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PREFACE 

The equations governing the flow of a conducting gas 

interacting with c magnetic field are coupled nonlinear 

partial differential equations in several dependent and 

independent variables.  Thus, exact solutions are exceed- 

ingly rare.  One class of problems which can be solved 

exactly involves the flow of an infinitely ccnoucting gas 

when the velocity and magnetic fields are aligned every- 

where. A particular boundary value problem involving such 

a flow is solved in this Memorandum.  The results presented 

here should be of use to all who are working in the area 

of magnetohydrodynamics. 
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SUMMARY 

When an infinitely conducting fluid flows under the 

influence of a magnetic field in such a way that the velocity 

and magnetic fields are aligned, then the governing equations 

may formally be reduced to those of ordinary gas dynamics. 

The equations are still nonlinear, but if one restricts 

attention to plane flows,then the hodograph technique may 

be employed.  The equations in the hodograph j-lane are 

linear ar " may be solved exactly.  The difficulty then 

remaining is to satisfy the boundary conditions.  Only for 

restricted classes of problems can this be donj.  This 

paper treats one such class of problems: the flow of a 

jet of gas out of a slit in a rectangular channel.  The 

method used is a modification of the original method of 

Chaplygin for nonconducting gas jets. 
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THE FLOW OF A CONDUCTING GAS  JET 
WITH ALIGNED MAGNETIC FIELD 

I.  INTRODUCTION 

In this Memorandum we treat a particular boundary- 

value problem involving the flow of an infinitely—conducting 

gas, moving in such a manner that its velocity field is 

everywhere aligned with the resultant magnetic field.  In 

such a situation the equations governing the motion can be 

reduced to those of ordinary gas dynamics [1-4, 6]. 

While this reduction is a significant one,the equations 

are still nonlinear and hence intractable for most boundary- 

value problems.  If, however, we limit ourselves to plane 

flows, it is possible to make use of the hodograph technique. 

The effect of the hodograph transformation is to linearize 

the basic equations; the penalty paid for this simplification 

is that for most problems the boundary conditions in the 

hodograph plane are not known.  These are, however, classes 

of problems for which this difficulty can be overcome; the 

outstanding example of such problems is the efflux of gas 

from a slit, the jet problem, first solved by Chaplygin. 

Chaplygin solved the problem of jet flow from a slit 

in a half-plane, for which the velocity infinitely far 

upstream must be zero.  Recently this solution has been 

extended to a rectangular channel with a finite, nonzero, 

upstream velocity.  We shall be concerned with extending 

this solution to the magnetohydrodynamics case when the 
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gas is infinitely-conducting and the velocity and magnetic 

fields are aligned.  The velocity at any point will be 

9   2 
assumed to be subcritical (A^ + M < 1). 

The problem can be reduced to the solution of the 

equation for the stream function in the velocity plane 

under appropriate boundary conditions.  The solution Is 

obtained by separation of variables.  The resulting second- 

order ordinary differential equation for the velocity 

dependence contains the hypergeometric equation as the 

limiting case for zero magnetic field.  One of the two 

linearly independent solutions of the equation is analytic 

for velocities close to zero; the series expansion of 

this solution about zero velocity is discussed in the 

Appendix. 

2. GOVERNING EQUATIONS 

The steady flow of an infinitely conducting, inviscid, 

perfect gas in the presence of a magnetic field is governed 

by the following set of equations: 

(1) Continuity       7*(Pq) = 0, 

(2) Momentum Pq» 'q = _ 7p + i(7 x B) x B 

(3) Energy ?• C2^) = 0, 
P 

(4) Maxwell's 7.B = 0, 
Equations    1   ,-♦  -»x   « 

(5) i 7x(q x B) = 0. 
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We assume B is parallel to q and write 

(6) B « «Pq . 

(If B and q lie in the same plane,then as a consequence of 

Eq. (5), q x B is a constant.  From this It follows that 

if q and B are parallel anywhere, they are parallel every- 

where.  Thus, the condition expressed by Eq. (6) is not as 

restrictive as it might seem at first glance.) 

Equations (1) and (4) lead to 

(q • 7)a - 0 

i.e., that a is a constant along streamlines. 

Equation (5) is satisfied automatically by the choice 

of B.  The momenti a equation, Eq. (2), may be written as 

(7) 7(|!+J-|E). 5 x (7 x 5) _^B x (7 x B). 

If we take the scalar product of this equation with q we 

obtain 

(8) ^ + ;^ = HO, 

where H , the total enthalpy, is constant along each 

streamline. 

From this point on we shall assume that each of the 

quantities a, H , and p/p  = f(S) is constant throughout 

the flow field, not just along streamlines.  This would be 

the case if all the streamlines originated in some region 

where uniform conditions prevail.  In the particular problem 



to be treated in this paper, such a situatioi does exist and 

thus the indicated assumpcion is not actually a restriction. 

With H0 constant throughout the flow field, Eq. (7) 

yields 

(9) 5 x (7 x q) = -L B x (7 x B) . 

If we now assume that the flow is two-dimensional (plane) 

and write 

q = ui + vj, 

then Eq.   (9) leads to 

(10) ^|[v(l-Cp)] m  |-[u(i_cp)3, 

2 
where C = a /u = const, (throughout flow field). 

For plane flow the continuity equation, Eq. (1), 

beeves 

(U)    ^|Hl + ii|£vi = o. 

The governing equations of the flow have been reduced 

to the three equations (8), (10), and (11).  Equation (10), 

which is of the form of an irrotationality condition, can be 

identically satisfied by introducing a potential cr(x,y) 

defined by 

(12)    1, 
jlf • V<1-CP) ■ 
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Similarly, Eq. (11) can be satisfied by introducing the 

usual stream function Y(x,y) such that 

(13) 

1 3Y 

Bx 

p0 

L 
V 

0 

The three governing equations may now be combined to yield 

a single equation in either Y or co: 

(14)  T2f  + 21   f Y  + Y2Y v '   x xx    x y xy - (Y2+Y2) y yy  v x y7 
(I-^pWM^l) 

M 
(Y  +Y  ) = 0, v xxT yy7 

2 
xxx (15) .3^ + 2W„„ + ^„„ - (.2+4)lÜMMJdi x yxy 

2,n 
y"yy L—^ (ec +a: ) = 0 v xx yy' 

(See Imai [Ij, Kida [2], Seebass [3,4].) In the limit of 

zero magnetic field, C -* 0, these equations reduce to the 

corresponding equations in ordinary gas dynamic^. 

A principal difficulty, the nonlinearity of Eqs. (14) 

and (15), may be eliminated by interchanging independent 

and dependent variables, that is, by transforming from the 

physical plane to the hodograph plane.  Proceeding in the 

usual manner, we obtain the following equations for t in 

terms of the new independent variables q and 9, polar 

coordinates in the hodograph plane: 

(16)  q^(l-Cp)Yqq+ (1-CP)2(1+M2) + CP M [3-Cp-H(CP—.)] 
1 - CP(1 ~ M2) 

q* 

f (1-M2) [l-PC(l-M2)]Ye9 = 0 
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An equivalent equation can be written down for  , but 

since this will not actually be required, we shall not set 

it down.  Once YCq^Q) is determined from Eq. (16),  (q,^) 

may be determined from the hodograph relations, which in 

this rase take the form 

(17) 
p   I_CP(I_M^)    q 

r 
= _^ (l-C,)(l^  -d-CP) ±  CPM 

pq 1-CP(1-M ) 
e • 

L/ 

(M and P can be expressed in terms of q by use of 

Bernoulli's equation, Eq. (8).) 

Once ^(q,^) and -(q,9) are known, the coordinates in 

the physical plane can be obtained from the expressions 

(18) 1 

1 Pr dx - q(i_Cp) (cos 8 der - -^(I-CP) sin 9 dY) , 

dy - q(l-Cp)( -^(l-CP)cos 9 dY + sin 9 d ) . 

jL FORMULATION l\m  SOLUTION 

The particular problem to be solved in this Memorandum 

is the outflow of an infinitely conducting gas from e slit 

in a rectangular vessel. This problem has been solved for 

the nonmagnetic case by Fal'kovich [5]. The configuration 

is shown in Fig. 1. The channel is assumed to be of width 

H, the. opening of width h.  Infinitely far upstream the 



flow is uniform with velocity VQ,, and is aligned along a 

uniform magnetic field BQ.  Since the flow velocity and 

magnetic field are aligned at upstream infinity, they remain 

aligned throughout tae flow field, as indicated earlier. 

Also, a, H , and S may be taken constant throughout,since 

all the streamlines originate in a region of uniform con- 

ditions.  Thus, the conditions that are needed for the 

theory presented in Sec. 2 to apply are satisfied. 

Chaplygin's method for t^o—dimensional gas jets fails 

when the flow in the jet is partly subsonic and part' / 

supersonic (see [7]).  Since the hypercritical tr.-nsition 

2   2 (A -f M ~ 1) has the same essential character as the sonic 

transition,one would expect that in the present problem the 

restriction to be imposed is that the flow remains sub— 

2   2 critical everywhere, that is, A + M < 1.  We shall assume 

this to be true ir. what follows. 

The jet is bounded by two free boundaries, C'D and 

CD, on which the pressure is constant.  The stream function 

T is assigned the value «Q along the upper boundary of the 

flow, AS'C'D, and the value - ^Q along the lower boundary, 

ABCD, the total mass flow rate then being Q.  The final 

velocity far downstream on the free boundaries is v,. 

The physical flow plane represented in Fig. 1 can be 

mapped onto tne hodograph plane.  In the hodograph plane 

2 2 
we introduce polar coordinates 9 and T, where T = q /q inax' 

The limiuing values of T far "pscream and downstream are 
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then given by ^ - v;/q2max and ^ = vf/q raax.  The 

hodograph representation of the flow is shown in Fig. 2, 

in which corresponding points are designated by the same 

letters.  CDC' is a semicircle of radius T,, EAE1 a semi- 

circle of radius T .  The values that f must take on the o 

various boundaries in the hodograph plane are given below; 

(19.1)    f = - -^Q when T = -p 0 < 9 £ irr DC 

CB (19.2) '^ = - ^Q when Ti^T>0^ 9 =|TT 

(19.3) Y = - ^Q when 0 ^ T < TQ, e = 40 BA 

(19.4)   Y = + 1Q When T « Tp - ^TT ^ 8 < 0       DC1 

(19 5)    Y « + iq when T1 ^ T > 0, 9 = - -JTT       C'B1 

(19.6)    f = + ^Q when 0 ^ T ^ TQ, S = -0 B'A 

The problem now is to find a solution of the basic 

equation for f, Eq. (16), satisfying the boundary conditions 

(19.1) - (19.6) in the hodograph plane.  Before attempting 

this we must first transform Eq. (16) from independent 

variables q, 9 to the new variables T,9. We also note what 

the Alfven number, defined as 

/oo\  A     CL               flow speed (20)  A » —IJ-3—r-jj  «  f-z  , 
(B /u^ '   Alfven speed 

is related to the constant C as follows 
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(21) CP  ■ 
i      orp 

77 - "ir 

Then,   introdvicing  the  stagnation Alfven number AQ , 

(22) 

we can write (assuming a perfect gas) 

(23) A2 

=   ^   -    (l-T)^1 

so 1 

(24) CP -4-(i-T)^ . 

Also,, 

(25) 

^Y-l p = Po(l-T) 

M2 = ^TÄ 
Now making the change of variables from q, 9 to T, h and 

introducing relations (24) and (25), Eq. (15) transforms 

into the equation 

i" r 2-Y n 
1 - AQ^I-T) 

Ll + A-2(l-^C^~l)_ 4-
2
(1-T) 

I t 

(26)  + 4T < 1 - A-Z(1-.T)Y-1 I (i_T)(1_A-2(1_T)Y-T) + _r_ 

TT 

-2,. _.^T ! L,  , . .-2 

L 
U 

- 2A0
2
T^(1-T) 

^^ 

2-Y 

L-(v-1>  2-Y 

1 + A^2(l-T)^(^ T-l) 

i  T 

ifi = 0 
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We must now seek a solution of Eq. (26) satisfying the 

boundary conditions (19.1)—(19.6).  We shall do this by 

finding separate solutions in these subareas, labelled (I), 

(2), (3) in Fig. 2. 

For regions (1) and (2) we look for separable solutions 

of the form 

(27) ¥(1) (T,e) = + S anGn(T)sin 2nP, 
n=l 

(28)  ¥^(T,9) =42 + 2 a G (T)sin 2ne 
\/     \  }  / 2     -inn 

n=l 

Substituting either one of these expressions into Eq. 

(26), we obtain the following equation for G (T): n 

1 2-^ 
T
2
(1~T) |I-.A;

2
(1-T)Y-1|  [l + A-^I-T)^1^^-!! GnM 

(29) 
L 

jn 
l-A^d-T)^1! 1_T_A 

2
(1_T)

Y
" 

o *   ' 

2-Y 

-2Ao
2 T-(1-T)y l 

n 

^  +TiTA:2(1_T)Y~ 
-(v-1) 

+ n' v-J-1 T~l 

2 T v-r o 
2-Y / 

1 + A-^l-T)^1!^ T-l 
y 

I 
-Ü 

G ' n 

Gn-0. 

We shall consider this equation in greater detail later. 

For the present let the two linearly independent solutions 

of th- equation be denoted by G (T) and H-XT).  It will be 

shown latej that only one of the solutions remains bounded 

at T =0; let G (r) be this solution. n 
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The expression assumed for ?       (T,Ö) satisfies boundary 

condition (19.3) and boundary condition (19.2) on sector 

BE, while the expression assumed for ■iv*'/(T,Q) satisfies 

boundary condition (19.6) and boundary condition (19.5) on 

sector B'E'. 

In region (3)^ which represents the annular region 

CDC'E'AEC, we look for a solution oi   the form 

(30) f(3)(T,9) = - §9 + 2  [AnGn(T) + BnHn(T)]sin 2nö. 

(3) This expression for Yv '   satisfies Eq. (26) identically; 

it also satisfies boundary conditions (19.2) and (19.5) in 

sections CE and C'E1, respectively.  To satisfy boundary 

condition (19.1) and boundary condition (19.4) on arc CDC1 

(on which T =» T,) we require 

- -jQ = - ^ + 2  [AnGn(T1) + BnHn(T1)] sin 2ne,  0 < 9 ^ in , 
n=l t w  . ^ 

IQ = _ 29  +    S     tAnGn(Tl>   + BnHn<Tl>J   sin 2n^     " ^^ 9 < 0 , 
n=l 

or equivalently, 

00 

(31) ffe + ^Q -    2     [AnGn(T1)   + BnHn(T1)]   sin  2n9, 

where the upper sign is takan when 9 > 0, and the lower one 

when 9 < 0. 



-13- 

Since the left-hand side of Eq. (31) is an antisymmetric 

function of 9 in the interval - -j" ^ - ^ j", it can be 

expanded as a Fourier sine series 

(32)  2e + 1Q = _ g v  1 sin 2nei - ^n ^ 6 ^ ^rr . 
n=l 

Equating the right—hand sides of  Eqs.   (31)   and  (32)   we 

obtain 

(33) A G  (T,)  + B H  (T,)   = - i-   . N/ nni nnl' rrn 

This completes the satisfaction of boundary conditions (19.1)— 

(19.6). 

There are additional boundary conditions which must be 

satisfied.  These result from the requirement that the 

expression for Yv /
(T,9) be the analytic continuation of 

f^ ' and Y^ ' into region (3).  This leads to the conditions 

(34) 

V(3)(To.6) = '(2)(V9),  H<3)(To<9) = i^CT^e), - !„ i 8 ^ 0. 

Substituting the expressions for Y^ ^,Y* ',¥^ ^ into Eqs. 

(34) we obtain 
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- -Se + 

(35) 

S   [A G  (T  )   + B  H  (T  )]   sin 2n9 
n=i 

(JO 

-^+    XanGn(Tn) sin  2119, 0 <   5^ ^r. 
n-1 n nN o' 

1 
2   [A G'(T  )   + B Hf(T  )]   sin  2ne n l   n nv  er n nv   o7 ■' 

S
1
anGA(To>   sin 2n- n=i 

0 <.'  £?> 

(36) 

00 

~ §8 +    S   [A G  (T  )   + B H  (T  ) ]   sin 2n9 
TT -. ^  n nv  o' n nv  o' •' 

+    S  anGn(To)   sin  2n- n=l n n    u -7TT ^  9  ^ 0, 

< 

VAnGn('o)   +BnHn(To>J   sln  M 
n=i 

n=i 
f TT   <    9   ^   0 

Combining the first  equations  fron Eqs.   (35)   and   (36), we 

can write 

CO 

(37)    2» +^ =    S  [(An-an)Gn(T0)  + 6^(^)1   sin 2n9   , 
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where the upper sign is taken when S > 0, the lower one 

when ^ < 0.  As before, the left-hand side can be written 

as a Fourier sine series (Eq. (32));, Eq. (37) then reduces 

to 

(38)  (A„ - aj G„(T ) + B H (T ) = - g- . n   n'  nv o'    n nx o rrn 

The second equations of Eqs. (35) and (36) yield the 

single relation 

(39)  (A -a )GI(T ) + B HKT ) = 0. v /  v n n' nv oy    n nv o^ 

Equations (33), (58), and (39) determine the three 

sets of unknown coefficients: a , A , and B .  Solving n      n n 0 

these equationsjwe  find 

(40) 

a    = n TTnü^TTT 

G^T )H (T,)  - G  (TJHKT  ) 1 +    nv o'   nv   V nv   1'   nv o' 1^J J 

A Z2 1 An " rrn G^'^) 

ßn  "• rrn W^FJ 

r 1 G,(T^)H  (T,) h    .     nv   o'   nv   V 

j 

where W„(Trt)   is  the Wronskion of   the  solutions  G ("O.H  (T) no nn 
evaluated at  T   ,that  is 
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(41)  W (T ) « G (T )Hf(T„) - G'(T )R (r  ) 

If we now substitute these results into the expressions 

for f' ', f' ', f^ ', the solution takes the form 

(1) 
(42)  ¥  (T,9) - - 

05 -s s 4  

" + 
G;.<To)»n<Tl)-Gn(Tl>H;<To>1 G (T, i +  1, /^ \   w«w "W (T } nv o7 

sin 2n^ 
J  n 

(43)  Y
(2)

(T,9) = 
00 

_ 9 s  . I 
" n-l nCn(Tl> 

G;(VHn(T1) - Gn(T1)H;(T0) 
G (T) sin 2n9, 

r 
(44)  V

(3)
(T,9) = -        nA!ScrTTI7^+        „n(To)        'V) n-l L J 

[Gn<V   ,]   „ (T) sin 2n9 

Equation   (44)  may also be written 

(45) ^   ^3
)(T,9)   = - 9  -    S 

n=l 

X^T) n 
n sin 2n9, 

where 
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Now that the solution in the hodograph plans has been 

obtained,it is necessary to transform back to the physical 

plane.  If we introduce the hodograph equations, Eqs. (17), 

into the transformation relations, Eqs. (18), we obtain 

dx.i V  po 
- ^ sin e YQ + —^  p^q(l-CP) 

q _ P 1-A 

1 - CP(1 + f %) 
-I de 

_osine   fq+^l   [qd-^p)  |_(?£)   fe3 dqL 

,        1 dy = — 3     q 

r 

L 

sin 6     /n   „„x   d     /" oN        .   " o 
^ q(l-CP)   35  (p5>fe  +r COS   S   ¥q dq 

sin 9     o ^ f q(i-cp)2U - CP(I +a d|)ri ¥<] + ^„3 e-. de 

Integrating these expressions results  in 

Po   1 J      p9        •     0^0  ^ q(l-CP)2 
x  a rr- - ^-  JY^   sm  ede   +     s      n P ql"e 1-A 

I-CP(I + *£) 
■1     8 

JY^ cos ede I, + xo(q). 

J 
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y - ^q(l-CP)-l-CP(l+f^)] 
-1     9 

"o sin  9df5 + ^i   i Y    cos  Öd? 

+ y0(q) 

Making the change to the variable T and introducing the 

relations Eqs. (21)-(25), we finally obtain the following 

for the coordinates in the physical plane: 

-ß 
(47)     x^-ü-lT 

q 
-   rYA   sin  9d9  + 2T[1 - A  2n~r)$] 

r-2^ ^ß , -1 
[l-An^(l-T)Pri-2ßT(l-T)--]j    X 

cos ^d? + ^('). o 

(4 8)  y - i(l-T)^ 2T[1~A0
2
(1-T)

9
J [1-A;

2
(I-T)

B 

fl_2ST(l_T)-
1]j-1 rY Sin odQ 

T 

+ J  Ta cos öd? + y0(T) , 

where for convenience we have introduced ß = 1/(Y-1,
> . 

The y-coordinate in region (3) can be found by sub- 

stituting the expression for Y^, Eq. (45), into Eq. (48) 
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We obtain 

(49)  y (3) _ aüzlT3 TR(T) i VI [Sin^l) 
n=i 

81x1(211+1)8, 
- —!?±n—^-J 

u 

+ sin 9 . y Y /,N rSin(2n-H)8 . sin(2n-].)9 X 

where 

-9 ßiri A~2, -li,~l (50)  R(T) = [l-A0-(l-T)P][l-A^(l-T)Pfl-29T(I-T)--
L}] 

(Since y = 0 when 9=0, yo(T) has been set equal to zero 

in Eq. (49).) 

Along the outer boundaries of the jet CD and C'D the 

velocity is consta 1, equal to T^. Setting T = Tj^ in Eq. 

(49), we obtain 

,(3) (51)     y^(Tp9)   = - — 
Qd-T,)"^ 

^1 

r 

w 

rsinjln-pe _ 5 111(2^1)9, 
1     Jn~l 2n+T i 

+ sine  + 2    Xn(T1)   [Sin^tiH + s 1^2^-1)9   ]   j, 

J 
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From the expression for X (T) , Eq. (46), v?e see that 

X (Tj) = 1.  The last sum  in the above equation can then 

be written 

J^si^tiii + linil-lHj . sln e + 2ji ^^ 

The right—hand side is the Fourier sine series expansion 

of the function - ain 9 + £ (with + for 9 > 0, - for 9 < 0) 

Hence we can write 

(52)  2  [Singn±lli + si^gn-l)^ ^ 
ri=I TH+I- Ti^r -  sm - + -^ 

, L rr  + for 8 > 0/ 

- for 9 < 0 

Substituting this expression in Eq. (51) yields 

(53)  y(3)(V9) ---1^- nv ]/ 

n=L 

,s in(2n-l)Q  s in(2n+I)9, 
[  2n-l 2n+l   -' 

± ? f . 0 ^ 0 . 

When 9 = - -jj y   is equal to half the width of the opening 

of the jet, ir,   and thus 



-21- 

^r (3) ~      h     QCi-^i) : Xn^.l>    sin 

n=l n 

2n-l.) n 

7F^I 

r 

sm (2n+l)TT 

7H+r 
or. 

n„i 

(54)     h = Ml_I^    ^T^Crp    ^ ^    l      +i\. 
n=l      4n -1 

u 

By continuity of mass,   we have 

J 

(55) 
pl Q = mass flow = p— qjh  , 

where h is the width of the jet at x = + ^.  Using Eq. (25), 

we may rewrite (55) as 

0 Q = q^l-T^P h 

Using this expression to eliminate Q in Eq. (54), we obtain 

I  h 

h 

n
v i 

8       - (-D^xVr,) 

n-l   4n -1 

where k is the coefficient of contraction of the jet. 

Differentiating Eq. (46), we find 

•,T ,  Gn(V    1    Hn<Tl)Gn<Tl>-Kn(Tl)Gn<Tl)  ', , 

or 
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Introducing Chis into the equation for 1/k above, we obtain 

8 
K n=l 4n -1 

ida 
5^T " ^7 ^T^j 

For an infinitely broad vessel (H - -)> ^0  m^st bc 

zero and the expression above becomes (denoting the value 

of k in this case by k^). 

1   ,   8 , n,  .  ;  (-1)" ^n^P   V^f>> 

This should be compared with the Chaplygin formula for the 

nonmagnetic case 

^ j nonmagnetic 1 n=1 4n^_1 Z^V 

where 

Zn(T) = Tn F(an,bn, 2n+l; T) . 
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APPENDIX 

The equation obtained after separating variables was 

sho^n to be Eq. (29), chat is, 

1 2-Y 
T2(l-T) [l-A^il-r^]    [1 +A;2(1-T)^(^ T-1)]G^(T) 

r i Y 
+ T < [1 - A^CI-T)^1]  [l-T-A^d-T)"^ + ^-J 

(A-I) 
O  » 1 

.^^.^  . Y=trv-3 1 ,-2,,  N?=T I 

- 2AO-T'(1-T) - ^t^-j - ^ A^d-T)—)__ Gn(T) 

2-Y 
+ n2 10-  T-1J [1 + A^d-T)^1^ T-l)]2 Gn(T) - 0. 

The solution we require is the one which remains bounded 

when T = 0.  In this Appendix we shall present a brief 

discussion of Eq. (A-l).  Complete details will be given in 

a subsequent paper.  First, we note that when the magnetic 

field vanishes, i.e., A  =0, the equation reduces to 

(A-2)  T
2
(1-T)G^ + T[1 + (ß-I)T]G^ + n2[(l + 2ß)T-l]Gn = 0. 

This is the usual equation which arises in the study of the 

hodograph technique [7].  The solution of this equation 

which remains bounded at T = 0 is given by 
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(A-3)    G„(T) = Tn F(a ,b , 2n+l; t) . 

where a ,b  are determined from n n 

(A-4)    an -f- bn = 2n - ß , 

ab    = ~ßn(2n+l) , n n 

and F(a .b . 2n+l;T) is the hypergeometric function^ whose n' n 

power series 

r/")«j-iN    ^ r(a„+rn)r(b +m)  ra 
(A-5) F(an,bn,2n+l;T) - ^if^ ^ ^^ Z,  , 

is uniformly convergent in the domain |T| < 1. 

When n =1, Eq. (A-l) may be solved exactly (see 

[4]).  For n ^ 1, the primary difficulty in solving the 

equation resides in the fact that, for general v, the 

coefficients involve nonintegral powers of T.  Note, how- 

ever, that if 

(A-6)    yirr - k, or v = 1 + ^ , 

where k is a positive integer, then the coefficients are 

polynomials In T.  In this case the equation becomes 



-25- 

I! 

(A-7) 

T2(L--)[l-A;2(l-)k][l+A;2(l-)k~1((2k+l)'-l)]Gn 

+ T4i-A;2(i-)k][i-T-A;2(i-T)k+1+kTj 

- 2A^2(l-T)k-l[(k-2k2) - kA;2(I-T)kllGi
,
i 

+ n2[(2k+l)T~l][l+A"2(l~T)k-1((2k+l)T-l)]2 Gn = 0 

The finite singularities of this equation are given by 

T = 0, 

T = I, 

(A"8)   T-i ^ 

(l-T)k-1[l - (2k+l)T] = A2. 

Since k is a positive integer, the Last expression has 

exactly k roots.  Thus Eq. (A-7) has (3+k) finite singularities 

In the special case k = 1 (Y - 2) the four finite singularities 

are 

(A-9) 

- = 0, 

T = 1, 

T « I - A0 , 

' = 3(^0) • 

One can   shov^ that  T  =  ^  is  also a  singular point 
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Although T -- 0 is a singular point of the general 

equation, Eq. (29) or (A--1),, this equation^ like the hyper— 

-2 geometric equation to which it reduces when A  =0, has 

one regular solution near T = 0.  It is this solution which 

has been called G (T).  To find this regular solution we 

write G (T) as nv / 

G (.) = 2 a . T , nv /       nk  ^ 

and substitute in Eq. (A-l).  At the same time the co- 

efficients of the equation are also expanded in series in 

T.  The following recurrence relation for the coefficients 

a , is then obtained : nk 

(l-A-2)2(k2-n2)a^ - [(k-l)(k-2) + o nk "^T fv-2 + 3A" _o - (Y+1)A^] (k-1) 

.-2 
2fY+l (A-10) -n^fl^ + ^ A^[-6Y + A^(3v-l)J]] a^, + n^ -^ 

[8y2 - 7y - Aü
2
(12Y

2
 - 11V + l)Jan>k_2 , 

+ A -2 

s=0 s=0 
l=k .=k 

S c] s(s-l)ans -        IJ          cJ  sa 

s=k-l s=k-2 
^+s=k i+s»k 

s=0 
^«k 

n2>; I    ns = 0,         k >_ 0, 
1=3 

s=k-3 
^+s=k 

ns + 

where 
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(A-ll-a)     Cl 

/       v-T       \ /        Y' 
{±Lr{    I ,   4.   1 1   _   V+I   A"2   CU^r 
TITC\T3T - l + l       v-T Ao    CV^=T 

\ / 

^T / Y-i   \ 2    A 

/   V=rN 
(A-ll-b)     Cf = C,-^ 

£T Y 
Y=T\ 

\ y 

1 
Y=T 

2=1 
Y-T 

+ ^c^-. + i)+2^c^-.^ 

2A -2 13 
.r ^    cl^f -1 + 21, 

vV—J 

(A-ll-c)     cj 
^f 

/       2(1=1) 

= 2(^)'    C^ rq + 2^ _ 3A-2 (^)     CU(^)  - q + 2 

,    / 2<^ 

+ A;2(^ C i 2^~"+ 3 

+   2   cl^-qZ-A^        Cl2(^)      -q 

2rvx 

Y-i 

Y-i     v-V     C^Y 

^) 

-2      nU/2-5 

\ / / 

\ 

2^) 
2  Y+l „ /-,2-Y, 

+ 3 Ao ^r c (2(^i> - i + 1   . 

/ 
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and C(     ) is  defined  in  the  usual  way 

r(n]m n. 

According to (A-10) each a , is given in terms of all 

previous a , > whereas in the nonmagnetic cas^ the recurrence 

relation involves a , and a . -, only.  Thu^, it seems n K.     n ^ K— x 

impossible to write down the various a , explicitly.  How- 

ever, WL do note that the first nonzero coefficient occurs 

when k = n.  It is then more convenient to write our 

solution as follows 

(A-12)   Gn(T) = 2 a  Tk = S a , Tk = Tn S a  Tk~n n     k=0 nk     k=n ^       k=n ^ 

oe 
,n   T P      ^   ^    —      P 

p=s0 n^p+n      p!=0  np 

The recurrence relation for a , obtained directly from 
np J 

(A-10),   is found to be 

(l^2)2p(p+2n)inp -j[(p+n-l)(p-in-2)+ ^-{Y^ + SA^-CY+^A^
4
] (p+n-1) 

-] -2 

- n2{^ + ^ *ö2(-(,^:2^-mpUi^  + n2 —2-, 

(8V
2
-7Y-A;

2
(12V

2
-UY+1) län)p_2 
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(A-13) 

-   s=0 
t=p+n 

^:2 

s=p+n-l 
s+'t^p-f-n 

s(s -^s-n- 

s-0 

>: 

1-2 
s=p+n- 2 

n 

-n 

s-0                             - 
^=p+n 

■*—*          I    n^s—n 
1=3 

s=p+n—3 
s+-C=p+n                          - 

The first fev terms in the series for G (r) may now be 

calculated from (A-13).  We find 

G (T) = a  Tn2 1 +     i 

nv ^   no 
(l-A-V(l+2n) 

[n(n-l)+Bn-n2D+n(n-l) A^4 ] T 

(l-A;2)222(l+n) 
[[nCn+^+BCn+^-^D+A^nCnfl) ] 

(A-14) 

[n(n-l)+Bn-n2D+n(n-l) A^4 ] 

(3-A;2)2(H-2n) 

A:2n 
_2 

o   n(n-l)A      7 ft si       « 
[n^E +   ° {Y+A-^(i_3Y)} _ _2— 2{Y-3+AO

2
(1-3Y)] 

(Y-1)
2
     

0 (v-l)2 
>r2 

j 
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D = -^j   [Y-2 + 3 Ao
2 - (v+DA^], 

(A_15)   D = ^ + ^ A;2(-6v + A;2(5V~1)) 

A *" 
E = - ^ 

(Y-1) 

[8v2 - 7v - Ao
2(12y2 - lly + i)] 

_2 
If A  is set enual t  zero in (A~14) the series reduces o 

to 

(A-16)   G (T) = ann  Tn F(a ^b ,2rH-l'T), ' nK  ' no    v n^ n^     '' 

wher^ a_ and b  are the same quantities defined in (A-4). 

In addition to G (T)_, it is necessary that we know 

W (T)  the Wronskian of the two linearlv independent n '     l 

solutions of (A—1).  This is given by 

(A-17)    Wn(T) = W 0 exp  - j S      b(T) 
iro ITFT dr , 

where 1 2-v 

a(T) -  ril-^il-A^H-r)7^1]   [I + A^I-T)^1 (^ T-I)], 

-2,-,  .xY-T,  fn  . -T2/-,  _^V=i .   T b(T) = [l-A-^l-)^]  [l-T-A^l-T)^ f ^j 

2-Y I 
OA—2 2/-,  N v—I r v—3     1 A—2/,  x v—1 

- 2A    - (I~T)      [——2 - ^rr Ao ^-^ 0 (y-l)2    i 0 

Equations (A--14) and (A--17) are sufficient to enable 

one to calculate k, the coefficient of contraction of the jet. 

using Eq. ('37) 
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