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ABSTRACT

An experimental and theoretical investigation was made of transverse

pumping saturation effects in 2Zn.Y Cferrite at frequencies far below

ferromagnetic resonance. Chief iiterest was in saturation effects at
frequencies below the bottom of the spin wave manifold, where the lowest
order phonon instabilities were expected to compete favorably with the
higher order spin wave instabilities.

Measurements of saturation effects in single crystal ZnaY , with
the easy plane lying in the plane of the disk, were made at 1.32 kMc.
The dc and rf magnetic fields were applied orthogonally in the plane of
the disk. The large rf magnetic fields required were obtained by employ-
ing a strontium titanate dielectric resonator. In these experiments the
order of the first resonant spin wave instability permitted was varied
from the first to the fifth by adjusting the position of the spin wave
manifold relative to the pump frequency. The nature of the saturation
wvas investigated by observing the waveform of the reflected pump pulse.

Theoretical on-resonance spin wave thresholds up to fourth order
and off-resonance spin wave thresholds up to second order were derived.
The first order theoretical spin wave threshold was the lowest threshold
in the range of low dc magnetic fields. At higher dc fields the second
order theoretical on- and off-resonance spin wave thresholds dominatéd
the higher order thresholds. Taking the magnetoelastic effect as the
dominent mechanism, first order phonon thresholds were derived for
transverse and longitudinal elastic waves propagating in the easy plane
and along the c-axis. The lowest theoretical phonon threshold was for
transverse elastic waves propagating and polarized in the easy plane,
and at frequencies below the bottom of the spin wave manifold, this
threshold dominated the theoretical second order off resonance spin
wave threshold. Theory was developed for the growth of phonon insta-
bilities from thermal level in order to relate pulse saturation effects

to the phonon absorption. - 141 -
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Transverse pumping thresholds observed experimentally were comparable
with the above theoretical predictions and strongly indicate that first
order phonon instabilities dominate the higher order spin wave insta-
bilities at frequencies below the bottom of the spin wave manifold.

These results together with the phonon growth theory made it possible
to obtain rough estimates for the phonon Q , one magnetoelastic
constant, and the exchange field of Zn2Y in the easy plane. The
observed pulse saturation effects and the results of two experiments

for two different phonon absorption levels indicated the presence of
nonlinear elastic wave damping.
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CHAFTER I
INTRODUCTION

The term saturation is used in two ways in discussing the properties
of ferrites. The most common use applies to all varieties of ferromegnetic
materials. It refers to the static state of the average magnetization
vector when the atomic magnetic moments are aligned in one direction due
to the application of a sufficiently large dc magnetic field. Thus a
material is said to be saturated when its magnetization approaches a
constant value with increasing dc magnetic field intensity.

The type of saturation of special concern here is the saturation of
the uniform precessional motion of the magnetization. The simplest motion
of the magnetization obtains when the magnetization itself is <statically
caturated by the application of a sufficiently large dc magnetic field.
A uniform precessional motion of the megnetization may be established
by the application of a transverse rf maegnetic field. Saturation of the
uniform precessional motion is usually defined in terms of a critical
rf magnetic field corresponding to the point at which greatly increased
losses obtain if the rf magnetic field is further increased. These
losses are due to instabilities arising from nonlinearities in the
equation of motion for the magnetization.

The saturation of the uniform motion of the magnetization at fers
romegnetic resonance, observed by Damon,l and Bloembergen and Uhng,a
was first explained by H. Suhl.3 He showed that such saturation could
be explained on the basis of excitation of unstable spin waves at the
pump frequency, and furiher showed that a subsidiary absorption having
a lower saturatioh threshold would occur when half of the pump frequency
was within the spin wave manifold. This is due to unstable spin vaves
at half the pump frequency.



This early work was concerned with spin wave instabilities excited
by a pump frequency which coincided with ferromagnetic resonance and
hence was above the bottom of the spin wave manifold. Recently, it has
been shown theoretically that higher order spin wave instabilities may
also cause saturation of the uniform motion when the pump frequency is
below the bottom of the spin wave manifold--where the first and second

order instabilities are far off resonance.h’5

Even under these conditions
there still exist resonant acoustic waves at the pump freguency and at

one-half the pump frequency,6 and there exist several mechanisms by which
1 It is unlikely

that such phonon instabilities could compete favorably with spin wave

phonon instabilities at these frequencies may be excited.

instabilities when the pump frequency is within the spin wave manifold
because weaker coupling mechanisms are involved. Operation with the pump
below the manifold, however, allows only higher order spin wave instabilities
to exist at resonance; and the lowest order phonon instabilities might

be expected to compete favorably with higher-order spin wave instabilities,
since the thresholds generally increase with the order of the instability.

The purpose of this study is to report a theoretical and experimental
investigation of the transverse pumping saturation effects in Zn2Y fer-
rite (Zn2 Ba, Fe,, 022) at dc magnetic fields corresponding to frequencies
below the bottom of the spin wave manifold. The object was to investigate
the instability mechanisms and to determine whether saturation is caused
by spin waves or phonons. Experimentally, the pump frequency was fixed
at 1.32 kMc, and the dc magnetic field was varied to adjust the position
of the spin wave manifold with respect to the pump frequency.

The hexagonal material Zn2Y was chosen because it has a magnetic
"easy" plane. The large magnetic anisotropy of ZnY makes it possible
to operate below ferromasgnetic resonance with relatively low applied dc
magnetic fields. In the easy plane, then, the stiffness of the magneti-
zation is low and it is possible to achieve large uniform precession ¢
angles with a much lower rf magnetic field than would otherwise be
required.

The theory of instabilities pumped at frequencies below the spin

wvave manifold is developed in Ci.apters II and III. The derivation of

-2 -




thresholds for spin wave instabilities up to fourth order is presented

in Chapter II. The optimum spin wave thresholds were obtained for each
order. Chapter III contains a derivation of the first order thresholds
for phonon instabilities. Various possible instability mechanisms are
discussed. By taking the magnetoelastic effect as the dominant mechanism,
thresholds were determined for transverse and longitudinal acoustic waves
propagating in the easy plane and along the c-axis. A comparison was
made between the lowest theoretical phonon thresholds and the spin wave
thresholds of various orders for both the resonant and nonresonant cases.

Chapter IV is concerned with the growth of phonon instabilities from
thermal level. The phonon power absorption was examined for both an ideal
pulse and the actual power pulse used in the experiments. The threshold
field, at which the effect of the instabilities can be observed by satuy
ration of the reflected pump pulse, is expressed in terms of measurable
microwave parameters.

The microwave apparatus and techniques which were employed in
measuring the pumping thresholds are described in Chapter V. Large rf
magnetic fields were obtained by using a strontium titanate dielectric
resonator. The basic resonator theory as well as resonator and ferrite
heating effects are analyzed. The methods used to measure the unloaded
QO are discussed.

Chapter VI is devoted to results of actual instability threshecld
measurements. Transverse thresholds were measured in a single crystal
Zn2Y disk with the easy plane lying in the plane of the disk. The dc
and rf magnetic fields were applied in the plane of the disk. Results
from two experiments are correlated with the phonon and spin wave thres-
hold theory developed in Chapters II and III and with the phonon growth
theory of Chapter IV. 1In correlating theory with experimental results,
values were obtained for one megnetoelastic constant, the phonon Q ,
and the exchange field of Zn2Y

At the end of each chapter a summary is given which describes the
important features and conclusions for that chapter.




CHAPTER I1I

SPIN WAVE INSTABILITY THRESHOLDS

This chapter is concerned with the calculation of transverse pump
thresholds of spin wave instabilities up to fourth order for operation
far below ferromagnetic resonance. The order of an instability n is
defined as

’ (2.1)

+ 1P

vhere w 1s the frequency of the spin wave whose instability is being
considered, and Wp is the pump freguency of the rf magnetic field.

In the experiment described in Chapter VI, the position of the bottom of
the spin wave manifold (Fig. 2.2a) is varied with respect to the pump
fregquency by changing the strength of the applied dc magnetic field in
the ferrite sample. From (2.1) and Fig. 2.2a instabilities of resonant
spin waves are permitted only for orders n such that nmP/e lies
above the bottom of the manifold. Thus the order of the first allowable
spin wave instability varies with the dc magnetic field, and proper
interpretation of the experiments requires the study of several orders

of spin wave instabilities.

A. GENERAL EQUATION OF MOTION

The motion of the magnetization M 1s ultimately based upon the
motion of each atomic magnetic moment. The classical lossless equation

of motion of the average atomic magnetic moment on a macroscopic scale
is

OM(r,t)
At

= -7 Q(E,t) X Q(L,t) ’ (2-2)

-4 -




where H , the total magnetic field at point r , results from internal
fields due to the motion of M as well as from externally applied magnetic
fields. The gyromsgnetic ratio y 1is given by

y - B (2-3)

With g = 2.00 for moments due only to the spin of the electron, the
value for 7/2x becomes 2.8 Mc/Oe. Losses will later be introduced .
into (2.2) through phenomenological damping.

The assumption is now made that the magnetization is saturated by
the application of a sufficiently large dc magnetic field. It will
further be assumed that the dc magnetic field, as well as the value of
the saturated magnetization, is uniform throughout the sample volume.
With these assumptions it is convenient to introduce the unit magneti-
zation vector @(r,t) , whose components are the direction cosines. of
the magnetization, as follows:

(£,t)
olp,t) = , (2.4)

M
8

where M_ 1is the saturated megnetization. Eguation (2.2) then becomes

é(Lvt) = - Q(E)t) X E(E:t) ’ (2.5)

where the dot hereafter symbolizes for any quantity the partial derivative
with respect to time. Since the unit vector preserves its magnitude, the
x-component of the unit magnetization vectar is given by

@ = [1- (fy + 05)11/2 ) (2.6a)

-5 -




The x component has been singled out because the dc magnetic field is
applied in the x-direction, and devistions of the saturated magnetization
from the x-axis will be small., The y and 2z components of the equation
of motion may be found from an expansion of (2.5) to be

-

ay = - 7(0:z H -o Hz) (2.6vp)
@ = - 7(0& Hy - Q& Hx) . (2.6¢)

Thus (2.6) constitute the equations of motion of the magnetization for a
dc magnetic field applied in the x-direction.

In obtaining components of the total magnetic field H , it is often
useful to utilize the following relationship between the magnetic field
and the free magnetic energy E

i = -MiVaE ’ (2.7)
S

where sz represents the gradient with respect to the direction cosines
of the magnetization. The total magnetic field H comprises the applied
dc and microwave frequency (rf) field terms as well as terms dependent
upon & . Because of these terms of H dependent upon & , the
equation of motion [(2.5) or (2.6)] will be nonlinear in Q@ . However,
with the application of orthogonal dc and rf magnetic fields and small
deviations of Q about static equilibrium, the equations may be linearized.
Under the quasi-static approximation to Maxwell's equations

(V-B=0 , VXH=0) there is a uniform solution (uniform preces-
sion) to (2.6) and the appropriate magnetostatic boundary conditions,

as vell as an infinity of spatially-varying solu.tions.8 The spatially-
dependent solution modes are quite complicated if the exact boundary
conditions are matched, but usually it is permissible to make the

-6 -



periodic boundary condition assumption and to regard the modes as plane
waves if

2x/k << sample dimensions .

The uniform precession is then often called the k = 0 mode.

In the plane wave approximation the general motion of the magneti-

zation 1s given in the form of a Fourler series expansion of Q
namely,

?

g = g +a (2.8a)

a - ; g EE (2.8v)

where this expansion 1is strittly valid only for large k's . These
plane wave modes are referred to as spin wave modes--hence the subscript

of @ 1n (2.8b). In the sbove, & 15 a function of time only and
has the form

§ = g Jlot 5 st (2.9)

which in general may be complex, where the gquantity w is the frequency

of the spin waves and the vectors g, , zi are independent of time.

Since the spin wave component of the magnetization g' mst be real,
it follows that

9y =& (2-10a)



and therefaore
g = &, - (2.10b)

In general, gg will contain pairs of oppositely directed traveling waves,
with propagation vectors k and -k . If nonlinear terms are retained
in (2.7) it will be found that terms proportional to the uniform preces-
sion gb will couple pairs of spin waves gk and gfk , and that this
coupling will lead to exponential growth of pairs of spin waves. For

each pair it will be found that

la | = la_ | (2.11)

so that the unsta! le modes are standing waves.

B. MAGNETIC FIELD COMPONENTS

The total magnetic field J comprises the following components:
the applied dc magnetic field EO , the pump rf magnetic field Ep ,
the anisotropy field ga s the dipolar field Edip s the demagnetizing
field Ed » and the exchange field Eex . Figure 2.1 shows the coordinate
system employed and gives the directioncof the applied magnetic fields
and the propagation vector k . The applied dc magnetic field is given by

H, = 0 . (2.12)



FIG. 2.1--Coordinate system showing direction of applied
magnetic fields and propagation wvector.




The pump rf magnetic fileld which is normal to the applied dc magnetic
field and is linearly polarized is expressed as

= | n , (2.13)

vhere hy = h cos¢nPt s h 1s the maximum ampiitude, and wp is the
frequency of the puwp.

The anisotropy magnetic fleld arises from the crystalline anisotropy
energy, which, for a hexagonel crystal, has its origin in magnetic dipole-
dipole interaction. From crystal symmetry considerations, the anisotropy

energy of a hexagonal crystal is found to be of the form9

2 ’ h ’ 6 ’ 6 , ’
E, = K sin” @7+ K, sin” 0° + Ky sin” 0° + K sin” 07 cos 6’ |,

(2.14)
where ©° 1is the angle the magnetization makes with the "hard" z-axis,
and @’ is the angle in the basal (x,y) plane. For Zn.Y the negative
coastant K, in (2.14) is predominant. The energy then assumes the

uniaxial form, and when written in terms of the direction cosines of &

becomes
E, = K (- o§) : (2.15)

Utilizing (2.7), the anisotropy "megnetic" field is defined by

B, = o , (2.16)




vith H, = -2K, /M_ defined as the andsotropy field along the "hard” or
c-axis.

The demagnetizing and dipolar fields are obtained from the quasi-
static approximation to Maxwell's equation written as

V. (H+ h:ns @) = 0 (2.17a)
VXE = 0 . (2.17v)

The quasi-static approximation is fulfilled to a good approximation when
the dimensions of the ferrite sample are much less than the free space
wavelength. The dipolar magnetic field, which is the demegnetizing field
for spin waves, is obtained by finding the solution to (2.17) for the
spin wave modes (2.8b) which satisfy the periodic boundary conditions.
The result obtained is

Hdips-hdszg—k—f—e. . (2.18)

The demagnetizing field for the uniform (kx = O) mode is obtained from
(2.17), together with the exact boundary conditions. For en eilipsoid
in & uniform magnetic field the demagnetizing field may be represented
by the general expression

By = -4 Ng (2.19)




-
where N 1is the demagnetizing tensor. For the speclal case when the
applied megnetic fields are along the major ellipsoidal axes of the sample,

if is disgonal with trace equal tc unity. The field may then be expressed
as

ad = - )-}KH Ny Q . (2.20)

The remaining term of H 1is the exchange field Eex s» which arises
from the gquantum mechanical exchange interaction between neighiboring

atomic spins. The result for a crystal with uniaxial symmetry is

D) %y
ik.r
Hoy = -Z e D, % s (2.21)
X -
Dy %,

with

2
Dl = Hex” a




vhere Hex” , .L are scalar guantities of the order of the Welss field
and a,c are the lattice constants of the unit cell. It is apparent
from (2.21) that the exchange field becomes especially sighificant as
the wavelength of the propagating wave approaches lattice dimensions.

C. UNIFORM PRECESSION AND SPIN WAVE MODES

The equations of motion are obtained by inserting the total magnetic
field H ., whose components were developed in the last sectiom, into
(2.6). The resulting equations of motion may then be expanded into::*
uniform precession and spin wave mode components by employing (2.8).

The uniform mode is separable from the spin wave modes since only the
latter contain the spatial dependence. The uniform mode eguations become

doy - - [mao + ‘:HA Gy + @y (N - nx) Oyl Gy, + M, G (2.220)
_?02 - [%0 ! m“"(Ny - h'Ix) an] aQY - ﬂ.ly an - ’ | (2.22v)

where

Ay nykxus .



Also, the equations for the kth spin wave mode are found to be

% = %, %t s %" %, (Cox %z * % %

* oy (0 o B - B G, o)

(2.23a)

+ ‘52{- (kaOZ - kz an) (kx o"kx + ky ak;v + kz Okz)

k

2

+7Dk kax-ynka qkz

dkzgml-loqky-"hy%x'kml((ua ey - analqr)

+ ‘Eg (ky o - k aoy) (kx o+ ky czl'b:y + kz akz) (2.23p)

+7Dk( qu,-oyogu)

Here nonlinear terms containing the product of the uniform precession and
the spin wave components of Q@ are retained, but terms higher than first
order in Clk are neglected. This is a good approximation since the
unstable spin waves must build up from thermal amplitudes. It is through
the terms in (2.23) containing the uniform precession that energy is
coupled from the uniform mode to the spin wave modes. The latter eventu-
ally will be found to go unstable when the uniform precession angle

reaches a critical amplitude.
- 14 -



Before the uniform mode (2.22) and spin wave mode (2.23) equations
can be solved, it is necessary to utilize (2.6a) to eliminate the. )
x-component dependence of the magnetization. By inserting relation (2.8a)
into (2.6a), and retaining only first degree terms in the spin wave
amplitudes as above, the following relations are obtained for the uniform
and spin vave mode components of the magnetization slong the x-direction:

o = (- - o )2 (2.24a)
A, = - o + oy ) aai . (2.24)

Since ng + agz is less then unity, then an may be expanded in a
binomial series in powers of agy and agz . For purposes of solving
the spin wave equations, the expanded form of (2.24) is substituted into
(2.23), thus obtaining the spin wave mode equations of motion for be
and X, - The resulting equations are linear in the spin wave direc-
tion cosines, but contain terms which are modulated by the unifora
Precession direction cosines .. Such equations are of the Matthieu-Hill
tyre, and instability thresholds will be found. Since substitution of
(2.2L4) into (2.23) leads to the appearance of higher powers of & and

Oy

@, instabilities of higher than first order are to be expected.

D. SOLUTION QF UNIFORM FPRECESSION EQUATION

The solution of the uniform precession mode is necessary to determine
the relation between the driving magnetic field and the precession angle
of the magnetization. The simple solution is found by letting ax =1
in (2.22), giving

doy = - a)l acz + 7hz (2.25&)

Qoz = 432 aoy - 7h » (2.25b)




where

op = ooy oyt oy (N, - N

Gp =y + oy (N - K)

and the ferromegnetic resonance frequency is given by

wy = (0 o))

1/2

For the special case of a disk lying in the e&asy plane of the crystal,

the demagnetizing factor in the plane of the disk is given by

N& = Nx = N"

and the solution to (2.25) is found to be

e Ui

0
aoz = ﬁz——h SinChPt
®o

h
h cos t = A
oy 2 ®p ol i

(2.268)

(2.26b)



wvhere

For operation on ferromegnetic resonance it would be necessary to
include phenomenological damping in these equations by letting @ -'mo + 1110 .
But with the pump frequency significantly below ferromegnetic resonance,
damping has negligible effect on either the magnitude or the phase of & .
In fact, it can be shown that the megritude of the precession angle off
resonance (mf, << mg) 18 1/Q, times that on resomance for the same rf
field strength. This factor QO is related to the phenomenclogical
damping parameter 1, by 1, -molzqo .

The ratio of the magnitudes of Otoz to aOy gives a measure of the
confinement of the motion of the magnetization to the easy plane. This

ratio is called the inverse ellipticity of the uniform mode and becomes

e"l = .l_ao_zl. - u_?; (2.27)
logyl oy

Using typical experimental values of the parameters for Zan,Y in (2.27),
a value for the inverse ellipticity of 0.04Lk is obtained. This indicates
that theymotion of the magnetization is confined almost exclusively to
the easy plane. This is not surprising, considering the large anisotropy
field of 2.n2Y . To the same approximation that the motion of the
magnetization is in the easy plane, the value of k1 my be taken to

be unity. Thus from (2.26a) it is seen that, to first order,

becomes Just the ratio of the applied rf and dc magnetic fields.



Since aOy is by far the dominant component of the megnetization,
an approximate higher order solution for the uniform precession is
obtained by letting &, =0 in (2.22). Thus for the special case of
a disk in the easy plane, the relation

/%y = bfHy = (h/Ho)cos wgt (2.28a)
is obtained as a solution for the uniform mode. The ratio defined by
A, = h/H, (2.28b)

will hereinafter be referred to as the pumping angle,
In order to solve (2.28a) for @. , the LHS of (2.28a) may first

Oy
be expanded in a power series of aOy , since aGy <1l . The method of
successive approximation demonstrates that « may be expressed as a

Oy
Fourier series of odd harmonic terms in' the pump frequency @y - The

result of the second iteration is

a(()s) = Amo cos wpt + Aml cos 3mgt + Ama cos Swpt + ..., (2.298)

where

(2.29b)



Since the pumping angle Ap is usually very small (Ap <<'1) , then
A and A are given approximately by the first term in the expansion

for sach case.

E. DERIVATION OF EXPRESSIONS FOR THE INSTABILITY THRESHOLDS

The equations from which the thresholds of spin wave instabilities
are to be calculated are obtained from (2.23) and (2.24). At this point
the assumption is made that the motion of the uniform precession of the
megnetization is confined to the x-y or easy plane (see Fig. 2.1). This
amounts to neglecting aOz in comparison with °‘0y . Assuming also
that aOy <<1 , it is then possible tv express hy by & power series
in aOy [see (2.28)]. The eguations of motion, greatly simplified by

these assumptions, may be written as

%"oakz*“l% (2.30‘)

G, = Po %, tby Ay (2.30v)

with coefficients 8y 8 bo 2, bl expanded in powers of the uniform

precession amplitude aOy as follows:

a
-2 = aoo+ 302 £0y+ aoh Q!gy-&- PRI
M
b
-a—]—' = -~—0 = alO+allaOy+a12°!27y+alhaW+°” (2-”3)
N N ‘
2 b b a +b,f +b, e
; * "107 "1 Toy T 12 Toy T Cabk Toy Tt )



The coefficients in the expansions (2.30¢c) are

where

%0

10

1l

by

-(x+d+psin2051n2¢)

1 2 2
haoh = 5(-Nll+d+p+sin @ sin“ §)

-2312 = -851)4 = -%sin2931n2¢

l sin 20 sin ¢

2
(2.304)
x+d+sin20cos2¢
- sin 20 cos §
1 1 2, 1 _ 2 2
x+ 5N +5d+cos” 0 -5 sin” 0 cos )
x+§d+gN“+%c0520-é-sinzecosz¢ ’
szO—N”thS' H
h!ﬂs hﬂls
H
A
p = —— (2.30e)
LM
s
Dk°
d = ——
LM
s
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Equations (2.30) show that the coefficients in the spin wave equation
of motion are functions of time. Eliminating Q@ from (2.30a) and (2.30b)
and utilizing the relation bg = - 8 , results in

a alé
%y ‘;f%* 'al'blao'é‘1+aoo 4y =0 . (23

If Q, were eliminated instead of O, , then the differentiated (dbtted)
coefficients would be different. However, it will presently be shown that
these dotted coefficients may be neglected. In this case the differential
equation has the same form for either cx]q or & . Equations (2.9)

and (2.10) yield

g = 8, e +a_ e . (2.32)

The uniform mode amplitude aoy appearing in the coefficients of the
differential equation (2.31) is given by (2.29). If only the dominant

first harmonic pump frequency componént of (;!0y s

Q. = Alo- (empt + e-mPt) ’ (2.33)

Oy o

is used, (2.31) is a Matthieu equation.

From (2.30), (2.31), and (2.33) it is seen that terms like a.i
or b, a, ab’ are proportional to a.)ﬁ &, , vhile terms like (aléo/ao)aky
or alqlq are proportional to im#n“a.k + 'The latter terms may de
neglected since they are smaller by the factor mplm“ << 1 as vell as
being in gquadrature with the former terme. The term containing cth is
- propertional to Wp and may also be neglected since ® @y <<mu .

This is not a loss term, since two time derivatives are involved. With
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the sbove negligible terms omitted, and with the inclusion of phenomeno-
logical damping, (2.31) may now be written as

é%w+%&w+cqw = 0 , (2.34)
where

2
C = -al-blao

From {2.30c) it is possible to express C as a series in powers of aOy

as follows:

C = C.+C.,a +C.0F +C.0 + ... , . (2.35)

whe e
39- = - 2 _ b,. &
= =890 " P10 800
Dy
4
Cy
—= = -28),8),; -b), a8y,
LDM
Cs
— = -28;4 85 -8 - Db, 85 -bay
Oy
C
3 - -
= 28.11 8.12 bll 802
Uy
Cy
m‘; = -28),8,)) -8, -Dbj,ay - b8, =D 8y,




Spin wave thresholds are now determined by substituting (2.32) and (2.33)
into (2.34). Teking spin waves at the frequency

® = nnP/2 (2.36)

and neglecting off-resonant frequepcy terms, a sesular relation for %y
and o Ky is obtained, and from this the instability threshold is found.
This procedure may be followed for every order n . In doing this, only
that term in (2.35) which has the same degree as the order of the instability
is found to be relevant.

Consider as an example the calculation of the first arder threshold.
By making the above substitutions and keeping only constant and funda-

mental pump frequency terms in C , then (2.34) becomes

A2 2
-w2+co+c -;-i-éch mo +% 8y
(2.37)
By
+ Cl—;—i-gc A30+... a:w = 0

and its adjoint (complex conjugate with k — -k), subject to condition
(2.36) for n =1 , Terms from the uniform precession amplitude up to
fourth degree are shown in order to indicate the approximate nature of
the threshold calculations. The threshold is determined by setting the
determinant of the coefficients of the spin wave amplitudes (av , & ky)
in (2.37) and its adjoint equal to zero, giving

C2
A A
o) 3 2 ) i
cl—+ ChéA + ... = - O +Co‘} C2_+ s e +-Q— .
2 2

-2% .



The resonance condition in (2.38),

a,)a = Co + CzAiO/Q + ... ’ (2'39)

is seen to depend upon the uniform precession amplitude. If the uniform
precession amplitude is small (the usual practical situation), the RHS
of (2.39) may be reduced to Co -=w§ » where a  1is the spin wave fre-
quency from linear theory. Then the first order threshold is found from
(2.38) to be approximately

1/2

2
2
(1)3{1‘2 222(‘_”_) 2 4o
(Ap)cr mi icll (w +mk) + " , (2.40)

subject to the condition

® = w?/E

Here and hereafter the order of the threshold will be indicated by the

superscript on Ap .

The higher order thresholds are determined in a similar masnner. The
thresholds of even order n = 2,4 are given by

: /2 N
2
s 6
(Ap)‘(;) = min 2 i (Q ) . (2.41)
‘ lc_ |
-2l -




To find the spin wave with the loweat threshold, (2.41) must: be minimized with
respect to k,Q,f subject to the condition (2.36). Each order threshold
must be considered separately in the minimization process, since Cn as

vell as o is different for each case. In determining thresholds of

odd order higher than the first, it is necessary to take into account

the effect of higher odd harmonic terms in the uniform precession amplitude
upon the modulation of the spin wave freguency @ . The even order
thresholds are unaffected by these odd harmonic terms, however, because

they contribute only off-resonant freguency terms, which are negligible.

The threshold expression for the third order then becomes

5 1/2 1/3
2
(3) - ["‘"2*“@2*(%) ]
(Ap)cr = min 2 e » (2.42)
ley - o/l
subject to
o = oy .

The higher odd order thresholds are similarly affected by the correspond-
ing odd harmonic terms in the uniform precession amplitude (2.29). How-
ever, only thresholds through fourth order are being considered here.

F. OPTIMIZATION AND CALCULATION OF THE THRESHOLDS

In the optimization of spin wave thresholds it will be assumed as an
approximation that the phenomenological damping perameter «/Q 1is inde-
pendent of k,0 and § . Hence, for each threshold calculation 1t will
be assumed that Q 1is a constant.



l. Minimim Thresholds at Sgin Wave Resonance

It is clear from the threshold expressions obtained in the previous
section that the lowest thresholds occur when the condition

o, = o (2.43)

is satisfied. This means that the pumping of the instability at w occurs
at the spin wave resonant frequency C i.e., within the spin wave
menifold.

The rescnant frequency of the spin wave modes given by W, = Céla may
be expanded with the aid of (2.30) and (2.35) to yield

@, = ay [x(x"+p)+ sin® o(x’ + p cos ¢)]l/2 . (2.44)
.Recall that
x = x+4 ,
and
x = HfbnM

d = Dkzlh:do!s

P = H haM ,

from (2.31). When plotted as a function of k for a glven value of x
as shown in Fig. 2.2a, (2.44) describes a continuum of resonant spin wave
frequencies, the spin wave manifold. It may be seen from (2.44) that the
dependence of @, upon ¢ is due to the presence of anisotropy. The
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Oy
“’k=“’24[(x+1)(x+?)]l/‘2"

axfah[x(xa-l-o-p) ]l/ 2

a:k=aou[x(x+p) ]1/

FIG. 2.2"'&.

__Q=zxf2,f$=0

Sketch of the spin wave manifold, showing dispersion
curves in terms of the propagation angles ¢ and §#

Sketch of the k = 0 intercepts of the spin wave
manifold as a function of normslized dc field.

The dashed lines in both figures represent the
frequency conditions (2.36).
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dashed lines indicate the required frequencies for instabilities of various

orders. For the case shown, a resonant instability of order one is forbidden;

and the k values for higher order instabilities are found from the inter-
sections of the dashed lines with the dispersion curves. Egquation (2.44)
shows that the position of the manifold shifts with the dc¢ field. This
dependence is shown in Fig. 2.2b, as a function of the normalized dc field
x , for the k = O intercepts of the manifold. In this figure the
abscispa x = X5 represents the normslized field in Fig. 2.2a, where the
second order resonant instability is Just on the edge of the forbidden
zone. As Fig. 2.2b shows, the number of resonant instabilities varies
with the dc field. The critical fields at which the various instabilities,
“come in" at k = O are found from the intersections of the dashed and
solld curves. For the general case of spin waves with k = 0 , these
critical points are found, with the aid of (2.36) and (2.L44) to be

n2 q2 = x(x’+p)+(x"+p c032 #) sin2 o , (2.45a)

where the spin wave resonance conditiocn (2.43) has been invoked, and the

symbol

@ - orfay,

has been defined for convenience. Since the pump freguency is far below

ferromagnetic resonance, then q <1 .
Since x“ 20 and p=>0 , (2.45) requires that

|sin @ cos ¢J < ng p'lfa , (2.45b)

-28 -
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which places some restrictions on the permissible values of @ and ¢
The RHS of (2.45) is much less than unity for the parameters to be used.
Hence, either @ 1is near zero or else § 1is near xf2 . The reason
for this is apparent from Fig. 2.2a, which applies to the case g <1 ,
p>>1

Assuming a pump frequency of w?/2u = 1.32 kMc and the parameter
values for ZneY at 29°C , @lven in Appendix A, the maximum allowable
values of x° may be determined from (2.45) by setting © = O . The

results for these maximum values of x° are:

for n = 1 x]'_ = 0.00250
n = 2 x; = 0.00998
(2.46a)
n = 3 xg = 0.0224
n = 4 Xl: = 0.0396 .
Recall that
x = x+4d ’

where x = H/huMs is the normalized internal magnetic field and

d = Dk°fUxM_ 1s the normelized exchange field. It 1is apparent from
Figs. 2.2a and 2.2b that, within the spin wave manifold, x° (and hence
the internal magnetic field) is small because the pump frequency is near
the bottom of the spin wave menifold. For the k = O intercepts of the
manifold (shown in Fig. 2.2b) the maximum values of x’ = x; given above
become maximum values of x = X, - The corresponding values of the

applied (external) magnetic field H,. then become

0

Hy, = (xn + N”) h:MB . (2.46b)
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These fields will be "passed through" during the experimental measurements
of instabllity thresholds in order to see if any spin wave instability
effects are present (see Chapter VI). Thus, as x 1is increased (by
increasing the dc magnetic field HO) above a certain x , the ntB
order spin wvave instability is forced off resonance. The X then, cor-
responds to the dc field at which the nth order spin wave instability
first becomes allowed on rescnance. Since these maximm values of x”
are so small, it will be guite permissible later to neglect x and 4
in any term containing p , since p>1

Each threshold will now be considered separately and optimized with
respect to the four parameters w, © , ¢ s K . The first order threshold
at spin wave resonance (w =<nk) in terms of these four parameters is
found from (2.40) to be

1) 2q° 1
(Ap)gr = min % (x” + p) cos ¢ sin 20 (2.47)

subject to (2.45) for n =1 . To minimize (2.47) as it stands would
require § =0 and O = af4 . However, the frequency condition (2.k45)
precludes this combination of ¢,0 by specifying that either © or

af2 - § 1is small. Since the denominator of (2.47) is doubly periodic

in @ , only values O < @ < x/4 ought to be considered. Moreover,

fronm (2.&5) it is clear that a smaller © permits a large value of

cos § ; or, conversely, a small value of /2 - § permits a large value
of sin 20 . Minimization then reduces toc consideration of the following
two cases: (1) @ smell, P =0 and (2) @ = n/4 , @ near =n/2

The former yields the lowest threshold and is given approximately by

2
L (1) 4
(b)) or S 2 - xx s 2

. (2.48)
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It is evident from (2.48) that the actual minimum threshold occurs when
¥’ = x+d is smallest, that is,when d ~O . Therefore, those spin
wvaves which go unstable must be those of lowest k=~ 0 . This tends to
violate the original plene wave assumption for large k . The method
is justified in practice, though, since measured thresholds have been
found to agree with the theory.3

The second order threshold at spin wave resonance is obtained from
(2.41) by proceeding in a similar manner. The result is

(a )3

p’er

1/z
16 qz

= win W W
%oszo (p+d + x-1 - -”-)- s1in°0 cos%(p«lﬂ) + (N'rrx)(x+d+p/2)+l + —,-l
2

(2.49)

Since, by (2.45b), uin @ cos § 1s a very small quantity, then clearly the
minimum threshold occurs for © = 0 . Inserting © = 0 into (2.49) gives

1/2
(AP)cr ® ( N") (2.50)
|l +—
2

vhere x , d terms have been neglected since x +3d<0.01 . For @=0
it 1s seen from (2.45a) that 4 may be large when x << x!; . This means
that the unstable spin waves may have large k , by contrast with the
first order case. From (2.50) the threshold is independent of k . This
result for the on-resonance second order threshold for spin waves is
compatible with the on-resonance threshold result obtained by Schlomann,

et al.,lo for the case of an infinitely thin disk (N" =0) .

s
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The third order threshold at spin wave resonance is found from (2.42)
to be

1/3
T2 q2

(A )(3) = min

cr
P X

e~ ) . (2.51)

Q sin 20 cos # (p +4d+
2

The denominator has the same form as the first order threshold. Hence,
the minimum occurs at # =0 , © smll, and & =0 -- giving, with the

usual assumptions,

1/3
(a )3 36 q°

p'er = = . (2.52)
@'? 198° - x (x + )12

The fourth order threshold at spin wave resonance is determine? from
(2.41) to be

1/4
2

(A )(h) = min e

prer Q(N” + x)Tl + E (p +4d) - sin20<% + cos2¢):|

(2.53)

where second order product terms in 4, x, N” have been neglected.
Enmploying the same type of reasoning as used for the second order
thveshold above, the minimum of (2.53) is found to occur at ¢ =0 ,
@ =0 , and d 1large. The resulting fourth order threshold becomes

approximately

N 1/4

TRIR —

pler  ~ Q(N”+x)<l+gp)

(2.54)

T RRT A sy v+ 3 e et

A -
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2. Minimum Thresholds For Off-Resonance Sgin Waves

Recall from the last section that when x° 1is increased above a
certain x; (vy increasing the dc magnetic field), the n®®  order spin
wave instability is forced off resonance. In this case, for a given n ,
the relationship between the frequency w at which the instability is
being pumped and the resonant spin wave freguency ay is

wk>m = H.DJ? . (2'55)

The first order threshold for off-resonance spin waves may be found
from (2.40) by substituting the value for C, as was done for the on-

resonance thresholds. The result is

-\2)2/2
> -(.u2 2\2 W ]
TR I —h * ) +(3 ) , (2.56)

per wﬁ(x' + p) cos § sin 20

subject to the parametric freguency condition

® = wpf2 ’

where the off-resonant spin wave condition (2.55) must be satisfied. The
frequency condition (2.55) places only a lower bound on @, ; and (2.56)
is to be minimized with respect to k,9,§ , subject to this side condi-
tion. From (2.44), condition (2.55) will be satisfied for all spin waves
if it is satisfied for the © = 0 , k = O spin waves. Therefore (2.56)
may be minimized independently with respect tc k,0 , and ﬁ . From
(2.46) the condition on x corresponding to (2.55) is

x > 0.0025 (2.51)

for the first order process and the parameters- used before.
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Given that p >> x’ , the only substantial dependence ct (2.56)
upon k occurs in the numerator through @, in the resonance term.
From Eq. (2.44) or Fig. 2.2a it is apparent that (2.56) is a minimum
for k=0 . To simplify the calculation, the assumption will now be
made that o 1s sufficiently far off resonance (below wk) that

L

o 2
2 2,2 ®
(w +<nk) >¢>(F-) . (2.58)
Thus (2.56) may be written approximately eas

2
(1) 2 Ix -3+ sin20(5+ cos ¢)]
(a)y, = m ——= & = . (2.59)
prer cos § sin 20

off res

The minimum of (2.59) occurs for @ =0 and for @ small, with

Sopt ™ (x - qe/p)l/a . (2.60)

+

Inserting (2.60) into {2.39) yields the follow’ g minimum threshold ex-

pression for frequencies far off spin wave resonance:

(Ap)c(:i) = 20, = 2lx --C12/1>)l/2 . (2.61)

cff res

The second order threshold off spin wave resonance may be found from ‘!

{2.41) by substituting the value of 02 , s was done in the case of
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the on-resonance thresholds of secord order. The result obtained is

(A )(2)

p'er 1/2
2 e A
in [‘*”2 @2 +(£) ]
= min
mM c0520 (p+d + x-1 - Eﬂ-)- 51020 cos ¢(p+d+1) + (N”-o-x)(x+d+p/2)+l + -q)
2

(2.62)

subject to the parametric frequency condition

w o= e

vhere the off~resonance spin wave condition (2.55) must_be satisfied. From
(2.46) the condition on x 1is now

x > 0.00998 . (3.53)

As in the case of the first order process, (2.62) mey be minimized inde-
pendently with respect to the parameters k, 0, §

The numerator of (2.62) is a minimun wvhen @ = 0 and k = O , since
at these parameter values 15 & minimum. The denominator (discussed in
the preceeding section) is a mwaximun at 9 = O and is insensitive to the
value of k . Therefore, the minimum occurs for 0 =0 and k~0 .
Neglecting terms in the denominator which do not contain p , (2.62)

becomes o 1/2 N1 /2
[ 2. 22 (“‘2 )2]
hi(w + cuk) +\ =—
N ﬁ) L e
+
off res U p( 2
- y
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wvhere

wﬁ = wﬁ (p + x)x

A P T S T o e o

If the unstable spin wave is far off resonance, Eg. (2.58) applies, and
(2.54) vecomes

g

e .

1/2
4q® f
(2) x - 4g"/p |
(A) = 2 , (2.65)
per 1+ N”/2 i
]
which is independent of the spin wave Q . It is interesting that this

result has the same form as (2.61). It differes in the allowed values of
x , which are given by (2.63), rather than by (2.58). Consideration of
off-resonance thresholds for processes of higher order will be shown to

be unnecessary. :

3. Spin Wave Q

It has been assumed as an approximation in each of the above mini-
mizations that the phenomenological damping parameter w/Q 1is the same
for gll spin waves--i.e., the same for all k,Q,f . The relaxation
frequency um is related to the phenomenological damping paraneter by

Laas il e It~ AP

N, = w/2Q . (2.66)

R Ry

This parameter 1s usually defined in terms of the spin wave linewidth
AHk as follows:

WL —————

N, = Y0H /2 . (2.67)%




Thus from (2.6) and (2.6§f) an expression for the spin wave Q becomes

Q = of{y8) . (2.68)

For polycrystalline yttrium ir‘on garnet with aluminum substitutions
(YALIG) , the spin wave linewidth is found to be proporticnal to fre-
guency for © = 0 spin wzawes.ll The spin wave linewidth in single crystal
YIG at the higher frequencies is also proportional to freguency; but at
the lower freguencieg, due to splitting processes, it is no lorger .
so.lz’ 13,1%,15 Each of the thresholds derived in the previous sections
for ZneY have minima for small k , and small @ or © = O-- since
instabilities occurred at frequencies near the bottom of the spin wave
manifold (see Fig. 2.2a). For such spin waves, splitting processes of
relaxation are not possible. Confluence processes, however, are possible
but not likely because k = O ., It is therefore to be expected that the
linewidth of © = 0 spin waves in single crystal YIG will be proportional
to fregquency, even at low frequencies. The spin wave linewidth of ZnaY |
at 1.32 kMc is not known, but on the basis of a 'superficial comparison
with YIG , it might be expected that the spin wave linewidth o‘t:anY- .
for © =~ 0 is also proportional to frequency at low frequencies. If this
is tr.ué, then the spin wave Q of (2.68) will be a constant independent
of frequency.

Before the Q can be determined it is necessary to obtain sone
estimate for the spin wave linewidth of anY . Dixon, et 31.16
measured a spin wave linevidth of AH_= 1.2k Oe (for 0 = xf2 , =0
spin waves) in a parallel pump experiment performed at 17.2 kMc for single
crystal samples of ZneY with substituted manganese. They obtained a
ferrimagnetic resonance linewidth of 3.8 Oe at 9 kMc for the minimm line-
width case. The ferrimagnetic resonance linewidth of the single crystal
Zn Y sample used in the experiments of Chapter VI was about 35 Oe at
6.5 KMc. Schlémann, et al.,’! found for YIG that the ratio of the

resonance to the spin wave linewidths remains constant. Assuming this
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relationship holds for Zn2Y and that AHk is proportional to frequency,
the spin wave linewidth at 1.32 kMc is estimated to be

AHk = 2.44 Oe . (2.69)

Assuming as an approximation that the spin wave linewidth is independent
of © , then (2.69) may be assumed for all spin weves. The spin wave
Q may now be calculated from (2.68), with the following result:

QR = 193 ’ (2-70)

independent of frequency, and propagation direction. It is also assumed
that Q 1is independent of k .

4. Calculation of Thresholds

From the ferrite properties given by Appendix A and the spin wave Q
given by (2.79), the spin wave thresholds 1|8y now be calculated. The

actual perameter values employed are

p = 3.22

g = 0.0898 ,

and

N” = 0.099

is the demagnetizing factor in the plane of the ferrite disk used in
the experimenis reported in Chapter VI.
Figure 2.3 shows curves of the spin wave thresholds through fourth
rder derived in this chapter. Thresholds for both the on-tresonance
(wk = ») and off-resonance (wk > w) cases are shown. The even order

resonant thresholds are nearly constant over the permissible range of x |,
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FIG. 2.3--Spin wave thresholgg through fourth order at frequencies far beloy
ferromagnetic resonance, Thresholds for both on-resonance and
ofr-resonance 8Pin waveg are shown,
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and it has been shown that the unstable spin waves propagate along the
direction of the dc magnotic field (O, = 0) over this range of x

The odd order resonant thresholds vary significantly with x due to the
dependence of each threshold upon @ . At the bottom of the spin wave

. —— - ——— e

manifold, the value of © is zero and the value of x is a maximum [see (2.&6)].f

At x =0 , 0 1is a meximum--with Omax = 0.05 for n =1 and
omax =0.15 for n =3 . All of the resonant thresholds show discon-
tinuities at the maximum values of x corresponding to unstable waves
at the edge of the spin wave manifold. Hence, for each order n , the
spin wave instability of order n 1is no longer allowed on resonance
above a maximum value of x [determined by (2.46)].

For both the even and odd order instabilities, the off-resonance

thresholds exist of x greater than these maximumr values. However, for

values far x slightly less than the critical value X, s the off-resonance

threshold dominates the on-resonance threshold. The reason for this is
that the odd order on-reconance thresholds become infinite at the value of
x corresponding to the edge of the spin wave mpnifold, and the finite
off -resonace threshold takes over before this point is reached in each
case. This behavior is shown in Fig. 2.3 for the first order threshold.
The second order off-resonence threshold is also shown in the figure. The

third and fourth order off-resonance thresholds are similar in shape to the,

plots of the first and second order’ thresholds, but have not been shown
because they are considerably higher.

The spin wave thresholds calculated for each order n above, were
determined on the assumption that the instability for a given order n
was the dominant one. However, it 1s clear from Fig. 2.3 that the
instability with the lowest threshold, regardless of its order, will
dominate the rest. Thus for the spin wave Q@ & 193 , the first order
threshold is dominant at the lowegt values of x . Waere the off-
resonance first order threshold intersects the second order threshold,
the latter "takes over." The third and fourth order thresholds are never
reached, since the second order off-resonence threshold dominates them '
even at the higher values of x . If the spin wave Q 1s actually
larger than the estimated value of 193, then the thresholds will heve
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a behavior similar to those shown in Fig. 2.3. This is due to the inverse
dependence of the thresholds upon the nth root of Q swhere n 1s the
order of the threshold. Hence for Q's larger than 193, the thresholds
of lovest order will be reduced the most. If the spin wave Q is
actually smaller than 193, then the lowest order thresholds will be
increased the, most due to the change in Q . In such a situation it is
possible that the second order off-resomnce threshold will intersect the
third order resomance threshold and the latter will dominate for a small
range of x . It is seen in Fig. 2.3 that this intersection is nearly
possible with a Q of 193.

It is significant that with such a small range of x it is possible
to pass through so many orders of spin wave thresholds. This is possible
only because the pump frequency is so low (1.32 kMc). Another advantage
of having a low pump frequency in an investigation of phonon instabilities
is that spin wave thresholds are high; and it is likely that phonon
thresholds will be observed. An investigation of the level of phonon
thresholds 1s the subject of the next chapter.

'G. SUMMARY

In this chapter the uniform precession and spin wave mode solutions
to the equation of motion of the magnetization were obtained by assuming
oY disk with the eapy plane lying in the plane
of the disk. The pump frequency of the rf megnetic field i1s assumed to
be far below ferromagnetic resonapce. The motion of the magnetization
in the uniform precession mode is shown to be confined almost exclusively
to the easy plane. Owing to the nonlinearity of the equation of motion

transverse pumping of a Zn

of the magnetization, spin wave modes are coupled;to the uniform mode
and thresholds of spin wave instabilities are determined up to fourth
order. These spin wave instabilities occur at multiples of one-half

the pump frequency. The threshold expression for each order instability
is minimized separately for on-resonance and off-resonance spin waves.
Assuming the relaxation frequency is the same for all spin waves, an
estimate was then obtained for the spin wave Q . Having the spin wave
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Q and the parameters of the ferrite disk, the optimum thresholds were
then calculated as a function of the internal dc¢ magnetic field of the
ferrite. The results show that the dominant spin wave thresholds are
the first and second order on- and off-resomance spin wave thresholds.
The first order threshold is dominant only for very small internal dc
fields. The third and fourth order thresholds are never reached for the
value of Q assumed.




CHAPTER III

FIRST ORDER PHONON INSTABILITY THRESHOLDS

A. COUPLING MECHANISMS FOR PHONON INSTABILITIES

Chapter 1I showed that spin wave instabilities result fram noalinear
coupling of the uniform mode of the magnetization to spin wave modes
through the free magnetic energy of the ferrite. Similarly, nonlinear
coupling of the uniform mode to elastic wave modes takes place through
the magnetocrystalline energy. These elastic wave modes will then like-
wise experience instabilities when the uniform mode reaches a certain
threshold. These elastic wave or phonon thresholds will be observed
if they are lower than the spin wave thresholds. Some of the reasons
why the phonon thresholds are expected to be lower than spin wave thresh-
olds were given in Chapter I.

The magnetocrystalline energy referred to above is the free energy
of the crystal which depends upon the magnetization and crystal strain.
This energy is due to the dipolar and pseudo-dipolar interaction and the
dependence of such interaction upon lattice distortion. Since the strain
is always many orders of magnitude less than unity, the magnetocrystalline
energy EK is given accurately by a Taylor expansion with respect to

strain, as follows:

3E, (a) . 3B (@)
EK=Ea(g)+Z ei,j+ ; ci:j €t cee s
1J

e
ij iJ _
eij-o 1§

(3.1)

where the strains e represent distortions of the crystal with respect

ij
to the unmagnetized state and Q@ is the normalized magnetization vector.

Each of the subscripts i; J , k ,-& , etc., takes on the coordinate
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values X , ¥ , z . Since the magnetocrystalline energy must be invariant
to spatial inversion of the magnetization, an expansion of the coefficientus
of (3.1) must contain only even powers of the magnetization direction
cosines. The development of the anisotropy energy term Ea in this way
leads to the anisotropy constants--independent of the crystal strains.
The anisotropy energy for a hexagonal crystal was given by {(2.14). The
second term in (3.1) is called the magnetostrictive energy term. The
coefficients of the lowest order terms in @ for this term are called
the magnetoelastic coupling constants. The third term in (3.1) is some-
times referred to as the intrinsic energy term, and the lowest order
cocfficients in the expansion of this term are called the magnetoelastic
stiffness constant.s.7

Regardless of the magnetic state of the crystal, the elastic energy
Ee is given by a Taylor expansion with respect to strain, as follows:

=
!
) -

é (cijk{'eij €b * 1 3ubmn €3 M mn + .00 ),
i cos
(3.2)

where ciJk& are the elastic stiffness constants and cijh{mn are

the coefficients of the lowest order anharmonic elastic energy tera.
Consider now that the crystal is magnetized due to the application

of a sat:-ating dc magnetic field. This causes linear saturation

magnetostriction, and the resulting equilibrium strains which will be

present are determined by the relations

Yai;(Ex+Ee) =0 (33)

thereby minimizing the total strain-dependent part of the crystal energy.
These equilibrium (static) strains establish an "operating point" about
which dynamic strain deviations can take place due to applied dynamic
stresses and elestic wave oscillations. For the following, dynamic
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strains and strain waves are of particular interest, since they are
capable of giving rise tc instabilities under certain conditions. It
will be useful then to resoclve each strain comiponent into two parts:

—)€(o) (9)4- eij ’ (3.1&)

where eig)(g) represent the static or equilibrium strains determined
by (3.3), and the new €
crystal.

The strain given by (3.4) will now be inserted into the expression
(3.1) for the magnetocrystalline energy. The anisotropy term is unaf-

13 represent the dynamic strains of the magnetized

fected by the strain. A typical example of a magnetostrictive energy
term would be

b ay o (e <°) @+ eyy) (3.5)

wvhere b 1is a magnetoelastic constant. Since the energy must still
contain only even powers of Q@ , then eg) (g) must also contain

only even powers of Q@ , besides being very small. Thus the. firat term of
(3.5) contributes only a small higher order correction to the anisotropy
term. The second term of (3.5) bas the same form as the original megneto-
strictive energy term. It is this term which is responsible for what

is called the magnetoelastic effect. Similarly, a typical example of

an intrinsic energy term would be

daa (e(°)(a)e<°)(a) + e( Y@y ey + {9 (@ €yt €qy cpt) o

(3.6)
where d 1s the magnetoelastic stiffness constant. For the reason
given above, the e(o)(a) must contain only even powers of Q& , besides
being very small. Thus the first term in (3.6) contributes s amall
higher order correction term to the mia.otropy energy. The second and
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third terms contribute a higher order correction to the magnetostrictive
energy. The last term in (3.6) is the only one which has the form of

the intrinsic energy--and this form is the same as appeared in the original
energy expression (3.1). It is this last term which is responsible for
what is called the intrinsic effect. It is apparent from (3.6) that this

effect does not depend upon strain produced due to the orientation of
the magnetization. From the above discussion it is therefore concluded
that the magnetocrystalline energy given by (3.1) may be accurately used
in its present form to express the energy of the dynamic strains.

The strain (3.4) will next be inserted into the expression (3.2)

for the elastic energy. A typical example of the first term in (3.2)
would be

i34 (e(o) (a) €1({2) (@) + €(O) (@) €l t e££) (@) €4yt €ij€k£) .

(3.7)
Using the previous argument regarding e( 0) (@), it is seen that the

first term in (3.7) is a higher order correction to the anisotropy
energy. The second and third terms are higher order contfibutions to
the magnetostrictive energy. The last term in (3.7) represents the
elastic energy as given in the original expression (3.2). A typical
example of the anharmonic energy term in (3.2) would be

4yt ( (0)(a)e\°) () e(O) (@) + e(o)(a) e(o) @ e
0
* e( )(a)ek‘ﬁ €on ¥ €13 kb emn) . (3.8)

The last term in (3.8), which is an anharmonic term in the dynamic
strains, is neglected. The first and second terms are higher order
corrections to the anisotropy and magnetostrictive energies, respectively.
The third term has the same form as the dynamic intrinsic energy temm

in (3.6) and is responsible for what is called the morphic effect.
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Even though the energy of the intrinsic and morphic effects have the
same form, there is a possibility of distinguishing between these two
effects. The energy of the morphic effect [third term in (3.8)], unlike
that of the intrinsic effec., depends upon a distortion of the lattice
in response to the direction of the magnetization.

Therefore, if the magnetization is changing direction with time,
it is likely that the inertia. of the crystal will be a factor in de-
termining the magnitude of the morphic effect. It has been suggested
that the morphic effect should probably be the most effective at tens
of megac;cles where crystals of a reasonable size exhibit well-defined
1 Hence, at microwave frequencies, it is likely that
the morphic effect will be negligible in comparison with the intrinsic

elastic resonances.

effect.

From the above discussion it has been shown that the magnetocrystalline
energy expression (3.1) and the elastic energy expression (3.2) may be
used in their original form to express the energy contained in the dynamic
strains when a saturating magnetic field is present.

From the energy expressions above it is apparent that the energy
associated with the morphic and intrinsic effects is a factor of the
order of the elastic strain smaller than the energy associated with the
magnetoelastic effect. It is not surprising, then, that experiments in
single crystal nickel show the dependence of the propagation velocity
of acoustic waves to be well explained on the basis of the magnetoelastic
effect a.lcme.]'8 Even for large bias fields, the intrinsic effect was
negligible in comparison with the magnetoelastic effect. Therefore,
the magnetoelastic effect may reasonably be assumed to be the dominant
mechanism in the investigation of phonon instabilities in anY . It
will be found later from the experiments described in Chapter VI that
this assumption appears to be substantiated.

Physically, the magnetoelastic effect described above causes a
reactive loading and damping of the elastic waves by motion of the mag-
netization.? It is further to be shown in this chapter that, wvhen the
magnetization is pumped by the application of a sufficiently large rf
magnetic field (in the presence of a dc magnetic field), these elastic
waves exhibit instabilities when the uniform precession amplitude
exceeds a threshold value.
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B. ELASTIC AND MAGNETOELASTIC ENERGY CONTRIBUTIONS TO EQUATIONS OF MOTION

In Chapter II it was indicated why anY may be be regarded as
a uniaxial crystal to a first approximation. It has been shown from
symmetry arguments that the elastic energy for a uniaxial crystal is

given by7’2o
E == 2 4+ 2c (e € )+ C [(e, -e F+uc ]
e 2 “zz22 €zz tntn xx Yy £E MM XX Ty "
+ 2C e (e +e€ )+ 4c (e2 v ) (5.9)
EnNzz zz' xx Yy Eznz ° xz vz ’

where the subscripts of the elastic constants refer to the transformed
variables ¢ = x+ iy , n=x - iy , z .

Similarly, it has been shown that the magnetoelastic energy for a
uniaxial crystal is given by7

E =B ¢ o + B, (exx + € ) (Qi + o?)

m 1l 2z 2 Yy Y

+ Bgl(e,, - €yy)(di - d?r) + 1+€)cy aa]l+B le, a+e ala ,

(3.10)

where the transformed variable subscripts have been suppressed to simplify

the expression and to enable it tc be written in an analogous form to (3.9).
Since the magnetoelastic energy contains both strain and direction

cosines of the magnetization, it will contribute both to the equation

of motion of the magnetization (2.6) as well as to the elastic equation

of motion. It is through the magnetoelastic term that energy is

transferred from spin waves to elastic waves.



1. Spin Wave Equations

The contribution of the magnetoelastic energy to the equations of
motion (2.6), and ultimately to (2.23), is determined by inserting (3.10)
into the relation (2.7) to give the effective magnetic field, and then
inserting the latter into (2.6). The following results are obtained:

. - _Z_ -
(czx )m ) [QBlayazezz 2320yaz(exx + eyy)
+ 233ayaz(exx - eyy) - hajaxazexy (3.11a)

XZ

+Bh(d§'ai)€y +Bhaae ]

(@) = & [-2B

0 n 1%, %€, * 2Bzaxaz(en + ew)
+ 233axaz(exx.- ) + hBB aa 2oy (3.11b)

- B, (Qi - dez)exz - B axay eyz]

. _ _L - -
(B,), = - (B (e, =€) + Uny(df - ey
(3.11c)
az(axeyz - ayexz)] .
2. Elastic Wave Equations
The fundamental elastic wave equation of motion is given by
. L 3°E
PRy = ) Blvo) —— (3.12)
J d T4



where i , j=1,2, 3 ; Ri is the elastic displacement in the di-
rection of the Cartesian coordinate Xy H po is the density; and E
is the free energy of the crystal. The factor %(l + 513) is needed
because symmetrical physical strain terms in the free energy have been
ombined. The strains combined in this way are referred to here as

pseudo-physical strains since the transformation properties of the physical

strain tensor are still retained; no distinction is made between equivalent

strain components. Each component of the strain written in tensor form

is given by
1 (3R oR
€4 = = B | . (3.13)
J 2 ij axi

The only effective contributions to the free energy E in (3.12) will
be due to elastic and magnetoelastic energies, since other terms of the
free energy are independent of the strain. The expanded form of the
elastic equations of motion are obtained by the substitution of (3.9)
and (3.10) into (3.12) with the subsequent utilization of (3.13). The
result is written symbolically as the sum of the elastic and magneto-
elastic contributions

with the elastic terms given by

} R R 3R
= 2 —
PPyl = 2G4 gn* Cypny) e *Ceg nn ay° * 2 n N
C&ngn x+2(c§“zz+ ng“z)axbz (3.14b)

Xy



and

. 3°R 3°R 3°r
- —%+ 2 —£
Cfyle = 20, 0+ ) TE Dpm 38 * Lhene 52
3°R 3°R (3.1k4c)
LC —X 4 2(c +C 2
ENneEn dydx Enzz §znz dydz
2
o R JR
= 2 X A
(poR ) (CE znz ¥ C§ nzz) 3xdz M Bybz)
8232 aeRz aeRz (3.1k44)
ECEZHZ 3x° * 6y2 * Crzzz 32° ’
and the magnetoelastic terms by
_ 9
PRy = S Bl + &)+ B (& - d))
19
+ 2—8;(1433010 ) + -S'(Bha az) (3.1ke)
OF)y = & By + &) v By (@ - )]
19
+§5;(hsaa)+§5-(suyz) (3.141)
19
(p ) =§&(thz)+25§(3h »
+ & (B.dP) (3.1k¢)
9z ‘"1z ) 1hE

Since (3.14) is invariant under a transformation to any rotated axes x’,y’  ,
the magnetoelastic behavior is isotropic in the x-y plane. Outside
the easy plane the behavior is anisotropic.
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As in the case of the spin wave modes, the assumption of periodic
boundary conditions is valid for acoustic wave propagation because
2x/k << sample dimensions. Hence a plane wave sclution for the dis-

placement R of (3.8) is in order and is given by the Fourier series
expansion

ez
B =) Roe - . .15)

The displacement R
has the form

X contains the time dependence of the wave, and

(,.16)

which in general may be camplex, where the quantity o 1is the frequency
of the elastic waves and the vectors Iy zi are independent of time.
Since the elastic displacement R must be real, then the zlastic wave

amplitudes are related by

5%
B-k = Bk ;] (3’178)
and therefore
I, = Iy - (3.170)

In general, R will contain pairs of oppositely directed traveling waves,
with propagation vectors k and - k . As in the spin wave case, the
uniform precession will be found to couple pairs of elastic waves Ix

and ztk , and this coupling will lead to exponentlal growth cof pairs

of elastic waves. For each pair it will be found that

= |r-k| ’ (3.18)

so that the unstable modes are standing waves.

o m‘ . mm,ﬁ_,m I




3. Solutions to the Elastic Wave Equation

An examination of (3.14) reveals that the simplest solutions of
the form of a single term in (3.15) occur when the propagation vector
k 1is along one of the crystal axes x , y or z . Since the magnetoelastic
equations are isotropic in the x-y or easy plane, it may be arbitrarily
assumed that the propagation vector k 18 along the x-axis. The obvious
independent solutions to (3.14) for elastic waves propagating in the
Xx-y plane are therefore of the form

Ry (t, x)

R, (t, x), (3.19a)
and
Rz (t, x)

For elastic waves propagating along the z-axis the obvious independent
solutions to (3.14) have the form

R, (t, z)

Ry (t, z) (3'19b)
and
R (t, z) .

Because of the isotropy of the x,y plane the first two are equivalent,
and the second solution will not be considered further. The solution

to (3.14) with wave propagation outside of the easy plane and not along
the z-axis is much more complicated than are the abeve solutions. Such
waves are called quasi-longitudinal and qmi-trmsverse.al The name
quasi is applied to these waves because, in general, the digplscement
vector Bk is neither parallel nor normal to the propagation vector k .
To avoid unnecessary complications, the simple solutions to (3.1k) will
first be considered and phonon instability thresholds will be calculated
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from these. It might be expected, due to the large anisotropy field,

that parametric excitation of elastic waves propagating or polarized
outside of the easy plane will .e greatly suppressed. If the thresholds

of such waves having the simple forms given above are, indeed, substantially
higher than the thresholds of waves propagating and polarized in the

easy plane, then it will be assumed that the thresholds of the gquasi-
longitudinal and quasi-transverse waves mentioned above are also sub-
stantially higher.

C. EQUATIONS OF MOTION IN A ROTATED COORDINATE SYSTEM

The direction of propagation of acoustic waves propagating in the
easy plane will not necessarily te in the same direction as the applied
dc magnetic field. Therefore it becomes necessary to consider acoustic
wave propagation at an arbitrary angle with respect to the applied dc
field. Hence, rotation of the x , y axes through an arbitrary constant:angle
Yo relative to the field is requirec (see Fig. 3.1). Any vector
campcnent Ai in the original system is transformed to the rotatec

system A Thus, the transform~tion tecoue

A .
p

Ax cos *O + A.y sin *O
A .= - A.x sin *O + Ay.gos *O
A .= A , (3.20)

where Ai can stand for O& R ki or, in particular, any component of
the right hand side of the equation of motion for the magnetization (2.6)
(see Fig. 3.1). In making the transformation it is desirable to retain
the identity, so to speak, of the displacement components Ri in the
fixed system, so it will be possible to identify the simple modes. This
will be done explicitly in the individual cases. Where there are only

terms in Q@ , as in the spin wave equations of motion before the
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FIG. 3.1--Orientation of rotated coordinate system with respect o
fixed system, showing applied megnetic fields in the rotated
systen.
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magnetoelastic effect was considered, every term in the new system has
the same form as in the old and may simply be primed. The magnetoelastic
terms, containing components of R as well as @ , are transformed to
the rotated system by (3.20). Then Q is referred to the rotated
system by using the inverse of (3.20). The displacement R , on the
other hand, is left in the fixed system in order to retain the identity
of the elastic wave. Adding the magnetoelastic terms then ylelds

&ky. = aéakz, + a.law + (dky')m (3.21a)

akz' = bc’)akz, + biaiw‘ + («fxm,)m R (3.21v)

where the primes on the coefficients mean that uniform precession am-
plitudes contained therein are also primed.

D. DERIVATION OF FIRST ORDER THRESHOLDS

Only the first order pumping of phonon instabilities will be of
interest, since the first order thresholds are lowest. Taking only
first order terms in aOy' and neglecting az, << cxy. as before,
the coefficienis given in (3.21) become

"
0 ,
-_— = ‘OO
Yy
8y by .,
= = - = = 8,5t 8, %
YUy By
b, ) ,
— = blO + bll (!O_j; » (3.22)
Y



where

%00
k .,k .,
o = - Lzt
0 K
k lk 4
’ = zZ X
1 kﬁ
k2.
... = x+ 4+
10 X
kxak P
bll = -2 —+k )

Each type of elastic wave propagation will now be considered in the
order shown in (3.19). For waves propagating in the x-y plane, it is
agsumed that k'r = kx in (3.15). The first such wave Ry(t,x) is for
a wave polarized, or having particle displacement, in the x-y or eaay
plane. This case will be treated in detail and will serve as & basis
for the other cases. The relevant components of (3.11), which contain
only terms in € xy become

kB, 7
(@), = —E— (& -rey, - (3.23)
Here the strain is related to the elastic displacement by

¢ = R e, (3.24)



which follows from (3.13) and (3.15). Each component (c:zi)m of (3.23)
must be *ransformed into the rotated coordinate system in accordance
with (3.20), and each direction cosine @, must be transformed by the
inverse of (3.20). Since it is desired to retain the identity of the
elastic mode, the components of the displacement 3 are referred to
the fixed coordinate system. Recalling from (2.8) that each direction
cosine a, (and hence ai‘) has uniform precession and spin wave com-
ponents, and retaining the spatially-dependent terms, X only to
first order gives

(&kx')m = (&h")m =0
2i
("')"‘7 ( oa L si ) k Liex (3.2
%,m M cos 2y, - Oy,snaro Rkye . 5.25)

S

Substitution of (3.25) into (3.21) and elimination of @, yields the
following equation:

-

(@, + @ & = K R (3.268)

where
a)i = 4}21 (2" +p) (x” + sin® Vo ¥ sin 2 Yo Cxoy,) (3.26b)
21iy
Kmp = = __?kﬂ}:h (x* + p) (cos 2y, - 2 sin E»yo aOy') . (3.26c)

S

The frequency @ is simply the resonant spin wave frequency [see also
(2.44)], and Kmp is the coupling coefficient between the spin waves
and the elastic waves arising from the magnetoelastic coupling. It has
been assumed in deriving (3.26) that the magnitude and direction of the
propagation vector k 1s the same for elastic waves as for spin waves.
This is reasonable since maximum mutual coupling between the spin

and elastic waves requires the magnitude and direction of k to be the
same.
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The elastic wave equation for the case under consideration is the
one for which 1 =y in (3.12). Utilizing the transformation (3.13)
for the direction cosines and retaining spatially dependent terms only
to first order, the magnetoelastic contribution (3.14f) becomes

(pofy)y = 2By (cos 24 - 20 . sin ao)Zx o X | (3.07)
k

Adding (3.27) to the strictly elastic term (3.1kc) gives the equation

. 5 |
YRy t By, (3.28a)
where
, 2,
B 13\ Vel (3.280)
P pO
21k
Kpm = —p——BZ (cos 24, - 2aoy, sin ao) ’ (3.28¢)
0

where again the spin wave and phonon k's must be equal.

The equations of motion for the combined magnetic-elastic system
are (3.26) and (3.28). Losses are introduced phenomenologically into
. these equations, with the result

az,w ron, & o @ = Ko B (3.29a)

e

. 2
Ry +2L R+ & R = K_a . (3.29v)

where the relaxation frequencies 7= %/2Q » Ny " %/2% are
defined in terms of the respective resonance frequencies and Q factors.



A physical interpretation of (3.29) is found by assuming zero
pumping field (i.e., aoy,o). First insert (2.9) primed and (3.16) into
(3.29). A nontrivial solution exists only when the secular determinant
is se* equal to zero. If the frequency is assumed to be complex,

wo-w+ in |, (3.30)

the solution may be expressed as

(o - ) - ) = KK (3.31a)
(a)2 -w2)+ (m2 -a)e)
n=%“2<7%% ) (3.310)
a:m+ wp - 20

where it has been assumed that n << w . Note the symmetry of the
solutions with respect to a)m R wp « If the roots of (3.319.) are
plotted as a function of k , as in Fig. 3.2, the usual dispersion curve
is obtained. The interaction is greatest at the cross-over frequency,
where wp o . In the system considered here, however, it will be

required that @ << «@ . Under these conditions, (3.31) can be ap-
proximated as

2 mz-l-(g—fﬂ
w . = p 2 (3.32a)
o]0 a)m
K X
L T B : (3.32b)
n

This applies to the lower part of the lower branch in Fig. 3.2, where
the mode is substantially an elastic wave. The phonon-like nature of
the resonance (3.32a) is denoted by the subscript p on wpo . Equation
(3.32a) indicates the dependence of the phonon frequency mpo upon the
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FIG. 3.2--Dispersion curve showing effect of elastic and spin
wvave mogde coupling at constant *0 .



spin wave frequency w, » 8s well as upon the spin wave-phonon coupling

parameters K , K m For typical values of the parameters it is found
p " oP 2 2
<< . >> .

that l(me wp Then, since wo mp , the frequency ‘”po is

nearly equal to the unperturbed phonon frequency wb . Also, the re-
laxation frequency v 1s nearly egual to the phonon value np ,» and
is relatively insensitive to the value of wy

Equation (3.31), and hence (3.32), were derived under the assumption
of zero pumping field (i.e., Oby, = 0) . In determining the phoron in-
stability threshold, the modulation of ® and n through the time-
varying quantity Qby’ must be considered. The threchold is determined
most simply by obtaining the differential equation for Rky alone. First,

writing (3.29a) in operator form results in

(0° + 2n D + wi) Yy = Kp Ry (3.33)

where D symbolizgs the partial time derivative operator. Assuming
nperation far below the spin wave manifold, the first term in (3.33)
may be neglected by comparison with wi , and Qiy' may be expressed as

-1
Zup 2y
4. = 2 l+¢?_ D Ry - (3.34)
m m

Expandipg the operator expression and taking only the first two terms

2
(assuming an/mm = ;/mmqm << 1) , and substituting (3.34) into (3.29)
gives the result

ﬁw*zﬂ%”’f%=0 ’ (3.35)

where R has the form (3.16) and the values of 1 and wg are of

the same form as (3.32) for the case . . =0 . However, in the derivation

Oy
of (3.35) ® Knp and Kpm are functions of the pump or uniform precession
ampli tude aoy ’ .




It follows that the phonon frequency will be modulated at the pump

frequency, and to first order in aOy' will give

2 2
@ = @, (1L+G aey') , (3.36)

where from (2.29), aOy' = Ap cos apt to the first approximation. The

modulation parameter G 1s given by

2 2
1 do 1 |K K _dw 1 3(_ K )
G = o= —--10- X — -R# =2 - - _—m& . (3'37)
w2 o a)2 W o, w2 9 ,
PO oy’ PO n oy’ m aby

The damping parameter 1 will also be modulated by the pump amplitude
aOy' through the dependence of 17 upon Oy a.nd the coupling -
coefficients. However, n 1is nearly equal to the phonon damping parameter
'lp » &8 was previously discussed, and if the phonon Qp is fairly
large, then 'qp << wpo . Therefore, the effect of modulation of the
damping parameter 17 upon the instability thresbold will be negligible,
as can be seen by camparing the contributions of the second and third
terms in (3.35) in the following procedure.

Substituting (3.16) into (3.35), and assuming the frequency condition

w = %/2 (5038)

for a first order instability yields the equation

i w GA
-of ¢ =2 4 "’io rw-e--—g o = 0 (3.39)

Op 2

and its adjoint (complex conjugate with k - -k) , where nonresonant
frequency terms have been neglected.(l) Since a nontrivial sclution to

G)Chspter IV gives s more complete treatment of the solution to
(3.35), including operation above threshold where the solution is unstable.
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(3.38) exists only when the secular determinant is equated to zero,
then the minimum pumping threshold becomes

2 ww 2| 1/2
(A )cr = min 5 (-m2 + w20)2 + | —L2
P Gy P <, . (3.L0)

It is appa: it from (3.40) that the minimum threshold will obtain when
the resonance condition

W, = W (3.41)
is satisfied. Since the second term in (3.32a) is small, B0 is given

approximately by @, of (3.28). The minimum phonon threshold on
resonance then beccmes

(), = min G%p , (3.42)

subject, of course, to (3.38) and (3.41). Conditions (3.38) and (3.41)
determine the value of the optimum propagation constant k at which
the minimum threshold occurs. The threshold (3.42) must then be further
minimized relative to the angle o ? which appears as a variable in the
modulation parameter G . For the spin wave threshold calculstions, a
similar condition to (3.41) included a dependence upon the direction of
propagation of the waves, and the value of k was not specified by
the frequency condition alone. However, in the phonon case k 1is de-
termined by (3.41). As a result, the normalized exchange parameter d
is a constant.

Returning to the special case Ry (t,x) by inserting parameters
given in (3.26) and (3.28) into (3.37) and finally into (3.42), the

- 64 -




threshold of instability is found to be

. 2
(b, € (x4 8in” )

coféto() . (3.43)

g
Ay, =

2
21Qp33 sinlwo G+x’+sin2*
The coordinate subscripts of Ap here, as well as hereafter, refer to
the direction of polarization and propagation, respectively, of the un-
stable elastic waves. It is noteworthy that the second term in the de-
nominator of (3.43) is the most significant in lowering the threshold,
because x° is much less than unity and the angle Vo 1s of the order
of several degrees (to be shown in the next section)--also very small.
This term comes from the modulation of the spin wave lodc frequency
@ of (3.26), as can be shown from (3.37). The first term in the de-
naminator of (3.43) is not completely ignorable, however, and comes
from modulation of the coupling between the spin wave and acoustic
wave modes.

The procedure for determining the pumping threshold Ap for the
remaining types of elastic waves in (3.19) is basically the same as
described above for the Ry(t,x) case. The frequency of the spin wave
mode ¢y 1s the same for all cases and is given by (3.26b). The
velocity of propagation (wp/k) of the elastic wave, however, depends
upon the mode and direction of propagation. The magnetoelastic coupling
parameters Kmp s Kpm also depend upon the mode and direction of propa-
gation of the elastic wave, and hence are different for each case
considered.

The pump threshold angle for longitudinal waves Rx(t,x) propa-

gating in the x-y plane ir
2 . 2
(beM )" (26 0y o + c““)(x + sin” ¥ )
(A.) = .
P 2 1" Gl
2x Qp 33 sin 4 Yo L.

(x* + singto) cos aO

(3.44)
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In this case, modulation of the spin wave mode frequency has less effect
than does the coupling parameter modulation. The reason is that the
magnitude of the magnetoelastic coupling is weaker (for small angles)
for longitudinal elastic waves than it is for transverse elastic waves.
It will be found that for the first two cases the lowest threshold occurs
for elastic waves propagating nearly along the applied dc magnetic field
(i.e., ¥, will be small ).

The remaining case for waves propagating in the easy plane is
Rz(t,x) , which represents a transverse wave polarized (i.e., with
particle displacement) in the z-direction. The result for the pump
threshold angle is

o, UmM) (x’ + p)
(a), = Az = . (3.)

n Qp Bi sin 2&0

Here, the weak magnetoelastic coupling as well as the influence cof the
anisotropy 'magnetic" field greatly increases the threshold. There is
only one term in the denominator of (3.43), because the modulation ef-
fects of the coupling parameters Kﬁp s Kbm and the spin wave frequency
@, upon @, of (3.32a) combine algebraically into a single term.

Now consider the two cases of elastic waves propagating along the
c- or z-axis. First take Rx(t,z) , which is a transverse wave polarized

in the easy plane. The threshold pumping angle is given by

4C UaM_)° ’
(A ) _ _gznz( s) (1+ X + P) . (5.%)

p’x2 >
n Qp Bh sin Evo

This result is slightly larger than (3.43) due to the dependence of the
spin wave frequency upon direction of propagation. For propagation of
spin waves normal to the applied dc magnetic field, the induced dipolar
demagnetizing field is maximum--and hence the spin wave frequency is

maximum and constant. Therefore, there is only one term in the denominator




of (3.44) because only the coupling parameters contribute to the modu-
lation of @0 - For the thresholds (Ap )yx and (Ap )n , however,
the modulation of wpo was due to variations in @, as well as in the
coupling parameters.

The last case is for Rz(t,z) , & longitudinal elastic wave propa-

gating along the c-axis. The threshold angle for this case is

A) =~ » . (3.47)

‘22

Actually this result obtains only insofar as aOz is neglected in com-
parison with unity--a condition well satisfied, since ac_?. << aby due

to the inherent ellipticity of the uniform precession mode. Elastic waves
of this type cannot be pumped unless there is some deviation of the uni-
form motion of the magnetization permitted in the direction of the par-
ticle displacement. And of course if such deviation is neglected, then

the threshold becomes infinite.

E. OPTIMIZATION AND CALCULATION OF PHONON INSTABILITY THRESHOLDS

1. Minimization of Thresholds

Each pump threshold angle given by relations (3.41) through (3.4k)
for the various cases is a function of *O , the angle between the
x-axis and the applied dc magnetic field. To determine the minimum
threshold angle it is necessary to optimize the pumping threshold Ap
with respect to ¥, , subject to the condition (3.41) which determines
the value of k (and hence d). The optimum propagation angle (vo) opt
is found for each kind of instability, and the corresponding optimum
threshold angles (Ap )cr are evaluated. By direct compatison, the mode
having the lowest threshold is then found.

Starting with the simplest case, Rz(t,x), it is apparent from in-
spection that (vo)ch £ = a/4 , and that the minimum pumping threshold
angle is therefore

2 .
(A) = Cions Mn’;“ ML (3.48)

P ax

cr x Qth

- 67 -




The minimum threshold for the case Rx(t,z) has a similar form and is
given by

(bxM_ ) (L+x"+ p)
(), = Sore SIS (3.49)

cr x Qp Bﬁ

Optimization for the Rx(t,x) and Ry(t,x) cases is not quite so obvious,
but the optimum angle may be obtained by following the procedure given
in the first paragraph of this section. A rough plot of (3.41) and (3.42)
as a function of *0 reveils that this optimum occurs for small angles.
Using the small angle approximations for the trigonametric functions
in (3.43) and (3.44), differentiation shows the optimum angle to be given
to first order by

() 2

Opt ) (3'50)

where it has been assumed that x° << 1 . Inserting (3.50) into the
small angle (¥ 0 << 1) approximations to (3.43) and (3.44) yields the
following minimum pump thresholds:

c 2c, . NuaM_ )
(A) = (—{‘m'.. m( S) x’l/a (3.51)

P XX

cr 61/31 Qp Bg

(han ) ,5/2

A).. = “im (3.52)
%Z’; 33 opB} (L + 4.67 x°)

Note that these two minimum thresholds are the only ones which depend
significantly upon the psrameter x° .



2. Comparison of Different Phonon Threshclds

A comparison of the above phonon thresholds will now be made.
Knowing p = 3.2k for Zn,Y , and x° << 1 , it is apparent from (3..48)
and (3.49) that (A,,);.,x < (Ap)x . Assuming the factor c/opB 1s
approximately the same for ea.ch threshold, and that x“ << 1 , the
following approximate ratios between the other thresholds are obtained:

(Ap)zx : (Ap)xx . (Ap = 2"'\/‘-“‘-1/2 1 : &x’. (3.53)

cr cr cr

From (3.53) it is seen that the highest threshold occurs for Rz(t,x)
elastic waves. The lowest threshold occurs for Ry(t,x), which represents
transverse waves propagating and polarized in the easy plane. As vas
suspected initially, thresholds are substantially higher for elastic

waves propagating or polarized outside of the easy plane. Hence the
thresholds for the more camplex quasi-tranaverse and quasi-longitudinal
elastic waves will not be considered.

3. Calculations for the Lowest Pumping Thresholds

The magnetoelastic constant, the elastic constant, and the phonon
Q of Zn2Y are not known. However, reasonable estimates can be made.

Perhaps the best estimate can be made for the elastic constants,
since they do not change so much from one material to another. The
elastic energy expressed in terms of engineering strains, rather than
in terms of the pseudo-physical strains employed above, is given by

E, = 25 Z, iy &y ' (3.54)

where the c,.'s are the elastic constants, and the strains e

13 i



are related to the tensor strains bya‘?

e, = €44 for 1 = 1,2, 3

e = 2e12 = 2e21
(3.54p)

e‘j = 2613 = 2631

e6 = 2e12 = 2e2l .

Expanding (3.54a), substituting the tensor strains given by (3.54b),
and comparing the resulting elastic energy expression in terms of the

c,.'s with (3.9) gives the following relations:

1J
c = ¢ c = ¢
2222 cj} t nzz 2 13
c = FE..+E,) c = f¢
tgnen B V11T T2 tznz L% (3.55)

1 .
Gam = F %) o

The elastic constant ng m will be estimated by taking the value of
C,; - Cpp = 1.37 x 10 erg/cm’ for 2Zn , which has a slightly higher
density than Zn,Y and is in the same crystal cla.ss.22 From (3.55)

the elastic constant ng " may then be found to be

11 3
'u [ ) .
C!E‘l"l 3.3 x 107 erg/cm (3.56)

The velocity of transverse phonons propagating in the easy plane may
now be found from (3.56) and (3.28b). The result is given by
1/2

) - B 11 =~ 3.55x105 cm/sec , (3.57)

S

Po
where the x-ray density given in Appendix A has been uged for p 0o °
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The magnetoelastic constant of the diagonal strain components for
cubic crystal YIG is b, =5 X 1P erg/an® .23 The magnetoelastic
constants for hexagonal anY will be assumed to be the same order of
magnitude as this, giving the result

By = 5 x 1o§ erg/c.l3 . (3.58)

‘ 2
The acoustic Q of Zn2Y is of the order of 106 at 1 Mc. b
Assuming the acoustic Q veries inversely as the freguency, an acoustic
Q at a)p/Zu = 0.66 kKMc is estimated to be

g ~ 1500 . (3.59)

Inserting (3.59), (3.58) and (3.56) into (3.52), the following
numerical expression for the lowest phonon threshold is ocbtained:

3/2
(A) 7. 7ix (3.60)

pyx 1+ 4.67x’
(o3 o

This result is plotted in Fig. 3.3. Figure 3.3 also shows the relationshi)
of h,, to (Ap)cr , which is the same here as in Chapter II.

Using the estimated constants above, the assumption made that
®0= % in Equation (3.41) is found to be valid for x° > 0.00l.
However, the theory breaks down for another reasds even before this
value of x° 1is reached. In deriving the above phonon thresholds,
a)i << wi was assumed. At the lower values of x° o approaches
the phonon frequency mp , and this assumption no longer holds. 1In
particuiar, when w, = 3 (Dp the actual phonon threshold is about
20% lower than the value given by (3.60). At @, = 2wp the actual
threshold is about 40 lower. Below the dc magnetic field corresponding
to this point it is suggested (below) that spin wave thresholds dominate

the phonon threshold.
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F. COMPARISON OF THEORETICAL THRESHOLDS FOR PHONON AND SPIN WAVE
INSTABILITIES

The minimum phonon threshold shown in Fig. 3.3 is a function of
x’ [=(H + Dk?)/h»xus] « The spin wave thresholds, howevsr, shown in
Fig. 2.2 are functions of x(= H/huus), rather than x’. Consequently,
before a comparison of the phonon and spin wave thresholds can be mide
it 18 necessary to know the value of the normalized exchange parameter
d= Dkz/lmMs relating x and x’(by x* = x + d). The value of 4 will
be found experimentally as described in Chapter VI. Assuming for the
useful range of x that d is negligible (i.e., x =~ x’), the phonon
threshold of Fig. 3.3 may then be campared directly with the spin wave
thresholds of Fig. 2.3. It is seen fram this comparison that the mag-
nitude of the second order spin wave threshold is casparable with the
magnitude of the phonon threshold at values of x below about X
where ®, = 2wp = @ - On the other hand, if 4 1is not negligible
it is possible for a field region to exist where the second order spin
wave threshold will dominate the phonon threshold. The reason for this
is that the effect of a finite (positive) value of d 1is to increase
the phonon threshold for a given field value x . This effect appears
to have been observed, and it will be discussed in Chapter VI.

G. SUMMARY

Various mechanisms which can couple the uniform precession mode
of the magnetization to elastic waves are discussed; namely, the magneto-
elastic effect, the intrinsic effect, and the morphic effect. In the
calculations of this chapter it i: assumed that the magnetoelastic
effect is the dominant mechanism in the pumping of elastic waves by
the uniform precession. The spin wave equations of motion of Chapter II
were modified to include contributions from the '.ll.gnetoelutic energy
which couples energy from the uniform precession to elastic waves.
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The elastic wave equations follow from the elastic energy, together with
the magnetoelastic energy expression. The simple solutions to the elastic
wave equations are the ones considered in the elastic wave instahjlity
calculations.

In order ton take into account propagation of elastic waves in the
eagy plane at an arbitrary angle with respect to the direction of the
dc magnetic field, the equations of motion are expressed in terms of
a rotated cogrdinate system. The elastic displacement components were
left in the fixed coordinate system in order to maintain the identity
of the simple etastic modes. For each simple mode case the elastic
and spin wave equations were combined, and a Matthieu type of equation
follows. For each case the first order elastic wave (or phonon)
threshold was determined.

The lowest threshold was found to exist for transverse waves pro-
pagating and polarized in the easy plane of the ferrite. After making
estimations of the elastic constant, the magnetoelastic constant, and
the phonon Q , and knowing values for the ferrite parameters, threshold
values were calculated as a function of the effective internal dc
magnetic field (i.e., internal plus exchange fields). The threshold
was found to increase more rapidly than linearly with increasing internal
field. Assuming the exchange contribution to the effective internal
field is small, a camparison of the lowest phonon threshold was made
with the spin wave thresholds of Chapter II. From this camparison it
was expected that the phonon threshold would dominate the spin wave
thresholds at internal fields greater than that corresponding to the point
where the second order off-resonance spin wave threshold begins. Below
this point the phonon and spin wave thresholds were expected to be
comparable.
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CHAPTER IV
THEORETICAL POWER ABSORPTION BY PHONON INSTABILITIES

A. DIVISION OF POMER

Suppose microwave (rf) power P, is incident upon an slectromagnetic
resonant system (dielectric resonator) which contains a ferrite. Of this
; @ certain portion 33 is absorbed by the reso-
nant system. This absorbed power sustains the rf magnetic field in the
dielectric resonator by overcoming losses in the dielectric, the ferrite,

incident pump power P

and in the waveguide walls. For a transverse pumping experiment, the
ferrite loss comprises mainly the loss associated with damping of the
magnetic precession. This loss may be due to two-magnon pit scattering,
rapidly-relaxing impurity or Kasuya-LeCraw confluence processes.25

As the rf power level is increased, additional ferrite loss will
occur due to spin wave or elastic wave ingtabilities. In such a case
a transient or irregularity can be observed on the reflected pump pulse
vhen the absorbed power (or rf magnetic field amplitude) has reached a
critical level. In Chapter II it was shown that spin wave instabilities
might occur when the pump frequency is within the spin wave menifold,
and phonon instabilities should occur when the pump frequency is below
the spin wave manifold. This chapter is concerned with the prediction
of the transient loss due to the growth of phonon instabilities.

B. GROWTH OF PHONON INSTABILITIES FROM THERMAL LEVEL

In Chapter III it was shown that elastic vaves are parsmetrically
pumped by the uniform precession mode. When the portion of the pump
pover going into the growing elastic waves becomes equal to the power
being lost through the elastic wave damping, then the elastic wave or
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phbnon threshold is reached. This threshold was calculated in Chapter III.
It is clear that below the phonon threshold elastic wave growth will be
damped out. Above the phonon threshold, however, there is a net power
going intoc the elastic waves and the latter become unstable. Finally,

at a certain level above threshold, the power going intc the growing
elastic waves will reach a sufficiently high level that it can be observed
as a transient or irregularity in the reflected pump pulse waveform.

. This occurs at the critical power level referred to in Section A above.

1. Solution to the Elastic Wave Eguation

It vas found in Chapter III that elastic waves having the lowest
threshold are transverse waves propagating and polarized in the easy
plane and at a frequency of one half the pump frequency. The basic
differential equation governing the motion of these elastic waves was
given by (3.35). For pumping angles at or below the phonon threshold,
the solution had the form given by (3.16) and (3.17Tb). In order to take
into account the growth of unstable elastic waves above threshold, (3.16)
is modified to include the exponential growth parameters as follows:

Rky = Ty e(h”+s)t + rtky e(-nn+s)t . (4.1)
This expression for the elastic displacement will be inserted into the
elastic wave equation (3.35) to determine the growth parameters for
operation above threshpld; but first (3.35) will be modified to include
the time dependence of the rf magnetic field amplitude.

In deriving the phonon thresholds of Chapter III it was assumed that
the pump angle Ap was constant. This implies the power pulse incident
upon the ferrite system had the ideal pulse characteristics of perfect
flatness, zero rise apd fall times, and no frequency modulation. Such
an ideal pulse, sketched in Fig. 4.la, could not be obiaiued in practice
chiefly because the required pulse length was of the order of 100 usec.
In general, it is difficult to obtain a flat pulse of this length with
existing techniques, particularly at the frequepcy (1.32 kMc) and power
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FIG. 4.1--Sketch of time dependence of the incident pump power for the
ideal (a) and actual (b) pulses.

h h
g%
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h = b n 1
I T %
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FIG. 4.2--Sketch of time dependence of the rf magnetic fisld amplitude
for the ideal (a) and actual (b) pulse cases.

h h
h =h hw '—21..
0 S t 0 jtq ‘!L'“e
FIG. 4.3--Sketch of time dependence of the rf magnetic field tude

vhen the apparent threshold is reached for the ideal (a) and
actual (b) pulse cases. The apparent critical field h _ and
build-up time t__ indicate the initial appearsnce of ¥Re power
absorption due t3Pgrowth of phonon instabilities.
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level (~ 10W peak) desired. (Refer to Chapter V for details on the
technique employed to obtain the 100 pusec pulse; refer to Chapter VI
for photographs of the actual power pulse waveforms used in the threshold
experiments.) The incident power for the actual pulse is sketched in
Fig. 4.1b in terms of the approximate representation

Pi = Pim e-t/T ’ (4.2)

where t = O specifies the time when the pulse has “settled down" to =
frequency within the bandwidth of the resonant system; Pim is the -
incident power at t =0 ; and T is the time constant during the
useful length of the pulse, which exkludes the frequency modulation

at the end of the pulse. Since the reflected power level Pr is

related to the incident power Pi by

2
P, = 'l'r! P,

wvhere I’ 1is the reflection coefficient, then the absorbed power Pa is
given by

2
P = (1-.|.1*l.)Pi .

Chapter V shovs thst the resonator magnetic field amplitude h 1is related
to the absorbed power Pa as follows:

h«lee




Using the above relations between b , P'l , ' and Pi , then, the time
dependence of the field amplitude is found with the aid of (4.2) to be

h = h e -t/ET 2
n

(4.3)
vhere h. is the initial meximum megnetic field amplitude corresponding
to Pm , and I' has been assumed to be constant during the pulse.
The ideal and actual field amplitude pulse shapes reaching the ferrite
sample are sketched in Pigs. 4.2a,b. The actual pulse approaches the
ideal pulse in flatness as the time constant 27 becomes iufinite. The
actual pulse shape is considered here rather than an approximation .
thereto because it will be found that more infarmatiom regarding the
nature of the phonon sabsorption can be obtained theoretically from the
actual pulse shape.

The pumping angle Ap vas defined by (2.28b) as

Ap = h/Bo e (4.4)

In Chapters II and III, vhere h was sssumed constant, the threshold
pumping angle or critical angle wvas given by

(A ), = b [y (k.5)

.-,

wvhere hcr is the critical or threshold rf field amplitude and HO is
the dc field at the ferrite sample. In this chapter where rf field
amplitudes grester than h,. are considered, the threshold angle is
given by

(%) ap = h.ﬁo ? (~'°6)



vfiere (Ap)ap and hap refer to the apparent threshold angle and ap-
parent critical field, respectively, at which the power absorption due
to the growth of instabilities is skfficiently high to be seen as an
irregularity in the reflected pump pulse (Fig. 4.3).

For the actual pulse the apparent critical field was determined by
measuring the power level of the incident pulse at the time tap where
the instability first appeared on the reflected pulse. Thus the apparent
critical field for the actual pulse is given by

-tap/e%
(actual pulse) h = h e (4.7)

where hmp is the corresponding value of hm . For the ideal pulse,
where T —» , the apparent critical field becomes

(ideal pulse) h = h , (4.8)

and the instability would first be observed at the end of the pulse,
tap =T . The relationships between these quantities expressed in
(4.8) and (4.7) for the ideal and actual pulse shapes are shown in
Figs. 4.3a and b. The daghed lines indicate the irregularities due to

the instability.

Inserting the time-decaying pumping angle (4.4), with h given
by (4.3), into the elastic wave equation of motion (3.35) gives

Gh

o 4 2 m
By Ry * ®po B,

-t/27

cos wgt Rky =0 . (4.9)
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A trial solution (4.1) with s = s(t) 1s now inserted into (4.9), giving

2 2

[2é+t’s‘+(a+té)2+2q(s+té)+mpo-m

(4.10)

Gh
+ 2iw(s + t3 + 'q)J rky + a;io - e-t/E‘T r:b' = ,

H,

and its adjoint (complex conjugate, with k —-k) , where the freguency
condition

- “7/2 (k.11)

has been invoked. The secular equation for this will require that
lrlwl = Ir_kyl , which is the requirement for a standing wave solution
as mentioned in Chapter III, especially. (3.18).

For reasons to be discussed later, only resounant instabilities will
be considered in calculating the power absorbed by the pump. The real
part of the coefficient for Ty in (4.10) is therefore sssumed to be
very nearly zero at all times, giving

2iw(s + té + q) mpo ﬁ— r = 0 . (4.12)

The secular equation of (4.12) and its adjoint in this case yields

6(vy) h(t)

ts + 8+ = 6%) (4.13)

- 81 -



wvhen written in terms of the critical field hcr , specified in general
by (4.5) and (3.42) and written as

h, = 28,/0 [('th] g, (b.14)

vhere [(¥ é)opt] is the optimum value of the modulation parameter
G(vo) , and the phonon qp is related to the relaxetion frequency

M bty n= a)pQ/2Qp . If h(t) 1is a slowly varying function of time,
the RES of (4.13) may be expanded in a Taylor series. A series

solution for the exponential growth parameter s is thereby found to be

av,) (%)

’ (4.15a)
G('()opt) -

‘('O’t) = -N+7

where
Q0

1 n | 2
. -t t 1/t
YOIIY (‘é"?) ’hml'm'*'a'!:(';) v
n=0

(4.15b)

is an effective rf field amplitude. The series converges rapidly since
t <<' 27 , and only two or three terms are needed. For small t/7

h’(t) decreases with a time constant approximately one half that of
h(t). .

2

2. Power Absorbed by the Unstable Modes (Phonon Absorption)

Assuming that all of the pump energy which reaches the elastic wave
system goes into pumping the unstable phonon modes, the total elastic
energy may then be represented (within a constant) by the energy contained




[
\\
only in the unstable wmodes. Thus the elastic enefgy density for trans-

verse accustic vaves propagating and polarized in Fhe easy plane is found
from (3.9) to de |

v

B = YMim Sy 2 ; .+ 6
vhere o )
1 OoRr
€ - = =L .
Xy 2 Ox

Utilizing the expansion
R =) Ry e (4.27)

wvhere .

the time average stored energy in the sample is found for standing wave
modes to be

2s. t
2 2 2 k
"p -fxpdv - cwmvé K lrwl + Ir_wl e , (4.18)

vhere a different growth factor has been allowed for each mode, and V
is the volume of the semple.
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Since the unstable modes will begin growing exponentially from thermal
level at ¢t = 0 , the aversge thermal energy in the modes must be found in
order to evaluate the energy at later times. For microwave freguencles
o is much less than KT (where k; 1s Boltzmann's constant),
classical statistics mxy be used. Thus the aversge thermal energy con-
tained in each mode is

- 2 2 2
K = Cyppy T {“‘n', s e } . (x.19)
The total average energy (4.18) may be written

" = 28 t
Gp = ZkBTZ esk ’ (4.20)

k=0

since there are two standing wave modes (sin kx apd cos kx) for each
value of kX . The energy 3p will be used to evaluate the power
absorded frém the pump. Bquation (4.20) should therefore be summed only
over the modes which are growing in time.

In determining the values of k which will contribute significantly
to the summtion in (4.20) it is helpful to utilize the k-spece concept.
Figure L.4 shows a representation of a portion of k-space for periodic
boundary cc':»mlit.mus.26 The distance separating modes along a given co-
ordinate direction i in k-space is

a = 2"/‘1 , (4.21)

i

where '1 is the dimensior. of the sample in the direction i . For a

ferrite disk, the mode spacing may be approximated by
dx" = 2xfa (k.22)
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FIG. 4.4--Disposition of modes in k-space showing the rangs of modes
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in the plane of the disk, where d is the disk diameter; and by

4

normal to the disk, where w 1is the disk thickness.

In Chapter III it was assumed that there was only one unstable mode,

resonant at (pp/a . This mode is represented by a single point in -
k-space, the magnitude of the wave vector 50 being determined by the
frequency condition (3.41) and the orientation of k, by the direction
of propagation relative to the dc magnetic field. In Chapter III any
optimum value was found for the angle V¥, between k and the dc field.
For convenience, the axes in k-space will be chosen so that kx cor-
responds to this optimum direction, and the kx’ky Plane corresponds
to the plane of the disk sample (see Fig. 4.4). Although the assump-
tion of a single mode is a valid one in the determination of the phonon
threshold angle or critical rf magnetic field, it is not valid for

operation above threshold. The reason is that other modes will be pumped.

This cese will now be considered.

The first restriction on the modes which will contribute to (%4.20)
is that cgp/e should be within the mode bandwidth. Otherwise they will
grow only very slowly, if at all. This bandwidth is

o, = u)p/Qp , : (4.24%)

and from (3.28b) the corresponding "wavenumber bandwidth" is

Ak = ko/q_p <ky - (4.25)

d = 2x/w (4.23)

o

- rrenem—e

T YT . W3y < S - _po(ebA © AN, ST, Tmaw
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This shows that the relevant modes must lie within a thin spherical shell
of radius k; and thickness Ak in k-space (see Pig. 4.4). 1In order to
compare the "wavenumber bandwidth" with the mode spacing, typical para-

meters

mp/ht = 0.66 xdc

d = 0.054 in.

Q, ~ 103 - 10%

are chosen. It can then be verified that

& << @,

as shown in Fig. 4.4. The radius of the shell, ky » 18 not shown to
scale. Using the parameters assumed above results in

kK, ~ 150 5% ~ (10° - 0% &, (%.26)

and the thickness of the shell is very small compared with its radius.

A more significant restriction on the modes relates to the dependence
of the modulation' paramecter G on the angle '0 . This limits the
contributing modes to a portion of the above mentioned spherical surface
in the neighborhood of the axes kx . Figure 4.5 shows a plot of the
threshold angle (Ap)yx vs ¥, with s typical experimental value of
x’ = 0.05 and parameter values as specified by Chapter III. The angle
(¥, pt indicated vas calculated from the smsll angle approximation
(3.50). It is seen to agree closely with the actual minimum of “p)yx .
The threshold becomes infinite at ¥, = x/t . The magnitude of the

threshold lApl as a function of ¥, is shown in Fig. 4.6a. Due to
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the inverse dependence of Ap upon : sin hvo s Ap has singularities

at 'O = %5 , vhere n 1is any integer. PFigure L4.6b shows the modula-
tion paremeter G(to) , which varies inversely with Ap , in accordance
with (3.42). HNote the narrow range of ¥, over which G is large.

This means that, when the rf pump field is only slightly greater than

h , the growing modes in the kx,ky plane of Fig. 4.4 lie within a

er
range of angles A&o about (Vo)

The threshold angles shown iﬁp;igs. 4.5 and 4.6 apply only to trans-
verse modes with the wave vector and polarization in the plane of the
disk (kx,ky in Fig. 4.4). Modes lying outside the kx,ky plane in
Fig. 4.4 should also be considered in evaluating (4.20). Furthermore,
there will be two traansverse and one longitudinal mode associated with
each point in Fig. 4.4, and these should all be included in the summa-
tion. It was shown in Chapter III, however, that the threshold angle
is very much larger when the wave vector is normal rather than perallel
to the plane of the disk. On the basis of this result, and the wider
spacing of the modes along the k  axis (Fig. 4.4), BEq. (4.20) wild
only be summed over the kx,ky plane. Since it was also shown in
Chapter III that the transverse wave polarized in the plane has the.
lowest threshold, the restriction of the summation in (4.20) to modes of
this kind will be retained.

From the above considerations it is seen that the summation in (4.20)
will be taken only over modes lying within the intercept of the spherical
shell upon the k.x,ky plane in Fig. 4.4. Within this region the modes

are. distributed with an approximately uniform angular spacing,

2n dk
—_— = -—ﬂ << 1 radian

kod ko

(from 4.26); and there will be only one mode at each angular position,

heaaid dinels o

b e aaaan i an




since Ak .is much less than 2x/d . The summation in (4.20) may therefore
be approximated by an integral

o
*2=(vo)°pt + Y
Lk T k 2s, (¥, k,t)t
g = _k.E_._O f e ¥ O av, . (&.27)
oy
I o

It is not necessary to consider negative values of *x s 8ince two
standing wave modes for each value of k have been allowed for in (4.20).
In obtaining (4.27) from (4.20), a factor of 2 has been taken out of the
sumation to account for phonon modes which occur for k near V, = -(Vo)
as well as near V, = (*0)opt . Figure 4.6 shows that these values of
¥V, are the ones near which G(vo) , and hence s(to) {(4.15a)], has

its maximum values.

opt

Since all modes considered in (4.27) are close to resonance, the
growth parameter for a resonant mode s(vo,ko) will be used in evaluat-
ing the integral. Also, the first term of a Taylor series expansion
about (*O)opt will be used for the modulation parameter

c'x((vo)opt )
+

2!

2
a(¥y) = G((vo)opt) (*0 - ('o)opt) 5 (4.28)

therefore

S¥) LA (U (4.29)
G(('O)opt) e ( o~ Wolopt ) :
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and

h’(t) 9 2
sko('o}ko)t‘) ind | -1+ b l - ';:x": ('0 - (*O)OPt) . (h.30)
cr
Using (4.27) end (k4.30) gives
v, -9t h’ 2
m%'r k. 2nt(-1+h’/n_)) 2 %h _x (vo - ('o)opt)
e = _B 0 e er /ﬁ e cr av
p d'k v 0 :
I !
(4.31)

For t greater than 1/q and *0-(v0)opt of the order (vo)opt ,
the integrand of (4.31) becomes vanishingly small, and the integration
limits may be extended to infinity without significantly affecting the
value of the integral--in accordance with the usual procedure for the
method of steepest descent.27 The iptegral reduces to

1/2
2nx’ h
cr

I = - . (4.32)
9qt h

From (4.20), (4.31), and (4.32) the total stored energy in the
growing modes is

2nt(-1 + h'/hcr)
& ~ FgTe ; (4.33)



where

1/2
uko I 2k d 2x’ b,
N = = 3 1 ’ (t > l/'l) ’ (4. 34)
% o
Il

is the effective number of growing modes. Equation (4.34) shows that
the effective number of growing modes decreases with time, even when the
pump field amplitude h’ is constant. From (4.33) the effective nuiber
of modes is defined relative to the maximum growth rate. As time increases,
the modes with small growth rates become less and less significant bty
comparison with the rapidly growing modes, and the number of effective
modes decreases. When the condition t > 1/n is not satisfied, the
method of steepest descent is not valid. Fortunately, the experimental
effects are observed at times satisfying this condition.

Knowing the phonon energy as a function of time, the total power
Pp going into the phonon system may be determined from

ae
P = —£4+218
P at P

. (4.35)
The first term in (4.35) represents the increase in stored energy. If
the stored enrnergy were not increasing there would still be a power loss

in the phonon system. This additional power loss, represented by the

second term of (4.35), is associated with the phonon Qp . Inserting
(4.33) into (4.35) yields

d h’(t) an(t)/at
P = ¢ —_2nt | -1+
P P) at h N(t)

+ 2

(k. %6)

§
i
£
£
:
¢




Since h’ 1is a slowly varying function of time, it may be taken as a
constant in (4.36) except in the exponential factor of €_ . Assuming
that t 1is greater than a few psec [(1/knt) << 1] , the phonon power
absorption 1s given approximately by

hm t
n 2nt -1 + . (l - E?)
B~ an —— N(t)kT e cr ) (4.378)
hcr

wvhere N{t) 1is approximately

\1/2
2k,d 2x’ h,.
N(t) = —— . (4.37)
3 mt h

The damping parameter v 1is related to the phonon Qp by

N = ‘”po/an . (4.37¢)

C. PHONON ABSORPTION IN TERMS OF MEASURABLE PARAMETERS

It is now necessary to relate the phonon abscrntion P_ to the
transient observed in the reflected pump pulse. From simple conservation

of power, the reflected power Pr is given by

P =P - P (4.38)




where Pi is the incident power and I’a is the absorbed power. Given
that P, 1s constant, the differential relation which follows from (4.38),
nauely

& = -& ? (u’”)
shows that any increase which occurs in Pa (due to phonon absorption)
will be accompanied by a corresponding decrease in Pr .

The power Pa absorbed by the dielectric resonator system is given
in terms of the stored energy U LUy the familiar expression

P = e— ’ (u‘h‘o)

where @p is the pump frequency and Qo is the effective Q of the
resonator system. Since the abgorbed power i1s a function of the stored

energy as well as of the system Q , the following differential relation-
ship is obtained from (4.40):

AP, = AP, + 4P, (k.41a)

wvhere APﬂd represents the additional power loss required to sustain
the increased energy of the electromegnetic field, and is given by

Gp
AP = —— A . (4.41b)
£14 %



The increase in ferrite power absorption AE? is given by

AP, = wPUA(%;) . (4.41c)

This power absorption takes place only when the Qo of the system is

changed by introducing additicnal losses into the system--for instance,

through growth of spin wave or elastic wave instabilities in the ferrite.
For an overcoupled resonator system, the external Q 1is given by

QExt = Qo/ro ’ (4.42)

where T is the voltage standing wave ratia (VSWR) at resonance.
For a given position of the movable short, Qext is constant (see
Chapter V). Therefore (4.4lc) becomes

OP 2 = P . ()4-.)43)

It is desired to obtain the ferrite absorption in terms of the reflected
power deviation APr . The reflected power Pr is related to the
incident power by the familiar expression

2
Pr = IPI Pi ’ (’4.’#&)

where the megnitude of the reflection coefficient lPI is defined by

Ir] =

(4.45)



By taking the differential of (U4.4l4) with respect to
shown that

g » it can be

arg
APr = |I Pa— . (4.46)
o

Combining this result with (k.43) yields the following for the
change in the power absorbed by the ferrite:

-AP
AP. = r . (b.47)
Fooor

Consider now that the change in ferrite absorption APF represents
the increasing transient power loss due to the growth of instabilities
within the ferrite. Since the growth of phonon instabilities is assumed
to be the dominant transient loss mechanism, it may be concluded that

AP, = P, (4.48)

It is seen from (4.47) that APF(-PP) is proportional to AP  , the
observeble change in reflected power, provided the reflection coefficient
I' does not change appreciably. Since the resonant system is overcoupled,
qAPr will be positive and increasing as the ferrite losses increase.
Hence the reflected power waveform will show a decrease with increasing
time due to the phonon absorption.

The ideal situation from the standpoint of observation of instability
thresholds is to have a maximum relative change in reflected power. Thus
combining (4.44) with (4.47) and (4.48) yields

AP P_
L oe (4.49)
Pr |p Pi




The increase in ferrite power absorption AP% is given by
&P, = o UA[E) . (4.4%1c)
F “p QG y

This power absorption takes place only when the QO of the system is

changed by introducing additional losses into the system--for instance,

through growth of spin wave or elastic wave instabilities in the ferrite.
For an overcoupled resonator system, the external Q 1is given by

bet = QO/rO ’ (4.42)

where T is the voltage standing wave ratia (VSWR) at resonance.
For a given position of the movable short, Qext is constant (see
Chapter V). Therefore (4.41c) becomes

AP, = -P — . (4.43)

It is desired to obtain the ferrite absorption in terms of the reflected
power deviation AP} . The reflected power Pr is related to the
incident power by the familiar expression

2
P = IrfPe (4.4h)

vhere the magnitude of the reflection coefficient |I'| 1is defined by

Ir| = . (4.45)



By taking the differential of (U4.44) with respect to ry » it can be
shown that
arg
AP = |r| P— . (4.46)
To

Cowbining this result with (4.43) yields the following for the
change in the power absorbed by the ferrite:

-AP
AP, = £ . (4.47)
Fooorl

Consider now that the change in ferrite absorption AP% represents
the increasing transient power loss due to the growth of instabilities
within the ferrite. Since the growth of phonon instabilities is assumed

to be the dominant transient loss mechanism, it may be concluded that

AP, = P . (4.48)

It is seen from (4.47) that A?F('Pi) is proportional to AP} , the
observable change in reflected power, provided the reflection coefficient
I' does not change appreciably. Since the resonant system is overcoupled,
-APr will be positive and increasing as the ferrite losses increase.
Hence the reflected power waveform will show a decrease with increasing
time due to the phonon absorption.

The ideal situation from the standpoint of observation of instability
thresholds 1s to have a maximum relative change in reflected power. Thus
combining (4.4%) with (4.47) end (4.48) ylelds

N P
L o b (4.49)
P Iy P,



for the relative change in reflected power. The incident power Pi is
determined by the threshold magnetic field amplitude at which the phonon
absorption Pp reaches an observable level. Thus only IP| remains
to be chosen. It is clear, therefore, that the maximum relative change
in reflected power will occur for the smallest reflection coefficient

compatible with the minimum detectable reflected power.

D. APPARENT CRITICAL FIELD

The relationship between the phonon power absorption Pp and the
apparent critical magnetic field auplitude haP will now be determined.

1. Iczs1 Pulse

The phonor. absorpcion Pp for the ideal pulse may be found from
(4.3Ta) by letting T = , since the ideal pulse is assumed to be
perfectly flat. On defining Pp = (Pp)ap as the cbserved phoncn absorp- E
tion when saturation of the reflected pump pulse first appears, and '
recalling that h =h (and hap

pression may be obtained from (4.37a) for the apparent critical field

= hmp) for the ideal pulse, an ex-

h as follows:

ap
4

b n, () !

ap = Bopt — o = 2'2p. : (4.50) ¢

P 2nt, By 2nN(tap) KT ;

i

-

The hap which appears in the log argument has only a second order

i
eriect on the actual value of hap . From (4.50) it is evident that 3
the longer the build-up time tap ol' the phonon instabilities, the $

i

oy

closer hap approsaches hcr . Thus, ideally, the critical threshold
would be rbserved with an incident pump pulse of infinite length. Since
the pulse nmust, practically, have a finite length, then it follows that

the lowest arvarent critical field hap vill be observed at the end of
the pulse--at whick point the instabilities have had the longest time to
grow. Hence the build-up time tap is equal to the pulse length in the :
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ideal pulse case. It is also noteworthy that the smaller the observable
change in the phonon power absorption l-"p , the closer hap approaches
the critical value. In practice, the critical field hcr is never reached,
and thus the factor hap/hcr is always greeter than unity for observable
phonon instability thresholds. Nevertheless, it is possible to extrapolate
back in order to find hcr by measuring growth rates as a function of
field amplitude h above the critical value.

2. Actual Pulse

The actual pulse, with its finite decay constant T ; is considered
next. The phonon absorption 'Pp in this case is obtained from {4.37a)
with T finite. Solving (4.37a) for h ~1in the same way as for the
ideal pulse case yields the following result:

-1
t h h__ (P)

hmp = 1 - 28 hcr.g._..&‘:_&, cr_ R8P , (4.51)
4t 2ntap , b 2ql(t.p) KT

where (Pp)ap 1s again the observed phonon absorption level when satu-
ration of the rrflected pump pulse first appears, and h oo is the value
of h_at this threshold absorption level (see Fig. &.3).

It would now be possible to write the apparent critical field hﬂP
(Fig. 4.3) in terms of (4.51). At this poipt, however, it is easiest
to work with the field amplitude hw , and tae results below will be
given in terms of this guantity.

The value of ta o is the chief difference between the actual and
the ideal pulse cases. It can be seen by an examination of (4.51) and
(4.50) that if tap is smaller for the actual pulse case, then the
~“hreshold will be higher. If the theory for the actual pulse is to be
useful in practice, some criterion must be established for determining
t . From the expr~ssion (4.37a) for the phonon power it is noted

ap
that the dominant time-dependent factor is the exponential. Inii{ially,

4

B s o L
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B

as the time increases the exponential grows in magnitude. However, at
sufficiently large times the effect of the pump field amplitude

h’ m~ hm(l - t/7)

becomes significant and the absorbed power Pp goes through a maximum.
The effect of the less significant time-dependent factor N 1is to cause
this meximum to appear sooner than it otherwise would.

The assumption is now made that this maximum value of Pp is equal
to (P’p)ap oceurring at time tap (Fig. 4.3). The time-dependent portion
of (4.37a) is

cr

hm t
ant [-l + P 1- FT.)]
~ t-l/2 e

P (4.52)

p

Differentiating (4.52) to obtain the condition for a maximum value of
P ields
P y

hcr hcr ° hcr 1/2
tap = 1(1-— + 7T l - — - (4.53)
hmp hmp 2nThmp

as the apparent build-up time of the instability. This result shows that
the longer the pulse time constant T , the longer is the time tap
before the phonon absorption reaches a maximum--provided the pulse length
is sufficiently long. If T approaches infinity, then tap must approach
the pulse length, as in the ideal pulse case.

An assumption is now made, which is Jjustified in practice for the

range of the parameters employed, that

a 2
1l - < >> <r . (h-5h)

h 2n7Th
mp & mp
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Using this approximation, (4.53) becomes

by = 27 (1 - hcr/hw ) . (4.55)

Substituting (4.55) into (4.51) and solving for h m/hcr yields the
following result:

2
h_mB = 14— [1 +(1+ h/L)l/‘?] , (4.56a)
2

hcr
where the definition has been made that

1 P
{4 = 4n ( B?.‘.’.‘Lgcl‘ . . (4.56b)
2T zm(tap) kyT hw

In determining h w/h oy » the higher order effect of h -p/hc . 1n the
argument of the logarithm may be neglected to first order, and, if neces-
sary, may be accounted for later by means of successive gpproximation.

From the above analysis for the actual pulse shape, estimates will
nov be mede for the ratios h /b and b as vell as for the

a cr

build-up time tap . The ectimated value for the phonon % (= 1500)

from Chapter III will be used here. Taking the experimental parameters;
T = 309 ysec and (Pp)ap = 0.7 ¥ , associated with experiment I
(Chapter VI), the following results are obtained from (4.56), (4.77) and
(4.55):

(experiment I)

3-1.20.'&‘

hcr

h
<22« 1.01% , (4.57)
hcr

tap = 10k ysec .

The pulse length was 120 usec.




In a similar way, on taking the experimental parameters T = 124 psec
and (Pp)ap = 0.06W associated with experiment II (Chépter VI) we
obtain the following results:

(experiment II)

2L . 1.319

Bor

h

22 . 1.036 (4.58)
er

tap = 60 psec .

In this case the pulse length is 90 usec. The bulld-up time, tap R

is shorter in experiment II chiefly because the pulse decay time constant
T 1is shorter. The more sensitive detection used in experiment II also
ap The amplitude ratios hmp/hcr and hap/hcr

are higher for experiment II because the shorter the pulse decay time

alded in reducing t

constant the higher must be the power level (or field level) to produce
a given time average power level. A comparison of the calculated and
observed values of ta will be made in the following section and in

P
Chapter VI.

E. PHONON ABSORPTION EFFECTS

The expression for the theoretical phonon absorption Pp as a
function of time is given by (4.37a). Since the effects of phonon
absorption were observed in greater detail in experiment II, the
theoretical nature of the phonon absorpition for the parameters of
experiment II will be investigated further. Taking the parameter
values for experiment I1 and the ratia hmp/hcr [given above by (4.58)]
for which the minimum detectable phonon power absorption takes place,

(4.37a) may be plotted as a function of time. This plot is shown in
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Fig. 4.7. The peak absorption occurs at tap = 60 ysec , as predicted
by (4.55). The curve is not quite symmetrical about t = tap , but 1is,
in fact, slightly steeper for t less than tap .

Next, the effect of this absorption upon the reflected pump pulse
will be predicted. Combining (4.2) with (4.44), the reflected pump wave-

form in the absence of instability is given by

-t
P, = P_e I ,

(4.59)

where

2
Prm = 'PI Pim .

The reflected pump waveform (L4.59) is plotted in Fig. 4.8a for the experi-
ment II value of 7T and for an arbitrary powver level below threshold.

At threshold power levels, (4.59) is incomplete because the effect of

the phonon absorption upon the total reflected power must be considered.

Then the total reflected power (Pr) becomes

tot

(Pyoy = P+ &P, (4.60)

vhere P 1s given by (4.59), and the change in reflected power &P
is found from (4.47) and (4.48) to be

&P = - ir| Pp (4.61)

for the overcoupled case. Since AP} is small, it will be assumed that
IP| does not change significantly during the growth of gp(t) .
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Normalized phonon absorption curves faor:

n b
() =R <1.319 , =R<1.0%

hcr hcr

h h '
(b) 2R s 1,319 , 2R «1.03 , (pp)‘p = 0.06 K

hcr hcr

t _ = 60 usec

ap
h h
(¢) 221,327 , 2R=1.0% ,(P) . =o026W ,
h h pap

cr cr

t‘p = 61.2 usec

FIG. 4.8--Normalized reflected power vs time shoving the predic phonon
absorption for the parametem of experiment II and QP = 1500 .
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Assume now that the ratio of the minimum observed change in reflected
power to the reflected power at the apparent threshold is given by

. = 0.1 . (4.62)

Recall that the phonon absorption build-up to and decay from the apparent
threshold peak was plotted in Fig. 4.7 for this case. Through (4.62),
(4.60), and Fig. 4.7, the effect of the phonon absorption upon the re-
flected pump pulse is determined, and the result is plotted in Fig. 4.8b.
The reflected pulses for cases (a) and (b) have been normalized in order
to show best the deviation in the pulse waveform due to the phonon
absorption.

At a still higher ratio of APr to Pr of

= = 0.5 , (4.63)

a similar result obtains and is shown in Fig. 4.8¢c. The curve is again
normalized as above. Note the build-up time tap is slightly longer
in this case--in accordance with (4.55). Values of the parsmeters for
each of the above three cases are shown in Fig. 4.8.

The above theory is based upon the assumption that IFI = constant.

However, the fact that |I'| varies by 40% during the pulse [as in case (c)]

is not enough to alter significantly the nature of the absorption during
the pulse. This is due to the sharpness of the absorption peak. If the
variation in IPI becomes much larger, however, the phonon absorption
peak will appear broadened due to two effects. The first follows from
(4.47), where the effect of a smaller |I'| 1is to make the change in
reflected power smaller, i.e., a given phonon absorption appears smaller.
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The second is due to the effect of a smaller |[I'| in decreasing AP, o
in (4.41a) [see also (4.47) and (L4.39)], and hepem the rf magnetic field
amplitude. The latter has the effect of reducing the growth rate of the
absorption [through reduction of hm/hcr in (4.37a)].

The phonon absorption shown in Fig. 4.8 has been observed experi-
mentally, and the actual waveforms of the pump pulse will be discussed
in Chapter VI. The build-up times observed experimentally were con-
siderably shorter than those calculated [(4.57) and (4.58)]. This may
imply that the phonon Qp is actually lower than originally estimated.
Following a process almost the reverse of that used above, a value of

can be determined which will correspond to the observed build-up
time (t_) . For instance, knowing (t__) , then hm/hcr is

ap’exp ap’exp
found from (4.55) to be

1
h h = 1 4+ . (h.&)
m@/ o erft,, - 1
Having a result for hmp/hcr , the result
o, b
4 = (hm/hcr - 1)</ ;EB (4.65)

cr

follows from (4.56a). The value of Qp may than be determined from
the expression (4.56b) for 4 . Taking the observed build-up time of
(t_ ) = 32 usec for experiment I with other parameter values given

ap’exp
previously, the value of Qp obtained is

qp = 127 (experiment I) (4.66)
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with

hmp/hcr = 1.055

hap/hcr = 1.003

Taking the observed build-up time of (tap)exp = 28 usec for experiment

.II with previously given parameter values, the Qp in this case becomes

Qp = 294 (experiment II) (4.67)

with

hmp/hcr = 1.127

hap/hcr = 0.961

It is expected on the basis of the linear theory that the two above
values of Qp should be equal. However, if nonlinear damping is present
this need not be required. In such a case the above Qp's may be spoken
of as "effective" Qés . The nature of nonlinear damping is not known,
but the effect of such damping would most likely be to cause the Qp in
(4.37a) to decrease with increasing phonon absorption. This is precisely
the relationship which exists for the above results (4.66) and (4.67).

A further substantiation of the presence of nonlinear damping is seen

in the reflected pump waveforms of experiments I and II of Chapter VI,
where the build-up time was found to decrease with increasing absorption
levels. Such an observation is contrary to the result (4.55) from the
linear theory with Qp constant, where the reverse is predicted. However,
if the "effective" Q, is allowed to decrease with increasing phonon
absorption, then the linear theory {see (4.37)] will also predict the
observed behavior.
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F. SUMMARY

The various loss mechanisms of a ferrite are discussed briefly.
Interest here was in operation at a pump frequency and dc megnetic field
where the phonon threshold will dominate other instability thresholds.
The elastic wave equation obtained from Chapteir III for waves having
+he lowest threshold was modified to include the time variation of the
pumping angle arising from experimental limitations. ~An approximate
. solution to this equation was found for vﬁlues of the pumping angle
above the critical threshold angle. A calculation of the power being
apsoibed by the unstable elastic modes was then made by aééumipg growth
of these modes from thermal energy levels. The effective. number of |
growing modes was found to be a function of time and depends upon the
value of the pumping angle above the critical angle, as well as upon the
ferrite sample dimensions, phonon Q , and effective internal dc field.
The absorption observable experimentally on the reflected pump pulse was
found to be proportional to the phonon absorption by the ferrite and
inversely proportional to the reflection coefficient.

The optimum conditions required for observation of the relative,
change in reflected power were also discussed. The apparent critical
-magnetic field was derived for the ideal and actual pulse cases in terms
of the phonon absorption level which is first observable experimentally.
The build-up time corresponding to this absorption level was also derived.
For experimental and ferrite parameters the phonon absorption and its
effect upon the reflected pump pulse were calculated for the actual
pulse. The theoretical build-up time to the phonon absorption peak wvas
found to be longer than that observed experimentally. It is suggested
that nonlinear damping is present.
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CHAPTER V

EXPERIMENTAL TECHNIQUES AND MICROWAVE PARAMETER MEASUREMENTS

A. MICROWAVE CIRCUITRY FOR THRESHOLD MEASUREMENTS

The rf megnetic field required in order to observe the phonon thresh-
0ld may be estimated fraom the theoretical results of Chapter III. From
Fig. 3.3, a typical threshold angle may be taken to be

(A,P)nr ~ 0.1 .

-

Assuming a dc magnetic field of* H_. = 4CO Oe, the amplitude of the critical

rf magnetic field will be

0

h z%uCOe .
cr

-

To achieve such a high rf field at the frequency of interest (1.32 kMc),
a conventional metal cavity was first considered. Large incident power
levels (~ 100 kW) would be required to achieve the desired rf field
strength. This is unfortunate because high voltage breakdown within the
cavity is likely to occur at thes. power levels. The conventional metal
cavity at 1.32 kMc also has the disadvantage of having a small filling
factor for a ferrite.

Since the prospect of breakdown was to be avoided and a large filling
factor was desired, other methods of resonating a microwave electromagnetic
field were investigated. Such a method was found in the dielectric
reaonator.28’29 A dielectric resonator having a high dielectric constant
was considered. In such a case the possibility of breakdown is practi-
cally eliminated. Also, a large filling factor can be obtained because

the resonator volume is small. Furthermore, large rf fields can be
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obtained with considerably lower incident power levels than would be
required for a metal cavity.

A dielectric resonator was fabricated from single crystal strontium
titanate. Strontium titanate possesses a very high isotropic dielectric
constant (e’ m~ 277), a low loss tangent, and is commercially available
in large single crystal boules. With such a high dielectric constant,
the resonator dielectric volume at 1.32 kMc was only 1.28 cm?, and a
large ferrite filling factor was obtained. A resonator system Q of
over 1000 was also obtainable. Thus, direct cbservation of absorbed
power by the ferrite was easily possible.

In order to achieve the large rf magnetic fields with the dielectric
resonator, it was still necessary to employ a moderately high microwave
power source--one having a maximum power output of about 50 W peak.
Thermal limitations of the dielectric resonator and ferrite dictated
pulsed rather than cw operation. The microwave power source was pro-
vided by a 5CC mW signal generator (General Radio GR-1218-A) in con-
junction with an L-band klystron amplifier (Raytheon SAL-8l), shown in
Fig. 5.1. The klystron beam was pulsed by the high voltage pulser
modulator (Levinthal 79-M). The modulator contained the power supply
which charged up a 15 kV 1 ufd capacitor. The pulsed discharge from
the capacitor furnished the beam current for the klystron. The pulse
length, or length of each discharge time, was about 100 usec. This wvas
long enough to enable observation of the predicted phonon absorption
peak. The pulse length was determined by a multivibrator circuit which
controlled the capacitor discharge through a vacuum tube circuit. The
switching characteristics were limited to a large extent by the quality
of the transformer employed at the output of the multivibrator circuit.
For transformers available, a compromise had to be made between fast
rise and fall times and minimum sag for the 100 usec pulse. The effect
of the transformer sag was, of course, to enhance the sag in the capaci-
tor discharpge and hence in the amplified rf output. The pulse repetition
rate was controlled by the pulse trigger external to the modulator

It was necessary to make the pulse repetition rate as low as possible
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in order to minimize the sag in the capacitor discharge current. Yet
this rate had to be sufficiently high to give a continuous display of
the power pulse waveforms on the long persistence screen of the oscillo-
scope. This determined the pulse repetition rate of 10 cps.

An attenuator pad served to improve the impedance match of the
klystron to its load. After the attenuator pad, a dual-directional
coupler was inserted for the purpose of detecting incident and reflected
power frum the dielectric resonator. The output of the dual-directional

coupler was fed to a precision variable attenuator (Hewlett-Packard HP-394-A).

The crystal at the output of this attenuator detected the power level.
All power measurements were made at the convenient minimum signal level
of 2 cm deflection (0.1V) on the oscilloscope. Thus, for any given
power input to the load, there was a corresponding setting of the pre-
cision variable attenuator which gave a 2 cm deflection on the oscillo-
scope. The variable attenuator was originally calibrated with a thermis-
tor as a load. The thermistor was used in conjunction with a powe.
meter to determine the average power level for each attenuator setting
over the desired power range. Knowing the pulse length, pulse repetition
rate, and the average power, the peak power level was obtained and the
attenuator calibrated accordingly.

The circuitry connections for the above apparatus were made with
7/8 in. and type-N coax. An adapter to the standard L-band rectangular
waveguide was employed at the output of the directional coupler. The
waveguide provided a means of coupling power to the dielectricifgsonntor.
Sufficient spacing between the dielectric resonator and the adapter was
allowed to avoid any higher order electromagnetic fringe fields arising
from the transition.

The dc magnetic field was first applied across an air gap the width
of the L-band waveguide. The field was obtained from an improvised uag-
net fabricated from two large toroidal field coils and iron bars. The
latter provided the necessary low reluctance flux path. With the field
coils located near the pole faces (for maximum gap flux), a sufficiently
large and fairly uniform dc magnetic field was atcained. The magnetic
field was first calibrated by a gaussmeter of the Hall effect type--
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which was later calibrated by a nuclear magnetic resonance (NMR) probe.

The first set of experimental threshold measurements (hereinafter
referred to as experiment I) were made by psing this magnet and the
setup of Fig. f§.1.

Another set of threshold measurements (hereinafter referred to as

i
?
i
!

(4

experiment II) was made with a large commercial magnet (Varian 12 in.).
In this case the height of the L-band wavegulde had to be reduced to

3 in. to fit inside the magnet air gap. For both magnets a constant
current regulated power supply served to maintain a constant magnetic
field with & minimum of drift due to coll heating. With the Varian
magnet it was possible to obtain a broader range of magnetic field and

a greater magnetic field uniformity at the sample, and an NMR probe
could be used directly to calibrate the field. Another improvement in
experiment II included a circulator, which increased the sensitivity

of the critical field measurements.

B. DIELECTRIC RESCNATOR SYSTEM

The dielectric resonator system will now be described in greater
detail. The experimental arrangement is shown in Fig. 5.2. The di-
mensions of the strontium titanate dielectric resonator were
0.430 in. X 0.431 in. X 0.423 in. It has been mentioned already that
the properties of strontium titanate utilized were its low loss tangent
and its very high and essentially isotropic dielectric constant (e’ = 277).

- T TP TN NI I YR WY RTINS A e R a AR R L R Y -

The rod shown supporting the resonator also had a low loss tangent, but

B I

it had a low dielectric constant. The dielectric resonator was located

in the center of the L-band waveguide cross-section. A hole (0.061 in.)
was cut in the resonator as shown and a ferrite disk (0.054 in. diam

X 0.0076 in.) supported by a glass rod was inserted. This resonator
operated in the dominant H mode at 1.32 kMc. In the field configuration
of this mode the maximum H field occurs at the center of the resonator
and is polarized in the direction' of the glass rod (see Fig. 5.3). Since
the E field is weakest where the H fileld 1s strongest, the hole
distorts the field pattern very little. The coupling of the resonator

H mode to the standing waveguide TElo mode was optimized by position-
ing the movable short.
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FIG. 5.2--Setup for ferrite transverse pumping experiment using
strontium titanate dielectric resonator.
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FIG., 5.3--Dielectric resonator shown with coordinate system and
a few of the electric and magnetic field lines for
the dominant H-mode.
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The properties of the ferrite and of the dielectric resonator were
found to be significantly temperature-dependent. The ambient temperatures
of the resonator and ferrite sample were determined by mounting a thermo-
couple on the post supporting the dielzctric resonator. The dielectric
constant of the resonator had the greatest sensitivity to temperature
changes as far as the actual threshold measurements were concerned,
since the resonator frequency was thereby affected. A frequency pertur-
bation plunger was employed to compensate for this effect. The tempera-
ture coefficient of the resonant frequency was about 2.5 Mc/oc. The
Plunger was capable of changing the resonant frequency over a range of
about 25 Mc. With the three cavity klystron adjusted for 1l.32 kMc, it
was then possible to resonate the dielectric resonator over an ambient
temperature range of about 10°C. It was found desirable to perform ex-
periments at ambient temperatures where the plunger could be maintained
as far as possible fram the resonator and still provide adequate frequency
tuning during the data runs. This minimized distortion of the resonator
rf field: and reduced the dependence of the unloaded Qo upon the
plunger position.

C. HEATING OF THE DIELECTRIC RESONATOR AND FERRITE

Heating of the dielectric resonator and ferrite due to microwave
power absorption will now be investigated. First consider the dielectric
resonator without the ferrite. The average microwave power, P,
absorbed by the dielettric resonator systeh 13" diisipated through di- -
electric loss in the strontium titanate resonator, the dielectric sup-
porting rod, the Duccc cement contact between the rod and resonator,
finger contacts of the movable short, and waveguide walls. The power,
Py actually dissipated in the vicinity of the resonator may de
glven by

= Clp . ‘ (501)
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Assuming “that the support rod and the cement contact have a somewhat

lower loss than the dielectric resonator, it is estimated that ¢, = 0.5 .

The energy dissipated within the resonator volume is related to
the temperature increase AT by

E, = fscp VAT ) (5.2)
where 4 is the specific heat, pd is the density, and Vd is the
volume of the dielectric resonator. The factor f, 1is a factor greater

d
than unity and is used to account for other energy losses in the vicinity

of the resonator due to thermal conduction, convection, and radiation.
Equating (5.2) to the energy input Pd4¢ yields the following for R, ,
the rate of change of resonator temperature with time:

_ar _ Pg
Rd = E = ® (5‘3)

ffPava

Taking the typical average power level pa = 10 mW (corresponding to
10W peak power and 10 duty cycle), and using the values of c, and
Py for strontium titanate given in Appendix A, and the resonator

volume V, = 1.28 cn’ » Ry 1s estimated to be

R,(10 uW) = 822 %/min (5.4)

T

where fd has yet to be evaluated.

The temperature dependence of the strontium titanate dielectric
constant strongly affected the resonant frequency of the dielectric
resonator. Froam the value of the temperature coefficient of the di-
electric constant given in Appendix A it can be shown that the tempera-
ture coefficient of the resonant frequency is about 2.5 Mc/oc. This
dependence was observed experimentally as described in the previous
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section. The time rate of change of resonator frequency at the 10 mW

average power level was also observed experimentally. From these ob-
servations the time rate of change of resonator temperature was found
to be

R, (10mW) = 0.07 °C/min . (5.5)
exp

By comparison with (5.4) it is estimated that fd = 3.3 ,

Equation (4.53) expresses the relation between the peak pulse ab-
sorbed power Pa and the peak pulse stored erergy U in the dielectric
resonator system. For the average: absorbed power p‘ and the average
stored energy u , the relation 1s

P, = X (5.6)

g

This expression applies, of course, to the resonator system with or
without the ferrite present. The effect of the ferrite upon U is very
small. The ratio of the ferrite volume to the volume of the dielectric
resonator 1s of the order of 10™" . Even if the ferrite has a relative
permeability as large as 100, the effect of the ferrite ypon the stored
energy u will be negligible (~ 14) . The effect of the ferrite upon
the Q‘O is about an order of magnitude larger. In fact, s typical
change in Q. observed experimentally was about 10¢.

Considering only the effect upon Qo , the average power absorbed
by the ferrite is found to be

- b
Thus the ratio of the total aversge power sbsorbed by the ferrite to

the average power absorbed by the resonator system is given approximately
by the relative change in QO .

6.7
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The time rate of change of temperature of the ferrite is

R, = i , (5.8)

fp ¢ Pr Vg

where the parsmeters are counterparts of those used in (5.3). The factor

fi which accounts for conduction, convection, and radiation losses of

the ferrite 1s expected to be larger than the factor for the resonator.

This is because the broad face of the ferrite 1s mounted on a glass rod
which provides a fairly good heat sink--thereby promoting large con-
duction losses. The dielectric support for the resonator conducts heat
avay from about one-sixth of the resonator surface area, whereas the
glass rod conducts heat away from about one-half of the ferrite area.
Consequently, it might be estimated that fF = 3fd « Thus, with a
ferrite volume Vg = 2.86 x 10'“ cm’ and the values given in Appendix
A for the other quantities, (5.8) becomes

Rp(10mW) = 0.38 °c/sec . (5.9)

Therefore, if it takes 10 sec to determine the data for one experimental
point, then the temperature increasc of the ferrite would be about
AT = 3.8°C . It is clear that measurements must be taken quickly at
these high power levels. The threshold level was usually determined
as quickly as possible, but never in much less than about 10 sec. After
each threshold measurement the incident power was reduced and the sample
was allowed to cool before the next measurement was taken. It was
assumed that the ferrite reached the ambient temperature during this
cooling period.

At the lowest power levels of about Pa = 1 W peak, the estimated
ferrite temperature increase for a 10 sec measurement time would be
AT = O.}8°C . Here, then, the actual temperature of the ferrite differs
little from the equilibrium value. This equilibrium tsumperature was
determined experimentally by attaching a thermocouple to the dielectric
rod supporting the resonator.
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With a pulse repetition rate of 10 cps, the average temperature
increase of the ferrite during each pulse was a factor of 10 smaller
than the average temperature increase of the ferrite in one secand.
Thus, heating effects during the pulse were negligible at the aversage
power levels considered.

D. MAGNETIC FIELD DISTRIBUTION IN THE DIELECTRIC RESONATOR

The basic relation betveen the stored energy U in the rf magnetic
field of the resonator and the peak pulse power P . absorbed by the
system 18 given by Eq. (4.40). In this section, U will be obtained
in terms of the maximum rf magnetic field amplitude ho .

The rectangular parallelepiped dielectric resonator, together .wdth
the coordinate system used to describe the electric and magnetic fields
for the dominant H mode, is shown in Pig. 5.3. The electric field is
strongest near the resonator faces paraliel to the z-axis, while the
magnetic field is strongest in the center of the resonator and along
the z direction. A few of the strongest field amplitude lines are
sketched in Fig. 5.3.

Open circuit boundary conditions (OCB) reguire that the electric
field be parallel to and the magnetic field normal to the boundary.

For the dominant H mode described above it is found that at the faces
of the dielectric resonator parallel to the z-axis, the OCB conditions
are nearly satisfied, since the relative dielectric constant ¢’ is
much greater than unity. The advantage of recognizing OCB conditions

is that the theory is simplified by terminating the electric and mag-
netic fields at the air-dielectric boundary. For the faces of the
resonator normal to the z-axis, the usual bguadary conditious for
electric and magnetic fields are used. Using Yee's multlzg for the
special case of a rectangular parallelepiped with a square cross section
(a=b) , the electric fields based upon the above assumptions are given

by

-Jjayu .ah t $ 4 <y
E = 0.8 ,in — cos —A(z) (5.10m)
x 2x s b
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and

Jauoa.ho X ny
E = cos — sin — A(z) , (5.100)
y 2x a b

where hO is defined as the maximum value of the magnetic field (at

the center of the resonator). Inside the resonator "A(z) 1s defined by

A(z) = cost (z--:-) , (5.10¢)

and outside by

c
A(z) = A e'COIZ zl

0 ’ (5.10d)

where the quantity AO is obtained by matching boundary conditions

at z=0 or ¢ . The quantities { and ¢ o are defined approximately
by the relations

. §.c
¢ tanlS . ~ & . 20 (5.11)
2 2 \féa 2

The magnetic field components may easily be determined by substituting
(5.10) into Maxwell's equations. Also from Maxwell's equations, the
following expression for the resonant frequeancy is derived:

1 2 _ 1/2
tres = /= [—2_+ ('5')2 g 5.12)

2 uoeoe a

It was by inserting experimental values for a = b, ¢ and the resonant
g into (5.12) that the experimental value for strontium

titanate of €’ = 277 , given in Appendix A, was obtained. This result
28,29

frequency fre

agrees favorably with values measured by others.
The total stored energy in the resonator system is most simply
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given by the integral of the electric energy density when the latter is
a maximum in time, for example

U = ;-_}-j e |B® axayaz . (5.13)

space

It is now assumed that the OCB corditionas at the resocnator faces parallel
to the z-axis, which aspply approximately to the fields within ihe
resonator, apply equally well outside of the resonator. With this
assumption, the result of taking the integral (5.13) over all space is

U = £EugV, (5.1ka)

vhere, for a = b the factor f is given by
r = {1+ EoF +.£’-=£-‘-f-:£ [1 + (é-:? )2] . (5.145)

By solving (5.11) and {c and L, » using the resonator dimensions
glven previously, the value of f obtained is £ = 0.86 . It is
interesting that this value of f is comparable to the value of unity
which would be obtained if there were no z-dependence of the fields

and if all of the energy were contained within the resonator volume.

In deriving the above results, OCB conditions vere assumed at

four faces of the rectangular parallelepiped dielectric resonatar as
well as at the extension of these faces external to the resomator. JFor
strontium titanate, the relative dielectric constant is high (¢’ = 277);
and the OCB conditions are well satisfied within the resonator. Howeves
it 12 not clear how good the OCB assumption is outside the resanator.
This problem could, of course, be overcome by solving for fields satis-
fying the exact boundary conditions, but this wuld be imposaible for
the rectangular parallelepiped, except by numerical methods.
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There is, fortunately, another alternative by which the validity
of the approximate solution for the rectangular resonator may be checked.
The spherical dielectric resonator operating in the dominant H mode has
electric and magnetic field configurations quite similar to those of
e rectangular parallelepiped operating in the same mode. What makes
the spherical dielectric resonator of special interest is that the
electiric and magnetic fields can be determined exactly, and therefore
an exact expression for the energy storage can be derived. Using the
energy relations given by Yee29 for the dominant HllO mode of the di-
electric sphere (where the exact resonance condition for the sphere has
been employed), the factor f defined by (5.1i4a) is found to be f = 0.85 .
Thus a dielectric sphere having the same volume Vd as the rectangular
parallelepiped, but necessarily a slightly higher frequency (4%), has
about the same energy storage. This result makes more reasonable the
original assumption of OCB conditions for the rectangular parallelepiped
dielectric resonator, and in particular the extension of these conditions
external to the resonator.

On combining (4.53) and (5.14a), the expression for h, becames
1/2
8p
b, = a%o (5.15)
oV a%

By inserting the aforementioned parameter values, then (5.15) becaomes

o = 0-3% (1330)1/2 : (5.16)

2
]

The ferrite is located in the center of the dielectric resonator
in the actual experiment, and therefore it is worthwhile to investigate
the variation of the magnetic field near this point. Figure 5.4 shows
the variation of the dominant magnetic field component hz as a function
of z forx=af2 and y =b/2 . The magnetic field h isa
maximum at the center of the resonator and has the same kind of z-variation
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as do the electric fields given by (5.10). The importance of

properly centering the ferrite sample in order to achieve maximum field
strength and uniformity is obvious. The arrow indicates how far the
edge of the ferrite extends when placed at the resonator center. The hZ
magnetic field variation over the ferrite sample is about 1%. Thus ho
may still be taken approximately as the average magnetic field strength
over the ferrite sample volume. The transverse magnetic field at the
sample edge is less than 1% of the maximum field strength. Hence, as
far as field uniformity is concerned, the maximum deviation of the mag-
netic field lines from the z direction is somewhat less than about 0.50 >

The presence of the frequency tuning plunger causes the field to
distort somewhat from the configuration described above. In particular,
it causes an increase in the lateral (x-y) camponents of magnetic field.
The diameter of the frequency plunger was almost as large as the resonator
dimension a . The position of the plunger was symmetrically located
parallel to the z-axis of the resonator. The distance of closest ap-
proach for the plunger of 0.06 in. is indicated in Fig. 5.4. The dis-
tance corresponding to two successive turns of the plunger screw is also
indicated. The resonator was operated with P>2 to ninimize dis-
tortion of the field while still being close enough to have an appreciable
effect upon the resonator frequency.

In the exact solution of the flelds for the sphericsl dielectric
110 mode, it has been shown29 that radiation
of power from the resonator takes place. This will also occur in the

resonator operating in the H

rectangular resonator. As the plunger is moved closer to the resonator,
a greater portion of the total solid angle is shielded 'against radiaticn
by the plunger. Hence it is expected that the radiation will be reduced
as the plunger becomes closer to the resonator. Such an effect was ob-

served experimentally by an increase in the QO of the resonant systenm.
The QO increased by about the same percentage whether the ferrite was

present or not.
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E. MEASUREMENT OF THE UNLOADED Qo

In order to accurately evaluate the rf magnetic field strength at
the ferrite during the threshold experiments it is necessary to know
the unloaded Q,O of the ferrite-loaded resonator and the variation of
QO with Hdc . The Q was measured at low power levels-~-far below
that power level at which the instability thresholds occurred. The
low power level Q's were adequate, however, since the effective re-
sistance (or imaginary part of the magnetic susceptibility) of the fer-
rite does not change until loss mechanisms due to growth of elastic
or spin wave instabilities are intruduced. Besides, it would be much
more difficult to measure the precise value of the Q at or near the
high threshold power levels because average pulse heating effects would
be significant, particularly if the half-power method were employed.

If the sweep frequency method were employed, a wide bandwidth high power
amplifier would be required.

1. Basic Relations

The relationship between the loaded QL » the unloaded QO »
and the external Qext of a resonant system 1s given by5o

= 5t - (5.17)

Q ¢ n e » (5‘18)

where B 1s the coupling coefficient. Thus the unloaded Qy ™y be
given in terms of QL by

Q = (L+B)Q - (5.19)



+.

The coupling coefficient B for an overcoupled system is given by

B = r, (5.20a)

and for an undercoupled system by

1
Per (5.200)

where rO is the VSWR on resonance and the VSWR is related to the

reflection coefficient T' by the following:

1 |

(5.21)

o L
! i

The external Q. ., given by (5.18) 1s a quantity dependent upon
the coupling between the microwave power source and the resonant system.
For a metal cavity this coupling is usually through an iris or a probe.
For the dielectric resonator system the resonator is placed inside the
waveguide and the coupling is adjusted by means of a movable short.

2. Q-Circle Method

Initially, an attempt was made to measure the unloaded Q,Q by
the Q-circle method using instruments designed for a 1 kc square wave
modulated signal. However, the time involved in measuring the VSWR
and locations of the VSWR minima was sufficiently long, in. spite of the
low power level (~ 1 mW) of the signal generator, that dielectric heating
effects distorted the results. The dielectric heating effects observed
were due to the microwave power absorption of the resonator, as well
as to the general ambient temperature lncrease between measurements.
These heating effects were compensated for to some degree by taking
each set of readings in an alternate sequence about the resonant
frequency. Nevertheless, it was decide’ that other, more precise methods
of determing the Q would be used in order to circumvent these heating
effects.
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E. MEASUREMENT OF THE UNLOADED Qo

In order to accurately evaluate the rf magnetic field strength at
the ferrite during the threshold experiments it is necessary to know
the unloaded QO of the ferrite-loaded resonator and the variation of
QO with Hdc . The Q was measured at low power levels--far below
that power level at which the inastability thresholds occurred. The
low power level Q's were adequate, however, since the effective re-
sistance (or imaginary part of the magnetic susceptibility) of the fer-
rite does not change until loss mechanisms due to growth of elastic
or spin wave instabilities are introduced. Besides, it would be much
more difficult to measure the precise value of the Q at or near the
high threshold power levels because average pulse heating effects would
be significant, particularly if the half-power method were employed.

If the sweep frequency method were employed, a wide bandwidth high power
amplifier would be required.

1. Basic Relations

The relationship between the loaded QL , the unloaded Qo ’
and the external Qext. of a resonant system is given b? 0

%‘; - %SWL : (5.17)

ext

The external Qext is related to QO by

Qext - %‘0“ ’ (5-18)

where B 15 the coupling coefficient. Thus the unloaded °0 may be
given in terms of QL by

Q = (1+B)g . (5.19)
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The coupling coefficient B for an overcoupled system is given by

ﬂ = ro (5-2&)
and for an undercoupled system by
1
Py, (5.200)

where Ty is the VSWR on resonance and the VSWR is related to the

reflection coefficient I' by the following:

= . (5.21)

The external Q_ . glven by (5.18) is a quantity dependent upon
the coupling between the microwave power source and the resonant system.
For a metal cavity this coupling is usually through an irls or a probe.
For the dielectric resonator system the resonator is placed inside the
waveguide and the coupling is adjusted by means of a movable short.

2. gcpircle Method

Initially, an attempt was made to measure the unloaded Q0 by
the Q-circle method using instruments designed for a 1 k¢ square wave
modulated signal. However, the time involved in measuring the VSWR
and locations of the VSWR minims was sufficiently long, in. spite of the
low power level (~ 1 mW) of the signal generator, that dielectric heating
effects distorted the results. The dielectric heating effects observed
were due to the microwave power absorption of the resonator, as well
as to the general ambient temperature increase between measurements.
These heating effects were compensated for to some degree by taking
each set of readings in an alternate sequence about the resonant
frequency. Nevertheless, it was decided that other, more precise methods
of determing the Q would be used in order to circumvent these heating
effects.
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5. Sweep Frequency Method

The sweep frequency method was employed to measure the Q for
experiment I. A block disgram of the experimental setup is shown in
Fig. 5.5. A mechanical sweep generator was employed to drive the fre-
quency dial of the L-band signal generator. A sweep frequency' generator
of the wide band, backward-wave oscillator type would have been ideal,
but none was available. Since the frequency was swept over a 50 Mc range
the heating effects were greatly reduced and ambient temperature drift
was no longer a problem. The mechanical sweep generator provided a
voltage output proportional to the angular displacement of the frequency
dial. The output voltage, which was then linearly proportional to the
differential frequency, was fed to the horizontal input of the oscillo-
scope. The vertical input of the oscilloscope came from the yeflectometer,
which indicated the reflection coefficient of the dielectric resonator
system. A camera was utilized to take photographs of the oacilloscope
trace of reflection coefficient vs frequency.

Given that Q_ ., is constant, the type of coupling (over or under-
coupled) can be determined by noting the dependence of L% upon [¢ or
r. through (5.18) and (5.20).

Another means of determining the type of coupling follows from
(5.18) and (5.20), with the knosledge that the ferrite losses increase
as the dc magnetic field Ho is decreased. The type of coupling 1isa
determined by observing the change in reflected power on resonance when
increased loss is introduced into the system by reducing HO . Thuas,
for an overcoupled system, increasing the loss causes the reflected power
to decremse; whereas if the system is undercoupled, the reflected

0

power will increase.

Knowing whether the signal source was over or undercoupled to the
resonator system, it was possible to determine the Q of the resooator
system from one of these photographs. First, the reflection ccefficient
I‘O on resonance was determined. Then the coupling coefficient B
was found from (5.21) and (5.20). Xnowing B , the VSWR at the half-

power points was determined from a Smith chart, or by the amalytical
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30

expression

(1,/9 u le+5)+1+j_1+pL\’1+82 . (5.22)
/9y B

The reflection coefficient corresponding to (5.22) may be obtained,
and the resulting frequency difference Afl /2 between half-power points
may be read from the photograph's plot of reflection coefficient vs
frequency. With fo as the resonant frequency, the loaded QL is
defined by

¢ - e . (5.23)
&ty o

Finally, the unloaded Q, may be cbtained from (5.17).

4, Half-Power Method

The half-power method was a method employed to measure the Q for
experiment II. This method was used because it had greater accuracy
and was mich quicker than the sweep frequency method. The experimental
arrangement is shown in Fig. 5.6. The pulse length of the signal was
less than 2 usec, and the repetition rate was 20 cps. The incident
power level was about 10 dB or so lower than the maximum output of the
dgnal generator (~lmW). Hence, the aversge power introduced into the
resonator system was lower than the average power required for the sweep
frequency method by a factor of at least 10'5 . Consequently, microwave
heating effects were campletely negligible. Alsg any time delay between
taking the data points was campletely justified as long as the ambient
temperature did not change appreciably during that time.

First, the frequency of the dielectric resonator aystem was adjusted
for resonance and the value of the attenuator noted for an cscilloscope
deflection of 0.1 volt. Then the system was tuned off resonance by the
tuning plunger, and the attenuator reading taken for the same oscilloscope
deflection. The attenuator was next set at the half-power points and
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the frequency measured on each side of resonance. Thus the loaded QL
could be determined directly from (5.23). Xnowing the reflection
coefficient on resonance, QO could then be determined from relations

(5.19) through (5.21).

5. Results

The results obtained for the unloaded QO as a function of the
applied dc magnetic field Ho for experiments I and II are shosm in
Fig. 5.7a. Normalized curves showing the approximate dependence of
QO upon the frequency tuning plunger position are shown in the ac-
companying Fig. 5.7b. Actually, these curves also diapend slightly upon
the magnitude of Q. ; i.e., the lower the QO » the nearer the plunger
must be to the dielectric resonator for a given relative increase in QC .
Nevertheless, the curves shown in Fig. 5.7b are sufficiently accurate
over the range of frequency plunger positions for which threshold measure-
ments were taken. The increase in Qo as the plunger is screwed inward
is attributed to a reduction in the power being radiated from the
resonator. The QO increased by about the same percentage whether the
ferrite was present or not. The deviation of QO at the nearest plunger
position from that at the off-resonant plunger position was not more
than 15%. The position of the frequency tuning plunger had no noticesble
effect upon the resonator coupling coefficient or the external Qoxt .

The decrease of % at increasingly low dc field values shown in
Fig. 5.7a is due to the increasing proximity of the pump frequency to
ferromagnetic resonance. At large dc fields the ferrite loss beccmes
negligible and Qo approaches the unloaded Q of thy &lelectric
resonator without the ferrite, since energy stcrage in the ferrite is
negligible compared to that of the resonator. The dashes at the far
right of Fig. 5.7a indicate the measured values of Qo witbout the
ferrite.

An improvement in the resonator system Qo from experiment I
to experiment II is apparent from Figs. 5.7a,b. In the two cases the
Qo's were measured with different plunger positions;, but this accounts

for only about a 10§ change in Qy + The remaining change is atitridbuted

- 133 -



2% T T ! T T T T
‘ o—
200@. -
150Q- -
100G~ -
® Experiment I with plunger position at
50&_ P = 9 turns. _
& Experiment II with plunger position at
P= 3 turns.
0 B | 1 ] ] | ]

0 100 200 300 400 500 600 T00

FIG. 5.7a--Unloaded Q_‘.) v: H, “or exverimen-s I and II.
- 134 -



*JI pae I uvﬂ«l«u&uo 103 woj3jeod Jefunid Sujuny Aousndeaz sa od pezyTWmION--QL°G “DLi

_(suma)g LT bT . lT

gy € = 0%1 3u enTRA DOZTTWRION YITA IT 0w ¢

*suMmy 6 = d 9V nTea POITTWMIOU Y3jA I Jusmiiadxy @

‘youy zod PRI 2 SV ASIDS JsePunTd Yy
*J03WUOSPI OFIOITTP 03 (°Uf 90°0) yovoadds 389s0T> Jo Wor3ysod
WOIZ N0 AX0e J9Suntd Sutuny Lousnbary Jo suamy JO J3qEny = d

o
¢
8
r4
0°T
(239310
(@)%

61



to & reduction in the amount of Ducco cement at the contact between the
resonator and the supporting dielectric rod, where there was strong rf
electric field, and to a thorough cleaning of the waveguide system.

No appreciable dependence of the unloaded QO upon the position
of the movable short was noted. However, the range of movement of the
movable short to obtain proper coupling was small in both experiments.

The variation of QO with temperature in the ambient temperature
range was nct appreciable. This is as expected, on the basis of the
sxall temperature dependence of tan & given in Appendix A. In any
éase, the measurements of QO were taken at nearly the same ambient
teperature as were the threshold measurements.

F. SUMMARY

To achieve the large rf magnetic field amplitudes required in order
t. reach the phonon threshold, a dielectric resonator was employed
rather than a conventional cavity. With the strontium titanate dielectric
regonator, the lirge rf field can be obtained with fairly low rf power,
breakdown is avoided, and a large ferrite filling factor i1s obtained.

The microwave power source and, in particular, the microwave circuitry
associated with the modulation of the klystron beam current are described.
Explanations are given for the limitations of the rf power pulse from

the source. Calibration techniques for the rf power level and dc mag-
netic field are also discussed. Various details of the dlelectric
resonator system are described--including the resonant mode configuration,
coupling of rf energy to the resonator, effect of temperature changes
upon the resonant frequency, and microwave heating of the dlelectric
resonator and ferrite.

An expression for the maximum rf magnetic field amplitude (at the
position of the ferrite) was derived in terms of the unloaded Q and
power sbsorbed by the resonant system. Reliable measurements of the
untoaded Q were obtained by using the sweep frequency method and
the half-power method; results are given. The unloaded @ was found
to vary significantly with the dc magnetic field owing to the preasence
of the ferrite.

- 136 -



CHAPTER VI
THRESHOLD MEASUREMENTS

Saturation effects have been observed in two experiments using a
disk of single crystal 2n,Y (0.054 in. diam x 0.0076 in.) cut with th
easy plane lying in the plane of the disk. Actual measurements of ab-
sorbed power by the system were taken at the onset of saturation as a
function of the applied dc magnetic field Ho « The onset of saturatic :
was determined by observing the reflected pump pulse and noting the powe -
level at which the growth of instabilities first became evident. There
was & critical power level at which the instability threshold was reache
and a transient appeared in the reflected pump pulse. Knowing the ab-
sorbed power at the threshold and the unloaded Q, as & function of
the applied dc magnetic field Ho , the apparent critical magnetic
fieldl amplicade (ha.p) at the ferrite sample was determined from (5.16).

A. EXPERIMENT I

A photograph of a typical power pulse incident upod the reconator
system for experiment I is shown in Fig. 6.1la. The incident power pulse
was 120 usec long and had a time constant of about 309 usec. The decay
the incident pulse amplitude was due to sag in the klystron beam current
which discharged from a large capacitor. This time constant could be
reduced by increasing the capacitor voltage; hovever, this caused the
distortion of the pulse to increase. Therefore, a pulse was sought whic
had a maximum time constant for a minimum amount of distortion. The dou e
image in the photograph of Fig. 6.1s was due to ac pickup.

A typical reflected power pulse below the instability threshold is
indicated in Flg. 6.1b. The time constant of this pulse, in general, wa
the same as that of the incident pulse. This does not appear to be quit:
true in cowparing Fig. 6.1b with Fig. 6.1a, because the latter was taken
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(a) Typical incident power (b) Reflected power pulse
pulse, below threshold.

(c¢) Reflected power pulse Just (d) Reflected power pulse
above threshold, above threshold.

(e) Reflected power pulse showing the
saturation effect in the low dec field
region.

FIG. 6.1--Pulse vaveforms for experiment I. Time scale: is
20 usec/divisior.
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at a slightly lower capacitor voltage. The 'ear” at the end of the
reflected pulse was due to frequency modulation of the microwave signal.
The latter arose from the variable load which the klystron presented to
the cw signal generator at the leading and tralling edges of the pulse.
This effect was somewhat reduced, however, in experiment I because the
reflection coefficient was high (|I'| ~ 0.3) . The gradual decay of the
ear at the trailing edge of the pulse was due mostly to the fairly hight
RC product of the crystal detector circuit, but was also due in part to
the finite time constant of the klystron beam current switching network.
Although the time constant could have been reduced by decreasing the
resistance in the detector circuit, this was not dons because it would
have reduced the already low sensitivity of the reflected power msasuremsnts
[see (4.49) on the sensitivity requirements).

Since the dielsctric resonator system was overcoupled, the effect on
the reflected pump pulse of an increase in ferrite absorption was to decrease
the magnitude of the pulse. A typical example of a reflected pulse
exhibiting the initial appearance of increased ferrite absorption is shown
in Fig. 6.1lc. This waveform is typical of those frowm which the apparent
eritical fields (hap) wvere determined. 4As discussed above, the threshold
was found from the absorbed power level occurring at the point vhere
absorption wvas first noticed. It is noted from the figure that the ferrite
abgorption transient builds up gradually to a peak and then dedays back to
the unperturbed reflected pulse amplitude. This type of behavior is very
similar to that predicted by the phonon absorption theory of Chapter IV.

Figure 6.1d shows a typical reflected pump pulse at an absorbed powver
level sbove the threshold level. In this case it is noted that the ferrite
absorption 1s greater and the pulss saturation is even more pronounced than
et tho threshold level, 'This behavior also exhibits the typical ahsorption
behavior described in Chapter IV. "

In studying the precise nature of the. ferrite absorpticn it will de
helpful to normelize the reflected pulse waveforms of Figs. 6.1c¢,d to an
arbitrary level below threshold (Fig. 6.1b). . The results of doing this
are shown in Fig. 6.2. These waveforms showing ferrite absorpticn are
similar to those predictod in Chapter IV for phonon absorption in the
ferrite. In particular, the normalized theoretical vaveforms of Fig. 4.8
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normalized to the level corresponding to 6.1b.
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are comparable to the normalized experimantal waveforms of Fig. 6.2.(1)
Figure. 4.8a 1s comparable to Fig. 6.2b, the reflected pover waveform before
the onset of saturation; and Fig. 4.8b is comparable to Pig. 6.2c, the
reflected power waveform when the phonon absorption first appears. 1In
e¢ach case, the absorption during the puise builds yp to a pesak and then
decays gradually. It is seen that the vaveforms above threshold power . -
levele (Figs. 4.8c and 6.2d) are also similar in nature. Again, the
absorption builds up to & peak and decays. In both theory and experiment:
the absorption peak increases with increasing power levels.

The first exception to the theory occurs in the magnituds of the

build-up time tap . The experimental value ¢ served from Fig. 6.2¢ is

(t

up)up e 32 usec , (6.1)

vhich is much shorter than the predicted value of t w® 104 usec for
experiment I, based upon a phonon Qp of 1500, 1If the linsar theory worked
-out in Chapter IV is correct, then the shorter observed build-up time simply
implies that the phonon Qp is actually much lower then 1500. In fact, it
vas shown in Chapter IV for (t'up)oxp e 32 usec that s of 129 vas
obtained from the linear thsory. It might be sufficient tO0 acoapt this
lover valus of % as the actual value except for what happens 0 the
reflected pulse wvaveform at higher pump pover levels. From Figs. 6.2¢,4
the bulld-up time is seen t0 decrease vith the incressing power lavel,

This is contrary to the bebavior predicted by (4.67), vhere typ W8
expected to increase with increasing powver lavels, and might be cxplu.md
on the basis of a variation of % wvith the amplituds of the uastadbls
phonon as was suggested ip Chapter IV. In any case, it 1s clear .that the
experiment does not provide a reliable weasured wvelus of QR

(nAlthough the curves of Mg. 4.8 were calculated for the values of
exporiment II, it is clear from the egquations of Chapter IV that the shape
of the curves describing the phonon absorption would be the same for
experiment I. Since I’ 1is wuch larger for experiment I than for experiment II,
hovever, the effect of phonon absorption would be proportiomally less for
experimont I.
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The above discussion relates the observed saturation threshold
behavior at the higher dc magnetic fields to the phonon saturation theory
of Chapter 1IV. At the lower dc magnetic fields, quive different threshold
Observations were made. A typical reflected pump pulse in the low dc field
region is shown in Fig. 6.le. Here the threshold is defined by the appearance
of the small ripples shown in the figure. This type of threshold is
attributed to the presence of spin wave instabilities, which apparently .

. domipate the phonon instabilities.

Measurements of absorbed pover were .aken as a function of the external
magnetic field Ho at the threshold levels corresponding to Figs. 6.lc
and 6.le. Apparent critical fields were obtained from these measurements
and are plotted in Fig. 6.3. The two typical experimental runs shown were
taken wvith increasing Ho . These runs were also typical of runs taken
with decreasing Ho . In order to verify the continuous nmature of the
threshold curve, the experimental points for the second run vere taken at
the smallest increments of HU possible with the magnetic field current
supply used in experiment I. This run nlso gives a good indication of
the experimental error to be expected in the reproducibility of such
measurements.

The ambient temperature was slightly different for the two runs
indicated. This implies a possible greater disparity in the temperature
of the ferrite itself for the two runs. In accordance with results from
the previcus chapter, the temperature of the ferrite depends chiefly upon
the length of time it is exposed to a given microwave field. It is evident
that the apparent effect of slight temperature deviations on the thresholds
from one run to another was not appreclable and is within experimental
error. However, for both runs it is expectéd on the basis of the analysis
of Chapter V that at the higher power levels there will be some shift
tovard lowver Ho valuss due to the dependence of the demagnetizing field
upon temperature. In fact, using the 1o°c temperature change estimated
for Ph = 10 W , a downward shift of 8 Oe would 'be expected at
Ho = 36% Os .

The relationship between the appurent theoretical threshold hhp
for the actual pulse and ths threshold hcr for an ideal pulse was
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deterwined in Chapter IV. This ratio h p/hcr is only approximately
constant over the range of field H, for which the experimental thresholds

0
of Fig. 6.3 were taken. The only significant change in this ratio takes
Place through variation in the phonon absorption peak (P p)ap . Recall

the relation (4.61) vhich relates P, to the reflection coefficient T
and the change in reflected power APr . Using this relation, it was
found from the experimental results that (Pp)ap changes by a factor of
50:1 , increasing monotonically as Ho increases. The effect of this
change in the cbserved phonon absorption peak upon the ratio h_ p/hcr
about a mean value is less than 0.2% for the parameter values sssociated E
vith (4.66), for the effective qp = 127 and the observed build-up time.
Thus, the ratio hay/hcr is, indeed, a constant for all practical purposes, |
and the above assumption is thereby Justified. i
The dominant theoretical phonon threshold for an ideal pulse, given 4

bty (3.52), may be written

K x’3/2
- (6.2). ,

»

h
(A) - =X
pcr H, 1+ 4.67x°

vhere 2
. 'ac“ (hxus)

R L

and it is recalled that

x'=x+d4 ,

vhere
B
X = = - nu
Mﬂ [bd‘
and
e 2l
4 - Dk . Hex“ aak
M‘ lnms
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The apparent threshold will then be given by

b b By 3f2
(A))yp = -il - ;‘2 (A= ;—2 K, x , (6.3)
0 er cr

+ 4,07 x°

vhere the parameters are defined as above. Since the ratio h.,/hcr

is very nearly independent of E, , as explained above, Bq. (6.3) vas
fitted to Fig. 6.3 by adjusting the parameters (h.p/hcr)$ andd . It
was found that the best fit was obtained with

h
—‘Rxp- 9.68 (6.4a)
h
cr
and
4 = 0,022 . (6.4)

Expression (6.3) is plotted with these parsmster waluss in Fig. 6.3, vhere
it is seen that experimental points fit the thearetical curve guite
closely.

From the value of d given by (6.4b), it is found that

H“ulakz « 58 Q¢
Knowing the lattice constant a , and the vslue of k for ths upstable
elastic vave mode [determined from (3.260) and (3.57)], the exchange

field in the easy plane H - becomes

By = 12.3 x 10708 . - (6.5)
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Froa the above value of (h p/hcr) Kp given by (6.4a) and the theoretilcal
value of h p/ = 1.003 for eXperiment I given by (4.6€), the value of
xp obtained is 9.65. This value i§ somewhat larger than the value of ‘
x = 7.7% estimated in Chapter III and given in (3.60). The latter was |
‘haud upon the estizmates of Q = 1500 and B, = 5X 10° erg/cm . Taking :
instead the effective value of QP = 127 given by (4.66) and the same
values of C“!m and kﬂl , eu;ployed originally, a new estimate may be
obtained for 33 . From the expression for Kp given in (6. 2), the

following value for B3 is obZlained:

B, = 1.5k x 107 erg/o::m3 . (6.6)

3
Thus it appears that the mgnetoelaatic constants for Zn Y are larger o
than they are for YIG (B® 5 x 1.o6 erg/

With the parameters given in (6.4) the theoretical threshold
expression (6.3) fits the experimental points of Fig. 6.3 well. There: ;
are, however, two minor considerations which should be pointed out. The ¢
first one, which has already been described, is the effect of microwave "
heating on the saturated megnetization and hence upon the applied dc 4
magnetic field required to sustain a given internal field. This effect e
explains the deviation of the experimental points above the theoretical
curg at the higher threshold levels shown in Fig. 6.3. Since the effect
of microwave heating at the higher thresholds decreases the demagnetizing
field, the theoretical curve shown in Fig. 6.3 more closely approximates
a curve of experimental points taken at the same ferrite temperature, rather
than one of pointe taken at' the same anmbient temperature. The second
consideration has to do with deviation of the theoretical threshold from
that shown in Fig. 6.3 for the lower Ho values. In deriving the trans-
verse phonon thresholds the assumption was made! that ws << w:'l . As was
mentioned in Chapter III, this condition is fulfilled very well with dc
fields above 1103 where uf, S 0.1 wi . However, in the transition range,

, H < H < H b3 ° the theoretical phonon threshold is somewvhat lower than
:lndicatod in Fig. 6.3. If both of the above effecte are taken into
account in the interpretation of the experimental points and theoretical
curve of Fig. 6.3, it is expected that slightly different values for the
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exchange constant 4 and the multiplicative coustant 5 would de
obtained. However, the corrections which might be made would be vithin
experimental error of the points of Fig. 6.3.

At dc fields By ~ By in Fig. 6.3 the reflescted power waveforus
exhibited a different kind of saturation effect. This is atdributed to
the growth of spin wave instabilities. The spin wave thresholds for an
ideal pulse wvere plotted as a function of internal dc fleid in Figure 2.3.

These are related to the critical field hcr by. the femiliar definition
(a), = =< (6.7)

For the actual pump pulse the apparent threshold is

h -
(Ap)‘p = fL (Ap)cr . (608)
er

It vill nov be assumed that h /h . 1s & constant,indepexdent of H, ,
and that this constant is approximately unity. This assusption is '
reasonable in view of the results for the build-up of phonon instabilities
(Chapter IV). Then the apparent spin vave thresholds are given approximately
by Fig. 2.3, where the spin vave Q has been assumed tOo be ¥ 193 . A
comparison of the theoretical curves of Fig. 2.3 with the experimsntal
points of Fig. 6.3 shows that the experimsntal thresholds are larger. It
is tentatively deduced from thie that the spin vave Q 1s lower than

193. By matching the theoretical cn-rescoance sscond orddg threshold

curve (2.50) to the level established by the three data points near

Ho = 270 Oe, an estimate Q ™ 23.4 , is obtained for the effective spin
vave Q . Using this valus of Q , theoreticsal wvaluss of the first emd
second order spin wave thresholds have been plotted in Fig. 6.3. It 1e
seen that the lowest threshold changes from spin wave to phanon at

I-I0 P~ Ho2 . The second order off-rescnance spin wvams threshold is seen

to increase very steeply above H, = Hoa , and 1s the dominant ‘Wﬁul
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threshold only over a negligibly small range of Ho
At further reduced magnetic fields, Hy < Hbl » the experimental

thresholds are seen to increase rapidly--in a region where the very low

first order threshold is expected to be dominant. The explanation for

this probably lies in the fact that in this region the internsl dc magnetic

field is insufficiently large to saturate the magnetization of the ferrite.

Thus the megnetization no longer is uniform throughtut the .sample Yolume,

and additional meagnetic relaxation prbcesees may be operating.

B. EXPERIMENT II

This experiment, similar to experiment I, was undertaken to observe
in greater detail the more exact nature of the saturation effects on the
reflected pump pulse. The magnet used for this second experiment had a more
uniform, better regulated, and larger range of msgnetic field than did the
one employed in experiment I. The magnetic field was sufficiently uniform
for it to be msasured directly with the NMR probe. The larger range of
the magnetic field Hb allowed measurement of thresholds correaponding
to the maximum power output of the signal generator. This made it possible
to pass through H05 the maximum field at which the fifth order spin
wvuve instability would be permitted on rescnance.

Also, in this experiment the level at which the reflected power could
be detected was 20 dB lower than in experiment I, permitting a reduction
in the reflection coefficlent I’ of the resonant system; and the unloaded
Qo of the dlelectric resonator system was higher than it was for experi-
ment I, with the result that the incident power level P, wes reduced.

The effects of lower ' and Pi on the relative change in reflected
power A.Pr/Pr due to a given change in ferrite absorption are seen by an
exanination of (4.49). This shows that AP 1is increased; the saturation
effects can thersfore be cbserved in greater detail. In this experimnt
mich better photographs of saturation phenomena on the reflected pulse
were, in fact, obtained.

A photograph of a typical klystron beam current pulse, as seen &t
the output of a current pulse transformer, is shown in the top half of
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Fig. 6.4a. Some indication of the sag in the current discharging from the
high voltage capacitor in the klystron modulator is evident in the first
30 usec. ‘The increased sag beyond 30 usec is due to sag inherent in the
current transformer as well as in the beam current. The amplified rf
power pulse at the outpuf of the klystron detected at the directional
coupler is shown in the bottom half of Fig. 6.4a. The pulse was 30 psec:
in duration and had a time constant of about 124 psec. This pulse has a
shorter length and a smaller time constant than the incident pulse of
experiment I because there was an equipment failure and unapoidable
alterations had to be made in the klystron modulator. For each cxpor:l?unt,i__
a pulse of maximum time constant was, of course, sought.

A typical reflected power pulse below the instability threshold is
indicated in Fig. 6.4b. The ears on the reflected pulse, fis to the
frequency modulation described previously, ure more vronounced than they
were for experiment I because the reflection coefficientiis much smeller
(Ir|» 0.08). The time constant of the ears is smaller than for experiment
I because the resistance in the crystal detector circuit was decreased.

It vas possible to decrease the resistance for experiment II because the
sensitivity (or the relative change in reflscted power) was greater, for
reasons mentioned above.

In this experiment the dielsctric resonator system was again over-
coupled. Thus the effact of an increase in ferrite absorption was to
decrease the magnitude of the reflected pump pulse. A typical example of
a reflected pulse exhibiting the initial appearance of ferrite absorption
is shown in Fig. 6.4c. This waveform is typical of those from which the
apparent critical fields (hap) were determined. It is apparent that tho
Territe absorption graudually builds up t0 & peak and then decays as in
experiment I. However, in experiment II the initial appsarance of the
absorption peak is more clearly seen, and the similarity to the wvefara
Predicted by the theory of Chapter IV is even more merked. . -

Figure 6.4d4 shows a typical reflected pump pulse at as absorbed
pcver level above threshold. The increase in ferrite absorption is o v
apparent. At a still higher level above threshold, the reflscted pump
pulse appears as shown in Fig. 6.4e. Here the absorpticn pesk appears
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a—— Time (20 psec/division)

(a2) Klystron beam current and rf {b) Typical reflected power .
output power waveforms. ‘pulse below threshold.

Power

«— Time (10 psec/division)

(c) Reflected power pulse at (u) Reflected power pulse above
threshold. threshold.

(e) Reflected power pulse much
above threshold.

FIG. 6.4--Pulse waveforms for experiment II.




slightly truncated--indicating the presence, possibly, of pulse saturation
due to the change in I' , as described in Chapter IV. Whan the changes
in reflected power become as large as those shown in Fig. 6.le, this «
effect should be appreciable. If the ferrite absorption increases much
more than that indicated in Fig. 6.4e, the reflection coefficient will

"go through zero" at the absorption peak and the dislectric resonmator
system will become undercoupled.

In studying the precise nature of the ferrite absorption it is again
helpful to normalize the reflected pulse waveforms of Figs. 6.4b-e to an.
arbitrary level below saturation. The results of the normalization are
shown in Fig. 6.5. These waveforms showing ferrite absorption are similar
to those shown in Fig. 4.8 for the theoretical phonon absorption based
upon the parameters of experiment II, In particular, it is noted that
the predicted waveforms of Figs, 4.8a-c¢ correspond with the observed
waveforms of Figs. 6.5b-d. In both theory and experiment the absorption
peak increases with increasing power levels above threshold. The shape
of the absorption is approximately the seme in each case. There appear,
however, to be the same deviations frow the theory as were observed ia
experiment I,

The first exception to the theory occurs in the wagnitude of the
build-up time tﬁp . . The experimental value observed from Fig. 6.%¢ is

(tap>exp = 28 psec )
wvhich is shorter than the predicted value of t‘p- 60 usec for experimsnt
II, based upon a phonon Qp of 1500 . It is noteworthy, though, that
the experimental value of tap is closer to the predicted valus for the
parameters of experiment II than for those of experiment I. This, as will
be discussed below, is : attributed to the lower ferrite absorption lavel
of experiment 1I. From the linear theory of Chapter IV it may be concluded
that the shorter observed build-up time implies that the phonon @ 14
actually much lower than 1500. In fact it was shown in Chapter that
a Qp of 294 was obtained for the linear theory for (tlb)eli = 28 usoc.
As explained previously, this velue of Qp may probably be regarded as an
effective value which can be considered as decreasing with increasing




Fover

(10 puec/division)

FIG. 6.%-~Drawing of reflected power waveforus of Figs. 6.1b,c,d
normalized to the level corresponding to 6.1b,

- 152 -



phonon amplitude. Thus the phonon damping is considered nonlinear. By
this interpretation of the results, it is possible to explain the decreass
in the observed build-up time tap with increasing absorption levels,
which can be clearly seen in Fig. 6.5.

The above dlscuseion correlutes the observed instability tanesholds
at the higher dc magnetic fields with the theory of Chapter IV. At the
lower dc mugnetic fields, quite different threshold observations were made.
In this experiment several different kinds of saturation effects were
observed for Ho < Hyp « A typical example of the reflected power wave-
form taken in this region is shown in Fig. 6.6a. The dc field of
H, = 300 OQ for these wvaverorms is within 14 Oe of Hoa. Each successively
higher waveform in the photograph occurs for « higher incident power level,
and heunce a higher field strength ut the ferrite. The lowest trace in
the photogruph shows a slight evidence of ripples at the lowest power
level. At a slightly highsr power level the ripples shov their stsevhat
random nuture wnd their amplitudes increase. The third waveform shows
superimposed upon the random ripples the appearance of the absorption
penk sssoclated with the phonon theory. At the highest powver weveform Lndicated
in the photogruph, the ripples are clearly domipated by the phonon-like
belivior, At do flelds higher than 300 Os the asmplitude of the small
randow ripples becwne lows wund less, until at about H, = 360 O they
vunlshed coupletely. At fields less than 300 Os the amplitude of thw
ripples Lecame lurger, but they were wtill dominuted by the phonon
ubsorplion dip described uwbove until the point llo * Hy, was reached.

Yor Ho < Ho:.' randow ripples, similer to those described above, appsaxred
quite suddenly ut u criticul power level. This is believed to define the
swecond order spin wave threshold, Xor Ho > !!02 the appesarancs of ths
wbsorption dip iuv believed to define the phonon threshold, even when
rundom r:},ppln are supsrimposed. The reason for the superposition of the
two putterns, suggesting concurrent spin wave and phoxnon instabilities,
is pnot known.

Yor Hy < HOl wpother kind of saturstion effect was observed. This
iv shown in Fig. 6.6b, for vhich Hy = 263 Os . There was a threshold,
marked by the sudden appearance of relaxation cscillations in the form
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Power

- Time

(a) Soturation ef'fectu for Hy llghtly
greoter than HO?‘ '

losuy than H.. .

(b) Buturution eftectu for Hy oL

(c) Baturation eftscts for Hy slightly
lesu than HOl'

FI0. 6.6--Reflected power pulse waveforms showing various saturation
effects nobserved in experiment II. Time uvcale iu 10 yuec/division.
« 184 .



of an attenuated sinusoid. Ons reason for the attenuation was, of courss,

that the incideat power decreased during the pulse and eventually reached

a level below the threshold. This wvaveforam was reproducihle and had a

relaxation frequency of about 250 kc.(l) This effect was observed only

at dc field values between BD and HOL , and is attriduted to the first

order rescnant spin wave instability. For the slightly higher dc field

Hy = 265 Os a similar behavior was observed, as is shown in the top

wvaveform of Fig. 6.6c. In this case, however, as the pover level was

increased the waveform shown in the bottom of Fig. 6.6c was observed.

Here the attenuated sinusoid broke up into somevhat random oscillations

as the power was increased further. This effect is not understiood.
Measuremsnts of absorbed power were taken as a function of the

applied magnetic field Ho at the threshdld level for each type of ferrite

absorption. Apparent critical fields were obtained from these measurements

and are plotted in Fig. 6.7. Proceeding as before with expressions (6.2)

and (6.3), a "best fit" of the theoretical phonon threshold curve to the

experimental points of Fig., 6.7 is obtained with

b
ap K, = 10.35 (6.9a)
h
cr
d = 0,02 . {(6.9b)

Expression (6.3) 1s plotted with these parameter valuss in Fig\.6.7, vhere
it 1s seen that the experimental points fit the theoretical curve closely.
The value of d in (6.9b) is the same as was obtained from the threshold
curve for experiment I. Thus the calculated exchange field is the same
as before, equation (6.5). ST -. g o

From the value of (h, /b JK given by (6.9e) and the theoretical
value of hw/ncr = 0.961 for experiment II, given bty (4.79), the value

© ey

(nSuch relaxation oscillations have frequently been ocbserved in
parallel pump experiments. They are not completely understood.

- 15 -

I T ¢ AN T e




0 R T T T T ! R T 1 Y \ T
8 ® Experimental points for phonon thresholds

— L

4 Experimental points for thresholds
attributed to spin wave instabilities

A}

7Ol — Theoretical threshold curves
Phonon
threshold
60 —
30
bof- A
30 |-
20 b A
Second order spin wave
threshold
10 First order spin wave threshold
Bo1 Hoo  Hps Hoy Hcia Hfé

oL A Ay -y

200 % 300 koo Ho(Ce)

FIG. 6.7--Experimental and theoretical values of b vs Hjy for ihe Zn,Y
disk in transverse pumping experimeni II.
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of Kp obtained is

K = 077,

vhich is comparable to the value of Kp obtained for the first experimsmt.

Again, taking the above value of xp , the effective value of Qp = 204
given by (4.67) and the same values of C and kdl. used originally ,

¢iqn
the following estimate for. B3 is obtained:
B, = 0.959 x 107 erg/m3 . (6.10)

This result is comparable to the result (6.6) for experiment I.

' As in experiment I, the thresholds attributed to the second order
spin vave instability may be fitted to the theory by assuming a spin vave
Q given by Q™ 18.0 , and the theoretical first and second order
thresholds are plotted in Fig. 6.7, assuming this valus of Q . The
results are comparable with those of experiment I. '

C. 'SUMMARY AND CONCLUSIONS

Two experiments were performed using a disk of single crystal anY
cut with the easy plane lying in the plane of the disk. In each experiment
the apperent critical magnetic field was found to be & function of the
applied dc magnetic field. The instability threshold (or critical field)
was determined by the absorption peak in the reflected pump pulse.
Photographs of the incident and reflected power pulse wvaveforms are shown
and irregularities in the waveforms dus to the mature of the power source
are explained. Irregularities on the reflected pulse wvaveforus dus to the
growth of ferrite instabilities are discussed in detail.

In the dc magnetic field region vhere phonon instabilities were
expected to be dominant, the shape of the ferrite absorptiom on the
reflected pump pulse wvas nearly the same as that predicted by the phomon
absorption theory of Chapter IV. The observation of ipstability thresholds
was found to be approximately as predicted by the theoretical spin wave
and elastic wave threshold calculations of Chapters II and III. At applied
dc magnetic fields above the point where the seond order spin wave threshold
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becomss Off-resonant, the experimental threshold fields were found to
exhidit the sams functiomal dependence upon dc field as the theoretical
phonon threshold curve. From thia curve an estimate was obtained for the
exchange field H x| of Zn2Y in the easy plane. This functional
dependence strongly indicates that the magnetoelastic effect is the
dominant mechanism and that the observed thresholds were due to growth of
unstable elastic waves propegating and polarized in the easy plans. At
applied dc magnetic fields below the point where the second order spin wave
threshold becomes off-resonant, the experimental threshold fidlde were
found to exhibit qualitatively the same dependence upon dc¢ rield as the
theoretical first and second order spin wave threshold curves, with:sowe
exceptions.

Explanations for these exceptions are suggested but more work must
be done in order to understand the precise nature of these instabilities, .
and it should probably be done with ideal pulses. In the phonon threshold
case, however, the use of actual pulses permitted the determination of
both the magnetoelastic constant B, and the phonon Q ; but there is
some question as ‘to the reliability of these valuss.
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APPENDIX A

PHYSICAL CONSTANTS FOR anY s YIG , AND . 8rTi 03

This appendix presents a table of those constants which vere useful f
during this study, with special interest in the single tryustal properties
of each material. The single crystal valuss of the saturated magnetization
vere assumed to be the same as the polycrystalline valuss given, since the
c¢rystal anisotropy was overcome at ll kOe.
The valuss of saturated magnetization and snisotropy at 29°C vere
used extensively throughout this study and are given below for reference:

Genoral Constants

WM « 2624 Oe
A-B‘&GOO.

P = HA/‘MI“ - 3,22

wefex w 1.32 kM
q = mP/&D“ =« 0.0898
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Property*

Fermla
Molecular Weight

Density (¢m/cm3)

Curie temperature (°K)

Crystal type

Lattice constantfs) of ‘unit cell (R),

Initisl permeability at 29°C
Polycrystal
Single crystal
Saturation magnetizstion huN”(Ou) at 20°%
Polycrystal at 11 KOe
Powder at 11 KOe
Temp. derating (0e/°C) near r.t.

Aninotropy field H Oog at 20%
Tenp. derating (0@ OC) near r.t.

Dielectric constant at 27°C and 1,31 kMo
Yump. derating (1/9C"1) near r.t.

Lous tangent at 1.3 kMe
Teup. derating (1/00'1) near r.t,

Epecific hest ¢(cal gut %™t

Elastic constants (erg/cms)

ZnaY YIG Strontium
——— e Titanate
2“23‘2F°12°22 YBFa5012 SrT103
1428 738 183
5. 46 5.17 5,135
403 560
Hexagonal Cuble " Cuble
u-iﬂeg a=l2, 37 a-3.9038
au ]
28
100 eot.
-~ 1700
T
26283t
-8, 4 «3,'(
9ow , hb 35 F 9 -
60 est, 2033 -0,7 est 2
10 est. o7t o8
=1.09%
: 2,50 10'“39Jm
“ 2.5Ux10 .
T 3.65%10" 1"
0.17 est, " 0.2 eut. ¥
36
cil-26.9x101;'
c12-1077x1011

Quu"{ . 6‘4!1011

*
The source for these data 1ls reference 9 unless otherwise indicated.

*See Chapter V.
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AFPPENDIX B
GLOSSARY OF FRINCIPAL SYMBOLS

Generalized vector vhich may represent @ , k , ete.
Component of generalized vector along coordinate direction 1
Component of generalized vector in rotated coordinate system
Punping angle = h/l'lo

Apparent threshold angle = h ‘p/Ho

nt'h order spin wave threshaold

Phonon threshold as a function of rotation engle . ; 1,)
refer to the direction of polarization and promt’c?on,
respectively

Phonon threshold (minimiged with respect to vo)

Time-independent spin wave amplitudes

Magnetoelastic constants for uniaxial crystal

Elastic constants for uniaxial crystal

Normelized exchange field = Dke/hx!‘ ; ferrite disk diameter
Free energy of crystal

Anisotropy energy

Magnetporystalline energy

Elastic energy

Magnetostrictive energy

Phonon energy--the portion of B o in the unstable mode
Time average stored phonon ensrgy in sample
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>

{=3]
]

ip

g & & J

Hex”,l

:6:11

8811

=3 o
O

g<::3" .iéb‘

i)J’k

K _,K

=

pm

Frequency modulation parameter

Totel magnetic field = H(r,t)

Anisotropy field along "hard" or c-axis

Anisotropy field

DC demagnetizing field in the plane of the ferrite disk
Demagnetizing field for uniform precession

Dipclar magnetic field or demagnetizing field for spin wave
Exchange field

Exchange field constant in easy plane, normal to easy plane
Applied (external) dc magnetic field

The applied dc field above which the nth order spin wave
instability is no longer allowed on resonance

Amplitude of applied (external)rf pump magnetic field
Apperent critical field

Critical field or threshold field

Value of h at beginning of pulse

Value of hm when the apparent threshold is reached
Maximm rf magnetic field amplitude for dielectric resonator
Applied (external) rf pump magnetic field

Nonzero component cf gp

Subscripts,each of which takes onr the coordinate values
1,2,3 or x,y,z

Maguetic and phonon coupling constunts for spin wave and
elastic wave equations, respectively

Propngation vector

Elastic wave propagation constant on resonance
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Magnetization vector

Saturated magnetization

N Effective number of growing phonon modes

N I Demagnetizing factor in the plane of the ferrite disk = Nx a N
n Order of spin wave instability = 2w/

P Number of turns of frequency tuning plunger screw out from

position of closest approach to dielectric resonator

P.,p, Peak, average power absorbed by resonant dystem
APF Change in ferrite absorption due to growth of instabilities
Pi Incident pulse power level

Pim Value of P1 at beginning of pulse

Pp Phonon power absorption

(Pp)ap Phonon absorption at spparent threshold

Pr Reflected pulse power level |

APr Change in reflected power level due to AP'
Prm Value of Pr at beginning of pulse

p Normalized anisotropy constant -tli‘/kd! "

Q Spin wave Q

Q ext External Q of resonant system

Loaded Q of resonant system

Unloaded Q of resonant system; ferromiagnetic resonance Q
Phonon or elastic wave Q

Frequency normalization parameter = m’/an“

Elastic displacement vector

Fowoe L L e

Elastic wave amplitude
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Ky Ei

8,8,
ap

U,u

XyY,2

¢’ s
X Y ,2

"léﬂéQ,lé)iQ

~=

Bpatial coordinate vector
Tine-independent elastic wave auplitudes
Standing wave ratio at resonance
Exponential phonon growth paramster

Bulld-up time of phonon instabilities to the apparent
threshold level

Peak, average stored energy in resonunt sycstem
Internal magnetic field paramster = H/hxﬂi
Effective internal magnetic field parameter = (H + nk?)/unu“

Crystallographic coordinates for uniaxial ZneY ; coordinateu
used to describe dielectric resonator fields

Coordinates in rotated system at sen angle *0' with reapect
to fixed system

Unit magnetization vector = Q. + g

Spin wave amplitude

Uniform precession amplitude

8pin wave component of the unit magnetization vector
Reflection coefficlent of resonant system
Gyromsgnetic ratic = ge/2me

S8train tensor component

Effective relaxation freguency in the presence of megneto-
elastic coupling

Spin wave relaxation frequency = w/EQ - 7AHk/2

Spin wave relaxation frequency = wh/EQ

Phonon or elastic vave relaxation frequency

Spherical coordinate used to specify orientation of k

Density of ferrite sample
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L Decay time constant of incident power pulse

¢ Bpherical coordinate used to specify orientation of k

"0 Angle betwean rotated and fixed coordinate asystems

(*O)opt Optimum value of V¥, for pumping of most unstable phonon rmode

w Frequency of unstable spin wave or elastic wave mode

wﬁA Anisotropy field frequency paramster = 7HA

wﬂo Applied dec field freguency parameter = 7!-!0

Wy Gaturated magnetizetion frequency paraseter = 7&:!‘

wy Faerromugnetic resonance freguency

Wy Punp frequency (i.e., frequency of applied rf magnetic rield)

Wy Spin wvave resonunt freguency

W 8Spin wuve resonunt freguency containing modulation copponent

wp Elastic wave resonant freguency

w’ Elagtic vave ruonuﬁt frequency in the presence of m yneto-
P elustic coupling and pumping by the wiifors precession

“‘po g:lugtic vave ruomt trequency in the presence of uagneto-

elastic coupling and zero puxp
W/ Phenomenological damping persmster for spin vaves
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An experimental and theoretical investigation was mmde of
transverse pumping saturation effects in ZnQY ferrite at fregquancies
far below ferromagnetic resonance. Chief interest was in saturation
effects at fregquencies below the bottom of the spin wave manifold,
where the lowest order phonon instabilities were expected to coupete
favorably with the higher order spin wave instabilities.

Measuremsnts of saturation effects in single crystal ZneY, with
the essy plane lying in the plane of the disk, were made at 1.32 kMc.
The dc and rf magnetic fields vere applied orthogounally in the plane
of the disk. The large rf magnetic fields required were obtuined by
enploying a strontium titanate dielectric resonator. In these experi-
monts the arder of the first resonant spin wave instability permitted
vas varied from the first to the fifth by edjusting the posltion of
the spin wvave manifold relative to the pump frequency. The nature
of the saturation was investigated by observing the waveform of the
reflected pump pulse.

Theoretical on-resonance spin wave thresholds up to fourth order
and off-resonance spin wvave thresholds up o second order were derived.
The first order theoretical spin wave threshold was the lowvest threshold
in the range of low dc magnetic fields. At higher dc fields the second
order theoreticel on- ard off-resonance spin wave thresholds dominated
the higher order thresholds. Taking the magnetoelastic effect as the
dominant mechanism, first order phonon thresholds were derived for
transverse and longitudinal elastic waves propagating in the easy plane
and along the c-axis. The lowes t theoretical phonon threshold was for
transverse elastic waves propagating and polarized in the easy »nlane,
and at freqgusncies below the bottom of the spin wave manifold, this
threshold dominated the theoretical second order off resonance spin



wave threshold. Theory was developed for the growth of phonon
instabilities from thermml level in order to relate pulse saturation
effects to the phonon absorption.

Transverse pumping thresholds observed experimentally were
cowparable with the above theoretical predictions and strongly
indicate that first order phonon instabilities dominate the higher
order spin wave instebilities at freguencies below the bottum of the
spin wave manifold. These results together with the phonon growth
theory made it possible to cbtain rough estimstes for the phonon Q ,
one magnetoslastic constant, and the exchange field of ZnﬁY in the
eusy plune. The observed pulse saturation effects and the results
of two experiments for two different phonon sbsorption levels
indicated the presence of nonlinear elastic vave damping.
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