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ABSTRACT

An experimental and theoretical investigation was made of transverse

pumping saturation effects in Zn2 Y ferrite at frequencies far below

ferromagnetic resonance. Chief interest was in saturation effects at

frequencies below the bottom of the spin wave manifold, where the lowest

order phonon instabilities were expected to compete favorably with the

higher order spin wave instabilities.

Measurements of saturation effects in single crystal Zn2 Y 2 with

the easy plane lying in the plane of the disk, were made at 1.32 kMc.

The dc and rf magnetic fields were applied orthogonally in the plane of

the disk. The large rf magnetic fields required were obtained by employ-

ing a strontium titanate dielectric resonator. In these experiments the

order of the first resonant spin wave instability permitted was varied

from the first to the fifth by adjusting the position of the spin wave

manifold relative to the pump frequency. The nature of the saturation

was investigated by observing the waveform of the reflected pump pulse.

Theoretical on-resonance spin wave thresholds up to fourth order

and off-resonance spin wave thresholds up to second order were derived.

The first order theoretical spin wave threshold was the lowest threshold

in the range of low dc magnetic fields. At higher dc fields the second

order theoretical on- and off-resonance spin wave thresholds dominated

the higher order thresholds. Taking the magnetoelastic effect as the

dominant mechanism, first order phonon thresholds were derived for

transverse and longitudinal elastic waves propagating in the easy plane

and along the c-axis. The lowest theoretical phonon threshold was for

transverse elastic waves propagating and polarized in the easy plane,

and at frequencies below the bottom of the spin wave mmnifold, this

threshold dominated the theoretical second order off resonance spin

wave threshold. Theory was developed for the growth of phonon'insta-

bilities from thermal level in order to relate pulse saturation effects

to the phonon absorption. - -
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Transverse pumping thresholds observed experimentally were comparable

with the above theoretical predictions and strongly indicate that first

order phonon instabilities dominate the higher order spin wave insta-

bilities at frequencies below the bottom of the spin wave manifold. S

These results together with the phonon growth theory made it possible

to obtain rough estimates for the phonon Q , one magnetoelastic

constant, and the exchange field of Zn Y in the easy plane. The

observed pulse saturation effects and the results of two experiments

for two different phonon absorption levels indicated the presence of

nonlinear elastic wave damping.
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CHAPrE I

INTRODUCTION

The term saturation is used in two ways in discussing the properties

of ferrites. The most common use applies to all varieties of ferromnetic

materials. It refers to the static state of the average magnetization

vector when the atomic magnetic moments are aligned in one direction due

to the application of a sufficiently large dc magnetic field. Thus a

material is said to be saturated when its magnetization approaches a

constant value with increasing dc magnetic field intensity.

The type of saturation of special concern here is the saturation of

the uniform precessional motion of the magnetization. The simplest notion

of the magnetization obtains when the magnetization itself is-statica,14

.:aturated by the application of a sufficiently large dc imgnetic field.

A uniform precessional motion of the magnetization my be established

by the application of a transverse rf msgnetic field. Saturation of the

uniform precessional motion is usually defined in terms of a critical

rf magnetic field corresponding to the point at which greatly increased

losses obtain if the rf magnetic field is further increased. These

losses are due to instabilities arising from nonlinearities in the

equation of motion for the magnetization.

The saturation of the uniform motion of the gnwtization at fsr&

romagnetic resonance, observed by Damon, 1 and Bloembergen and M ang2

was first explained by H. Suhl. 3 He showed that such saturation cpuld

be explained on the basis of excitation of unstable spin waves at the

pump frequency, and furmher showed that a subsidiary absorption having

a lower saturatiob threshold would occur when half of the pump frequency

was within the spin wave manifold. This is due to unstable spin vaves
at half the pump frequency.



This early work was concerned with spin wave instabilities excited

by a pump frequency which coincided with ferromagnetic resonance and

hence was above the bottom of the spin wave manifold. Recently, it has

been shown theoretically that higher order spin wave instabilities may

also cause saturation of the uniform motion when the pump frequency is

below the bottom of the spin wave manifold--where the first and second
4,

order instabilities are far off resonance. Even under these conditions

there still exist resonant acoustic waves at the pump frequency and at6
one-half the pump frequency, and there exist several mechanisms by which

phonon instabilities at these frequencies may be excited.7 It is unlikely

that such phonon instabilities could compete favorably with spin wave

instabilities when the pump frequency is within the spin wave manifold

because weaker coupling mechanisms are involved. Operation with the pump

below the manifold, however, allows only higher order spin wave instabilities

to exist at resonance; and the lowest order phonon instabilities might

be expected to compete favorably with higher-order spin wave instabilities,

since the thresholds generally increase with the order of the instability.

The purpose of this study is to report a theoretical and experimental

investigation of the transverse pumping saturation effects in Zn Y fer-

rite (Zn 2 Ba 2 Fe12 022) at dc magnetic fields corresponding to frequencies

below the bottom of the spin wave manifold. The object was to investigate

the instability mechanisms and to determine whether saturation is caused

by spin waves or phonons. Experimentally, the pump frequency was fixed

at 1.32 kMc, and the dc magnetic field was varied to adjust the position

of the spin wave manifold with respect to the pump frequency.

The hexagonal material Zn2 Y was chosen because it has a magnetic

"easy" plane. The large magnetic anisotropy of Zi Y makes it possible

to operate below ferromagnetic resonance with relatively low applied dc

magnetic fields. In the easy plane, then, the stiffness of the magneti-

zation is low and it is possible to achieve large uniform precession I

angles with a muach lower rf magnetic field than would otherwise be

required.

The theory of instabilities pumped at frequencies below the spin

wave manifold is developed in CbJapters II and III. The derivation of

-2-



thresholds for spin wave instabilities up to fourth order is presented

in Chapter II. The optimum spin wave thresholds were obtained for each

order. Chapter III contains a derivation of the first order thresholds

for phonon instabilities. Various possible instability mechanisms are

discussed. By taking the magnetoelastic effect as the dominant mechanism.,

thresholds were determined for transverse and longitudinal acoustic waves

propagating in the easy plane and along the c-axis. A coamarison was

made between the lowest theoretical phonon thresholds and the spin wave

thresholds of various orders for both the resonant and nonresonant cases.

Chapter IV is concerned with the growth of phonon instabilities from

thermal level. The phonon power absorption was examined for both an ideal
pulse and the actual power pulse used in the experiments. The threshold

field, at which the effect of the instabilities can be observed by satu"

ration of the reflected pump pulse, is expressed in terms of measurable

microwave parameters.

The microwave apparatus and techniques which were enplcyed in

measuring the pumping thresholds are described in Chapter V. Large rf

magnetic fields were obtained by using a strontium titanate dielectric

resonator. The basic resonator theory as well as resonator and ferrite

heating effects are analyzed. The methods used to measure the unloed

QO are discussed.

Chapter VI is devoted to results of actual instability threshold

measurements. Transverse thresholds were measured in a singl crystal

Zn 2 Y disk with the easy plane lying in the plane of the disk. The dc

and rf magnetic fields were applied in the plane of the disk. Results

from two experiments are correlated with the phonon and spin wave thres-

hold theory developed in Chapters II and III and with the phonon growth

theory of Chapter IV. In correlating theory with experimental results,

values were obtained for one magnetoelastic constant, the phonon Q ,

and the exchange field of Zn2Y Y

At the end of each chapter a summary is given which describes the

important features and conclusions for that chapter.

"-35



CHAPTER II

SPIN WAVE INSTABILITY THRESHOLDS

This chapter is concerned with the calculation of transverse pump

thresholds of spin wave instabilities up to fourth order for operation

far below ferromagnetic resonance. The order of an instability n is

defined as

n w (2.1)

where w is the frequency of the spin wave whose instability is being

considered, and wp is the pump frequency of the rf magnetic field.

In the experiment described in Chapter VI, the position of the bottom of

the spin wave manifold (Fig. 2.2a) is varied with respect to the pump

frequency by changing the strength of the applied dc magnetic field in

the ferrite sample. From (2.1) and Fig. 2.2a instabilities of resonant

spin waves are permitted only for orders n such that =P/2 lies

above the bottom of the manifold. Thus the order of the first allowable

spin wave instability varies with the dc magnetic field, and proper

interpretation of the experiments requires the study of several orders

of spin wave instabilities.

A. GENERAL EQUATION OF MOTION

The motion of the magnetization L is ultimately based upon the

motion of each atomic magnetic moment. The classical lossless equation

of motion of the average atomic magnetic moment on a macroscopic scale

is

3 t " 7 M C- ,t ) X 4 -• t ) (2 .2 )
3t4



where • , the total magnetic field at point • , results from internal

fields due to the motion of 11 as well as from externally applied muietic

fields. The gyromagnetic ratio 7 is given by

S-Lt. 0 (2.3)

With g - 2.00 for moments due only to the spin of the electron, the

value for y/2x becomes 2.8 )Mc/Oe. Losses will later be introduced

into (2.2) through phenomenological damping.

The assumption is now made that the magnetization is saturated by

the application of a sufficiently large dc magnetic field. It will

further be assumed that the dc magnetic field, as well as the value of

the saturated mgnetization, is uniform throxhout the samle volume.

With these assumptions it is convenient to introduce the unit ingWeti-

zation vector 2Q,t) , whose components are the direction c€Oais, of

the magnetization, as follows:

(,t) -t)(2.4)
M

where N is the saturated magnetization. Equation (2.2) then becomess

CK.Ct) Y - U 9t) X 11(•,t) .)

where the dot hereafter symbolizes for any quantity the partial derivatlve

with respect to time. Since the unit vector preserves its ma W tude, the

x-component of the unit maWnetization vector is given by

C1 g (~(12 + 2) 1/2 .(2.6a)

-5-
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The x component has been singled out because the dc magnetic field is

applied in the x-direction, and deviations of the saturated magnetization

from the x-axis will be small. The y and z components of the equation

of motion may be found from an expansion of (2.5) to be

69 = Y(c H - XH) (2.6b)y z x x z

a - - (aH -a H) (.c

Thus (2.6) constitute the equations of motion of the magnetization for a

dc magnetic field applied in the x-direction.

In obtaining components of the total magnetic field • , it is often

useful to utilize the following relationship between the magnetic field

and the free magnetic energy E :

S(2 .7 )
S

where Va represents the gradient with respect to the direction cosines

of the magnetization. The total magnetic field J comprises the applied

dc and microwave frequency (rf) field terms as well as terms dependent

upon a . Because of these terms of H dependent upon a , the

equation of motion [(2.5) or (2.6)] will be nonlinear in a . However,

with the application of orthogonal dc and rf magnetic fields and small

deviations of 2 about static equilibrium, the equations may be linearized.

Under the quasi-static approximation to Maxwell's equations

(V -B = 0 , V X H = 0) there is a uniform solution (uniform preces-

sion) to (2.6) and the appropriate magnetostatic boundary conditions,8
as well as an infinity of spatially-varying solutions. The spatially-

dependent solution modes are quite complicated if the exact boundary

conditions are matched, but usually it is permissible to make the

- 6 -



periodic boundary condition assumption and to regard the modes as plane

waves if

2x/k << sample dimensions

The uniform precession is then often called the k * 0 moe.

In the plane wave approximation the general motion of the mgneti-

zation is given in the form of a Fourier series expansion of CC

namely.,

C1 + a(2.8a)

a C, (2.8b)

where this expansion is stribty valid only for large ks . These

plane wave modes are referred to as spin wave modes--hence the subscript

of a in (2.8b). In the above, a is a function of time ol and

has the form

k b l (2.9)

which in general =W be complex, where the quantity w is the frequency

of the spin waves and the vectors Ak Sk are imependent of tim.

Since the spin wave component of the mognetization Z must be real,

it follows that

-(2.10a)

2-k-



and therefore

= a* (2. lOb)

In general, as will contain pairs of oppositely directed traveling waves,

with propagation vectors k and -k . If nonlinear terms are retained

in (2.7) it will be found that terms proportional to the uniform preces-

sion 20 will couple pairs of spin waves and a* and that thisow-kanthtti

coupling will lead to exponential growth of pairs of spin waves. For

each pair it will be found that

aki a- Iak' , (2.11)

so that the unstal le modes are standing waves.

B. MAGNETIC FIELD COMPONENTS

The total magnetic field A comprises the following components:

the applied dc magnetic field F , the pump rf magnetic field h ,

the anisotropy field H , the dipolar field Adip , the demagnetizing

field A , and the exchange field H . Figure 2.1 shows the coordinate

system employed and gives the directionof the applied magnetic fields

and the propagation vector k . The applied dc magnetic field is given by

H 0

H 0 (2.12)

= 0 0-8



go 
k

fAW

rz

FIG. 2.1--Coordinate system showing direction of applied
megetic fields and propq~ation vector.



The pump rf magnetic field which is normal to the applied dc magnetic

field and is linearly polarized is expressed as

0

h = h (2.13)
"-p y

where hy - h cos cipt , h is the maximum amplitude, and ap is the

frequency of the pump.

The anisotropy magnetic field arises from the crystalline anisotropy

energy, which, for a hexagonal grystal, has its origin in magnetic dipole-

dipole interaction. From crystal symn-etry considerations, the anisotropy

energy of a hexagonal crystal is found to be of the form9

E a =K 1 sin2 0I + K2 sin4 0' + K3 sin 6 V cos 60"

(2.14)

where 0' is the angle the magnetization makes with the "hard" z-axis,

and •" is the angle in the basal (x,y) plane. For Zn2 Y the negative

coastant K1 in (2.14) is predominant. The energy then assumes the
uniaxial form, and when written in terms of the direction cosines of

becomes

K,- (1 _- C) (2.15)

Utilizing (2.7), the anisotropy "magnetic" field is defined by

0

0a 1 o(2.16)

10-H/

-10 -



with H A a -2K1 /Ms defined as the anu~sotropy field along the "hard" or

c-axis.

The demgnetizing and dipolar fields are obtained from the quasi-

static approximation to Maxwell's equation written as

V.(~ 4,mcx) - 0 (2.1.

vx =o . (2.17)

The quasi-static approximation is fulfilled to a good approximation when

the dimensions of the ferrite sable are mach less than the free space

wavelength. The dipolar magnetic field, which is the demngmetizing field

for spin waves, is obtained by finding the solution to (2.17) for the

spin wave modes (2.8b) which satisfy the periodic boundary conditions.

The result obtained is

k a
436p k- OW k. e . (2.18)

kk

The demagnetizing field for the uniform (k = 0) mode is obtained from

(2.17), together with the exact boundary conditions. For an e4lpsoid

in a uniform mignetic field the deunoetizing field wIy be represented

by the general expression

Ad J4,X sN% , (2.19)

13L.



44

where N is the demagnetizing tensor. For the special case when the

applied magnetic fields are along the major ellipsoidal axes of the sample,

N is diagonal with trace equal to unity. The field may then be expressed

as

Nx aOx

4"- N a (2.20)

Nz °•z

The remaining term of Z is the exchange field jyx , which arises

from the quantum mechanical exchange interaction between neichboring

atomic spins. The result for a crystal with uniaxial symmetry is

SZ 2 i k.r
Z k- e Dl ay (2.21)
k

D2 z

with

H1  2mD1. HexIll

D2  Hei c2 2

-12 -



where H exu , j are scalar quantities of the order of the Weiss field

and a,c are the lattice constants of the unit cell. It is apparent

from (2.21) that the exchange field becomes especially sig:Lficant as

the wavelength of the propagating wave approaches lattice diiensions.

C. UNI1'PM PRECESSION AND SPIN WAVE NODES

The equations of motion are obtained by inserting the total mgnetic

field H L, whose components were developed in the last aection, into

(2.6). The resulting equations of motion my then be expanded intQ!:.?zt-

uniform precession and spin wave mode components by employing (2.8).

The uniform mode is separable from the spin wave modes since only the

latter contain the spatial dependence. The uniform mode equations becom

cx -[- j + Cx + N (N ) ox] N %1  + 7hz % (2.22a)

ao+ " a ÷ (N -N) N ] a -a a (2.22b)&Oz 0 M y X Ox O Yy Ox

where

O.•Ho Y H0

LL = YHa t

13. -



Also, the equations for the k spin wave mode are found to be

0 C mIio z + yhz .: - •H (atOx c + $•:z c: x)

'i OH 0 Ck0 - A XQX

(2.23a)

+ (ko- " kz %ox) ( kx + k ky• + kz akz)

7k a 2

+ D 1 k 0 & -yD 2 k2 ao a

*+ ( a0  - k~ aQy) (kax+ka, za (2.23b)

+ D 1 k 2 (ax a,• - ao, c.)

Here nonlinear terms containing the product of the uniform precession and

the spin wave components of a are retained, but terms higher than first

order in a are neglected. This is a good approximation since the

unstable spin waves mist build up from thermal amplitudes. It is through

the terms in (2.23) containing the uniform precession that energy is

coupled from the uniform mode to the spin wave modes. The latter eventu-

ally will be found to go unstable when the uniform precession angle

reaches a critical amplitude.
- 1



Before the uniform mode (2.22) and spin wave mode (2.23) equations

can be solved, it is necessary to utilize (2.6a) to eliminate the-

x-component dependence of the mWgnetization. By inserting relation (2.88)

into (2.6a), and retaining only first degree terms in the spin wave

amplitudes as above, the foflowing relations are obtained for the uniform

and spin wave mode components of the ionpetization along the x-direction:

a. (1 _C?y O2z1/ (2.24.a)

a - (a ay + -1 (2.24b)

Since (127 + iF is less then unity, then C1x Iy be expanded In a

binomial series in powers of C? and a27 . For purposes of solving
0Y Oz

"the spin wave equations, the expanded form of (2.24) is substituted into

(2.23), thus obtaining the spin wave mode equations of notion for a,,

and .kz . The resulting equations are linear in the spin wave direc-

tion coninea,, but contain terms which are modulated by the uniform

precession direction cosines. Such equations are of the Hktthieu-Hill

type, and instability thresholds will be found. Since substitution of

(2.24) into (2.23) leads to the appearance of higher powers of C1. and

GCz , instabilities of higher than first order are to be expected.

D. SOLTIOK OF UNIFRM PRECESSION EUATION

The solution of the uniform precession mode is necessary to determine

the relation between the driving magnetic field and the precession angle

of the magnetization. The simple solution is found by letting C1 1
x

in (2.22), giving

o & -a Mo + 7hZ (2.25a)

a 3 h ,(2.2!5b)



where

01- ' A + + (Nz -( N )

0' m N + N (N .-N )

0 I

and the ferromignetic resonance frequency is given by

0 (w 1 a)1/2

For the special case of a disk lying in the easy plane of the crystal,

the damgnetizing factor in the plane of the disk is given by

NY = N x =N

and the solution to (2.25) is found to be

a hi cos Gyt k,- Z (2.26a)Oo Ho

-z 2 h sin alt (2.26b)

"0



where

1

For operation on ferromagnetic resonance it would be necessary to

include phenomenological danping in these equations by letting q -+OLo + i1I0

But with the pup frequency significantly below ferromagnetic resonance,

daning has negligible effect on either the nugitude or the phase of a

In fact, it can be shown that the magnitude of the precession angle off

resonance (4 << D;!) is IN1 ýtlmes that on resonance foar the saw rf
field strength. This factor QO is related to the phenomnolcgical

danping parameter mq by j0 = -o/2qo "

The ratio of the magnitudes of ar to a gives a measure of the

confinement of the. motion of the magnetization to the easy plane. This

ratio is called the inverse ellipticity of the uniform mode and becomes

e = = -- . (2.27)
laoyI a.%

Using typical experimental values of the paramters for Z i2Y In (2.27),

a value for the inverse ellipticity of 0.04.4 is obtained. his Indicates

that thel motion of the magnetization is confined almost e=lusively to

the easy plane. This is not surprising, considering the large anisotropy

field of Zn2 Y . To the same approximation that the otion of the

magnetization is in the easy plane, the value of k, ny be taken to

be unity. Thus from (2,26a) it is seen that, to first order, %

becomes Just the ratio of the applied rf and de mognetic fields.

-17-



Since at is by far the dominant component of the magnetization,
Oyan approximate higher order solution for the uniform precession is

obtained by letting Of - 0 in (2.22). Thus for the special case of

a disk in the easy plane, the relation

V ao. - h/Ho - (h/Ho)cos oWt (2.28a)

is obtained as a solution for the uniform mode. The ratio defined by

A -a h/Ho (2.28b)

will hereinafter be referred to as the pumpin angle.

In order to solve (2.28a) for , the LHS of (2.28a) may first

be expanded in a power series of ay , since a0 < 1 . The method of
Oy Oy

successive approximation demonstrates that a may be expressed as a
Oy

Fourier series of odd harmonic terms in' the pump frequency np . The

result of the second iteration is

a(2) A cns pt + A cos 3ait + A cos 5Lupt + .. , (2.29a)

where

A M Ap - A-- Ap+ ...

(2.29b)

-128
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Since the puming angle Ap is usually very small (A << ) , then
A and A are given approximately by the first term in the expansion

for each case.

E. DEIATICU OF EX MSIC S FOR THE IifTABILIT TRHCLD-

The equations from which the thresholds of spin wave instabilities

are to be calculated are obtained from (2.23) and (2.24). At this point

the assumption is made that the motion of the uniform precession of the

magnetization is confined to the x-y or easy plane (see Fig. 2.1). This

amounts to neglecting aCz in comparison with C9 . Assiasin also

that ay << 1 , it is then possible to express h boY a power series
Oy yin ay [see (2.28)]. The equations of ortion, greatly simplified by

these assumptions, my be written as

&ky so aCkz+ a, C (2.30a)

CZ W bo Ok + b, %.W (2.30b)

with coefficients a0 , a1 , b0 ,.bI expanded in powers of the uniform

precession amplitude C( as follows:
OY

80 40 a
a+ a0 + a 4.

020 O+a040ay

a, 0 a8O+ al + all + + (2.30c)

-- bo +bZ co +bz + a12 c + a...

Qy, OLY~5~

b + bl a + b az + b a4
10 11Oy 12 Oy 14 9Y
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The coefficients in the expansions (2.30c) are

aO0 = - (x + d + p sin 2 9 sin 2 0)

• " .1_ (- N1I + d + p + sin 2 9 sin 2

alo" a 2a• 8a'4 si "-2 s 0 sin 20
2 2

al- ~sin 20sin~

(2.3odW)

bl0 x + d + sin2 9 cos2

bl = - sin 2@ cos 0

b2 1 12 2
b x + d +11 + + 1 co 2 g 1_. sin2 Q Cos2

where

H-0 N 11 4xm5  H

s s

S

Dk
d -

4xm

- 20 -



Equations (2.30) show that the coefficients in the spin wave equation

of motion are functions of time. Eliminating akz from (2.30a) and (2.30b)

and utilizing the relation bo = - a , reaults in

a, a W+ (-, ba 1+a 0 (2.31)

If •y were eliminated instead of akz , then the differentiated (dbtted)
coefficients would be different. However, it will presently be shown that

these dotted coefficients mey be neglected. In this case the differential

equatiom has the sam form f-r either % or . Equations (2.9)

and (2.10) yield'

ket-ke at (2.32)

The uniform mode amplitude Ca appearing in the coefficients of the
OY

differential equation (2.31) is given by (2.29). If only the dominant

first harmonic pum frequency coposient of ty,

%yo (e~t + e'LPt) , (2.33)

is used, (2.31) is a Natthieu equation.

From (2.30), (2.31), and (2.33) it is seen that term like 2 a,,
or b, a0  are proportional to Wa ak while term like0

or &.,l CX, are proportional to it ak wThe latter term -i be

neglected since they are smaller by the factor «)/N << 1 as well as

being in quadrature with the former term. ThM term containing _' is

proportional to w ap and may also be nealected since W C P << « N I

This is not a loss term, since two tim derivatives are involved. With

-21 -



the above negligible terms omitted, and with the inclusion of phenomeno-

logical damping, (2.31) may now be written as

+ + ca. (2.34)

where

2
C - a, b, a0

From (2.30c) it is possible to express C as a series in powers of a
Oy

as follows:

CO + c1 aoy + c2 + C3 . (2.35)

whc i'e

= a1O - bl a 010 10 0

4

Cl

C 2  2

-- = - 2al al -a bl ao0b

2a10 a12 11l 12 a00 10bo 02

C
-3 = -2a11 a12  b bl a 02

C4  2
-- - 2aOa.. 4 - a 1 2 - b1 0 a 0 4 -bl2 a 0 2 - b ao

OIM - 22 -



Spin wave thresholds are now determined by substituting (2.32) and (2.33)

into (2.34). Taking spin waves at the frequenct

CA) . ,u/2 (2.36)

and neglecting off-resonant frequency terms, a sec.ular relation for %

and C?-I. is obtained, and from this the instability threshold is found.

This procedure may be followed for every order n . In doing this, only

that term in (2.35) which has the same degree as the order of the instability

is found to be relevant.

Consider as an example the calculation of the first order bhresbold.

By making the above substitutions and keeping only constant and funda-

mental pump frequency terms in C , then (2.34) becoms

22
(-2 o+ C 2 .+ C A 4 +... .+ W)a0 2 =oa + 4%"0

(2.37)

A3 +o a.* 0
+ (Cl mo+ iC3 A~ MO. ) ay

and its adjoint (complex conjugate with k --#-k), subject to condition

(2.36) for n - I . Terms from the uniform precession am"tte up to

fourth degree are shown in order to indicate the approximte nature of

the threshold calculations. The threshold is determined by setting the

determinant of the coefficients of the spin wave amlitudes (a8, , a* k)

in (2. r) and its adjoint equal to zero, giving

A+ A 21

(2.38)
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The resonance condition in (2.38),

a2 - Co C2 Ao/2 + ... (2.39)

is seen to depend upon the uniform precession amplitude. If the uniform

precession amplitude is small (the usual practical situation), the RHS2
of (2.39) my be reduced to Co - 2 where u is the spin wave fre-

quency from linear theory. Then the first order threshold is found from

(2.38) to be approximately

(An )_w + 2 (2.40)

subject to the condition

here and hereafter the order of the threshold will be indicated by the

superscript on A .

The higher order thresholds are determined in a similar manner. The

thresholds of even order n - 2,4 are given by

2 22 ( 2 )2 l, .1/n

) mi. 2 (2.41)p cr 1Cn

-24 -



To find the spin wave with the lteat o•, (2.i) mtbe minimized with

respect to kpg subject to the condition (2.36). Each order threshold

must be considered separately in the minimization process, since C as

weli as u is different for each case. In determining thresholds of

odd order higher than the first, it is necessary to take into account

the effect of higher odd harmonic terms in the uniform precession amLittude

upon the modulation of the spin wave frequen2cy ak . The even order

thresholds are unaffected by these odd harmonic terms, however, because

they contribute only off-resonant frequency terms, which are negligible.

The threshold expression for the third order then becomes

-2 

1/2 
1/ 3

p cr I C3 - Ci/21

subject to

The higher odd order thresholds are similarly affected by the correspond-

ing odd harmonic terms in the uniform precession amlitude (2.29). How-

ever, only thresholds through fourth order are being considered here.

F. OPTIMIZATION AND CALMATION OF THE THR MHOLIB

In the optimization of spin wave thresholds it will be assumed as an

approximation that the phenomenoloical damping parameter w/Q is inde-

pendent of k,Q and • . Hence, for each threshold calculation it will

be assumed that Q is a constant.

-25-



1. Mininum Thresholds at Spin Wave Resonance

It is clear from the threshold expressions obtained in the previous

section that the lowest thresholds occur when the condition

S' W (2.43)

is satisfied. This means that the pumping of the instability at w occurs

at the spin wave resonant frequency Dk , i.e., within the spin wave

manifold.

The resonant frequency of the spin wave modes given by ck C/2 may

be expanded with the aid of (2.30) and (2.35) to yield

S. mN. [,x(x, + p) + sin2 Q(x + p cos2 0)11/2 (2.44)

-Recall that

x = x+ d

and

x - H/4tm s

d D k 2/4~Ms

p = HA/ 4 x s

from (2.31). When plotted as a function of k for a given value of x

as shown in Fig. 2.2a, (2.44) describes a continuum of resonant spin wave

frequencies, the spin wave manifold. It may be seen from (2.44) that the

dependence of •k upon 0 is due to the presence of anisotropy. The

- 26 -



Q x/2 0

a'os(,4x(x+1.p)]1 
x12 

/s/

0-

%/22 0

FIG. 2.2--a. Sketch of the spin wave inanifold, showing dispersion
curves in terms of the propagation angles Q and

b. Sketch of the k a 0 intercepts of the spin wave
ma~nifold as a function of worm~lized dc field.

The dashed lines in both figures represent the
frequency conditions (2.36).
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dashed lines indicate the required frequencies for instabilities of various

orders. For the case shown, a resonant instability of order one is forbidden;

and the k values for higher order instabilities are found from the inter-

sections of the dashed lines with the dispersion curves. Equation (2.44)

shows that the position of the anifold shifts with the dc field. This

dependence is shown in, Fig. 2.2b, as a function of the normalized dc field

x , for the k a 0 intercepts of the manifold. In this figure the

abscispa x - x2  represents the normalized field in Fig. 2.2a, where the

second order resonant instability is just on the edge of the forbidden

zone. As Fig. 2.2b shows, the number of resonant instabilities varies

with the dc field. The critical fields at which the various instabilities,
"ticome in" at k = 0 are found from the intersections of the dashed and

solid curves. For the general case of spin waves with k = 0 , these

critical points are found, with the aid of (2.36) and (2.44) to be

2222

n q 2 x'(x + p) + (x + p cos 2) sin 2 , (2.45a)

where the spin wave resonance condition (2.43) has been invoked, and the

symbol

has been defined for convenience. Since the pump frequency is far below

ferromagnetic resonance, then q << 1

Since x' a 0 and p 2 0 , (2.45) requires that

Isin Q cos il <_ nq p-l/'2 (2.45b)

-28-
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which places some restrictions on the permissible values of 9 and A .

The RHS of (2.45) is much less than unity for the parameters to be used.

Hence, either @ is near zero or else 0 is near %/2 . The reason

for this is apparent from Fig. 2.2a, which applies to the case q <<

p >>l .

Assuming a pump frequency of cu2x a 1.32 kWc and the parameter

values for Zn 2 Y at 290 C , given in Appendix A, the maximum allowable

values of x" may be determined from (2.45) by setting o - 0 . The

results for these maximum values of x" are:

for n = 1 x a 0.00250

n =- 2 x 2 ' 0- 00998 (2.4 )

n = 3 x' = 0.0224
3

Sn-4 1 - 0.0396

Recall that

x" x+d

where x = H/4xMs is the normalized internal magnetic field and

d = Dk /4jMs is the normalized exchange field. It is apparent from

Figs. 2.2a and 2.2b that, within the spin wave manifold, x' (and hence

the internal magnetic field) is small because the punp frequency is near

the bottom of the spin wave manifold. For the k = 0 intercepts of the

manifold (shown in Fig. 2.2b) the maximum values of x' a x" given above

become maximum values of x = x . The corresponding values of the

applied (external) magnetic field H0  then become

H - (xn + N11) 4A " (2.46b)
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These fields will be "passed through" during the experimental measurements

of instability thresholds in order to see if any spin wave instability

effects are present (see Chapter VI). Thus, as x is increased (by

increasing the dc magnetic field H0 ) above a certain xn , the nth

oider spin wave instability is forced off resonance. The xn then, cor-thn
responds to the dc field at which the n order spin wave instability

first becomes allowed on resonance. Since these maximum values of x•

are so small, it will be quite permissible later to neglect x and d

in any term containing p , since p > 1

Each threshold will now be considered separately and optimized with

respect to the four parameters c, 1 ,fi , k . The first order threshold

at spin wave resonance (w = wk) in terms of these four parameters is

found from (2.40) to be

(Ap)(l) 2 1i 2.7p)cr -Q (x" + p) cos P sin 2(247)

subject to (2.45) for n = 1 . To minimize (2.47) as it stands would

require 0 = 0 and Q = n/4 . However, the frequency condition (2.45)

precludes this combination of f,Q by specifying that either Q or

x/2 - • is small. Since the denominator of (2.47) is doubly periodic

in Q , only values 0 < @ < v/4 ought to be considered. Moreover,

from (2.45) it is clear that a smaller Q permits a large value of

cos 0 ; or, conversely, a small value of 4/2 - f permits a large value

of sin 20 . Minimization then reduces to consideration of the following

two cases: (1) 9 small, 0 = 0 and (2) 9 = n/4 , 0 near ir/2

The former yields the lowest threshold and is given approximately by

2

-cr 1/2 2 -:(x' + p)] 1 1 2  (2.48)
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It is evident from (2.48) that the actual miniiuim threshold occurs when

x = x + d is smallest, that is, when d s 0 . Therefore, those spin

waves which go unstable mist be those of lowest k * 0 . This tends to

vjolate the original plane wave assumption for large k . The method

is Justified in practice, though, since measured thresholds have been

found to agree with the theory.3

The second order threshold at spin wave resonance is obtained from

(2.41) by proceeding in a similar manner. The result is

(A )(2)
p cr

16q4
=min N

Cs0d+ x-l -11).sin
2 QCos fi(p~ed+l) + (N11+x)(x+d+p/2);+l

Since, by (2.45b), Lin 9 cos • is a very small quantity, then clearly the

minimum threshold occurs for Q = 0 . Inserting Q a 0 into (2.49) gives

()(2) 16 q 212(2..50)
p cr

where x , d terms have been neglected since x + d < 0.01 . For 0 = 0

it is seen from (2. 45a) that d my be large when x << x' . This means
n

that the unstable spin waves may have large k , by contrast with the

first order case. From (2.50) the threshold is independent of k . This

result for the on-resonance second order threshold for spin waves is
compatible with the on-resonance threshold result obtained by Schl*uMnn,

et al..,1 0 for the case of an infinitely thin disk (NII a 0)

- 31 -



The third order threshold at spin wave resonance is found from (2.42)

to be

2 1/3
72q(A )(3) = -in (2.51)

(A Q sin 2@ cos (p + d +

2 )
The denominator has the same form as the first order threshold. Hence,

the minimum occurs at • = 0 , @ small, and d - 0 -- giving, with the

usual assumptions,

(A )(3) ( 36 q 2 1( 
5

p/2 [ _ x (x + p)11/2

The fourth order threshold at spin wave resonance is determineA from

(2.41) to be

1/4

(A )(4) = min ....
cr Q(Nil + x) 1 + (p + d) - sin2 Q + cos 2 )

(2.53)

where second order product terms in d, x, NIj have been neglected.

Employing the same type of reasoning as used for the second order

threshold above, the minimum of (2.53) is found to occur at • = 0 ,

Q =(0 , and d large. The resulting fourth order threshold becomes

approximately

(A (4) (2.54
p cr = (I +. .(.4

x1 + , + P
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2. Minimum Thresholds For Off-Resonance Spin Waves

Recall from the last section that when x' is increased above a

certain x' (by increasing the dc magnetic field), the nth order spin
n

wave instability is forced off resonance. In this case, for a given n

the relationship between the frequency w at which the instability is

being pumped and the resonant spin wave frequency aik is

> =P/~2 .(2.55)

The first order threshold for off-resonance spin waves may be found

from (2.40) by substituting the value for C as was done for the on-

resonance thresholds. The result is

2 [( .
+2 2 )2 + (2)2 ]1/2

(A )•l 1 mrain - ,w +M(-.56)
p cr 2

rN(x" + p) cos f sin 2Q

subject to the parametric frequency condition

W M u,p/2 .

where the off-resonant spin wave condition (2.55) mist be satisfied. The

frequency condition (2.55) places only a lower bound on a) ; and (2.56)

is to be minimized with respect to k,Q, , subject to this side condi-

tion. From (2.44), condition (2.55) will be satisfied for all spin waves

if it is satisfied for the Q = 0 , k a 0 spin waves. Therefore (2.56)

may be minimized independently with respect to k,1 , and • . From

(2.46) the condition on x corresponding to (2.55) is

x > 0.0025

for the first order process and the parameters- used before.
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Given that p >> x' , the only substantial dependence of (2.56)

upon k occurs in the numerator through 0.k in the resonance term.

From Eq. (2.44) or Fig. 2.2a it is apparent that (2.56) is a minimim

for k t 0 . To simplify the calculation, the assumption will now be

made that c is sufficiently far off resonance (below wk) that

(-W2 + 2 ) 2»>(CU..)2 (2.58)

Thus (2.56) may be written approximately as

2 s 2 x
2 [x - 2-+ sin (~ + ,Cos(a9A()=mi ,2 p p. (2.59)

p cr cos • sin 29
off res

The minimum of (2.59) occurs for • - 0 and for Q small, with

@opt (x - q21p)l/2 . (2.60)

Inserting (2.60) into (2°39) yields the follo1.nig minimum threshold ex-

pression for frequencies far off spin wave resonance:

(A )(1) = 2Q = 2(x - q2/p)"/2 (2.61)pcr opt

cff res

The second order threshold off spin wave resonance may be found from

12.41) by substituting the value of C2  , as was done in the case of
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the on-resonance thresholds of second order. The result obtained is

( (2)
pA)~ c[r2 2+~ 2 1 1/2 1/2'

min

Cos2 Q d + x-l - Nil) sin2Q cos21(p+d+l) + (NlI+x)(x+d+p/2)+1 + .

(2.62)

subject to the parametric frequency condition

wbere the offsreaonance spin mve coddition (2.55) mut -be satisfied.

(2.446) the condition on x is now

x > .00998 . (2.,63)

As in the case of the first order process, (2.62) my be minimized inde-

pendently with respect to the parameters k, O, 0 .

The numerator of (2.62) is a mininiA when Q a 0 and k a 0 , since

at these parameter values, wk is a minimum. The denominator (discussed in

the preceeding section) is a maximum at Q - 0 and is insensitive to the

value of k . Therefore, the minimum occurs for Q - 0 and k O 0

Neglecting terms in the denominator which do not contain p , (2.62)

becomes

2/ 1/2

(2 - [ (.) 2 ] (2.64)
pcr (2.24)

off res LP +--
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where

2 2

If the unstable spin wave is far off resonance, Eq. (2.58) applies, and

(2.64) becomen

1/2
2

(A )(2) = X 4q /, (2.65)p cr (+ )/2
which is independent of the spin wave Q . It is interesting that this

result has the same form as (2.61). It differes in the allowed values of

x , which are given by (2.63), rather than by (2.58). Consideration of

off-resonance thresholds for processes of higher order will be shown to

be unnecessary.

3. Spin Wave Q

It has been assumed as an approximation in each of the above mini-

mizations that the phenomenological damping parameter ax/Q is the same

for all spin waves--i.e., the same for all k,1,0 . The relaxation

frequency Ik is related to the phenomenological damping paraseter by

Tlk Z/2Q(2.66)

This parameter is usually defined in terms of the spin wave linevidth I
L'Hk as follows:

y H,ýJ2 . (2.67)!
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Thus from (2.6) and (2.6V an expression for the spin wave Q becomes

Q UV .~k (2.60)

For polycrystalline yttrium iron garnet with aluminum substitutions

(YAlIG) , the spin wave linewidth is found to be proportional to fre-
1l

quency for Q = 0 spin waves. The spin wave linewidth in single crystal

YIG at the higher frequencies is also proportional to frequency; but at

the lower frequencieq, due to splitting processes, it is no lorger ,

SO.12113,14115 Each of the thresholds derived in the previous sections

for Zn2 Y have minima for small k , and small 0 or 9 Q 0-- since

instabilities occurred at frequencies near the bottom of the spin wave

manifold (see Fig. 2.2a). For such spin waves, splitting processes of

relaxation are not possible. Confluence processes, however, are possible

but nbt likely because k f 0 . It is therefore to be expected that the

linewidth of Q a 0 spin waves in single crystal YIG will be proportional

to frequency, even at low frequencies. The spin wave linewi4th of Zn2 Y

at 1.32 kMc is not known, but on the basis of a superficial cou~arison

with YIG , it might be expected that the spin wave linewidth of Z2Y

for 0 0 is also proportional to frequency at low frequencies. If this

is true, then the spin wave Q of (2.6.) will be a constant independent

of frequency.

Before the Q can be determined it is necessary to obtain some

estimate for the spin wave linewidth of ZnY . Dixon, et al.I16

measured a spin wave linewidth of -SHk a 1.24 Oe (for 9 = , o 0

spin waves) in a parallel pump experiment perforned at 17.2 Mc for single

crystal samples of Zn2Y with substituted awnganese. They obtained a

ferrimagnetic resonance linewidth of 3.8 Oe at 9 lMe for -tha.rinimum line-

width case. The ferrimagnetic resonance linewidth of the single crystal

Zn2Y sample used in the experiments of Chapter VI was about 35 Oe at

6.5 kMc. Schlbmann, et al.,1 7 found for YIG that the ratio of the

resonance to the spin wave linewidths remains constant. Assuain this
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relationship holds for Zn 2Y and that M k is proportional to frequency,
the spin wave linewidth at 1.32 kMc is estimated to be

blik 2.44 0e . (2.69)

Assuming as an approximation that the spin wave linewidth is independent

of @ , then (2.69) may be assumed for all spin waves. The spin wave

Q may now be calculated from (2.60), with the following result:

Q = 193 , (2.79)

independent of frequency, and propagation direction. It is also assumed

that Q is independent of k

4. Calculation of Thresholds

From the ferrite properties given by Appendix A and the spin wave Q

given by (2.70), the spin wave thresholds Yjay now be calculated. The

actual parameter values employed are

p = 3.22

q - 0.o898

and

Nij 0.099

is the demagnetizing factor in the plane of the ferrite disk used in

the experiments reported in Chapter VI.

Figure 2.3 shows curves of the spin wave thresholds through fourth

rder derived in this chapter. Thresholds for both the on-iesonance

W w) and off-resonance (wk > w) cases are shown. The even order

resonant thresholds are nearly constant over the permissible range of x
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and it has been shown that the unstable spin waves propagate along the

direction of the dc magnetic field (@-= 0) over this range of x .

The odd order resonant thresholds vary significantly with x due to the

dependence of each threshold upon 0 . At the bottom of the spin wave

manifold, the value of 9 is zero and the value of x is a maximum [see (2.46)].

At. x 0 , 0 is a maximum--with m = 0.05 for n =- andmax

@ = 0.15 for n a 3 . All of the resonant thresholds show discon-max

tinuities at the maximum values of x corresponding to unstable waves

at the edge of the spin wave manifold. Hence, for each order n , the

spin wave instability of order n is no longer allowed on resonance

above a maximum value of x [determined by (2.46)].

For both the even and odd order instabilities, the off-resonance

thresholds exist of x greater than these maximumr values. However, for

values for x slightly less than the critical value xn , the off-resonance

threshold dominates the on-resonance threshold. The reason for this is

that the odd order on-resonance thresholds become infinite at the value of

x corresponding to the edge of the spin wave mpnifold, and the finite

off-resona-ce threshold takes over before this point is reached in each

case. This behavior is shown in Fig. 2.3 for the first order threshold.

•he second order off-resonance threshold is also shown in the figure. The

third and fourth order off-resonance thresholds are similar in shape to the,

plots of the first and second order" thresholds, but have not been shown

because they are considerably higher.

The spin wave thresholds calculated for each order n above, were

determined on the assumption that the instability for a given order n

was the dominant one. However, it is clear from Fig. 2.3 that the

instability with the lowest threshold, regardless of its order, will

dominate the rest. Thus for the spin wave Q = 193 , the first order

threshold is dominant at the lowest values of x . Whcre the off-

resonance first order threshold intersects the second order threshold,

the latter "takes over." The third and fourth order thresholds are never

reached, since the second order off-resonmnce threshold dominates them,

even at the higher values of x . If the spin wave Q is actually

larger than the estimated value of 193, then the thresholds will heve
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a behavior similar to those shown in Fig. 2.3. This is due to the inverse
th

dependence of the thresholds upon the n root of Q ,where n is the

order of the threshold. Hence for Q's larger than 193, the thresholds

of lowest order will be reduced the most. If the spin wave Q is

actually smaller than 193, then the lowest order thresholds will be

increased the, most due to the change in Q . In such a situation it is

possible that the second order off-resorance threshold will intersect the

third order resonarre threshold and the latter will dominate for a small

range of x . It is seen in Fig. 2.3 that this intersection is nearly

possible with a Q of 193.

It is significant that with such a small range of x it is possible

to pass through so many orders of spin wave thresholds. This is possible

only because the pump frequency is so low (1.32 kMc). Another advantage

of having a low pump frequency in an investigation of phonon instabilities

is that spin wave thresholds are high; and it is likely that phonon

thresholds will be observed. An investigation of the level of phonon

thresholds is the subject of the next chapter.

G. SUNMARY

In this chapter the uniform precession and spin wave moe solutions

to the equation of motion of the magnetization were obtained by assuming

transverse pumping of a Zn 2 Y disk with the easy plane li in the plane

of the disk. The pump frequency of the rf magnetic field is assumed to

be far below ferromagnetic resonasce. The motion of the magnetization

in the uniform precession mode is shown to be confined almost exclusively

to the easy plane. Owing to the nonlinearity of the equation of motion

of the magnetization, spin wave modes are coupledsto the uniform mode

and thresholds of spin wave instabilities are determined up to fourth

order. These spin wave instabilities occur at multiples of one-half

the pump frequency. The threshold expression for each order instability

is minimized separately for on-resonance and off-resonance spin waves.

Assuming the relaxation frequency is the same for all spin waves, an

estimate was then obtained for the spin wave Q . Having the spin wave
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Q and the parameters of the ferrite disk, the optimum thresholds were

then calculated as a function of the internal dc mgnetic field of the

ferrite. The results show that the dominant spin wave thresholds are

the first and second order on- and off-resornze spin wave thresholds.

The first order threshold is dominant only for very small internal dc

fields. The third and fourth order thresholds are never reached for the

value of Q assumed.
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CHAPTER III

FIRST ORDE PHONON INSTABILITY THRESHOLDS

A. COUPLING MECHANIS4S FOR PHONON INSTABILITIES

Chapter II showed that spin wave instabilities result from nonlinear

coupling of the uniform mode of the magnetization to spin wave modes

through the free magnetic energy of the ferrite. Similarly, nonlinear

coupling of the uniform mode to elastic wave modes takes place through

the magnetocrystalline energy. These elastic wave modes will then like-

wise experience instabilities when the uniform mode reaches a certain

threshold. These elastic wave or phonon thresholds will be observed

if they are lower than the spin wave thresholds. Some of the reasons

why the phonon thresholds are expected to be lower than spin wave thresh-

olds were given iin Chapter I.

The magnetocrystalline energy referred to above is the free energy

of the crystal which depends upon the magnetization and crystal strain.

This energy is due to the dipolar and pseudo-dipolar interaction and the
dependence of such interaction upon lattice distortion. Since the strain

is always many orders of magnitude less than unity, the megnetocrystalline

energy EK is given accurately by a Taylor expansion with respect to

strain, as follows:

6E () 4-E (ax)j
E E (a) + K c + C-- K ow+C

Kj ij F ij=O i i iJ =4 W

(3.1)

where the strains eij represent distortions of the crystal with respect

to the unmagnetized state and a is the normalized magnetization vector.

Each of the subscripts i, J , k , C , etc., takes on the coordinate
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values x , y , z Since the magnetocrystallinie energy must be invariant

to spatial inversion of the magnetization, an expansion of the coefficiento

of (3.1) must contain only even powers of the magnetization direction

cosines. The development of the anisotropy energy term E in this waya

leads to the anisotropy constants--independent of the crystal strains.

The anisotropy energy for a hexagonal crystal was given by (2.14). The

second term in (3.1) is called the magnetostrictive energy term. The

coefficients of the lowest order terms in ( for this term are called

the magnetoelastic coupling constants. The third term in (3.1) is some-

times referred to as the intrinsic energy term, and the lowest order

coefficients in the expansion of this term are called the magnetoelastic

stiffness constants. 7

Regardless of the magnetic state of the crystal, the elastic energy

E is given by a Taylor expansion with respect to strain, as follows:
e

Ee = Y (c ijA'Uij k + cijktmn •Ej L3 , + "'" +

(3.2)

where CiJkt are the elastic stiffness constants and cijkt. are

the coefficients of the lowest order anharmonic elastic energy tern.

Consider now that the crystal is magnetized due to the application

of a sat-. 7ating dc magnetic field. This causes linear saturation

magnetostriction, and the resulting equilibrium strains which will be

present are determined by the relations

a (E + E) - 0 (3.3)

thereby minimizing the total strain-dependent part of the crystal energy.

These equilibrium (static) strains establish an "operating point" about

which dynamic strain deviations can take place due to applied •dnmic

stresses and elastic wave oscillations. For the following, dynamic
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strains and strain waves are of particular interest, since they are

capable of giving rise to instabilities under certain conditions. ItI
will be useful then to resolve each strain component into two parts:

(0) (a)+ (3.4)
ij ij ij

where )(0 ) represent the static or equilibrium strains determinedwhee ij (. ersn

by (3.3), and the new cij represent the dynamic strains of the magnetized
crystal.

The strain given by (3.4) will now be inserted into the expression

(3.1) for the magnetocrystalline energy. The aniaotropy term is unaf-

fected by the strain. A typical exaple of a magnetostrictive energy

"term would be

where b is a magnetoelastic constant. Since the energy must still
contain only even powers of a , then (O) (C) must also cntain

only even powers of a , besides being very mall., Thus the firat term of

(3.5) contributes only a small higher order correction to the anisotropy

term. The second term of (3.5) has the same form as the original Maneto-

strictive energy term. It is this term which is responsible for what

is called the magnetoelastic effect. Similarly, a typical eample of

an intrinsic energy term would be

dC9C9 c(0) (O)()(a) +(0) (0) +
ma n iji (-Z) ekt,+ ekt, ij j %

(3.6)
where d is the magnetoelastic stiffness constant. For the reaon

given above, the ei (Oc) mut contain only even powers of 1 , besides

being very small. Thus the first term in (3.6) contributes a miL

higher order correction term to the anisotropy energy. The secadd &d



third terms contribute a higher order correction to the magnetostrictive

energy. The last term in (3.6) is the only one which has the form of

the intrinsic energy--and this form is the same as appeared in the original

energy expression (3.1). It is this last term which is responsible for

what is called the intrinsic effect. It is apparent from (3.6) that this

effect does not depend upon strain produced due to the orientation of

the magnetization. From the above discussion it is therefore concluded

that the magnetocrystalline energy given by (3.1) may be accurately used

in its present form to express the energy of the dynamic strains.

The strain (3.4) will next be inserted into the expression (3.2)

for the elastic energy. A typical example of the first term in (3.2)

would be

(C ()O(a)F_(k0) (0) + E(O)) (a) + E

Cij i iJ(( ) (() + (k ) ij ij'kA)

(3.7)
Using the previous argument regarding iJ(), it is seen that the

first term in (3.7) is a higher order correction to the anisotropy

energy. The second and third terms are higher order cont~ibutions to

the magnetostrictive energy. The last term in (3.7) represents the

elastic energy as given in the original expression (3.2). A typical

example of the anharmonic energy term in (3.2) would be

(o),€ (a) + 6) (o)
'CiJ k in iJ ~ k (A ) mn- (-• + j A( (o) Ck mn

+ (0) IE+ j (2)kt f' + eij A6(3.8)

The last term in (3.8), which is an anharmonic term in the dynamic

strains, is neglected. The first and second terms are higher order

corrections to the anisotropy and magnetostrictive energies, respectively.

The third term has the same form as the dynamic intrinsic energy term

in (3.6) and is responsible for what is called the morphic effect.
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Even though the energy of the intrinsic and morphic effects have the
same form, there is a possibility of distinguishing between these two

effects. The energy of the morphic effect [third term in (3.8)], unlike

that of the intrinsic effec .. , depends upon a distortion of the lattice

in response to the direction of the magnetization.

Therefore, if the magnetization is changing direction with time,

it is likely that the inertia. of the crystal will be a factor in de-

termining the magnitude of the morphic effect. It has been suggested

that the morphic effect should probably be the most effective at tens

of megacicles where crystals of a reasonable size exhibit well-defined

elastic resonances. Hence, at microwave frequencies, it is likely that

the morphic effect will be negligible in camparison with the intrinsic

effect.

From the above discussion it has been shown that the magnetocrystalline

energy expression (3.1) and the elastic energy expression (3.2) may be
used in their original form to express the energy contained in the dynamic

strains when a saturating magnetic field is present.

From the energy expressions above it is apparent that the energy
associated with the morphic and intrinsic effects is a factor of the

order of the elastic strain smaller than the energy associated with the
magnetoelastic effect. It is not surprising, then, that experiments in
single crystal nickel show the dependence of the prozpaWatin velocity

of acoustic waves to be well explained on the basis of the aftnetoelastic18
effect alone. 8Even for large bias fields, the intrinsic effect was
negligible in comparison with the magnetoelastic effect. Therefore,

the magnetoelastic effect may reasonably be assimed to be the dminant
mechanism in the investigation of phonon instabilities in ZnY • It

will be found later from the experiments described in Chapter VI that
this assumption appears to be substantiated.

Physically, the magnetoelastic effect described above causes a

reactive loading and damping of the elastic waves by motion of the mag-

netization. 1 9  It is further to be shown in this chapter that, when the

magnetization is pumped by the application of a sufficiently large rf

magnetic field (in the presence of a dc imgnetic field), these elastic

waves exhibit instabilities when the uniforn precession aaltude

exceeds a threshold value.
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B. ELASTIC AND MAGNETOEKASTIC ENERGY CONTRIBUTIONS TO EQUATIONS OF MOTION

In Cha.pter II it was indicated why Zn 2 Y may be be regarded as

a uniaxial crystal to a first approximation. It has been shown from

symmetry arguments that the elastic energy for a uniaxial crystal is

given by 7 ' 2 0

i g2 ) ( 2
E + 2C (C + C C r+

e 2 Czzzzzz t 1 t T)xx yy ; I Xx yy NI!c]

+2C 6 (1 +c ) + 4C (2 + 2  (.•.9)~tjzZ ZZ xx yy tz¶nz xz yz'

where the subscripts of the elastic constants refer to the transformed

variables t = x + iy , Tj = x - iy , z .

Similarly, it has been shown that the magnetoelastic energy for a

uniaxial crystal is given by 7

Em = B e IU2+ B (E + 6 (C? + C?

+ B[( - ? " ) + 4E a ] + B [ a +E a aS y xy. 4xz x yz y z

(3.1o)

where the transformed variable subscripts have been suppressed to simplify

the expression and to enable it to be written in an analogous form to (3.9).

Since the magnetoelastic energy contains both strain and direction

cosines of the magnetization, it will contribute both to the equation

of motion of the magnetization (2.6) as well as to the elastic equation

of motion. It is through the magnetoelastic term that energy is

transferred from spin waves to elastic waves.
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. 1. Spin Wave Equations

The contribution of the magnetoelastic energy to the equations of

motion (2.6), and ultimately to (2.23), is determined by inserting (A.10)

into the relation (2.7) to give the effective magnetic field, and then

inserting the latter into (2.6). The following results are obtained:

(. tL [2B .aave e2B Cu +o ex m 4 ly zzz 2 yz xx yy

+ 2B ~- a - 4B-) e (3-11a)

(a) =2 + [-B a +2B a a C Eymc -4 1 ? xzzz 42xy xx y

+&y) 2B,xaazce- yy + 2B~ CYt'~x (3.l+bc

+ 2Baa( -40 ac a C

(&) = .... 4Lat~ -za + 4B( a)
zm 14 s 3X-Yyy xx 3(cx ?CV

2. Elastic Wave Equations

The fundamental elastic wave equation of motion is given by

2
P R (l +a (3.i12)0 i 2 ox w & i
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where i , j = 1 , 2 , 3 ; Ri is the elastic displacement in the di-

rection of the Cartesian coordinate x ; p is the density; and E

is the free energy of the crystal. The factor 2 + ij) is needed

because symmetrical physical strain terms in the free energy have been

combined. The strains combined in this way are referred to here as

pseudo-physical strains since the transformation properties of the physical

strain tensor are still retained; no distinction is made between equivalent

strain components. Each component of the strain written in tensor form

is given by

--- +. (5.15)
FEij I a(-3iJ 2 6x X.

The only effective contributions to the free energy E in (3.12) will

be due to elastic and magnetoelastic energies, since other terms of the

free energy are independent of the strain. The expanded form of the

elastic equations of motion are obtained by the substitution of (5-9)

and (3.10) into (3.12) with the subsequent utilization of (3.13). The

result is written in-mbolically as the sum of the elastic and magneto-

elastic contributions

PoRi = (PoRi)e + (PORi) (3.14a)

with the elastic terms given by

2 2 R 2 R

(P 2(2C~ + C ~~ x + 2C~ ~L+ 2C X

2R

+ 4C + 2(CR + C (3.14b)
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and

2 R 2 R 2 R

(PoRe R 2(2Cn + c zx

+ 4cg 2 + 2(c ÷t cIg +) ---jz2 Z(3 1
t TI t TI yc)x TYzz z z yz

2 2R(po 2(C + Czx +

(zetWZ tz 6z Z+c 6 yaz

(a 32R ,R (3 -1d)
+ 2C + + z

Ct +~ j 6x 2 ? z 2zzzz - 2

and the magnetoelastic terms by

(PoR)m = [B2 (Q~ + ) + B ( - )]

+1 6+ F- (4B~cr ax) + i6( 31e

+ ( ) (4 (B=j•z)

+ 6 ( C92(3.i14g)

Since (3.i4) is invariant under a transformation to any rotated axes x',y' ,

the magnetoelastic behavior is isotropic in the x-y plane. Outside

the easy plane the behavior is anisotropic.
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As in the case of the spin wave modes, the assumption of periodic I
boundary conditions is valid for acoustic wave propagation because [
2y(/k << sample dimensions. Hence a plane wave solution for the dis-

placement R of (3.8) is in order and is given by the Fourier series

expansion

ikr
R R e (3.15)

k

The displacement R contains the time dependence of the wave, and

has the form

RiWt 0 -icbt
R r e +rk e

which in general may be complex, where the quantity W is the frequency

of the elastic waves and the vectors r , rk are independent of time.

Since the elastic displacement R must be real, then the elastic wave

amplitudes are related by

_ -R * (3.17a)

and therefore

= (3.17b) I

In general, R will contain pairs of oppositely directed traveling waves,

with propagation vectors k and - k . As in the spin wave case, the

uniform precession will be found to couple pairs of elastic waves rk

and r* , and this coupling will lead to exponential growth of pairs I
of elastic waves. For each pair it will be found that

IrkI = IrkI , (3.18) 1
so that the unstable modes are standing waves.
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3. Solutions to the Elastic Wave Equation

An examination of (3.14) reveals that the simplest solutions of

the form of a single term in (3.15) occur when the propagation vector

k is along one of the crystal axes x , y or z . Since the magnetoelastic

equations are isotropic in the x-y or easy plane, it may be arbitrarily

assumed that the propagation vector k is along the x-axis. The obvious

independent solutions to (3.14) for elastic waves propagating in the

x-y plane are therefore of the form

S(t , x )

R X(t, x), (3.19a)
x

and

R (t, X)

For elastic waves propagating along the z-axis the obvious independent

solutions to (3.14) have the form

R (t, z)

R y(t, z) (3.19b)

and

R (t, z)

Because of the isotropy of the xy plane the first two are equivalent,

and the second solution will not be considered further. The solution

to (3.14) with wave proppgation outside of the easy plane and not along

the z-axis is much more complicated than are the above solutions. Such21
waves are called quasi-longitudinal and quasi-transverse. 2 The nse

quasi is applied to these waves because, in general, the displacement

vector k is neither parallel nor normal to the propation vector k
To avoid unnecessary ccmplications, the simple solutions to (3.I1) will
first be considered and phonon instability thresholds will be calculated
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from these. It might be expected, due to the large anisotropy field,

that parametric excitation of elastic waves propagating or polarized

outside of the easy plane will je greatly suppressed. If the thresholds

of such waves having the simple forms given above are, indeed, substantially

higher than the thresholds of waves propagating and polarized in the

easy plane, then it will be assumed that the thresholds of the quasi-

longitudinal and quasi-transverse waves mentioned above are also sub-

stantially higher.

C. EQUATIONS OF MOTION IN A ROTATED COORDINATE SYSTEM

The direction of propagation of acoustic waves propa6ating in the

easy plane will not necessarily be in the same direction as the applied

dc magnetic field. Therefore it becomes necessary to consider acoustic

wave propagation at an arbitrary angle with respect to the applied dc

field. Hence, rotation of the x , y axes through an arbitrary constant.angle

*0 relative to the field is required (see Fig. 3.1). Any vector

compcnent Ai in the original system is transformed to the rotateu.
system A' . Thus, the transfornw'tioai 'ecome

Ax Ax cos0 + Ay sin* 0

A = -A sin*0+ Ay cos #0

A ,= A , (3.20)z Z

where Ai can stand for a CX ki or, in particular, any component of

the right hand side of the equation of motion for the magnetization (2.6)

(see Fig. 3.1). In making the transformation it is desirable to retain

the identity, so to speak, of the displacement components Ri in the

fixed system, so it will be possible to identify the simple modes. This

will be done explicitly in the individual cases. Where there are only

terms in a , as in the spin wave equations of motion before the
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FIG. 3.1--Orientation of rotated coordinate syste tith respect to
fixed system, shoving applied m4pnetic fields in the rotated
system.



magnetoelastic effect was considered, every term in the new system has

the same form as in the old and may simply be primed. The magnetoelastic

terms, containing components of R as well as a , are transformed to

the rotated system by (3.20). Then a is referred to the rotated

system by using the inverse of (3.20). The displacement R , on the

other hand, is left in the fixed system in order to retain the identity

of the elastic wave. Adding the magnetoelastic terms then yields

S= bOC•, + bL + (Ayz)m (3.2lb)

where the primes on the coefficients mean that uniform precession am-

plitudes contained therein are also primed.

D. DERIVATION OF FIRST ORDER THRESHOLDS

Only the first order pumping of phonon instabilities will be of

interest, since the first order thresholds are lowest. Taking only

first order terms in a Cy and neglecting az, << a as before,

the coefficient-s given in (3.21) become

a 0  a

-- = N
b 0 1

- b10 + b 1J. Cc (3.22)
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where

kk

kok,
, Z I

k&10 y ke

k

k

b•. -0 + d ++
k Ay

Each type of elastic wave propagation will now be considered in the

order shown in (3.19). For waves propagating in the x-y plane, it is

assumed that k'r - kx in (3.15). The first such wave R (t,x) is for

a wave polarized, or having particle displacement, in the x-y or eWy

plane. This case will be treated in detail and will serve as a basis

for the other cases. The relevant components of (3.iI), which contain

only terms in e , becoae

La a a

yE aXK Z 2y

4ZBE Y (C C? (3.23)

Here the strain is related to the elastic diplacmt t by

Lk "x (3.24i)

k
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which follows from (3.13) and (3.15). Each component (&i)m of (3.23)

must be t0ransformed into the rotated coordinate system in accordance

with (3.20), and each direction cosine a i must be transformed by the

inverse of (3.20). Since it is desired to retain the identity of the

elastic mode, thp components of the displacement ' are referred to

the fixed coordinate system. Recalling from (2.8) that each direction

cosine ai (and hence aiý has uniform precession and spin wave com-

ponents, and retaining the spatially-dependent terms, Ck , only to

first order gives

M (cos 2*o0 - 2a , sin 2*o) k Rk e • (3.25)
S

Substitution of (3.25) into (3.21) and elimination of Ukz" yields the

following equation:

+ k = K Rk (3.26a)

where
2 2 2

W i (x + p) (x + sin o + sin 2 a (3.26b)

K = 2i- -2 ( x + p) (cos 2*( -2 sin 2*0 . (3.226c)

The frequency a) is simply the resonant spin wave frequency [see also

(2.44)], and KMP is the coupling coefficient between the spin waves

and the elastic waves arising from the magnetoelastic coupling. It has

been assumed in deriving (3.26) that the magnitude and direction of the

propagation vector k is the same for elastic waves as for spin waves.

This is reasonable since maximum mutual coupling between the spin

and elastic waves requires the magnitude and direction of k to be the

same.
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The elastic wave equation for the case under cousideration is the

one for which i - y in (3.12). Utilizing the transformtion (3.13)

for the direction cosines and retainin spatially dependent terms only

to first order, the magnetoelastic contribution (3.14f ) beccoes

(PCR)m = 2iB (cos 2*C) - 2a Cy, sin 2* 0 ) ýk Qý, e"O . (3.27)
k

Adding (3.27) to the strictly elastic term (3.14,c) gives the equation

2

RW P ,1W 'M "in ~ %Y (3-20)

where
2

2 2C k2W E.LUL (3.28b)
pPO

( (cos2 r• 2a sin 2) (3o28c)pm PO

where again the spin wave and phonon k's must be equal.

The equations of motion for the cobined magnetic-elaatic system

are (3.26) and (3.28). Losses are introduced phenomenological into

these equations, with the result

(X,+ 2i~Y + 2 1 Rr' (3.29a)

Rky+ 2 Yý R + M' R - X (3-29b)

where the relaxatiozL frequencies 'Q , ar/2 , a~~ a 1/2%L we

defined in term of the respective resomace frequencel and Q fhtetrs.
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A physical interpretation of (3.29) is found by assuming zero

pumping field (i.e., a oy0). First insert (2.9) primed and (3.16) into

(3.29). A nontrivial solution exists only when the secular determinant

is se-L equal to zero. If the frequency is assumed to be complex,

o-+ W + iij , (3.30)

the solution may be expressed as

2 22 2
(W 7 )(W- ) C K K (3.31a)

pm pm MP

2 2 2

T1 2 2 ,D (53-3b)
CD + (D - 2U)m p

where it has been assumed that n << a . Note the symmetry of the

solutions with respect to w• , w . If the roots of (3.31a) are
m p

plotted as a function of k , as in Fig. 3.2, the usual dispersion curve

is obtained. The interaction is greatest at the cross-over frequency,

where w = a) " In the system considered here, however, it will be
p m

required that w << w Under these conditions, (3.31) can be ap-

proximated as

(D 0 (3.32a)

K X
T I rý + (3.32b)

InI

This applies to the lower part of the lower branch in Fig. 3.2, where

the mode is substantially an elastic wave. The phonon-like nature of

the resonance (3.32a) is denoted by the subscript p on w " Equation

(3.32a) indicates the dependence of the phonon frequency Up 0 upon the
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spin wave frequency wm , as well as upon the spin wave-phonon coupling

parameters K p, PK " For typical values of the parameters it is found

that K K . Then, since w2 p , the frequency p is

nearly equal to the unperturbed phonon frequency w . Also, the re-P
laxation frequency q is nearly equal to the phonon value 7p , mnd

is relatively insensitive to the value of w .

Equation (3.31), and hence (3.32), were derived under the assumption

of zero pumping field (i.e., aOy, - 0) . In determining the phonon in-

stability threshold, the modulation of w and 11 through the time-

varyiig quantity aamust be considered. The threshold iz determined

most simply by obtaining the differential equation for Ry alone. First,

writing (3.29a) in operator form results in

22

where D symbolizes the partial time derivative operator. Assuming

operation far below the spin wave manifold, the first term in (3.33)
2

may be neglected by comparison with Wm , and •i,, may be expressed as

-k .. (+ M D) R (3.34)

Expandipg the operator expression and taking only the first two terms

(assuming 2 ýM2m = 1/wmQm << 1) , and substituting (3.34) into (3.29)

gives the result

0#

+ 2- + d R 0(3.35)

where Rk has the form (3.16) and the values of il and wp are of

the same form as (3.32) for the case a = 0 . However, in the derivation

of (3.35) wm , K and K are functions of the pump or uniform precession

amplitude ay "
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It follows that the phonon frequency will be modulated at the pump

frequency, and to first order in aOY , will give

,2 2
3 a) (1L + G} (336

p POpO

where from (2.29), C , =A cos ut to the first approximation. The

modulat~on parameter G is given by

2o 1
1 C) M 1 1 K W(K K)

G_- 0 a - - • (3.37)

PO~ Oy p0 a C M-

The damping parameter Y1 will also be modulated by the pump amplitude

aOy" through the dependence of T1 upon a) and the coupling

coefficients. However, i is nearly equal to the phonon dwmping parameter

qP , as was previously discussed, and if the phonon % is fairly

large, then << a) Therefore, the effect of modulation of the

damping parameter 1 upon the instability threshold will be negligible,

as can be seen by compal'ng the contributions of the second and third

terms in (3.35) in the following procedure.

Substituting (3.16) into (3.35), and assuming the frequency condition

WD a mp2 (.

for a first order instability yields the equation

2 i ( 2GA 2 *
+ +P W r_.k n 0 (3.39)

and its adjoint (cpmplex conjugate with k - k) , where nonresomnt

frequency terms have been neglected. (1) Since a nontrivial solution to

(1 Chapter IV gives a more complete treatment of the solutio to

(3.35), including operation above thresbold where the solutio is unstable.
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(3.38) exists only when the secular determinant is equated to zero,

then the minimum pumping threshold becomes

() =m - [2 2 2 ~2 (w 2] 1/2(A~r rmin -- (D + W0)2 +

p cr ý:27 L'PO"+Kj . (3.4o)•;o ( .•o

It is appa, -it from (3.40) that the minimum threshold will obtain when

the resonance condition

W = (3.41)

is satisfied. Since the second term in (3.32a) is small, co is given
PPpp

resonance then becomes

(A)cr = mnm (3.42)

subject, of course, to (3.38) and (3.41). Conditions (3.38) and (3.41)

determine the value of the optimum propagation constant k at which

the minimum threshold occurs. The threshold (3.42) must then be further

minimized relative to the angle 0 which appears as a variable in the

modulation parameter G . For the spin wave threshold calculations, a

similar condition to (3.41) included a dependence upon the direction of

propagation of the waves, and the value of k was not specified by

the frequency condition alone. However, in the phonon case k is de-

termined by (3.41). As a result, the normalized exchange parameter d

is a constant.

Returning to the special case R (t,x) by inserting parametersy

given in (3.26) and (3.28) into (3.37) and finally into (3.42), the

- 64-



threshold of instability is found to be

(4,xM )2 c (x, + sin,2  1
(A ) " - c• •os 2* " (3"43)

2x SBý sin 40 4+o# i

The coordinate subscripts of A here, as well as hereafter, refer to
P

the direction of polarization and propagation, respectively, of the un-

stable elastic waves. It is noteworthy that the second term in the de-
nominator of (3.43) is the most significant in lowering the threshold,

because x' is much less than unity and the angle #0 is of the order

of several degrees (to be shown in the next section)--aLso very small.
This term comes from the modulation of the spin wave node frequency
W of (3.26), as can be shown from (3.37). The first term in the de-m
nominator of (3.43) is not completely ignorable, however, and comes

from modulation of the coupling between the spin wave and acoustic

wave modes.
The procedure for determining the pumping threshold A for the

remaining types of elastic waves in (3•19) is basically the same as

described above for the R (tx) case. The frequency of the spin wave

mode c is the same for all cases and is given by (3.26b). The

velocity of propagation ( /k) of the elastic wave, however, depends
p

upon the mode and direction of propagation. The amsnetoelastic coupling

parameters K , K also depend upon the mode and direction of propa-MP pm
gation of the elastic wave, and hence are different for each case

considered.

The pump threshold angle for longitudinal waves R (tx) propa-
gating in the x-y plane iF

(4f+ (2C + )(X+ in2 *0)

2 sin3-sn4 04 2 2*
( .)(+ sini * 0 ) Cos 2*)0 }

2•2

(3.44)
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In this case, modulation of the spin wave mode frequency has less effect

than does the coupling parameter modulation. The reason is that the

magnitude of the magnetoelastic coupling is weaker (for small angles)

for longitudinal elastic waves than it is for transverse elastic waves.

It will be found that for the first two cases the lowest threshold occurs

for elastic waves propagating nearly along the applied dc magnetic field

(i.e., *, will be small).

The remaining case for waves propagating in the easy plane is

Rz(t,x) , which represents a transverse wave polarized (i.e., with

particle displacement) in the z-direction. The result for the pump

threshold angle is

(A ) - 4c I (4cM )2 (x, + p) (3.45)
S% B 2sin 2*0

Here, the weak magnetoelastic coupling as well as the influence of the

anisotropy "magnetic" field greatly increases the threshold. There is

only one term in the denominator of (3.43), because the modulation ef-

fects of the coupling parameters K , K and the spin wave frequency

(0 upon wp of (3.32a) combine algebraically into a single term.

Now consider the two cases of elastic waves propagating along the
c- or z-axis. First take Rx(t,z) , which is a transverse wave polarized

in the easy plane. The threshold pumping angle is given by

(A ) 4cEc (4iMs) 2 (1 + x" + p) (3.46)~XZ 2
i % B2 sin 2*0

This result is slightly larger than (3.43) due to the dependence of the

spin wave frequency upon direction of propagation. For propagation of

spin waves normal to the applied dc magnetic field, the induced dipolar

demagnetizing field is maximum--and hence the spin wave frequency is

maximum and constant. Therefore, there is only one term in the denominator
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of (3.44) because only the coupling parameters contribute to the modu-

lation of O " For the thresholds (Ap )y and (A )x , however,

the modulation of w was due to variations in w as well as in the
p0 m

coupling parameters.

The last case is for Rz(t,z) , a longitudinal elastic wave propa-

gating along the c-axis. The threshold angle for this case is

p zz

Actually this result obtains only insofar as aOz is neglected in cc=-

parison with unity--a condition well satisfied, since ao. << lOy due

to the inherent ellipticity of the uniform precession mode. Elastic waves

of this type cannot be pumped unless there is soue deviation of the uni-

form motion of the magnetization permitted in the direction of the par-

ticle displacement. And of course if such deviation is neglected, then

the threshold becomes infinite.

E. OPTIMIZATION AND CALCULATION OF PHONON INSTABILITY HEOLDS

1. Minimization of Thresholds

Each pump threshold angle given by relations (3.41) through (3.44)

for the various cases is a function of *0 , the angle between the

x-axis and the applied dc magnetic field. To determine the ainlJmm

threshold angle it is necessary to optimize the pumping threshold A
P

with respect to *0 , subject to the condition (3 .41) which determines

the value of k (and hence d). The optimum propagation angle (*O)opt

is found for each kind of instability, and the corresponding optimum

threshold angles (A )cr are evaluated. By direct canpa&ison, the mode

having the lowest threshold is then found.

Starting with the simplest case, R z(tx), it is apparent from in-

spection that (*0)opt = x/4 and that the minimum pimping threshold

angle is therefore

(A 4C -67(40) 2 (x- + p)

cr4
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The minimum threshold for the case R (t,z) has a similar form and is

given by

4C E TZ( )2 (1 `+P
ý(A ) - IZ1 5 (3 +Zi49')

Optimization for the R x(t,x) and R y(t,x) cases is not quite so obvious,

but the optimum angle may be obtained by following the procedure given

in the first paragraph of this section. A rough plot of (3.41) and (3.42)

as a function of *0 revels that this optimum occurs for small angles.

Using the small angle approximations for the trigonometric functions

in (3.43) and (3.44), differentiation shows the optimum angle to be given

to first, order by

(,OUopt (4)1/2 (3.50)

where it has been assumed that x' << 1 Inserting (3.50) into the

small angle (*o << 1) approximations to (3.43) and (3.44) yields the

following minimum pump thresholds:

(C + 2C )Q4xM 2
(A x) en U T E l1/2 (3.51)

cX .r 2-~
cr B

2C (4 ms )2 x 3/2

(AP) = CII S .(3.52)

YX3~ 2 B (1 +4.67 x)

Note that these two minimum thresholds are the only ones which depend

significantly upon the parameter x •
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2. Comparison of Different Phonon Thresholds

A comparison of the above phonon thresholds will now be made.

Knowing p = 3.24 for Za2Y , and x' << 1 , it is apparent fron (3.48)

and (3.49) that (Ap)zx < (AP)x Asiin the factCor]? is

approximately the same for each threshold, and that x' << , the

following approximate ratios between the other thresholds are obtained:

c5)(Ac) (A c)
(A : ) : (tx". (3.53)

cr cr cr

From (3.53) it is seen that the highest threshold occurs for R (tx)

elastic waves. The lowest threshold occurs for R (tx), which represents

transverse waves propagating and polarized in the easy plane. An was

suspected initially, thresholds are substantially higher for elastic

waves propagating or polarized outside of the easy plane. Bence the

thresholds for the more complex quasi-transverse and quasi-lonitudinal

elastic waves will not be considered.

3. Calculations for the Lowest Pumping Thresholds

The magnetoelastic constant, the elastic constant, and the phon

Q of Zn2 Y are not known. However, reasonable eatiustas can be made.

Perhaps the best estimate can be made for the elastic constants,

since they do not change so mucli from one material to another. The

elastic energy expressed in terms of engineering strains, rather than

in terms of the pseudo-physical strains employed above. is given by

6

E c e e, (31540
i 2~ f 1

where the ci 'a are the elastic constants, and the strains e
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22
are related to the tensor strains by•

e L = C for i = 1, 2, 3

e% = 2f 12  - 2r21

(3 .54iib)

S= 
2e13 = 2E31

e6  = 2eL2 = 262 1

Expanding (3.54a), substituting the tensor strains given by (3.54b),

and cmparing the resulting elastic energy expression in terms of the

cij a with (3.9) gives the following relations:

zzzz '33tTZ 2 13

C 1C int 61 12 t r d44(3.55)

-t ?m 11  12)

The elastic constant C will be estimatid by taking the value of
S12"•Tin

C11 - C1 = 1.37 X 10 erg/cm3 for Zn , which has a slightly higher12 22
density than Zn2 Y and is in the same crystal class. From (3.-5)

the elastic constant C Wi may then be found to be

C 3.43 x 1o erg/cm3  . (3.56)

The velocity of transverse phonons propagating in the easy plane may

now be found from (3.56) and (3.28b). The result is given by

(V) = /2 f 3. x lo5 Cm/Sec , (3.57)
p yX P

where the x-ray density given in Appendix A has been used for p0
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The magnetoelastic constant of the diagonal strain ccaponents for
Cubc ryta YG s x 6 5 23

cubic crystal YIG is b X 10 erg/cm . The magnetoelastic

constants for hexagonal Zn2 Y will be assamed to be the same order of

magnitude as this, giving the result

Bý x13. rg/C5  
. (3.58)

The acoustic Q of znY is of the order of 16 at 1 .

Assuming the acoustic Q vwries inversely as the frequency, an acoustic

Q at a)p/ a 0.66 k*& is estimated to be

Sft 5 00 . (~9

Inserting (3.59), (3.58) and (3.56) into (3.52), the following

numerical expression for the lowest phonon threshold is obtained

(A )y a. 7-73/2 (5.6o)
cr 1 + 4 .67 x'
cr

This result is plotted in Fig. 3.3. Figuur 3.3 also SIa" tkW W1-tWti1bip

of hcr to (Ap)cr , which is the same here &a in Chapter II.

Using the estimated constants above, the assuption made that

W 0 = w in Equation (3.41) is found to be valid for x' > 0.001.
P p

However, the theory breaks down for another real even before ULi

value of x' is reached. In deriving the above phonon thresholds,
2 2
w <<w c was assumed. At the lower values of x , W. approaches
p MI

the phonon frequency (A , and this assumption no longer holds. In
p

particular, when w = 3 a) the actual phonon threshold is about
M p

20% lower than the value given by (3.60). At 2w the actual
2 t

threshold is about 44 lower. Below the dc magnetic field corresponding

to this point it is suggested (below) that spin wave thresholds dcinate

the phonon threshold.
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F. COMPARISON OF THEORETICAL THRESHDLDS FOR PHONON AND SPIN WAVE

INSTABILITIES

The minimum phonon threshold shown in Fig. 3.3 is a function of

x " ((H + Dk~y/x:M I . The spin wave thresholds, howevr, shown in

Fig. 2.5 are functions of x(- H/i4*Ms), rather than x . Consequently,

before a comparison of the phonon and spin wave thresholds can be muLde

it is necessary to know the value of the normalized exchange parameter

d=DJ?/IwMs relating x and x'(by x' - x+ d). The value of d will

be found experimentally as described in Chapter VI. AssuminZ for the

useful range of x that d is negligible (i.e., x * x'), the phonon

threshold of Fig. 3.3 may then be compared directly with the spin wave

thresholds of Fig. 2.3. It is seen from this comparison that the mag-

nitude of the second order spin wave threshold is coparable with the

magnitude of the phonon threshold at values of x below about 2 .

where w = 2a = . . On the other band, if d is not negligible
mp

it is possible for a field region to exist where the second order spin

wave threshold will dominate the phonon threshold. The reason for this

is that the effect of a finite (positive) value of d is to increase

the phonon threshold for a given field value x . Ibis effect appears

to have been observed, and it will be discussed in Chapter VI.

G. SUMMARY

Various mechanisms which can couple the uniform precession mode

of the magnetization to elastic waves are discussed; namely, the magneto-

elastic effect, the intrinsic effect, and the morphic effect. In the

calculations of this chapter it if assumed that the magnetoelastic

effect is the dominant mechanism in the pumping of elastic waves by

the uniform precession. The spin wave equations of motion of Chapter II

were modified to include contributions from the mgnetoelatic energy

which couples energy from the uniform precession to elastic waves.
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The elastic wave equations follow from the elastic energy, together with

the magnetoelastic energy expression. The simple solutions to the elastic

wave equations are the ones considered in the elastic wave instability

calculations.

In order to take into account propagation of elastic waves in the

easy plane at an arbitrary angle with respect to the direction of the

dc magnetic field, the equations of motion are expressed in terms of

a rotated coordinate system. The elastic displacement components were

left in the fixed coordinate system in order to maintain the identity

of the simple elastic modes. For each simple mode case the elastic

and spin wave equations were combined, and a Matthieu type of equation

follows. For each case the first order elastic wave (or phonon)

threshold was determined.

The lowest threshold was found to exist for transverse waves pro-

pagating and polar 4 zed in the easy plane of the ferrite. After making

estimations of the elastic constant, the magnetoelastic constant, and

the phonon Q , and knowing values for the ferrite parameters, threshold

values were calculated as a function of the effective internal dc

magnetic field (i.e., internal plus exchange fields). The threshold

was found to increase more rapidly than linearly with increasing internal

field. Assuming the exchange contribution to the effective internal

field is small, a comparison of the lowest phonon threshold was made

with the spin wave thresholds of Chapter II. From this comparison it

was expected that the phonon threshold would dominate the spin wave

thresholds at internal fields greater than that corresponding to the point

where the second order off-resonanz spin wave threshold begins. Below

this point the phonon and spin wave thresholds were expected to be

comparable.
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CHAPTER IV

THEORETICAL POWER ABSORCPTI( BY PHOO IRSTAKflTIS

A. DIVISION OF POAIR

Suppo3e microwave (rf) power Pi is incident upon an electromagnetic

resonant system (dielectric resonator) which contains a ferrite. Of this

incident pump power Pi a certain portion Pa is absorbed by the reso-

nant system. This absorbed power sustains the rf magnetic field in the

dielectric resonator by overcoming losses in the dielectric, the ferrite,

and in the waveguide walls. For a transverse pumping experiment, the

ferrite loss comprises mainly the loss associated with damping of the

magnetic precession. This loss my be due to two-mgnon pit scattering,25
rapidly-relaxing impurity or Kasuya-LeCraw confluence processes.

As the rf power level is increased, additional ferrite loss will

occur due to spin wave or elastic wave instabilities. In such a case

a transient or irregularity can be observed on the reflected pump pulse

when the absorbed power (or rf magnetic field amplitude) has reached a

critical level. In Chapter II it was shown that spin wave instabilities

might occur when the pump frequency is within the spin wave manifold,

and phonon instabilities should occur when the pump frequency is below

the spin wave manifold. This chapter is concerned with the prediction

of the transient loss due to the growth of phonon instabilities.

B. GROWTH OF PHECON INSTABILITIES FROK THIAL LIM

In Chapter III it was shown that elastic waves are parametrically

pumped by the uniform precession mode. When the portion of the pump

power going into the growing elastic waves becomes equal to the power

being lost through the elastic wave damping, then the elastic wave or
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phbnon threshold is reached. This threshold was calculated in Chapter III.

It is clear that below the phonon threshold elastic wave growth will be

damped out. Above the phonon threshold, however, there is a net power

gotng into the elastic waves and the latter become unstable. Finally,

at a certain level above threshold, the power going into the growing

elastic waves will reach a sufficiently high level that it can be observed

as a transient or irregularity in the reflected pump pulse waveform.

This occurs at the critical power level referred to in Section A above.

1. Solution to the Elastic Wave Equation

It was found in Chapter III that elastic waves having the lowest

threshold are transverse waves propagating and polarized in the easy

plane and at a frequency of one half the pump frequency. The basic

differential equation governing the motion of these elastic waves was

given by (3.35). For pumping angles at or below the phonon threshold,

the solution had the form given by (3.16) and (3.1Tb). In order to take

into account the growth of unstable elastic waves above threshold, (3.16)

is modified to include the exponential growth parameters as follows:.

Rky= ry e(ia~s)t + r * e(-ia+s)t (4.1)

This expression for the elastic displacement will be inserted into the

elastic wave equation (3.35) to determine the growth parameters for

operation above threshpld; but first (3.35) will be modified to include

the time dependence of the rf magnetic field amplitude.

In deriving the phonon thresholds of Chapter III it was assumed that

the pump angle Ap was constant. This implies the power pulse incident

upon the ferrite system had the ideal pulse characteristics of perfect

flatness, zero rise apd fall times, and no frequency modulation. Such

an ideal pulse, sketched in Fig. 4 .1a, could not be ob;'ai.ed in practice

chiefly because the required pulse length was of the order of 100 psec.

In general, it is difficult to obtain a flat pulse of this length with

existing techniques, particularly at the frequepey (1.32 Mc) and power
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FIG. 4.1--Sketch of tim dependene of the incident pump pover for the

ideal (a) and actual (b) pulses.

h h
h

h=

T- t T t
a b

FIG. 4.2--Sketch of time depndence of the rf magntic iJA apUitude
for the ideal (a) and actual (b) pulse cases.

h h

apQ 7h

0 't 0

FIG. 4.3--Sketch of time deveemaac of the rf magnetic filsA u'ltude
when the apparent thrieshold is reached for tM i a) aMn
actual (b) pulse cases. The apparent critical field h and
build-up time t indicate the initial appearsace of so pemr
absorption due traoth of phaon instabilities.
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level (- 1OW peak) desired. (Refer to Chapter V for details on the

technique employed to obtain the 100 ýisec pulse; refer to Chapter VI

for photographs of the actual power pulse waveforms used in the threshold

experiments.) The incident power for the actual pulse is sketched in

Fig. 4.1b in terms of the approximate representation

P a Pim e-t/T (4.2)

where t = 0 specifies the time when the pulse has "settled down" to a

frequency within the bandwidth of the resonant system; Pim is the

incident power at t = 0 ; and T is the time constant during the

useful length of the pulse, which exibludes the frequency modulation

at the end of the pulse. Since the reflected power level P isr

related to the incident power PI by

Pr = Ir 2 PI

where r is the reflection coefficient, then the absorbed power P isa

given by

P a (l- Ir 12) pi

Chapter V shoa3 that the resonator magnetic field amplitude h is related

to the absorbed power P as follows:a

h a pl/2
a

- 78-



Using the above relations between h , Pa , r and Pi , then, the time
dependence of the field amplitude is found with the aid of (4.2) to be

h - h •"t/2T P (4.3)

where h is the initial nxium anetic field amlitude corr•apconding

to Piz , and r has been assumed to be constant during the pulse.

The ideal and actual field amlitude pulse shapes reaching the ferrite

sample are sketched in Figs. 4.2a, b. The actual pulse appro~ches the

ideal pulse in flatness as the tim constant 2T becomes i iflte. The

actual pulse shape is considered here rather than an ionoxticc -

thereto because it will be found that mre informatian roiprding the

nature of the phonon absorption can be obtained theoretically from the

actual pulse shape.

The pumpipg angle A was defined by (2.28b) as

Am a .- (4.4)

In Chapters II and III, where h was assumed constant, the threshold

pumping angle or critical angle was given by

(A )• -- 11 o ,(•.•

where hcr is the critical or threshold rf field u tude and %0 is

the dc field at the ferrite samle. In thischaPter vbere rf feld

amplitudes greater than her are considered, the threshold a=] is

given by

(hAp)asp " h,, o (a.6)
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*ere (Ap)ap and hap refer to the apparent threshold angle and ap-
parent critical field, respectively, at which the power absorption due

to the growth of instabilities is sifficiently high to be seen as an

irregularity in the reflected pump pulse (Fig. 4.3).

For the actual pulse the apparent critical field was determined by

easuring the power level of the incident pulse at the time tap where

the instability first appeared on the reflected pulse. Thus the apparent

critical field for the actual pulse is given by

(actual pulse) hap M hmp e al (4.7)

where h is the corresponding value of hm . For the ideal pulse,

where 1 -T , the apparent critical field becomes

(ideal pulse) h ap hp (4.8)

and the instability would first be observed at the end of the pulse,

t = T . The relationships between these quantities expressed inap

(4.8) and (4.7).ror the ideal and actual pulse shapes are shown in

Figs. 4.3a and b. The daýhed lines indicate the irregularities due to

the instability.

Inserting the time-decaying pumping angle (4.4), with h given

by (4.3), into the elastic wave equation of motion (3.35) gives
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A trial solution (4.1) with s - s(t) is now inserted into (4.9), giving

2 2 22h + t•" + (s + t) + 2(s + tU)+ -+

2] GhM-t/2-. .
+ 21w(s + Ul + r rky + OIP ý r.,, =

290

and its adjoint (complex conjugate, with k -&-k) , vbere the frequency

condition

to M o2 (4.3)

has been invoked. The secular equation for this will require that

Ir I I Jr.• I which is the requirement for a stanin wave solution

as mentioned in Chapter III, 0epecially, (3.18).

For reasons to be discussed later, only resonant instabilities will

be considered in calculating the power absorbed by the pump. The real

part of the coefficient for rky in (4.10) is therefore assumed to be

very nearly zero at all times, giving

2Gh
2*~ 0 U. ~, p (4.12)

The secular equation of (4.12) and its adjoint in this cae yields

-G(*O) h(t)
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when written in terms of the critical field h cr specified in general
by (4.5) and ( 3 .42) and written as

h cr W HO [(tolpl qip (4. -L4)

where [()qt] is the optiam value of the modulation parater

G(*O) , and the phonon q is related to the relaxation frequency

,q by Tj a.n/Q If h(t) is a slowly varying function of time.,

the MS of (4.13) may be expanded in a Taylor series. A series

solutim for the exponential growth parameter s is thereby found to be

G(* ) h'(t)
A(*O Vt) + 41a

"Gt(°) h cr

where

h'(t) a h Z (=t h h 1 + 1 (+ t "

mn-0O n+1n Tmr - -71

(4.15b)

is an effective rf field amplitude. The series converges rapidly since

t <<<2 , and only two or three terms are needed. For sma.l t/T ,

h'(t) decreases with a time constant approximately one half that of

h(t), .

2. Power Absorbed by the Unstable Modes (Phonon Absorption)

Assuming that all of the pump energy which reaches the elastic wave

system goes into pumping the unstable phonon modes, the total elastic

energy my then be represented (within a constant) by the energy contained
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only in the unstable wdei. Thus the elruntic energy density for trans-

verse secustic waves prop,%iting and polarized in the easy plane is found

frcm, (3.9) to be

- . 2 ,\. 6)

Utilizing the ex~pansion

k

where -

R )

the time average stored energy in the sample is found for standing wave

modes to be

ep ,, r pfz " - C•nV~ k2 {~rkI2 + ir.. } ,, (1418)

k

where a different growth factor has been aliowed for each mode, and V

R4

is the volume of the safngple.

modesto b

- 832-
P, 2dv C V k I r,, 2 + r\

p p 
P (4.18
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Since the unstable modes will begin growing exponentially from thermal

level at t w 0 , the average thermal energy in the modes must be found in

order to evaluate the energy at later times. For microwave frequencies

to is such less then kBT (where kB is Boltzmnn's constant),

classical statistics Im be used. Thus the average thermal energy con-

tained in each mode is
4W

C VI (r.,+ ir. 2 ) (14.19)
ttq .j c.• 2+ _k(Y•

The total average energ (4.18) mW be written

P a T e 5 2(4.20)
2k,,T

kumO

since there are two standing wave modes (sin kx sad cos kx) for each

value of k • The energy P will be used to evaluate the power
absorbed frds the pua. Mquation (1.20) should therefore be sumed only

over the modes wbich are growing in time.

In determining the values of k which will contribute significantly

to the si tiocn in (4.20) it is helpful to utilize the k-space concept.

Figure 4.4 shows a representation of a portion of k-space for periodic

boundary conditions. The distance separating modes along a given co-

ordinate direction i in k-space is

d k 2x/ai, (41.21)

where ai is the dimension of the sample in the direction i . For a

ferrite disk, the node spacing = be approximated by

d1k " 2,/d (4.22)
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contributing significantly to the puM aborptioa; 1j lis
ini the k p k plane.
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in the plane of the disk, where d is the disk diameter, and by

C1 k 2x/w (4.23)

normal to the disk, where w is the disk thickness.

In Chapter III it was assumed that there was only one unstable mode,

resonant at aV . This mode is represented by a single point in

k-space, the magnitude of the wave vector k being determined by the

frequency condition (3.41) and the orientation of ko by the direction

of propagation relative to the dc magnetic field. In Chapter III anr'

optimum value was found for the angle *0 between k and the dc field.

For convenience, the axes in k-space will be chosen so that k cor-

responds to this optimum direction, and the k ,k plane correspondsx y
to the plane of the disk sample (see Fig. 4.4). Although the assump-

tion of a single mode is a valid one in the determination of the phonon

threshold angle or critical rf magnetic field, it is not valid for

operation above threshold. The reason is that other modes will be pumped.

This case will now be considered.

The first restriction on the modes which will contribute to (4.20)

is that c4,2 should be within the mode bandwidth. Otherwise they will

grow only very slowly, if at all. This bandwidth is

40 M ) 0 -(4.24)

and from (3.28b) the corresponding wavenumber bandwidth" is

,&k a ko/% << ko0  (4.2)
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This shows that the relevant modes must lie within a thin spherical shell

of radius k and thickness Ak in k-space (see Fig. 4.4). In order to

compare the "wavenumber bandwidth" with the mode spacing, typical para-

meters

cp/x a o.66 kme

d - O.O*4 in.

% 1* 103._ 10 4

are chosen. It can then be verified that

Ak << d k

as shown in Fig. 4.4. The radius of the shell, kO , is not shown to

scale. Using the parameters assumed above results in

Sft 15 2x *a (1o3. -1o4) Ak (4.26)

and the thickness of the shell is very smill cvaared with its radius.

A more significant restriction on the modes relates to the dependence

of the modulation: parameter G on the angle *0 . ThIs limits the
contributing modes to a portion of the above mentined apherical surface

in the neighborhood of the axes kE . Figure 4.5 shows a plot of the

threshold angle (Ap ) yx vs#; 0 with a typical experimental value of

x0 - 0.05 and parameter values as specified by Chapter III. Th angle

(to)opt indicated was calculated from the sall angle approxiution

(3.50). It is seen to agree closely with the actual ninina of (A)yx

The threshold becomes infinite at -0 s/4 . The manitude of the

threshold JA I as a function of * is shown in ig. 4.6a. Dm to
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the inverse dependence of A upon ;sin 40 A A has singularities
np p

at *0 = '- , where n is any integer. Figure 4.6b shows the modula-

tion parameter G(#O) , which varies inversely with A , in accordance

with (3.42). Note the narrow range of *0 over which G is large.

This means that, when the rf pump field is only slightly greater than

hcr , the growing modes in the kX, ky plane of Fig. 4.4 lie within a

range of angles b#0 about (O )opt .

The threshold angles shown in Figs. 4.5 and 4.6 apply only to trans-

verse modes with the wave vector and polarization in the plane of the
disk (k 2k in Fig. 4.4). Modes lying outside the k ,k plane in

x y x y
Fig. 4.4 should also be considered in evaluating (4.20). Furthermore,

there will be two transverse and one longitudinal mode associated with

each point in Fig. 4.4, and these should all be included in the sumal-

tion. It was shown in Chapter III, however, that the threshold angle

is very much larger when the wave vector is normal rather than parallel

to the plane of the disk. On the basis of this result, and the wider

spacing of the modes along the k axis (Fig. 4-4), Eq. (4.20) will

only be sunmed over the k Ik plane. Since it was also shown in
x y

Chapter III that the transverse wave polarized in the plane has the-

lowest threshold, the restriction of the sumnation in (4.20) to modes of

this kind will be retained.

From the above considerations it is seen that the summation in (4.2Q)

will be taken only over modes lying within the intercept of the spherical

shell upon the kx ,k plane in Fig. 4.4. Within this region the modes
x y

are. distributed with an approximately uniform angular spacing,

-- = N4 << 1 radian
kod k0

(from 4.26); and there will be only one mode at each angular position,
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since Ak is much less than 2i/d . The aimtion in (4.20) may therefore

be approximated by an integral

#2 (*O)o pt + 2

e BT k0  f e2sk(Opkot)t d% 0 (4.27)

P 1  o - "T)

It is not necessary to consider negative values of k , since two

standing wave modes for each value of k have been alloyed for in (4.20).

In obtaining (4.27) from (4.20), a factor of 2 has been taken out of the

sumation to account for phonon modes which occur for k near #0 a -( 0)opt

as well as near *0 - (*O)opt * Figure 4.6 shows that these values of

*0 are the ones near which G(#O) , and hence s(*•0 ) [(4•15a)], has

its maximum values.

Since all modes considered in (4.27) are close to resonance, the

growth paranmter for a resonant mode s(* 0 ,ko) will be used in evaluat-
ing the integral. Also, the first term of a Taylor series expansion

about (*O)opt will be used for the modulation parameter

(G(*O)t )+ 2 o " (*''o)opt 2 (4.28)
2!

therefore

G(*O) 9 (#0 0) (/.29)
G (*0) opt 9x1
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and

sko(,O, k t) + L - (. ( *0 " (*O)Opt ). (4.30)
h hcr 4x"_

Using (4.27) and (4.30) gives

4 kBT ko 2¶it(-l+t-/hcr) *2  "2th" - (*00opt )2
=e f e 0

(4.31)

For t greater than 1/A and ,O-(*O)opt of the order (O)opt '

the integrand of (4.31) becomes vanishingly smill, and the integration

limits my be extended to infinity without significantly affecting the

value of the integral--in accordance with the usual procedure for the

method of steepest descent. 2 7 The iitegral reduces to

21cx' h 1/2

(2n ch (4.32)

From (4.20), (4.31), and (4.32) the total stored energy in the

growing modes is

2Tqt(-l + h'/hr) (433)
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where

1l/2

N 4k0 ,1 2kod 2x" herdk 11 3 *.,qh, t)

is the effective number of growing modes. Equation (4.34) shows that

the effective number of growing modes decreases with time, even when the

pump field anplitude h" is constant. From (4.-33) the effective numer

of modes is defined relative to the mxim= growth rate. As time increases,

the modes with small growth rates become less and less significant to

comparison with the rapidly growing modes, and the number of effective

modes decreases. When the condition t > 1/n is not satisfied, the

method of steepest descent is not valid. Fortunately, the experimental

effects are observed at times satisfying this condition.

Knowing the phonon energy as a function of time., the total power

Pp going into the phonon system my be determined from

dP,

p dt

The first term in (4.35) represents the increase in stored energy. If

the stored energy were not increasing there would still be a power loss

in the phonon system. This additional power loss, represented •t the

second term of (4.35), is associated with the pbonom . Inserting

(4.33) into (4.35) yields

"P( Lh htN(t)

2,e h1 +t dh I
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Since h' is a slowly varying function of time, it may be taken as a

constant in (4.36) except in the exponential factor of Pp . Assuming

that t is greater than a few 1±sec [(l/4qt) <<] , the phonon power

absorption is given approximately by

2T•t 1.i + hm (i _ t7lc

h 21
P m 2-q h M N(t)kBT e r77(4-37a)

h
cr

where N(t) is approximately

N(t) 2kod 2x h hcr 1/ (4.37bo)

3 xth M

The damping parameter il is related to the phonon • by

n up/- (4. 37c)

C. PHONON ABSORPTION IN TERM OF MEASURABLE PARAMETERS

It is now necessary to relate the phonon absorption P to theP
transient observed in the reflected pump pulse. From simple conservation

of power, the reflected power Pr is given by

Pr =Pi -P a (4.38)
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where P is the incident power and Pa is the absorbed power. Given

that Pi is constant, the differential relation which follows from (4.38),
namely

'Pr -&P a(4.39)

shows that any increase which occurs in P (due to phonon absorption)a

will be accompanied by a corresponding decrease in P rr
The power Pa absorbed by the dielectric resonator system is given

in terms of the stored energy U by the familiar expression

P a W (

where mp is the pump frequency and Q is the effective Q of the

resonator system. Since the abporbed power is a function of the stored

energy as well as of the system Q , the following differential relation-

ship is obtained from (4.40):

AP A~P + A?(.4a
a fid F

where 'Pfld represents the additional power loss required to sustain

the increased energy of the electromgnetic field, and is given by

6'- .d!Ea (4.41b)
fi
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The increase in ferrite power absorption APF is given by

S(4.41c)

This power absorption takes place only when the Q of the system is

changed by introducing additional losses into the system--for instance,

through growth of spin wave or elastic wave instabilities in the ferrite.

For an overcoupled resonator system, the external Q is given by

QeXt %Jr 0  , (4.42)

where r 0  is the voltage standing wave ratio (VSM) at resonance.

For a given position of the movable short, Qext is constant (see

Chapter V). Therefore (4.41c) becomes

•F a - a - (4.43)
r0

It is desired to obtain the ferrite absorption in terms of the reflected

power deviation APr . The reflected power P is related to ther r

incident power by the familiar expression

Pr IP12 Pi (4.44)

where the iwgnitude of the reflection coefficient IrI is defined by

ro - 1
n -(4.45)

rO+1
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By taking the differential of (4.414) with respect to r0 , it can be

shown that

Ap IrI P a ro (4.46)aro

Combining this result with (4. 413), yid the fofoving for the

change in the power absorbed by the ferrite:

S--AP
1AP - r (4.47)

Consider now that the change in ferrite absorption AP represents

the increasing transient power loss due to the grodth of instabilities

within the ferrite. Since the growth of phonon instabilities is assumed

to be the dominant transient loss mechanisms, it my be conccluded that

LWF -P (4.48)F" p

It is seen from (4.47) that APF(P p) is proportional to Wr , the

observable change in reflected power, provided the reflection coeffIcient

r does not change appreciably. Since the resonant system is overcoupled,

-AP will be positive and increasing as the ferrite losses increase.r

Hence the reflected power waveform will show a decrease with asing

time due to the phonon absorption.

The ideal situation from the standpoint of observation of instbility

thresholds is to have a maximum relative change in reflected power. Thus

combining (4.44) with (4.47) and (4.48) yields

-AP P.(r . pL (449)

P rIrl pi
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The increase in ferrite power absorption APF is given by

AP F WP U L.( 4.41c)

This power absorption takes place only when the Q of the system is

changed by introducing additional losses into the system--for instance,

through growth of spin wave or elastic wave instabilities in the ferrite.

For an overcoupled resonator system, the external Q is given by

ext s r , (4.42)

where r0 is the voltage standing wave ratio (VSWR) at resonance.

For a given position of the movable short, Qext is constant (see

Chapter V). Therefore (4.41c) becomes

rr0

It is desired to obtain the ferrite absorption in terms of the reflected

power deviation AP . The reflected power P is related to ther r

incident power by the familiar expression

Pr Ir1 2 Pi (4.44)

Where the magnitude of the reflection coefficient Iri is defined by

Ii"'I -(4.45)

r 0 +1
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By taking the differential of (4.44) with respect to r 0  , it can be

shown that

AP r irl P (4.46)rr a0

Combining this result with (4.43) yie da the following for the

change in the power absorbed by the ferrite:

-AP

A - (4.47)•F " nr

Consider now that the change in ferrite absorption AP represents
F

the increasing transient power loss due to the growth of instabilities

within the ferrite. Since the growth of phonon instabilities is assumed

to be the dominant transient loss mechanism, it my be concluded that

APF =P . (4.48)

It is seen from (4.47) that APF(=P p) is proportional to AP , the

observable change in reflected power, provided the reflection coefficient

P does not change appreciably. Since the resonant system is overcoupled,

-AP rwill be positive and increasing as the ferrite losses increase.

Hence the reflected power waveform will show a decrease with increasing

time due to the phonon absorption.

The ideal situation from the standpoint of observation of instability

thresholds is to have a maximum relative change in reflected power. Thus

combining (4.44) with (4.47) and (4.48) yields

-AP P
r' . L (4.49)

P• r Irlpi
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for the relative change in reflected power. The incident power P is
determined by the threshold magnetic field amplitude at which the phonon

absorption P reaches an observable level. Thus only IPl remainsp
to be chosen. It is clear, therefore, that the maximum relative change

in reflected power will occur for the smallest reflection coefficient

compatible with the minimum detectable reflected power.

D. APPARENT CRITICAL FIELD

The relationship between the phonon power absorption P and the

apparent critical magnetic field amplitude h will now be determined.ap

1. I,&-l Pulse

The phonor. absorprion P for the ideal pulse may be found from

(4.37a) by letting T --* , since the ideal pulse is assumed to be

perfectly flat. On defining P - (P ) ap as the observed phonon absorp-

tion when saturation of the reflected pump pulse first appears, and

recalling that h = hm (and h = h ) for the ideal pulse, an ex-

pression may be obtained from (4.37a) for the apparent critical field

h as follows*:
ap

h cr n hc---P ap (.0
h ap r h 21lN(tp) (4T

ap ap ap B

The hap which appears in the log argument has only a second order

ea!ect on the actual value of h . From (4.50) it is evident that
ap

the longer the build-up time t ofl' the phonon instabilities, theap
closer h approaches h . Thus, ideally, the critical thresholdap cr

would be -bserved with an incident pump pulse of infinite length. Since

the puise uust, practically, have a finite length, then it follows that

the lowest arparent critical field hap vill be observed at the end of

the pulse--at which point the instabilities have had the longest time to

grow. Hence the build-up time t is equal to the pulse length in the
ap
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ideal pulse case. It is also noteworthy that the smaller the observable

change in the phonon power absorption Pp , the closer hap approaches

the critical value. In practice, the critical field hcr is never reached,

and thus the factor hap/hcr is always greater than unity for observable

phonon instability thresholds. Nevertheless, it is possible to extrapolate

back in order to find hcr by measuring growth rates as a functiom of

field amplitude h above the critical value.

2. Actual Pulse

The actual pulse, with its finite decay constant T • is considered

next. The phonon absorption P in this case is obtained from (4.37a)p

with T finite. Solving (4.37a) for h in the sam way as for the
ideal pulse case yields the following result:

h up (l_ t )1 [h cr+ h c (h cr~. , (5)

where (P ) is again the observed phlono absorption level Un satur
p ap

ration of the rv!flected punp pulse firezt appears, and h is the value

of h at this threshold absorption level (see FI&. J-3).

It would now be possible to write the apparent critical field h

(Fig. 4-.3) in terms of (4.51). At this poipt, however, it is easiest

to work with the field anplitude h , and the results below vill be

given in terms of this quantity.

The value of t is the chief difference betwen the actual and
P.p

the ideal pulse cases. It can be seen by an examination of (4.51) and

(4.50) that if tap is smaller for thý, actual pulse case, then the

threshold will be higher. If the theory for the actual pulse is to be

useful in practice, some criterion must be established for determining

t . From the expr-ssion ( 4 .37a) for the phonon power it is notedap

that the dominant time-dependent factor is the exponential. Initiallyp
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as the time increases the exponential grows in magnitude. However, at

sufficiently large times the effect of the pump field amplitude

h(l - t/T) MI
becomes significant and the absorbed power P goes through a maximum.

p
The effect of the less significant time-dependent factor N is to cause

this maximum to appear sooner than it otherwise would.

The assumption is now made that this maximum value of P is equal
p

to (P ) occurring at time tap (Fig. 4.3). The time-dependent portion
p ap a

of (4.37a) is

h

P _ t1/2 e (4.52)

Differentiating (4.52) to obtain the condition for a maximum value of

Pp yields

( h rhc 2 hcr 11/2

~ap +) +T[(~ ~ (4--j
hMP hmp 2 nvhmp

as the apparent build-up time of the instability. This result shows that

the longer the pulse time constant T , the longer is the time tap

before the phonon absorption reaches a maximum--provided the pulse length

is sufficiently long. If T approaches infinity, then tap =1st approach

the pulse length, as in the ideal pulse case.

An assumption is now made, which is Justified in practice for the

range of the parameters employed, that

/ h1 - >> r (4.54)
hm 2 1 Trh -M.

ii
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Using this approximation, (4.53) becomes

tap m 2T (l1 - hcr/h . (4.55)

Substituting (4.55) into (4.51) and solving for h e/hcr yields the

following result:

h2
cr

where the definition has been made that

1 (P ) h
- np ap cr .(4.56b)

2'qT 2¶qN(t ap,) kT hap

In determining h,/hcr , the higher order effect of hM/hcr in the

argument of the logarithm may be neglected to first order, and, if neces-

sary, may be accounted for later by means of successive approximtion.

From the above analysis for the actual pulse shape, estimtes will

now be made for the ratios h/hcr and hap/hcr as well, as for the

build-up time tap ' The estimated value for the phonon (as 150)

from Chapter III will be used here. Takin the experimental p•ramtara,,

M 309sec and (Fp) = 0.74 W , associated with xperiment I

(Chapter VI), the following results are obtained from (4.56), (4.77) and

(4.55):
(experiment I)

. - 1.202
hcr

h-a . 0.O,6 (4. 7)
hcr

t ap 104 sec

The pulse length was 120 gsec.
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In a similar way, on taking the experimental parameters T - 124 ýsec

and (P ) ap = 0.06W associated with experiment II (Chipter VI) we

obtain the following results:

(experiment II)

h
MP . 1.319

h
cr

h
S= 1.036 (4.58)
h

cr

t - 60 gsec

In this case the pulse length is 90 gsec. The build-up time, tap

is shorter in experiment II chiefly because the pulse decay time constant

T is shorter. Theimore sensitive detection used in experiment II also

aided in reducing t . The amplitude ratios h,,/hcr and hap/hcr

are higher for experiment II because the shorter the pulse decay time

constant the higher mast be the power level (or field level) to produce

a given time average power level. A comparison of the calculated and

observed values of t will be made in the following section and inap

Chapter VI.

E. PHONON ABSCRPTION PFFECTS

The expression for the theoretical phonon absorption Pp as a

function of time is given by (4.37,a). Since the effects of phonon

absorption were observed in greater detail in experiment II, the

theoretical nature of the phonon absorption for the parameters of

experiment II will be investigated further. Taking the parameter

values for experiment II and the ratio. hmPlhcr [given above by (4.58)]

for which the miniuim detectable phonon power absorption takes place,

(4.37a) may be plotted as a function of time. This plot is shown in
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Fig. 4.7. The peak absorption occurs at tap a 60 5Lsec , as predicted

by (4.55). The curve is not quite symmetrical about t = t , but is,

in fact, slightly steeper for t less than tap *

Next, the effect of this absorption upon the reflected pump pulse

will be predicted. Combining (4.2) with (4.44), the reflected pump wave-

form in the absence of instability is given by

P r P e-t/'r (4.59)

where

P . Ir 12p
PrmPi

The reflected pump waveform (4.59) is plotted in Fig. 4.8a for the experi-

ment II value of ¶ and for an arbitrary power level below threshold.

At threshold power levels, (4.59) is incomplete because the effect of

the phonon absorption upon the total reflected power mAst be considered.

Then the total reflected power (P)tot becomes

(Prtot P r + Mr (4.60)

where Pr is given by (4.59), and the change in reflected power APr

is found from (4.47) and (4.1•8) to be

APrW- -Irl P (4.61)

for the overcoupled case. Since APr is sMall, it will be asasumed that

Irl does not change significantly during the growth of P (t)
p
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Assume now that the ratio of the minimum observed change in reflected

power to the reflected power at the apparent threshold is given by

P

Recall that the phonon absorption build-up to and decay from the apparent

threshold peak was plotted in Fig. 4.7 for this case. Through (4.62),

(4.60), and Fig. 4.7, the effect of the phonon absorption upon the re-

flected pump pulse is determined, and the result is plotted in Fig. 4.8b.

The reflected pulses for cases (a) and (b) have been normalized in order

to show best the deviation in the pulse waveform due to the phonon

absorption.

At a still higher ratio of LZP to P of
r r

( r 0.5 ,(4.63)

P
r ap

a similar result obtains and is shown in Fig. 4.8c. The curve is again

normalized as above. Note the build-up time t is slightly longerap

in this case--in accordance with (4.55). Values of the parameters for

each of the above three cases are shown in Fig. 4.8.

The above theory is based upon the assumption that Irl = constant.

However, the fact that Irl varies by 40% during the pulse [as in case (c)]

is not enough to alter significantly the nature of the absorption during

the pulse. This is due to the sharpness of the absorption peak. If the
variation in Irl becomes much larger., however.. the phonon absorption

peak will appear broadened due to two effects. The first follows from

(4.47), where the effect of a smaller Irl is to make the change in

reflected power smaller, i.e., a given phonon absorption appears smaller.
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The second is due to the effect of a smaller Irl in decreasing APfld

in ( 4 .41a) [see also (4.47) and (4.39)], and hepce the rf mewgnetic field

amplitude. The latter has the effect of reducing the growth rate of the

absorption [throigh reduction of hjhcr in (4.37a)].

The phonon absorption shown in Fig. 4.8 has been observed experi,-

mentally, and the actual waveforms of the pump pulse will be discussed

in Chapter VI. The build-up times observed experimentally were con-

siderably shorter than those calculated [(4.57) and (4.48)]. This WY

imply that the phonon % is actually lower than originally estimted.

Following a process almost the reverse of that used above, a value of

Q% can be determined which will correspond to the observed build-up

time (t ap)exp . For instance, knowing (t ap)exp , then ha/hcr is

found from (4.55) to be

1

h !hcr - 1+ 1 (4.6-4), ~2T/ta -l1

Having a result for h,,/hcr , the result

- (hW/hcr - 1)2/ u (4.6s)
h

cr

follows from (4..56a). The value of n may than be determined from

the expression (4.56b) for •- . Taking the observed build-up time of

(t ap)exp = 32 4sec for experiment I with other parameter values given

previously, the value of % obtained is

% = 127 (experiment I) (4.66)
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with

h /hcr 1.055,

hp/h cr= 1.003

Taking the observed build-up time of (t ap)ex = 28 gsec for experiment

.II with previously given parameter values, the % in this case becomes

% = 294 (experiment II) (4.67)

with

4

hMP/hcr 1.127

hap/hcr - 0.961

It is expected on the basis of the linear theory that the two above

values of % should be equal. However, if nonlinear damping is present

this need not be required. In such a case the above %'s may be spoken

of as "effective" is . The nature of nonlinear danping is not known,

but the effect of such damping would most likely be to cause the % in

(4.37a) to decrease with increasing phonon absorption. This is precisely

the relationship which exists for the above results (4.66) and (4.67).

A further substantiation of the presence of nonlinear dan•ing is seen

in the reflected pump waveforms of experiments I and II of Chapter VI,

where the build-up time was found to decrease with increasing absorption

levels. Such an observation is contrary to the result (4.55) from the

linear theory with Q, constant, where the reverse is predicted. However,

if the "effective" % is allowed to decrease with increasing phonon

absorption, then the linear theory [see (4.37)] will also predict the

observed behavior.
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F. SUMM4ARY

The various loss mechanisms of a ferrite are discussed briefly.

Interest here was in operation at a pump frequency and dc nmgnetic field

where the phonon threshold will dominate other instability thresholds.

The elastic wave equation obtained from Chapter III for wa~es having

the lowest threshold was modified to include the time variation of the

pumping angle arising from experimental limitations. 'An approximate

.solution to this equation was found for values of the pumping angle

above the critical threshold angle. A calculation of the power being

absorbed by the unstable elastic modes was then made by assumin growth

of these modes from thermal energy levels. The effectivq. number Of

growing modes was found to be a function of time and depends upon the

value of the pumping angle above the critical angle, as well as upon the

ferrite sample dimensions, phonon Q , and effective internal dc field.

The absorption observable experimentally on the reflected pump pulse was

found to be proportional to the phonon absorption by the ferrite and

inversely proportional to the reflection coefficient.

The optimum conditions required for observation of the relativeý

change in reflected power were also discussed. The apparent critical

magnetic field was derived for the ideal and actual pulse cases in terms

of the phonon absorption level which is first observable experimentally.

The build-up time corresponding to this absorption level was also derived.

For experimental and ferrite paraneters the phonaon absorption and its

effect .upon the reflected pump pulse were calculated for the actual

pulse. The theoretical build-up time to the phonon absorption peak was

found to be longer than that observed experimentally. It is suggested

that nonlinear damping is present.
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CHAPTER V

EXPERIMENTAL TECHNIQUES AND MICROWAVE PARAMETER MEASURE4ENTS

A. MICROWAVE CIRCUITRY FOR THRESHOLD MEASURE4ENTS

The rf magnetic field required in order to observe the phonon thresh-

old may be estimated from the theoretical results of Chapter III. From

Fig. 5.3, a typical threshold angle may be taken to be

(A) 0. i

Assuming adc magnetic field of, H 4CC Oe, the amplitude of the critical

rf magnetic field will be

h •%4c Oe
cr

To achieve such a high rf field at the frequency of interest (1.32 k4c),

a conventional metal cavity was first considered. Large incident power

levels (- 100 kW) would be required to achieve the desired rf field

strength. This is unfortunate because high voltage breakdown within the

cavity is likely to occur at thes, power levels. The conventional metal

cavity at 1.32 kMc also has the disadvantage of having a small filling

factor for a ferrite.

Since the prospect of breakdown was to be avoided and a large filling

factor was desired, other methods of resonating a microwave electromagnetic

field were investigated. Such a method was found in the dielectric
resonator.28,29 A dielectric resonator having a high dielectric constant

was considered. In such a case the possibility of breakdown is practi-

cally eliminated. Also, a large filling factor can be obtained because

the resonator volume is small. Furthermore, large rf fields can be
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obtained with considerably lower incident power levels than would be

required for a metal cavity.

A dielectric resonator was fabricated frm single crystal strontium

titanate. Strontium titanate possesses a very high isotropic dielectric

constant (e" *a 277), a low loss tangent, and is commercially available

in large single crystal boules. With such a high dielectric constant,

the resonator dielectric volume at 1.32 kMc was only 1.28 cm3, and a

large' ferrite filling factor was obtained. A resonator system Q of

over 1000 was also obtainable. Thus, direct observation of absorbed

power by the ferrite was easily possible.

In order to achieve the large rf magnetic fields with the dielectric

resonator, it was still necessary to employ a moderately high microwave

power source--one having a maximum power output of about 50 W peak.

Thermal limitations of the dielectric resonator and ferrite dictated

pulsed rather than cw operation. The microwave power source was pro-

vided by a 3CC mW signal generator (General Radio GR-1218-A) in con-

junction with an L-band klystron amplifier (Raytheon SAL-81), shown in

Fig. 5.1. The klystron beam was pulsed by the high voltage pulser

modulator (Levintbal 79-M). The modulator contained the power supply

which charged up a 15 kV 1 gfd capacitor. The pulsed discharge from

the capacitor furnished the beam current for the klystron. The pulse

length, or length of each discharge time, was about 100 lisec. This was

long enough to enable observation of the predicted phonon absorption

peak. The pulse length was determined by a multivibrator circuit which

controlled the capacitor discharge through a vacuum tube circuit. The

switching characteristics were limited to a large extent by the quality

of the transformer employed at the output of the multivibrator circuit.

For transformers available, a compromise had to be made between fast

rise and fall times and minimum sag for the 100 psec pulse. The effect

of the transformer sag was, of coure, to enhance the saW in the capaci-

tor discharge and hence in the amplified rf output. The pulse repetition

rate was controlled by the pulse trigger external to the modulator

It was necessary to make the pulse repetition rate as low as po•aible
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in order to minimize the sag in the capacitor discharge current. Yet

this rate had to be sufficiently high to give a continuous display of

the power pulse waveforms on the long persistence screen of the oscillo-

scope. This determined the pulse repetition rate of 10 cps.

An attenuator pad served to improve the impedance match of the

klystron to its load. After the attenuator pad, a dual-directional

coupler was inserted for the purpose of detecting incident and reflected

power from the dielectric resonator. The output of the dual-directional

coupler was fed to a precision variable attenuator (Hewlett-Packard HP-394-A).

The crystal at the output of this attenuator detected the power level.

All power measurements were made at the convenient minimum signal level

of 2 cm deflection (0.1V) on the oscilloscope. Thus, for any given

power input to the load, there was a corresponding setting of the pre-

cision variable attenuator which gave a 2 cm deflection on the oscillo-

scope. The variable attenuator was originally calibrated with a thermis-

tor as a load. The thermistor was used in conjunction with a power.

meter to determine the average power level for each attenuator setting

over the desired power range. Knowing the Pulse length, pulse repetition $
rate, and the average power, the peak power level was obtained and the

attenuator calibrated accordingly.

The circuitry connections for the above apparatus were made with

7/8 in. and type-N coax. An adapter to the standard L-band rectangular

waveguide was employed at the output of the directional coupler. The

waveguide provided a means of coupling power to the dielectric resonator.

Sufficient spacing between the dielectric resonator and the adapter was

allowed to avoid any higher order electromagnetic fringe fields arising

from the transition. -

The dc magnetic field was first applied across an air gap the width

of the L-band waveguide. The field was obtained from an improvised mag-

net fabricated from two large toroidal field coils and iron bars. The j
latter provided the necessary low reluctance flux path. With the field

coils located near the pole faces (for maxim.um gap flux)., a suafficiently

large and fairly uniform dc magnetic field was attained. The *mgnetic

field was first calibrated by a gausameter of the Hall effect type--

1.13 .7. -Z
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which was later calibrated by a nuclear magnetic resonance (NMR) probe.

The first set of experimental threshold measurements (hereinafter

referred to as experiment I) were made by psing this magnet and the

setup of Fig. •.i.

Another set of threshold measurements (hereinafter referred to as

experiment II) was made with a large commercial magnet (Varian 12 in.).

In this case the height of the L-band waveguide had to be reduced to

3 in. to fit inside the magnet air gap. For both magnets a constant

current regulated power supply served to maintain a constant magnetic

field with a minimum of drift due to coil heating. With the Varian

magnet it was possible to obtain a broader range of magnetic field and

a greater magnetic field uniformity at the sample, and an NMR probe

could be used directly to calibrate the field. Another improvement in

experiment II included a circulator, which increased the sensitivity

of the critical field measurements.

B. DIELECTRIC RESONATOR SYSTEM

The dielectric resonator system will now be described in greater

detAil. The experimental arrangement is shown in Fig. 5.2. The di-

mensions of the strontium titanate dielectric resonator were

0.430 in. X 0.431 in. X 0.423 in. It has been mentioned already that

the properties of strontium titanate utilized were its low loss tangent

and its very high and essentially isotropic dielectric constant (c" - 277).

The rod shown supporting the resonator also had a low loss tangent, but

it had a low dielectric constant. The dielectric resonator was located

in the center of the L-band waveguide cross-section. A hole (0.061 in.)

was cut in the resonator as shown and a ferrite disk (0.054 in. diam

X 0.0076 in.) supported by a glass rod was inserted. This resonator

operated in the dominant H mode at 1.32 kMc. In the field configuration

of this mode the maximum H field occurs at the center of the resonator

and is polarized in the direction, of the glass rod (see Fig. 5.3). Since

the E field is weakest where the H field is strongest, the hole

distorts the field pattern very little. The coupling of the resonator

H mode to the standing waveg~iide TE1 0 mode was optimized by position-

ing the movable short.
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MOVABLE SHORT

,FERRITE •

FREQUENCY /

TUNING
PLUNGER GLA/SSO

STRONTIUM TITANATE

DIELECTRIC RESONATOR

••cMAc MAGNETIC
FIELD

I • h. rf MAGNETIC

TO HIGH POWER FIELD

KLYSTRON SOURCE

FIG. 5.2--Setup for ferrite transverse pumping experiment using
strontium titanate dielectric resonator.
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-Electric field lines

- M•gnetic field lines

FIG. 5.3--Dielectric resonator shown with coordinate system and
a few of the electric and m.etic field lines for
the dominant H-mode.
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The properties of the ferrite and of the dielectric resonator were

found to be significantly temperature-dependent. The ambient temperatures

of the resonator and ferrite sample were determined by mounting a thermo-

couple on the post supporting the dieleoctric resonator. The dielectric

constant of the resonator had the greatest sensitivity to temperature

changes as far as the actual threshold measurements were concerned,

since the resonator frequency was thereby affected. A frequency pertur-

bation plunger was employed to compensate for this effect. The tempera-

ture coefficient of the resonant frequency was about 2.5 Mc/°C. The

plunger was capable of changing the resonant frequency over a range of

about 25 Mc. With the three cavity klystron adjusted for 1.32 kMc, it

was then possible to resonate the dielectric resonator over an ambient

temperature range of about 10°C. It was found desirable to perform ex-

periments at ambient temperatures where the plunger could be maintained

as far as possible from the resonator and still provide adequate frequency

tuning during the data runs. This minimized distortion of the resonator

rf field; and reduced the dependence of the unloaded Q upon the

plunger position.

C. HEATIMG OF THE DIELECTRIC RESONATOR AND FURITE

Heating of the dielectric resonator and ferrite due to aicrowave

power absorption will now be investigated. First consider the dielectric

resonator without the ferrite. The average microwave power, Pa '

absorbed by the dieleetric resoftator system id"dihsipated through di-

electric loss in the strontium titantate resonator, the dielectric sup-

porting rod, the Ducco cement contact between tht rod and resonator,

finger contacts of the movable short, and waveguide walls. The power,

Pd , actually dissipated in the vicinity of the resonator my be

given by

Pd" la(.)•
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Assuming that the support rod and the cement contact have a somewhat

lower loss than the dielectric resonator, it is estimated that c 1 = 0.5

The energy dissipated within the resonator volume is related to

the temperature increase AT by

Ed fdCe Vd , (5.2)

where cd is the specific heat, p6d is the density, and Vd is the

volume of the dielectric resonator. The factor fd is a factor greater
than unity and is used to account for other energy losses in the vicinity

of the resonator due to thermal conduction, convection, and radiation.

Equating (5.2) to the energy input VdAt yields the following for Rd

1he rate of change of resonator temperature with time:

R dT pd (5.3)d- d - f~ddpdVd

Taking the typical average power level pa = 10 mW (corresponding to

lOW peak power and 10-3 duty cycle), and using the values of c d and

Pd for strontium titanate given in Appendix A, and the resonator

volume Vd = 1.28 cm3 , Rd is estimated to be

R d(10 mW) 0-23 °C/min ,(.
f d

where fd has yet to be evaluated.

The temperature dependence of the strontium titanate dielectric

constant strongly affected the resonant frequency of the dielectric

resonator. Frm the value of the temperature coefficient of the di-

electric constant given in Appendix A it can be shown that the tempera-

ture coefficient of the resonant frequency is about 2.5 Mc/"C. This

dependence was observed experimentally as described in the previous
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section. The time rate of change of resonator frequency at the 10 AO

average power level was also observed experimentally. From these ob-

servations the time rite of change of resonator temperature was found

to be

R (dmO ) ( 0.070 C /•in . (5.dexp

By comparison with (5.4) it is estimated that fd = 3.3

Equation (4.53) expresses the relation between the peak pulse ab-

sorbed power Pa and the peak pulse stored energy U in the dielectric

resonator system. For the average, absorbed power p a and the average

stored energy U , the relation is

= (5.6)

This expression applies, of course, to the resonator systM with or

without the ferrite present. The effect of the ferrite upon U is very

small. The ratio of the ferrite volume to the volume of the dielectric
-4resonator is of the order of 10-. Even if the ferrite has a relative

permeability as large as 100, the effect of the ferrite =on the stored

energy U will be negligible (- i• ) . The effect of the ferrite upon

the Q is about an order of magnitude larger. In fact, a typical

change in % observed experimentally was about 1C*.

Considering only the effect upon Q , the average power absorbed

by the ferrite is found to be

Thus the ratio of the total average power absorbed by the ferrite to

the average power absorbed by the resonator syste is given pro4intely

by the relative change in % .

-119 -



The time rate of change of temperature of the ferrite is

PF (5.8)
fF 'F PF VF

where the parameters are counterparts of those used in (5.3). The factor

fF which accounts for conduction, convection, and radiation losses of

the ferrite is expected to be larger than the factor for the resonator.

This is because the broad face of the ferrite is mounted on a glass rod

which provides a fairly good heat sink--thereby promoting large con-

duction losses. The dielectric support for the resonator conducts heat

away from about one-sixth of the resonator surface area, whereas the

gLass rod conducts heat away from about one-half of the ferrite area.

Consequently, it might be estimated that fF - 3fd Thus, with a

ferrite volume VF - 2.86 x 104 cm3 and the values given in Appendix
A for the other quantities, (5.8) becomes

S(mW = 0.38 °C/sec (5.9)

Therefore, if it takes 10 sec to determine the data for one experimental

point, then the temperature increase of the ferrite would be about

AT - 3.8 0C . It is clear that measurements must be taken quickly at

these high power levels. The threshold level was usually determined

as quickly as possible, but never in much less than about 10 sec. After

each threshold measurement the incident power was reduced and the sample

was allowed to cool before the next measurement was taken. It was

assumed that the ferrite reached the ambient temperature during this

cooling period.

At the lowest power levels of about Pa = 1 W peak, the estimated

ferrite temperature increase for a 10 sec measurement time would be

MT 0.380 C • Here, then, the actual temperature of the ferrite differs

little from the equilibrium value. This equilibrium temperature was

determined experimentally by attaching a thermocouple to the dielectric

rod supporting the resonator.
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With a pulse repetition rate of 10 cps, the average temperature

increase of the ferrite during each pulse was a factor of 10 smaller

than the average temperature increase of the ferrite in one sec(Ivdh

Thus, heating effects during the pulse were negligible at the average

power levels considered.

D. MAGNETIC FIUD DIHITvTOM I 3 DTE ILUMIC BON!V

The basic relation between the stored energy U in the rf gnetic
field of the resonator and the peak pulse power Pa absorbed by the

system is given by Eq. (4.40). In this section, U will be obtained

in terms of the maximan rf magnetic field amplitude h 0 .

The rectangular parallelepiped'dielectric resonatgr, together-1th

the coordinate system used to describe the electric and magnetic field.

for the dominant H mode, is shown in Fig. 5.3. The electric field is

strongest near the resonator faces parallel to the z-axisj while the

magnetic field is strongest in the center of the res-ator and al

the z direction. A few of the strongest field amplitude lines ore

sketched in Fig. 5.3.

Open circuit boundary conditions (OCB) require that the lectric

field ie parallel to and the magnetic field nonl to the boundary.

For the dminant H mode described above it is found that at the faces

of the dielectric resonator parallel to the z-axis, the OCS catitionis

are nearly satisfied, since the relative dielectric constant a" is

much greater than unity. The advantage of recognizing OCB condition

is that the theory is simplified by terminating the electric and mg-

netic fields at the air-dielectric boundary. For the faces of the

resonator normal to the z-axis, the usual bgMadkx7 comatiodo for

electric and magnetic fields are used. Using Yee's resulta29 for the

special case of a rectangular parallelepiped with a mqure cros section

(amb) , the electric fields based von the above asu tio are given

by

-Jodo xx 91
I 0 sin - os -- A(s) (5.l10)

2x b
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and
jcqL0ah0  lX

E- coos- sin -A(z) ,(5. 10b)
2x a b

where h is defined as the maximum value of the magnetic field (at
0

the center of the resonator). Inside the resonator :A(z) is defined by

A(z) cos • (z - (5) .lOc)

z

and outside by

A(z) A 0 e , (5.10d)

where the quantity A0 is obtained by matching boundary conditions

at z - 0 or c . The quantities • and t0 are defined approximately

by the relations

.S tan Lc X c 2C - (5.11)
2 2

The magnetic field components may easily be determined by substituting

(5.10) into Maxwell's equations. Also from Maxwell's equations, the

following expression for the resonant frequency is derived:

1 2, 1/2
... +. (5.12)

res 2 0I
00J

It was by inserting experimental values for a - b, c and the resonant

frequency fres into (5.12) that the experimental value for strontium

titanate of e" a 277 , given in Appendix A, was obtained. This result

agrees favorably with values measured by others.28.29

The total stored energy in the resonator system is most simply
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given by the integral of the electric energy density when the latter in

a maximin in time, for ex@mle

U.1- J 1,312 ddd
U-2

space

It is now assumed that the OCB conditions at the resonator faces parallel

to the z-axis, which apply approximately to the fields within the

resonator, apply equally well outside of the resonator. With thin

assumption, the result of taking the integral (5. 13) over all space is

u M ;, _ (5.14~a)
fgý 0 d s

where, for a - b the factor f is given by

f .)2

By solving (5.11) and tc and tc , using the resonator dimesons
given previously, the value of f obtaind is f o.86 . It is
interesting that this value of f is comparable to the value of unity

which would be obtained if there vere no z-dependence of the fields

and if all of the energy were contained within the resonator volume.

In deriving the above results, OCB conditions vere assumed at

four faces of the rectangular parallelepiped dielectric resonator as

well as at the extension of these faces external to the resontor. 1br

strontium titanat% the relative dielectric constant in high (a' a 277);

and the OC conditions are well satisfied within the resowator. Nveva

it is not clear how good the OCB assmtion is outside the resonator.

Mis problem could, of course, be overcome by solving for flelfd sati-

fying the exact boundary conditions, but this w•uld be impossible fbr

the rectangular parallelepiped, except by nmr.cal metbods.
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There is, fortunately, another alternative by which the validity

of the approximate solution for the rectangular resonator may be checked.

The spherical dielectric resonator operating in the dominant H mode has

electric and magnetic field configurations quite similar to those of

the rectangular parallelepiped operating in the same mode. What makes

the spherical dielectric resonator of special interest is that the

electric and magnetic fields can be determined exactly, and therefore

an exact expression for the energy storage can be derived. Using the

energ relations given by Yee29 for the dominant H11 0 mode of the di-

electric sphere (where the exact resonance condition for the sphere has

been employed), the factor f defined by (5.14a) is found to be f = 0.85

Thus a dielectric sphere having the same volume Vd as the rectangular

parallelepiped, but necessarily a slightly higher frequency (4%), has

about the same energy storage. This result makes more reasonable the

original assumption of OCB conditions for the rectangular parallelepiped

dielectric resonator, and in particular the extension of these conditions

external to the resonator.

On combining (4.53) and (5.14a), the expression for h becomes

h -PQ / (5.15)

By inserting the aforementioned parameter values, then (5.15) becomes

ho 0. .332 (ao)1/2 (5.16)

The ferrite is located in the center of the dielectric resonator

in the actual experiment, and therefore it is worthwhile to investigate

the variation of the magnetic field near this point. Figure 5. 4 shows

the variation of the dominant magnetic field component h as a functionz

of z for x aa/2 and y = b/2 . The magnetic field h is az
maximum at the center of the resonator and has the same kind of z-variation
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as do the electric fields given by (5.10). The importance of

properly centering the ferrite sample in order to achieve maximum field

strength and uniformity is obvious. The arrow indicates how far the

edge of the ferrite extends when placed at the resonator center. The h Z

magnetic field variation over the ferrite sample is about I%. Thus h 0

may still be taken approximately as the average magnetic field strength

over the ferrite sample volume. The transverse magnetic field at the

sample edge is less than 1% of the maximum field strength. Hence, as

far as field uniformity is concerned, the maximum deviation of the mag-
0

netic field lines from the z direction is somewhat less than about 0.5

The presence of the frequency tuning plunger causes the field to

distort somewhat from the configuration described above. In particular,

it causes an increase in the lateral (x-y) components of magnetic field.

The diameter of the frequency plunger was almost as large as the resonator

dimension a . The position of the plunger was symmetrically located

parallel to the z-axis of the resonator. The distance of closest ap-

proach for the plunger of 0.06 in. is indicated in Fig. 5.4. The dis-

tance corresponding to two successive turns of the plunger screw is also

indicated. The resonator was operated with P > 2 to minimize dis-

tortion of the field while still being close enough to have an appreciable

effect upon the resonator frequency.

In the exact solution of the fields for the spherical dielectric

resonator operating in the HI10 mode, it has been shown29 that radiation

of power from the resonator takes place. This will also occur in the

rectangular resonator. As the plunger is moved closer to the resonator,

a greater portion of the total solid angle is shielded-against radiatidn

by the plunger. Hence it is expected that the radiation will be reduced

as the plunger becomes closer to the resonator. Such an effect was ob-

served experimentally by an increase in the QO of the resonant system.

The Q0 increased by about the same percentage whether the ferrite was

present or not.
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E. MMUREMENT OF THE UNLOADED

In order to accurately evaluate the rf magnetic field strength at

the ferrite during the threshold experiments it is necessary to know

the unloaded QO of the ferrite-loaded resonator and the variation of

Q 0with Hdc . The Q was measured at low power levels--far below

that power level at which the instability thresholds occurred. The

low power level Q's were adequate, however, since the effective re-
sistance (or imaginary part of the magnetic susceptibility) of the fer-
rite does not change until loss mechanisms due to growth of elastic

or spin wave instabilities are intruduced. Besides, it would be much

more difficult to measure the precise value of the Q at or near the

high threshold power levels because average pulse beating effects would

be significant, particularly if the half-power method were aeployed.

If the sweep frequency method were employed, a wide bandwidth high power

amplifier would be required.

1. Basic Relations

The relationship between the loaded L , the unloaded % ,

and the external Qext of a resonant system is given by0

1 a I' (5.17)
L q% qet

The external %ext is related to % by

Qext 0

where 0 is the coupling coefficient. Thus the unloaded Q% my be

given in terms of % by

S (1 + () ,
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The coupling coefficient 1 for an overcoupled system is given by

r 0 (5.20a)

and for an undercoupled system by

1

r 0 (5.2Ob)

where r 0  is the VSWR on resonance and the VSWR is related to the

reflection coefficient r by the following:

r .r (5.21)
r + .r

The external Qext given by (5.18) is a quantity dependent upon

the coupling between the microwave power rource and the resonant system.

For a metal cavity this coupling is usually through an iris or a probe.

For the dielectric resonator system the resonator is placed inside the

waveguide and the coupling is adjusted by means of a movable short.

2. Q-Circle Method

Initially, an attempt was made to measure the unloaded Q. by

the Q-circle method using instruments designed for a 1 kc square wave

modulated signal. However, the time involved in measuring the VSWR

and locations of the VSWR minima was sufficiently long, in, spite of the

low power level (- 1 mW) of the signal generator, that dielectric heating

effects distorted the results. The dielectric heating effects observed

were due to the microwave power absorption of the resonator, as well

as to the general ambient temperature increase between measurements.

These heating effects were compensated for to some degree by taking

each set of readings in an alternate sequence about the resonant

frequency. Nevertheless, it was decide- that other, more precise methods

of determing the Q would be used in order to circumvent these heating

effects.
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E. ME&SURDUT OF THE UNLOADED

In order to accurately evaluate the rf magnetic field strength at
the ferrite during the threshold experiments it is necessary to know

the unloaded Q of the ferrite-loaded resonator and the variation of

Q 0with Hdc . The Q was measured at low power levels--far below

that power level at which the instability thresholds occurred. The

low power level Q's were adequate, however, since the effective re-

sistance (or imaginary part of the magnetic susceptibility) of the fer-

rite does not change until loss mechaniss due to growth of elastic

or spin wave instabilities are introduced. Beside, it would be much

more difficult to measure the precise value of the Q at or near the

high threshold power levels because average pulse heating effects would

be significant, particularly if the half-power method were a~loyed.

If the sweep frequency method were employed, a wide bandvidth high power

amplifier would be required.

1. Basic Relations

The relationship between the loaded Q , the unloaded % ,

and the external Qext of a resonant system is given by'0

ext ex

The external qext is related to QO by

Q1ext wQ

where 0 is the coupling coefficient. Thus the unloaded . m be
given in terms of • by

- (+1 )Q1-
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The coupling coefficient 0 for an overcoupled system is given by

0 = r 0  (5.2oa)

and for an undercoupled system by

1
ro0 (5.20b)

where r is the VSWR on resonance and the VSWR is related to the

reflection coefficient r by the following:

r 1 + jI l. (5.21)

The external Qext given by (5.18) is a quantity dependent upon

the coupling between the microwave power source and the resonant system.

For a metal cavity this coupling is usually through an iris or a probe.

For the dielectric resonator system the resonator is placed inside the

waveguide and the coupling is adjusted by means of a movable short.

2. Q-Circle Method

Initially, an attempt was made to measure the unloaded % by

the Q-circle method using instruments designed for a 1 kc square wave

modulated signal. However, the time involved in measuring the VSWR

and locations of the VSWR minima was sufficiently long, in spite of the

low power level (- 1 mW) of the signal generator, that dielectric heating

effects distorted the results. The dielectric heating effects observed

were due to the microwave power absorption of the resonator, as well

as to the general ambient temperature increase between measurements.

These heating effects were compensated for to some degree by taking

each set of readings in an alternate sequence about the resonant

frequency. Nevertheless, it was decided that other, more precise methods

of determing the Q would be used in order to circumvent these heating

effects.
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3. Sweep Frequency Method

The sweep frequency method was employed to measure the Q for

experiment I. A block diagram of the experimental setup is shown in

Fig. 5.5. A mechanical sweep generator was employed to drive the fre-

quency dial of the L-band signal generator. A sweep frequency'generator

of the wide band, backward-wave oscillator type would have been ideal,

but none was available. Since the frequency was swept over a 50 1c range

the heating effects were greatly reduced and ambient teiperature drift

was no longer a problem. The mechanical sweep generator provided a
voltage output proportional to the angular displacement of the frequency

dial. The output voltage, which was then linearly proportional to the

differential frequency, was fed to the horizontal iniut of the oscillo-

scope. The vertical input of the oscilloscope came from the reflectometer,

which indicated the reflection coefficient of the dielectric resonator

system. A camera was utilized to take photographs of the oscilloscope

trace of reflection coefficient vs frequency.

Given that Qext is constant, the type of coupling (over or under-

coupled) can be determined by noting the dependence of o upon, Pa& or

r 0 through (5.18) and (5.20).

Another means of determining the type of couling follows from

(5.18) and (5.20), with the knoailedge that the ferrite losses incrmame
as the dc magnetic field H0 is decreased The tnpe of cou4ing is

determined by observing the change in reflected power on resonaace when

increased loss is introduced into the system by reducing H0  . ThMs,

gar an overcoupled system, increasing the loss causes the reflected power

to decrease; whereas if the system is undercoupled, the reflected

power will increase.

Kniwing whether the signal source was over or widarcoipled to the

resonator system, it was possible to determine the Q of the resonator

system from one of these photographs. First, the reflection coefficient

r0 on resonarce was determined. Then the couling coefficient i

was found from (5.21) and (5.20). Knowing , the VMM at the laif-

power points was determined from a Smith chart, or by the
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expression30

(r.) .1( 1 + 0)+ 1-+ (1+ PY(5.22)L Is

The reflection coefficient corresponding to (5.22) ly be obtained,

and the resulting frequency difference &f1 / 2 between half-power points

may be read from the photograph's plot of reflection coefficient vs

frequency. With fo as the resonant frequency, the loaded L is

defined by

_L 0 (5.23)

'&f/2

Finally, the unloaded Q% may be obtained from (5.17).

4. Half-Power Method

The half-power method was a method exployed to masure the Q for

experiment II. This method was used because it had greater accuracy

and was wich quicker than the sweep frequency method. The egperiaental

arrangement is shown in Fig. 5.6. The pulse length of the signal W
less than 2 jpsec, and the repetition rate was 20 cps. The incident

power level was about 10 dB or so lover than the noxima output of the
dLgnal generator (-ImW). Hence, the average power introduced into the

resonator system was lower than the average power required for the weep

frequency method by a factor of at least 10". Coequhntl.t micromve

heating effects were completely negligible. Alsa any time d between

taking the data points was completely Justified as long as the saibat

temperature did not change appreciably during that time.

First, the frequency of the dielectric resonator system was a&justed

for resonance and the value of the attenuator noted for an oscilloscope

deflection of 0.1 volt. Then the mystem was tuned cff resoace by the

tuning plunger, and the attenuator readlig taken for the am oscilloscope

deflection. The attenuator was next set at the half-power points and

- 131 -



401

'4S

0$$
ca

V)

:9

$$4

-P44
to)

L 0

34

13I



the frequency measured on each side of resonance. Thus the loaded

could be determined directly from (5.23). thowing the reflection

coefficient on resonance, % could then be determined from relations

(5.19) through (5.21).

5. Results

The results obtained for the unloaded O as a function of the

applied de magnetic field H0 for experiments I and II are show in

Fig. 5.Ta. Normllized curves showing the approximte dependence of

Supon the frequency tuning plunger position are shorn in the ac-

companying Fig. 5. 7b. Actually, these curves also d~pendsllghtly upon

the magnitude of Q0 ; i.e., the lower the % , the nearer the plunger

must be to the dielectric resonator for a given relative increase in QC
Nevertheless, the curves shown in Fig. 5.7b are sufficiently accurate

over the range of frequency plunger positions,for which tbresbold measure-

ments were taken. The increase in Q as the plunger is =rwed Inward

is attributed to a reduction in the power being radiated from the

resonator. The Q increased by about the s"e percentage whether the

ferrite was present or not. The deviation of % at the nearest plunger

position from that at the off-resonant plunger position was not nore

than 15%. The position of the frequency tuning plunger bad no noticeable
effect upon the resonator coupling coefficient or the external Qext

The decrease of Q at increasingly low dc field values show in
Fig. 5.7a is due to the increasing proximity of the pump frequency to

ferromagnetic resonance. At large dc fields the ferrite loss becomes

negligible and % approaches the unloaded Q of thw dielectric

resonator without the ferrite, since energr atorag* in tbt ferrite is

negligible compared to that of the resonator. The dashes at the far

right of Fig. 5. 7a indicate the measured values of Q0 Without the

ferrite.

An improvement in the resonator system % frm experiment I

to experiment II is apparent from FU. 5.7a,b. In the two cases the

QO's were measured with different plunger position, but this accounts

for only about a 1C% change in Q% . The remainin change is attributed
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0 Experiment I with plunger position at
500- P a 9 turns.

A Experiment II with plunger position at
P -3 turns.

0 H I I I
0 1010 200 30-0 411- 5006070

FIG. 5.7a--UuJoaded Q. V-. H. .'or e.-.-:v~rimer -s I and II.
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to a reduction in the sount of Ducco cement at the contact between the

resonator and the supporting dielectric rod, where there was strong rf

electric field, and to a thorough cleaning of the waveguide system.

No appreciable dependence of the unloaded Q% upon the position

of the movable abort was noted. However, the range of movement of the

movable short to obtain proper coupling was small in both experiments.

The variation of qO with temperature in the ambient temperature

range was not appreciable. This is as expected, on the basis of the

MSail temperature dependence of tan 8 given in Appendix A. In any

case, the measurements of QO were taken at nearly the same ambient

temperature as were the threshold measurements.

F. SUUAY

To achieve the large rf magnetic field amplitudes required in order

tý reach the phonon threshold, a dielectriv resonator was employed

rather than a conventional cavity. With the strontium titanate dielectric

resonator, the large rf field can be obtained with fairly low rf power,

breakdown is avoided, and a large ferrite filling factor is obtained.

The microwave power source and, in particular, the microwave circuitry

associated with the modulation of the klystron beam current are described.

Explanations are given for the limitations of the rf power pulse fron

the source. Calibration techniques for the rf power level and dc mag-

netic field are also discussed. Various details of the dielectric

resonator system are described--including the resonant mode configuration,

coupling of ri' energy to the resonator, effect of temperature changes

upon the resonant frequency, and microwave heating of the di4electric

resonator and ferrite.

An expression for the maximum rf magnetic field amplitude (at the

position of the ferrite) was derived in terms of the unloaded Q and

power absorbed by the resonant system. Reliable measurements of the

unloaded Q were obtained by using the sweep frequency method and

the half-power method; results are given. The unloaded Q was found

to vary significantly with the dc magnetic field owing to the presence

of the ferrite.
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CHAPTER VI

TffESH OLD &LUIiT

Saturation effects have been observed in two experiments using a

disk of single crystal Zn 2 Y (0.054 in. diam x O.0076 in.) cut with thi

easy plane lying in the plane of the disk. Actual measurements of ab-

sorbed power by the system were taken at the onset of saturation as a

function of the applied dc magnetic field H0. The onset of saturatic

was determined by observing the reflected pump pulse and noting the povw,

level at which the growth of instabilities first became evident. There

was a critical power level at which the instability threshold was reachi

and a transient appeared in the reflected pump pulse. nowing the ab-

sorbed power at the threshold and the unloaded as function of

the applied dc magnetic field H0  , the apparent critical magnetic

fielL. apl6,xde (ha) at the ferrite sample was determined from (..16).

A. E(PERIMENT I

A photograph of a typical power pulse incident up* the rezonator

system for experiment I is shown in Fig. 6.1a. The incident power pulse

was 120 Lsec long and had a time constant of about 309 gaec. The decay f

the incident pulse amplitude was due to sag in the klaystzn beam current

which discharged from a large capacitor. This t1ne constant could be

reduced by increasing the capacitor voltage; hovever, this caused the

distortion of the pulse to increase. Therefore, a pulse was sought whic

had a maximum time constant for a inimug amount of distortio. The doxu e

image I.n the photograph of Fig. 6. la was due to ac pickup.

A typical reflected power pulse below the instability threshold is

indicated in Fig. 6.lb. The time constant of this 3u2se, in general, wa

the same as that of the incident pulse. This'does not appear to be quit-

true in comparing Fig. 6.1b with Fig. 6.1a., because the latter was taken
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Power

(a) Typical incident power (b) Reflected power pulse
pulse. below threshold.

(c) Reflected power pulse Just (d) Reflected power pulse
above threshold, above threshold.

(e) Reflected power pulse showing the
saturation effect in the low dc field
region.

FIG. 6.1--Pulse waveforms for experiment I. Time scale: is'.
20 psec/division.
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at a slightly lower capacitor voltage. The "ear" at the end of the

reflected pulse was due to frequency modulation of the microwave signal.

The latter arose from the variable load which the klystron presented to

the cw signal generator at the leading and trailing edges of the pulse.

This effect was somewhat reduced, however, in experiment I because the

reflection coefficient was high (I11 o 0.3) . The gradual decay of the

ear at the trailing edge of the pulse was due mostly to the fairlyj bah

RC product of the crystal detector circuit, but was also due in part to

the finite time constant of the klystron beam current switching network.

Although the time constant could have been reduced by decreasing the

resistance in the detector circuit, this was not done because It would

have reduced the already low sensitivity of the reflected power wasurmnts

(see (4.49) on the sensitivity requirements].

Since the dielectric resonator system was overcoupled, the effect on

the reflected pump pulse of an increase in ferrite absorption wva to decrease

the magnitude of the pulse. A typical example of a reflected VAUs

exhibiting the initial appearance of increased ferrite absorption is son
in Fig. 6.1c. This wavefore is typical of those from which the apmront
critical fields (h ap) were determined. As discussed above, the threshold

was found from the absorbed power level occurring at the point where
absorption was first noticed. It is noted from the figure that tkh ferrite
absorption transient builds up gradually to a peak sad then derays back to

the unperturbed reflected pulse amplitude. This t"pe of behavior is very

similar to that predicted •b the phonon absorption theory of Chapter IV.

Figure 6.ld shows a typical reflected pump pulse at an absorbed power

level above the threshold level. In this case It is noted that the ferrite
absorption is greater and the pulse saturation is even more pronounced than
at the threshold level. This behavior also exhibits the typical absorption
behavior described in Chapter IV.

In studying the precise nature of the, ferrite absorption It will be

helpful to normalize the reflected pulse waveforms of Figs. 6.1cd to an

arb~itrary level below threshold (Fig. 6. lb). . im, results of Goit this'
are shown in Fig. 6.2. These waveforms sbowing ferrite absorption are
similar to those predicted in Chapter IV for phonon absorption in the

ferrite. In particular, the normalized theoretical wavefor, of Fig. 4.8
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FlG. 6.2--Draving of reflected power waveforms of Figs. 6.1b,c,d
normalized to the level corresponding to 6.1b.
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are comparable to the normalized experimental waveforms of Fig. 6.2. (l)

Figure. 4 .8a is comparable to Fig. 642b, the reflected power waveform before

the onset of saturation; and Fig. 4.8b is comarable to nig. 6.2cq the

reflected power waveform when the phonon absorption first appears. In

each case, the absorption during the pulse builds up to a-gea and then

decays gradually. It is seen that the waveforms above threshold powr

levels (Figs. 4.8c and 6.2d) are also similar in nature. Amin, the

absorption builds up to a peak and decays. In both theory and experiment

the absorption peak increases with increasing powr levels.

The first exception to the theory occurs in tJe mWitude of th
build-,up time t . The experimental value N'wsrd f•rm Fig. 6.2a is

32 = sc , (6.1)

which is much shorter than the predicted value of t - LOepAsec for

experiment I, based upon a phonon of 1,5W. If the linea theory worked

.out in Chapter IV is correct, then the shorter observed build-up time simp

implies that the phonon q is actually much lover than 15M. In fact, it

wais hown in Chapter IV for (t4P ) W n 32 vsec thata s of 149w
obtained from the linear theory. It ala's be sufficient to &*Mept this
lover value of Qp as the actual value except for what kaens to the
reflected pulse waveform at higher p power love"l. Fkam Figs. 6.2c,d

the build-up time Is seen to deczase with the increaingl pover lemWl

This is contrary to the behavior predicted by (4.67), idne tAi %"
expected to increase with Increasing power levels, sad maht be ealaiaad
on the basis of a variation of 4 with the U tuai of the Wistable

phonon as was suggested in Chapter IV. Iany case, It is cli.r tut'the

experiment does not provide a reliable measurd value f

M1 Although the curves of Fig. ii,8 ware calculated for the values of
exprimnt II, it is clear from the equations of Chaptar IV that the shape
of the curems describing the phonon absorption would be the same for
experiment I. Since r is much larger for experiment I than for experiment 1I,
however, the effect of phonon absorption would be prqprtoxLUy es" for
experiment I.
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The above discussion relates the observed saturation threshold

behavior at the highr dc magnetic fields to the phonon saturation Lheory

of Chapter IV. At the lower dc magnetic fields, quiý.e different threshold

observations were made. A typical reflected pump pulse in the low dc field

region is shown in Fig. 6.le. Here the threshold is defined by the appearance

of the small ripples shown in the figure. This type of threshold is

attributed to the presence of spin wave instabilities, which apparently

dominate the phonon instabilities.

Measurements of absorbed power were •aken as a function of the external

magnetic field H0 at the threshold levels corresponding to Figs. 6.1c

and 6.1e. Apparent critical fields were obtained from these measurements

&nd are plotted in Fig. 6.3. The two typical experimental runs shown were

taken with increasing H0  . These runs were also typical of runs taken
with decreasing H0 . In order to verify the continuous nature of the

threshold curve, the experimental points for the second run were taken at

the smallest increments of H possible with the magnetic field current

supply used in experiment I. This run also gives a good indication of

the experimental error to be expected in the reproducibility of such

measurements.

The anabient temperature was slightly different for the two runs

indicated. This implies a possible greater disparity in the temperature

of the ferrite itself for the two runs. In accordance with results from

the previous chapter, the temperature of the ferrite depends chiefly upon

the length of time it is exposed to a given microwave field. It is evident

that the apparent effect of slight temperature deviations on the thresholds

from one run to another was not appreciable and is within experimental

error. However, for both runs it is expected on the basis of the analysis

of Chapter V that at the higher power levels there will be some shift

toward lower H0 values due to the dependence of the dmagnetizing field

upon temperature. In fact, using the 10°C temperature change estimated

for Pa 10 W ,a downward shift of 80e would'be expected at

Ho 0 365 Oe .
The relationship between the apparent theoretical threshold hap

for the actual pulse and the threshold hcr for an ideal pulse was
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determined in Chapter IV. This ratio ha/hcr is only approximately

constant over the range of field H0 for vhich the experimental thresholds

of Pig. 6.3 were taken. The only significant chan in this ratio takes

place through variation in the phonon absorption peak (Pp ) . Recall

the relation (4.61) vhich relates P to the reflection coefficient r
p

and the change in reflected power rP r Using this relation, it vas

found from the experimental results that (P ) changes by a factor of
p ap

50:1 , increasing monotonically as H0 increases. The effect of this

change in the observed phonon absorption peak upon the ratio hap/hor

about a mean value Is less than 0.2% for the parameter values associated

with (4.66), for the effective - 127 and the observed build-up time.

T7is, the ratio hap/hcr is, indeed, a constant for all practical purposes,

and the above assuiotion is thereby Justified.

The dominant theoretical phonon threshold for an ideal pulse, given

by (3.52),. ma be h K x13/

(A - (6.2).

p Cr
1 + 4 .67 x'

2Ivhere 2C(PO 2

p 39 r3qB 2

and it is recalled that

x' x+d

where

•dd

4M a - - -
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The apparent threshold will then be given by

( h 3/2(p ap HO hr b

I + .679x"

where the parameters are defined as above. Since the ratio haphr

is very nearl.y iepeedent of HO as ezplaned, above, Nq. (6.3) mes
fitted to Fig. 6.3 by adjusting the parameters (hu,/hcr)S and . It

was found that the best fit was obtained vith

!a9. 68(61)

and

d o.o . (6.0.0)

Expression (6.3) is plotted with thee paramter ams in Fi. 6.3, v ere
it is seen that experimental points fit the teorewtical curv quite

closely.

From the value of d given by (,-b), it is f&Ad t

H.0j2k2 5 •8 0

Knowing the lattice constant a , and the vli of k for the woUbU

elastic wave moe [determined from (3.2%) and (3•.•7)], th, exc mAW.
field in the easy plane H becomes

- 12.3 x 107 (64:)



From the above value of (h./hcr) Kp given bFr .(6.4a) and the theoret:dcal

valueof haher- 1.003 for ekpriment I given by (4.6), the value of

K obtained is 9.65. This value is somewhat larger than the value of
P

K - 7.74 estimated in Chapter III and given in (3.60). The latter was
based upon the estimates of Q a 1500 and B - 5 X 106 erg/cm3 Taking

instead the effective value of % = 127 given by (4.66) and the same

values of C and 4+M employed origial, a new estimate Wyýe

obtained for B3 . From the expression for K given in (6.2), the

following value for B3 is obtined:

B3 - 1.54 x 107 erg/cm3  • (6.6)

Thus it appears that the toelastic constants for Zn 2Y are larger

than they ar for YIQ (B - 5 x 106 /cL3).

With the parameters given in (6.4) the theoretical threshold

expression (6.3) fits the experimental points of Fig. 6.3 well. There

are, however, two minor considerations which should be pointed out. The

first one, which has already been described, is the effect of microwave

heating on the saturated magnetization and hence upon the applied dc

--- netic field required to sustain a given internal field. This effect 5

explains the deviation of the experimental points above the theoretical

curW at the higher threshold levels shown in Fig. 6.3. Since the effect

of microwave heating at the higher thresholds decreases the demagnetizing

field, the theoretical curve shown in Fig. 6.3 more closely approximates

a curve of experimental points taken at the same ferrite temperature , rather

than one of Iiointa taken at the saw ambient temperature. The second

consideration has to do with deviation of the theoretical threshold from

that shown in Fig. 6.3 for the lower H0 values. In deriving the trans-
2 2

verse phonon thresholds the assumption was made-l tbAt (D <<«w " As was

mentioned in Chapter III, this condition is fulfilled very well with dc

fields above H03 where 2 • 0.1 6 . However, in the transition range,

"H <Ho <H O the theoretical phonon threshold is somevhat lover than
H02 0 H<"03indicated in Fig. 6.3. If both of the above effects are taken into

account in the interpretation of the experimental points and theoretical

curve of Fig. 6.3, it is expected that slightly different values for the
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exchange constant d and the multiplicative constant K would be

obtained. However, the corrections which night be made would be within

experimental error of the points of Fig. 6.3.

At dc fields HO - H02 in Fig. 6.3 the reflected power waveform

exhibited a different kind of saturation effect. This is attributed to

the growth of spin wave instabilities. The spin wave threshold& for an
ideal pulse were plotted as a function of internal dc field in Figure 2.3.

These are related to the critical field h by the familiar definitio
cr

h
(A) - - . (6.7)p or

For the actual pump pulse the apparent threshold is

(Ap~p-~Rm(~~ (6.8)
ocr

It will nwv be assuned that h ap/her is a coastantv il sadismt oft
and that this constant is approximately untI. This assuptio is

reasonable in view of the results for the build-up of pbaca instabilitIes

(Chapter IV). Then the apparent spin wave tbreshoLs are Si"v swraximitely

by Fig. 2.3, where the spin wave Q has been assumd to be N.193-. A
comparison of the theoretical curves of Fig. 2.3 vith tih Pq''rwI I

points of Fig. 6.3 shoy• that the experimental thresholds are larger. It

is tentatively deduced from this that the spin wave I is lower tbm

193. By matching the theoretical oanresoa•ae second ord44 tb"MholA
curve (2•.50) to the level established by the three data points war
Ho a 2700 o, an estimate Q89 23.4 , is obtained for thefeftwctivsq

wave Q . Using this value of Q , theoretical vals of the first *ad
second order spin wave thresholds have been plotted in Fi. 6.3. It Is
seen that the lowest threshold chanies from spin wave to ph== at
HO = 1o0 " The second order off-resonance spin threshOl Is seem
to increase very steeply above HO - 1102 , and is the doiaa th LtL
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threshold only over a negligibly small range of H0 .
At further reduced m&netic fields, % < Pi, Ihe experimental

thresholds are seen to increase rapidly--in a region where the very low

first order threshold is expected to be dominant. The explanation for

this probably lies in the fact that in this region the internal dc magnetic

fihld is insufficiently large to saturate the magnetization of the ferrite.

Thus the magnetization no longer is uniform through~ut the ý,ample olume,

and additional mignetic relaxation processes may be operating.

B. EXPIRIXOT II

This experiment, similar to experiment I, was undertaken to observe

in greater detail the more exact nature of the saturation effects on the

reflected pump pulse. The magnet used for this second experiment Iad a more

uniform, better regulated, and larger range of magnetic field than did the

one employed in experiment I. The magnetic field was sufficiently uniform

for it to be measured directly with the NW4 probe. The larger range of

the magnetic field Ho allowed measurement of thresholds corresponding

to the maximum power output of the signal generator. This made it possible

to pass through H the maximum field at which the fifth order spin

wave instability would be permitted on resonance.

Also, in this experiment the level at which the reflected power could

be detected was 20 dB lower than in experiment I, permitting a reduction

in the reflection coefficient r of the resonant system; and the unloaded

Q of the dielectric resonator system was higher than it was for experi-

ment Is with the result that the incident power level P was reduced.

The effects of lower r and Pi on the relative change in reflected

power P&/Pr due to a given change in ferrite absorption are seen by an

examination of (4.49). This shows that bPr is increased; the saturation

effects can therefore be observed in greater detail. In this experiment

much better photographs of saturation phenomena on the reflected pulse

were, in fact, obtained.

A photograph of a typical klystron beam current pulse, as seen at

the output of a current pulse transfrmar, is shown in the top half of
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Fig. 6 .4a. Some indication of the sag in the current discharging from the
high voltage capacitor in the klystron modulator is evident in.,the first

30 4sec. The increased sag beyond 30 400C in due to sag inherent in the
current transtormer as well as in the beam current. The *oaplified rf
power pulse at the output of the kl~ystron detected at the directional
coupler is shown it the bottom half of Fig. 6.4~a. The pulse'vas 90 ppec(
in duration and had a time constant of about 124 Osee. Thi s pulse has a
shorter length and a smaller time constant than the incident pulse of
experiment I because there was an equipment failure and unaboidable
alterations had to be made in the klystron modulator. For each experiment,
a pulse of maximum time constant was, of course.. sought.

A typical reflected power pulse below the instability threshold is
indicated in Fig. 6.4b. The ears on the reflected pulse, Ade to the
frequency modulation described previously, are more pronounced than they
were for experiment I because the reflection coefficisiA~ s milch smaller
(jrlj 0.08). The time constant of the ears is as"*le than for experiment
I because the resistance in the crystal detector circuit Ms decreased.
It was possible to decrease the resistance for experiment U because the
sensitivity (or the relative change in reflected power) was gzrater.. for
reasons mentioned above.

In this experiment the dielectric resonator system vex anain ovver-

coupled. Thus the effect of an increase in ferrite absorption van to
decrease the mmanitude of the reflected pnqp pulse. A typical eample of
a reflected pulse exhibiting the initial appearance of ferrite absorption

is shown in Fig. 6.4c. This waveform is typical of those from vhich the
apparent critical fields (h ) vor. determined. It is apparent that theap
ferrite absorption gradually builds up to a peak &An then decays as in
experiment I. UHowover, in experiment nI the intial appas_ of the
absorption peak is more clearly seens &Aa the simla-rit to Usp Wvetra
predicted by the theory of Chapter IV is even no". matko$.

Figure 6.14d shovs a typical reflected pump pulse at ah absorbed
pe #or level above threshold. The increase in ferrite absorption is l-L.-,i
apparent, At a still higher level above threshold, the reflected pxV
pulse appears as shown in Fig. 6.14.. Here the absorkption peak appars
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S TLime (20. .sec/division)

(a) Klystron beam current and rf (b) Typical reflected power
output power waveforms. pulse below threshold.

11 Power

S-Time (10 psec/division)

(c) Reflected power pulse at (M) Reflected power pulse above
threshold. thres hold.

(e) Reflected power pulse much
above threshold.

FIG. 6.4--Pulse waveforms for experiment II.
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slightly truncated--indicating the presence, possibly, of pulse saturation

due to the change in r , as described in Chapter IV. When the changes

in reflected power become as large as those shown in Fig. 6.4e, this

effect should be appreciable. If the ferrite absorption increases much

more than that indicated in Fig. 6.4e, the reflection coefficient Vill
"go through zero" at the absorption peak and the dielectric resonator

system will become undercoupled.

In studying the precise nature of the ferrite absorption it is &a&in

helpful to normalize the reflected pulse waveforms of Figs. 6.4b-e tOan

arbitrary level below saturation. The results of the normalization are

shown in Fig. 6.5. These waveforms showing ferrite absorption are similar
to those shown in Fig. 4.8 for the theoretical phonon absorption based

upon the parameters of experiment II. In particular, it is noted that

the predicted waveforms of Figs. 4.8a-c correspond with the observed

waveforms of Figs. 6.5b,.d. In both theor7 and experiment the absorption

peak increases with increasing power levels above threshold. The shape

of the absorption is approximately the sae in each case. There appear,

however, to be the same deviations from the theory as were observed in

experiment 1.

The first exception to the theory occurs in the uitui of te

build-up time t &P The experimental value observed from Fig. 6.5c is
ap

Stap Oexp a 28 &sec

which is shorter than the predicted value of t ap 60 0sec for experimut

II, based upon a phonon % of 1500 . It is notewort&,, though, that

the experimental value of t is closer to the predicted value for theap
parameters of experiment II than for those of experiment I. Thie, as will
be discussed below, is 4 attributed to the lower ferrite absorption level

of experiment II. From the linear theory of Chapter IV it my be concluded

that the shorter observed build.up time implies that the phonon is
actually much lover than 1500. In fact it was shown in Chapter ý that

a Q of 294 was obtained for the linear theory for (t)p ) - 28 psec.

An explained previously, this value of S y prOaly be rgs-4" a an
effective value which can be considered as decreasing with increaeslg
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Per III

no~I. 6.5--Drawing of reflected power wvef~.orms of Pigs. 6.11ooo~d
normlized to the level corremponding to 6.1b.
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phonon amplitude. Thus the phonon damping is considered nonlinear. By

this interpretation of the reuults, it is possible to explain the decrease

in the observed build-up time tap with increasing absorption levels,

which can be clearly seen in Fig. 6.5.

The above discussion correlates the observed instability tkoesholds

at the higher do magnetic fields with the theory of Chapter IV. At the

lower dc magnetic fields, quite different threshold observations were made.

In this experiment several different kinds of saturation effects were

ubserved for H< • H02  A typical example of the reflected power vave-
fort taken in thim region is shown in rig. 6.6a. The do field of

H0 a 300 0 for theme waveforms is within 14 Oe of H 02 Xach succesively
higher waveform in the photograph occurs for a higher incident pmor level1
and hence a higher field strength at the ferrite. The lowest trace ia

the photograph shows a slight evidence of ripples at the lowest p r

level. At a slightly higher power level the ripples shov their uoMvbt
random nature and their amplitudes increase, The third wavefors sohm

ouperimposed upon the random ripples the appearance of the absorption
peak associated with the phonon theory. At the him aet' power Wavoofoz '•aLtated

in the photograph, the ripples a" clearly dominatd by the %Woon-like

behavior. At do fields higher than 300 Oe the amplitude of the sll

random ripples became lewu and less, until at about HO a 360 O0 tbw
vanimhed completely. At fields less than 300 Oe the Gamlitude of the

rippleo became larger, but they were utill dominated by the phonon

absorption dlp dewcribed above until the point H -wO2 was r•ehehd.
1Yor HO < H ra•adou ripples, mimilar to those described above appmerod0 OL2
quite uuddenly at a critical power level. This is believed to define tUm

second order spin wave threshold. For HO > UO0 the ap4*arau of the

absorption dip im believed to define the phoon threshold, even when
random rVlas are superimposed. The reason for the superpoit'i•a of th

two patterns, suggesting concurrent spin wave and pbonon lastabil~tin,

is not known.

For Ho < Ho, another kind of saturation effect as obswed. ThMs
ii lhow in Fig. 6.6b, for vhich HO w 263 04 . There was athreshol ,
marked by the sudden appearance of relaation, oscillations in the form
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Power

- Time

(a) Satu~ration ef'fectu for HO: !;lightly
grauecr tharn H02.

(b) S&uturution xi rectu for H0 l.auu than H 01

(c) Saturatione afects for H0  slightly
leou than Hui.

FIO. 6.6--Reflected power pulse wavofor= showing various saturation
effects t,'•erved in experiment II. Time ucale iz2i 10 puec/diviaion.
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of an attenuated sinusoid. One reason for the attenuation we, of course,

that the incident power decreased during the pulse and eventually reached

a level belov the threshold. This vevefors vas r ducible and had a

relaxation frequency of about 250 kc. (1) This effect was observed only

at dc field values between f and Ho1  , and is attributed to the first

order resonant spin wave instability. For the slightly higher dc field

Ho a 265 Oe a similar behavior was observed, as is shown in the top

waveform of Fig. 6.6c. In this case, however, as the power level Vas

increased the waveform shown in the bottom of Fig. 6.6c wvs observed.

Here the attenuated sinusoid broke up into somewhat random oscillations

as the power was increased further. This effect is not umdesAto.

Ibauremnts of absorbed power were take as a function of the

applied magnetic field H0 at the threidhld level for each type of ferrite
absorption. Apparent critical fields were obtained from thes aetaureftents

and are plotted in Fig. 6.7. Proceeding as before with expression (6.2)

and (6.3), a •bst fit" of the theoretical phonon sehol curve to the

experimental points of Fig. 6.7 is obtained with

.. a 2a 10.35 (6.9a)
hcr

d 0.022 (6.9b)

Expr'ession (6.3) is plotted with these parameter values in Pig ,6.7, where

it is seen that the experimental points fit the theoretical curm closely.

The value of d in (6.9b) Is the sme an was obtained froa the thold
curve for experiment I. Thus the calculated exchagge field Is the *ame

as before, equation (6.5), ,

F"rom, the value of (hapia di given. by (6.9a) and the %baooretical

value of hap/her a 0.961 for experiment II, given by (.79), the value

.. )Such relaxation oscillations have frequently been observed in
parallel pump experiments. They are not completely maUamtOad.
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90

0 EXperimental points for phonon thresholds
80

A xperimental points for thresholds

attributed to spin wave instabilities

70 -- Theoretical threshold curves

Phonon

threshold

60

50-
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\

30

0 -econd order spin wave
threshold

10 - First order spin wave threshold

01~H 0  10 rH03 - -I

200 30 400HO(Oe)

FIG. 6.7--Experimental and theoretical values of hp vs H0 for the Zn2Y
disk in transverse pumping experimeni II.
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of K obtained is
p

K -10.77
p

vhich is comparable to the value of K obtAined for the first exper3i9et.
p

Again, tain the above value of K , the effective value of 294

given by (4.67) and the same values of C and 40 used oriinally,

the following estimate for- B3 is obtained:

B3 - 0.959 x 3.07 erg/cZ3  (6.10)

This result is comparable to the result (6.6) for eatsrimat I.

As in experiment I, the tbresholds attributed to the second order

spin rave instability may be fitted to the theory by assuming a spin wave

Q given by Q N 18.0 , and the theoretical first and second order

thresholds are plotted in Fig. 6.7, assumig this value of Q .

results are coupaeable with those of experiment I.

C. 'SUMMARY AND CONCLUSIONS

Two experiments were performed using a disk of single crystal Z% y
cut with the easy plane lying in the plane of the disk. In each experiment

the apparent critical magnetic field was found to be a fiatlm Of the

applied dc wgnetic field. The instability tehold (or critical fiel)

was determined by the absorption peak in the reflected pup pulse.

Photographs of the incident and reflected power pulse wavefon ane shmo

and irregularities in the waveforms due to the nture of the power source

are explained. Irregularities on the reflected pulse eveftros due to the

growth of ferrite instabilities are discussed in detail.

In the dc magnetic fieMd region where phonm instabilities wero

expected to be dominant, the shape of the ferrite absorption on tUs

reflected pump pulse was nearly the sam as that pre•icted by t•h phomon

absorption theory of Chapter IV. The observation of instability thresholds

was found to be approximately as predicted by the theoretical spin wave

and elastic wave threshold calculations of Chapters II and IIl. At applied

dc magnetic fields above the point where the seond order spin wave tbheshold
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become off-resonent, the experimental threshold fields were found to

exhibit the sem functional dependence upon dc field as the theoretical

pI•na threshold curve. From this curve an estimate was obtained for the

excange field HBe. of Zn2Y in the easy plane. This functional

dependence strongly indicates that the magnetoelastic effect is the

dominant mechanism and that the observed thresholds were due to growth of

unstable elastic waves propagating and polarized in the easy plane. At

applied dc magetic fields below the point where the seond order spin wave

threshold become off-resonant, the experimental threshOld f:ld&s wer

found to exhibit qualitatively the same dependence upon dc field as the

theoretical first and second order spin wave threshold curves, sith sowe

exceptions.

Explanations for these exceptions are suggested but more work must

be done in order to understand the precise nature of theme instabilities,

and it should probably be done with ideal pultes. In the phonon threshold

case, however., the use of actual pulses permitted the determination of

both the agnetoelastic constant B3 and the phonon ; but there is

some question as to the reliability bf these values.
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APPDIX A

PHYSICAL cORsTANs PUM ZnY , YIG , NW Srri 03

This appendix presents a table of those constants which were useful

during this study, with special interest in the single aryntal properties

of each material. The single crystal values of the saturated magnetization
were assumed to be the sae as the polycrystalline values given, since the

crystal anisotropy was overcome at 11 k~e.

The values of saturated mgnetization and slisotroW at 29 0 C were

used extensively throughout this study and are given below for reference:

Genoral Constants

*w 2624 Qe

HA W6 O oe

I? a HAU/l - 3.22

a1. 32 kWc

. ,/ 0. 08o
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Property* Zn 2Y YIG Strontium
-- -- Titanete

F.,rimula Zn 2 Ba2 Fe1 2 022 Y 3FeO12 SrTiO3

Molecular Weight 148 738 183

Density (go/cm 3) 5.46 5.17 5.1337

Curie touperature (Oic) 403 560

Crystal type Hexsgonal Cubic Cubic

Lattice constanti()'of 'unit cell (i) a15.88 a-.1237 a-9038

cwl4.5

Initial permability at 29 0C
Polycrystal 28
Single crystal 700 eat.

Saturation mWmnetization 44M (0e) at 20oC 1700
Polycrestal at 11 K0i 27o00
Powder at 11 WCe 26283

Temp. derating (Oe/°C) near r.t. -8.4. -3.7

Aninotropy field Ht4Oe) at 200 C 9000 4,35,9

Temp. derating (C near r.t. -60 ut. 32 03 3 -0.7

Dielectric constant at 27 C and 1.31 k*c 10 eat. 277 8
Twp derating(1/0C', 1 ) near Jr.t. W1.0909)

Loos tangent at 1.'3 k* 12 co 4~, 39P
Temp, derating (1/0C.1) rnear r.t. _3,6Z x0"

Specific heat G(cal gm" 1 oC'1) 0.17 eot. 4  0.2 est. 4 1

Elastic constants (erg/cm3) c 26.9x10 o1l6

c12 -ml.77xiO
1 1

044-7 .64xio01

The source for these data iu reference 9 unless other-wise indicated.

tSee Chapter V.
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APPUDIX B

GLOWSARY OF PRINCIPAL SflSOL

Generalized vector which my represent • , , etc.

Ai Component of generalized vector along coordinate direction i

Alj, Component of generalized vector in rotated coordinate system

A• Pumping angle a h/H0

(Ap)ap Apparent threshold angle w h a/H 0

(Ap)(n) n th order spin wave thresholdpcr

(Ap) 1 3  Phonon threshold as a function of rotation angle n ; 1,j
refer to the direction of polarization and propa•gatdo(,
respectively

(Ap)ij Phonon threshold (mninimized with respect to O)
cr

vil•k Time-independent spin wave amlitudes

B1 ,B2 ,B YB4  Magnetoelastic constants for uniaxial crystal

CWletc. Elastic constants for uniaxial crystal

d Normlized exchange field - Dk2 / 4xE s ferrite disk diameter

I Free energy of crystal

E a Anisotropy energy

EK Mmnetpcrystalline energy

Se° Elastic energy

Is Nquetostrictive energy

I Y Phonon energy--the portion of 2e in the unstabUle mode

Time average stored phonon energy in sample
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G Frequency modulation parameter

Total magnetic field - H(r,t)

HA Anisotropy field along "hard" or c-axis

Aa Anisotropy field

H D DC demagnetizing field in the plane of the ferrite disk

4 Demagnetizing field for uniform precession

9dip Dipolar magnetic field or demagnetizing field for spin wave

Fex Exchange field

1 exild, Exchange field constant in easy plane, normal to easy plane

H Applied (external) dc magnetic field
th

HOn The applied dc field above which the n order spin wave
instability is no longer allowed on resonance

h Amplitude of applied (external)rf pump magnetic field

h Apparent critical field

h Critical field or threshold fieldcr

h Value of h at beginning of pulbem

h Value of h when the apparent threshold is reachedmp m

h0 Maximum rf magnetic field amplitude for dielectric resonator
h Applied (external) rf pump magnetic field

h Nonzero component of h

y •P

i.J.,k Subscriptseach of which takes on the coordinate values
1,2,3 or xyiz

K MP-wK'- Magietic and phonon coupliug constants for spin wave and
elastic wave equations, respectively

1w. Propngation vector

kO Eilastic wave propagation constant on resonance
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1 Magnetization vector

M 8Saturated magnetization

N Effective number of growing phonon modes

N11  Demagnetizing factor in the plane of the ferrite disk a N - N

n Order of spin wave instability a 240,

P Number of turns of frequency tuning plunger screw out from
position of closest approach to dielectric resonator

Papa Peak, average power absorbed by resonant *ystem

APF Change in ferrite absorption due to growth of instabilities

Pi Incident pulse power level

Pim Value of Pi at beginning of pulse

P Pihonon power absorption

(Pp)ap Phonon absorption at apparent threhhold

P rReflected pulse power level

r
A~~r Chleae in reflected power level due to P

P Value of P at beginning of pulserm r

p Normalized anisotropy constant wL HA/3s

Q Spin wave Q

Qext External Q of resonant system

QL Loaded Q of resonant system

QO Unloaded Q of resonant system; ferromgnetic resonance Q

Q Phonon or elastic wave Q

q Frequency normalization parameter = tali

A Elastic displacement vector

Ak Elastic wave amplitude
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Spatial coordinate vector

Time-independent elastic wave awplitudes

r 0 Standing wave ratio at resonance

Soo Exponential phonon growth parameter

t ap Build-up time of phonon instabilities to the apparent
threshold level

U,u Peak, average stored energy in resonant system

x Internal mgnetic field parameter w H/4Ma

Effective internal magnetic field parameter w (H + Dk2 )/4xM

x,y,z Crystallographic coordinates for uniaxial Zn 2 ; coordinates
used to describe dielectric resonator fields

x Jsy )z Coordinates in rotated system at an angle *0, with respect
to fixed system

Unit magnetization vector + +2

4 Spin wave amplitude

%0 Uniform precession amplitude

a Spin Irave component of the unit magnetization vector

r Reflection coefficient of resonant system

7 Gyromagnetic ratio - ge/2mc

C ij Strain tensor component

Effective relaxation frequency in the presence of wegneto-
elastic coupling

Spin wave relaxation frequency w w/2Q a yhk2

SSpin wave relaxation frequency n %/2Q

n p Phonon or elastic wave relaxation frequency

0 Spherical coordinate used to specify orientation of

PO Density of ferrite sample
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SDecay time constant of incident power puave

SSpherical coordinate used to specify orientation of

*0 Angle between rotated and fixed coordinate eystea9

(*O)opt Optimum value of $0 for pumping of most unstable phonon wde

U Frequency of unstable spin wave or elastic iave *ode

ýA Anisotropy field frequency paramter w 7HA

Uý 0 Applied de field frequency paraeter , 7H0

iaturated magnetization frequency parawter a 4%gms

"010 Ferromgnetic resonance frequency

Wp Pump frequency (i.e., frequency of applied rf upeutic field)

Wk Spln wave resonrant frequency

lm Spin wave rooonant frequency containing modulation component

Olp Elastic wave resonant frequency

Elaotic wave resonant frequency in the presence of uneto-
elastic coupling and puMping by the uniform procession

0 Elastic wave resonant frequency in the presence of aspeto-
elastic coupling and zero pum

A/Q Phenomenological damping parawter for spin vaves
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meets the order of the first resonant spin wave instability permitted

was varied from the first to the fifth by w4&Junting the position of

the spin wave manifold relative to the pump frequency. The nature

of the saturation was investigated by observing the waveform of the

reflected pump pulse.

Theoretical on-resorance spin wave thresholds up to fourth order

and off-resonance spin wave thresholds up to second order were derived.

The first order theoretical spin wave threshold was the lowest threshold

in the range of low do ugnetic fields. At higher do fields the second

order theoretical on- and off-resonance spin wave thresholds dominated

the higher order thresholds. Taking the magnetoelastic effect as the
dominant imchanim, first order phonon thresholds were derived for

transverse and longitudinal elastic waves propagating in the easy plane

and along the c-axis. The lowest theoretical phonon threshold was for

transverse elastic wavea propagating and polarized in the easy plane)

and at frequencies below the bottom of the spin wave manifold, this

threshold dominated the theoretical second order off resonance spin



wave threshold. Theory was developed for the growth of pbonn

instabilitiem from thermal level in order to relate pulse saturation

effects to the phonon aobsorption.

Transverse pumping thresholds observed experimentally were

comparable with the above theoretical predictions and strongly

indicate that first order phonon instabilities dominate the hibger

order spin wave instabilities at frequencies below the bottom of the

spin wave manifold. These results together with the phonon growth

theory made it possible to obtain rough estimates for the phonon Q

one msgnetoelastic constant, and the exchange field of ZQ in the

easy plane. The observed pulse saturation effects and the results

of two experiments fow two different phonon absorption levels

indicated the presence of nonlinear elastic wave damping.
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