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ABSTRACT

Necessary definitions and theorems from real variable dealing with

some properties of Lebesgue-Stieljes measures, monotone non-decreasing

functions, Borel sets, functions of bounded variation and Borel measur-

able functions are set forth in the introduction. Chapter 2 is concerned

with establishing a one to one correspondence between Lebesgue-Stieljes

measures and certain equivalence classes of functions which are monotone

non decreasing and continuous on the right. In Chapter 3 the Lebesgue-

Stieljes Integral is defined and some of its properties are demonstrated.

In Chapter 4 probability distribution function is defined and the no-

tions in Chapters 2 and 3 are used to show that the Lebesgue-Stieljes

integral of any probability distribution function can be expressed as

a countable sum of positive numbers added to the Lebesgue-Stieljes inte-

gral of a continuous probability distribution function. The conclusion

indicates how the Lebesgue-Stieljes integral may be used to define the

probability associated with a Borel set of real numbers.
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Chapter 1

INTRODUCTION

The terminology and notation used in the thesis is defined below.

Certain elementary theorems are stated without proof and proofs are indi-

cated for a few properties of Borel sets, Lebesgue-Stieljes measures,

functions of bounded variation and Borel measurable functions. These

theorems and properties are used in the subsequent chapters. The proofs

are included in the introduction to avoid breaking the continuity of

various discussions.

DEFINITION 1.1

R is the collection of all real numbers.

DEFINITION 1.2

R* is the collection of all real numbers and +oo

DEFINITION 1.3

A set is any collection of real numbers.

DKHNITION 1.4

A class is a collection of anything other than real numbers.

DEFINITION 1.5

An algebra A is a non empty class of subsets of R such that if A

and B are in ?t so is AUB and if A is in a. so is A.

THEOREM 1.1

An algebra A. is closed for the taking of finite unions and inter-

sections. R and are elements of A. .

DEFINITION 1.6

A CT -algebra A is an algebra where every union of a countable

number of sets in a is again in 2 •



THEOREM 1.2

A c-algebra a is closed for the taking of countable intersections.

THEOREM 1.3

There exists a minimal c -algebra which contains the class of all

intervals.

Proof; Let K denote the collection of all c-algebras that contain the

class of all intervals. The class of all subsets of R is an element of

K and therefore K is not empty. Let

Then -/3> is a a -algebra and if d is a C -algebra in K, i$ is a sub-

class of (X. . Further "£> contains the class of all intervals and hence

"fo is in K. it) is therefore the minimal o* -algebra containing the class

of all intervals.

DEFINITION 1.7

The class 'tb is the class of Borel sets.

DEFINITION 1.8

A function on A to B mates every element of A, the domain of the

function, with a unique element of B. It is not necessary that all ele-

ments of B be used.

DEFINITION 1.9

A set function, q9 , is a function on a given class of sets to R*

such that cp mates at least one set to an element of R.

DEFINITION 1.10

A countably additive set function, cp , is a set function such that

for every UA- in the domain of cp where the A^'s are disjoint sets



in the domain of <§)

f(UA-J--£ cpA-c

DEFINITION 1.11

A measure is a non-negative, countably additive set function
<

defined on an algebra.

DEFINITION 1.12

A Lebesgue-Stiel jes measure, n , is a measure that mates finite

numbers to finite intervals.

THEOREM 1.4

Let u be a Lebesgue-Stieljes measure. If B]_CB2 and both B^ and

B2 are in the domain of ju , then

Proof: Since B2~^\ = B 2 HB^ , B
2
~B^ is in the domain of a. .

THEOREM 1.5

If u. is a Lebesgue-Stieljes measure, then

JU0 *o

Proof

- )X A + ix(p

DEFINITION 1.13

y^C is tne class of all monotone non-decreasing functions defined on

R and continuous on the right.



DEFINITION I.

1

4

F± and F2 are r-related if F^ and F2 are functions in J/C that

differ by a constant.

THEOREM 1.6

The r-relation divides M. into equivalence classes.

Proof: The r-relation is evidently symmetric, reflexive and transitive.

THEOREM 1.7

Every function in AC is in one and only one equivalence class.

DEFINITION 1.15

E is the collection of all equivalence classes in /K.

.

DEFINITION 1.16

Let F be a function defined on R and let b be an element of R*.

Suppose F is such that lim F(x) exists and, in case b =-*-oo ,

X-*. -00

lim F(x) exists. Define F(-°o) = lim F(x) and in case b : + <x>

define F(b) = lim F(x). If there exists a "finite partition",

-so»«a <X l
<..< <x =b

>

for some real number k, then F is a function of bounded variation on

(-oo
)
b 3 . In case b = +00 , F will be said to be of bounded varia-

tion on R (or simply a function of bounded variation.)

THEOREM 1.8

If F is of bounded variation on ( -cx= , b] , then F equals the dif-

ference of two monotone non-decreasing functions on (-00 , b\ . The proof

of th P ''
1
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LEMMA L.8.1

For every finite partition of (-0°, b~\
,

c- 1

DEFINITION 1.16.1

The total variation of F on (-<»,b] , V-o©
, is

up Z_ \ Fcxi) - Fo^/i'Sup

Evidently V-00 < ^

LEMMA 1.8.2

For every finite parcition of C- " ^.!

Fcb> - F(-<0 » Z-4- + X- _

n

where ^.^ is the sum of all the positive terras in 2- L^ 1-**-'1 ~ ^-^i-iM

and 21 _ is the sum of the other terms.

DEFINITION 1. 16.2

The positive variation of F , P_?» , is the supremum of X+ over

all finite partitions of C- 00 -, b3 . The negative variation of

F, N_£, , is the supremum of — X- - for all finite partitions of

LEMMA 1.8.3



Proof: Since

and

it follows that

+ ^ -2.

and

!_^ "k L V.^ fFtb)- pc—J

-^L_ 1 iL V-« ». R.-<*>> - pcwO

On the other hand for every £->0 there exists a finite partition

of V.-30 kr. J such that

Hence for this partition a similar argument shows that

Z + > i- CV-^-€ + F( b) - F C- *>>]

and

b
-z__ >kl V-^ - * - Feb) + 1- 1-^]

Thus the lemma holds.

II . 8 .

4

=P.t +Mb

PCbi -- (=<+*o1 srl^S. "M-t,

Proof; These equations follow from adding and subtracting the equa-

tions of the preceding lemma.



LEMMA 1.8.5

For all x
,

LEMMA 1.8.6

If x <Cx' , then

M-L £ M.L <*nd T>_^ £ T>_^

Proof: Obviously ^_+ cannot be greater for C-^x"} than for

<-°°i *' J . Similarly -X_ cannot be greater foi <c-«*=>> *3 than

for C-^x'H • The theorem follows from lemma 1.8.5 and lemma 1.8.6,

DEFINITION 1.17

A function g is Borel measurable if (x: acx^kj' is a Borel set

for every k.

THEOREM 1.9

If g is Borel measurable, then ^ x: g(x)<ki
,

(x; g(x) £ k ( and

jx: g(x)>k I are Borel sets for every k.

Proof j Since

for every k and the Borel sets are closed for the taking of complements,

^x; g(x) < k j. is a Borel set for every k. Since

for every k and the Borel sets are closed for the taking of countable

intersections, (x: g(x) < k| is a Borel set. Finally {%.% g(x) ^ k \



is a Borel set for all k because

(x: a(x)ikl= (*- <3Cx>>k>.

THEOREM 1.10

If g is a Borel measurable function, Kg is a Borel measurable func-

tion for every fixed real number K.

Proof; When K = 0, the theorem is obvious. When K >0

f x: KatOi. k\ * ? x'. ac*) i. ^-\,

When K <

THEOREM 1.11

If g, and g2
are Borel measurable, then gj,4-g2 is Borel measurable*

Proof: If gi(x)4- g-(x) ^"k , there exists a rational number r such that

Hence writing the rationals in a sequence r i» r 2»*°"»

I* •«,<-*> *<j 2 cx><-fc)-c 0^-y^«
x
\r\U-^<k-r.J]

On the other hand, if there exists a rational number rn such that

gl(x)<rn and g2
(x)<'k-rn , then gj^x) + g2

(x) <£ k. It follows that

Hence

(x'.a.tO + ^cxXtjDpU x:yxKrjA(x'. V0< le-rj]

{*-- 4,C(>4-d
ft
c«>< Jei= UL(*: ^»t»><^A{» : o^X k " ri H



Taking complements

THEOREM 1.12

If for every n, g Is Borel measurable and if

iim gn (x) - g(x)

then g is also Borel measurable.

Proof: Take an x in £x; g(x) <k ) and choose m large enough that

— K ~2 L^ - ^^J
. Because of convergence there exists an N such that

for every n> N

Hence x is in

q.irt<3U.

>o oo 9R , ,

u u n i-t^ux-ic- ±
,

On the other hand take x in (J O ( * - ^(xXl?- —
|

Then for some m there exists an N such that for every n>N,

Because of convergence

Hence x is in

I* '- <3C*>< k \.



Then

f v °° »». °?
{ v • oc

Taking complements and observing that the Borel measurability of the

gn 's implies the set on the right is a Borel set, it follows that

[x: g(x) k k j is a Borel set and hence g(x) is Borel measurable.
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Chapter 2

FUNCTIONS OF At AND LEBESGUE-STIELJES MEASURES

It will be shown that there exists a biunique correspondence between

the equivalence classes in E and all Lebesgue-Stieljes measures on -© .

THEOREM 2.1;

For every M in E there exists a unique Lebesgue-Stieljes measure,

kx , such that for each F in M and for every a < b

The proof of theorem 2.1 proceeds as follows:

DEFINITION 2 .1.1

C,= {&> (a.,b~\
, C-<^ , t?3

}
Cc,k> "> ^ for every a < t? ^

LEMMA 2.1.1

Ci is closed for the taking of finite intersections.

LEMMA 2. 1.2

The complement of any set in C^ is in C, or is the union of two dis-

joint sets in C^.

LEMMA 2.1.3

The union of any two overlapping or abutting sets in C, is in C.

.

DEFINITION 2.1.2

/a/ =

/cCa>Wl F"<.b) - F(<0

></. ( a. , <*> ) = U*n u.i.a.^1

y _>. - »0

11



LEMMA 2.1.4

Every F in a given M determines the same^u .

DEFINITION 2.1.3

n
C 2 = (A: either A is in C. or A = KJ A* where the A;'s are

1 1
i=l

disjoint sets in C.\

LEMMA 2.1.5

c
Lo c

2

LEMMA 2.1.6

C
2

is closed for the taking of finite unions.

Proof; First consider that if A is in Ci and U B.- is such that every
1 i=l *

B.- is in Ci , U B
i U A is in C . This follows from the distributive

1
irl

x l

law for unions, Lemma 2.1.3 and the definition of Cy- Again considering

the distributive law for unions, the union of any two sets in C~ is in

Co- The lemma follows by induction.

LEMMA 2.1.7

Q>2 *-s closed for the taking of finite intersections.

Proof: The lemma follows from the distributive law for intersections,

lemma 2.1.1, the definition of C2, and induction.

LEMMA 2.1.8

C2 is closed for the taking of complements.

Proof: If A is in C2
and every A. is in C. ,

A= A

- A I-.

12



It follows from lemma 2.1.2 that every A^ is in Co. The lemma follows

from lemma 2.1.7.

LEMMA 2.1.8

C2 is an algebra of sets.

DEFINITION 2.1.4

For every A in C 2 let

where U A. = A and the A.. 's are disjoint sets in Ci

.

i=l 1 1 J 1

LEMMA 2.1.9

lk is uniquely defined on Co.

Proof: If S= U S< where the S.'s are in C„, then S= U A. where
i»l

l r 2 i=l x

A : S.nLU S; which implies the A .
' s are disjoint and in C„

1 1 ^=1 * i 2

If UA - U b-. , the A^'s are disjoint sets in C, and so are Pi's

It follows that

A*= UfS-AA, and "6.- U AiA^>-

Hence

ph^Z. yw(ft-AA^) and wB- = 1 /* ^ A ; A
-

^)
It follows that

LEMMA 2.1.10

If A and B are in C
2

and ^CB,

13



Proof: Since B- A = BOA is in Cy »

LEMMA 2.1.11

za. is countably additive on C2.

Proof: It is sufficient to show that if \j A^ is in C2 and the A^s

are disjoint sets in C. , then

xa(U Aj = 2. uk-K

Consider first that if (a,b3 equals O (a.,b.l where all the in-
i=l *

x

r\

tervals are disjoint, then U (a,,b.] is a subset of (a,bj. Hence for
i = l

r x

all n,

/*(*>] ^ i-^Ca-jL, b-J

It follows that

The same inequality follows in a similar fashion for /xCa.oo) ,

Xt(-oo,b3 and^R.

To show the reverse inequality, first consider a and b finite.

Since F is continuous on the right, for every fc> there exists a

> such that

F(a+ 2>" < P(a.W fc

Moreover for every i, there exists an ^ i
> o such that

F*( bi+ .(i) < FCbjJ + <: 2
_;
-.

Further

14



Hence by the Heine Borel theorem there exists an integer m such that

corbie u c cL^bi+^i).

Consequently, renaming the end points of the intervals if necessary,

at- 6 is in (*j,b.4-v7 ) and for some integer k between 1 and n inclusive

b is in (a
k
,r k+*(k ).

Suppose the least k is one. Then since Ca +o>b3 is a subset of

(a^,b +/fi) , it follows that

and

F(b) £ FCb.-t-^,) < F(b,)+- ta" 1

.

Hence

F(b)-F(<o-fc < PCb^-^CCL^-v e2"'

It follows that M(a,b3 ^ ju. (a,,b.3 which implies that

Suppose the least k is greater than one. Then bl b,+ ^. »

which implies that b .+••{, I s *n (a,bl. Since bj+ /L is not in

(a, »b.+- v7,) there must exist an integer j greater than one such that

b
l"*"

vtl is *n ^ a ' • ^j 4"^)* *^ J is not two
»

* et tne J tb interval be

second and the second, the jth. Then

a
2 < b.+ v^, < b 2

+
^?i-

This procedure may be repeated if necessary until the first (a, ,bt /? )

where b < b, + y? . Then

Ca^blC U Ca^bi*^
A* = l

15



and for every integer j such that 1 < j £ k

Since F is non decreasing, it follows that

k

te-i

^. = 1

> FCb) - PC CL + SO

However

k k k

>_=!

It follows that

*- - k
Z-iFCbiV FCq.5.3 > F<.b)-Pt<u- e Ci + i. 2 _A

-J

Since this inequality holds for any integer greater than k,

^1 /^ (^ »bjLl >_ /^Co_ > bl

.

Therefore for a and b finite,

A, I

Oo
Assume now that (&,oo) equals U (a.,b ] where

s = a, < b^ = a£ < ••• where lim b^= ©o . For every finite value of x

16



greater than a, (a,x C (a.,b. . It follows that there must be a

b
n *'

Hence

Jx ( a,*! C i- (IO - \- (a,)

1 Si L^Cbj^-

OO
Similarly it may be shown that if (-oo^ bj equals U (a. ,b.

J

/A(-0°,b3 £ 2- /^(Q-i^il

00
and if R equals (J ( cl-^ ,b;/]

/At? £ £. /AC<Xi,bJ.

Finally every set in C? may be expressed as U A^ where the A. 's

are disjoint sets in C,. If U A- equals \J (a.,b ] , it follows

that

UA
4
n ca^bj.3 -Ca^bJ and iJ Ca^lOn A-^ A^ .

As a consquence

MCaj^bil-JL M.tA
i
n<ai . >

b il|

17



and

1 JL y^LCa^bJ n A-
S
l

Hence

o oo

21 /A A: = 2. 2. lAL^CL^jb^ln All

i

Letting m go to infinity gives

Hence

* r- ^ -n OO

r OO _ OO

LEMMA 2.1.12

u is a measure on C-.

DEFINITION 2.1.5

For any subset, S, of R let

Oo

U S = ^f E- yu A^

where every A. is in C~ , the A. 's cover S and the infimum is with re

spect to all countable sequences of sets in C2 which cover S.

18



LEMMA 2.1.13

u. is defined for all subsets of R.

LEMMA 2.1.14

If A is in C2 ,

IX A - jx A

.

Proof: Take any countable sequence of sets from C. which covers A.

Denote the members of the sequence by B,,B~,... . Then define

A n --An[i5,- UBJ.
X- •

Then A is in C , the A 's are disjoint and U A: = A . It follows
n 2 n K. K

*

from lemma 2.1.11 that

Oo

Since for all n , An is a subset of Bn from lemma 2.1.10,

Hence

To complete the proof consider the sequence A, 0,0,... .

jx A SL/xA+z^/ -*/"- 0" *-'.

If /a A is less than U A , there will exist a sequence of sets

BpB?) ... from C2 which covers A and is such that

^*AtO 2l /^"Bjl.

19



where t = #a A - U-* A > o . This implies that

oo

which is impossible. Hence

U A- i/*

A

LEMMA 2.1.15

/a.* - o

LEMMA 2.1.16

If S, is a subset of S , u S, ^ M. S^.

LEMMA 2.1.17

If S is covered by a sequence of sets, Si^S^i*** ,

Proof: The statement is trivial when yU*S is infinite. When ik*S is

finite for every S* and every £ > O there exists a sequence of sets from

C2 . A,l>A z ^,... , which cover S^ and are such that

Hence

00 «-~

2.L

Since S is covered by S^ (S2»**> and S is covered by A.,,A
?
,... it

follows that S is covered by A{i,Ai2>»*> • Hence

20



00
t

Consequently

a, °° t

/a Si ^_ /(A S;.
i. -1

DEFINITION 2.1.6

The class of all jm -measurable sets of real numbers, C.,, is the

class of all sets of real numbers A such that

a*5i/ (SO A) +-yuc* (5-A)

where S is an arbitrary set of real numbers. S is called a test set.

LEMMA 2.1.18

is in C .

LEMMA 2.1.19

If A is in C3, A is in C3.

LEMMA 2.1.20

If A^,A2,*** , Aj, is a finite sequence of sets in C
3 , U A^ is in

c 3 .

Proof: Using induction, suppose A^ and A2 are in C3. Then for every set S,

/A
i SI ju> (SriA,) -^* (S-A,) .

Using S-A^ as a test set,

jj} ( S-A,} l/ (5-A,AA z ) +^w.* ( S-A,-A z )

Kence

y
u* 5 i /a.* (5rtA,) ^u^S-A,AA 2 ) +yu* (S-A,-A 2 ).

21



=yj LS0(A,UA 2 )] +
/
u i C5-(A,0A 2 )J

The lemma follows by induction.

LEMMA 2.1.21

If Aj_,A2»* ,#
, An is a finite sequence of disjoint sets in Co and S

is any set of real numbers,

Proof: Using induction again, the statement is trivial when n = 1.

Making the induction hypothesis, using lemma 2.1.20 to assert that

r\

Aj^ is in Co and using S C\ U A^ as a test set,

.xHsnuAOl u (saua^uaO-*-/*- (sauax-uO

By the induction hypothesis

u*(SflU AO = L /(SnAj.

It follows from lemma 2.1.17 that

Therefore

^ul (SOU A0 = 2- yuJCSAAO

22



LEMMA 2.1.22

If Aj^,A2»... is a denumerabie sequence of disjoint sets in C
3

and if

S is an arbitrary set of real numbers,

/(SAUaJ = 2. u* CSHAj

"> CO
Proof: Since, for every n, U A- is a subset of A- , it follows1 K

<- = > c =t

that

/
a

t (UA.A5 N

) i ix* ( A L n^

Letting n go to infinity, it follows that

Since A, H S,A9 S, . . . cover U (A;f\^ it follows from lemma 2.1.17

that

Thus

u*(U Aifl^ £ L ^* (A. At))

LEMMA 2.1.23

If A^,A2»... is a denumerable sequence of sets in C3, (J A^ in C3.

Proof: Taking only A^Aj,"* ,/, it follows from lemma 2.1.20 that for

an arbitrary set S,

23



Moreover from lemma 2.1.20

u* csnO t\ L ) - £ iJ{ shao

and from lemma 2.1.16 and the fact that <J (K: D U A;
k.-\

fj! (5-U A^ ± J1 (S- UAJ

Thus

jjl 5 1. 2. ^ ( A^nS) + y^* C 5-0 AjJ

Letting n go to infinity

It follows from lerama 2.1.22 that

It follows that UA^ is in C3.

LEMMA 2.1.24

C
2

is a subset of C3.

Proof: If A and B are two arbitrary sets in C2, AAB and A- B are

disjoint and in C2. The union of A OB and A— B is A.

Hence

/A ( AA?>) +jJ ( A-T>) =yLC* A.
it

For S, an arbitrary set of real numbers, if u S is infinite

u* 5 - juu CSHA) +/^* CS-A)
for all A in C

2

24



•k
If u S is finite, then from the definition it follows that for

every ^ o , there exists a sequence, A^,A2»*** in C2 which covers S

and is such that

^ 2. L
y
u(A,riA >

) + u (A—AM

for some A in C2« However, SOA is a subset of U (A^HA) and

A|OA, A20A,*** is a sequence of sets in C2« Similarly S-A is a subset

of U (A. -A) and A, -A,A2~A, • •
• is a sequence of sets in C2« It follows

that

Hence

y
UL* Si./A* (SrtA) +yU.*(S-A)

It follows that A is in C-j.

LEMMA 2.1.25

C is a it -algebra which contains C2«

LEMMA 2.1.26

6 is a subset of C~.

Restricting the domain of ll* to IS it follows that:

LEMMA 2.1.27

/>_* is countably additive.

Proof: Induction may be used to show

jj ( U AO = I- />c*A L

25



The statement is trivial for n «1, Making the induction hypothesis,

recalling that }J \. is in C-j and using O A^ as a test set,

The induction hypothesis,/^. (UA;) = 21 n a^ then emplies

UL VUAjl 2_ yU A

This completes the induction proof. However, since for all n
,

lj a i is a subset of u a-

//(ij A^;>. ^M OaJ

Since this is true for all n,

u. (U AJ i. 2. / A L .

Since the union of the Aj_'s is covered by A]_ J A2» ,,#
, from lemma 2.1.17

a(u A J < f. i^AjL.

Hence

J, / O© v c>~ £

u* lU AJ = 2. ^ A

26



LEMMA 2.1.28

ll restricted to -£> is unique.

Proof; First consider some B in 1& such that yiA*B is finite. It is

necessary to show that if >u, is a measure on -i£> such that la t A equals

yU*A equals lx A for every A in C^, then

/*,"& = /x *E>.

To show this equality consider that for every B in

ix "5 = «.*£ Z_ yu Ai,.

Hence for every e^O , there exists a sequence Ai.A?,*** in C2 which

covers B and is such that

jul -B+ e > Z yu. A^
c - 1

Assuming the A. 's are disjoint it follows that

00

L»l ' LSI '

Hence

To show the reverse inequality, consider that since B is in C.,

= jx "b -r/>u
+

( u a^-b).
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Since the A
A

' s are disjoint

00
-k k

'a. - '

= /**( U aJ-j^B

But for every £>Q , there exists a sequence of sets B ,B ,**• in C

that cover [J A -

K
- B and are such that

Taking the A.'s to be disjoint, it follows that

1 ju.f UA-B)/i,

Hence

Furthermore

< c- + e

CO I
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* 2- /*., Ajl

= u,(uaJ

= yU, ( U AL-B) + yU,"B

< 2t + u,B.

It follows that

Hence

*
JUL B 1 yU.B

^i,b = /x. B
Assuming /U*B is infinite, express R as the infinite union of

©O
bounded disjoint intervals. Then R = U (Ol^bjul. Further

OO
uB: BHUf^b;] and

i

" yU.B.

THEOREM 2.2 :

If is a Lebesgue-Stiel jes measure on*t£) , then there exists i

unique equivalence class M in E such that for every F in M and every

a < b

yw.(d,b] = F(b) -F(a).
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DEFINITION 2.2.1

F (x) = *

o

,U(o,x3 for x > o

for x=o

^(XjOl for x<o

The proof of this theorem comes from the following lemmas

;

LEMMA 2.2.1

For every a < b ,

//U^bl = F (b) - r (a)

Proof: There are five cases;

Case 1: If o < a ,

f^oC a) =yU(o ,al and F (b) -/A(o,b]

However

It follows that

jxdo^l = jjl(o,cl] +yu(a>b]

Case 2: If = a ,

H o (a)-0 and H- o Cb)=
/
a(0

)
b] -ya(a,b]

Clearly

R> ( b) - F col) = jla. ( a , Wl

.

The other three cases, when a <0< b , b =. and a<b<o , follow in

a similar fashion.

LEMMA 2.2,2

FQ is a monotone, non decreasing function defined for every x in R.

Proof : For every x > a

Fo (>0 - \-a (a) -yuca>x3
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Since U (a,x] ^.O , it follows that for every x>a

Fro(x)iP"o (0L)

Since a is chosen arbitrarily, F is a monotone increasing function.

Clearly F is defined for all x in R.

LEMMA 2.2.3

F is continuous from the right at every point of R.

Proof: Select an arbitrary real number, a. Then

and

The sequence of partial sums represented by this infinite series is mono-

tone increasing and bounded by JJ. (a,a+l3 . Hence for every £ > O there

exists an N such that for every n>N

% ^ (a'ib >
^ + V<<--

i; n

However since

it follows that

i- (cl+ i.) - rc ca) < €

Since F is monotone non-decreasing

r (x)-F (d) < s

for every x in (a,a + l-). Therefore F is continuous on the right at a

where a is an arbitrary real number.
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LEMMA 2.2. 4

F is in>C .

DEFINITION 2.2 .2

Let M be the equivalence class in M* which contains F .

LEMMA 2.2.5

For every F in M and every a <b,

juca>W = \-(b) - p«0.
Proof: Since F is in M, there exists a real number C such that for every

x in R,

Thus

= Fe cfe} + C-F"o(a x

> -C
- Feb) - FcclV

This completes the proof of the theorem. The following is noted

however:

LEMMA 2.2.6

Llvn /u(*,a) -°

Proof: The proof is similar to the proof of lemma 2.2.3.
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Chapter 3

PART I: THE DEFINITION OF THE LEBESGUE-STIELJES INTEGRAL

The Lebesgue-Stiel jes integral of a bounded point function g with

respect to a Lebesgue-Stiel jes measure >U , or with respect to any func-

tion F in the equivalence class of M that corresponds to u over a Bore 5.

set B such thatyU B is finite will be defined. The definition will be

extended to functions g that are not bounded on B, to L'besgue-Stiel jes

measures LA such thatjx B is infinite, to functions F that are monotone

non-decreasing on R but not continuous on the right and finally to func-

tions F of bounded variation on B. Some preliminary definitions are

necessary:

DEFINITION 3.1.1

For a given Borel set B, Dn is defined to be a collection of n dis

joint Borel sets Bi,B2,-- ,Bn such that

UB.-3,

DEFINITION 3.1.2

The upper Darboux sum of a bounded function g with respect t. « <*

Lebesgue-Stiel jes measure ll and a given Dn on a Borel set B of finite

i>L-measure is

where Bi ,B2» • •
•
,Bn re the elements of Dn and M^ is the supremum of g

on B^.

DEFINITION 3.1.3

The lower Darboux sum o£ a bounded function g with respect to a Le-

besgue-Stieljes measure rx and with respect to a given Dn over a Borel
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set B of finite /A-measure is/*•'

Z_ Via; LA.Oi_A

where B^,B2,'*",Bn are the elements of D and M is the infimutn of g on B^,

DEFINITION 3.1.4

The upper integral of a bounded function g with respect to a Lebesgue

Stiel jes measure jjl over a Borei set B of finite ix-measure is

where the infi-aura is taken with respect to all Dn 's for all values of n.

The upper integral is denoted by

where F is any function in the equivalence class corresponding to ix .

DEFINITION 3.1.5

The lower integral of a bounded function g with respect to a Lebe;g.ie

Stiel jes measure Lk over a Borel set B of finite /^.-measure is

JL-I

where the supremum is, taken with respect to all Dj/s for all values of n,

The lower integral is denoted by

[g^ or [ v
^f

where F is defined as in definition 3.1.4.

DEFINITION 3.1

A bounded function g is Lebesgue-Stieljes integrable with respect to
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the Lebesgue-Stieljes measure >-*. over a Borel set B of finite m. -measure

if the upper and lower integrals are equal and finite. The common value

of the upper and lower integrals is called the Lebesgue-Stieljes integral

and is denoted by

THEOREM 3.1 ;

A necessary and sufficient condition for the existence of )- :a in

is that for every fc^O , there exists a Dn such that

Z. (M, -vn,) u.B x < €

Proof: Clearly each upper Darboux sum is greater than or equal to each

lower Darboux sum. It follows that

For every Oo there exists a Dn and a D such that

M
(
,""B* "

^rs \\^ < ^

and

Wi !^
^- Wl: // b; <T VZ

X

These inequalities continue to hold when Dn and Dg, are replaced by

D^ \ "B;nK ;<nBj ,
- jB^AB^ J

. If
l B

gd,U exists, the

upper and lower integrals are equal by definition. It follows that the

stated condition is necessary. Conversely, if the condition is satisfied
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Since the inequalities hold for every Oo the upper and lower inte

grals must be equal.

THEOREM 3.2 ;

If MB is finite and g is Borel measurable and bounded on B, the

'B S d y- exists.

Proof: Take
| 4- l/."R> ^ an<* anv finite number of points

yo»yi»"*»yn such that

u - rr\ =. inf f (x) for all x in B ,

u =. M - sup f(x) for all x in B ,

^<^<<"<^--M
;

yv\ -

and

^L-^c-. < '^a"& W i,= 1,2,-,*.

Let

DJL =
1 * : * « t« "B> and -<L-»'^ 4 (x^ H * 1

Since g is Borel measurable, B* is the intersection of two Borel sets

and therefore a Borel set. It follows that >u.B
i

is defined. If M^ is

the supremum of g(x) for x in B^ and m. is the infiraura of g(x) for x in

B. , it follows that

It follows that

m*.-wz < trp
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Therefore

C 2. ( Mr ^,) ;/r

<
«V*-"B

^ =l
' iV /.«."&

It follows from theorem 3.1 that the Lebesgue-Stieljes intergral exists

DEFINITION 3.2

If g is not bounded on B, define

£ j'j "
= u:l ^-.^

t-»

where

r

V* 00
- <

a for g(x) a

g(x) for a g(x)

b for b g(x>

provided the above limit exists.

' KPN 3.3

If/A B is infinite, define:/X

J^dp-liin 5B ^
... --> - C>o

b-> >°

whure

provided the limit exists.

-.5

If F is monotone non-decreasing but not continuous on the right

define
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where

F*(x) r lim F(x)

for all x in B provided the integral with respect to F exists,

DEFINITION 3.6

If F is of bounded variation on R, define

where

P-R-Fa,
and F^ and F2 are monotone non-decreasing provided the integrals with re-

spect to ?i and F2 exist.
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PART II: PROPERTIES OF THE LEBESGUE-STIELJES INTEGRAL

Properties will be derived for the Lebesgue-Stiel jes integral of a

bounded Borel measurable function g with respect to a Lebesgue-Stiel jes

measure ^ over a Borel set B of finite aa measure. These properties

will be useful in Chapter 4.

THEOREM 3.3

If g, ,• '
' ,gn is a finite collection of bounded Borel measurable func-

tions
,

Proof: Since g^ and g£ are bounded and Borel measurable, so is g,+ g .

It follows that

where m . is the infimum of gj^(x) + g2(x) for all x in B^ and M . is

the supremum of gj(x)+g2<x) for all x in B-. Furthermore

where ra, . is the infimum of gi (x) and m . is the infimum of g?
(x) for all

x in B^", moreover

where H\i and M2i are defined in the obvious way. It follows that
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iv.\a

Lai 7 L-i

Since gj and g2 are integrable, it follows that

( ( i ^ n

3ut since

it follows that

™
t i +W^£ m ^ ^ Mo^M^+^i

The conclusion follows by induction.

THEOREM 3.4

If Bi and B2 are disjoint Borel sets of finite u. -measure whose

union is B , then

Proof; Define

and

^ I for * .0 "B^

L O for x i« B)i
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Then

THEOREM 3.5

mu£>^ iB od/x <. MyU^>

where m is the infiraum and M, the suprecaura of g(x) for all x in B.

Proof: Letting B^,B2, ,,a ,Bn be a sequence of disjoint Bore I sets whose

union is B and letting M^ be the supremum of g(x) for all x in B^, it

follows that Mj <,M for all i. Thus

Similarly

2L Yn-^Li!^ < /niAB.

But when the Lebesgue-Stiel jes intergral exists

r\

inf Z- M.M'&r %u
e ^- ^/^

It follows that

wyx"E ^ ^ad^u £ MuB
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COKOLI.ARY 3.5.1

THEOREM 3,6

Proof: Clearly

|0<x>| + qc*> ;> o and Icicol - ai*)^_0

Lotting m, be the infiroum of
I
g{x)| -+- g(x) for all x in B and m ,

the infimum of |g(x)| — g(x) , it follows that

o < m, u~B

= JB l<jl<jf* + SB g(j^.

Hence

Similarly

Oi yn, u 6/*

L<
E 3i-<j)<^

= ) B Ijl J/x + L i-Q) Ul

Since it follows directly from the definition that a constant may be fac

tored across the integral sign,

Hence
>B

ryM < Jb ^ ,dA

I S

h j
lu I < $ B M.«.,
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THEOREM 3.7

Suppose lk. is a Lebesgue-Stieljes measure, B is some Borei set of

finite u. -measure and g^,g2» v *" is a sequence of Borel measurable func-

tions defined on B and such that for every n and for every x in B there

exists a real number K such that

I a n (*)\ < K

Suppose moreover that

im Q n (x) - OCx)I

almost everywhere i„e, for all x in B-B
rt

where u.3 r 0. Finally .sup
o r *<>

pose that g is bounded on B, It follows that

lira )^Q n d
/
lA- 1 B llm C\„&}x

Proof: Since g is bounded on S and M.B = O , it is obvious thatA 1

^,%
d/L '°

Letting B-B r B , g is the limit of a sequence of Borel measurable

functions on B* and hence g is Borel measurable. Moreover lg(x)| < K

for all x in B*, It follows that g(x) is integrable over B* and hence

the following integrals exist and

it

For every £>o a non-decreasing sequence of subsets of 8 may be

defined as follows*
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B, =
\ *'• lG„C<> -^tO |< fc for r\*l

> 2.>
-">

• • •

fcjLM*'- 10*10-0(0 1
<"*' -for ins^iti-.}

where t '= ^
1 ( ' + JU- 6)

Since 3. is a subset of B* for every i

Furthermore x in B implies lim gn (x) equals g(x). This means that for

every £>o there exists an m such that for every n>tn , x is in Bn -

In symbols

L- i

It follows that

Since BjC^C • -
,

Thus since the sets on the right are disjoint Borei sets
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- Ltvn uB„
v0-->.<30

This means that there exists an m such that for every n >

m

l^fcy^K A
4K

Since it may be easily shown that j ^ - g \ is a bounded, Borel measur-

able function, it follows that
1 8n " S| * s integrable and hence for

every n > ra

Wi ld/ sWi l^ + W'3iJd/<

< k'Ld* + 2Kyu(B-B^)

< ^-^-- -f£K ^ <
&( i + ju b) *vk.

Since

it follows that for every £>0 » there exists an n such that for every n >m
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Ij b Q^J/jl- ) s qd/xKe

THEOREM 3.8

If 3E- ^
l
_^'> - cidO almost everywhere on some Bore! set B of in-

finite la -measure , if g is bounded on B and if there exists a real number

K such that for all x in B and for all n, ! 2- f- (x) |< k then

CO

IL- >

>B
+\^ = ^S^A

Proof: This is an immediate consequence of theorem 3.7 considering the

sequence of partiil sums.

THEOREM 3.9

If Bi,B2>*'* is a sequence of disjoint Borel sets whose union is R,

\B jd/. - £ S^djA..

Proof: Define e.. (x) to be i when x is in B. and zero otherwise. Then

for all x in B ,

oo

Hence

50

-
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Chapter 4

PROBABILITY INTEGRALS

In this section probability measure and probability distribution

function will be defined. Then it will be shown how the Lebesgue-

Stieljes integral of a bounded Borel measurable function g with respect

to a probability measure may be expressed as a countable sum of positive

numbers plus the Lebesgue-Stiel jes integral of g with respect to a func-

tion that is everywhere continuous.

DEFINITION 4.1

If F is monotone non- decreasing, defined on R and continuous from

the right, i.e. if F is an element of ML and if iim F(x) = and

lim F(x) s 1 , then F is a probability distribution function.

X-^+eo

DEFINITION 4.2

If u, is the unique measure determined by a probability distribution

function, u is a probability measure and for any Borel set B, u.B will

be denoted by P(B). P(B) is the "probability" that x is in B.

THEOREM 4.1

If P is a probability measure,

Moreover for all Borel sets B,

THEOREM 4.2

If i/. is a Lebesgue-Stieljes measure, kx{ &\ is greater than zero if

and only if a is a point of discontinuity for every function F in the

equivalence class corresponding to u. .
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Proof: First assuming that a is a point of discontinuity, it follows

from the fact that every F is monotone non-decreasing and continuous on

the right that

lim F(x) < Urn F{x) = F(a).

But

Further

It follows that pl{<x\>0

1 im ix. (

*

->0l~] = Urn la.o ^a) +u. \a.\

x -*• 0_- x -•a.—

lira yuu^l - lun ( P<Q> - Poo) > o
*-><x.-

On the other hand, assuming that ix\<x,\ >0

lira (p^(o^ -Fc*)) - "P^a^>0
x ~>c-

Hence F is discontinuous at a. This clearly holds for all F in the

equivalence class corresponding to LK ,

COROLLARY 4.2.1

>U{ d\ - O if and only if a is a point of continuity of F for all

F in the equivalence class corresponding to la. .

THEOREM 4. 3

For all functions F in M. there are at most a countable number of

discontinuities.

Proof; Suppose a is a point of discontinuity for F, Then

F(a) = lira F(x) > lim F(x).
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Mate a with a rational number r such that

lim F{x) < r < lira F(x).

Since F is monotone non-decreasing, each distinct point of discontinuity

corresponds to a distinct rational number. Since the rationals are

denurcerable, the points of discontinuity are countable.

THEOREM 4.4

If F is a probability distribution function

F « f •+• S

where f is continuous on R.

Proof: Let x be the points of discontinuity for F. x is a Borel set

since x is a countable union of distinct points and each point is a Borel

set. Moreover R-x is the points of continuity for F and is also a

Borel set. Suppose P is the probability measure that corresponds to F»

Then for all Borel sets B,

Define

Then U . and U 2 arc bounded Lebestue-Stieijes measures. For all x define

PCO a XX, (-Oo^xG a^d. 5 Cx> a u ^ (- oo
>
y~\

Then f is in the equivalence class corresponding to u, and S is in the

equivalence class corresponding to JJL2*

Then for all x ,
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If x is in x ,

If x is in R-x

Hence u,^x[ is zero for all x in R. Since f is in the equivalence

class corresponding to Ui it follows that f is continuous for all x.
/

THEOREM 4.5

If x^ and X2 are two points in a and no points of x are in

\X« , X2 )

>

Then for every x in Qc^Xj) , S(x) r S(x,).

Proof: For every x in fx^.x-),

Hence

THEOREM 4.6

S is continuous at all x in R-x and discontinuous at x in x *
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Proof: For x in R-x ,

Hence x is a point of continuity for S.

For x in x

Kence x is a point of discontinuity for S.

DEFINITION 4,3

A function having the properties attributed to S in theorems 4,5

and 4.6 will be called a generalized step function.

THEOREM 4.7

where g is bounded and Borel measurable on the Borel set B, F is a prob-

ability distribution function and x, u i and y/. 9
are as defined in

theorem 4.4.

Proof: By definition
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Fron theorem 3.9

x. iViBHS.
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Chapter 5

CONCLUSION

A bounded Borel measurable function which gives an important special

case of the general formulas in the preceding chapters is g(x) s 1 for

all x. If g(x) r 1 , for any Borel set, B, and any probability distribu-

tion function, F, the probability that x is in B is given by

Suppose F is continuous everywhere. It may be shown that F has a

derivative at every point with the possible exception of a set of

Lebesgue measure zero C2l. If i .a derivative of F.f', exists everywhere,

it is called the probability density function. Furthermore it may be

shown that

ib F'dx= JB dP s P(B).

In particular if B is the interval from a to b

This is true regardless of whether the interval is (a,b), (a,bj , Qa,b)

or [a,b"] . If B is a single point P(B) is clearly zero.

Suppose F is a generalized step function, i.e. F(x) r S(x). The

set of points at which F is discontinuous X is either a finite or

denumerable set. The function p is called the probability density func-

tion for F where

P^*0 -F(.x
;
>- L"w"n £"t*i> k»

and

•>r x
: s.v\

x-> x-

-

2)(.*> = Q for x y^ot \r\ X.
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The probability that x is in a Borel set B is

X- irt z

The set X may be such that every point of X is in an interval con-

taining no other points of X. In this case X is said to be discrete.

The discrete case includes the case where X has a finite number of

points in every finite interval. In this case F is a step function in

the ordinary sense [l~\. It may also happen that X is discrete but has

a denumerable number of points in some finite interval. For example

let

and define

f
O for x £ i

.

^<x> =
i

2" for x Iry {_—h^T. ) ,
n'1,1,-'.

Also the set X may be such that there exists a denumerable set of

x.'s in every interval. In this case X is said to be everywhere dense.

For example let X be the set of all rational numbers, r
i»

r2»*'*- Define

ft C) -
jp,

and let

Finally F may of course be the sum of a non zero continuous func-

tion and a non zero generalized step function.

The two cases usually discussed in elementary probability courses

are where F is everywhere dif ferentiable (and hence continuous), and

where F is an ordinary step function.
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