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PREFACE

The equations governing the flow of a conducting gas
interacting with  magnetic field are ccupled nonlinear
partial differential equations in several dependerit and
independent variables. Thus, exact solutions are exceed-—
ingly rare. One class of problems which can bte solved
exactly involves the flow of an infinitely conducting gas
when the velocity and magnetic fields are aligned every-
where. A particular boundary value problem involving such
a flow is solved in this Memorandum. The results presented
here should be of use to all who are working in the area

of magnetohydrodynamics.




SUMMARY

When an infinitely conducting fluid flows under the
influence of a magnetic field in such a way that the velocity
and magnetic fields are aligned, then the governing equations
may formally be reduced to those of ordinary gas dynamics.
The equations are still nonlinear, but if one restricts
attention to plane flows, then the hodograph technique may
be employed. The equations in thc hodograph ; lane are
linear ar ' may be solved exactly. The difficulty then
remainirg is to satisfy the boundary conditions. Only for
restricted classes of problems can this be don:. This
paper treats one such class of problems: the flow of a
jet of gas out of a slit in a rectangular channel. The
method used is a modification of the original method of

Chaplygin for nonconducting gas jets.
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THE FLOW OF A CONDUCTING GAS JET
WITH ALIGNED MAGNETIC FIELD

1. INTRODUCTION

In this Memorandum we treat a particular boundary-
value problem involving the flow of an infinitely-conducting
gas, moving in such a manner that its velocity field is
everywhere aligned with the resultant magnetic field. In
such a situation the equations governing the motion can be
reduced to those of ordinary gas dynamics [1-4, 6].

While this reduction is a significant one, the equations
are still nonlinear and hence intractable for most boundary-
value problems. 1If, however, we limit ourselves to plane
flows, it is possible to make use of the hodograph technique.
The effect of the hodograph transformation is to linearize
the basic equations; the penalty paid for this simplification
is that for nost prohlems the boundary conditions in the
hodograph plane are not known. These are, however, classes
of problems for which this difficulty can be overcome; the
outstanding example of such problems is the efflux of gas
from a slit, the jet problem, first solved by Chaplygin.

Chaplygin solved the problem of jet flow from a slit
in a half-plane, for which the velocity infinitely far
upstream must be zero. Recently this solution has been
extended to a rectangular chamnnel with a finite, nonzero,
upstream velocity. We shall be concerned with extending

this solution to the magnetohydrodynamics case when the




gas is infinitely—conducting and the velocity and magnetic
fields are aligned. The velocity at any point will be

2.1,

assumed to be subcritical (A2 + M

The problem can be reduced to the solution of the
equation for the stream function in the velocity plane
under appropriate boundary conditions. The solution iy
obtained by separation of variables. The resulting second-
order ordinary differential equation for the velocity
dependence contains the hypergeometric equation as the
limiting case for zero magnetic field. One of the two
linearly independent solutions of the equation is analytic
for velocities close to zero; the series expansion of

this solution about zero velocity is discussed in the

Appendix,

2. GOVERNING EQUATIONS

The steady flow of an infinitely conducting, inviscid,
perfect gas in the presence of a magnetic field is governed

by the following set of equations:

(1) Continuity 7 (pg) = 0,
(2) Momentum Pq-7q = — Tp + %(T x B) ﬁ,
(3) Energy a’-~<f—y) =0,
(&) Maxwell's ] B =0,
(5) Equations 4 e E) = 0.

N
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We assume B is parallel to a and write
(6) B = aprq .

(1f B and a lie in the same plane, then as a consequence of
Eq. (5), q B is a constant. From this it follows that
if a and B are paraliel anywhere, they are parallel every-—
where. Thus, the condition expressed by Eq. (6) is not as
restrictive as it might seem at first glance.)

Equations (1) and (4) lead to

fnd

(@« Na=0

i.e., that q is a constant along streamlines.
Equation (5) is satisfied automatically by the choice

of B. The momentt 1 equation, Eq. (2), may be written as
(7) f(2+P92)—”‘x(vx”)--1—Ex(ﬂx‘B‘)
%‘ cp /= q pu ’ :

Tf we take the scalar product of this equation with 5 we

obtain

2 .4
(8) 4+ R =mH

o)
where H,, the total enthalpy, is constant along each
streamline,

From this point on we shall assume that each of the

quantities g, H and p/pY = £(S) 1is constant throughout

o’
the flow field, not just along streamiines. This would be

the case if all the streamlines originated in some region

where uniform conditions prevail. 1In the particular problem




to be treated in this paper, such a situatioi does exist and
thus the indicated assumption is not actually a restriction.
With H, constant throughout the flow field, Eq. (7)

yields

(9) dX (7xq =o B x (7 x B

fu
If we now assume that the flow is two—dimensional (plane)
and write
a = ui + vf,
then Eq. (9) leads to

(10)  szlv(-ce)] = Flu(l-e)],

where C = azlu = const. (throughout flow field).
For plane flow the continuity equation, Eq. (1),

bec-..es

(11) R+ 280 Lo,

The governing equations of the flow have been reduced
to the tnree equations (8), (10), and 711,. Equation (10),
which is of the form of an irrotationality condition, can be

identically satisfied by introducing a potential «(x,y)

defined by

rﬁﬂ = u(1-Cp)

| 3% ’
) 9,

== = v(1-Cp) .

<

L
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Similarly, Eq. (11) can be satisfied by introducing the

usual stream fuaction Y(x,y) such that

3y p
A Sy e
lax po

The three governing equations may now be combined to yield

a single equation in either Y or o:

\ 2, ¢ 2 _ 2 2 Cl—-CP)_(M —])

(4) v ¥ .+ 2¥. ¢ nyy viyy (Yot y) 2 (Fyx® yy)
Mz o 2 1¢CP(M -1 -

(15) vy + 20,0, + vy, ~ (o o )L Crpxtigy)

(See Imai [1], Hida [2], Seebass [3,4].) 1In the limit of
zero magnetic field, C - 0, these equations reduce to the
corresponding equations in ordinary gas dymamicy.

A principal difficulty, the nonlinearity of Eqs. (14)
and (15), may be eliminated b interchanging independent
and dependent variables, that is, by transforming from the
physical plane to the hodograph plane. Proceeding in the
vsual manner, we obtain the following equations for ¥ in
terms of the new independent variables q and 8, polar

coordinates in the hodograph plane:

—
(16) q2(1—0p)v + Kl—CP)2(1+M2) + Co M j}—CP+[(CP—_)] -:]qY
a4 L_ 1 - co(l - M%) 9

+ (1% [1-pC(1%) J¥gq = 0.

0.

0,




An equivalent equation can be written down for -, but

since this will not actually be required, we shail not set
it down. Once ¥(q,%) is determined from Eq. (16), -(q,?)
may be determined from the hodograph relations, which in

this rase trake the form

-~

v oy 2
Na = 39 ggf—Cp)gﬁ W g
LS WOTTEYO R
(17) J
P [ 2
4 4 {_I—CP(I—M )
./
(M2 and P can be expressed in terms of q by use of

Bernoulli's equation, Eq. (8).)
Once Y(q,®) and -(q,®) are known, the coordinates in

the physical plane can be obtained from the expressions

')

p
dx = a-(rlm-p-y (COS 8 di’f‘» — p—o(l—CP) Sin 8 d{) 3

(18) °

1 s
= — in 8 d-
Sy m( b (I—CP)COS 8 d¥ + sin d) .

3. FORMULATION AND SOLUTION

The particular problem to be solved in this Memorandum
ls the outflow of an infinitely conducting gas from 2 slit
in a rectangular vessel. This problem has been solved for
the nonmagnetic case by Fal'kovich [5]. The configuration
is shown in Fig. 1. The channel is assumed to be of width

H, the op2ning of width h. Infinitely far upstream the



flow is uniform with velocity vy, and is aligned along a
uniform magnetic field B,. Since the flow velocity and
magnetic [ield are aligned at upstream infinity, they remain
aligned throughout tae flow field, as indicated earlier.
Also, a, Ho’ and S may be taken constant throughout, since
all the streamlines originate in a region ¢f uniform con-—
di.ions. Thus, the conditions that are needed for the
theory presented in Sec. 2 to apply are satisfied.
Chaplygin's methecd for twvo-dimensional gas jets fails
when the flow in the jet is partly subsonic and part.v
supersonic (see [7]). Since the hypercritical tr:nsition

(a2 + M

= 1) has the same essential character as the sonic
transition, one would expect that in the present problem the
restriction to be imposed is that the flow remains sub-—
critical everywhere, that is, A2 + M2 < 1. We shall assume
this to be true ir. what follows.

The jet is bounded by two free boundaries,C'D and
CD, on which the pressure is constant. The stream function
¥ is assigned the value %Q along the upper boundary of the
flow, AB'C'D, and the value - %Q along the lower boundary,
ABCD, the total mass flow rate then being Q. The final
velocity far downstream on the free boundaries is vy

The physical flow plane represented in Fig. 1 can be
mapped onto the hodograph plane. 1In the hodograph plane

we introduce polar coordinates 8 and T, where T = qz/qzmax.

The limiving values of 7 far 'pstream and downstream are
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then given by 7_ = vg/qzmaX and Ty = v%/qz The

max’
hodograph representation of the flow is shown in Fig. 2,
in which corresponding points are designated by the same
letters. CDC' is a semicircle of radius Ty EAE' a semi-

circle of radius TO. The values that ¥ must take on the

various boundaries in the hodograph plane are given below:

(19.1) Vo= — %Q when T = T1r 0< 8 ¢ %ﬂ DC

, 1 1
(19.2) ¥ =-2Q when 7, > 7 > 0, 8 = Vil CB
(19.3) ‘Y=—%Qwhen0g'r<'r0,9=+0 BA
(19.4 =+ - in < 8 '
(19.4) ¥ =+ QQ when 71 = Ty, =357 € 8 < 0 DC

¢ 1 ]- tnt
(19.5) =+ 5Q when 7, > 7 > 0, 8 = — il C'B
(15.6) ¥ =+xQwhen0 ¢ 7 < 1y, 8 =0 B'A

The problem now is to find a solution of the basic
equation for ¥, Eq. (16), satisfying the boundary conditions
(19.1) - (19.6) in the hodograph plare. Before attempting
this we must first transform Eq. (16) from independent
variables q, 8 to the new variables r,8. We also note ihat

the Alfveén number, defincd as

(20) A= _Tﬂ_m - flow speed ,

(B</up Alfven speed

is related to the constant C as follows
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1 |
¥ =5Q J Y
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Fig. 2—Hodograph plane
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2
_ 1 _a®p
(21 Cp = ;7 8 =

/
Then, introducing the stagnation Alfven rumber Ay

=1 fL

we can write (assuming a perfect gas)

A2 po 5%1
(23) —7 = E_ = (l—T)
80
SO 1
(24) cp = —-(1-m) VT
AO
Also, 1
p=p (1-n¥T |
(25)
W2 2
= I =

Now making the change of variables from q, 8 to T, % and

introducing relations (24) and (25), Eq. (15) transforms

into the equation

LT 2y o]

4r?(1m 1 = 4?0 14 a2aen T ey |

r ’ =

Bly 1

(26) + 47 ‘,1 - Ay (1- Ty Y= iLf -7) (1-45 (1—¢)f ) + ?-T_

i 2~y 1"7
2A0 72 (1=r) V-1 - Ag2(1-m T 23

(V )° 2‘Y —-2 .TJ
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We must now seek a solution of Eq. (26) satisfying the
boundary conditions (19.1)-(19.6). We shall do this by
finding separate solutions in these subareas, lavelled (1),
(2), (3) in Fig. 2.

For regions (1) and (2) we look for separable solutions

of the form

27y v (q,0)

- % + nil anGn(T)sin 2n8,

(28) \y(z)('r,e) +% + ;

& anGn(T)51n 2n8 .

Substituting either one of these expressions into Eq.

(26), we obtain the following equation for Gn(T):

r2(1-1) ,1--A;2(1—7)7:1-1 l& + 472 (1-m) Y™ @1:.}7-1 G, "
| 2 "1‘I-| 2 7T ]
N Y= - Y— T
+ Tﬂ{}—AO (1-1) _J i}—T—AO (1-7) + ;:IJ
(29) o2, s -1 —EPL :
—ZAO T‘-(l—'r) Y=° 2 + FI AO (1—T)Y _l Gn
(v-1) |
[ ya1 PI= e \ i
2 A% Y—
+ Lﬂ T"l‘] \ 1 + A (1—‘1') Y—_-I T—l/ Gn = 0

We shall considur this equation in greater detail later,

For the present let the two linearly independent solutions
of th- equation be denoted by Gn(T) and Hn(T). It will be
shown lates that only one of the solutions remains bounded

at 7 = 0; let Gn(f) be this solution.
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The expression assumed for ?(1)(T,Q) satisfies boundary
condition (19.3) and bounda:iy condition (19.2) on sector
BE, while the c¢xpression assumed for ?(2)(7,8) satisfies
boundary condition (19.6) and boundary condition (1¢.5) on
sector B'E',

In region (3), which represents the annular region

CDC'E'AEC, we look for a solution oi the form

¢(3) ~ 5 i
30) v (r,0) « - 4 146, (D) + By (1) ]sin 2ns.,

(3)

This expression for VY satisfies Eq. (26) .dentically;
it also satisfies boundary conditions (19.2) and (19.5) in
sections CE and C'E', respectively. To satisfy boundary
condition (19.1) and boundary condition (19.4) on arc CDC'

(on which t = 7,) we require

1 > _
- 2Q = — %Q + nil [AnGn(Tl) + Ban(Tl)] sin 2n8, 0 < 6 < %n s
=-% 4+ 5 [AnGo(T) + B H (T)] sin 208, — 27 <8¢0,
il n=1

or equivalently,
(31) Q 3 1 = ; [A G (77) + B_.H (1.)] sin 2n8
=0 R n=1 BnGn(7y nn* 1 Z

where the upper sign is taken when 8 > 0, and the lower one

when 8 < 0.




Since the left—-hand side of Eq. (31) is an antisymmetric

. g 1 2
function of 8 in the interval - 77 < 8 & %ﬂ,lt can be

expanded as a Fourier sine series

1 . 1 1
a sin 2n9, - zﬂ g 8 g Zﬂ .

18

-1 0
(32) e FiQ=-3

n

1

Equating the right-hand sides of Egs. (31) and (32) we

obtain
(33) AG (1) +BH (1) =~ %E .

This completes the satisfaction of boundary conditions (19.1)-
(19.6).

There are additional boundary conditions which must be
satisfied. These result from the requirement that the
expression for ?(3)(7,8) be the analytic continuation of

Y(l) and Y(Z) into region (3). This leads to the conditions

«(3) (1)
"1"(3) (,\O,e) — \y(l) (To’e)’ % (To}e)

il

dY
3T

(34)

1+(3) L2

(o7

(,,8), 0 <8< am,

. )
Y(3)(TO,9) = ?(4)(70,9), 37 (TO’B) = % (To:e): - éﬂ < 8 < 0.

(o7

Substituting the expressions for Y(l),v(z),Y(3) into Egs.

(34) we obtain




(35)

‘o

~

(36).

\/

—14—

i g
% [AnGn(TO) + Ban(TO)] sin 2n®

n=1
— Q ; : ~ L 2 o 0 - 1.
= -zt = arlcn('o)SL1 n=, S TS
n=1
t ' .
nEl[AnGn(TO) + Ban(TO)] sin 2n?®
- = a_G'(r. ) sin 2n8 0¢ f ¢ am
B nn' o’ 2 < < T
n=1
~Q% 4 x .
=8 + n‘:fl[AnGn(To) + B H (1))] sin 2n8
) . 1
= % + X anGn(To) sin 2n#4, -5 < 5 <0,
n=1
3 LAy gp ! .
& [AnGn(’o) + Ban(TO)] sin 2nf
n=1
= g a G'y ) sin 2n® - L <8¢0
n=] M DY 0 ’ 77 <8 <

Combining the first equations fram Egs. (35) and (36), we

can write

1
37) 3o ¥ 5 =

™M 8

[(An~an)Gn(To) + Ban(TO)] sin 2n8 |

n



where the upper sign is taken when 2 » 0, the lower one
when 8 < 0. As before, the left-hand side can be written

as a Fourier sine series (Eq. (32)):; Eq. (37) then reduces

to
(38) (A, —ay) G(r) +BH(r)=-2 .

The second equations of Egs. (35) and (36) yield the

single relation
(39) (An—an)Gé(To) + BnHA<To) = 0.

Equations (33), (58), and (39) determine the three
sets of unknown coefficients: as An’ and B - Solving

these equations,we find

- Q1 |G H (1) = G (rHI(T) |

a4, =~ m T €Y 1+ W, (T)

L

(‘ B
G! (T )H_(T)
_ 1 n* o/ n''1
G ‘An"%%q(ﬂy ?LL+ NG J
GL(r)
B, = & Ty

J/

where wn(vo) is the Wronskion of the solutions (%57),Hn(T)

evaluated at To,that is




(41) W (7)) = G (TH! (7)) = G!(7 )M (7 )

If we now substitute these results into the expressions

for Y(l), ?(2), Y(3), the solution takes the form

(1) o
(42) v (1,8) = - % - % ni ST

— —1 G_(7) sin 2nf,
W, (75) 4 n

=<}

43 ¥P(r,0) =§-2 z E;%'T?'
n=

[— G' H - G H'
t.}. n(TO) n(Ta]) (To)n('r]_) n(To):] Gn(rr) sin 2nf,

@ | G(T)H(T)]
,(3) - _9 _Q 1 1
6) ¥D(r0 - - 3 nnilccn "1 JLH 7y Galm)
,rG( ) ni | .
_.IE_W;T_ZT H (T)— sin 2n
Equation (44) may also be written
° X
(45) ik Y(3)(T,9) = -8 - 4 n(T) sin 2n8®,
Q n=1 T

where
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G, (7) L H(MDG (7)) = H (r))G (1)
v T _ T n 4 f
(46) X, () =gy T W) N Cn (7o)

Now that the solution in the hodograph plane has been
obtained, it is necessary to transform back to the physical
plane. If we introduce the hodograph equations, Eqs. (17),

into the transformation relations, Eqs. (18), we obtain

1[‘_ po ' Cpe Po 2
dx = =:|- == sin 8 Yo + —— 5=q(1-CP)
QP ® 7 1a
qde by lde
l—CP(l'{-paa-) q
— —_
+ = Dogine v +958 [q(1ce) S( 2y v q|a
P q 1_A—2 9 dq* 2q 8 1,
dy = £)[8in 2 o (1¢p) & (%) %5 + 22 cos 8 v, |dg
L
#1508 %0 01 6oy2(1 — o + 38871 v 4 Pocog g del
L:sz P dq q 77 %% e '

!
v

Integrating these expressions results in

[ :
4_L- [y, sin 849 + %_Si_zczﬂl_

q des -1 8
1 —cp(l + = aa) qu cos ede L + xo(q),

120
P

£
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1 p S ) r dP —l. ’_‘9 po pq
! —~A %) q "
+ y,(q)

Making the change to the variable T and introducing the

relations Zqs. (21)-(25), we finally obtain the following
for the coordinates in the physical plane:

1-71)~P i

= o= A \ ; —2 B
(47) x = 3 - ffq sin 9d9 + 27[1 - AO (1-1)7]

-2 1,1
[1-a_°(1-m)Pf1-287(1-1)"*1]

5

r W adsa -
. ¥, cos ,dj] + xo( ),

-4

(48) y = %(1—7)—ﬁ[fr{l—A;2(l—T)B] [1-4~%(1-n)"

[a)

f1-2a7(1-7)~ 1371 i sin ede

&
n

+ ¢, cos QdQ! + y, (1)

2

where for convenience we have introduced B = 1/(y=-1).

The y-coordinate in region (3) can be found by sub-—

stituting the expression for Y(B); Eq. (45), into Eq. (48).

cos Adrs
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We obtain

e

f

: = X (7) . .
(3) _ QSl—T)_S‘ n sin(2n-1)9 sin(2n+l) 8
W) g T T ng TR(7) %1 n (5= B nt _l"]

—

. s v oy (8in(2n+)8 o sin(2n-1)@,

where

(50) R(T) = [1-5°(1-n)P ] {1-a52(1-1)P (1-287(1-) 7117

(Since y = 0 when 8 = 0, yO(T) has been set equal to zero
in Eq. (49).)

Along the outer boundaries of the jet CD and C'D the
velocity is consta =, equal to Ty- Setting T = 71 in Eq.
(49), we obtain

Q(l"ﬁ)_‘ﬁ f * Xn(Tl)
~—~—4t——-\TlR(Tl) p _

TTql L n=1

sin(2n-1)8 sini2n+l)9]
n-1 7n+1

1)y (r 0 = -

. |
; sin(2n+1)8 | sin(2n-1)4 '
tsind 4 2 X)) B+ ST 1

L
{
!
J
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From the expression for Xn(T), Eq. (46), we see that
Kn(Tl) = 1. The Jlast sum in the above equation can then

be written

5 sin(2ntl)3 sin(2n-1)8) _ (1o 4 g s sin(2n+l)®

L

The right-hand side is the Fourier sine series expansion
of the function — sin 8 + % (with + for 8 > 0, — for 8 ¢ 0).

Hence we can write

(52) 3 [Slrzlgilil+l)n + _S_]%rgﬁn—l 9] = — sin 2 + :{,, + for 6 > 0’
n=1 7

Substituting this expression in Eq. (51) yields

!
Q(l-Tl)—ﬁ = X (74)
nqi—_ TlR(Tl) nil

(53) y(r,9) = - =

[sin£2n—1)° sin(2n+l)9]

2n—1 2n+l

|
tg{,azo.

When 8 = — %, y(3) is equal to half the width of the opening

of the jet, %, and thus
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' . 2n=D)7
(3) - h Q(l—' )_ﬁ(\ e Xn(fl) sin 28 1
(- =3= ﬂql'" i;lR(Tl) n:1 n 7n—=T1
sin ‘2n+1.277
2 m
2n+l tgh
or, J
- © DX (1))
(54) h=28U=TD "J _4r Rj(ry) = n 147
mq | L Z Z
1 n=1l 4n"-1
By continuity of mass, we have
Pl 1
(55) Q¢ = mass flow = 5 qlh s
)

§
where h is the width of the jet at x = + =,

Using Eq. (25)

b4
we may rewrite (55) as

Q = qp(1-rP h

Using this expression to eliminate Q in Eq. (54), we obtain

= (=1)"X'(r,)
felrai-Sopey 0T,
h n=1 4n“~1

where k is the coefficient of contraction of the jet.

Differentiating Eq. (46), we find

2 H (TG (1=K (1:)G.(T1)
sy - D17 1 n'* 1’™m* 17 "n*1""n*'1
SN M o Gy B N (7] 6a(To) s

or



. 6 (1) W.(1) G ()
c e _n 17 ™17 "n: o
(56) Xy () = g7y T W) G0y

Introducing this into the equation for 1/k above, we obtain

G (19) () 6y |
_Gn(Tl) wn(To) Gn(Tl)-;

@

1 8 : -1H"

For an infinitely broad vessel (H = =), T must be
zero and the expression above becomes (denoting the value

of k in this case by k_).

8 Z (=n? {& (1 W (ry) 6,(0) |
=l-gmnR(r) 2 5= gy “ WO TG |
' n=l 4n°~1 "n*'1 n a 1‘J

w1
|

3

This should be compared with the Chaplygin formula for the

nonmagnetic case

1
/1 \ 1 § . ; -1 n Zn("fl)
Ew//nonmagnetlc T S 4n2_1 ZniTli ’

where

n -
Zn(T) = T F(an,bn, 2n+l; 1)




APPENDIX

The equation obtained after separating variables was

shown to be Eq. (29), that 1is,

l 2_\1/
r2(1=r) [1-a220-0 T 1+ A;2<1_¢)?:T(g;% 1) 1G_(7)
A E ) Y
+ 1<l = AT2=n) T (1mreaZ?(1en YT 4 Iy
o
(A-1) X
2=y =1 L,
- 2A;272(1—¢)Y" [Y_B‘ 5 — YiI Agz(l—T)Ym ]} G, ()
(y-1) -
2—y

+ n’ [%% 1] [1 + A;2<1—T)Y—"[<¥51 1)1% G = 0.

The solution we require is the one which remains bounded
when 1 = 6. In this Appendix we shall present a brief
discussion of Eq. (A-1l). Complete details will be given in
a subsequent paper. First, we note that when the magnetic

field vanishes, i.e., A;z = 0, the equation reduces to

1" 1 _
(A=2) TP(1-m)T + 7[1 + (8=1)7]T_ + n’[(L + 28)7-1]C_ = 0.
This is the usual equation which arises in the study of the

hodograph technique [7]. The solution of this equation

which remains bounded at t = 0 is given by



Dy
(A-3) G, (1) = 7" F(ay,b, 204l; 1),

where ap,bn are determined from

(A—4) a_ -+ bn 2n - &,

ab

nn

—An(2n+l) ,
and F(an,bq, 2n+l;7) is the hypergeometric function, whose

power series .

©» ['(a_ +m)T(b_+m) _m
n n T
T (Zn+1+m) m, *

T'(2n+l
ant- b, m=0

(A=5) F(an,bn,2n+l;7) = v

is uniformly convergent in the domain |7] < 1.

When o = 1, Eq. (A-1) may be solved exactly (see
[4]). For n # 1, the primary difficulty in solving the
equation resides in the fact that, for general v, the
coefficients involve nonintegral powers of t. Note, how-

ever, that if
A6 L=k, orv=1+4
( ) TY,:_["_)O r= E;

wnere k is a positive integer, then the coefficients are

polynomials in 1. 1In this case the equation becomes




t

Tz(l—ﬁ)[1—A;2(l—7)k][l+A;2(l-f)k-l((2k+l)r—l)]Gn

+ T’[l—A;2(1n~)k][1—*-Agz(l—7)k+l+kfl
(A-7)
- 27220 -2 - kag? (-0 €16,

+ n2[(2keyr—1] 14872 (1-n ¥ 2k -1 17 G, = 0.

The finite singularities of this equation are given by

r =0,
T =1 - Ag/k b)

(=¥ - (2k41) 7] = A2,

Since k is a positive integer, the last expression has
exactly k roots. Thus Eq. (A-7) has (3+k) finite singularities.
In the special case k = 1 (v = 2) the four finite singularities
are

r =20

T=1,
(A-9) )

T=1-— Ay s
1.

One can show that 7 = = is also a singular point.
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Althovgh 7 = 0 is a singular point of the general
equation, Eq. (29) or (A--1), this equation, like the hyper—
geometric equation to which it reduces when A;Z = 0, has
one regular solution near 7 = 0. It is this solutior which
has been called Gn(T). To find this regular solution we

write Gn(T) as

a Tk
nk

®
G () = &

and substitute in Eq. (A-1). At the same time the co—

efficients of the equation are also expanded in series in

T. The following recurrence relation for the coefficients

a,, 1is then obtained:
ia

(1‘A; )2(kPn®ya_ — [(k=1) (k=2) + ?%I fv=2 + BASZ = (\+1)A;4} (k-1)
20v+l | 1 a2
(a-10) 0" (7 + A2 [-6y + AT4(5v=1)]1] a_ ,_; + n’ Zi%I;?

[8v2 = 7v — A72(12v% - 11y + 1) ]a

n,k=2 "’
s=0 s=0
'!/=k =
-2 <7 2
+ AO Zf s(s-1)a_ - Cy sa +
1= f=
s=g—1 s=k—-2
{+s=k i4s=k
s=0
4=k
2 3 » N
n £ Cy ang = 0, k > 0,
s=k-3
14s=k

where




(A-1l-a) C, =

2
(A-11-b) Ci =

o) -
(A-11—c) T =
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and C(E;)is defined in the usual way

n '
¢(n)= =T

According to (A-10) each ay 1is given in terms of all
previous a1 whereas in the nonmagnetic casa: the recurrence
relation involves a i and an,k—l only. Thu,, it se=ms
impossible to write down the various a.k explicitly. How-
ever, we do note that the first nonzero coefficient occurs
when k = n. It is then more convenient to write our
solution as follows

w

_ kK < k _ n < k-n
(A-12) Gn(T) = kEG ay, T = % =T E

n P_.0 5 = P
T 2 & TN = ¢ 2 a T
p=0 n, p+n p=d np

The recurrence relation for énp’ obtained directly from

(A-10), is found to be

(l—A;z)zp(P+2n)3np _{E(p+n-1)(p4n—2)+ ?éf{Y_z + 3A;2—(Y+1)A;4}(P+n-l)

-2
A

- ol + L Agz(—6y+A;2(5y—l))ﬂ 3y poy *+ 0 =
) y—

2 5 =2 2 a
[8v°=7y-A “(12v"-11v+D) 3, . ,
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— 8=

L=p+n
-2 1 —
(A-13) + AO Zl CL s(s-1) an,s—n -
1=
s=p+n—1
| sHi=ptn
s=0 s=0 =
{=p+n L=p+n
E" 2 - . 2 3 -
CL s an,s—n"'n Z3 CL an,s—n =0 .
1=2 1=
s=p+n—2 s=p+n—3
s+1=ptn s+4i=p+n —

The first few terms in the series for Gn('r) may now be

calculated from (A-13). We find

: - 1 2 —4
Gn('r) = a_, T“JLI + (1—A;2)2(1+2n) [n(n-1)+Bn—n D+n(n-l)A0 ]t
+ s ([n(n+1)+B(n+1)-n2DHA_*n(ntl) ]
(1-A_) “2°(14m) ©
[n(n-1) +Bn-—n2D+n(n-l) A:“ ]
(A-14) (1-7%) “(142n)
~2 -2
2, n(n=D)a, ) Ay m ) ‘]1 2
- [n“E + {v#A_“(1-3y)} - {y=3+A_“(1-3v) ]| 1
(=12 2 (v-1) 2 o | | "
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where

- 1 -2 —4
=T [v=2 + 3 AO - (\:‘+1)A0 },

(A-15) D = P+ Iy aTi -6y + AR (5v-1))

1

—
-

A -
E = S [8y2 = 7y — A72(12v% — 1iy + 1)]
(v—l)z 0

If A_2 is set eaual t zero in (A-14) the series reduces

(A—16) G (r) =a__ 7 F(a,b_,2ntl'7),

wherc a_ and bn are the same quantities defined in (A-4).
In addition to Gn(T), it is necessary that we know
Wn(T); the Wronskian of the two linearly independent

solutions of (A-1). This is given by

f 2T bi{r
(A-17) wn(f) = Wy iexp - 7o 3%?% d;),

where 1 -
a(m) = 1= (1852 0=0 Y] 1+ 452 T (o),
i v
b(t) = [1-AZ2(1-m) V1) [1=rA2(1==) " 4 2]
2-y 1
- 2A;2 2 (1emy T [z§f§;2 - ?%I Agz(l—T);:I

Fquations (A--14) and (A-17) are sufficient to enable
one to calculate k, the coefficient of contraction of the jet,

usiag Eq. (»7).
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