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ABSTRACT

Factors influencing the selection of materials for the
pressure hulls of vehicles for the Deep Submergence Systems
Project are presented. Aluminum, steels, and titanium are
discussed with respect to such properties as chemistry,
strength, fatigue, toughness, and corrosion. The suitability
of these materials from a fabrication standpoint is also
explored. It is concluded that 721-titanium alloy appears
to be the best candidate for the pressure hulls of deep-
submergence vehicles where high-strength low-weight
characteristics are required.

ADMINISTRATIVE INFORMATICN

By Special Projects Office, Department of the Navy, Project Order
5-0003 of 3 December 1964, the David Taylor Model Basin was given the
assignment to develop and provide structural design information, including
material and fabrication analysis, for the pressure hulls of vehicles
developed under the Decp-Submergence Systems Project.

This report presents the material and fabrication analysis for
metallic pressure hulls. Structural design information on the tradeoffs
between pressure hull materials, configurations, and buoyancy is presented
in Taylor Model Basin Report 1985,

INTRODUCTION

The Deep=Submergence Systems Review Group (DSSRG) was established
in April 1963 to (1) review the Navy's plans for the development and pro-
curcment of components and systems related to location, identification,
rescue from, and recovery of deep-submerged large objects from the ocean
floor, (2) recoreend changes to such plans which will result in expeditously
obtaining sufficient capabilities which could be used to recover large
objects from the ocean. (3) develop a 3-year program for implementing
recommendations, and (4) recomnend means and organization of responsibil-
ities for implementation,

In February 1964 the Group reported its findings and recommenda~

tions. After review of the report, the Secretary of the Navy assigned the




responsibility for implementation of the program, which was renamed the
Deep-Submergence Systems Project (DSSP), to the Navy's Special Projects
Office.

Two primary objectives of the DSSP are to develop the capability of
rescuing personnel from distressed submarines and to locate and recover
small objects from the ocean depths. Two distinct vehicles, the Rescue
Vehicle and the Search Vehicle, will be developed to achieve these ob-
jectives. Present plans are to have six rescue vehicles and four search
vehicles operational by 1970,

Because of weight limitations, materials presently used for the
pressure hulls of submarines will not be suitable for the pressure hulls
of these vehicles. A variety of metals with improved strength~to-weight
ratios are currently available or under development. This report eval-
uates the most promising of these materials and provides background in-
formation to support the selection of the materials considered to be most
suitable,

FACTORS INFLUENCING MATERTAL SELECTION

All materials contain exogenous and indigenous defects. It can be
expested that with the proper orientation of these defects some tensile
stresses may develop at the tips of a defect due to Poisson's effect.
However, the tensile stresses developed will be smaller than the apelied
comprossive stresses.  Consideration will have to be given to the magnitude
of the residual tensile stresses that may be present due to fabrication or
to metallurgical transformation products. The operating compressive stress
may be below the yield strength but above the material's compressive
elastic limit, Tacrefore, in unloading, a material will experience a
slight Bauschinger effect or have a small residual tensile Stress, The
major loading of a submersible i3 coapressive; 16 not stiess relieved, the
material will experience @ altema’ < 22rone ovele due to the presence of
residual tensile stresses. In addition, the material integrity problem will
be further aggravated by the presence of properly oriented defects which
may develop tensile stresses at the acuity of the defect. Therefore, it is

necessary to have a material which will not propagate a catastrophic crack
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if these defects grow to a size that may be considered critical. To ensure
that the material selected can meet design requirements for the pressure
hull of the rescue and search vehicles, the following factors should be
considered:

1. Ability of baseplate and weldment to withstand cyclic loading
in sea water before initiating a fatigue crack.

2. Ability of baseplate and weldment to withstand crack prop-
agation,

3. Resistance to stress corrosion,

4. Resistance to general corrosion.

The above factors as well as others involving fabricability and
mechanical properties, are discussed more fully in the following sections.

The materials and thiclknesses being considered for the pressure

hulls of the search and rescue vehicles are as follows:

Material Compressive Yield | Nominal Shell Thickness (in.)
Strength (ksi) Search Rescue
Steel ' 100 - — 1 1/16-1 1/4
140 ———— 1-1 1/2
150 2-2 1/2 15/16-1 1/4
160 — 7/8- 1 1/8
180 2-2 1/2 7/8-1 1/8
_Steel N ] 200 1 7/8-2 1/ | wem——
Titanium 110 3-3 1/4 11/4-1 1/2
150 21/2-2 3/4 | 1-11/2
Titanium 180 21/8-2 1/4 | s
“Muminum T s T | 21/23
Aluninun o0 51/4-5 1721 1 3/4-2
-;{;;SRRézﬁior<L&Aﬁi;:}:; 56 — ~2
60 5 3/4 ~—
75 $1/2 ———
Glass Reinforced Plastic 100 ~3
class ] 150 ~2 1/4 11/4
Alunina 300 | 11/ 3/4




The Navy has made an extensive evaluation of the various materials
available for use in deep-ocean vehicles and fixed-bottom installations.
The individual reports on each material and its associated fabrication
problems have been prepared and are published in a single volume.1 Infor-
mation from this report and the latest data that are presently available
are reviewed and discussed herein as potential materials for metallic
pressure hulls of the rescue and search vehicles.

It should be understood that there are a number of metals or non-
metals that can meet one or more specific sets of conditions; however, most
of the available information is based on laboratory tests without any
correlation to actual service performance, Therefore, one of the prime
considerations in selecting a material is to determine whether or not the
available information can be used to ensure reproducibility of specified
minimum propertics regardless of whether they e mechanical, physical, or

chemical.,
MATERIALS UNDER CONSIDERATION

The materials discussed herein are titanium, steel, and alwninum.
Glass and fiberglass—reinforced plastics have been discussed in detail in
the Project SEABED reportl and are also discussed in the report dealing
with the design analysis for DSSP vehicles.s‘1

sach material will be discussed in terms of its chemical compo-
sition, mechanical properties, fatigue, notch toughness, resistance to

corrosion, and production pequirements,

CHEMiASTRY

Chemical composition ranges are given in Table 1, not for the
purpose of procurement but mainly to show that there are a number of steel,
titanium, and aluminwn alloys available to meet a specific property. In
some cases, the chemical composition ranges for the commercially available
materials are well established; e.g., the Navy's HY-JO0 steel and the lower

strength aluminum alioys. However, the specific ranges given for the

1Refercnccs are listed on page 37.
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higher strength steel, titanium, and aluminum alloys are only nominal
since they can be considered to be still under development even though
some of them are commercially available. In general, the exact chemistry
range for making a given mill product is considered to be the producer's
proprietary information; an alloy composition made to fall within a
specified range does not necessarily meet all the properties specified.
The producer varies the alloying elements singly or in combinations to
meet a given set of conditions. Thus, chemistry plays a very important
part, especially for the higher strength materials, when meeting a given
set of conditions., Information regarding the effects of . specific
alloy addition on the properties of the materials given in Table 1 is

available in References 2, 3, and 4.

MECHANICAL PROPERTIES

One of the most important material properties in designing the
pressure hull, 1s the compressive yield strength, Other conditions that
have to be satisfied are tensile, fatigue, and netch toughness properties
as well as corrosion resistance and fabricability. Table 2 compares the
nomir:al mechanical properties that can be expected for the designated
alloys in the required hull thicknesses, It should not be isplied that
because of the compressive yield strengtin shown for the various alloys
these materials are suitable for meeting all design requirements.

Comprossive stress-strain curves obtained by the Model Basin for
cach of the materials gaven in Table 2 are depicted in Figures 1 through 7.
With cach compressive stress-strain curve in these figures, the various
ratios of elastic, tangent, and sccant modulus are plotted as a functien
of compressive stress. (€ should be understood that these are not
nomalized stress=strain curves plotted to the minisam yield strength but
are actual stress=strain curves of material. However, the shape of the
stress=strain curves is representative for each given material and can be
used for design purposes.

The tensile tive stress-true strain curves for the various materials
are given in Fimuses % through 14, The true Stress-true strain curve for
7079-T6 alwminum (Figure 14) is typical of ail high strength alus

ailoys, It should be noted that the slopes of the curves, which are

(text is contimted on page 22)
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indicative of strain hardening, show that the titanium alloys have the
least tendency to strain harden. True stress=-true strain curves are used
for evaluating the true-strain behavior of a material under a given

loading condition; they also help to determine the ability of a material to
deform under high yielding conditions. In other words, in comparing
materials, a relative index of the plastic behavior of the material can be
obtained by comparing the ratio of the applied true strain to the total
true strain that the material is capable of sustaining; the larger the
ratio for a given applied strain, the lower the reserve ductility. This

concept is important in evaluating low-cycle fatigue life.

FATIGUE

The Marine Enginecering Laboratory (MEL) has been cvaluating the
low=cycle fatigue life of most of the promising materials using altemating

5-13

bend tests.” Naval Applied Science Laboratory (NASL) has been evalu-

ating full thickness plate specimens by cyclic pressurization of one plate

14,15

surface, In developing the base material properties of high strength

steels for the Navy, U.S. Steel Corporation is using fatigue specimens
similar to the MBEL altemnating bend specinwus.w-?‘o

The MEL low-cycle corrosion fatigue test results indicate that the
alwninuns, titaniums and some of the steels will more than meet a sugeestead
criterion of SN cycles when loaded te ¥0 percent of the yield strength.
U.S. Steel data show that HY-130/150 steel plate will also moet this
corrosion fatigue criterion,

Published and wnpublished data are insufficient to indicate
whether 12 percent nickel maraging 180,000-psi yield strengtii steel has an
acceptable corrosion fatigue life. However, rotating beam data for this
material indicates that maraging steel specimens will have a marginat
corrosion fatigue life.m

There are no corrosion-fatisue data on weldaments of HY-130/150
steel or 12 percent nickel maraging steel, It is expected that the HY-130/
130 corresion fatigue tested woldments will meet the corrosion faticue
criterion of 3000 cycles at %0 percent of vield. (n the basis of the in-
formation available to date, however, it is not expected that the 12 per-
cent nickel weldments will have the required corrosion fatigue life.

At
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The MEL unpublished data indicate that the corrosion fatigue life
of the lower stremngth aluminums, such as 5456, more than meets the al-
ternating bcam requirements set forth above.

Only limited fatigue data are available on the aluminum-columbium-
tantalum-titanium allyy systems; the data that have been published21 in=-
dicate that titanium alloys will mee: the specimen test criterion. Recent
unpublished fatigne studies by MEL show that the 72l-titanium alloy has an
alternating bend fatigue life in air of over 10,000 cycles when tested at
87 percent. of its yield strength. NASL studiesls of welded titanium
plates stressed from O to tension showed that the fatigue life of 721-
titanium was over 10,000 cycles when tested at 80 percent of its yield
strength. There appears to be conflicting data as to the low=cycle,
highly strained (plastic) notched corrosion fatigue life of 72l-titanium
alloys. The Naval Research Laboratory (NRL) indicates that the titanium
alloy is sensitive to the corrosive environment whereas MEL rotating beam
tests on 72l-titanium indicate resistance to corrosion fatigue for the

alumin'm~columbium-tantalum-titanium system.21

This difference in fatigue
results is attributed to the processing of the two lots of material. The
material receivsd by NRL was from the first group of heats to be made of
the 721-titanium alloy. NASL has recently performed a O-to-tension fatigue
test on a plate of titaniwa which catastrophically failed when water was
placed on the surface of the plate after 2000 c¢ycles; again the heat of
titanium investigated was from one of the first heats to be produced. MEL
is presently generating notched corrosion fatigue test data from heats
made using both the old and the new processing techniques.

It should be understood that specimen fatigue data arc not repre=-
sentative of the behavior of the material in any given structural appli-
cation; specimen fatigue data are used only as a relative index for
discriminating between the behavior of two or more materials. In order to
evaluate a material for a structural application, a model of sufficient
size should be made to evaluate the actual corrosion fatigue behavior of
the material; this study has been undertaken by the Model Basin,

In evaluating the fatigue performance of a material, crack
initiation does not necessarily signify fatigue failure; that is, a crack

may occur in a localized area where bending gives rise to a localized
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outer fiber tensile stress. A crack at this point will propagate along
the length of the outer fiber until reaching a zone of compressive
stresses, The depth to which the crack will propagate through the thick-
ness will depend on the toughness of the material, its resistance to
corrosion fatigue, distribution of load over the specimen, and the distri-
bution of stress through the thickness.

Since the weldments to be used in DSSP vehicle design will be
equivalent in quality to the weldments used in smooth corrosion fatigue
tests and since where localized bending may occur the tensile strains are
expected to be below the yield strength of the material, it can be ex-
pected that structural weldments made from 721-titanium will be suitable
for DSSP appiications.

Low=cycle corrosion fatigue data on high strength titanium alloys,
15C,000~ to 180,000-psi yield strength, have not yet been obtained by MEL.
MEL has performed a few welded-box fatigue tests on low strength 6Al-4V-Ti
alloy which failed after relatively few cycles. Rotating beam fatigue
tests3 on some of the higher strength alloys indicate that the presently
available high strength titanium alloys may not meet the suggested alter-
nating fatigue criterion of 5009 cycles at 80 percent of the yield strength.

Recent MEL test results from welded=box fatigue studies showed
that the HY=180 maraging steels failed catastrophically after 1200 cycles
when stressed at 53 percent of the yield stress and that the HY=130/150
steel stressed at 80 percent of yield stress fatigue cracked after 2500

cycles.

NOTUH TOUGHNESS

At present, the selection of a notch toughness criterion for the
pressure huil material cannot be based upon any fracture mechanics criteria
for critical crack length, The material will have to bie sufficiently
resistant to initiation of crack propagation, It is assumed that in any
fabricated structure having the shell thicknesses required for the research
and search vehicles, there will be incipient or finite cracks that would
grow under certain loading conditivns, Therefore, it is necessary to use a
notch toughness criterion which will ensure resistance to fracture regand-

less of mode, catastrophic or shear. To ensure that the material selected




will have suitable notch toughness, the material should be able to resist
crack propagation in the presence of a 2-in.~long, through-the-thickness
crack in a l-in,=-thick plate that has been plastically deformed to a

permanent sStrain of 3 to 5 percent:.zz-26

The NRL explosion tear test, used
for evaluating the resistance of various alloys to shear failure, indicates
that the low strength aluminum alloys, the 721-titanium alloy, the HY~=130/
150 steel, and the 12 percent nickel, and maraging steels will meet this
criterion.,

To date, little work has been merformed on the explosion tear
resistance of welded plates; however, a l-in. 721-titanium weldment of a
plate received from Chance-Vought for evaluating this alloy as a possible
hydrofoil material had a drop weight tear energy of approximately 3000 ft-
1b in both the weld deposit and the baseplate. Correlation of the drop
weight tear test (DWIT) to the explosion tear test (ETT) indicates that the
welded 721-titanium alloy can withstand a permanent deformation of from 3
to 7 percent. No data are available on the tear resistance of aluminum or
of HY-130/150 steel weldments. It should be understood that the explosion
tear test will not have to be performed as a specification requirement,
but Charpy V-notch or DWTIT tests will have to be performed. These values
can be compared with NRL correlation studies, 22720

NASL explosion bulge testing of HY-130/150 and HP-150 steelsz7
showed that these steel alloys can withstand a reduction in thickness of 3
to O percent.  Fallure initiated in the weldment due to the lower strength
of the weld deposit,

No ETT data are available for 12 percent nickel maraging steel
weldments; however they are presently being evaluated at NRL. 1t is
assumed that weldments of maraging steels in the 165,000 to 175,000-psi
yield strength range will meet the basic toughness requirements,

Objection may be made to the 3 to 5 percent pormanent deformation
criterion for resistance to propagation of a 2-in.-long, through-the-
thickness crack., If a sphere is indentved to where a deformation of 3 to 5
percent is obtained, buckling will probably occur before the operating
depth 1s reached. Since the ceffects of corrosive pitting and pinpoint
impacting are unpredictable, it is necessary to select a material with

sufficient notch toughness to resist any type of fracture, The plastic
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deformation criterion may be decreased or it may be increased depending
upon model or full-scale studies, but, from all indications, using 3 to 5
percent permanent deformation as a criterion will provide a sound material

for a safe vehicle.

CORROSION

General Corrosion

Over the years, a number of reports have been written on the pit
degradation of low strength aluminum alloys. The depth of pitting for
these alloys depends on the environment. It has been reportced that after
a 2-year immersion in sea water, the maximum depth of pit for 6061-T4 was
0,021 in.31 If the depth of pitting is expressed as a linear function of
time, the depth of pitting after 10 years would be 0.10 in. Other data
show that 6061~T6 can pit from 0.003 to 0.042 in. per year depending upon
its sea water environment:.32 Since this pitting takes place on unpainted
surfaces, anodizing and plastically impregnating the anodized surface or
painting could reduce this pitting to a minimum; however, constant care
will have to be taken to maintain the selected coating. Where pitting does
take place, it has been shown that the tensile strength of 6061~T6 is
reduced with increasing pit depth,3233,34

MEL unpublished data indicate that the corrosion degradation of the
0061-T6 aluminum alloy weldments is similar to that of the base material;
however, welded specimens having incomplete fusion betweon the weld metal
and the base material showed rapid detericration,

The aluninum producers report that the new experimental alloys,
such as X7005,%% x7000,%° %7106,37 and x7039,3"

resistance of 6001-To alloy. These alloys, however, are very anodic to

approach the corrosion

other structural materials and precautions must be taken to avoid galvanic
corrosion. It should be rememberced that these high strength alloys are
susceptible to stress corrosion,

U.S. Steel, in evaluating the corrosion resistance of HY=130/150
steel, found for the limited number of tests performed to date that the
base material and weldments of the HY=130/150 steels (SNi-Ur-Mo-V) appear
to have better corrosion resistance than the =50 steel we].dmer1t:s.39 U.s.
Steel is presently studying the electrochemical behavior of 12 percent
nickel maraging steel. To date, they have reported no data,
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Titanium alloys are known to be resistant to corrosion’degradation
in sea water. MEL corrosion specimens which have been exposed to sea
water for over 1 year still appear to be in the original condition. From
a galvanic corrosion point of view, titanium appears to be superior to all
the other materials since it requires no painting, coatings, or sacrificial

anodes to protect it.

Stress Corrosion

Stress corrosion does not appear to be a problem for the 5000 series
of aluminum alloys in the unaged condition.28 From all indications, the
6061-T6 alloy does not show any susceptibility to stress corrosion. Un-
published data on the high strength aluminum alloys indicate a greater
susceptibility to stress corrosion than was originally predicted. However,
the unweldable 7075 alloy when given a proprietary treatment does not show
any susceptibility to stress corrosion, but in thicker plates, the yield
strength is lowered to around 40,000 psi. Modification of the older and
development of new alwminum alloys are being investigated; these alloys
show promise of being resistant to stress corrosion.11

Tests are presently underway for HY-130/150 steel, and to date no
data have been generated by either U.S. Steel or MEL on the stress corrosion
characteristics of this steel. The producer of HP-150 reports that this
steel is insensitive to stress corrosion by the nommal bent beam test.

Eighteen percent nickel maraging steels, which were cyclic loaded
to produce a fatigue crack and then stressed to 80 percent of yield
strength, indicate a susceptibility to stress corrosion.zg U.S, Steel
rcports30 that stress corrosion was observed in the 12Ni=50r-3Mo HY-18¢/210
mararing s3eel weldments when exposed in throe different sca water environ-
ments for o to 17 Jdays; they state, however, that the unwelded plate is
resistant to stress corresion cracking and that they expect to establish
cathodic protection of the weldment using carbon steel as the sacrificial
anode.,

NRU is in the process of developing a netched cantilevered beam,

stress corrosion test.sl

In evaluating the testing procedures, they noted
that the titanium alloys were susceptiblc to stress corrosion when a fatigue

crack was propagated to approximately 50 percent of the depth of the
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specimen, The titanium alloy plates tested by NRL, however, were made by
sheet mill processing procedures and not by those procedures that were
being established for producing titanium plates.

In a limited evaluation of the stress corrosion characteristics of
721-titanium alloy using the notched simple beam test, the Model Basin
found that Jow silicon, low manganese, fine-grained 721-titanium alloy was
insensitive to stress corrosion when the outer surface is loaded to a
nominal stress equivalent to the tensile yield strength or higher. These
test results were duplicated on specimens fatigue-notched to a depth be-
tween 10 and 50 percent of the thickness of the specimen. Further data on
the stress corrosion susceptibility of titanium will be required to verify
the results of the limited tests to date.,

High strength maraging steels and high strength aluminum alloys
show the same susceptibility to notch stress corrosion., The susceptibility
of fatigue notche i HY-130/150 steels to stress corrosion has not been
evaluated to date.

PRODUCTION CONSIDERATIONS

MILL PRODUCTION CAPACITY

In considering manufacture of the pressure hulls of the rescue and
scarch vehicles, it is advantageous to have the minipnm possible number of
weld joints. Therefore, if sphores, cylinders, or a combination of them
are to be considered, the mill production capacity for producing hemi-
spheres using plates, forgings, and spinning or pressing will have to be
taken into consideration. The presently available capacity for producing
aluminum, steel, and titaniwm in the required shapes is discussed below and
is swmwnarized in Table 3. It should be noted that where spheres are con-
corned, an additional 3 in. has to be added to the forming blank thickuess
to permit machine finishing the spheres to the required concentricity
tolerance of £ 1/1u in.

The aluminum industry can produce plates weighing up to 17,000 1b.
HY=-130/150 steel plates can be made up to 30,000 1b in weight, and the HP-
150 steel plates can be made up to 17,000 1b. Maraging steel plates up to
30,000 1b can be rolled to 3 in. thick; thicker plates will have to be
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forged. The higher strength quenched and tempered steel plates such as
the 7210 and the 9-4-25 series can be produced in weights to up to 17,000
1b.

Titanium mill capacity is limited by ingot size. One of the major
producers can presently cast an ingot weighing 8000 1b which will yield a
plate weighing 5600 1b; another producer can cast ingots weighing 10,500
1b for making plates weighing up to 8000 1b. There is sufficient capacity
available to make the plating required for the rescue vehicle. However,
the maximum size titanium ingot that is presently cast is 32 in. in
diameter. ror the search vehicle, a 36-in.-diameter ingot is required be-
fore it can be upset and forged into a circular disk to get optimum use of
the material. In order to make the search vehicle out of titanium using
present production capacity, the titanium industry is investigating not
only welding of plates, ingets, or billets to increase their maximum
effective weight but also making larger ingots.

There is sufficient capacity to make the pressure hulls of the
projected vehicles out of aluminum or steel. However, the capacity is
limited for making the rescue vehicle pressure hull out of titanium, To
make the search vehicle pressure hull from titanium using existing material
capacity will necessitate making the sphere out of three pieces, two spun
end caps and a forged or rolled center ring. But the titanium industry
expects that within 3 years they will be able to make ingots of sufficient
size and weight to make one-piece hemispheres. In fact, one producer’
states that they presently have sufficient furnace-ingot capacity to meet
the requirements tor a two-piece spherical hull for either depth. To date,

however, this producer has not made ingots weighing over 8000 1b,

FABRICABILITY

Fabricability includes a number of aicas such as forging, rolling,
machining, and joining, The spheres for the DSSP vehicles will be obtained
directly from a steel mill or from a fabricator. No difficulty is foreseen

in forging, pressing, or spinning hemispheres to the required dimensions,
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Forming

The ease or difficulty of rolling a 7-ft-diameter cylinder depends
on the material. The HY-35 aluminum alloy should offer no difficulty in
the forming process; however, the newer higher strength aluminim alloys
will probably have to be given a proprietary aging treatment to minimize
(not eliminate) their susceptibility to stress corrosion. This aging of
the lower strength and higher strength aluminum alloys can probably be
done after welding.

HY-100,-130/140, and -150 alloy steels should offer no problem in
roll forming. U.S. Steel has demonstrated the formability of HY-130/150
steelsu40 Although no large sections of this steel have been rolled,
formability experiments indicate that there should be no difficulty. The
Model Basin has formed HP-150 steel into cylindrical forms using standard
equipment.

U.S, Steel reports that 12 and 18 percent nickel maraging steels
in both the aged and the solution-treated condition developed localized
deformation bands or ripples on the surface of the test specimen and theot
they developed flat spots, or nonuniform curvature, at the center of the

bend.‘u’42

test specimen. The Model Basin has rolled 1 ..a.-thick plates of 18 per-

The difficulty may be attributed to the narrowness of their

cent nickel maraging steel in the solution-treated condition with no
difficulty. In addition, the Model Basin has rolled 1/4-in.~thick plates
of 12 percent nickel maraging steel in the solution-treated and aged con=
dition to a 5-ft diameter.

NASL has recently cold-rolled a 721-titanium plate (2 x 60 x 144
in.), to a T-ft diameter.43 The higher strength titanium alloys (HY-150)
will probably have to be hot formed; however, it is foresecable that room
temperaturs rolling procedures can be developed.

Aluminun alloys can probably be made in various shapes as required
for cylindrical stiffoners. Shapes have not been fully developed for the
higher strength steels and are being investigated. The T2l-titanium
allovs have been extruded into Testiffeners for use in structwral models.
With some experimental work, it is foresceable that 721-titanium can be
extruded in the desired shapes and dimensions. Because of the time
element, stiffeners or shapes for the DSSP vehicles wila probably have to
be pieced together by welding.
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Machining

The aluminum alloys are readily machinable; HY-130/150 steel and
HY-110 titanium alloy have machinability similar to that of 316 stainless
steel. No difficulty has been expressed about machining mapaging steel in
the solution-treated condition; however, in the aged condiéion machining
is somewhat of a problem., No definite information is available concerning
the machinability of titanium at and above 150,000-psi yield strength.

High strength aluminum, HY-130/150 steel, and HY-110 titanium
alloys can be sawed with available equipment. The maraging steels and
higher strength titanium alloys, however, require either burming or use of
abrasive cutoff wheels.

Joining

The lower strength aluminums are readily weldable; however, their
joint efficiency is usually taken as approximately 80 percent. If the
HY=35 aluminum alloys are to be considered, the section thiclmess at the
girth of the two hemispheres will have to be increased to compensate for
the lower yield strength in the weld deposit. The higher strength aluminum
alloys are reported to be weldable but again the joint efficiency is below
that of the base material. There is no reported commercial application of
these high strength aluminum alloys which have been welded and the joint
used as an integral part of the structural bearing member. The Model Basin
has welded a few of these alloys and found that their ductility as
evaluated by the side bend test is less than 3 percent. Others hawve
reported higher ductilitvies.

The SNi-Cr-Mo-V HY-130/150 steel welded by U.S. Steel has suc~
cessfully passed explosion bulge and explosion crack starter tests.41’44
The SNi-Ur-Mo=~V plates heat treated to 130,000-psi tensile yield strength
were tougher than those plates heat treated to 140,000 psi; the plates
heat treated to 140-ksi tensile yield strength had a greater amount of
shear tearing. The shear tearing in the HY-140 was gireater than that
obtained from HY-50 tested under the same conditions, Mother difficulty
15 that the weld deposits approach a tensile yield strength of only 130 to
138 ksi. However, the low tensile yield strength of the weld deposit

which undermatches the HY-140 base material should be of little concern to




the designer of DSSP vehicles since its compressive yield strength will
probably be at or above the 140,000-psi minimum. The ultimate tensile
strength of the weld deposit closely approaches or even exceeds that of
the base ma.teria.l.44
The Model Basin has successfully welded models using HP=150 steel
with weld deposits having a compressive yield strength at 150,000 psi
(Notes: the tensile yield strength was over 135,000 psi.) The nil-ductility-
transition temperature of the weld deposit was =130 F and its Charpy V-
uotch energy was 48 ft=lb at 32 F. With another heat of HP-150 filler
wire, NASL has obtained tensile yield strengths of 140 ksi and Charpy V-
notch values of from 45 to 51 ft-1b at test temperatures of 0 and 80 F,
r'espectivelyg45 NASL46 performed explosion bulge tests on welded 2-in.-
thick HP-150 steel plate and concluded that the baseplate and weld deposit
had satisfactory toughness; however, NASL advises that the baseplate alloy
be modified so that its yield strength is below that of the weld deposit.
The Model Basin and NASL“

nickel maraging steel. NASL has found that the Charpy V-notch energy of

have successfully welded 12 percent

the weld deposit is relatively low and that after aging, the yield strength
of the weld deposit approximated that of the baseplate. Model Rasin
circular patch tests showed no cracking in the weld deposit. U.S. Steel
rcpm-ts’wJ that a filler metal will be developed to make this material al-
most as tough as the HY-180/210 base material. For the present, however,
joining by bolting rather than by welding should be considered in designing
a DDSP vehicle of 12 percent pickel maraging steeol.

Out=of =chamber welding of titanium is considered commonplace;
sevaeral firms have developed this capability. Welded stiffened cylindrical
titanium models have been manufactured by these commercial contractors for
the Model Basin, NASL is investigating and developing out—of-chamber
welding of thick titanium pl at:wm.“'9 The Model Basin has contracted for
the manufacture of a welded fatigue model which will have a shell 2 1/2 in.
thick. The Model Basin has found that mechanical and notch-toughness
properties of welded 721-titanium plate were equal to or exceeded that of
the baseplate. NRL has recently drop-woight tear tested a 721-titaniuwm
weldment made by a Navy contractor and found that the energy required to
tear the weldment was over 3000 ft-lb. This weldment should be capable
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of resisting a tear when it is permanently deformed 3 to 5 percent in the
presence of a 2-in., through-the-thickness notch in the explosion tear
test,

Tolerance
Fabricators have been contacted regarding girth tolerances that
can be met when welding two hemispheres together; the replies received

indicate that concentricity can be kept within * 0,04 to % 0.06 in.
DISCUSSION

From a manufacturing point of view, all of the alloys discussed in
the preceding section can be made into structural spheres or cylinders.,

If the maraging steels are considered, they will have to be bolted or
glued together since published and unpublished data indicate that weldments
are susceptible to corrosion and corrosion fatigue at low stress levels.

From a structural fabrication aspect, there has been a great deal
of experience with forming and welding of 721-titanium alloy.

The HY=130/150 steels have been successfully welded in the labo-
ratory, but the chemical composition of the HY-130/150 welding electrodes
or wire have not been finalized.

The lower strength aluminum atloys are readily formed and are
weldable, but these aluminums will have to be heat treated after welding
to obtain optimum properties.

On the basis of the preceding information, it appears that 721-
titanium is one of the more promising materials. However, it siwould be
noted that limited fatizue-notched stress corrosion data indicate a
susceptibility to corrosion for certain titanium compositivits. A few tests
perfermed on the low manganese, low silicen, fine-grained 721-titanium
alloy indicate that it is gquite resistant to stress corrosion cracking.

Unfortunately, there are no data on the susceptibilicy of the
HY=-130/150 steel alloys to stress corrosion. Maraging steels do show a
susceptibility even in the umnotched condition at tensile stress levels
beilow the yield strength., The higher strength alwninum alloys are well
known for their susceptibility to stress corrosion, and since time dees

not permit evaluation of proprietary heat treatment of new alloys for the
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rescue vehicle, those aluminum alloys should tentatively be disregarded
until further technical data are developed.

The significance of stress corrosion initiating in a fatigue-
cracked area stressed to the yield strength of the material cannot be
readily determined. Uhlig50 states that if stress corrosion cracking is to
occur, there must be tensile stresses at the surface. He notes that these
tensile stresses can either be generated by applied loads, by intermal
stresses, or by a combination of both. Tensile stresses in the neighbor-
hood of the yield strength are generally required to generate stress
corrosion cracking, but it can take place at lower stress levels in some
aluminum and in some stainless steel alloys.

These pressure hulls will be experiencing compressive stresses.,
There may even be some localized compressive yielding at operating depth.
These yielded arcas will result in tensile stresses upon surfacing of the
vehicle. Again, there may be areas where bending will occur at operating
depth, putting one surface into temsion; he ever, these bending stresses
should not approach the tensile yield strength of the material, If these
vehicles can be stress relieved after forming and welding, it is even more
doubtful that tensile stresses will be reached that approach the yield
strength of the material, Therefore, this stress corrosion, or corrosion
fatigue failure, may be more of a laboratory problem than of practical
concern for these vehicles in either the stress—relicved or unstress-—

relieved conditions.,
CONCLUSIONS

1. Hecause of the short time available for selecting a material for the
pressure hull of the rescue vehicle, it appears that the basis for the
choice should be the assurance that the material can be procured and
fabricated in the time required and that it will perform satisfactoriiy in
its intended service. On this basis, the choice should be WY =100 steel.
If HY-100 steel camnot be accepted for use because of weight restrictions,
then HY-130/150 steel should be the second cheice. If even further weight

reduction is regquired, ?2i-titaniwa shovld be considered.
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2. Although the time available for selecting a material for the pressure
hull of the search vehicle is comnsiderably longer than that for the rescue
vehicle, it scems doubtful that enough information will be available in
time to make, with a sufficient degree of assurance, a selection of some
of the higher strength lower weight materials now under development. At
the present time, it appears that 72l-titanium offers the best chance of

meeting the material requirements for the search vehicle.
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