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Abstract 

This paper treats the problem of estimating the intensity 

distribution of an optical pattern which has been distorted by diffraction 

and noise.    Under the assumption that the signal and noise are additive 

and that they have prescribed means and covariance matrices, the 

optimum linear estimate of the object distribution is obtained.    This 

estimate is shown to be a linearly-filtered combination of the a priori 

mean and the observed image dlstrttnitkm, with the details of the filtering 

depending on the prior information» the noise statistics,  and the optical 

imaging system.    The performance of the optimum estimation procedure 

is evaluated for the important special case of large a priori uncertainty. 

Finally, tine optimum procedure for processing multiple observations 

is discussed«   ft is shown that as the nucber of observationj becomes 

large,  the estimate approaches the true object. 
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I,      Introiiiction 

The problem of restoring the detail removed from an optical pattern 

by diffraction has been considered by Harris [ l].    Using some well- 

known results from the theory of Fourier transforms, he showed that 

in the absence of noise, an optical pattern known a priori to be of bounded 

spatial extent can be exactly reconstructed despite the rejection of high 

spatial frequencies by an optical system. 

While the noise-free problem is of considerable theoretical intersst, 

it does not accurately represent the physical world.   In any actual 

situation,  spurious disturbances such as background radiation, film 

granularity, and detector noise are superimposed on the quantities to be 

measured.    Thus, any restoration procedure will involve a certain 

amount of unavoidable error.   Furthermore, a given restoration procedure 

may perform very bE.dly in the presence of noise even though It repro- 

duces the pattern exactly when noise is absent.   Hence, It is important 

to take into account any knowledge we have about the noise statistics, as 

well as the a priori infotmation about the pattern to be estimated, in 

designing a restoration procedure. 

In this paper, we treat the problem of obtaining optimum estimates 

of an optical object in the p^sence of additive noise using the criterion 

of minimum mean square error. 



II,    Statement of the Pro,  s m 

Tltroughout the paper, we assume for convenience that we are 

dealing with incoherent illumination.   All observed and estimated 

quantities are intensities, and the transfer function of the optical 

system is that appropriate for incoherent light [2],   This assumption 

simplifies the discussion somewhat and avoids confusion, but it is by 

no means essential. 

The object to be estimated is denoted by x(a» ßh where a and ß 

are the object-plane coordinates.   For simplicity of presentation, it 

is assumed that the optical system exhibits spatial invariance [ 3], and 

that it has a point spread function a(4, T^) where | and T\ are the image- 

plane coordinates.    The configuration is illustrated in Figure 1, 

The image of x(o, ß) is given by 

Yii* rs)   =   x^. T1)*a(e. n) (1) 

where x(^, r\) is the object distribution re/erred to the image plane and 

the star denotes convolution.    This image is corrupted by additive noise 

n(£, r\)t and the resultant image z{|, ^) » y(4, T|) + n(|, r\) is available 

for processing.    The  objective is to estimate x(a, ß) based on the ob- 



GorvAtion ?{?, rj) and any a priori information available abcnit the 

cbject. 

^#   Sampling and Vector Representation 

Almost any reasonable object x(af ß) can be represented to the 

desired degree of accuracy by partitioning ihe object plane Into small 

regions over which x(a, 6} Is essentially constant.   If these regions are 

made sufficiently small, each of them can be treated as an impulse 

or point source of light.    The image due to on© of these regions is 

then approximately proportional to tho point spread function of the 

optical system displaced according to the location of that region«   The 

total image is the superposition of the Images of all the elementary 

regions. 

Let the intensity of the k-th region in the object plane be x,   = 

x{a, , ßü'    Ths image of this region is approximately x.  a(| - 4»» 

r] - TU), where |. and TL  are the image-plane coordinates corresponding 

to a,  and ß, .   If the object consists of n such regions, the total image 

is 

kal 



1 1 yy-i - -, 

If this image is sampb i at the points (| >  q ),•••» (|    ,  n    ),  we have 

f^J    J\ = 
n 

yC4J.   l") -  T.    v   a{s 

k=l   k 

J 
^.u» k» '' V (3) 

Note that (| ,  if) is not necessarily equal to {i,t  r\,).    If we set 

v^**** (4) 

Ir matrix form. 

i, ~ ^l£f (5) 

where 

^ =/f 1 

^=/fH •  ' ain 

,ä   ... a ml mn^ 

The samples y. are in gencrrl perturbed by noise uampies n.,  and 
J J 



the observed vector i» 

z   « ^ + n   =  Ax + « l„) 

where   n a 

vw 
Throughout the remainder of the paper, j.t is assumed that the approximate 

vector representation discussed above is sufficiently accurate that the 

associated error can be neglected.   Hen;*, the vector x will be regarded 

as the object, and the estimation procedures considered will be evaluated 

in terms of how closely they reproduce x. 

IV,   The Optimum Estimation Procedure 

In order to proceed further, we now make some additional assumptions 

about the noise and the a p<riori inf. rmation.   We assume that the noise 

vector n has zero mean ana known   ovariance matrix K .    The restriction — —n 

to zero mean is unimportant, siic e only the flL>ct-aations about the mean 

limit system performance.   Further, we assume that the a priori 

information about the object to b* estimated consists of the mean vector 

g and the covariance matrixJC t and that x and n are independent.   The 

quantities £ and K   do not necessarily correspond to any actual statistical 



fluctxiations which the object undergoes, but rather reflect our initial 

ignorance of the object.   Roughly speaking, a covariance matrix K   with 

small entries corresponds to a situation in which we have considerable 

prior infcrmation about the object, whi?e a covariance matrix with 

large entries corresponds to a situation in which we have little prior 

Information, 

The approach to the estimation problem taken in this paper is that 

of discrete Wiener filtering of the perturbed image samples.    That Is, 

we seek that discrete linear filter whose output x minimizes the mean 

square error E[(x - x)1 (x - x)], where the prime denotes vector or 

matrix transpose. 

We first assume that the prior meanj* is equal to zero.    The linear 

filtering operation on the observed vector z is then represented by matrix 

muillplication, and any linear estimate of x is a vector of the form 

Hz.   Our objective is to choose the matrix H to minimize the mean 

square error 

a   ^   E[ (Hz - x)« (Hz - x)] (7) 

Using the fact that js = Ax + n, this expression can be written in the 

form 
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e   =   E f[ (HA - I) x]' [ (HA - H x] 

+ f CÜA - i) x]« H n + (Hn)' (HA . 1^) x 

+     (Hn)» Hn 7 

Since x and ji are assumed to be independent random vector« with 

zero means, the cross-product terms in (8) are zero and the error 

expression reduces to 

e   =   E f[ (HA- Hx]« [ (HA - n x] + (Hn)« Hn| 

Htr[(HA-_I)K    (HA - p» + HK   H1] (9) 

where tr denotes the trace of a matrix {4}« 

Upon expanding (9) and completing the square, we obtain an 

expression for e which can be minimized by inspection. 

e   =   tr   r[H(AK  A' + K )2 - K   A» (AK  A» + K f1] 
l1— x—      —n        —x—   r:—x—      —n'    J 

± -1 
IH(AK   A« + K )2 - K  A» (AK  A» + K ) *]» l— x-       -n'       -x—   "—x—      —n*    J 

+ K    - K A» (A K   A« + K  )' 1 A K   7 (10) 
—x    —x— x —      —n       — —x j 

where (B)   is the symmetric square root of the symmetric matrix B 

[5],   Since the term involving H in (10) is non-negative, the mean 

square error e achieves its mini  mm for that H which satisfies 



i .1 
[H(AK A' + K  )2 - K A« (AK A» + K  )  2]  = 0 

This yields as the optimum discrete linear filter for the zero-mean 

case 

H   =   K A' (AK A' + K  f1 (11) 
—        —x—    ' x—       —n 

A somewhat more convenient form for our purposes,  obtained after 

soma manipulation of matrices, is 

H   ■   (A'K "1A + K 'l)'lA'K  '1 (12) 
— — —n      —     —x — —n 

Thus far we have assumed that the prior mean^ is zero.    The 

above results are now extended to the general case in which fi ^ 0, 

This extension is accomplished by noting that the above results are 

applicable to estimating the amount by which x deviates fromu, namely 

x - |*.   Hence, we merely apply the above result to * " U an<i add|i to 

the resulting estimate of the deviation.    This yields as the optimum 

linear estimate of th   object distribution 

A 
x s|i + H(z - Aj») 

= Hz i (I - HA)u 03) 



10 

which becomes upon iubstitudng (12) for H 

A -1 -1-1 -1 
x   =   (A'K       A 4- K       )     A«K        z 
— — —n    —     —x — —a     — 

+   (A'K 'l A + K "S"1 K '1 u (14) 

This is the desired general result. 

V,    Special Cases 

A 
It is seen that the optimum estimate x is just a linearly-filtered 

combination of the observed vector^ and the a priori mean gi    The 

details of this filtering and combining depend on the noise, the optical 

system, and the a priori information«   Since the operations involved 

la obtaining the optimum estimate are in general rather complicated, 

we now consider several special cases in order to gain additional 

insight into the estimation procedure» 

A.        K     «r     I, K     «(r2! 
—n        n   —   —x        x   — 

2 2 
To begin with, we assume that K    « <r      I and K    s (f     I 

—n       n  — —x       x  — 

where 1^ is the identity matrix.    This corresponds to a situation In 

which the noise is white and in which information about one coordinate 

of x provides nr Information about any other coordinate.   In this case, the 



il 

optimum estimate becomes 

A« A 1    -.1     A« 

— ff£ ff' cr6     — 

n x n 

A'A 1,-11 .,_. 

V * tr *■ or * n x x 

Thi» expression provides some insight regarding the relative 

weighting of the observation z and the a priori mean£,   If the a priori 

uncertainty about x is much larger than the uncertainty due to the 

2 2 
additive noise (the usual case), then <r     >> tr    ,   From (15) we see 

x n 

that in this case the optimum estimation procedure weights the cb- 

serva.ion z much more heavily than the a priori mean g provided that 

the elements of A are not too small.    This agrees with intuition,  since 

if the a priori uncertainty is very large v/e have little confidence in the 

»priori mean.   On the other hand, if ff 
2 » . 2. we have a very noisy 

— *  '        n x 

measurement.   From (15), we see that in this case ^ is weighted more 

heavily than z, again in agreement with intuition, and the experiment 

is not a very infoimative one. 



\z 

B,        Large a priori uncertainty 

We can obtain additional insight into the optimum estimation 

procedure by looking at the Important limiting case of large a priori 

uncertainty.   The optimum estimate in this case Is obtained by making 

a Neumann series expansion [ 6] of (14) and retaining only the first 

teim.    This procedure yields 

A -l      -l -1 
*  " Q ^.     6)    *l ?S      ■ (16) 

This procedure is now considered under various assumptions about 

A and K . 
— —n 

If the system matrix A is square and invertible,   (16) becomes 

x   =   (A'K "l^"1A«K 'lAA*1*  »A'1* (H) 

In this case, the optimum estimation procedure merely "divide« out" 

the effects of the optical system by multiplying the observed vector by 

• 1 
A    ,   This is precisely the procedure which would be fol^owed in the 

absence of noise, and the above analysis clearly indicates the limitations 

on this procedure and the conditions under which it is optimum.    These 

conditions are negligible a priori information about the object to be 

estimated (except for information regarding spatial extent) and a i 
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sampling scheme lit th*: image plane which yields a square and in- 

vertible system matrix A.   If either of these conditions is violated, 

the more general data processing procedures given by (14) or (16) 

should be used* 

A further simplLTication of (16) is achieved in the event that the 

2 
additive noise is white.   In this case,  K    «   «r      I and 

—n n   — 

x   a   (A' A)"1 /« z (18) 

This expression reduces to (17^ of course, if A is square and invertible. 

VI,   Evaluation of the Optimum Procedure 

For the purpose of evaluating the optimum estimation or restoration 

procedure,  we assume that the actual (but unknown) object vector is 

x ,    The observed vector is thus 
—o 

z   =   A x    + n 

We further assume that the a priori uncertainty is very large,  which 

leads us to use the estimate given by (16),    This yields 
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x   =   (A1 K 'I A)"1 A« K " l (A x   + a) — — —n      —       — —n      '——o 

=  xrt+ (A'K "1 Af^'K "1 n (19) —o     •— —«n      —       — —n     — 

The mean square error (conditioned on the actual object vector x ) is 

given by 

e   =   E( (x - xo)' (x - Xo)] 

*   E |[(A'K ^A^A'K *l n]' [(A'K *lA)"lA'K ^nU 

which after some manipulation of matrices can be written 

e   =  trnA'K^A)"1] (20) 

In the special case of white noise. K     « «r     I and 
' —n n  - 

e   u   <rn
2tr[(A«Arl] (21) 

Recall that the terms in the matrix A are determined by the point 

spread function of the optical system and the sampling points.   Similarly, 

the covariance matrix K   is determined by the sampling scheme in the 

image plane as well as by the nature of the noise.   Hence, it is clear 

that we cs*n control the form of the matrix A'K '   A to a limited extent 
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through our choice of sampling schemes,    A. judicious choice of sampling 

points can reduce the mean square error associated with the optimum 

estimation procedure» 

Th« problem of where to sample and how many samples to take 

is both important and nontrivial,  and is currently being investigated 

Although no general solution is available at this point,  some of the 

features of this solution are apprent.   First,   it is clear that samples 

near the central part of the image are more useful than samples on 

the fringes where the signal-to>noise ratio is low»   Second,  it is not 

difficult to show that adding additional samples without changing the 

location of previous samples will never increase the error, and in fact 

will decrease it except in special cases.    Thus, it may well be that we 

will want to take more samples than we have unknowns to estimate 

(m > n).    The usefulness of additional samples is limited by the increase 

in the complexity of the estimation procedure,  of course,  since the 

mum estimate for th - case is given by (16) where A is an m x n 

matrix rather than by the intuitive expression (17) with A an n x n matrix. 

^ 

ii^N mJ 
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VK.     ELxample 

We now consider a si'nple example to iilustrate several of the 

above ideas.    The configuration for this example is shown in Figure 2, 

The object is a single line source at the origin in the object plane, and 

it is desired to estimate the intensity of this source.    We assume in all 

cases that the a priori uncertainty is very large.    The aperture is a 

rectangular slit with point spread function 

a(4)   s  a sine   ^ 

= a 
2 c sin tr^ (22) 

The noisy image is then given by 

y(S)   s  xa sine £ + nC£) (23) 

To begin with, we consider the case where a single sample is 

taken at ^ = 0,   We then have 

z   s  ax + n (24) 

J 
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The matrix A In this case redvcss to the scalar a, and the optimun. 

estimate is, from (17) 

A 
x   -   st/a (25) 

The mean square error associated with this estimate is, from (21), 

e   = 
n 

(26) 

where or     is the variance of the noise sample at | = 0. 

Now suppose that in addition to the sample at ^ = 0, a second 

sample is taken at ^ = 1 /2,   Assume for the moment that K    = c     I; 
—n       n  — 

i.e,, the noise samples are uncorrelated and have the same variance. 

The system matrix A in this case becomes 

a a 

-   "   ^/ir3   =   (0.404a} 

Since A is no tauget square,  (16) rather than (17) must be used to 

estimate x.    The optimum estimate for this case is 

x   =   0,859a1/a+ 0.347 z^/a (27) 

where z   is the observed sample at the origin and t that at | = 1/2, 



1H 

Ths mean  square error associated with this estimate is seen from 

(21) to be 

e   =   0,859 <r £/*lt n (28) 

a moderate reduction over that associated with the single-sample 

procedure. 

To illustrate the effects of correlation between noise samples 

in a particular case, we consider the same two sampling points as 

above, but now assume 

K     =  -r 2 (A "^ n a   T)#5    I * 

The optimum estimate is seen from {16) to be 

x   =:   U052 z /a - 0.127 22/a (29) 

with an associated mean square error 

e   =   0# 989 a    /a 
n 

(30) 

The effects of correlation between noise samples in this example may 

be assessed by comparing (29) and (30) with (27) and (28), 

i 
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Vm.   Multiple 01 nervations 

In many situations, we make not one but several observations 

of the object to be estimated«   For example, we may have several 

different photographs of the object.   If the noise samples associated 

with different observations a*e independent, we can make use of this 

fact to improve o\ir estioate. 

i q 
Suppose that q observations z    , , z   are made, where 

1 A * z     =   A x + n 

The n   are assxjmed to       independent noise vectors, each having 

zero mean and covarlance matrix K ,    The optimum estimate based 
—n 

on the observations z    ,  . z    can be shown by a method similar to that 

used for a single observation to be 

x     =   {qA«K 'l A+K 'S"1 qA'K "^z 
—q — —n      —     —x - —n    — 

where 

- i -l.-l      -1 
-5-   fqA'K       A+ K       )     K       a 

*   — —n     —     —x —x    — 

_ 1      ^       i 
z   = —      S    z 
"       «1    Ul - 

(31) 

(32) 
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is the sample mean of the observed vectors. This estimate is identical 

in form to that given by (14) for a single observarton, and !t reduces 

to (14) for q s 1 as it should, 

-I 
If the matrix A1 K       A is non-singular, as it should be for good 

restoration, we can consider the limiting value of the estimate x   as 

the number of observations becomes arbitrarily large.    We have 

lim        A -1.1 -1_ 
x     =   (A'K       A) ^A'K      "i 

q ~*oo     —q — —n     —       — —n    — 
(33) 

But by the law of large numbers [7], we further have 

lim     _        A 2   B   Ax 
q -+ao   —        -—o 

(34) 

with probability one,  where x   is the true value of the object, assumed 

to be constant throughout the experiment.    The optimum estimate   .ms 

reduces in the limit to 

Um      x    «  CA.«K "lArlA»K '1Ax    = x       (35) 
q -♦oo    --q — —n     —      — —n     ——o       —o 

and we see that the object is reproduced exactly despite the presence 

of noise. 

f 
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