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Abstract

Many ronlinear systems can be interpreted as linear transformations between vec-
tor spaces under appropriate definitions for the vector operations on the inputs and
outputs. The class of systems which can be represented in this way, is discussed here.
This class, referred to as the class of homomorphic systems, is shown to include all
invertible systems. Necessary and sufficient conditions on a noninvertible system such
that it is a homomorphic system, are derived.

A canonic representation of homomorphic systems is presented. This representa-
tion consists of a cascade of three systems, the first and last of which are determined
only by the vector space of inputs and the vector space of outputs, respectively. The
second system in the canonic representation is a linear system. Necessary and suf-
ficient conditions are presented under which all of the memory in the system can be
concentrated in the linear portion of the canonic representation. A means for classi-
fying homomorphic systems, suggested by the canonic representation, is discussed,
This means of classification offers the advantage that systems within a class differ
only in the linear portion of the canonic representation. Applications of the theory are
considered for a class of nonlinear feedback systems.
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I, INTRODUCTION

The analysis and characterization of linear systems rely heavily on the principle of
superposition which these systems satisfy. The superposition integral and system func-
tion representations, for example, are a direct consequence of the fact that the response
of a linear system to each input in a set of inputs determines the response to any linear
combination of inputs in that set.

In contrast, nonlirear systems do not satisfy this principle of superposition, The
determination of a means for representing nonlinear systems has been the subject of con-
siderable attention for many years. In 1887, Vol‘&;erra1 formulated a functional expansion
of continuous nonlinear operators in the form of a generalization of the Taylor's series
expansion of a nonlinear function. This expansion, applied to systems, provides a repre-
sentation of the system operator. A representation of time-invariant, realizable non-
linear systems was presented by Wiener,2 in 1958. In his theory, system response to
shot noise is used to determine the parameters of the representation. Wiener's formu-
lation is based on the expansion of the past of an input in terms of Laguerre functions,
which was first presented by Cameron and Martin.3 The response of a realizable time-
invariant nonlinear system is expressed as a rionlinear combination of the coefficients
in this expansion. Cameron and Martin represented the noniinear combination cf these
coefficients in terms of Hermite functions. An alternative r=.resentation of the non-
linear combination of the coefficients was developed by Bcse,4 in 1956. Much of the
research being conducted, at present, on the representation of nonlinear systems is
based on Wiener’s original ideas.

This report presents a differeat approach to the characterization of nonlinear sys-
tems, which is based on linear algebra. The fact that vector spaces of time functions
can be constructed under a variety of choices for the definitions of vector addition and
scalar multiplication permits many nonlinear systems to be representable as linear
transformations between vector spaces. Specifically, if f 1(t) and fz(t) represent any
two system inputs, let 1(’L) o fz(t) denote the combination of these inputs under a spec-
ified rule, such as addition, multiplication or convolution. If ¢ is any scalar, let c>f l(t)
denote the combination of the scalar ¢ and the input 1 {t). Similarly, let o denote a
rule of combination between any two outputs; and / denote a rule of combination between
any scalar and any output. If the system inputs constitute a vector space when o is inter-
preted as vector addition and > is interpreted as scalar multiplication, and if the system
operator ¢ has the property that

$[f,(t) o fz(t)]s.g,[fl(t)] o ¢if,(t)]
and

#le,fy 0] = /8 [f, 0],

then it is representable as a linear transformation between vector spaces. In the case




for which the operations o and o0 are addition and the operations > and / are multi-
plication, the system is a linear system. Otherwise, the system is in general nonlinear.
Systems representable in this way are referred to here as homomorphic systems, a
term motivated by the algebraic definition of a homomorphic mapping between vector
spaces.

The algebraic fundamentais for the study of homomorphic systems are presented in
Section II. This presentation sets down the basic postulates of linear algebra and devel-
ops the algebraic theorems that are needed in the study of homomorphic systems.

In Sections III and IV the properties of linear transfcrmations are used to investigate
homomorphic systems. It is shown in Secticn III that every invertible system is homo-
morphic for any choice of the input vector space. For noninvertible systems, necessary
and sufficient conditions are derived under which the systems are homomorphic.

In Section IV a canonic representation for homomorphic systems is developed. This
representation consists of a cascade of three systems, the firsi and last of which are
determined entirely by the input and output vector spaces, respectively. The second
system in the representation is a linear system. Necessary and sufficient conditions
are derived in Section IV under which the first and last systems in the canonic repre-
sentation are memoryless., Section IV also includes a discussion of the use of the can-
onic representation in treating a class of nonadditive feedback systems.

The canonic representation presented here offers a convenient means for classifying
homomorphic systems. Systems within a given class differ only in the linear portion of
their canonic representation and hence a comparison of systems within a class reduces
to a comparison of linear systems. Alternatively, the analysis of a homomorphic system,
when its class is known, reduces to the analysis of a linear system.




I, VECTOR SPACES AND LINEAR TRANSFORMATIONS
2.1 INTRODUCTION

The results presented in this report draw heavily on the nctation, concepts, and
theorems of linear algebra. Hence it is appropriate to introduce the fundamental prop-
erties of vector spaces and linear ‘ransformations, and to remind the reader who is
familiar with vector spaces of the properties used here. Although proofs of all theorems
have been included, it is the theorems themselves that will assume primary importance.
For the reader who is familiar with linear algebra, a quick review should be adequate
to convey the point nf view toward linear algebra which is used in this report. Many of
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the theorems and proofs presented here have been published by others.
these were reformulated in terms that were more mezaningful within the context of this
report. The remainder of the theorems were formulated and proved specifically for the

purposes of this report.
2.2 GROUPS, FIELDS, AND VECTOR SPACES

It is convenient to introduce the postulates of the algebra of vecior spaces by intro-
ducing the postulates of groups, which constitute a weaker algebraic system.

DEFINITION 1: A group G is a ccliection of objects for which a binary operation
* is defined, subject to the following postulates:

1. If a and b are in G, then axb is in G.

2. If a, b, and ¢ are in G, then

{axb)*c = ak{bxc),

3. There exists a unique elemen' e in G, called the identity element, such that for
all a in G,

ake = e¥a = a.

4. For every element a in G, there exists a unique element alin G, such that

If the group G has the property that for all elements a and b in G, a*b = b¥a, then G

is referred to as a commutative or Abelian group. Often when discussing Abelian groups,
the binary operation associated with the group is denoted + to emphasize the fact that
the group operation is commutalive. In this case, the identity element is referred to

as the zero element. This notation will be used now. Little confusion results when the
elements of the groups are abstract objects, When the group elements are real or com-
plex numbers or functions, however, the reader should remember that the slement a+b
in the group is not necessarily the addition of the numbers (or functions) a and b. The
algebraic postulates can be satisfied, for example, if atb is defined as the product of

the numbers or functions a and b.




DEFINITION 2: A field F is a collection of objects associated with which there are
twe binary operations., The first operation is denoted at+b. The second operation is
denoted a.b, These operations satisfy the following postulates:

1. The field F is an Abelian group under the operation +.

2. The nonzero elements of F are an Abelian group under the operation « . The
identity under this operation is denoted by 1.

3. Forany a, b, and ¢ in F,

a-{btc)=a-b+a-c.

It should again be mentioned that the operations + and -, although satisfying the same
algebraic postulates satisfied by addition and multiplication of numbers or functions,
are not necessarily restricted to be these operations when the elements of the field are
chosen to be real or complex numbers or functions.

DEFINITION 3: A vector space consists of

1. A field F of scalars;

2. A set V of objects called vectors and a binary operation called vector addition

(to be denoted +) under which the set V constitutes an Abelian group; and
3. An operation called scalar multiplication which associates with each scalar ¢ in
F and vector v in V a vector cv in V called the product of ¢ and v in such a way that

(a) lv=viforeveryvinV

{b) (cl‘cz)v = cl(czvs

{c) c(vl+vz) = cv1 + ey,

{d) (c1+c2)v = eV + c,v.

The inverse of a vector v is denoted -v. It can easily be veriiied that
{=~1})v = ~v

and
{Civ=20

DEFINITION 4: Let V be a vector space over the field F. A subspace of V is a
subset Vl of V which is itself a vector space over F with the ¢perations of vector add-
ition and scalar multiplication on V,

A simple example of a subspace of V is the space consisting of the zero vector
alone. When verifying that a subset of a vector space is a subspace we need not verify
all of the postulates of a vector space, since many of the postulates are implied by the
fact that the set is a subset of a vector space, In general, it is sufficient to show that

if v, and v, are in Vl, then any linear combination of v, and v, is also in Vl.

1 Z
DEFINITION 5: A vector space can be extended to what is termed an inner product

space by defining the inner product betwzen any two vectors in the space. The inner

product assigns to each ordered pair of vectors VieYy in V a scalar (vl,vz) in F in

such a way that




i, (v1+v2,v3) = (vl,v3) + (vz,v3}.

2 {cvl,vz) = c-(vi,vz).

3. (vl,vz) = (vz,vl), where the bar denotes complex conjugation.
4, {v,v}> 0 if vz0,

Two vectors having the property that their inner product is zero are said to be orthog-
onal. The length of a vector v in an inner product space is defined as the square root
of (v,v) and is denoted ||v]|. A set of vectors that are orthogonal to each other and have
unit length is termed an orthonormal set.

Vector spaces can be constructed for which the elements are functions of time, but
for which the operations of vector addition and scalar multiplication do not correspond
to addition of time functions and muitiplication of time functions by scalars. For
example, consider the set of all time functions of the form v = ent, where n is a real
number. I we associate with this set the field of real numbers and define vector addi-
tion and scalar multiplication as

nlt nzt
v, + vy = vl(t) vz(t) e e

and
cv = [vi)]€ = [ent]c,

then this set constitutes a vector space.

Many of the important and useful theorems concerning vector spaces and linear
transformations between vector spaces stem from the fact that a set oi basis vectors
can always be found for a finite~dimensional vector space. The notion of a basis is
presented in the following definitions and theorems.

DEFINITION 6: Let V be a vector space over F. A finite subset S of V is said to
be linearly dependent if there exist scalars €0 Cgr v <, in F, not all of which are 0,

and distinct vectors Vi Var e Vo in S such that

<:1v1 + czv2 +...+ cnvn-—- 0.

A set that is not linearly dependent is called linearly independent. If a set of vectors is

infinite, then it is said to he a linearly independent set if every finite subset of it is
linearly independent. A set of vectors in V which is linearly independent and spans V,
that is, is such that any vector in V can be expressed as a finite linear combination of
the vectors in the set, is referred to as a basis for V;

It can be verified that any set containing the zero vector is a linearly dependent set,
and that the representztion for any vector in terms of a basis is unique,

THEOREM 1: Let V be a vector space for which the finite set of vectors Vis Voo

A forms a basis. Then any other basis for V contains exactly n vectors.




PROOF: First, we shall show that any set of vectors containinug more than n ele-
ments must be linearly dependent. To this end, let Wi Woy ooy W be a set of m vec-
g7 e Yy is a basis, each of the vectors
w, is expressible as a linear combination of the vectors Vys Vas -eoa Vi that is,

tors from % with m > n. Since the set vy v

Let )\1, )\2, ...s A_ be scalars from F. Then

S0 e i S ey

i=1 =l j=1 i=1 \i=1

~1H
>
=z

Since m > n, the set of equations

m
zcjixizo’ j=1,2,...,n
i=1
has a nontrivial solution for the unknowns )“1' lz, e xm. Thus a set of scalars can

be found, not all of which are zero, with the property that

m

S\ Aw. =0,
J, Tivi
i=1
Hence the set wl, Wos ooy W cannot be a linearly independent set; therefore, no lin-

early independent set in V, in particular, no basis for V can contain more than n vec-
tors. Now assume that there exists a basis with p vectors, where p<n. Then, by
virtue of the discussion above, there could not exist a basis with more than p vectors,
But the set of basis vectors Vit Voraes Vo has more than p vectors. Thus there could
not have existed a basis with p vectors, where p< n.

By virtue of Theorem 1, we see that any basis for a vector space with a finite num-
ber of basis vectors contains the same number of vectors. It is this property of vector
spaces that permits the definition of the dimension of a vector space independently of
any particular bagis.

DEFINITION 7: The dimension of V is dei.ned to be the number of elements in a
basis of V. The dimension of a vector space V will be denoted dim V

Many of the theorems of linear algebra center around finite-dimensional vector
spaces. Infinite-dimensional vector spaces present special problems and many theorems
concerning these spaces require special restrictions on the spaces. Infinite-dimensional
vector spaces wilil be considered. Before deoing so, it is important that the properties
of finite-dimensional vector spaces be understood sc that the extensions of these prop-
erties to infinite-dimensional spaces will be clearer.




THEOREM 2: Let S be a linearly independent subset of a finite-dimensional vector
space V. Then S is part of a basis for V,

PPOOF: Let W be the subspace of V spanned by S. Then, by definition, S is a
basis for W, If W =V, then S is also a basis for V and the proof is complete, If W
is a proper subspace of V (that is, contained in but not equal tc V), let vy be a vector
that is-in- V but not in W. The set {VI,S} obtained by adjcining vy te S is linearly inde-

-~

pendent, for if v, could be expressed as a linear combination of vectors in 5, then vy
would be in W.
Let V1 be the subspace of V spanned by {vl,S}. If Vl =V, then {vl,S} is a basis

for V, since it is a basis for V

1

1 if V1 is a proper subspace of V, let vy be a vector
that is in V but is not in Vl‘ Then the set {VZ’vl’S} must be linearly independent. Let

this process bc continued until the set {vn,v .. ,vz,vl,S} contains exactly dim V ele-

ments. Since these vectors are all linearlyniridependent, the space Vn spanned by this
set must be all of V; otherwise, a vector Vael that is in V but not in Vn could be
adjoined to this set, forming a lineariy independent set with more than dim V eiements.
In the proof of Theorem 1, however, it was shown that no linearly independent set of V
could contain more than dim V eluments,

By the procedure above, then, the set S was extended to a basis of V and hence is
itself part of & basis,

It follows from Theorem 2 that if V j is a proper subspace of a finite-dimensional
vector space V, then dim Vl < dim V. This follows from the fact that any basis for V i
is part of a basis for V. Since V1 is a proper subspace of V, however, a set of vectors

must be adjoined to the set of basis vectors for V., to form a basis for V, these vectors

being chosen by the procedure given in the proof olf Theorem 2.

The existence of a basis leads to a representation of a vector as an n-tuple of
scalarg. This representation comes about by expressing every vector in terms of an
crdered basis for the space V. A one-to-one ccrrespondence can then be drawn beiween
any vector in V and the n-tuple of the coordinates expressing this vector in terms of the
ordered basis. This is done formally by first defining a vector space, the elements ¢i
which are n-tuples having entries from the field F.

DEFINITION 8: The vector space E? is defined to be the vector space having ele-
ments of the form (al, 3y0n0s ani. where a;, a5, ..., 3, are scalars from the field F.
The vector addition of two vectors (a sy an) and (bl ,b bn) in F® is defined as

I’az zt-cvv

(al' L TRRRR an) + (bl'bZ’ oo bn) = (al+bl,az+b2, cees an+bn),

The scalar multiplication of a vecior (al 13y, 0, an) in F? with a scalar ¢ in F is
defined as

C(al,az. cen .an)-= (cal.caz.. ees can).

Let V be a finite dimensional vector space over F with




dim V = n,

I Vi Vaseoaa Vo is an ordered basis for V, then any vector v can be expressed in the
form

v = alv1 + azv2 + ...+ anvn.
If we draw a correspondence between v and the n-tuple (a,,a,,...,a_) in Fn. then this
1'72 n
correspondence will be one~to-one, since any vector v in V can be expressed in one
and only one way in terms of a given ordered basis,

2.3 QUOTIENT SPACES

A concept that will have application in the discussion of linear transformations, and
also in the discussion of homomorphic systems, is that of a quotient space. The essence
P ARERY Sn with the
property that the sets Sl, SZ’ wees Sn can themselves be considered as vectors in a
vector space,

DEFINITION 9: Let V1 be a subspace of V, and v be a vector in V., Let S, be

1
the set of all vectors in V which can be expressed in the form v, + w for some w in

Vl’ Denote this set by v, * Vl‘ This set is called a coset of Vl generated by vy and
v 1 The set of all cosets generated by vectors v in V, and the subspace Vl is called
y» and is denoted by v/ V-

THEOREM 3: Let V be a vector space over F, and V1 be a subspace of V. The
quotient space V/V1 is a vector space over F with the following definitions of vector

addition and scalar multiplication:

of the idea is to divide a vector space V into sets of vectors, Sl’ S

a quotient space of V, modulo V

v #V,) + (v,4V)) = ["1‘“’2} Vv,

ci{v,+V

= 1
VR {cvl,-l-V’

1
PROOF: To show that V/V j is a vector space we must verify that all the postulates
of a vector space as presented in Definition 3 are satisfied.
1. The set V/V1 is an Abelian group, since
(a) ¥ v, t Vl and v, t V1 are any two cosets of V, then their vector sum
(Y1+V2) + Vl is also a coset of V, and

(v1+‘f'1) + {v2+Vl) = (vl+v2) + Vl
= (vzﬁrl) + V1

- ¥

= {V2+V1) + (VI'Q-V 1).

{by Let vy + VI’ v, + Vl, and v, + Vl be cosets of V; then

3




3

v .+V. (v_+v_34+V_ 14 (v_+V )
[V #V+v+V T + vtV ) {gvlwz, V.14 v v )

i

| Y 3 3
L(\«IH' +\.3} +V

2’ H

1

{
{v1+.v2+v3)] + Vl
= (v 4V, + [(v2+Vl)+(v3+Vl)].

{¢) It can be verified that the coset (0+V1) nas the properties required for an
identity element in V/ Vl‘
{(d) Let v+ VI be a coset of V; then (-v) + V1 is the inverse of v+ V_,

1
2. The four properties required of scalar multiplication are satisfied.

(a) l(v-i-Vl) =1lv + Vl = v+ Vl'

(b) (cy-c ) vV i =¢; - e,v+ V) = ¢ e, vV
(@ eltv +V )+(v,#V )] = cltv,+v,)+V]
= [(cv1+cv2)+V1]
= (cv1+V1) + (cv2+VI).
(d) fe,+e,)viV)) = [(cl+cz)v+vl}
= [clv+c2v+Vl]
= {'clvﬂll) + (c2v+V1).

To aid in understanding the concept of a quotient space, consider a geometrical two-
dimensional coordinate system in the x-y plane. All vectors in this plane form a vector
space, which we can denote by V. Let Vl be the subspace of V consisting of all vec-
tors lying in the x direction. Let v be a vector in V having a component in the y
direction equal to v_. Then the coset v + V1 is the set of all vectors in the plane having
v as their y component. The quotient space V/V1 is the set of all such cosets for

different values of v_.

THEOREM 4: Let v, t V, and vp V, be any two cosets in V/Vl' If these cosets
have any element in common, then they are identical.

PROOF: Let v be any vector that is in v, + V1 and also in v

exists v

b + Vl' Then there

N .
p in At 1 such that

v=va+v1,

and there exists v‘1 in Vl such that

= v ]
v xb-!-vl.




Hence,

v + (v‘l—v

a= b 1)'

Consequently,

va + Vl = (vb+v’ —vl) +V

1 1’

i . 3 3 .
But vy -V, isin Vl’ hence,

v +V
a

2.4 LINEAR TRANSFORMATIONS

The properties of the class of nonlinear systems to be discussed in Sections III and
1V are based on the properties of linear transformations between vector spaces. The
theorems to be derived concerning these systems will be for the most part an interpre-
tation of thecrems presented here, placed in the context of the discussion of Sections III
and IV,

DEFINITION 10: Let V and W be vector spaces over the field F. A linear trans-
formation from V into W is a function T from V into W which maps every vector in
V ontc a unique vector in W in such a way that

T(cvl+v2) = cT(vl) + T(vz)
for all vectors v, and v, in V and all scalars ¢ in F. A linear transformation is said

to be gne~to-one and onto if for each vector w in W there is one and only one vector v
in V such that

T{v) = w,
A linear transformation that is one-to-one and onto is invertible.

If a transformation is onto but is not necessarily one-to-one, it is sometimes
referred to as a homomorphic transformation. A transformation that is one-to-one and

onto is sometimes referred to as an iscmarphic transformaticn, that is, an isomorphic

transformation is an invertible homomorphic transformation.

DEFINITION 11: The domain of a linear transformation is the set of vectors V over
which the transformation T is defined. The range R of T is defined as the set of vec-
tors in W cnto which vectors in V are mapped, that is, T{V]= R. The null space N of
T is the set of vectors in V that map onto the zero vector in W, that is, T[N] = 0.

An example of a linear transformation is the identity mapping 1 of V onto V so that

vy = v, for every v in V,

The domain and range of 1 are V. The null space of 1 is the zero vector. Another
simple example of a linear transformation is the zero transformation Z from V to W
defined as Z(v) = 0; all v in V. The domain and null space are both the space V. The

10




range of Z is the set containing only the zero vector in W,

THEOREM 5: If T is a linear transformation from V {o W, then T(0) = 9.

PROOF: Ti{0) = T(0+0) = T(0) + T{0}). Hence, T{0) = 0,

THECREM 6: Let T be a linear transformation from the vector space V into the
vector space W, Then the range of T is a subspace of W, and the null space of T is
a subspace of V.

PROOF: Let R denote the range of T. If the range contains only one vector, then
this vector must be the zero vector, since by Theorem 5 the zerc vector must be in the
range, But the zero vector alone is a subspace of W, and hence in this case R is a
subspace of W. If R contains more than one vector, then we must show that, for every

pair of vectors Wy and W, in R, the vector Clwl + c:zw2 ie in R for any c1 and C,.
Bat if Wy isin R and w, is in R, then there are {not necessarily unique) vectors vy
and vy in V such that

T(vl) =W,

T(vz) = W,

The vector ¢, vy 6V, is in the domain V for any ¢

space. Hence T(c1v1+c2vz) is in R, that is, ¢

1 and €y since V is a vector

w, + c,w, is in R. Consequently, R

171 272

is a vector space.

To show that the null space N is a vector space, we must show either that N con-
sists of the zero vector alone or ¢,v; +c,v, isin N for every ¢; and c,, if v; and
v, are in N,

From Theorem 5, the zero vector must be in N. Hence if N contains only one vec-
tor, it must be the zero vector and consequently N is a subspace of V. If N contains

more than one vector, then let v, and v, be in N, that is, T(vl) = 0 and T(vz) = 0, Then

1
T(clvl-fczvz) = CIT(VI) + czT(vz)

CIO + 620

=0

and hence ¢V te,v, is in N for any ¢, and C,.
THEOREM 7: Let V be a finite-dimensional vector space over F, and {VI’VZ’ . .,vn}
be a basis for V. Let W be a vector space over F, and {wl,wz, - .,wn} be any vectors

in W, Then there is one and only one linear transformation from V into W such that

T(Vi)=w i=1,2,...,n

it

PROOF: Any vector v in V can be expressed as
n
v = c.v.,
Z 33
=1

11




where the coefficients ¢, are uniaue.

If we define T{v) =

gt

c.w,., then
J J
i (Vi) = Wi,

oot
b
Pt
-
™~
-
[
1}
[

It can be verified that, with this definition, T is a linear transformation.

To prove
uniqueness, let ’1‘l be any linear transformation with the property that

rl(vi)=wi’ i=1,2,...,n,
Then

n n n
TI(V) = ’I‘1 Zl cjvj = Zl CjTl(vj) = Z Cjwj’
J: J:

=1

since T1 is linear, Hence TI(V) = T(v) for all v; consequently, the transformation T
defined above, is unique.

formation from V into W, If T is one-to-one and onto, then the inverse transformation
T} is a linear transformation from W onto V.,

THEOREM 8: Let V and W be vector spaces over F, i.nd T be a linear trans-
PROOF: We must show that if Thl(wl) = v
cv

-l -
and T ‘(wz) = Vo, then T 1(cwl-l-wz) =
1 + Vs The fact that T(cv1+v2) = ow, + w, follows from the linearity of T. Further-
more, cv, +v, is the only vector in V that maps onto cw
Hence T™! is linear.

1
1 + wz, since T is one-to-
one,

DEFINITION 12: A linear transformation T is defined to be nonsingular if the null
space of T consists of the zero vector alone.

THEOREM 9: Let T be a linear transformation from V into W. Then T is non-

singular if and only if T carries each linearly independent subset of V into a linearly
independent subset of W,

PROOF: First, suppose T is nonsingular. Let the set {VI’ \IRE .,vn} be a linearly
independent subset of V. I

°1T("1) + cZT(vz) +...+ ch(V‘n) =0,
then

T(clvl+c2v2+. . .+cnvn) = 0,

But T is nonsingular and hence
9 vy + €,V +...+ ChVn = 0.
Since the set {vl,vz. .,vn} is linearly independent, this then requires that c;=¢C, i=1,

2, ..., n. Hence the set {T(vl),T(vz), . .,T(vn)} is a linearly independent subset of W,
Next, suppose that T maps every linearly independent subset of V onto a linearly

12
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let v be any nonzero vector in v,
only of the vector v is a linearly independent subset of V. Thus the set in W consisting
only of the vector T{v) must be a linearly independent subset of W and hence must be
nonzero. Hence, T is nonsingular.

THEOREM 10: Let V and W be finite-dimensional vector spaces over F, with
dim V=dim W=n., I T is a linecr transformation from V into W, then the following
are equivalent:

(i} T is invertible,
(ii) T is nonsingular.
(iii) If {Vl Voo .,vn} is any basis for V, then {T(vl),’l‘(vz), .. .,T(vn)} is a basis
for W.

PROOF: It should be clear that (i) implies (ii), since the existence of an inverse
requires that the transformation be one-to-one.

(ii) implies (iii); for example, assume that T is nonsingular, If {vl,vz, .. .,vn} is
a basis for V, then the set {T(vl),T(vz), .. .,T(vn)} is a linearly independent subset of
W. Hence it is part of a basis for W. But any basis of W must contain exactly n vec-
tors. Hence the set {T(vl),T(vz), ..

To show that (iii) implies (i}, we must show that for every vector w in W, there is

.,T(vn)} must be a basis for W,

a unique vector v in V such that T(v) = w. Since {T(vl),T(v,), .. .,T(vn)} is a basis for
W, the vector w can be expressed as

n

= THv ).

w Z cJ (VJ)
=1

n

Hence the vector v = Z c.vj is such that T{v) = w. Assume that there is some other vec-
i=1

tor v, in V such tha* T(va) =w. I Va is expressed in terms of the basis {vl Vosen "Vn} as

n
v =Z a.v.,
a ;3]
3=
then

n
T(va) =w= Zl ajT(vj).
hE

But the set {T(Vl)'T(vz)" ) .,T(vn)} is a basis for W; hence, any vector in W can be
expressed in one and only one way as a linear combination of vectors that form a
basis. Hence,

13




consequently, VT V.

Theorems 7 and 10 together imply that if we have two finite-dimensional vecter
spaces V and W of the same dimension, then an invertible linear transformation can
always be defined with domain V and range W, by mapping each vector in a set of basis
vectors for V, onto a different basis vector in W, When infinite-dimensional vector
spaces are discussed, this result will be extended to state that an invertible linear trans-
formation between V and W can always be defined when a one-to-one correspondence
can be drawn between basis vectors of V and basis vectors of W, that is, that two vec-
tor spaces V and W are isomorphic whenever a one-to-one correspondence can be drawn
between basis vectors of V and basis vectors of W.

THEOREM 11: Every n-dimensional vector space V over the field F is isomorphic
to the sp ce Fo.

PROOF: Let {vl,v
ible in the form

IR .,vn} be a basis for V. Then every vector v in V is express-

n

V= Z Cka.

i=1
Let T, a transformation from V to Fn, be defined as
T(v) = (°1’°2’ .. .,cn)
It can be verified that T is linear, one-to-one, and rmaps V onto o,
THEOREM 12: Let T be a linear transformation from V onto W with null space

N. Then the quotient space V/N is isomorphic with W,
PROOF: Let v+ N be a coset of V. Define the manping T from V/N to W as

T(v#N) = T(v).

We must first show that this mapping is well defined, that is, that :f[(v+n)+N] = f(v-l-N)
forany v in V and any n in N, But

T[(v+n)+N] = T(v) + T(n) = T(v) = Tlv+N],
since n is in the null space of T. Hence, T is well defined. T is linear, since

T[c(vl+N)+(vz+N)} = "I“‘[(cvli'vz)-l-N)

cT(vl) + T(VZ)

[}]

Tlv +N} + Tlv,+N].

The null space of T is the coset (0+N); for example, assume that 'f(v«i—N) = T{v) = 0,
Then v is in N and hence is in the coset {0+N). Thus T is nonsingular and, by Theorem
10, is then invertible.

14




2,5 INFINITE-DIMENSIONAL VECTOR SPACES

Many of the theorems that have been presented required that the vector spaces under
consideration be finite-dimensional, In Sections Il and IV the primary concern will be
with infinite-dimensional vector spaces and linear mappings between such spaces. In
this section, therefore, infinite-dimensional vector spaces will be considered and some
of the important theorems previously discussed for finite-dimensional spaces will be
reformulated for the infinite-dimensional case.

Many of the properties of finite-dimensional vector spaces relied on the fact
that such spaces, by definition, always possess a countable basis. Theorems such
as Theorem 7, for example, rely heavily on the fact that the basis is countable.
Although it can be shown in general that any vector space possesses a basis,
some of the properties to be discussed in the rest of the report will require
that the vector spaces under consideration have countable bases. Hence, the discus-
sion of infinite-dimensional vector spaces to be presented here will be restricted
to spaces of countably infinite dimensions.

Even with the restriction that the bases are countable, it is important to reconsider
the meaning of a linear combination of an infinite set of vectors., We wish eventually to
carry over to the infinite~dimensional case a similar interpretation of the meaning of a
basis as a set of vectors spanning the space and providing a unique representation for
any vector in the space.

Many of the problems concerned with the extensions to the infinite-dimensional case
center arcund a precise definition of the equality of two vectors. When an inner product
is defined on the space, two vectors can be defined to be equal when their difference is
a vector of length zero. This definition enables many of the desired extensiuns to follow
in a straightforward manner. An infinite-dimensional inner-product space with certain
convergence properties is a Hilbert space. These spaces have been extensively studied
and are the most straightforward infinite-dimensional extensions of finite-dimensional
vector spaces.

DEFINITION 13: Let H denote an inner-product space. H is defined to be a

Hilbert space if for any sequence of vectors in H, Vis Vv TER ATPRE having the

2'
property that ﬁvm—vn" =0 as m,n -, there exists avector v in H such that

"vn—v" -0 as n -,

DEFINITION !4: A sequence of vectors v n is called an orthonormal basis for a
Hilbert space if it is orthonormal and has the property that the only vector in H which
is orthogonal to all vectors in the sequence is the zero vector. A Hilbert space with an
orthonormal basis is called a separable Hilbert space.

THEOREM 13: If Vn is an orthonormal sequence of vectors in a Hilbert space and

o0 n
i 2 _ y

)‘n is a sequence of scalars such that Z ]kk] < oo, then the sequence L /, )‘kvk
1 1




converges to a limit v in H denoted v = Z kak'

1
PRCOF: We must first show that the sequence w  has tbe property that ‘[w —w ]l -0

as m,n -, Letting m = n+ p for some integer p, we have

ntp 2

2
1% pap=v all” = Z Mk

n+1l

Since the sequence Vi is an orthonormal sequence, however,

2
ntp nip
N - z 2
Z_IJ lkvk = 'Xk{ .
n+l n+l
But

n+p ntp ntl

2 2 2
D P I I
ntl} 1 1

Since Z {kk{z < o, however, we conclude that
1

ntp
A 2-0 as n = oo,
In ]

n+l

Consequently, || W W |l =0 asm,n - «; hence, there exists a vector v in H such that
]iw -v" -0 as n -, that is, the sequence w_ converges to the limit vector v,
THEOREM 14: Let Vn be an orthogonal sequence of vectors in a H1lbert space,

Given any vector v in H, the scalars A\ = (v,v,) satisfy the mequahtyz ')\ 2 < o,

1

PROOF: Let Viseees v:j be orthogonal vectors in H, By direct expansion, it can

be verified that for any v in H,

J 2 i
] V—Z (v,vk)vk = "vﬂz - Z I(v,vk) !2.
1 1

Since must always be greater than or equal to zero, it follows that

T
] e
s
-
A
<
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i
IVIE > )l
1

Since this is true for any j, we have

0 oo
Z l(v,vk)lZ = z lkklz < oo,
1 1

THEOREM 15: If Vi is an orthonormal basis for a Hilbert space H, then each vec-

tor v can be expressed as

<0
v = Z (v,vk)vk.
1

PROOF: We note, first, that the infinite sum is defined in Theorem 13, since the

sequence of scalars >‘n = (v,vn) was shown in Theorem 14 to have the required prop-
o0

erty of being square summable. Consider the vector w=v - z (v,vk)vk. We wish

1
to show that this vector is the zero vector. But (w,vj) = 0 for any j, since

(W’VJ) = (vovj) - (v,vj) = 0;

0

consequently, the vector !}-; (v,vk)vk-\ is orthogonal to every vector in the sequence

L
1 J

Vo From Definition 14, however, the only vector orthogonal to each vector in an

orthonormal basis is the zero vector. Hence

0

v - z (v,vk)vk= 0
1

or

o0
v= Z (vkvk)vk.
1

These tneorems provide a framework for the infinite-dimensional Hilbert spaces
that are to be considered. Theorem 15 requires the existence of an urthonormal basis
for the spaces. This set of basis vectors spans H by virtue of Theorem 15. It can be
verified that this set of vectors is linearly independent, by virtue of the property that
the only vector orthogonal to the entire set is the zero vector. In general, it is not true
that every Hilbert space possesses an orthonormal basis.

+£.n example of a Hilbert space that has an orthonormal basis is the space of square

17




integrabie funciions either on the infinite interval (-0, +x) or on the semi-infinite inter-
val (0,+«). This space on the infinite interval is usually denoted Lz(-oo,+oo), and on the
semi~-infinite interval L2(0,+°o). An orthonormal basis for LZ(-—w,+°o) is the set of
Hermite functions. An orthonormal basis for L2(0,+oo) is the set of Laguerre functions.
In both of these spaces, the inner product is defined as the integral over the juterval of
the product of the functions.

In the previous discussion on finite-dimensionai vector spaces, it was shown that the
domain of any linear transformation is a vector space. I the domain of the transfor-
mation is a Hilbert space, it is not true in general, however, that the range will also be
a Hilbert space. If continuity as defined below is imposed on the transformation, then,
as will be seen in the following discussion, the range of the transformation will be a
separable Hilbert space if the domain is a separable Hilbert space.

DEFINITION 15: Let V and W be inner product spaces, and ° be a linear trans-
formation from V onto W, T is said to be continuous at v if T(vn) - T(v) as n -~ o« if

v,V a n-=ox, where v, is a sequence of vectors in V. T is a continuous transfor-

mation if it is continuous at every v in V. Continuity of the transformation T is not a

severe restriction when T is linear, for it can be shown that T will always be contin-
uwous if it is bounded, that is, if there exists a constant M > 0 such that for every vec-
tor v inH, [T} < M|v]|. iSee, for example, Berberian.®) The set of thearems
that follows is chosen to show that the range of a continuous linear transformation is a
separable Hilbert space if the domain is a separable Hilbert space, In carrying out the
procf the following preliminary results will be demonstrated.

{1} The null space N of T is a closed subspace of H, that is, the limit of any
sequence of vectors in N is in N when this limit exists,

(2) From (1), it follows that H can be decomposed into two spaces M and N. The
space N is the null space of T, and the space M is the space of all vecters in H which
are orthogonal to every vector in N. Any vector in H can then be expressed as a unique
linear combination of a vector in M and a vector in N,

(3) On the basis of {2), it will be shown that the quotient space H/N is a separable
Hilbert space, and that the linear transformation T from H/N to the range of T is a
continuous transformation.

{4) It follows directly irom {3) that the range of T is a separable Hilhert space.
Steps (1)-{4) will be stated forma'iy in Theorems 16-19. In each of these theorems H
denotes a separable Hilbert space, and T denotes a continuous linear transformnation
with H as the domain.

THEOREM 146: The null space N of T is a closed subspace of H.

PROOF: Let ny, n,, ..

of this sequence, e wish to show that v is in N. Since n,, n,,... arein N, Tin,) =

. be any sequence of vectors in N, and v in H be the limit
T(n,) = ... = 0. The limit of any sequence in T{N] is in T[N] because T[N} = 0. Since

T is continuous, T{(n )} - T(v} as p - «, that is, T{v) is the limit of the sequence T(np}
in T{H]. Hence T(v) = 0, and v is in N. Thus N is a closed subspace of H,

18




THEOREM 17: Let M denote the set of all veciors in H which are orthogonal to
}

.
every vector in N, Then every vector in H can be expressed in cne and only one way
as the linear combination of a vector in M and a vector in N,

PROOF: Let v be any vector in H. It is stated without proof that there exists a vec~
tor n in N such that ”v—no " s Hv-—n" for all n in N. (The proof of this statement is
found in Berberian.’} Define m =v-n, We must show that m is in M, that is, m
is orthogonal to every vector in N,

Let n be any vector in N, and \ equal (mo, n). There is no loss in generality if
n is assumed to be unity, since, if m is orthogonal to every vector of unit length

in N, it is orthogonal to every vector in N, It can be verified by direct expansion that
2 2 2
fm -2a]® = fm | - 1[5
Now, m, - xn = (v—nO) -Ans=v - (no-kn). But n_ + An is in N; hence,
iven | < lv-ta_nm]]
from the choice of n,. Hence
m, || < [jm-rn]
and ther=zfore

[m I < mg I* - IM12

Consequently, fkié =0, i.e. (mo, n} = 0. Thus m is in M.
We see, then, that any vector v in H can be written as the sum of a vector m in M
and a vector n in N, We must show, next, that for any vector v, m and n are unique.

Assume that m, and m, are in M, n, and n, are in N, and

= § = +
v I.'l1 + nl mz T nz.

'Then {ml—mz) + (nl-nz} = 0. But m; - m, is in M and 1, ~n,

we have

is in N. Taking the

inner product of (m;-mz) + (ni-nz) with {n,-n

1780

" (nl "ng) *!2 = 0.
Similarly,
" (ml -m,) "2 = 0.

Hence n, = n, and m; = m,.
THEOREM 18: The quotient space H/N is a separable Hilbert space, and the linear
transformation T frecm H/N to the range of T is a continuous transformation.

PROOF: To prove that H/N is a separable Hilbert space, we must first define an
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inper product in H/N, Thais can be done with the aid of the preceding theorem.

Let {viN] be any coset in H/N. Since v can be written uniquely in the form v=m+n,
the coset [v#N] is equal to the coset [m+N], since n 1s in N. Furthermore, any coset
of the form [m+N] for some m is in H/N. Consequently the set of cosets of the form
[m+N] is equal to the quotient space H/N, that is, every coset has a2 representative ele-
ment in M. Furthermore, for every coset fviN] in fI/N, there exists only one element
m in M such that

m+ N=v + N,

since the component of v in M is unique.

Let [ma+N] and [mb+N] be any two cosets in H/N, and define the inner product of
these cosets as

(tm+8), (g #N) = (1, my).

It can be verified that this inner product satisfies the reguired conditions stated in Defi-
nition 13. Let {m1+N}. {m2+N], ... denote any sequence in H/N having the property that
ﬂ{mm+N}—{mn+N}" -~ 0 as m,n—~ %, But | [mm-iN]»{mn-!'N] I = ﬂmm—mnﬂ, and hence
i mm—mnﬂ -~ 0 as m,n- », Since H is a Hilbert space, there exists a vector v in H
such that |m -v|| - 0 as n~ . Inparticular, v is in M. This follows directly from
the statement without proof, that if n, is any vector in N, tnen (m_,n } -—(v,no} as
n -~ ® {the proof of this statement follows from Berberian.w) Hence ||[m n+N]—{v+N]ﬂ -0
as n - «, and thus H/N is a Hilbert space.

To show that H/N is a separable Hilbert space, we must demonstrate that H/N has
an orthonormal basis. Let Vi Varo.o be an orthonormal basis for H, and let

v.=m._+n_, m, inMand n, in N,
3 b 1 J ]

Any vector m can be expressed as a linear combination of the mj, since
!-'O, oD

S ¥k = Z Cy My + Z Cy 0y -
1 i

But m can be written in only one way as the sum cof a vector in M and a vector in N;

5
-8

hence, since m = m + g, it follows thar

0
1

Let m'x. m;:, ... be the subsequence of the sequence my, m,,... coasisting of &1l the
nonzers elements, Then any vector in M can ke expressed as a linear combination of

the vectors m}, mi,.... Let

l'

yA))




]
m,

my/fmy il

and

-

m! - 5-* (mv } m?

. { 1 k kj
mY =

d
m: - 7‘ {m!, m? m}
J 1 J K

as dictaied by the Gram~Schmidt orthcgonalization procedure. Then the set m}, m}

2. + e
will be an orthonormal basis for M. @ follows in a straightforward manner that the
cosets [m'1'+N], {m5+N}, ... are an orthonormal basis for H/N. Hence, H/N is a sepa-

rable Hilbert space.
The final step in the proof of this theore:m is to show that ’I‘ is a continuous trans-
formation, that is, we wish 1o show that if

[mn+N} - [m+N] - n ~oc,
then
?[mnm} - T{m+N] n -,
But
?[mni-N] = T[mn]
and
Tlm+N] = T{m],
and, since T is continuous, T[mn] - Tim] n—o,

THEOREM 19: Let \W denote the range of T. Then W is a separable Hilbert space.

PROOF: By virtue of Theorem 18, we need only demonstrate this result for the case
in which T is invertible, Whea T is vot invertible we can replace H by H/N, and T
by T.

Let w, and w5 be any twc vectcers in W, Define the inner product of two vectors in
W as

. Y S Y -1
(*1!“’2) - (T (v‘l)sT (WZ)).
\We must show that this inner product satisfies the counditions stated in Definition 5,

M) (w wy,wy) = (T"l(wi+wz),T-](w3))

1]

(7w T w,), T ()

= (“'1'“’33 + th,w3).

21
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o= -1
2} lew,,w,) (T {ew,), T (v.-?))

((i'I'-i {w 1) , T“1 (wz))

c (’1‘-1 w,), 1 (wz))

i

c:(wl,wz).

@ twpwy) = (T7Hw ), T w,y))

(t7 wp, T )

e e

= (wz,wl).

10

(@) (wy,w)) (T“I(wl),'r‘l(wl)) >0 if T-l(wl) £0.

But T-l(wl) #0 if w, #0, and hence (w,,w,) > 0 if w, #0. Thus, under this inner
product, W is an inner product space. To show that W is a Hilbert space, we must
verify Definition 13.

Let Wys Woseoos Woyeoo be a sequence of vectors in W having the property that

n’’
w ,-w,[| —¢ as m,n~w. From the definition of the inner product in W, W =w, Il =
I ! (wm)-T"l(wn) ||. Hence the sequence T"l(wn) in H also has the property that

“ T"l(w m)-T-l(w o || =0 as m,n - . Consequently, since H is a Hilbert space, there

exists a vector v in H such that T_l(wn) ~v as n-o, Since T is continuous, it fol-
lows that wn-oT(v) as n -, Consequently, W is a Hilbert space. We must show,
next, that W has an orthonormal basis.

To this end, let VirVar..n be an orthonormal basis for H and consider the sequence
T(vl), T(vz), ... in W. The vectors in this sequence are orthonormal, since

(T(viLT(vj)) = (vi,vj).

Furthermore, if w is any vecior in W, ihen there exists a unique set of scalars such

that

K0
~1 - ;‘
T “{w) -l-’ C Vi

o0

W = Z ckT(vk).
1
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Thus, the set T{v,), T{v,),... is an orthonormal basis for W,; consequently, W 1s a
separable Hilbert ‘space.h

In Section 1V, we shall be concerned with systems described by continuous transior-
mations for which the inpuls constitute a separable Hilbert space. The primary resuit
there will be the derivation of a cancnic representation of such systems. The result
rests heavily on the fact that, by virtue of the preceding theorem, the sel of system
outputs also constitutes a separable Hilbert space. This fact, in conjunction with the
following theorem leads to the canonic representation,

THEOREM 20: Le! Hl and HZ be two infinite-dimensional Hilbert spaces having
orthonormal bases Then there exists an invertible linear transformation from H1 onto
Hz.

PROOF: Let Vi Voo
orthonormal basis for H

.. be an orthonormal basis for HI’ and Wi Woyo. be an

9 Define a linear transiorrnaiion T as

o«
T{v) = z (v,vk‘, L
1
We must show that T is linear and invertible, and that its range is all of W, The line-
arity is easily verified. To show that it is invertible, we must show that its null space
is zero, that is, T(v) = 0 implies v = 0, which follows directly from the linear indepen-

dence of the orthonormal basis for H To show that its range is all of W, we must

2
show that if w is any vector in HZ’ then there exists a vector v in H; such that

T(v) = w,

Since HZ has an orthonormal basis, w c£an be expressed in the form

{w, wk) wk.

&
~18

The sequence xk = (w,wk) is square summable, as was shown in Theorem 14. Hence,

[+
from Theorem 13, the sum z (w,wk) Vi has a limit vector v in Hl' that is,
1

[+ o]
ve z
1 {w, wk) Vi
But

[+ o]
T(v) = Z (w,w, ) T(v,)
1

and from the definition of T, T(vk) = W, Hence,
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'S
T{v) = Zi (w,wk) wk = w
1

which was to be shown.

The result of Theorem 20 also applies when H] and HZ are finite dimensional and

dim (H,) = dim (H,)

In the Appendix anoiner result concerned with separable Hilbert spaces having time
functions as vectors is derived. This result plays an important rouie in the discussion
of Section IV, It is reserved for an appendix rather than developed here because it
relies on some of the notation and ideas discussed in Sections III and IV,

From the preceding theorems and definitions it should be clear that a separable
Hilbert space is an inner-product space that can be approximated arbitrarily closely by
a finite-dimensional inner-product space. If the domain of a linear transformation is a
separable Hilbert space and the transformation is ¢c tinuous, then the outputs ¢can be
approximated arbitrarily closely by a f{finite-dimensional approximation to the input
space. Under these restrictionz cn a linear transformation and its domain, then, all of

the results derived for finite-dimensional spaces can be extended directly.
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III. CENERALIZED SUPERPOSITION AND HOMOMORPHIC SYSTEMS

3.1 INTRODUCTION

In the past, the concepts of linear algebra have been applied to a restricted class of
sysiems, those that can be represented as linear transformations when vector addition
is defined as the sum of the time functions in the vector space of inputs and the vector
space of outputs. Because of the principle of superposition which these systems satisfy,
they are relatively simple to analyze. This principle of superposition leads to charac-
terization by means of the superposition integral. This representation can be interpreted
as resulting from a decomposition of each of the inputs into a linear combination of infin-
itesimally narrow pulses. These pulses constitute a basjs for the vector space of inputs.
By virtue of the principle of superposition, the effect of the system on any function in the
vector space of inputs is determined from its effect on the basis functions, with the
result that the input and output are related through the convolution integral.

Alternatively, the set of complex exponentials of the form eSt. where s is a com-
plex number, can be chosen as the set of basis functions for the input vector space.
Such functions are eigenfunctions of linear time-invariant systems, and hence such sys-
tems have the effect of multiplying these functions by constants. Thus, when complex
exponentials are used as a basis for the vector space of inputs to a linear, time-invariant
system the system is described by the set of constants by which it attenuates these expo-
nentials, that is, it is described by its system function,

We have noted that vector spaces of time functions could be constructed with a variety
of definitions for vector addition. When advantage is taken of the generality aiforded by
the postulates of vector addition and scalar multiplication, systems that are generally
considered to be nonlinear can be represented as linear transformations between vecior
spaces. Formulated in terms of system theory, this procedure leads to a generalization
of the principle of superposition. This principle encomnasses the class of linear sys-
tems, as well as many nonlinear systems. In particular, it encompasses all invertible
systems, as well as many systems that are not invertible,

3.2 GENERALIZED PRINCIPLE OF SUPERPOSITION

A linear system with transformation T is characterized by the property that if vl(t)
and v, (t) are any two system inputs, then

T{clvl(t)-l-czvz(t)] = clT[vl(t)} + CZT[vz(t))

for any scalars ¢y and C,. From this definition, it is clear that the transformation ¢,
defined as

vit)

slvit] = e (1)

is nonlinear, since
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dlev Wi+e,v, ] = lotv ] 1 latv,)] 2. (2)

The transformation of £q. 1 does obey a form of superposition in the sense that its
response to the linear combination of a set of inputs is determined by its response to
each of the inputs in the set, The manner in which the individual responses are combined
to produce the response to a linear combination of inputs it defined by the right-hand side
of Eq. 2.

If the set of inputs to the system of £q. 1 constitutes a vector space under addition,
then the set of outputs constitutes a vector space under multiplication and the transfor-
mation of £q. 1 is an algebraically linear transformation between these spaces. Thus
this system falls within the framework of linear algebra.

In order to avoid confusion with the more conventional notion ¢f a linear system, sys-
tems that are algebraically linear will be referred to as homomorphic systems, since
they are represented by homomorphic transformations between vector spaces. The vec-
tor space of inputs to a homomorphic system will be denoted V, and the vector space of
outputs will be a.oted W. The vector addition of two inputs vy and v, will be denoted
vy 0V, and the multiplication of an input vector v with a scalar ¢ will be expressed as
(c>v). The operations o and , will be referred to as the input operations of the homo-
morphic system. The vector addition of two outputs W, and W, will be denoted
w,0 w,, and the multiplication of an output vector w by a scalar ¢ will be expressed
as {c/w). The operations 0 and / will be referred to as the output operations of the
system.

A homomorphic system with system transformation 4 has the property that

$llc,5v )ole,5v 0] = [e) /otv] o fe,/o(v,)] (3)

for any inputs vy and vy and any scalars ¢, and c¢,. The property described by Eq. 3

will be referred ¢)> as the generalized princilple of sxzxperposition. In the particular case
for which the operations o and O are chosen to be addition and the operations | and /
are chosen to be multiplication, Eq. 3 reduces to the orinciple of superposition as it
applies to linear systems.

A homomorphic system with system transformation ¢, input operation o and output
operation 0, will be denoted as shown in Fig. 1. An exaraple of a homomorphic system
is that system having the transformation specified by Eq. 1. In this case, the operaticns

0, >, 0, and / are chosen as
»

V10V2=V1+V2
CsV = ¢V

Wl o WZ = WI\VZ

c/w = (w)€.
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This system is thus represented as shown in Fig. 2.

O r— o + ¢
| R— ¢ - W Vo w=eV - W
Fig. 1. Rerresentation of a homomor- Fig. 2. Example of a homomorphic sys-
ph..: rvstem with input operation tem with addition as the input
¢. »utput operation 0, and sys- operation and multiplication as
t- ~ iransformation ¢, the output operation.

Since homomorphic systems are represented by linear transformations between vec-
tor spaces, algebraic theorems applying to such transformations can be reformulated
in terms of homomorphic systems. One of the objeclives here will be to discuss the
applicatinn of these theorems to homomorphic systems.

3.3 INVERTIBLE HOMOMORPHIC SYSTEMS

THEOREM 2i: i.et ¢ be the system transformation of an invertible system (a sys-
tem for which the system transformation is invertibie) for which the inputs constitute
a vector space V with operations o and 5. Then the system can be homomorphic under,
at most, one choice for the output operations,

PROOF: We wish to show that if the system is homomorphic, then the output oper-
ations are unique. Assume that there are two sets of output operations under which the
system is homomorphic, Let the first set be denoted 0 and /, and the second set be
denoted @ and /. If Wy and w, are any two outputs, then we wish to show that

c¢/w = c_/w for all scalars c in the field ¥ and all cutputs w.

-1

If we denote the inverse of ¢ by ¢_1, then if ¢ (v) = w it follows that v=¢ "(w). By

assumption, the system ¢ is homomorphic with input operations o and 5 and cutput
operations 0 and /. By virtue of Theorem 8, the inverse system, having system trans-
formation ¢-1, is homomorphic with input operations o and / and output operations o

and .. Hence if Wy and W, are any two outputs and c is any sczlar in F, we have

¢-1[W1 o WZ} = ¢-1(wl) o ¢-1(w3) 4)
and

7 e/w ] = oo™ w ). (5)

By assumption, however, ¢ is also homomorphic with input operations o and 5 and
output operations @ and /. Hence ¢'I is homomorphic with input operations ®& and_/
and output operations ¢ and ,. Consequently,
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¢ lw, mw,l=06""(w)o ¢—1(w2) (6)
and
~1 -1
¢ e/ wil= st (w)), N
Comparing Eqs. 4 and 6, we have
¢’—l[wl o w,]= ¢-l[w1 . w,]. (8)

If the vector in V given in Eq. 8 is put through the system ¢, we have

W, oW, =W, 8w, (9)
for all outputs vy and w,. Similarly, comparing Eqs. 5 and 7, we find

¢ e/w )= ¢ e S w,] (10)
or

c/w1 = c_/'wl (i1

for all ouiputs w, and all scalars c,

THEOREM 221: Let ¢ be an invertible system the inputs to which constitute a vector
space under the operations o and 5. Then there always exists a unique set of output
operations under which the set of outputs constitutes a vector space, and the sysiem is
homomorphic,

PROOF: Let W denote the set of outputs of ¢. If wy and w

let their vector sum be defined as

, are any two outputs,

_ 0.1 -1
W, 0w, = ¢L¢ (w)) od (WZ)J' (12)
Similarly, let the scalar multiplication of any output w by a scalar c be defined as

c/w = dlesd " wl. {13)

We need to verify only that under this choice of ocutput operations, the system ¢ is
homomorphic. Theorem 6 then requires that the set of outputs constitutes a vector
space under these operations.

Let v, and vy be any two inputs, and cy and c, be any iwo scalars. Then ¢ is

1
homomorphic if

slic 5vy) 0 (e;5v,)] = [e, /otv)] 0 [c,/biv,)]. {14)

Evaluating the right-hand side of Eq. 14 according to Eqs. 12 and 13, we have
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!L¢(‘c1>rb'i¢(vl))35 o §¢(‘c2>¢‘i¢(v2))§

[e,/8tv))] 0 le,/6tv,)]

[¢(Cl }Vl)} 0 [¢(C2>V2)]

¢[(¢'1¢(c1>v1)) ° (“’_l‘b(cz”z))]

or

[e,/8tv )] o [e,/8(v,)] = dlte;5v)) o (e;5v,)]. (15)

Hence, ¢ is a homom -~rphic system.

Furthermore, for a specified input space the set of output operations vnder which
¢ is homomeorghic is unique., This is seen by a direct application of Theorem 21.

Theorem 22 states that the class of homomorphic systems includes all invertible
systems. “When the input operations and the system transformation are specified, the
output operations are given uniquely by Eqgs. 12 and 13. In applying the theory of
homomorphic systems, it would not be expected that the output operations would be con-
structed hy means of Eys. 12 and i3, since this would require a precise characteri-
zation of the system transformation. Because of the uniqueness of the output operations,
however. we know that no matter how these operations are obtained, they must satisfy
Eqgs. 12 and 13. Equations 12 and 13 allow us to construct examples of homomorphic
systems as an aid to developing the theory. By virtue of the uniqueness of the output
operations, examples constructed in this way will not depend on a restricted choice for
the output operations of the system,

As an example of the application of Egs. 12 and 13, consider a linear, invertible,
time-invariant system. Let h{t) denote the impulse response of the system, and h(t)
the impulse response of the inverse system. Let the set of inputs V be a vector space
under addition. Since the system was specified to be lirear, we know, without application
of Egqs. 12 and 13 that the system is homomorphic if vector addition of the cutputs is
chosen as the sum of the time functions, and scalar multiplication on the output set is
chosen as the product of the time function and the scalar.

Since this set of output operations is unique under the specified choice of input oper-
ations, application of Eqs. 12 and 13 must yield this result. Specifically, Eq. 12

requires that if Wy and w, are any two outputs, then

w, 8 w, = h(t) ® [R() ® w, (t)+h(t) @ w, (1)), (16}

1

where @ denotes convolution. Expanding Eq. 16,
w, 0 w, = h{) ®h(t) ®w, (t) + h(t) ®h(t) Bw, (1),

since convolution distributes over addition. The convolution of hi{¥) and E(t) is the unit
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impulse uo(t); hence,

W, 0 W, = uom ® wl(t) ¥ uo(t) ® wZ(t)
or

w, 0w

1 > = wl(t) + wz(t).

Similarly, Eq. 13 requires that

c/wit) = ht) ® [c(h(t) @ w(t)}]
or

e/wit) = c[hty®h( ®w(t)]
and hence

c/wl(t) = cw(r).

As another example of the application of Eqs. 12 and 13, consider the system having
the transformation $ given by

W = ¢(v) = ev‘ (17)

The transformation corresponding to the inverse system is

v=6"tw = Inw, (18)
If the set of inputs is chosen as a vector space under addition with the field chosen as

the field of real numbers, then application of Eq. 12 requires that

wyow, = exp[lnwl+1nw2]

W, 0w, = wW,w, {(19)

1 2 1

and Eq. 13 requires that

c/w

11

explc !nwl]

or

c/w

"

[w,1°. (20)

The transformation of Eq. 17, however, is an invertible transformation under any input
vector space. If we choose as the set of inputs, a vector space over the field of real
numbers with vector addition defined as the produc! of the time functions and scalar
multiplication defined as the time function raised to the scalar power, then the set of
output operations corresponding to the transformation of Eq. 17 will be different from
these given in Eqs. 19 and 20. These output operations can, however, be determined
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through the use of Egs. 12 and 12, Applying £q. 12, the vector sum of any two cutputs

Wy and W, is given by

i {lnwI Ian]
Wl O w,=¢

or

WIDWZ

Simailarly, scalar multiplication in the set of outputs is given by

r c
c_/w - e[lnw] )

3.4 NONINVERTIBLE HOMOMORPHIC SYSTEMS

Theorem 22 guarantees that a system that is invertible for an input vector space V,
is homomorphic for this set of inputs. When a system is not invertible for a given set
of inputs we are no longer assured that the system will be homomorphic with respect to
these inputs. Theorems 6 and 12, together with the properties of quotient spaces, lead
tc necessary and sufficient cenditions on the system transformation and the set of inputs
associated with a given system such that the system is homomorphic. Before proceeding
to a statement of the conditions in terms of a2 theorem, it would be well to indicate the
direction which we take in this theorem.

Consider a system with transformation ¢ and input vector space V. By choosing
any subspace N of V, V can be divided into cosets. It is necessary that these cosets
be formed with respect to a subspace of V rather that with respect to any arbitrary set
of vectors in V, in order that these cosets be well defined. If N is the null space of
the system, each vector in a given coset will result in the same output. Furthermore,
it will be seen in Theorem 23 that if each vector in a given set of vectors in V maps
onto the same vector and if the system is homomorphic, then this set of vectors must
be an element in the quotient space V/N. In particular, any coset in V/N which does
not map onto the identity element in the vector space of outputs cannot be a subspace
of V,

The approach to deriving necessary and sufficient conditions on a system in such a
way that it be homomorphic, will be based on a consideration of conditions under which
an invertitle transformation can be defined from a quotient space associated with V, to
the set of outputs of the system. If such an invertible transformation can be defined,
then Theorem 22 can be employed to determine a set of output operations under which
the system is homomorphic.

THEOREM 23: Let $ be the transformation of a system with an input vector space
V. Let Sl’ SZ’ cees Sn be subsets of V with the properties that
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(1) All elements in a given set 5, produce the same output. This output corre-
spending to a set Sj will be denoted ¢»{Sj}.
{2y i ¢ISi] 1S the output produced by the set of inputs Si and cp{Sjj is the output
produced by the set Sj’ all i and j, then ¢[Si] = ¢.[Sj} implies that i = j.
Then, at most, one of the sets Sl’ 52' .
FROOF: Properties (1) and (2) imply that no two sets Si and S, have an element in

. Sn can be a subspace of V,

common, For, assume that s is Si and s is in Sj' then from property (1),

¢[si} = s}
and

¢>{sj} = ¢(s),
and hence

‘N.si} = ¢{bj1,
which by visrtue of property {2) requires that i= j.
Any subspace of V must contain the identity element in V. Hence if two of the sets
Sl’ Sz, .
hencs would have an element in common, Thus, at most, one of the sets Sl' S

ces Sn are subspaces of V, they must both contain the identily element, andg
21 tees Sn
can be a subspace of V.

THEOREM 24: Let ¢ be the transformation of a system with an input vector space
V. Let Sl’ SZ’ e Sn be subsets of V with the properties that

(1} All elements in a given set S. produce the same output.

(2) ¥ v is a vector in V, then &(v) = ¢{S.] implies that v isin S_,

{3} The sets are distinct; that is, if ¢{Si] = q;[SJ], thea i = j.

{4) The union of the sets Si’ S .» S isallof V.,

2’ n
If none of the sets Sl’ Sos ovus Sn is a subspace of V, then the systemn cannct be

2’
homomorphic,
PROOF: Let e denote thc identity elcment in V and let Se denote the set of ele-

ments such that

dle) = ¢(Se\.

If ¢ is homosmorphic, then the element ${ej} must be the identity element in the vector
space of outputs W by virtue of Theorem 4. Because of property (2) ireposed on the sets
Sl' SZ' e Sn' the set Se contains all of the elements in V which map through ¢ to
the identity in W. Hence, by definition, Se is the null space of V and Theorem &
then requires that Se be a subspace of V.

Property (4) imposed on the sets S1 . SZ’ e Sn requires that this set of subsets of
V must contain the subset of all elements of V that map onto ${e) and hence must contain
S . If 4 is homomorphic, then one of these subsets must be a subspace of V; hence, if

e
none of these subsets is a subspace cf V, then the system cannot be homomorphic.
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Theorems 23 and 24 to
be homomorphic is that we can find one and no more than one subspace in V which con-
tains all of the elemenis that map onto a single element in the set of outputs. In gencral,
if the system transformation is well defined, then we are guaranteed that no more than
one such subgpace can be found. If one such subspace exists, then it must contain the
identity element frem V. Hence, if e denctes the identity element in V, then Theorem
24 can be reformulated to require that a system with transformation ¢ cannot be homo-
morphic unless the set of ail elements v in V such that ${v) = $(e} is a subspace of V.
As shown in Theorem 25, this condition, together with one other condition, provides
necessary and sufficient conditions on a system so that it will be homomorphic,
THEOREM 25: Let ¢ be the system transformation of a system with input vector
space V. Then necessary and sufficient conditions so that the system be homomorphic
are
{1} The set of elements Se in V is a subspace of V, where Se is the set of all ele-
ments s in V with the property that ¢{s) = $(e}, where e is the identity in V.,
{2) Cecnsider the guotient space V/Se' where Se is a subspaceof V. Let vo Se
be any coset in the quotient space. If v' is any element in vo Se’ then
&{(v") = &(v). (This cendition requires that any given coset in the quotient space
vV/S o have a unique mapping in W, that is, slvo Se] will be well defined for
every v in V, and each ccset will produce a different output.)
PROOF: To prove that these two conditions are necessary, we assume that the sys-
tem is homomorphic and show thai this reguires that conditions {1} and (2} hold.
Assume that the system is hcmomorphic. Then, by definition, Se is the null space
of . Theorem 6 then requires that Se be a subspace of V., To show that condition (2}
is implied by the assumption that the system is homomorphic, let W dencte the output
vector space with vector addition and scalar multiplication denoted by o and /, respec-
tively. If e is the identity in V, then ¢(ej is the identity in W. Let vo Se be any coset
in V/Se‘ and v' be an element in vo S e Then there exists some element s of Se such
that

viz vos,

Ilence &{v) = &{v 0 s) = ${v) o é(s). But, since s is in Se' ${s) is the identity element
in W, Consequently,

(V') = &(v) ali v invoS,,

and therefore condition (2) holds.

To show that conditions {1) and (2) are sufficient, we shall assume that these con-
ditions hold, and prove that the system must then be homomorphic. Condition (1) per-
mits the construction of a quotient space with respect to the set Se' since it requires
that this set be a subspace of V. Condition (2} then provides an invertible transfor-
mation between the quotient space V/ Se and the set of outputs W, since for any coset
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v o Se in the quotient space V/’SE there exists a well-defined mapping to an element 1n

W given by
$lv o S 1= av.

The transformation & can then be considered as the system transformation associated

with an invertibie system with inputs that are elements in the quotient space V/S e
Theorem 22 requires that the system with transformation $ be a homomorphic system
and that the set of outputs W be a vector space. Specifically, vector addition in the set

of cutputs is defined by
ow, =& 'f;-l(w ) og-l(w )-! (21)
1 2 | 1 2'p

where w, and w, are any two elements in W. The elements ¢‘1(w1) and $"(w2) are

cosets in the quotient space V/Se. Scalar multiplicatior in W is defined as

c/w = &lesd Hwl. (22)

It remains only to show that with this choice of output oparations the system with system

transformation 4 and input vector gspace V, is homomorphic, Let vy and v, be any two

elements in V. Then
¢tv)) =3[v, o8],
dlvy) = $lv, 0 S ],
dlv, ov,) = td.‘:'{(vl ov,}o Se].

From the definition of vector addition in the quotient space V/ Se as stated in Theorem

3, however,
(v1 1o} v2) o} Se = (Vl o Se) o (v2 o Se);
hence,
ovyov,) = ¢llvy08 ) oiv,0 Sl
Since ; is homomorphic,
é{(vl 080 (v, 0 Se)} =$ [vl o Se] o I {vz o Se].
By definition of 3, however,

Flv, 051 = btvy)
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b [vz o Se] = $(v,).
Consequently,

dlv, ov,) = ¢:[v1 o Se] o ¢.[vz o Se) = $ivy) o $(v,). (23}
Next, let v be any element in V, and ¢ any scalar in the field. Then

o(v) = $lvos.]

dlesv) = $llcsv) 0 S, ).
From the definition of scalar multiplication in V/ Se’ however,
{csv) o Se = cy{vo Se);

hence,

dlcsv) = ¢ lesiv o Se)],
But, since '5 is homomorphic,

FlestvoS)l=c/F(vos,)
or

$lestvo Se)] =c/é(v)
Thereiore

dlesv) = cf/dlv). (24}

Equations 23 and 24 are sufficient for the system to be homomorphic.

THEOREM 26: Let $ be a homomorphic sys* . with input vector space V and null
space N. Let the subset S of V be defined by the properties

1y If S, and s, are any two elements in S, then 4'(51) = ¢(sz).

(2) If s isin S and v is in V, then ¢(s) = ¢{v) implies that v is in S,

Then each such subset is a distinct coset in V/N. In particular, each subset S is the
coset s o N, where s is any element in S.

PROOF: Let S be any subset of V having properties (1) and (2). Consider the
coset s o N, where s isin S. Let s o n be any element in this coset. Then ¢(son) =
$(s) o ¢$(n), since ¢ is homomorphic. But ¢(n) is the identity in the cutput set W, since
n is in the null space. Hence

&({s o n) = $(s);

consequently, s on is ir S by virtue of property (2). Thus the coset s o N is contained
in the set S.
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element in 5. Then §; can be expressed as

s, =50 (S“l o Sl)'

But s~ o s

is in the null space N, since

d(s) = ¢(51)'

and the system is homomorphic. Hence for any s, in S, there exists an n; in N such
that

-

S, =son;
consequently, $) is in the coset s o N. Thus S is contained in s o N and therefore
S=soN.

The fact that each of these cosets is distinct follows directly from property (2) and
Theorem 4.

Thesrems 25 and 26 provide a procedure for investigating whether or not a given
system is homomorphic. Specifically, according to Theorem 25, we first find all ele-
ments in the input-vector space V which produce the sare output as that producad by the
identity element in V. I this set is not a subspace of V, then the system cannot be
homomorphic. If it is a subspace of V, we must then determine whether or not every
coset constructed by adjoining each vector in V to the null space has a unigue output.
If each of these cosets has a unigque mapping, then the system is homomorphic. I not,
the system cannot be homomorphic. Alternatively, the second condition can be refor-
mulated in terms of Theorem 25. The input vector space can be divided into all of those
sets that produce unigae outputs in W. The system is only homomorphic if each of these
sets is a coset in the space V/Se' where S e is the subspace of V defined previously.

As an example of the application of this procedure, consider an invertible system
with input vector space V and system transformation ¢. Since the system is invertible,
the set Se contains only the identity in V. The identity alone constitutes a subspace;
hence, the first condition of Theorem 25 is met. Each of the cosets in the quotient
space V/Se when Se is the identity alone contain only a single vector; specifically, the
coset v o Se contains only the vector v. Thus all of the vectors in any given coset pro-
duce the same cutput and each coset 1s associated with a different output. Consenuently
the second condition of Theorem 25 is satisfied. Alternatively, if we interpret the
second condition of Theorem 25 by means of Theorem 26, we can divide V into sets
defined by the property that any given set contains all of the inputs that produce a given
output. Again, since the system is invertible, each of these sets contains a single

vector from V. These are the cosets in V/Se, and hence by this interpretation, the

36




Af Thaoanror
ol re

1
H - a - A aas

B

2

N

of the identity alone, which by Theor»m 10 is a necessary and sufficient condition for a
homomorphic system to be invertible, Eqs. 21 and 22 reduce to Egs. 12 and 13, It
follows, then, that as we have already shown by other means, any invertible system 1s
homomorphic,

As another example of the application of Theorem 25, consider a system with trans-
formation ¢ defined as

d{v) = vz.

Liet us choose the input vector space V to be a space under addition and require tha! it
contain more than just the identity elem:=nt. Since the identity element in V is the ele-

ment 0, the set S e is the set of all elements s in V with the property that

d(s) = $(0) = 0.

From Eq. 25 we see that there is no element in V other than the identity which will
produce zero output; hence, the set Se contains the identity alone, The identity is a
subspace of V; hence, the f{irst condition of Theorem 26 is met. Because the set Se
is the identity alone, the coset v o Se in V/Se is the vector v. But the coset vo Se
and (-v) o Se produces the sarne output; hence, condition {2) of Theorem 26 is not met.
Thus the given system is not homomorphic.

As a third example, consider the system with transformation ¢ defined by

2z
<

&{v) =-3; . {25)

Let the input vector space be chosen as a space under multiplication, in which case the
identity e in V is e =1, The set Se is then the set of all elements s in V such that

Q.
2]

=0,

W |-
(ol
s

which is the set of all constant inputs in V. It can be verified that this set is a subspace
of V. Now, consider any .. 2t vo S e We must show that all elements of the form
v-c, where ¢ is a constant, produce the same output, for any c. But

1 1

Sv-e) = g g (v-e) = ¢ gF

and hence ¢{v-c) is independent of ¢, as required. We must then ascertain that each
distinct coset is associated with a different output. In Theorem 4 we noted that if two
cosets have any element in common, they are identical cosets, Conversely, if two

cosets diifer by at least one element, then they will have no elements in common. Con-

sider two distinct cosets ‘.r1 0 Se and v, 0 Se' Then

1 Y1 g,
¢{Vl o 5e} v E I llnvi]

1
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and

dv
-4 _2_4d
‘:’{VZ © Se} - v, dt ~ dt {1“"2}'

The system witit the transfcrmation of Eq, 25 will be homomeorphic if and only if

tb[vl 0 Se = <1>[v2 o Se] (26)
implies that vy o0 Se and v, 0 Se are identical cosets, 1.e, that vy is a scalar multiple
of v,. But Eq. 26 requires that

2

d _ g
3 [lnvl] = 4t [lnvzl

or

mvl = Inv2 +c

for some constant ¢, Hence

v. =¢c'v {(27)

for some constant c¢'; therefore, we conclude that the system is homomorphic.

In Theorem 22 we investigated the necessary and sufficient conditions on an invert-
ible system such that a set of output operations could be selected to make the system
homomorphic. These output operations were shown to be unique. Similarly, in Theo-
rem 25 necessary and sufficient conditions on a noninvertible system were given so that
the systein was homomorphic. It was shown that when these conditions were met, and
the output operations were chosen according to Egs. 21 and 22, then the system would be
homomorphic. As for an invertible system, it can be shown that the output operations
chosen according to Eqs. 21 and 22 are a unique choice.

THEOREM 27: Let ¢ be the system transformation of a (not necessarily invertible)
system, with input vector space V. Then there is, at most, one choice for the output
operations under which the system is homomorphic.

PROOF: The desired result can be shown by assuming that the system is homomor-
phic under more than one choice for the output operations, and from this deriving a con-
tradiction.

Specifically, let W denote the set of outputs. Let N1 dencte the null space of the
system when the output operations are 0 and /, and let Nz denote the null space of the
system when the ontput operations are ®and /. If e denotes the identity in V, then
Nl contains all of the elements n in V, with the property that ¢(n) = $#{e). Similarly,

NZ contains all of the elements n’ in V such that ¢${n') = ¢(e). Hence, N, = Nz. that is,

1
the null spaces under the two choices for the output operation are identical. Let Nl and
N, both be denoted by N, and consider the quotient space V/N. Theorem 12 requires

that the system having the space V/N as the input space and the space W as the output
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space be an invertible homomorphic system. I the original system had more than one
choice for the output operations, however, this invertible system would also have more
than one choice for the output operations, which contradicts Theorem 22,

B2c (e of Theorem 27, the cutput operations of a homomorphic system which are
consti ucted according t¢ £gs. 21 and 22 represent a unique choice for these operations.
Consider, for example, the system having the transformation cf Eq. 26, with the input
vector space being a space under mulitiplication. It has been determined that this system
is homomorphic. An element v o N in the space V/N, where N is the null space, is
the set of elements in V that are scalar multiples of v. The mapping ¥ from V/N to
W, and the inverse of ¢ are defined by

Flev] = L9V _
$lcv] = va -V

and
37w = ol WAt L [evl,

Using Eqs. 2! and 22, we find that the output operations of the system must be

N G [ChC | e

and
i. T ledt c~‘
c:/wl = -&-t‘ln!_(e ) | = ew,

for any Wy and w, in W, and any scalar c¢ in the field.
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4.1 INTRODUCTION

The class of homomorphic systems has been introduced. The generalized principle
of superposition which is satisfied by these systems is similar in form to the principle
of superposition describing a linear system; when the input and output operations of a

homornorphic system are addition, the
srstem is linear and the generalized

¢ ¢ principle of superposition reduces to
the statement of superposition in its
V ——— ¢ r———— W
usual form.

A canonic representation for homo-
Fig. 3. Homomorphic system with multi morphic systems will now be derived.
plication as the input operation This representation amounts to a sub-
and output operation. stitution of variables which reduces the
system to a linear system. For any
particular homomorphic system the input and output variables that are chosen so that
the equivalent system will be linear, are dependent only on the input vector spaces, and
not on the details of the homomorphic mapping between these spaces.

As an example of the form that the canonic representation takes, consider a homo-
morphic system having multiplication as both the input operation and the output opera-
tion, as indicated in Fig. 3. This system has the property that for any two inputs v, and

1
v, and any scalar ¢,

tb[vlcvz] = [¢ (vl)]C $(v,) = wlcwz. (28)

where Wy = d)(vl), and w, = ¢(v2).

If we perform the substitution of variables

x=lnv (29)

and

y=Inw, (30)
then the relation between x and y becomes

e = o(e®)

or

y = In [6(e¥)] = ¢'(x) (31)
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et

WO inpuis and ¢ is any

. : - § ]
a‘[c,xl-rxz} = cd (xl) + ¢ (xz).

Hence by the substitution of variables defined by Eqs. 29 and 36, the system has been
reduced to a linear system. The system of Fig. 3 is thus representable in the form of

Fig. 4 where the linear transformation ¢' is defined by Eq. 31. In the representation

[ e e e
: L + + + + 0—§
{ {

v Lo Lnv X ! y e’ | w
i I
e e .

Fig. 4. Equivalent representation of the system of Fig. 3.

in Fig, 4, the first and last systems depend only on the input and output vector spaces;
they do not depend on the details of the transformation . We notice aiso for this par-
ticular example, that all of the memory in the system of Fig. 3 is concentrated in the
linear system ¢' of Fig. 4, since the first and last systems in this representation are
memoryless. Here we shall derive necessary and sufficient conditions under which this
can be done.

4.2 CANONIC REPRESENTATION

In the example just presented, a homomorphic system was reduced to a linear sys-
tem by means of a substitution of variables. This essentially requires a mapping of the
vector space of inputs onto a vector space under addition, in a one-to-one manner.
Similarly, the vector space of outputs must also be mapped onto a vector space under
addition in a one-to-one manner. Our objective rnow is to show that for any vector space
such a mapping exists, and to discuss the resulting representation.

Let us restrict the system inputs to constitute a Hilbert space with an orthonormal
basis, and restrict the system transformation to be a continuous homomorphic transfor-
mation., Under these restrictions, the system oulputs will also constitute a Hilbert space
with an orthonormal basis. This is equivalent to assuming tiat the input and output
spaces can be approximated arbitrarily closely by finite dimensional spaces. By virtue
of Theorem 20, both the input vector space and the output vector space are isomorphic
with any infinite dimensional Hilbert space having an orthonormal basis. In particulzar,
each of these spaces will be isomorphic with a Hilbert space in which vector addition
is interpreted as the sum of the correspcnding time functions, for example, the space

of functions that are square integrable, Thus we can always define uan invertible
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homomc} phic system that maps the inputs onto a Hiibert space under addition, and an

invertible homomorphic system that inaps the outputs onto a Hilbert space under additicn,
Consider a homomorphic system, then, with input vector space V which is a Hilbert

space with an orthonormal basis, output vector space W, and continuous systern trans-

formation ¢. Let a, denote the system transicimation of an invertible homomorphic

f TS e "']
o -4 o o o o 4+ | 4—-mp
v % - ag! ® % : :-ol - W
| |
L J

Fig. 5. Equivalent representation of a homomorphic system.

systern with V as the input vector space, and a vector space under addition, denoted by
v 4 as the ostput vector space. Similarly, let a4 denote the system transformation of
an invertible homomorphic system with W as the input vector space, and a vector space
under addition, denoted by W 4 as the output vector spa.-e, Siace the systems a, and

o i — ————
I i
g o —t o+ + 4 a g
-1 §

v T—u g L o, —r-w
1 |
e e e e e ————— —

Fig. 6. Canonic representation of a homomorphic system.

a, are invertiole, the system ¢ can be represented in the form shown in Fig. 5. The
system enclosed in the dotted lines, however, is a linear system and hence the system
of Fig. 5 can be redrawn in the form of Fig. 6, where L is a linear system. We recog-
uize furthermore that the system of Fig. 6 is a homomorphic system with V as the input
vector space and W as the output vector space, for any choice of the linear system L.
The representation of Fig. 6 will be referred to as a canonic represzntation of homo-
morphic systems.

An example of the canonic representarion of a homomorphic system was shown in
Fig. 4. In this case the homomorphic system had multiplication as both the input and
output operations. An example of such a system is that system havirg a transformation
& defined as

1
K 1
olv) = v, k 2 real numi-r,

In this case, the canonic representation tcles the form of Fig. 7. To obtain any
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Fig. 7. Caronic representation of a homomorphic system with
. k
transformation ¢fv] = v,

homomorphic system having the same input and output vector spaces as the system of
Fig. 7, we need only replace the amplifier of gain k with cther linear systems.

From the form of the canonic representation, we recognize it as a substitution of
variables which reduces a homomorphic system to a linear system. The particular
choice for the substitution of -rariables associated with any specified hommomorphic sys-
tem is governed only by the input vector space and output vector space associated with
the system. The details of the mapping between these spaces is then contained in the
linear system L.

4.3 CLASSIFYING HOMOMORPHIC SYSTEMS

The canonic representation suggests a means for classifying homomorphic systems.
Specifically, let us classify homornorphic systems according to their input and output
spaces. Since the characteristic systems a,and agare determined entirely by the input
vector space and output space associated with the homomorphic system, all systems
within a specified class will have identical systems e, and a g in the canonic represen-
tation. The systems within each class will differ only in the details of the linear sys-
tem appearing in this representation.

As a simple example of this means o: ‘lassifying homomorphic systems, we would
consider all linear systems as representing one class of homomorphic systems. Another
class of homomorphic systems would be the class having the characteristic systems that
appear in the representation of Fig. 7. In this case vector additior is defined as multi-
plication of the associated time functions, and scalar multiplication is defined as the
associated time function raised to the scalar power.

4.4 CONDITIONS ON A -HOMOMORPHIC SYSTEM SUCH THALT THE
CHARACTERIST!:" SYSTEMS ARE MEMORYLESS

In the class of homomorphic systems characterized by multiplication as both the
input operation and the output »peration, we observe that the characteristic systems e,
and a4 are memoryless systems, i.e., that output of each at any given instant of time
is dependent only on the input at the same instant o1 time. Hence, for this particular
class cf sysiems, all of the system memory can always be concentrated in the linear
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system in the canonic representation.

The question arises as to the conditions on a class of homomorphic systeras under
which the characteristic systems a, and e, are memoryiless. Since these systems
represent invertible mappings from the input and output vector spaces respectively we
wish to determine the necessary and suificient conditions on a vector space consisting
of time functions, such that a memoryless, invertible. homomorphic mapping to a vec-
tor sjace under addition can be constructed. In the following discussion it will be shown
that the necessary and sufficient conditions are that the operaticns of vector addition and
scalar multiplication must themselves be memoryless.

To show first of all that these conditions on the vector space are necessary, consider
an invertible homomorphic system with transformation a. input vector space V and
output vector space W, Let the operation of vector addition in V be denoted by o and
the opeartion of scalar multiplication in V be denoted by >. Let W be a vector space
under addition. Then by virtue of Theorem 22, vector addition and scalar multiplication
in V must be expressible uniquely as

_ -1
vy 0y =gy [e,lv) e vyl (32)

e, = o [ea (v))] (33)

for any v, and v, in V and any scalar c¢. Let us dencte the instantaneous value of a

2
vector v in V at a time tl by vl : Then we wish to determine wheter Eqs. 32 and
1

33 require that the operations o and > be defined on the iustantaneous value of vy

and v, if e, is memoryless. Consider first, Eq. 32. Since e, is memoryless, its inverse

aol is also memoryless. Hence, the right-hand side of (32) is defined ou the instan-

taneous values of v, and v,. Hence, the left-hand side of (33) must also be defined on

1 2
instantaneous values of v1 and VZ' We must next ascertain that
[v.ov ” =(v o(v ' ) {34)
1 V2lly Iltl) 2]t
But
R e -1 A
v - -
v, o»z};tl-ltao [ao(vl)ﬁowz)]}{tl (35)
and

(VI!t}) o (vz!tl)= agl[“o("xlt!)”o("zltl)} (36)

But, since a, is memoryless, Eq. 36 becomes

(v“"l) o (Vzlt,) = agl[ao(vl)!tlﬂzo(vz)’tl-1.

Since addition is memoryless, we see that
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(i) ° (2l ) ==

~1
Finally, since e, ism moryleSo.

(Vilt,) ° (¥2lt)) =° fag(v e v )]l . (37)

1

Comparing Egs. 35 and 37, we see that

el = (k) © (ke

whenever a is a memoryless system. Similarly, we wisb to show that the assumption

that a, is memoryless implies that > is memoryless, that is
esnille =[es(nily,) | 8)

Referring to Eq. 33, we see that the operation > is defined on instantaneous values of
vy since e, is memoryless. To show that {38) is satisfied, we observe that because

scalar multiplication is memoryless and e, is memoryless,

“gl[c“o("ﬂtl)} = {a_ ca (v ) }! (39)

But, the left-hand side of (39) is

";l[c"o(vl ltl)] = °>(V1 'tl)

and the right-hand side of (39) is

{ [CGO(VI) }, = [c (v } tl. (40)
Comparing Eqs. 39 and 40, we see then that Eq. 38 is satisfied; consequently, > is a
memoryless operation. Hence, a necessary condition on the vector space V so that a,
is a memoryless system is that the operations o and > raust be memoryless operations.
The next step is to show that this also constitutes a sufficient condition. To this end, let
V be a vector spac* with vector addition denoted o and scalar multiplication denoted >.
Elements of the vector space are time functions, that is, they are scalars indexed over
time t. Vector addition and scalar multiplication in V are assumed to be memoryless,
that is, at any value of t,

{v, ovz t-( t) (vzi ) {41)
(c>v)!t =ce v, [) (42)

for any vy and vy in V and any scalar ¢ in F. Let e denote the identity in V.
Consider the set of all scalar values which the tiiae fuuctions in V can assume at an
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instant of time t. Let thic set be denoted Si’ Then the set Si is itself a vector space, for

{a)

(b)

{c)

Let n and n, by any scalars in St' Then there is a vector vy in Vand Vo inV
sach that v, !t =, and vzf ¢ = Mo Since V is a vector space, v, o0V, is in Vi
hence, (v, 0\;2){t is in S;. But from Eq. 41, (v, JVZ)It = (n; o m,); hence,
(r;l 0 nz) is in St. By similar reasoning, it can be seen that n, o, =1, 0%,
and that (nl o nz) ong=m 0 (nz o n3) for any N, and y in St'

There is a unique element e in St such that n o e, = for any 1 in St. To show
the existence of such an element, let v be an element in V such that V’t =n. If
e is the identity in V, thenv o e =v. Hence {vo e)ft = v't, or (vlt) o l‘e!t)=V’t'

Since vgt =y, we have

no (e;t) =7

Thus e{t will be an element in St such that n o (e{t) = 1, that is, e, = e't. To show

that the element ¢, in St is unique, consider two elements e, and e} in St with

t t t

the property that

noe =n (43)
and

no e; =7 {44)
for all n in St' Then, by virtue of (43},

4 - 1
ejoe = e (45)

and by virtue of (44),

e 0 ei = €. (46)

But we have stated that o was a commutative operation in St; hence,

Therefore, from Eqs. 45 and 46, e, = ei.

Every element n in St has a unique inverse in St' For, let v be the vector in
V such that v| ¢S Then, if v"l denotes the inverse of v in V, we have

vo v'-l = e; hence, (V!t) o (v—l)f ¢ = e,t. or no (v‘l)g § = € Denoting (v.l)ltby
n-'l, we have no n-l = e, To show that thit. inverse is unique, let n—l and
n‘;l denote two elements in S, such that n o 'q-l = e and n o n;l = e Then if
n= v!t. n-! = v-l[ ¢ and n;I =v 1l

Y it follows that

{v ov-l)lt =(v ov;I) it'
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If v-l'1 is chosen by considering all possible values for t,thenv o vil=vo v;l =e.
But the inverse of v is unique; hence v‘;l = v ! for all values of t; in particuiar,
-1y _ -1 -1 _ -1

v ly=v o =T

{(d) The final step in showing that St is a vector space is to show that scalar multi-
plication in S‘C has the necessary properties. If n is any element in St. where
n= v!t. then 1>n = l)vlt = “>V”t = v!t; hence, I>n = 1. By a similar argument
it can be seen that

(el n=c (e, o)
and
(c1+c2)>n = (c1>n) o (c2>n),

for any <, and ¢, and

2
c>(111 o nz) = (c>n1) o (c>n2),

for any n and n, in St and any c.
If V is a separable Hilbert space, as we have assumed, the vector space St is iso-
morphic with the space F ", where n is the dimension of St (see the Appendix). Let this

isomorphism be denoted ¢,. Define a vector space W having elements that are n-tuples

n
indexed over time, that is, if w is in W, then w] , is representable in the form:

(cl.c . ....cn). where ¢

2 1
space under addition, since n-tuples are added and multiplied by scalars according to

the operations of addition and multiplication in the field. Now, there is & mapping a

» Cor enns cn are elements of the field. Then W is a vector

from V onto W which is invertible and homomorphic. Specifically, let a be defined by
the property that [a(v)]{ £ = at(vl ¢ for any value of t. Then a is also a memoryless
transformation; consegquently, it has the properties that we set out to derive. Hence we
have shown that a sufficient condition on a vector space V so that a memoryless, homo-
morphic, invertible transformation from V to a vector space under addition exists is
that the operations of vector addition and scalar multiplication in V be memoryless.

To summarize, we see that in the canonic representation of a ‘homomorphic system
the system e o can be memoryless if and only if the operations o and > are memoryless
operations. Similarly, the system eg (or equivalently a;l) can be memoryless if and
only if the operations g and / are memoryless operations. In the canonic representation
for systems in a class specified by memoryless input and output operations, all of the
memory in the systems can always be concentrated in the linear portion of the canonic
representation. In contrast, if either the set of input operations or the set of output
operations is not memoryless, then the memory of systems in such classes can never
be concentrated only in the linear portion of the canonic representation.

Before proceeding to some examples of the construction of memoryless invertible

homomorphic transformations from the input and output vector spa-es of a homomorphic
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system to spaces under addition, it would be well to investigate in more detail, the prop-
ties of these transformations and the consequences in terms of the canonic representation.
When the canonic representation was first presented, the linear system was inter-
preted as a system having a single input and a single output. We have seen, however, that
when we desire the systems a, and a5 to be memoryless systems, the input and ouiput
of the linear system may not be a simple time function, that is, they may not simply be
a set of scalars indexed over time. Specifically, consider a homomorphic system with
memoryless input and output operations. Consider this system in its canonic repre-
sentaticn with the systems a, and e 4 constructed to be memoryless. Then the output of
¢, will be of the form (fl(t). fz(t), ...)s where fl(t), fz(t) ... are each scalars indexed
over time. Similarly, the set of inputs to agq will be of the form (gl(t), gz(t), ...}y Where
gl(t), gz(t), ... are each scalars indexed over time. In this case, we would interpret
the system e, asa memoryless system having a single input and multiple outputs. For
any input v the individual outputs would be the time functions fl(t), fz(t), ... corre-
sponding to the mapping of the input at any instant of time onto an n-tuple of scalars.
Similarly, each output of a—Dl would arise from the effect of a set of inputs gl(t), gz(t).
... that correspond at each instant of time to the representation of the output as an

m-tuple of scalars. With this interpretation, the canonic representation of Fig. 6 would
P P P g

f‘ g,
f2 92

V— Qo : L : 03 e W
fa Ien

Fig. 8. Canonic representation of a homomorphic system with
memoryless input and o¢ »ut operations.

appear in the form of Fig. 8. In this interpretation the system L has n inputs and m
outputs. It is linear in the sense that, if gy 8pr --.» g, are the responses to a set of
3 $ ¥ ] 3

inputs fl' fz, . fn’ and 8y* 8+ ---» g, are the responses to a set of inputs f*, f:.:,

..., f', then

n

(g, tgy)s (gr*gy)r -0 (g tg )
will be the responses to the inputs

t
(f1+f'l), (f2+f2). oo (fn+f'n),

and

cgyr CEyr vovy CEL
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will be the responses to cf,, cf,, ..., ¢f_ for any scilar ¢ and for any set of inputs.

Ee

If an inner product can be defined on the vector space S,, then the output of e, 2t

t

time t can be described as the result of the inner product of v with each of the basis

vectors of §;. Specifically, let the inner product of v, !t and v, it be denoted (v, ?t, v, it).

Let p,,» ﬁ?t’ ... denote a basis of St' Then any scalar value vgt in St can be written
RN (LTSN ) ({1 MY SN

The n-tuple representing V:t is, tken, (nl, Corennen cn), where Cj = (vit, ﬁ-jt). In general,
for different values of ¢, the spaces S will differ; hence, both the inner product and the
set of basis vectors ﬁlt’ th . »v111 be functions cf time Let us denote the operation
of taking the inner product of the input at any instant of time t with the ] orthonormal

basis vector in St by Hjit(v,t). that is,
Hlvl) = vl py).

Then, as we consider all instants of time, we have constructed a function Hj(v) with the
property that

[ = 1l vl

By reterring to the definition of the outputs of a_s we see, then, that

H.{v) = () i=1, 2, ..., n.
J( J( j n

To construct the nverse of H., we observe that the inverse of HJ, corresponds simply
to the combination of H ! (vl ) with the basis vector ﬁ according to the operation of

scalar multiplication in the vector space V, thatis,

~Ir 1.

HJlt [Cj—c>{3jt.
Hence, the inverse of Hi is
—l _ "

H[E0)] = 1), 8,00),

where ﬁ {t) denotes the 3 orthonc-rmal basis vector in S as a funciion of t. Interpreting
Fig. 8 m the light of this discussion, then, we can replace the systems e, and aol as
shown in Fig. 9.

As an example of the application of these ideas to the construction of the systems e,
and agl, consider a homomorphic system with addition as the input operation and addition
as the output operction, that is, a linear system. The operations of vector addition and
scalar multiplication on the input vector space are
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and

Let St denote the set of all possible values that the input can assume at time t. We have

shown that St is a vector space. In particular, it is a one-dimensional vector space.

ao QD

Fe——m——— e e
| I f,(h g (1) | ;
| H, (v) 4 o g‘(t)/B'(H |
z | |

' be(n 9,1 1 '
| Ha(v) |1 2 e (B |
: } | 2 2 ~ |

/
— . S
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| | ' |
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1 Ha¥) = 9,(11/8, (1) l
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Fig. 9. Canonic representation of a homomorphic system with memoryless input
and output operations, illustrating the construction of the characteristic
systems.

For, choose any nonzero value $ in St as a basis vector, then any value 71 in St can be

expressed in the form n = c>;3 = cP for some scalar c¢ in the field. Specifically,

(n),

c =

Tl -

where é— is well defined, since it is a nonzero scalar in the field, and hence has an

inverse under multiplication. Thus the vector B in S‘t spans St‘ Let an inner product
be defined in St as follows: if mn and n, are any two vectors in St’ then the inner prod-
uct of n and Ty» denoted by (nl. nz) will be defined as

(7‘1' '12) = ’11712-
If the field is the field of real numbers rather than the field of complex numbers, then

(nl’ 712) = nlnz'
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To verify that Eq. 47 defines an ‘nner product, we refer to Defi:

and Ny be any vectors in St' Then
(1) ((nl+n2).n3) = (nl+n2) 1,
and thus
((n1+n2).n3) = (nl.n3) t+ (n,, n3).

(2) (c"lla 712) = C’Tl?fz =cC - (nl' ']2)'

(3) (n,,m,) = (nym))
(4) (nl,nl) = nl'n'l >0, n# 0.

An orthonormal basis for St under this choice for the inner product is the choice £ = 1.
We are guaranteed tha* the scalar 1 is in St; for, if n is any scalar in 3, then -:T must

t
be a scalar in the field, and since St is a vector space, the scalar

1 1
—_>nNn=—n=1
n 1 n i
must be in St’
Since St is a one-dimensional vector space, the system a, has a single output. The

operation H| (v| ;) is given oy

and hence H(v} = v. Consequently, the system ¢, is simply th: identity system, as would
have been expected without recourse to this formalism. By a similar procedure, the
system a5 and hence a;l is the ideutity transformation.

The choice of inner product specified by Eq. 47 is by no means a unique choice. As
the inner product changes, the orthonormal basis also changes. Interms of a different
inner product, the systems a, and a, will be different. Consider, for example, the
inner product (nl. nz) defined as

(ny»m,) = k7,
for some positive real scalar k in the field, I can be verified that this inner product

has the properties required of an inner product. Under this inner product, an orthonormal
basis for St is the vector

p=k/2,
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The operator H] 1:(vi t) is then given by

Hlt(\rit) = (VIto g) = kl/z Vlt
and hence
H{v) = kl/z V.

Thus the system e, is an amplifier of gain kl/ 2. If this same inner product is associated
with the output vector space, then the system aBl will be an amplifier of gain k-l/ 2.
Alternatively, different inner products can be associated with the inpu: and output vector
spaces; the systems a. L and a-;l will depend in general on the manaer in which these
inner products are defined.

As another example. consider the class of systems having an input vector space V
with vector addition and scalar multiplication defined as

VioVa T ViVe

cyvy = [,

for all \£) and v, in V and all scalars c in the field. Let the field be restricted to the
field of real numbers, and the time functions be restricted to have only positive valucs.
Again, St will denote the set of values which the inputs can assume at time t. St is a
one-dimensional vector space. For, let § be any vector in St other than unity, then for

any vector % in St there exists a scalar ¢ in F such that

c.B=[p]" = {48)

This follows from the fact that all scalars in St must be positive. Hence the natural
logarithms of f and n are defined, and the natural logarithm of § is nonzero, since
§ is not equal to unity. The choice of the scalar ¢ in Eq. 48 is given by

In (0}
Cc= .
In (B)

In the previous example, the system a, was constructed by first defining an irner prod-

uctl. Let us instead, in this example, determine e, by first constructing the inverse
e - We know that this approach can be used, since there is always some inner prod-
uct under which the basis for St is orthonormal when the dimension of St is finite, as it
is in this example. Hence we do not need to define an inner product in St in order to

determine an orthonorraal basis for St' From the previous discussion we see that the

system a !

o 18 described by
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where x = ao(v) for some input v. Since
x>ﬁ = [B]x'
we have
-1
ay (x) = [B]".
We recognize the inverse of this system as the logarithm to the base B and hence
ao[v] = logp [v}

It would be instructive to determine the inner product under which g is orthonormal. To
do this, consider the fact that with the above-mentioned choice of Q. the operator HI ¢
is given by

Hlt(vit) = logg [vl,)
Hence, from the definition of Hl ¢
(V't' B) = logﬁ [Vlt]'
Consider the inner product of any two vectors m and n, in St given by
(ny+m,) = [logg tn;)][logg (n,)]. (49)

Before showing that g is orthonormal under this inner product, let us first verify that
(49) does in fact define an inner product.

(1) (yn,.n,) = [lcog‘5 (1'|11'g2)][10gp (ns)]
= [log 8 qlﬂogﬁ 112][1<>gﬁ (n3)]

= (log‘3 ﬂl)(log‘3 n3) + (log‘3 ﬂz)(log'5 n.,)
and thus

(1,0 3) = (npamy) + (ny, ).
(2) (1, n,) = clloggn,Nloggn,) = cln;. my)

{3} Property (3) does not have to be verified, since the field has been restricted to
the field of real numbers.
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(4) ("l"‘l) = (logﬂql)" >0 for n, # 1 as required.

It follows directly that the vector $ is orih¢ ormal under this inner product for
2
(8 ) = [log, (A)]" = 1.

4.5 APPLICATION TO NONADDITIVE FEEDBACK SYSTEMS

The notion of homomorphic systems can be used to transform scme systems with
nonadditive feedback to systems with additive feedback. In certain special cases this
transformation has the effect of removing the system nonlinearities. In sach cases,
stability of the nonlinear feedback system can be investigated by using the techniques
available for the study of linear feedback syst ms.

Fig. 10. Homomorphic feedback system with
nonadditive feedback.

Consider a feedback system of the form shown in Fig. 10. The inputs are assumed
to be a Hilbert space with an orthonormal basis, in which vector addition is the oper-
ation o. The system ¢ is a homomorphic system with input operation o and output
operation o. The system Yy is a homomorphic system with input operation o and out-
put operation o. The feedback operation is identical to the input operation of ¢ and the
output operation of v.

The first step in the transformation of the sys,:= ¢. Fig. 10 is to replace ¢ and y
with their canonic representations. We recognize that since the input operation of ¢ is
identical to the output operation of y, the first system in the canonic representation for
¢ can be chosen as the last system in the canonic representation for y. Similarly, since
the output operation of ¢ is identical to the input operation of y, the last system in the
canonic representation for ¢ is identical to the first system in the canonic representa-
tion for y. When ¢ and y are replaced by their canonic representations, the system of
Fig. 11 results. From Fig. 11 we ss.e that the input x, to the linear system LI is
given by

x, = ao[v o a:)l(yz)]
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X, = ao(v) + Yp-

The input ¥y to the linear system Lz is given by

-1
yl = aD[aD (XS)}.
Hence, the block diagram of Fig. 11 can be transformed to that shown in Fig. 12. From
the block diagram of ¥Fig. 12 we recognize the feedback systein as a cascade of a , a

o
linear system, and aol. Hence, it is a homomorphic system with o and 0 as the input

[+] + + + i + o
X X2 L *3 ~1
v as 1 % —l——> w
Yy - b4 b4
3 001 ‘——2—-—— L2 atlt— ! co
o + +. + + a

Fig. 11. Equivalent representation of a homomorphic feedback system.

and output operations, respectively. The canonic representation for this homomorphic
system is, of course, the block diagram of Fig. 12. The linear portion of the canonic
representation is a linear feedback system having the linear portion of ¢ in the forward
path and the linear portion of y in the feedback path.

The systems a, and a;l in the system of Fig. 12 are determined by the classes to

 — -/
o +| + + 1+ 0
v —— % 4 e c;] T
| |
| |
! |
I + + |1
| L ledl
| |
e J

Fig. 12. Canonic representation of a homomorphic feedback system.

which the systems ¢ and y belong. Hence, as ¢ and y are vari. within their respec-
tive classes, the systems e, and aEl remain the same; changes in ¢ and y are repre-

sented by changes in the linear systems L, and LZ' Thus the behavior of the feedback

1
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system of Fig, 10 ag the system and y are varied within their respective classes can

..... ms 4
be studied by concentrating on the b
dotted line in Fig. 12.

The fact that the nonlinearities in the system of Fig., 10 can be removed from the

feedback loop depends on the fact that the feedback operation is identical to th= input

ehavior of the linear feedback system enclosed in the

operat.on of ¢ and the output operation of y, and that the output operation of ¢ and the
input operation of y are identica'. Under

o 3 these restrictions, and the restriction
v ——-—@-‘-— ® - that the system inputs constitutes a vec-
A tor space under o, the system outputs

x will constitute a vector space under Q.
o e It can also be verified that the set of

L4 i inputs to ¢ is a vector space under o

and the set of outputs of y is a vector
Fig. 13. Nonadditive feedback system with  SPace under o.
homomorphic systems in the for- If we do not impose the restriction
ward and feedback paths. that the feedback operation be identical
to the input operation of ¢ and the output
operation of y, we can still, in czrtain cases, transtorm the system to a feedback sys-
tem with additive feedback. The over-ali system will no longer be a homomorphic sys-
tem; consequently, the feedback loop wiil remain noniinear.

Specifically, consider the feedback system in Fig. 13. The system inputs constitute
part of a Hilbert space under the operatio:. ¢ . It is assurned that the system of Fig. 13
is well defined, that is, the operation o is defined on all inputs o ¢ and the operation
¢ is defined on all the outputs of y. This wnuld be true, for example, if ¢ and ywere

both linear systems and the operation were multiplication.

| ao ——-—lP@-—a~ a;] r———e-——P [+J —T" v
4 ! ]
X
co - Y
[ S|

Fig. 14. Equivalent representation of the feedback system of Fig. 13.

Since the system inputs constitute a vector space under the operation ¢, there exists
an invertible homomorphic system a X having ¢ as the input operation z .d addition as
the output operation.

The input € to ¢ is given hv
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€E=VvLeX

or, equivalently,
_ =1
€ = ay lao(v L] X)].

Since a4 is a homomorphic system, (50) can be rewritten

€= a;l[ao (V)-l-a<> (x}].

Consequently, the sys:.m of Fig. 13 can be redrawn as shown in Fig. 14. When the
canonic representations for ¢ and y are substituted in the block diagram of Fig. 14,
and appropriate block diagram manipulations are performed, the system of Fig. 14 can

ree T T T Ty e e e e |
| |
|
Y m———— no —4%»0 a;l > % > Ll O'OI et W
|
|
| o
| — -1,
l o, -] 3, L2
|
b o J

Fig. 15. Equivalent representation of the feedback system of Fig. 13.

be transformed to that shown in Fig. 15. If the system vy is an invertible system, then
the system L, will also be invertible. In this case, the system for Fig. 15 can be
transformed to that shown in Fig. 16, for which

a=a a-l
o
L=L,L]}
=L,L,
ool 1Tl o1

o 2 aoao'

If this feedback system is to be studied as the system ¢ is varied within its class, then,
the systems e and B will remain invariaat with changes in ¢é. Hence, properties of
the feedback system of Fig. 13, as ¢ is varied within any one class, can be studied by
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Fig. 16. Equivalent representation of the feedback system of Fig. 13
for the case in which y is invertible.

concentrating on the feedback system enclosed in the dotted line in Fig. 16. Although
this feedback system is nonlinear, it is characterized by the property that it is a unity
feedback system in which the forward path contains a linear system inserted between
a nonlinear system and its inverse.
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APPENDIX

i rwrae s o~ P . - n
iic Mapping of a Separable Hiibert Space into the Space F

In Section IV, we were concerned with the construction of an isomorphic mapping
from the input and output spaces of a homomorphic system into spaces under addition,
The input and output spaces were restricted to be separable Hilbert spaces, i.e., Hilbert
spaces having orthonormal bases. When the operations of vector addfion and scalar
multiplication were memoryless operations, the set of values which the associated time
functions could assume at any instant of time was shown to constitute a vector space, It
was then stated that an isomorphism could be defined which mapped the set of values at
any instant of time onto the space F®. The purpose of this appendix is to carry out the
derivation of these results,

Consider a separable Hilbert space in which the orthonormal basis is denoted f (t),

f (t), ... . Then if f(t) is any function in the space, f(t) can be expressed in the form
fit) = ? [tete), £, (6,1, (0)], (A.1)
o

where 3‘ denotes the combination of the functions [(s(e), £ (t)) fk(t)] according to the oper-

ation o. Let S denote the set of all values that can be assumed by the functions in the
space ai any given time to. If o and > are memoryless operations, then, from

Eq. A.1,
o0
fit ) = 21 [tee), £, ()£, (¢ )],

Consequently, for any scalar f(to) in S there exists a set of scalars \,, \

R R such
that

o0
f(to) = zl M > fk(to)'
o
The scalar xk is given by

= (£(t), £ (8).

The vector space S is spanned by the scalars f (t ) f (t ). ... in the sense that any
scalar in S is the limit of a linear combmatxon of the scalars f {t ) i (t ), ... under
the operations o and >, The set of scalars f (t ) f (t ), ... is a countable set, since
an orthonormal basis for a separable Hilbert space 1s coantable This set of scalars
may or may not constitute a basis for S, that is, they may or may not be independent.
They contain, however, an independent set in terms of which any scalar in S can be
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expressed as a (possibly infinite) linear combination, as the following argument shows,
If the set S contains only one scalar, then this scalar must be the identity in S
because S is a vector space., Since fl (to), fz(to), ... are each in S, they must all be
equal to the identity in S. In this case, any one of these scalars is a basis for S, and
hence the proof is complete, _
If the set S contains more than one scalar, then the set fl (to), fz(t 0), ... must con-

tain at least one scalar that is not the identity in S. Let 8128 . denote the sequence

of all scalars from the sequence f{ 1 (to) ’Z(to), ... which are ofher than the identity in S,
This sequence is nonempty by virtue of the comments just made. Let S1 be the subspace
of scalars s in S which is spanned by 5y- Let s'2 be the first scalar in the sequence
S10 Sps - which is not in Sl’ and let S2 denote the subspace of S spanned by si and

S:'!’ where s'1 =8). Continuing this process, we obtain a sequence of subspaces Sl’
n

S,,... of S. Since S is the limit of the sequence of partial sums ¥, [(f(t),f, (t))_f, (t )],

2 ol k*"'>k"o

the limit of the sequence of subspaces Sl’ SZ’ ... is S. Hence the sequence s!, s'z, ces
spans S, siiice the space Sn can be expressed as a combination of s'l, sé, e s;l under
the operations o and >. Furthermore, by the manner in which the sequence s!, 8§55 - -
was generated, it is independent. This sequence .s~ms a basis for the space S in the
sense that it is independent and that any element in S can be expressed as the limit of
partial sums of scalars in the sequence.

We wish to show next that S is isomorphic with F" for some n. Let s be any scalar
in S. Since the sequence s!, s:.a, ... spans S and since this sequence is independent,

1
s can be expressed in one and only one way in the form

for a set of scalars {ck} from F, where c) = [(f(t)>fk(t))]. The isomorphism T from
S to F" is then defined as

T(s) = (cl,cz,...).
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