz ... consisting of all the

nonzero elements. Then any vector in M can be expressed as a linear combination of

the vectors m', m!,.....Let

ze



If Mfijm" j

and

i j EkM! M I M1

3 f j-1 i
m. m!, m?) m

as dictaied by the Gram-Schmidt orthcgonalization procedure. Then the set mi, m•,...

will be an orthonorinal basis for M. It follows in a straightforward manner that the

coseis [m•+4N], rm"+Nl,... are an orthonormal basis for H/N. Hence, H/N is a sepa-

rable Hilbert space.

The final step in the proof of this theoremn is to show that T is a continuous trans-

formation, that is, we wish to show that if

[mrn+N] - [m+N] n -o.

then

T[m n+N]- T[m+N] n .

But

T[mn+N] = T~mn]

and

T[m+NI = T[m],

and, since T is continuous, Titan -*T[m] n- co.

THEOREM 19: Let W denote the range of T. Then W is a separable Hilbert space.

PROOF: By virtue of Theorem 18, we need only demonstrate this result for the case

in which T is invertible. When T is not invertible we can replace H by H/N, and T

by T.

Let wI and w2 be any two vectors in, W. Define the inner product of two vectors in

W as

(Wl.2)=(T-l(w,}. T-I(w,)).

We must show that this inner product satisfies the conditions stated in Definition 5.

(1) (Wl+W 2 ,W3 ) = (T-1(w, 4w 2),T-'(w 3 ))

S(T-(wWI)+T-(w 2 ), T (w3 ))

11(T (w)IT 1 (w3 ) + (T-1 (w,). T 1 '(w,))
1 3

= (wlw 31 + (w 2 ,w 3 ).

1lmlml



tz) (cw,,w,)- (T-&(cw,),T- (W7•))

=(cT-
1 (w )T_' (w,))

C c(Ir'(w) T-' (wZ)

= C(wlw 2 ).

(3) (wlw 2 ) = (T-'(wl),T-'(w2 ))

(T-1 (wT),T' (W1 ))

(w 2 , w1 ).

(4) (WW) I (T-'(w,),T-'(wl)) >0 if T-l(wl) *0.

But T- 1 (w1 ) * 0 if wI * 0, and hence (wlw,) > 0 if w 1 0. Thus, under this inner

product, W is an inner product space. To show that W is a Hilbert space, we must

verify Definition 13.

Let wl, w 2 ,.... $W,... be a sequence of vectors in W having the property that

11w m-W - 0 as m, n - o* From the definition of the inner product in W, Iw m -W nl

1 T-1(w m)-T- (w.) Hence the sequence T- (wn) in H also has the property that

1IT-1(wm)-T- (wn) l-0 as m, n --o. Consequently. since H is a Hibert space, there

exists a vector v in H such that T- 1 (wn) - v as n -co. Since T is continuous, it fol-

lows that wn - T(v) as n - o. Consequently, W is a Hilbert space. We must show,

next, that W has an orthonormal basis.

To this end, let V2, ,.., be an orthonormal basis for H and consider the sequence

T(vl), T(v 2),... in W. The vectors in this sequence are orthonormal, since

(T(vi): T(vl)) = (vivj).

Flarthermore, if w is any vector in W, ihen there exists a unique set of scalars such

that

go
T (w) = k Ck

1

or

00

w = k CT(vk).

1

22



Thus, the set T(v,), T(v 9),... is an orthonormal basis for W; consequently, W is a

separable Hilbert space.

In Section IV, we shall be concerned with systems described by continuous transfor-

mations for which the inputs constitute a separable Hilbert space. The primary result

there will be the derivation of a canonic representation of such systems. The result

rests heavily on the fact that, by virtue of the preceding theorem, the set of system

outputs also constitutes a separable Hilbert space. This fact, in conjunction. with the

following theorem leads to the canonic representation.

THEOREM 20: Let H and H be two infinite-dimensional Hilbert spaces having

orthonormal bases Then there exists an invertible linear transformation from H onto

Hz.

PROOF: Let v1 , v2 , ... be an orthonormal basis for H, and w1 , w? ... be an

orthonormal basis for H,. Define a linear transformation T as

00

T(v) = 7 (vvk) wk

We must show that T is linear and invertible, and that its range is all of W. The line-

arity is easily verified. To show that it is invertible, we must show that its null space

is zero, that is, T(v) = 0 implies v = 0, which follows directly from the linear indepen-

dence of the orthonormal basis for H2 . To show that its range is all of W, we must

show that if w is any vector in H2 , then there exists a vector v in H1 such that

T(v) = w.

Since H2 has an orthonormal basis, w can be expressed in the form

go

W= • (w,wk) wk-
1

The sequence Xk = (w, wk) is square summable, as was shown in Theorem 14. Hence,

00

from Theorem 13, the sum (wwk) Vk has a limit vector v in H1 , that is,

1

00

v (w,wk) vk-

1

But

go

T (v)- (w, wk) T(vk)
1

and from the definition of T, T(vk) = wk. Hence,
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T(v) L (W1 Wk) Wk = W

which was to be shown.

The result of Theorem 20 also applies when HI and -12 are finite dimensional and

dim (H1 ) = dim (H 2)

In the Appendix anotiher result concerned %ith separable Hilbert spaces having time

functions as vectors is derived. This result plays an important role in the discussion

of Section IV. It is reserved for an appendix rather than developed here because it

relies on some of the notation and ideas discussed in Sections III and IV.

From the preceding theorems and definitions it should be clear that a separable

Hilbert space is an inner-product space that can be approximated arbitrarily closely by

a finite-dimensional inner-product space. If the domain of a linear transformation is a

separable Hilbert space and the transformation is c( tinuous, then the outputs can be

approximated arbitrarily closely by a finite-dimensional approximation to the input

space. Under these restrictiena on a linear transformation and its domain, then, all of

the results derived for finite-dimensional spaces can be extended directly.
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IIl. CENERALIZED SUPERPOSITION AND 1C)MYOh!ORPH4TC SYSTEMS

3.1 INTRODUCTION

In the past, the concepts of linear algebra have been applied to a restricted class of

systems, those that can be represented as linear transformations when vector addition

is defined as the sum of the time functions in the vector space of inputs and the vector

space of outputs. Because of the principle of superposition which these systems satisfy,

they are relatively simple to analyze. This principle of superposition leads to charac-

terization by means of the superposition integral. This representation can be interpreted

as resulting from a decomposition of each of the inputs into a linear combination of infin-

itesimally narrow pulses. These pulses constitute a basis for the vector space of inputs.

By virtue of the principle of superposition, the effect of the system on any function in the

vector space of inputs is determined from its effect on the basis functions, with the

result that the input and output are related through the convolution integral.

Alternatively, the set of complex exponentials of the form est, where s is a com-

plex number, can be chosen as the set of basis functions for the input vector space.

Such functions are eigenfunctions of linear time-invariant systems, and hence such sys-

tems have the effect of multiplying these functions by constants. Thus, when complex

exponentials are used as a basis for the vector space of inputs to a linear, time-invariant

system the system is described by the set of constants by which it attenuates these expo-

nentials, that is, it is described by its system function.

We have noted that vector spaces of time functions could be constructed with a variety

of definitions for vector addition. When advantage is taken of the generality afforded by

the postulates of vector addition and scalar multiplication, systems that are generally

considered to be nonlinear can be represented as linear transformations between vector

spaces. Formulated in terms of system theory, this procedure leads to a generalization

of the principle of superposition. This principle encom-)asses the class of linear sys-

tems, as well as many nonlinear systems. In particular, it encompasses all invertible

systems, as well as many systems that are not invertible.

3.2 GENERALIZED PRINCIPLE OF SUPERPOSITION

A linear system with transformation T is characterized by the property that if v I(t)

and v? (t) are any two system inputs, then

T[clvI(t)+c 2 v 2 (t)] = clT[vI(t)] + c 2 T[v 2 (t)]

for any scalars c 1 and c 2. From this definition, it is clear that the transformation (0,

defined as

*[v(t)] = ev(t) (1)

is nonlinear, since
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S[cIv 1 (t)+c 2 v2 (t)] = [4(vd)] [5(v 2 )]"2 . (2)

The transformation of Eq. I does obey a form of superpasition in the sense that its

response to the linear combination of a set of inputs is determined by its response to

each of the inputs in the set. The manner in which the individual responses are combined

to produce the response to a linear combination of inputs ic, defined by the right-hand side

of Eq. 2.

If the set of inputs to the system of Eq. 1 constitutes a vector space under addition,

then the set of outputs constitutes a vector space under multiplication and the transfor-

mation of Eq. 1 is an algebraically linear transformation between these spaces. Thus

this system falls within the framework of linear algebra.

In order to avoid confusion with the more conventional notion of a linear system, sys-

tems that are algebraically linear will be referred to as homomorphic systems, since

they are represented by homomorphic transformations between vector spaces. The vec-

tor space of inputs to a homomorphic system will be denoted V, and the vector space of

outputs will be ?.,:oted W. The vector addition of two inputs v1 and vZ will be denoted

v 1 0 v2 and the multiplication of an input vector v with a scalar c will be expressed as

(c>v). The operations o and > will be referred to as the input operations of the homo-

morphic system. The vector addition of two outputs w1 and w 2 will be denoted

w 1 o wZ, and the multiplication of an output vector w by a scalar c will be expressed

as (c/w). The operations 0 and / will be referred to as the output operations of the

system.

A homomorphic system with system transformati an + has the property that

4[(c 1 >vl)o(cZ>v 2 )] = [c 1 /4(vl)I o [cZ/4(VZ)] (3)

for any inputs vI and v2 and any scalars cI and c 2 . The property described by Eq. 3

will be referred t.) as the generalized principle of superposition. In the particular case

for which the operations o and 0 are chosen to be addition and the operations > and /

are chosen to be multiplication, Eq. 3 reduces to the principle of superposition as it

applies to linear systems.

A homomorphic system with system transformation 4, input operation o and output

operation 0 , will be denoted as shown mn Fig. 1. An example of a homomorphic system

is that system having the transformation specified by Eq. 1. In this case, the operations

o, >, a, and / are chosen as

v o v 2 = vI + V2

C>V = CV

w o w2 = WlW2

c/w = (w)c
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This system is thus represented as shown in Fig. 2.

0 0 +

V ----WV - - w=ev W

Fig. 1. ReF,'esentation of a homomor- Fig. 2. Example of a homomorphic sys-

ph:.: T-:jtem with input operation tern with addition as the input
£ );.tcut operation o, and sys- operation and multiplication as
t. - transformation d. the output operation.

Since homomorphic systems are represented by linear transformations between vec-

tor spaces, algebraic theorems applying to such transformations can be reformulated

in terms of homomorphic systems. One of the objectives here will be to discuss the

applicat4,in of these theorems to homomorphic systems.

3.3 INVERTIBLE HOMOMORPHIC SYSTEMS

THEOREM 21: Let 4, be the system transformation of an invertible system (a sys-

tem for which the system transformation is invertibie) for which the inputs constitute

a vector space V with operations o and >. Then the system can be homomorphic under,

at most, one choice for the output operations.

PROOF: We wish to show that if the system is homomorphic, then the output oper-

ations are unique. Assume that there are two sets of output operations under which the

system is homomorphic, Let the first set be denoted o and /, and the second set be

denoted a and _J. If w 1 and w2 are any two outputs, then we wish to show that

c/w = cfw for all scalars c in the field F and all outputs w.

If we denote the inverse of 41 by -, then if + (v) = w it follows that v = 4- (w). By

assumption, the system + is homomorphic with input operations o and > and output

operations a and /. By virtue of Theorem 8, the inverse system, having system trans-

formation +-1, is homomorphic with input operations o and / and output operations o

and >. Hence if w1 and w2 are any two outputs and c is any scalar in F, we have

*-[w o w2 ] (w 1 o4- (w.,) (4)

and

*-l c/w] = c>,-1 (w1 ). (5)

By assumption, however, 4, is also homomorphic with input operations o and > and

output operations a and _f. Hence 4, is homomorphic with input operations a andy,-

and output operations o and >. Consequently,
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a-[wI1 w.,] = 4,-Z(w 1 ) o 4,-z(wz) (6)

and

4,-f 1 -] = c>: 1i (w1)" (7)

Comparing Eqs. 4 and 6, we have

-w a ] W 4-a[w1 , a w]. (8)

If the vector in V given in Eq. 8 is put through the system 4, we have

wO 1 W2 = w 1 w2 (9)

for all outputs wI and w . Similarly, comparing Eqs. 5 and 7, we find

4-[c/w1 ] = ,-[c_-w] (10)

or

c/w= cw 1  (11)

for all outputs w1 and all scalars c.

THEOREM Z2: Let 4o be an invertible system the inputs to which constitute a vector

space under the operations o and >. Then there always exists a unique set of output

operations under which the set of outputs constitutes a vector space, and the system is

homomorphic.

PROOF: Let W denote the set of outputs of 41. If wI and w are any two outputs,

let their vector sum be defined as

W1 ow=z-4JO-l(wloo I ,-l(w 2)]. (12)

Similarly, let the scalar multiplication of any output w by a scalar c be defined as

c/w E44[c>4,-1 (w) ]. (13)

We need to verify only that under this choice of output operations, the system 4, is

homomorphic. Theorem 6 then requires that the set of outputs constitutes a vector

space under these operations.

Let v1 and v2 be any two inputs, and c1 and c2 be any two scalars. Then *O is
homomorphic if

,4[(cl>v) o (cý>vz)] = [cl/0(vl)] 0 [ca / (Vz)]. (14)

Evaluating the right-hand side of Eq. 14 according to Eqs. 12 and 13, we have
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= [)(c ..v )] o [)(ca>vz)]

= {[(--,,(c vI,) o (~~cV)

or

[c/ ,v.1 [cz/N(v2 ) = )[(c 1 >v1) o (cz>V2)]. (15)

Hence, is a homom- rphic system.

Furthermore, for a specified input space the se~t of output operations t',nder which

*b is homomorphic is unique. This is seen by a direct application of Theorem 21.

Theorem 2 • states that the class of homomorphic systems includes all invertible

systems. %Vhen the input operations and the system transformation are specified, the

output operations are given uniquely by Eqs. 12 and 13. In applying the theory of

homomorphic systems, it would not be expected that the output operations would be con-

structed by means of Eqs. 12 and 13, since this would require a precise characteri-

zation of the system transformation. Because of the uniqueness of the output operations,

however, we know that no matter how these operations are obtained, they must satisfy

Eqs. 12 and 13. Equations 12 and 13 allow us to construct examples of homomorphic

systems as an aid to developing the theory. By virtue of the uniqueness of the output

operations, examples constructed in this way will not depend on a restricted choice for

the output operations of the system.

As an example of the application of Eqs. 12 and 13, consider a linear, invertible,

time-invariant system. Let hft) denote the impulse response of the system, and h(t)

the impulse response of the inverse system. Let the set of inputs V be a vector space

under addition. Since the system was specified to be linear, we know, without application

of Eqs. 12 and 13 that the system is homomorphic if vector addition of the outputs is

chosen as the sum of the time functions, and scalar multiplication on the output set is

chosen as the product of the time function and the scalar.

Since this set of output operations is unique under the specified choice of input oper-

ations, application of Eqs. 12 and 13 must yield this result. Specifically, Eq. 12

requires that if w1 and w2are any two outputs, then

w0 [ w2 = h(t) 0f[ h(t) ® w 1 (t)+h(t) ® wE(t) ], (161

where @ denotes convolution. Expanding Eq. 16,

.; ~~~w1 0 w2 =h(tl@h(t)@wl(t) + h(t)ht)wt,

-• since convolution distributes over addition. The convolution of h~t) and h(t) is the unit
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I
impulse U (t); hence,

w1 w2 = u(t)@wl(t) +u (t) 4 w

or

w = w (t) + w2(t).

Similarly, Eq. 13 requires that

c/w(t) = h(t) 0 [c(hl'(t)1 w(t))

or

c/w(t) = c[h(t)O®h(t)Ow(t)]

and hence

c/w(t) = cw(t).

As another example of the application of Eqs. 12 and 13, consider the system having

the transformation € given by

w = 41(v) = ev (17)

The transformation corresponding to the inverse system is

-I
v = ý- (w) = Inw. (18)

[f the set of inputs is chosen as a vector space under addition with the field chosen as

the field of real numbers, then application of Eq. 12 requires that

w1 n w 2 = exp[lnwl+lnw 2 ]

or

wi o0w 2 = WIw 2  (19)

and Eq. 13 requires that

c/w = exp[clnw1 ]

or

c/w = [w IIc" (20)

The transformation of Eq. 17, however, is an invertible transformation under any input

vector space. If we choose as the set of inputs, a vector space over the field of real

numbers with vector addition defined as the product of the time functions and scalar

multiplication defined as the time function raised to the scalar power, then the set of

output operations corresponding to the transformation of Eq. 17 will be different from

those given in Eqs. 19 and 20. These output operations can, however, be determined
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through the use of Eqs. 12 and 13. Applying Eq. 12, the vector sum of any two outputs

w1 and w2 is given by

[Inw Iw In
wl0 w = C

or

lnw
~~ mnwl 2

1I w 2 =Le _

Similarly, scalar multiplication in the set of outputs is given by

c/Iw = e[Irnwc

3.4 NONINVERTIBLE HOMOMORPHIC SYSTEMS

Theorem Z2 guarantees that a system that is invertible for an input vector space V,

is homomorphic for this set of inputs. When a system is not invertible for a given set

of inputs we are no longer assured that the system will be homomorphic with respect to

these inputs. Theorems 6 and 12, together with the properties of quotient spaces, lead

tc necessary and sufficient conditions on the system transformation and the set of inputs

associated with a given system such that the system is homomorphic. Before proceeding

to a statement of the conditions in terms of a theorem, it would be well to indicate the

direction which we take in this theorem.

Consider a system with transformation 4ý and input vector space V. By choosing

any subspace N of V, V can be divided into cosets. It is necessary that these cosets

be fornmed with respect to .t subspace of V rather thah with respect to any arbitrary set

of vectors in V, in order that these cosets be well defined. If N is the null space of

the system, each vector in a given coset will result in the same output. Furthermore,

it will be seen in Theorem 23 that if each vector in a given set of vectors in V maps

onto the same vector and if the system is homomorphic, then this set of vectors must

be an element in the quotient space V/N. In particular, any coset in V/N which does

not map onto the identity element in the vector space of outputs cannot be a subspace

of V.

The approach to deriving necessary and sufficient conditions on a system in such a

way that it be homomorphic, will be based on a consideration of conditions under which

an invertible transformation can be defined from a quotient space associated with V, to

the set of outputs of the system. If such an invertible transformation can be defined,

then Theorem ZZ can be employed to determine a set of output operations under which

the system is homomorphic.

THEOREM 23: Let • be the transformation of a system with an input vector space

V. Let S1, S 2 1 .... S be subsets of V with the properties that
1, n
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(1) All elements in a given set S, produce the same output. This output corre-

sponding to a set S. will be denoted to [S.j].3J
(2) ff (P (Sij is the output produced by the set of inputs Si and 41S j is the output

produced by the set Si, all i and j, then 3[S1] 4i[S j implies that i !7

Then, at most, one of the sets SIt S 2 ..... Sn can be a subspace of V.

PROO•F: Properties (1) and (2) imply that no two sets S. and S. have an element in

commion. For, assume that s is in S . and s is in S , then from property (1),

4[Si] = +s

and
43S]= 4()

and hence

which by virtue of property (2) requires that i j.

Any subspace of V must contain the identity element in V. Hence if two of the sets

Sit Szo ... , Sn are subspaces of V, they must both contain the identity element, and

hence would have an element in common. Thus, at most, one of the sets SI, S, . n

can be a subspace of V.

THEOREM 24: Let 43 be the transformation of a system with an input vector space

V. Let S1i S2 .... Sn be subsets of V with the properties that

(1) All elements in a given set S. produce the same output.

(2) If v is a vector in V. then i,(v) = 6(S.] implies that v is in S..

(3) The sets are distinct; that is, if 6[S.I = 4-S ], then i= j.

(4) The union of the sets Si, S, ..- 0 Sn is all of V.

If none of the sets S1, Sz, ... , Sn is a subspace of V, then the system cannot be

homomorphic.

PROOF: Let e denote the identity element in V and let Se denote the set of ele-

ments such that

43(e) = t(Se .

If 4 is homomorphic, then the element 4se) must be the identity element in the vector

space of outputs W by virtue of Theorem 4. Because of property (2) imposed on the sets

S i SZ, .... Sn, the set Se contains all of the elements in V which map through 41 to

the identity in W. Hence, by definition, Se is the null space of V and Theorem 6

then requires that Se be a subspace of V.

Property (4) imposed on the sets 0 1 S2 , ... # S requires that this set of subsets of
V must contain the subset of all elements of V that map onto 4o(e) and hence must contain

Se' If 4 is homomorphic, then one of these subsets must be a subspace of V; hence, if

none of these subsets is a subspace cf V, then the system cannot be homomorphic.
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Theor...ms 23 and 24 to.eth.er require uhat a necessary con.di.tion so that a syte

be homomorphic is that we can find one and no more than one subspace in V which con-

tains all of the elements that map onto a single element in the set of outputs. In gencral,

if the system transformation is well defined, then we are guaranteed that no more than

one such subspace can be faund. If one such subspace exists, then it must contain the

identity element frcm V. Hence, if e denotes the identity element in V, then Theorem

24 can be reformulated to require that a system with transformation (0 cannot be homo-

morphic unless the set of all elements v in V such that 4,(v) = ;(e) is a subspace of V.

As shown in Theorem 25, this condition, together with one other condition, provides

necessary and sufficient conditions on a system so that it will be homomorphic.

THEOREM 25: Let 4, be the system transformation of a system with input vector

space V. Then necessary and sufficient conditions so that the system be homomorphic

are

(1) The set of elements Se in V is a subspace of V, where Se is the set of all ele-

ments s in V with the property that 4w(s) = 4(e), where e is the identity in V.

(2) Consider the quotient space V/Se, where Se is a subspace of V. Let v o Se

be any coset in the quotient space. If v' is any element in v o Se, then

OW) = O(v). (This condition requires that any given coset in the quotient space

V/Se have a unique mapping in W, that is, 6[v o Se will be well defined for

every v in V, and each coset will produce a different output.)

PROOF: To prove that these two conditions are necessary, we assume that the sys-

tem is homomorphic and show thai this requires that conditions ý1) and (2) hold.

Assume that the system is homomorphic. Then, by definition, Se is the null space

of (0. Theorem 6 then requires that Se be a subspace of V. To show that condition (2)
is implied by the assumption that the system is homomorphic, let W denote the output

vector space with vector addition and scalar multiplication denoted by a and /, respec-

tively. If e is the identity in V, then 4)(e) is the identity in W. Let v o Se be any coset

in V/S and v' be an element in v o S . Then there exists some element s of Se such
that

V= V o S.

Hence 4p(v) = 4(v o s) - t(v) o 4,(s). But, since s is in Se, 4p(s) is the identity element

in W. Consequently,

(v'1) = 4(v) all v' invoSe,

and therefore condition (2) holds.

To show that conditions (1) and (2) are sufficient, we shall assume that these con-

ditions hold, and prove that the system must then be homomorphic. Condition (I) per-

mits the construction of a quotient space with respect to the set Se, since it requires

that this set be a subspace of V. Condition (2) then provides an invertible transfor-

mation between the quotient space V/Se and the set of outputs W, since for any coset
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v o Se in the quotient space V/Se there exists a well-defined mapping to an element in
W given by

41V o sj v.

The transformation 6 can then be considered as the system transformation associated

with an invertible system with inputs that are elements in the quotient space V/Se'

Theorem 22 requires that the system with transformation ý be a homomorphic system

and that the set of outputs W be a vector space. Specifically, vector addition in the set

of outputs is defined by

w w- _(w) o (w , (21)

where wI and w2 are any two elements in W. The elements ( (w1) and ( 2(w2 ) are

cosets in the quotient space V/S e. Scalar multiplication in W is defined as

c/,w, ([c>4'-(w),. (22)

It remains only to show that with this choice of output operations the system with system

transformation 4o and input vector Space V, is homomorphic. Let v1 and v, be any two

elements in V. Then

2,(vI) = [v I o S S,

40(v1 o v2) = 4.(v 1 o v) o Si.

From the definition of vector addition in the quotient space V/Se as stated in Theorem

3, however,

(v 1 o v)oS = (vI oS) o (v2 oSe);

hence,

o v2) = .[(v 1 oS e) o (v2 oSe

Since 4 is homomorphic,

Z[(vI oSe) o (v2 o Se]= InoSel 0[V* oSe].

By definition of $, however,

4[v I oS se =4,(vl)
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.4[vz o Se] (v2 ).

Consequently,
Sov) = oI Se] D *[v 2 o Se 1 0 4(V 2 }. (23)

Next, let v be any element in V, and c any scalar in the field. Then

*(v) = o[v o se]

4O(c>v) = 4,[(c>v) o Se].

From the definition of scalar multiplication in V/S , however,

(c>v) o Se = c>(v o Se);

hence,

÷(c>v) = •[c>(v o S )].

But, since 4 is homomorphic,

S[c>(v o se) ] = c/ 0 (v o Se)

or

$[c>(v oS e)] = c/o(v)

Therefore

O(c>v) = c/•(v). (24)

Equations 23 and 24 are sufficient for the system to be homomorphic.

THEOREM 26: Let 4 be a homomorphic sys- - with input vector space V and null

space N. Let the subset S of V be defined by the properties

(1) If sI and s 2 are any two elements in S, then 4(Sl} = 0(Sz}.

(2) If s is in S and v is in V. then 4(s) = 0(v) impliesthat v is in S.

Then each such subset is a distinct coset in V/N. In particular, each subset S is the

coset s o N, where s is any element in S.

PROOF: Let S be any subset of V having properties (1) and (2). Consider the

coset s o N, where s is in S. Let s o n be any element in this coset. Then 4,(s o n)

*,(s) o *w(n), since * is homomorphic. But 0(n) is the identity in the output set W, since

n is in the null space. Hence

*(s o n) = +(s);

consequently, s o n is ir S by virtue of property (2). Thus the coset s o N is contained

in the set S.
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We irnit+ oho- net that the q is cntainedinnrl theý -osee M I n"

element in S. Then s1 can be expressed as

1=5 0 (S-1051).

-1
But s o sI is in the null space N, since

4(s) =

and the system is homomorphic. Hence for any sI in S, there exists an n, in N such

that

sI = s o nl;

consequently, s1 is in the coset s o N. Thus S is contained in s o N and therefore

S= soN.

The fact that each of these cosets is distinct follows directly from property (2) and

Theorem 4.

Theorems 25 and 26 provide a procedure for investigating whether or not a given

system is homomorphic. Specifically, according to Theorem 25, we first find all ele-'

ments in the input-vector space V which produce the same output as that producad by the

identity element in V. If this set is not a subspace of V, then the system cannot be

homomorphic. If it is a subspace of V, we must then determine whether or not every

coset constructed by adjoining each vector in V to the null space has a unique output.

If each of these cosets has a unique mapp.. Ag, then the system is homomorphic. If not,

the system cannot bE homomorphic. Alternatively, the second condition can be refor-

mulated in terms of Theorem 25. The input vector space can be divided into all of those

sets that produce unique outputs in W. The system is only homomorphic if each of these

sets is a coset in the space V/Se. where Se is the subspace of V defined previously.

As an example of the application of this procedure, consider an invertible system

with input vector space V and system transformation +. Since the system is invertible,

the set Se contains only the identity in V. The identity alone constitutes a subspace;

hence, the first condition of Theorem 25 is met. Each of the cosets in the quotient

space V/Se when Se is the identity alone contain only a single vector; specifically, the

coset v o Se contains only the vector v. Thus all of the vectors in any given coset pro-

duce the same output and each coset is associated with a different output. Consenuently

the second condition of Theorem 25 is satisfied. Alternatively, if we interpret the

second condition of Theorem 25 by means of Theorem 26, we can divide V into sets

defined by the property that any given set contains all of the inputs that produce a given

output. Again, since the system is invertible, each of these sets contains a single

vector from V. These are the cosets in V/S e. and hence by this interpretation, the
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of the identity alone, which by Theor-m 10 is a necessary and sufficient condition for a

homomorphic system to be invertible, Eqs. 21 and 22 reduce to Eqs. 12 and 13. It

follows, then, that as we have already shown by other means, any invertible system is

homomorphic.

As another example of the application of Theorem 25, consider a system with trans-

formation t defined as

l (v) = v -.

Let us choose the input vector space V to be a space under addition and require tha' it

contain more than just the identity elemant. Since the identity element in V is the ele-

ment 0, the set Se is the set of all elements s in V with the property that

C(s) = 0(0) = 0.

From Eq. 25 we see that there is no element in V other than the identity which will

produce zero output; hence, the set Se contains the identity alone. The identity is a

subspace of V; hence, the fErst condition of Theorem 26 is met. Because the set Se
is the identity alone, the coset v o Se in V/Se is the vector v. But the coset v o Se

and (-v) o Se produces the sarie output; hence, condition (2) of Theorem 26 is not met.
Thus the given system is not homomorphic.

As a third example, consider the system with transformation 4 defined by

M(v) I- dv (25)-v dt"

Let the input vector space be chosen as a space under multiplication, in which case the

identity e in V is e = 1, The set Se is then the set of all elements s in V such that

I ds=1 ds- 0,

which is the set of all constant inputs in V. It can be verified that this set is a subspace

of V. Now, consider any , t_ -t v o Se. We must show that all elements of the form

v-c, where c is a constant, produce the same output, for any c. But

= I d Idv~(ýVc) = a (v-c) = .

and hence *(v-c) is independent of c. as reqaired. We must then ascertain that each

distinct coset is associated with a different output. In Theorem 4 we noted that if two

cosets have any element in common, they are identical cosets. Conversely, if two

cosets differ by at least one element, then they will have no elements in common. Con-

sider two distinct cosets vI oSe and v, oS Then

os I dvI1
Vl° 7]- d vInV]

1 C- tL
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and

dv
ý[v o Se] 1 2 = A [-vtz e v 2dt dt

The system witit the transfcrmation ,cf Eq. 25 will be homomorphic if and only if

0[v1 oS e = s[vz oSe] (Z6)

implies that v 1 o Se and vz o Se are identical cosets, i. e. that v is a scalar multiple

of v 2 But Eq. 26 requires that

dt [-v ] [Inv ]

or

ill Vl Inv 2 + c

for some constant c. Hence

V c = cv (27)
vI 2

for some constant c'; therefore, we conclude that the system is homomorphic.

In Theorem 22 we investigated the necessary and sufficient conditions on an invert-
ible system such that a set of output operations could be selected to make the system

homomorphic. These output operations were shown to be unique. Similarly, in Theo-

rem 25 necessary and sufficient conditions on a noninvertible system were given so that

the system was homomorphic. It was shown that when these conditions were met, and

the output operations were chosen according to Eqs. Zl and 22, then the system would be

homomorphic. As for an invertible system, it can be shown that the output operations

chosen according to Eqs. Zl and 22 are a unique choice.

THEOREM 27: Let @ be the system transformation of a (not necessarily invertible)

system, with input vector space V. Then there is, at most, one choice for the output

operations under which the system is homomorphic.

PROOF: The desired result can be shown by assuming that the system is homomor-

phic under more than one choice for the output operations, and from this deriving a con-

tradiction.

Specifically, let W denote the set of outputs. Let N denote the null space of the

system when the output operations are 0 and /, and let N denote the null space of the

system when the output operations are U and J. If e denotes the identity in V, then

" contains all of the elements n in V, with the property that *(n) = 4(e). Similarly,

" contains all of the elements n' in V such that 4(n') = 40(e). Hence, N = Nz, that is,
the null spaces under the two choices for the output operation are identical. Let N and

N7 both be denoted by N, and consider the quotient space V/N. Theorem 1Z requires

that the system having the space V/N as the input space and the space W as the output
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st..ace be an invertihle, homomorphic system. If the original system had more than one

choice for the output operations, however, this invertible system would also have more

than one choice for the output operations, which contradicts Theorem 22.

B2c , !- e of Theorem 27, the cutput operations of a homomorphic system which are

consti ucted according to Eqs. 21 and 22 represent a unique choice for these operations.

Consider, for example, the system having the transformation of Eq. 26, with the input

vector space being a space under multiplication. It has been determined that this system

is homomorphic. An element v o N in the space V/N, where N is the null space, is

the set of elements in V that are scalar multiples of v. The mapping • from V/N to

W, and the inverse of * are defined by

~r L dvcv] - d-T

and

(w) = efwdt= [cv].

Using Eqs. 21 and 22, we find that the output operations of the system must be

wI ow w= ••-~l•lw)

L

d i f wdt fw dt\

dt In(e )I w I +w 2

and

C/W = -n(ew l d)cll= cWl1 dt n

for any w1 and w2 in W, and any scalar c in the field.
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IV. C-NONTC REPRESENTATION FOR HOMOMMORP C SYSTEMS

4. 1 INTRODUCTION

The class of homomorphic systems has been introduced. The generalized principle

of superposition which is satisfied by these systems is similar in form to the principle

of superposition describing a linear system; when the input and output operations of a

homo.riorphic system are addition, the
s-stem is linear and the generalized

0 0 principle of superposition reduces to

the statement of superposition in itsV - - --- --- -- W

usual form.
A canonic representation for homo-

Fig. 3. Homomorphic system with multi- morphic systems will now be derived.

plication as the input operation This representation amounts to a sub-
and output operation. stitution of variables whicri reduces the

system to a linear system. For any

particular homomorphic system the input and output variables that are chosen so that

the equivalent system will be linear, are dependent only on the input vector spaces, and

not on the details of the homomorphic mapping between these spaces.

As an example of the form that the canonic representation takes, consider a homo-

morphic system having multiplication as both the input operation and the output opera-

tion, as indicated in Fig. 3. This system has the property that for any two inputs vI and

v 2 and any scalar c.

*[vlVJ]= [4(Vn)]C 4(v 2 ) =w ww2 , (28)

where wI = 4,(Vl), and w 2 = (v 2 ).

If we perform the substitution of variables

x = In v (29)

and

y = In w, (30)

then the relation between x and y becomes

ey = 0(ex)

or

y = In [4(eX)] - '(x) (31)
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scalar

V '[cx 1 +X2 ] = cd'(x 1 ) + 4'(xZ)

Hence by the substitution of variables defined by Eqs. 29 and 30, the system has been

reduced to a linear system. The system of Fig. 3 is thus representable in the form of

Fig. 4 where the linear transformation 0' is defined by Eq. 31. In the representation

-------------------------

v 'In X Y _1 ey I W

Fig. 4. Equivalent representation of the system of Fig. 3.

in Fig, 4, the first and last systems depend only on the input and output vcctor spaces;

they do not depend on the details of the transformation d. We notice also for this par-

ticular example, that all of the memory in the system of Fig. 3 is concentrated in the

linear system 0' of Fig. 4, since the first and last systems in this representation are

memuryless. Here we shall derive necessary and sufficient conditions under which this

can be done.

4.2 CANONIC REPRESENTATION

In the example just presented, a homomorphic system was reduced to a linear sys-

tem by means of a substitution of variables. This essentially requires a mapping of the

vector space of inputs onto a vector space under addition, in a one-to-one manner.

Similarly, the vector space of outputs must also be mapped onto a vector space under

addition in a one-to-one manner. Our objective now is to show that for any vector space

such a mapping exists, and to discuss the resulting representation.

Let us restrict the system inputs to constitute a Hilbert space with an orthonormal

basis, and restrict the system transformation to be a continuous homomorphic transfor-

mation. Under these restrictions, the system outputs will also constitute a Hilbert space

with an orthonormal basis. This is equivalent to assuming that the input and outpat

spaces can be approximated arbitrarily closely by finite dimensional spaces. By virtue

of Theorem 20, both the input vector space and the output vector space are isomorphic

with any infinite dimensional Hilbert space having an orthonormal basis. In particular,

each of these spaces will be isomorphic with a Hilbert space in which vector addition

is interpreted as the sum of the correspcnding time functions, for example, the space

of functions that are square integrable. Thus we can always define an invertible
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homomcj phic system that maps the inputs onto a Hilbert space under Addition.. qnd an

invertible homomorphic system that maps the outputs onto a Hiloert space under additicn.

Consider a homomorphic system, then, with input vector space V which is a Hilbert

space with an orthonormal basis, output vector space W, and continuous system trans-

formation 4). Let a0 denote the system transformation of an invertible homomorphic

0- + 0~ 0w1+

f -

o. L---------o---o----i F.,t
L_ J

Fig. 5. Equivalent representation of a homomorphic system.

syster.a with V as the input vector space, and a vector space under addition, denoted by

V+, as the o-:tput vector space. Similarly, let a denote the system transformation of

an invertible homomorphic system with W as the input vector space, and a vector space

under addition, denoted by W+, as the output vector spa.-e. Siace the systems a and

V 0 0 L Li r w
VI L

i I
I I

F'ig. 6. Canonic representation of a homomorphic system.

a, are invertiole, the system 4) can be represented in the form shown in Fig. 5. The

system enclosed in the dotted lines, however, is a linear system and hence the system

of Fig. 5 can be redrawn in the form of Fig. 6, where L is a linear system. We recog-

iLize furthermore that the system of Fig. 6 is a homomorphic system with V as the input

vector space and W as the output vector space, for any choice of the linear system L.

The representation of Fig. 6 will be referred to as a canonic repres-.ntation of homo-

morphic systems.

An example of the canqnic representaTiun of a homomorphic system was shown in

Fig. 4. In this case the homomorphic system had multiplication as both the input and

output operations., An example of such a system is that system havir~g a transformation

46 defined as

16(v) = v k k - rial numL-r.

In this case, the canonic representation trzles the form of Fig. 7. To obtain any
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V =nV yýk x y W = l 1

L - - -

Fig. 7. Canonic representation of a homomorphic system with

transformation 4[vI = vk.

homomorphic system having the same input and output vector spaces as the system of

Fig. 7, we need only replace the amplifier of gain k with other linear systems.

From the form of the canonic representation, we recognize it as a substitution of

variables which reduces a homomorphic system to a linear system. The particular

choice for the substitution of -'ariables associated with any specified homomorphic sys-

tem is governed only by the input vector space and output vector space associated with

the system. The details of the mapping between these spaces is then contained in the

linear system L.

4.3 CLASSIFYING HOMOMORPHIC SYSTEMS

The canonic representation suggests a means for classifying homomorphic systems.

Specifically, let us classify homomorphic syscems according to their input and output

spaces. Since the characteristic systems a and a. are determined entirely by the input

vector space and output space associated with the homomorphic system, all systems

within a specified class will have identical systems a0 and a 3 in the canonic represen-

tation. The systems within each class will differ only in the details of the linear sys-

tem appearing in this representation.

As a simple example of this means oi -lassifying homomorphic systems, we would

consider all linear systems as representing one class of homomorphic systems. Another

class of homomorphic systems would be the class having the characteristic systems that

appear in the representation of Fig. 7. In this case vector additior is defined as multi-

plication of the associated time functions, and scalar multiplication is defined as the

associated time function raised to the scalar power.

4.4 CONDITIONS ON A HOMOMORPHIC SYSTEM SUCH THAIT THE

CHARACTERIST!--' SYSTEMS ARE MEMORYLESS

In the class of homomorphic systems characterized by multiplication as both the
input operation and the output operation, we observe that the characteristic systems a

0

and ao are memoryless systems, i. e., that output of each at any given instant of time

is dependent only on the input at the same instant oi time. Hence, for this particular

class of systems, all of the system memory can always be concentrated in the linear
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system in the canonic representation.

The question arises as to the conditions on a class of homomorphic systems under

which the characteristic systems a0 and a. are memoryless. Since these systems

represent invertible mappings from the input and output vector spaces respectively we

wish to determine the necessary and sufficient conditions on a vector space consisting

of time functions, such that a memoryless, invertible, homomorphic mapping to a vec-

tor space under addition can be constructed. In the following discussion it will be shown

that the necessary and sufficient conditions are that the operations of vector addition and

scalar multiplication must themselves be memoryless.

To show first of all that these conditions on the vector space are necessary, consider

an invertible homomorphic system with transformation ao, input vector space V and

output vector space W. Let the operation of vector addition in V be denoted by o and

the opeartion of scalar multiplication in V be denoted by >. Let W be a vector space

under addition. Then by virtue of Theorem 22, vector addition and scalar multiplication

in V must be expressible uniquely as
-I

v o v 2 = a° [ao(vl)+a,(V2)] (32)

c>v, .o l[cao(v)] (33)

for any vI and v2 in V and any scalar c. Let us denote the instantaneous value of a
vector v in V at a time tI by vit . Then we wish to determine wheter Eqs. 32 and

33 require that the operations o and > be defined on the ixstantaneous value of vI

and vz if a is memoryless. Consider first, Eq. 32. Since a is memoryless, its inverse

a is also memoryless. Hence, the right-hand side of (32) is defined on the instan-
0

taneous values of v1 and v . Hence. the left-hand side of (33) must also be defined on

instantaneous values of v 1 and v2 . We must next ascertain that

But

],t r4 % (35

and

(v 1t) o !,,l)t ao'[ao(,vlItaoVZIt . (36)

But, since a is memoryless, Eq. 36 becomes

(Il t) O (v2It) a[

Since addition is memoryless, we see that
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(V 11t) 0 (vzjt1) %

--1
Finally, since a° is memoryless,

(V1 I) 0 (vz) a-1 a (v )+a (vz) (37)

Comparing Eqs. 35 and 37, we see that

0 v 1  I = (vilL 0 (vo-t)

whenever a is a memoryless system. Similarly, we wish to show that the assumption

that a is memoryless implies that > is memoryless, that is

:c>v1 Ct [(vilt)]. (38)

Referring to Eq. 33, we see that the operation > is defined on instantaneous values of

v1, since a0 is memoryless. To show that (38) is satisfied, we observe that because

scalar multiplication is memoryless and a is memoryless,

0 0

But, the left-hand side of (39) is

a'[cao(vl It)] = C

and the right-hand side of (39) is

~a-[ca (v)]}t=[>v]t (40)t1

Comparing Eqs. 39 and 40, we see then that Eq. 38 is satisfied; consequently, > is a
memoryless operation. Hence, a necessary condition on the vector space V so that a

0

is a memoryless system is that the operations o and > must be memoryless operations.

The next step is to show that this also constitutes a sufficient condition. To this end, let

V be a vector spac -. with vector addition denoted o and scalar multiplication denoted >.

Elements of the vector space are time functions, that is, they are scalars indexed over

time t. Vector addition and scalar multiplication in V are assumed to be memoryless,

that is, at any value of t,

(V10v~ v 2 )it= (vilt) o (Vz[ 4) (41)

(c>v)It = c>(v1lIt) (42)

for any v 1 and v 2 in V and any scalar c in F. Let e denote the identity in V.

Consider the set of all scalar values which the tis.e futictions in V can assune at an
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instant of time t. Let thi2 set be denoted S.. Then the set S- is itself a vector space, for
L T

(a) Let Tl and 12 by any scalars in St. Then there is a vector vI in V and v2 in V

such that vIit ` "I and v2!t = l1" Since V is a vector space, v1 0v 2 is in V;

hence, (v 1 o v2 )1t is in St. But from Eq. 41, (v 1 1) vZ)It = ('N1 o 2 hence,

(q0 o19n is in St. By similar reasoning, it can be seen that T1 z 0 12 0

and that (71 o 0Ti) o T13 = 71 1 0(71  o ( 9,,) for any i11, r12 and ,13 in St.

(b) There is a unique element et in St such that 0o et = 11 for any 1 in St. To show

the existence of such an element, let v be an element in V such that vit = Ti. If

e is the identity in V, then v o e = v. Hence (v o e)it = vJt, or (vt) o (elt)=vlt.

Since vit = -1, we have

1 o (elt) -n.

Thus e It will be an element in St such that q1 o (elt) = d1, that is, et = e lt. To show

that the element et in St is unique, consider two elements et and e' in St with

the property that

1 o et = 71 (43)

and

il o et = ?1 (44)

for all 71 in St. Then, by virtue of (43),

e t o 'e =e (45)Iet Ie

and by virtue of (44),

et o et et. (46)

But we have stated that o was a commutative operation in St hence,

e o e= et oet.-t et et

Therefore, from Eqs. 45 and 46, et et
t V

(c) Every element 1i in St has a unique inverse in St. For, let v be the vector in

V such that v = 1. Then, if v-1 denotes the inverse of v in V, we have
-1 = e; h = e I t, or 10 o (v- 1 )I t = et. Denoting (v-)by

v o v = e; hence, (v It) o (vý )jf=e~

1 . we have 101 = et" To show that thit, inverse is unique, let n1 and

denote two elements in S such that 1 o 0- = e and 1° o l = et. Then if

t -9 -1 = -I = v-lt it follows that
( o v vt Y1 = v •tanal = .t
1=vlt.~ fadi V,v o(

46



If vl is chosen by considering all possible values for t, then v o v-I =v o v- =e.
-i -1 o l auso ;i atclr

But the inverse of v is unique; hence v1  v for all values of t; in particuiar
-Io -1- -1 -1
I t t 1

(d) The final step in showing that St is a vector space is to show that scalar multi-

plicatioln in St has the necessary properties. If n is any element in St, where

71= Vit, then l>, = 1>v~t 0(> v) it = v-t; hence, In = Ti. By a similar argument

it can be: seen that

(cIcZ) > = ci>(c2 >'n)

and

(Cl+C2)>1 = (cl>n) o (c 2 >rI),

for any cI and c 2 , and

c>(11 1 02) = (c>'I) o (c>)),

for any and Tj in St and any c.

If V is a separable Hilbert space, as we have assumed, the vector space St is iso-
n

morphic with the space F , where n is the dimension of St (see the Appendix). Let this

isomorphism be denoted at. Define a vector space W having elements that are n-tuples

indexed over time, that is, if w is in W, then w is representable in the formn

(c 1 ,c 2 .... C ), where c1 , c 2 ,...., c are elements of the field. Then W is a vector

space under addition, since n-tuples are added and multiplied by scalars according to

the operations of addition and multiplication in the field. Now, there is a mapping a

from V onto W which is invertible and homomorphic. Specifically, let a be defined by

the property that [a(v)]It = at(vIt) for any value of t. Then a is also a memoryless

t:ansformation; consequently, it has the properties that we set out to derive. Hence we

have shown that a sufficient condition on a vector space V so that a memoryless, homo-

morphic, invertible transformation from V to a vector space under addition exists is

that the operations of vector addition and scalar multiplication in V be memoryless.

To summarize, we nee that in the canonic representation of a homomorphic system

the system ao can be memoryless if and only if the operations o and > are memoryless

operations. Similarly, the system a. (or equivalently a. 1 ) can be memoryless if and

only if the operations o and / are memoryless operations. In the canonic representation

for systems in a class specified by memoryless input and output operations, all of the

memory in the systems can always be concentrated in the linear portion of the canonic

representation. In contrast, if either the set of input operations or the set of output

operations is not memoryless, then the memory of systems in such classes can never

be concentrated only in the linear portion of the canonic representation.

Before proceeding to some examples of the construction of memoryless invertible

homomorphic transformations from the input and output vector spa- es of a homomorphic
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yste n to spaces under addition, it would be well to investigate in more detail, the prop-

ties of these transformations and the consequences in terms of the canonic representation.

When the canonic representation was first presented, the linear system was inter-

preted as a system having a single input and a single output. We have seen, however, that

when we desire the systems a° and ao to be memoryless systems, the input and output

of the linear system may not be a simple time function, that is, they may not simply be

a set of scalars indexed over time. Specifically, consider a homomorphic system with

memoryless input and output operations. Consider this system in its canonic repre-

sentation with the systems a and a 0 constructed to be memoryless. Then the output of

a will be of the form (fI(t), f2 (t),.... ), where fI(t), fr(t) ... are each scalars indexed
over time. Similarly, the set of inputs to a 0 will be of the form (gl (t), gz2 t) ... ), where

g1 (t), g2 (t) ... are each scalars indexed over time. In this case, we would interpret

the system a as a memoryless system having a single input and multiple outputs. For

any input v the individual outputs would be the time functions fI(t), f2 (t), ... corre-

sponding to the mapping of the input at any instant of time onto an n-tuple of scalars.-1
Similarly, each output of a 0 would arise from the effect of a set of inputs gl(t), g2 (t),

that correspond at each instant of time to the representation of the output as an

m-tuple of scalars. With this interpretation, the canonic representation of Fig. 6 would

f 2 9 2

fn 9m

Fig. 8. Canonic representation of a homomorphic system with
memoryless input and o, •ut operations.

appear in the form of Fig. 8. In this interpretation the system L has n inputs and m

outputs. It is linear in the sense that, if g1 " g2 ' .... gm are the responses to a set of

inputs f1 ' f2  f , and g m are the responses to a set of inputs V. f! ,

Sf', then
n

(glg'),(g,+g'),., (gm+g'n

will be the responses to the inputs

(f +f1j), (f fI.( +l11 2 +) n.. n

and

cg, c92.... cgn
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will be the responses to cf!, cf, ... P cf-, for any scLlar c and for any set of inputs.

If an inner product can be defined on the vector space St. then the output of a 0at

time t can be described as the result of the inner product of v with eachi of the basis

vectors of St. Specifically, let the inner product of v, it and v. it be denoted (vI it, v2 It"

Let Pit, P2t. denote a basis of St. Then any scalar value vIt in St can be written

vit = [(vIt, •it)>.t] o [(vit, p2tl>. to 0

The n-tuple representing vt is, then, (c, cI2 ... PC ), where c = (vit, ) In general,
t In j I .t jt

for different values of t, the spaces St will differ; hence, both the inner product and the
set of basis vectors • ~t' .... will be functions cf time Let us denote the operation

of taking the inner product of the input at any instant of time t with the jth orthonormal

basis vector in St by H It(vt ), that is,

H) t(vlt) (vit, Pjt)-

Then, as we consider all instants of time, we have constructed a function Hj(v) with the

property that

[Hi(v)IIt = H t(vlt)-

By reterring to the definition of the outputs of a , we see, then, that

Hj(v) = fj(t) j = 1, 2, ..... n.

To construct the nverse of Hj, we observe that the inverse of H it corresponds simply

to the combin3tion of H j t(v t ) with the basis vector Pi. according to the operation of

scalar multiplication in the vector space V, that is,

Hi tl[cI = c>•t

Hence, the inverse of H. isI

H- lf(t)] M) P M>j~

3 
>3

where Pj (t) denotes the jth orthonormal basis vector in St as a function of t. Interpreting

Fig. 8 in the light of this discussion, then, we can replace the systems a and as

shown in Fig. 9.

As an example of the application of these ideas to the construction of the systems aoand a1 , consider a homomorphic system with addition as the input operation and addition

as the output operzation, that is, a linear system. The operations of vector addition and

scalar multiplication on the input vector space are
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V IU V ZýV IT V
v1 2 v 1 2 Z

and

C V = CV.

Let St denote the set of all possible values that the input can assume at time t. We have

shown that St is a vector space. In particular, it is a one-dimensional vector space.

ao ao!

.• ,() I f,(t) gl(t) I 1
l _ _ _ _ _

H 2(v) I I 22t9(t)1 2t

L L

V ~(V

I I
Ii--- -- I-.

Fig. 9. Canonic representation of a homoinorphic system with memoryless input
and output operations, illustrating the construction of the characteristic
systems.

For, choose any nonzero value P in St as a basis vector, then any value il in St can be

expressed in the form n --. c>p = cp for some scalar c in the field. Specifically,

c =- ( ,

where - is well defined, since it is a nonzero scalar in the field, and hence has an
T

inverse under multiplication. Thus the vector P in St spans S t Let an inner product

be defined in St as follows: if I and r12 are any two vectors in Sts then the inner prod-

uct of -q and TI2, denoted by (n1 It) will be defined as

If the field is the field of real numbers rather than the field of complex numbers, then

(rIi,'i 2) = n•2
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To verify that Eq. 47 defines an "nner product. we rpfer to Defianition 5. Let m1 '2

and n3 be any vectors in St. Then

(1) ((hI+ 2 )' 13) = (TIlz) + -13

and thus

((TI +12), 0,3) = (111 3) + (112, P13).

(2) (c1n1, 712) = 'n = c (c 1 9 12 )"

(3) (n1 '9) = (I 21 I)

(4) (n 1 1) = 'l13l > 0, 0.

An orthonormal basis for St under this choice for the inner product is the choice 1 = 1.

We are guaranteed thai the scalar I is in St; for, if 1q is any scalar in S then must
t t1

be a sca)Pr in the field, and since St is a vector space, the scalar

>t
1 1

must be in St.

Since St is a one-dimensional vector space, the system a has a single output. The

operation Hlt(vlt) is given oy

Hjt(vlt) = (v t. P) = vt,

and hence H(v- = v. Consequently, the system a is simply th., identity system, as would

have been expected without recourse to this formalism. By a similar procedure, the-1
system a 0 and hence a- is the identtity transformation.

The choice of inner product specified by Eq. 47 is by no means a unique choice. As

the inner product changes, the orthonormal basis also changes. In-terms of a different

inner product, the systems a and a. will be different. Consider, for example, the

inner product (1 1z) defined as

( T)I . T12 ) -• k • jI i2

for some positive real scalar k in the field. it can be verified that this inner product

has the properties required of an inner product. Under this inner product, an orthonormal

basis for St is the vector

= k-'1/2.
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The operator Hit(v t) is then given by

HIt(vlt) = (vtt. P)= kl/Z vlt

and hence

H(v) = kI/2 V.

Thus the system a is an amplifier of gain kI/2. If this same inner product is associated
with the output vector space, then the system a' will be an amplifier of gain

0

Alternatively, different inner products can be associated with the inpu, and output vector

spaces; the systems ao, L and a-1 will depend in general on the manier in which these

inner products are defined.

As another example, consider the class of systems having an input vector space V

with vector addition and scalar multiplication defined as

vI ov 2 = vIv 2

c>v:I = [vir

for all vI and v 2 in V and all scalars c in the field. Let the field be restricted to the

field of real numbers, and the time functions be restricted to have only positive values.

Again, St will denote the set of values which the inputs can assume at time t. St is a

one-dimensional vector space. For, let A be any vector in St other than unity, then for

any vector Yj in St there exists a scalar c in F such that

c> P = [P = 7. (48)

This follows from the fact that all scalars in St must be positive. Hence the natural

logarithms of P and -n are defined, and the natural logarithm of P is nonzero, since

Sis not equal to unity. The choice of the scalar c in Eq. 48 is given by

ln ('i)

In (P)

In the previous example, the system a° was constructed by first defining an inner prod-

uct. Let us instead, in this example, determine a0 by first constructing the inverse

a 0. We know that this approach can be used, since there is always some inner prod-

uct under which the basis for St is orthonormal when the dimension of St is finite, as it

is in this example. Hence we do not need to define an inner product in St in order to
determine an orthonormal basis for St. From the previous discussion we see that the

-1
system ao is described by
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0.

where x = a (v) for some input v. Since
0x >P

we have

a 0 (x) =

We recognize the inverse of this system as the logarithm to the base • and hence

a o [v] = logp [v].

It would be instructive to determine the inner product under which P is orthonormal. To

do this, consider the fact that with the above-mentioned choice of a 0 the operator Hit

is given by

Hlt(vit) = log, [viti.

Hence, from the definition of H It.

(vIt. P) logl [vit].

Consider the inner product of any two vectors I and -1 in St given by

(11 )= [logo 11 )][logp (Uq2)]. (49)

Before showing that p is orthonormal under this inner product, let us first verify that

(49) does in fact define an inner product.

S(1) T'- -q•2,13) = lg 119P 1 2)][logP (713)]

= [loge +logp q2 ][log• ()]

= (logP l)(logP n 3 ) + (logP iz)(logP n3)

and thus

(011,92t •13) = (S'Y•3 + (h2s'q3"

(2) (ilc, * 1)= c(log Tjl)(logp Tz) =h I01 n2)

(3) Property (3) does not have to be verified, since the field has been restricted to

the field of real numbers.
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(4) (•Iyl) = (logo 'I) 2 > 0 for 1 *I as required.

It follows directly that the vector P is oe~hu ormal under this inner product for

(P.P ) = [logp (p) ]2 = 1.

4.5 APPLICATION TO NONADDITIVE FEEDBACK SYSTEMS

The notion of homomorphic systems can be used to transform some systems with

nonadditive feedback to systems with additive feedback. In certain special cases this

transformation has the effect of removing the system nonlinearities. In such cases,

stability of the nonlinear feedback system can be investigated by using the techniques

available for the study of linear feedback syst •ms.

0 0

Fig. 10. Homomorphic feedback system with
nonadditive feedback.

Consider a feedback system of the form shown in Fig. 10. The inputs are assumed

to be a Hilbert space with an orthonormal basis, in which vector addition is the oper-

ation o. The system * is a homomorphic system with input operation o and output

operation o. The system y is a homomorphic system with input operation o and out-

put operation o. The feedback operation is identical to the input operation of 4 and the

output operation of y.

The first step in the transformation of the sys.- .m e. Fig. 10 is to replace * and y

with their canonic representations. We recognize that since the input operation of € is

identical to the output operation of y, the first system in the canonic representation for

+ can be chosen as the last system in the canonic representation for y. Similarly, since

the output operation of + is identical to the input operation of y, the last system in the

canonic representation for * is identical to the first system in the canonic representa-

tion for y. When + and y are replaced by their canonic representations, the system of

Fig. 11 results. From Fig. 1 1 we s,:e that the input x2 to the linear system L1 is

given by

xz = vo I (yz)]
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or, since a is a homomorphic System,

x 2 = a0 (v) + y 2 .

The input yl to the linear system L2 is given by

Yl= aNa 0 l(x 3 )I•

Hence, the block diagram of Fig. 11 can be transformed to that shown in Fig. 12. From

the block diagram of Yig. 12 we recognize the feedback system as a cascade of ao, a

linear system, and a I. Hence, it is a homomorphic system with o and o as the input

0 + + + + 0

Fig. 11. Equivalent representation of a homomorphic feedback system.

and output operations, respectively. The canonic representation for this homomorphic

system is, of course, the block diagram of Fig. 12. The linear portion of the canonic

representation is a linear feedback system having the linear portion of + in the forward

path and the linear portion of y in the feedback path.-1
The systems a0 and a- in the system of Fig. 12 are determined by the classes to

0 +-- --------- +------+--+-

Fig. 12. Canonic representation of a homomorphic feedback system.

which the systems 4 and y belong. Hence, as + and y are vari,-i within their respec--1-
tive classes, the systems a0 and a remain the same; changes in + and y are repre-

sented by changes in the linear systems L and L2 . Thus the behavior of the feedback
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sytem of Fig. in tic the systems A and y are varied within their respective classes can

be studied by concentrating on the behavior of the linear feedback system enclosed in the

dotted line in Fig. 12.

The fact that the nonlinearities in the system of Fig. 10 can be removed from the

feedback loop depends on the fact that the feedback operation is identical to the input

operathon of 4 and the output opp.ration of y, and that the output operation of 0 and the

input operation of y ar,- identical. Under

or 3 these restrictions, and the restriction
v 0. W that the system inputs constitutes a vec-

tor space under o, the system outputs
X •will constitute a vector space under o.

0 0It can also be verified that the set of

inputs to 41 is a vector space under o

and the set of outputs of y is a vector

Fig. 13. Nonadditive feedback system with space under o.

homomorphic systems in the for- If we do not impose the restriction
ward and feedback paths. that the feedback operation be identical

to the input operation of * and the output

operation of y, we can still, in c.!rtain cases, transtorm the system to a feedback sys-

tem with additive feedback. The over-all system will no longer be a homomorphic sys-

tem; consequently, the feedback loop will remain nonlinear.

Specifically, consider the feedback system in Fig. 13. The system inputs constitute

part of a Hilbert space under the operatio_ 0.. It is assumed that the system of Fig. 13

is well defined, that is, the operation o is defined on all inputs to (0 and the operation

o is defined on all the outputs of y. This would be true, for example, if 4 and y were

both linear systems and the operation were multiplication.

v - -d a Pa - 0 w
EO00

°0°7

Fig. 14. Equivalent representation of the feedback system of Fig. 13.

Since the system inputs constitute a vector space under the operation 0, there exists

an invertible homomorphic system ao, having 0 as the input operation . .d addition as

the output operation.

The input E to 4) is given hv
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EC=vX

or, equivalently,

-= Ia[ la(v * x)].

Since ao is a homomorphic system, (50) can be rewritten

E =v

Consequently, the sy.- n- of Fig. 13 can be redrawn as shown in Fig. 14. When the

canonic representations for 4 and y are substituted in the block diagram of Fig. 14,

and appropriate block diagram manipulations are performed, the system of Fig. 14 can

-- ------------- -- 1

0 0

, -10

I 0

Fig. 15. Equivalent representation of t.he feedback system of Fig. 13.

be transformed to that shown in Fig. 15. If the system y is an invertible system, then

the system L2 will also be invertible. In this case, the system for Fig. 15 can be

transformed to that shown in Fig. 16, for which

-1
a a oa0

=a L aoaL L L 1 l

S0 

2 a o0a -l

If this feedback system is to be studied as the system 1 is varied within its class, then,

the systems a and P will remain invariant with changes in +. Hence, properties of

the feedback system of Fig. 13, as * is varied within any one class, can be studied by
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I I

L-----------------_ I

Fig. 16. Equivalent representation of the feedback system of Fig. 13
for the case in which y is invertible.

concentrating on the feedback system enclosed in the dotted line in Fig. 16. Although
this feedback system is nonlinear, it is characterized by the property that it is a unity

feedback system in which the forward path contains a linear system inserted between
a nonlinear system and its inverse.
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APPENDIX

-h ing of a .epaabl.. H ilbert Space into the Space k-"

In Section IV, we were concerned with the construction of an isomorphic mapping
from the input and output spaces of a homomorphic system into spaces under addition.
The input and output spaces were restricted to be separable Hilbert spaces, i.e., Hilbert
spaces having orthonormal bases. When the operations of vector addition and scalar
multiplication were memoryless operations, the set of values which the associated time
functions could assume at any instant of time was shown to constitute a vector space. It
was then stated that an isomorphism could be defined which mapped the set of values a'
any instant of time onto the space F n. The purpose of this appendix is to carry out the
derivation of these results.

Consider a separable Hilbert space in which the orthonormal basis is denoted fl (t),
f2 (t), .... Then if f(t) is any function in the space, f(t) can be expressed in the form

f(t) = [(f(t). fk(t))>fk(t)], (A. 1)

0''

whereo denotes the combination of the functions [(f(t), fk(t))>fk(t)] according to the oper-

ation o. Let S denote the set of all values that can be assumed by the functions in the
space at any given time to. If o and > are memoryless operations, then, from
Eq. A.1,

f(t 0 ) = p [(ft)fk(t))>fk(to A.

0

Consequently, for any scalar f(to) in S there exists a set of scalars Xl, K# ... such
that

f(tM ) = k > fklto1"

0

The scalar Xk is given by

X k = (f tM, fk M)).

The vector space S is spanned by the scalars fl (t0 ), f2 (to), ... in the sense that any
scalar in S is the limit of a linear combination of the scalars f I(to), f 2 (to), ... under
the operations o and >. The set of scalars fl (t0 ), f 2 (t 0 ), ... is a countable set, since
an orthonormal basis for a separable Hilbert space is countable. This set of scalars
may or may not constitute a basis for S, that is, they may or may not be independent.
They contain, however, an independent set in terms of which any scalar in S can be
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expressed as a (possibly infinite) linear combination, as the following argument shows.

If the set S contains only one scalar, then this scalar must be the identity in S

because S is a vector space. Since fl (to0), f2 (t0 ), . .. are each in S, they must all be

equal to the identity in S. In this case, any one of these scalars is a basis for S, and

hence the proof is complete.

If the set S contains more than one scalar, then the set f1 (to0 ) f2 (to0 ), ... must con-

tain at least one scalar that is not the identity in S. Let sIs, s?, ... denote the sequence

of all scalars from the sequence f1 (to) 0 2 (to), ... which are other than the identity in S.
This sequence is nonempty by virtue of the comments just made. Let S be the subspace

of scalars s in S which is spanned by sI. Let s? be the first scalar in the sequence

sli s V ... which is not in SI. and let S2 denote the subspace of S spanned by sl and
St, where s! = -ls Continuing this process, we obtain a sequence of subspaces Sit

n

S,, ... of S. Since S is the limit of the sequence of partial sums ol ((f(t), fk(t)>fk(to)I,

the limit of the sequence of subspaces S1, $79 ... is S. Hence the sequence sl, s•, ...
spans S, since the space S can be expressed as a combination of s,' s S' under

n 1'z n
the operations o and >. Furthermore, by the manner in which the sequence si, sz, ...
was generated, it is independent. This sequence j,,-ms a basis for the space S in the

sense that it is independent and that any element in S can be expressed as the limit of

partial sums of scalars in the sequence.

We wish to show next that S is isomorphic with Fn for some n. Let s be any scalar
in S. Since the sequence s•, s•, ... spans S and since this sequence is independent,

s can be expressed in one and only one way in the form

n
S = 1 c k >Sq

0

for a set of scalars {ck} from F, where ck = [(f(t>fk(t))]. The isomorphism T from

S to Fn is then defined as

T(s) = Ic ,C ...
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