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ABSTRACT 

A particular observation scheme based on the two-frequency correlation 

function approach for the measurement of time-varying spread channels 

having time-stationary Gaussian statistical properties is analyzed. It is 

shown that the scheme works well for underspread as well as overspread 

channels. The method also appears to be useful in cases where there is 

correlation between the signals arriving with different delays. Expres- 

sions are derived for the variances of the determined correlation and 

target-scattering functions derived by double Fourier transformation of 

the observed correlation function. 
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MEASUREMENT OF PROPERTIES OF SPREAD CHANNELS 
BY THE  TWO-FREQUENCY METHOD 

WITH APPLICATION TO RADAR ASTRONOMY 

I.     INTRODUCTION 

In many communication channels,   even in the absence of additive noise,   a signal applied to 

the channel might be seriously distorted.    This distortion arises because the channel destroys 

the original phase and amplitude relationships between the various components of the input signal. 

If a detailed knowledge of the phase and amplitude characteristics of the channel exists,  the dis- 

tortion may be removed by appropriate filtering.    In addition to the distortion,  there will also be 

a certain amount of time variation in many channels.    The application of a single sine wave to 

the channel will therefore result in an output signal of finite bandwidth.    Because of these prop- 

erties,   it is most convenient to describe such a channel by certain statistical properties.    In 

this report we shall assume throughout that these statistical properties are stationary in time. 

As a result,   the various different frequency components in the output will be completely uncor- 

related when the input waveform is a single sine wave.    Similarly,   it will be assumed in the 

analysis,  wherever convenient,  that the statistical properties of the channel are largely inde- 

pendent of the radio frequency of observation.    This is equivalent to assuming that the signals 

scattered at various delays are uncorrelated,   and this is often a very good approximation. 

However,   such an assumption is not necessary for the application of the measuring scheme. 

There is considerable literature on the description and measurement of such doubly spread 

channels.    Green    describes such a channel in terms of a target-scattering function which de- 

scribes the way in which the power incident is distributed in delay and doppler displacement. 

Kailath    characterized this type channel in terms of a tap-gain correlation function which, 

loosely stated,   describes the autocorrelation function of the time-varying impulse response as 

a function of delay.    Hagfors    describes the channel in terms of a two-dimensional correlation 

function describing the loss of correlation between two time-varying frequency responses with 

a shift in frequency Af and a shift in time  T.    An instructive survey of the various descriptions 
4 

has recently been given by Gallager. 

Several methods have been proposed for the measurement of the various functions describing 

the statistical properties of the spread channel.    Kailath    proposes to use a noise waveform at 

the input and compute the fourth-order moments at the output to derive the tap-gain correlation 

function.    This method appears to work both when the product of doppler spread B and delay 

spread  L  is greater than and less than unity.    Green    and Hagfors    both describe methods of 

measurement that only work well for underspread channels,   i.e.,   when BL < 1;   however,   they 

did not consider the presence of additive noise.    Price    and Levin   dealt with the problem of 

additive noise in the estimation of the statistical properties of the channel. 



In this report,   we analyze a particular measuring scheme based on a two-frequency trans- 
mission when additive noise is present.    It will be shown that the two-frequency method of ob- 

servation,   apparently contrary to common belief,   can be made to work satisfactorily both in the 

overspread and underspread situations.    A similar discussion has recently been carried out for 
4 

the case of pseudo-random or a chirp input to the random channel. 

II.    DESCRIPTION OF MEASUREMENT SCHEME 

The basic observation scheme is shown in block diagram form in Fig. 1.    The transmitter 

emits two sine waves of equal strength at frequencies f~ ± Af/2.    The modulation frequency Af 

must be variable and it is highly desirable that Af is very accurately known,   particularly when 

there are large delays in the channel such as in planetary and lunar radar astronomy.    It is 

convenient to choose Af as an integral multiple of some smallest frequency separation Af      and 

let this be derived from a frequency standard.    The necessity of this requirement will be briefly 

explained in more detail below. 

The received signal will consist of two spectra which,   in the absence of mean doppler dis- 

placement which we will ignore in this report,   will be centered on the two transmitted frequencies 

f„ ± Af/2.    If a mean doppler displacement is present we shall assume that the local oscillators 
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Fig. 1.    Block diagram of two-frequency measurement scheme. 



of the receiving system are programmed to correct for it.    When the channel is "underspread," 

nearly all the significant measurements can be made without the two spectra overlapping; in the 

"overspread" situation this will not be the case.     The received signal is multiplied by a distorted 

replica of the transmitted signal,  the distortion amounting to a change in the modulation frequency 

by an amount f. ,  so that the modulation frequency of the multiplying signal is fL + Af.    Also,  the 

center frequency of the multiplying signal is different from fQ by an amount f2 = fQ - f^.    The 

offset frequency f,   must be chosen so that it is greater than the maximum bandwidth Bm of the 

response of the time-varying channel when a single sine wave is applied at the input.    The IF 

frequency f2 must be greater than the sum of f, /2,  the maximum frequency separation Af,   and 
half the maximum bandwidth in order to prevent "foldover" (see Fig. 2).    Following the multiplier 

the signal is split into two parts by upper- and lower-band filters.    In the strictly underspread 

situation,  these two filters should be constructed so that only the signals centered on f2 + fjV2 

and f? — fr /Z are passed,   respectively.    In the overspread situation such a discrimination will 

no longer be possible,   and we must allow the filters also to pass some of the signals centered 
on f2 ± [(fr/2) + Af].    This will tend to introduce a certain amount of "self-noise" into the 

system. 
The upper-band signal is passed into a delay line with discrete delays 0,   T      T2,   etc., 

corresponding to the time shifts in the two-dimensional correlation function.    These time shifts 

should be chosen to be integral multiples of f.     for convenience.    The delayed and undelayed 
signals are multiplied together and the amplitude and phase of the component in the output cor- 

responding to the frequency fT   are determined by means of the operations shown in Fig. 1.    The 
-1 integration time  6  should be chosen as an integral multiple of the period AfQ     of the lowest 

modulation frequency for reasons that will become apparent from the analysis that follows. 

The pairs of numbers,   or the set of complex numbers,   resulting from the measurement are 
shown below to result in a determination of the complex correlation functions with frequency 

shift Af and with time shifts 0,   T^   T£,   T-,   etc. 
Let us now briefly return to the reason why the modulation frequency must be so accurately 

known.    Consider as an example the situation encountered in radar astronomy.    The transmission 
of the two sine waves corresponds to measuring one particular Fourier component of the target- 

scattering function,  giving power as a function of range.    If this function is to be recovered 

completely we must know both amplitude and phase of the Fourier components for different Af. 

Fig. 2.   Various frequency spectra 
in the processing scheme. 
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The phase and amplitude relationships must be well defined at the target.    In radar astronomy 

and in other applications there will,  however,  be a large number of modulation cycles between 

the transmitter and the target.    A very slight inaccuracy in the modulation frequency might, 

therefore,  result in a large phase inaccuracy at the target. 

The sets of results obtained with a number of different frequency separations Af can,   if 
3 

desired,  be used to compute the target-scattering function by a double Fourier transform 

(see Sec. III-E below). 

HI.   ANALYSIS OF MEASURING SCHEME 

In this section it will first be shown how the mean values of the output of the processing 

scheme shown in Fig. 1 are related to the two-frequency correlation function both for under- 

spread and overspread channels,   first without additive thermal noise,  then with thermal noise 

included.    In the subsequent sections we will repeat the analysis under the same situations for 

the variance of the output so that confidence limits can be placed on the mean values determined. 

Before starting on this program it is worthwhile to define the complex two-frequency cor- 

relation function in terms of a time-varying frequency response.    Suppose the complex amplitude 

of a pure sine wave at the channel input is e.    and that the frequency is fQ.    The complex amplitude 

at the output is then time varying because of the channel fluctuation and can be expressed as 

follows: 

eout(t) = H(V *> ein      • «> 

The ratio of mean power at the output to input power becomes 

^t   =<|H(f0.t)|2>avg      , (2, 

where the averaging is considered an ensemble averaging,   in general.    The (unnormalized) two- 
frequency correlation function is now defined as 

R(Af, T) = <H* (f0 - $£, t) H(f0 + ^, t + T)>ayg      , (3) 

where we have assumed that the channel is stationary both in time and frequency.    In case the 

channel is not stationary in frequency,  the correlation function will also depend on fQ.    The 
transmission loss is obtained from Eq. (3) by substituting Af = 0 and T = 0.    We assume through- 

out this report that H(f_, t) is a Gaussian process. 

A.    Evaluation of Mean, No Noise 

The signal at the input of the receiver will have the complex amplitude referred to the 

center frequency f„ given by 

T-    i±\      XJIC        Af   AX     -i7rAft  ,   TT/r     ,   Af     .     itfAft , AX F.n(t) = H(fQ - ~Y, t) e + H(fQ + -j-, t) e , (4) 

provided the transmitted amplitudes are equal to unity.    The complex amplitude at the output of 

the first multiplier,  this time referred to the intermediate frequency f- = f« — f?,  becomes 
(apart from a constant of proportionality) 



F2(t) = [H(f0 - ^,t) + H(f0 + |i,t) e2"iAft] e     L' 

+ [H(f0 + f,t) + H(f0-f,t)e-2TiAft]e"TifLt      . (5 

The upper- and lower-band signals appearing separately above can always be separated in the 

two filters following the first multiplier,  leaving two signals with amplitudes referred to 

frequencies f2 + fr/2 and f^ — fL/2,  respectively: 

F2
+(t) = [H(f0 - *jL. t) + H(fQ + f, t) e27riAft] 

F-(t) = [H(f0 + f, t) + H(f0 - f, t) e"27riAft]      . (6) 

We next filter out as much of the undesired signal as possible by assuming the maximum band- 

width of the time-varying response to be B    ,   so that the following representation applies. 

H(f 
•-'-OO 

Ziriut dv 

■1 
B    /Z 

-(B    /2) m' 

H(f0±^,,)e27rii;td, (7) 

By including rectangular filters in the lower- and upper-band filters of bandwidth equal to B    , 

the desired signal is passed undistorted and a certain fraction of the undesired signal is rejected. 

The results of passing the signals [Eq. (6)] through such filters centered on f2 ± f, /Z are: 

f pB   /Z 

F3
+(t) = H(fQ-^,t) + I i (Bm/2)+Af 

I 0 

H(fQ + &, v - Af) e2nitu du      Af < Br 

Af > B (8a) 

F3-(t)=H(f0 + f,t) + 
J (B    /2)-Af m' 

(Bm/2) 
H(f_-^,, +Af)e2"t" dx      Af<B u       d m 

Af > B (8b) 

The second multiplication with subsequent coherent detection of the component at frequency fT 

is represented mathematically as: 

V(TJ = <) = i F 
3

+* (t) F3'(t + Tt) dt (9) 

or explicitly, 

V(Tt) = dt 
Af r B/z 
^, t) + Dm     - Af)   \    Lil H*(fn + ^, u - Af) e-

Zniut du 
>] (Bm/2)+Af °        2 

Af f(Bm/2)-Af Af 2irii/(t+T.) 
x    H(L + f(t + T.)+D(Bm-Af) m H(fn -^r,«/ + Af) e £ d^ 0        2 I m J i 0        2 

m' 
(10) 



where D(x) is a function that is zero when the argument is negative, and unity when it is positive. 

The mean value of the output becomes 

<V<T<)>avg = e<H*(fO-^.t)H<fO + ¥'t+T«)>avg = eR<Af-T*)       • (11) 

The other three terms will vanish exactly if the integration time  9  is chosen as an integral 

multiple of Af ~   ,  as explained in Sec. II.    This can be seen from the following development. 

«' 
H*(f0-X.t)\ H(f0-X,^+Af)e d„dt\ 

"    m' /avg 

~-\    dtLd"   J.,Bm/2) <H(f0---")H(f0-^'"+Af)>avge d" 

r(B    /2)-Af , , 2iriKT,   p6       ,   .... 

m 

= 0      , (12) 

and the latter of these two integrals obviously must vanish exactly under the conditions imposed 

on 0. The product of the two integrals in Eq. (10) will also vanish for the same reason. There 

is only one exception to this, namely, when Af = 0 all four terms in Eq. (10) contribute an equal 

amount.    Hence,  we conclude, 

<v^Ti»avg=<v(^Vii)>avg 

0R(mAfo, p-J       m^l   ,    1 = 0,1,... 

46R(O, Y~) m = 0   ,    I = 0, 1  (13) 
L 

These results apply whether or not the channel is overspread. 

B.    Evaluation of Mean with Noise Present 

When additive noise is present at the receiver input there will be an additional term in the 

input signal. 

F.n(t) = H(f0 - f, t) e-»*" ♦ H(fQ ♦ A/, t) e*1*" + n(t)      . (14) 

Here,   n(t) is a noise signal which might be expressed as 

n(t) = r ° 2irift 

fn-(Af /2) 0 max7 

where Af signifies a largest modulation frequency to be used.    In the output of the processor 

certain new noise terms will appear.    The terms containing cross products of noise and signal 

will not contribute to the mean,  because noise and signal are uncorrelated.    The noise-noise 

term,  however,   might contribute to the mean output.    To see this we may argue as follows. 

The noise associated with F_ (t) becomes 



, r-(Af/2)+(B    /2) .   . 
F3

+(t)= m        N(„ + fj e2™* dv (16a) 
5    n    J-(Af/2)-m   /?.) ° -(Af/2)-(B    /2) m' 

and,   similarly,  for F ~(t), 

r(Af/2)+(B   /2) .  .   . 
F3"(t)n=   \ m        N(, + f ) eZlTlvt dv      . (16b) 

5      n      J(Af/2)-(Bm/2) ° 

The noise contribution to the output signal VfT^),   i.e.,   V (T^),  becomes 

,e        f-(Af/2)+(Bm/2) 
dt   \ m        dv W{v + U e" 

J-(Af/2)-(B    /2) ° 

p(Af/2)+(Bm/2) 27r^'(t+Ti) 

J(Af/2)-(B    /2) 
X   \ m        di/'N(i;» + fft) e (17) 

m' 

Taking the mean of this we find 

<v(Ti)>   = r dt r(Af/2H(B-/2) d, <|N(,+f0)i^>e-— 
n    ^avg      4 J-(Af/2)-(B    /Z) ° 

r(Af/2)+(B    /2) 27rip'(t+Tj 
\ m ^l„«    o 
J(Af/2)-(B/2) 

X   \ m        dv' e öU> -i>) 

r9        r-(Af/2)+(B    /2) _ 27rii/T, 
= dt   \ m <\N(v +fj|2>d^ e ' 

*b J-(Af/2)-(B    /2) ° 

X (D [v - |(Af-Bm)]-D \v -\  (Af + Bm)]} 

sinvr T (B     - Af) 
= (B     -Af)0ND(B     -Af)  =-T^—S^-TTV—      , m o        m 7rT(B     — Af) 

where N   is the noise power per unit bandwidth,   and D(x) has the same significance as in Eq. (10) 

Hence,  the output of the processor with noise present becomes 

<v(mAf0,     ' )>        = 6 
L      av£ 

sin* ^-(Bm-mAf0) 

R mAf0,     ') + No(Bm-mAf0)   j±- —— D(Bm-mAf0 

L 7rf7(Bm-mAf0) 

m ^1 (18) 

We conclude that the processor gives an output proportional to the desired correlation func- 

tion whenever the two lines can be completely separated.    When the two lines overlap there will 

be a noise bias in addition (see Fig. 3);  hence,  this bias must be established before the correla- 

tion function can be determined. 
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<V(T)> Fig. 3.   Output of the processor shown 
in Fig. 1 when noise is present. 

C.   Evaluation of Variance, No Noise 

The variance of the output may be computed directly from the expression [Eq. (9)]: 

-■e / 
dtdt'   <F?'Ut)  F~(t + T.) wTlV)  F_~*ft.'  + T ^ 

avg <|V(Ti)|
2>avg = j1     I     dtdt'   <F3

+*(t) F3-(t + Tt) F3
+(f) F3"*(t« + T£)>, (19) 

Now,   since we are assuming a Gaussian process,  the integrand can be expanded in terms of 

second-order moments as follows. 

<F3
+*(t) F3"(t + Tt) F3

+(f) F3"*(t' + T|)> avg 

=  <F3
+*(t) F3"(t + Ti)> <F3

+(f) F^*{V + T|)> avg 

. +* +  <F3   (t) F3 (f)> <F3"(t + T,) F~  (V + Tjf)> avg 

+  <F3
+!':(t) F3-*(t» + T|)> <F3"(t + T,) F3

+(f)> (20) avg        3 £3 avg 

The first term on the right-hand side in Eq. (20) can be seen to correspond simply to the square 

of the mean value which has already been determined.    The last term in Eq. (20) is completely 

negligible because it involves mean values of products of frequency responses,   either both 

unconjugated or both conjugated.    Only the middle term will therefore contribute to the variance. 

In order to evaluate this term we write 

F+(t) = H(fn -^(t) + D(E5     - Af) 3 0 c m I 
B    /2 

m 

H(f+41^_Af)e27riptd, 
(B    /2)+Af        °        2 

Af I (B    /2)-Af 
F ~(t) = H(fn + ^, t) + D(B_ - Af)   \      "*' H(fft - A£, v + Af) eZ*ivi dv 

-)-(Bm/2) °        2 
(21) 

where the factor D(B     — Af) is unity whenever B     > Af,   and zero otherwise.    We have: 



<F +  (t) F+(t')>av„ - R(0,t' -t) + D(B     -Af)   \    m di/'   \    m 

3 3 aVg m J-(Bm/2) J-(Bm/2)+Af 

B^/2 pB^/2 
dp 

x e-2«(^t^f) <H,(fQ _ Af ^ „,, H(f() + A£ „ _ Af)> 
avg 

,B_/2 pB_/2 

r,~Af)   \ J-(B    /2) J-(B    /2)+Af 
f m    *■ c -Af) d,'   \   m di/ e

27ri(l/,t' -^ 

m' m' 
B    /2 

X <H(f0 - f, i») H*(fQ + f, v- Af>avg + D(Bm - Af) yj dp dt 

-(B    /2)+Af 
m' 

X<H*(£0+f, ,-Af)H(f0+f, .'-At»^2"«"'*'-"*'       . (22) 

Because of the assumed time stationarity of the statistical properties we must have 

<H*<f0 - %. ») H(f0 + %. *')>avg ■ <H*(f0 - f, r) H(f0 t 4?. ,)>avg «<„- - ■>) 

Using this we obtain 

<F+*(t) F+(t')> = R(0,t» -t) + D(B     -Af)   f   m d^ e27ril/(t'_t) 

^ ^ avg m J_(B    /2)+Af 
m 

X <H*(fn - ^,V - Af) H(fn + 4^, u - Af> e27riAft + D(B     - Af) e"
27riAft' u       z u       <i avg m 

-B    /2 m' X   f   m ^.(f-t)   <H,(f     ,   Af^_Af)H(f Af)i;_Af)> 

J-(R     /2)+Af U ^ U ^ aVg -(Bm/2)+Af 

,B    /2 
+ D(B     -Af)   f   m dv e27ri"(t,_t) <H*(fft, P - Af) H(f„, P - Af)> 

J-(Bm/2)+Af ° ° avg (22a) 

The other moment which must be evaluated is 

<F3'(t + Tt) F~*(V + Ti)> =  <F3"(t) F3~*(t>)>avg (23) 

The last equation follows from the time stationarity of the random process.    The average in 

Eq. (23) can be obtained from Eq. (22) by changing the sign on Af in all arguments of H,   by 

interchanging the roles of t  and t',   and by changing the limits of integration.    One then obtains 

<F3-(t)F3-*(t')>ayg = R(0, t-t») + D<Bm -Af) e 
2*iAft'   r(Bm/2)"Af  dv e-2^(f 

•MB   /2) m 

-t) 

X <H*(f0 + 
At 
2 , V + Af) H(fQ - 

Af 
-T>v + Af)> avg + D(Bm-Af)e27riAft 

HBm/2)- 

J-(Bm/2) 

Af 
dp 

x e-
2™(V -t) <H*(fQ - 

Af 
T' v + Af) H(fQ + 

Af 
2 ,v + Af)>        + om avg             m 

f(B    /2)-Af 
-Af)   \      m 

J-(Bm/2) 
du 

x e-
27ri"(t' -t) 

<|H(f0.» + Af) 2> avg 

9 

(24) 



Of the 16 terms resulting from the multiplication of Eq. (22) by Eq. (24),   only those terms which 

depend on the combination t — t' will contribute in the integrals over t and t'.    The terms depend- 

ing explicitly on either t or t1 will all vanish.    The contributing terms will be the following six: 

(I)        |R(0,t-t')|    + 

AB   /2)-Af 
(H)        +R(Oft'-t)      D(B     -Af)   \      m d* e_27rl(t -t)v   <|H(fn.i/ +Af)|2> + 

"(B^/2) 

(HI)        + R(0, t - V) D(Bm - Af) y 
Bn/2 

(B    /2)+Af 
du e 27ri(t'-t)i> <|H(fn, v -Af)|2> + Nl       0' '   'avg 

B^/2 
(IV)       + D(B     -Afle-21^'"1»   f   m 

(Bm/2)+Af 
dv e Zniu(V-t) 

X<H*(f0-^,,-Af)H(f0+f,,-Af)>avg 

«r <Bm/2)--d_-2^(t,.t, 

(B„/2) 
<H*(fQ f ^, „ ♦ Af) H(f0 - f, v + Af)> avg ♦ 

B   /2 fin' 

(V)        +D(B     -Afle-2^1'-1»   f   m 

'-(Bm/2)+Af 
dv e 27ri^(t'-t) 

X <H*(f0 + %..» -^ H(f0 -f.* -Af»ayg 

.(B    /2)-Af _   .   u.   ., 
\      m d, e-

27rl"(t _t) f (B    /2) 
<H*(f0 - f, , + Af) H(f0 ♦ f, „ + At)> ^ + 

/^(B    /2)-Af ,   ....   i( , 
(VI)        + D(Bm - Af) m d» e-2'l(t -t,P   <| H(f     v + Af) | 2> 

-(Bm/2) 

;Bm/2 

u < 3: 27Ti(t'-t)l> 

(Bm/2)+Af avg 
(25) 

The interpretation and discussion of such a complicated expression is rather difficult, and 

it simplifies matters greatly if we can make a specific assumption about the channel properties 

to insert into the general terms in (25).    As a specific example we choose 

Z <H*(f0-^-f,,)H(f0 + f,v)> 
avg 

1 + 27TiT   Af o 

0 

., i    i   -     m if I v I < -r- 

otherwise (26) 

This corresponds to assuming an exponential power-vs-range variation with power falling off to 

e      at T = T        For R(Af, T),   we obtain 

R(Af' T) =   1 + Mr Af I 
B    /2 _   .   _ 

m' Zi^ivT 

o"1 J-(B    /2) 
dv = 

aß sinTrTB m in 
1 + 27riT  Af     TTTB o m 

(27) 
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The contribution to the variance caused by the terms in (25) in this case is found by substitution 

of Eqs. (26) or (27) and integration over t and t' between the limits 0  and 0.    On the assumption 

[hat 0 » B      ,  the contributions become m 

Term (I): 

Terms (II) & (in): 

Terms (IV) & (V): 

Term (VI): 

0B   a m 

20(B     - Af) a       if   Af| < B m '      ' m 

otherwise 

2 1 
1 + (2TTT   Af) 

o 

20(B     - Af) a 

lo 

0(Bm-Af) a' 

0 

3      if   Af    <B^ c m 

otherwise 

if   Af   < B 

otherwise (28) 

Half this variance corresponds to the real and half to the imaginary part of R(Af, T),   so we 

might define the relative uncertainty of the two components as follows (Af > 0). 

1/2 

6(ReV) 
<ReV> avg 

6(ImV) 
<ImV> avg 

fl/2{l + (27TToAf)2 + 2D(Bm-Af) (l - ^) [3 + (27rToAf)2]M 

(sin7rTB    \ 
TP     m 

7TTB / m 

f 1/2 11 + (27rroAf)2 + 2D(Bm-Af)  (l - ^) [3 + (27rroAf)2]M 

/sinTrTB    \~~ 
/B    01      ^p    m)(27TT  Af) 

sj   m    \   7rTB        / o 

(29) 

For the singular case of Af = 0,   one obtains 

6(ReV) 
<ReV> 

fijz 
avg 

x m       ' 

(30) 

The relative uncertainty in the imaginary part is infinite at Af = 0 because the mean vanishes at 

Af = 0. 

D.   Evaluation of Variance with Noise Present 

The evaluation of the variance proceeds along the same lines as before except that F.(t) has 

an additional noise term as follows. 

n 



Af rB  /2 Af 
F,(t) = H(fn - ^, t) + Dm     - Af)   \    m H(fn + f1, v - Af) e 

(B    /2)+Af 

Zirivt  , 
dp 

m 

r(Af/2R(Bm/2) 2^t 

^-(Af/2)-(Bm/2)   * 
N(i/ + fA) enii" dv 

P.-(t) = H(f0 + 4-f, t) + D(Bm - Af)   f "m' " 
3 0       2 m J-(Bm/2) 

(B    /2)-Af 
H(fn - -=-, v + Af) e du 

r(Af/2)+(B    /2) . 
+ m N(„ + fn) e2vlvt du       . (31) 

J(Af/2)-(Bm/2) 

For the same reasons as before it will only be the middle term on the right-hand side of Eq. (20) 

which contributes.    In the expression corresponding to Eq. (22) will be the following additional 

term due to the noise: 

siriTrB   (t-t1) ,* 
N     T-^-TT   =   <F+"(t) F   (f)> . (32a) o 7r(t — t1) n n avg 

Similarly,   there will be an identical contribution to Eq. (24),   namely, 

sinTrB    (t-t1) + 

No        ,(t-f) " <Fn  (t'> Fn~(t»avg      ■ H« 

There will now be the following five terms in expression (25),   in addition to those already 

present: 

, fsinirB    (t-t')l2 sinTrB    (t - t') 
N2    TT10^        +N m 

o TT(t-t') o TT(t-t') R(0,t- f) + R(0,f - t) 

MB    /2)-Af ,   .,,,   4| 

^(Bm--fl £(B-/2) * e-2"«'-^   <|H(f0>, +Af»|2>avg 

+ D(B
m-

Af) Cm//2»+.f * eZ"i{V'i)V <|H(fo—«l2>avg| m 

(33) 

With the assumption [Eq. (26)] about the channel properties,   these terms contribute the following 

amount to the variance after the double integration over t  and t': 

B    N20 + 2B    aN  G + D(B     - Af) 2(B     - Af) aN  0 mo mo m m o 

For the total variance in the presence of noise one therefore obtains: 

0B     \aZ + N2 + ZaN    + m o o °'Bm-)(1-r)p+77^r2—o]|       . «34, 

The signal-to-noise ratio,   defined as the square of the mean (excluding the noise bias which is 

assumed to be taken out),   divided by the variance just found becomes: 

12 



(1)   For the real part, 

(mean signal) 
noise (= variance)       2B m K'   \i I Unr Af)2/    V   -TBm    ) 

X 

m 

H2V     B2    1 ♦ 
(2TTT  Af)2 P 

+  ~    S (35) ,,       An2       2N  B (27TT  Af) o   m, m o 

where 2aB     = P    = total received signal power. m        s ° 

(2)   For the imaginary part,  the corresponding result is obtained by 
multiplication of Eq. (35) by (27r-r0Af)2. 

When the signal power is much less than the noise power within the bandwidth B    ,  the 

result [Eq. (35)] simplifies quite considerably to give 

(mean signal)2 9     /^s_\2 / 1 \2 /sin7rTBm\ 
noise 2B     \N   /   \4.lo       A,,2J   \   TTTB       / Ub' m  x    o'    \1 + (27TT  Af)   /     x m    ' o        ' 

It is interesting to observe that this closely resembles the signal-to-noise ratio of the output of 

Price's optimum processor in the case where the signal waveform spans many coherence 
o 

intervals (Price ).    A naive interpretation of the result is 

2 
(signal)     _  1_ (signal energy) X (signal-power density) 

noise 2 , ~       .,   »2 (noise-power density) 

_ 1 B    e , signal-power density > 2 .     . 
2     m       noise-power density 

E.   Uncertainties in Target-Scattering Function 

It is not always sufficient to be able to discuss the variance of the outcome of the experimen- 

tal scheme shown in Fig. 1.    In order to compare matters with the results of pulse experiments 

designed to measure the target-scattering function CT(T, fn) directly,   it is necessary to find the 

uncertainties arising in the determination of CT(T, f„) from the correlation function measurements. 

Suppose,  therefore,  that we have gone through the correlation function measurements and have 

determined a set of complex numbers: 

V(mAf0,!To) 

fm = 0, 1, . . ., M 

i   = 0, 1 , L   ,     T    =T^-     , (38) 
°      fL 

and that the integration times 0 = Q..     Our estimate of the target-scattering function obviously 

would take the form 

L , M 27ri(mAfnT+iT fn) 
^'fD>est~     I     efe      2      V(mAf0,iTo)e oD (39) 

i = -L m = -M 

13 



We shall not be concerned with scale factors here.    A target-scattering function determined in 

this manner will deviate from the true scattering function for two reasons.    There will be a 

truncation error because the summations are carried to finite limits;  this indicates a range 

resolution of the order AT = i/MAfQ and a frequency resolution AfD = i/LT    = fj /L.    Also, 

there will be a systematic error due to the finite sampling on the correlation function.    Here 

we shall not consider these systematic errors.    Another source of errors is caused by the fact 

that the correlation function is subjected to statistical fluctuations due to additive noise or self- 

noise.    We shall be concerned with these latter type errors.    In other words,  we would like to 

study the quantity 

i      ^        , 27ri(mAfnT+!T  fn) 

A*<T,fD)~   Z     Z   e(k)  W^VV-^^VVW e '   {40) 

-L   -M 

Hence we shall attempt to determine (AIT(T, f_J   > It is found that 

M 

<A^' fD)2>avg ~        I     -TTZ   I I «V(mAf0,iTo) V^mAf, nTo)>avg 

m=-M e[m)      I    n 

2viT fn(l-n) 

" <V(mAf0'iTo)>avg <V*(mAf0'nTo)>avg> e (41) 

Assuming here,   as throughout,  that the channel and the noise are both Gaussian,  there will only 

be the terms depending on 

< O» F3m(t'» avg <F3m(t + T» F3m(t* + T*»> avg      ' 

which will contribute to the entire triple sum in Eq. (41).    The first of the two factors above will 

be identical to the one determined previously [see Eqs. (22) and (32a)]: 

<»3W*>«,to(t'»«.-«0-*'-*»♦• «Bm-^V avg 

x JB™/2 dp .arWf-t) 
(Bm/2)+IAf0 

<H*(fo - -T2." - "^'o) H(fo + ^T1-' - "^o)); 

mAL)   \ 
J-(Bm/2)«Af0 

: <H* (fo+ ^P) H(fo - ^r9 •" - mAfo)>a 

nv 

mAfn v       / mAf0 
-    v - mAf.  i^ 

avg 

-27rit'Af.m pB    /2 .   .   ...   ., 
0      -^     -mAf )   \    m -• .2«*<t' 

m -l(B    /2)+iAfn 

O/'avg 

rB    /2 ,   .  . 
— mAL)   \ du e 

J (B    /2)+IAfn 0 

sinTrB    (t - t1) 
X <H»(f0, , - mAf0) H(f0, v - mAf0)>avg + NQ        ^V)    . (42) 

.+*.*.  ~ +    ....x 2;ritAf0m 
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The second factor takes on a slightly different form than before.    Putting T1 - T = <5T = (i - n) T , 

one obtains 

„, -27ri(t'+öT)Af m 
<F3m(t) F3m(t' " ÖT»avg = R(°' t - f - 5T) + e D(Bm - mAfQ) 

MB   /2)-mAf . mAf v      / mAf v 
X i(B    /2)        •     ^ <H A'0 +      2 ' " + ^o) H(f0 ~     2      >V + ^o)); 

•>   ■   /*i  *.*-r\        27ritAfnm p(B    /2)-mAL 

m 0   J, 

e-27rii/(t' + öT-t) 
avg 

<Bm/2 

f0 - -j-S.» ♦ mAf0) H(f„ ♦ -^.^ ♦ mAf0)> 

♦ o(Bm-m.V ^/
/
2

2
,;mAf° a, <|H(V, ♦ «AVl^.-^'^-t» 

sinTrB    (t - t' - ÖT) 
+ No ,{t-f-<T) • (43) 

In the subsequent multiplication and integration over t  and t',   only those terms will contribute 

which depend on t and t' through the combination t - t\    This leaves the following eleven terms 

(note,  we put t' — t = At): 

(I)       R(0, At) R*(0, At + 6T) + 

(H)       + R(0, At) D(B     - mAL)   r(Bm/2,"mAf0 R(     y + , e-27ri,(At+6T) ^ + 

°    J-(Bm/2) ° 

(HI)       + R*(0, At + ÖT) D(B     - mAf.)   C   m R(0, v - mAL) e
27ril/At du + 

0    J-(Bm/2)+mAf0 ° 

,     x -27TimAff.(At+öT)   pB    /2 »,4„A# 
(IV)       + D(B     - mAL) e \    m R(mAL, u - mAL) e

Z™At 

0 i(Bm/2)+mAf0 ° ° 

p(Bm/2)-mAf 27ril;(At+öT)   . 
x   \ R*(mAL, y + mAfn) e dv + 

dv 

■<Bm/2) 

-27rimALAt   PB      Z n ™' 27riJ^At   . dv (V)       + D(B     - mAL) e \    m R*(mAL, e - mAL) e 
° J-(Bm/2)+mAf0 ° 

X   r(Bm/2)-mAf0 R(mA + , e-2,i,(At+6T) du + 

i(Bm/2) 
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(VI)     + D(B     - mAL)   f   m R(0, v - mAL) e
2irivAt dv 

m J-(Bm/2)+mAf0 
U 

x flB»/2,-inAf» wo,, + mAy e-^^v dM + 
J-(BmA) 

sin7rB   At 
(VH)     + N     rf— R*(0, At + 6T) + 

O TTAt 

sinTrB    (At + 6T) 

<VIII>     +No ,(AT+6T) R(0-At) + 

Isin7rB   At   r»(B /2)-mAL .,   .   /A.,Ä^X 

o 7rAt J_^B     /2j 0 

sinTrB(At + ÖT)   pB    /2 ».«„A4       I 
<X>     + N     fA?+aTi \    m R<0. v - mAfJ e2™At dp dv     + 

7   sinrrB   At •   sinTrB    (At + <5T) 

W   +No °At ■ ,(At +°T)    • (44) 

Again we make the assumption that the observation time spent at each frequency separation is 

large enough so that the integration over At can be carried between infinite limits.    Also,   in 

order to obtain a reasonably simple result suitable for discussion we evaluate all the above 

integrals on the assumption that the channel properties are of the form of Eqs. (26) or (27).    It 

is found that: 

Terms (I) + (VII) + (VIII) + (XI) 

sinTrB    <5T        ? _ 
= 0   j^    (a    + 2aN    + N ')       ■ 

TTÖT O O ' 

Terms (II) + (III) + (VI) + (DC) + (X) 

sinTr(B     - mAL) ÖT - 
= 9D(B     - mAL)    m-lf=   (3or    + 2aN  )       ; m 0 TTOT o 

Terms (IV) + (V) 

sinTr(B     - mAL) <5T 2 
= 29D(Bm - mAL)   ^-— 3        «         . (45) 

m ° *6T 1 + (2TTT  Af)2 

o 

When this is substituted back into the expression for the variance,   we obtain 

, J?       4       „   „   [sinTrB    T  (I - n) , 

<**'. V >avg ~ I    efc)  I l\ ~    ,T"   -n) <° + No»    + D<Bm " "*'<>> 
-M 1     n 

simr(Bm-mAL)T(i-n) ? -2 I     27riTfn(i-n) 
x       T 1,       \       (3«2 + 2aN   + ^ 5    e • (46) 

^To(i-n) ° 1 +(2TTTOAV)
2
| 
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Certain conclusions can be drawn about integration times 6(m) from this expression.    In the 

general case,  the double sun 

denoted by S(m, fD).    Hence, 

general case,  the double sum over i and n is a function of both m and f   ;  let this function be 

2 ^    S(m,fn) 
<Aa(T,fD)2>avg~   l    -eünf       • (47) 

-M 

If we were to ask which set of 6(m) would lead to an optimization of the output signal-to-noise 

ratio for a given point (T, fjO and for a given total observation time 9    =2 6(m),  we would 

obtain 

G(m) ~ JS(m,fD)      . (48) 

However,   if the channel is distinctly underspread,   or if the noise-power density N    is considerably 

greater than the signal-power density,  then S(m, f^) will be essentially independent of m and we 

conclude that equal times should be spent at each frequency separation. 

W.   DISCUSSION OF APPLICATION TO RADAR ASTRONOMY 

Let us finally very briefly consider an example of the determination of the target-scattering 

function in radar astronomy by this method.    For simplicity we consider the particular case of 

a < N ,  i.e.,  where the energy density of the received signal is less than the noise-energy density. 

This is a situation most frequently encountered in radar astronomy except in cases of lunar and 

Venus reflections by the very largest radar astronomy installations.    It is also a situation on 

which extensive theoretical considerations regarding optimum detection have been based.     In 

the variance terms in Eq. (46),  we then only need include the term involving N   .    First we settle 

on a depth range to be investigated;   ideally,  this depth should be equal to the radius of the target. 

In practice,  however,  we might specify the depth range somewhat smaller than this because the 

echo toward the limbs of the object is frequently too weak to be detected anyway.    We let the 
_1 

depth range be AfQ   ;  this specifies the smallest frequency separation we want to use in the 

experiment.    Similarly,  the smallest time shift T    must be chosen about equal to B The 

next question is concerned with the number of resolution cells we want within the specified am- 

biguity range.    Suppose we desire 2M resolution cells in depth and 2L in frequency.    With the 

flat noise spectrum assumed in the above calculations we obtain 

-> -»   -ma .   i i*       \     27riT f,-x(i-n) 
/A   /     f   \2\ *T

2
  2M + 1      V V     sin T(I - n) oD /y(Q» 

<Ao(T,fD)   >avg = No   —g—      2, I      T »(I - n)   e (49) 

i=_L   n=-L      ° 

If L is at least moderately large, the double sum over i and n will be approximately (2L + 1) T 

when |fpj < B   /2,   and zero otherwise.    Hence,  within the bandwidth containing the signal we 

have 

<Aa(r,fD)2>avg= NQ
2(2L+ 1) (2M+ L) -^-      . (50) 

On the assumption of an exponential target-scattering function,  the mean value of the signal will 

be 

<^>avg = #ÄfVe"T/T°      when|fD|<^P      . (51) 
& o        0  o 
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Now,  AL.T    is some numerical factor depending on the ratio of the decay constant T    and the 

depth to which we want to investigate the target.    Let this ratio be ß~  .    The signal-to-noise 

ratio becomes 

signal.2  _ /_o_\     m      '   o ,„, 
( noise*     " \N   ^     (2L + 1) (2M + 1)   e » (bd) 

where (2L + 1) (2M + 1) is the number of resolution cells.    Finally,   introducing the total observa- 

tion time G    = M0 and the total power P = aB    2 we obtain o                                       r              rec m 

.   ,      / P   \2                     ß2e -ZT/T signal  2     /_s_\      1 Q  o (5  } 
1 noise '        \2N/     M(2L + 1) (2M + 1) B ' {     ' o' m 

V.    CONCLUSIONS 

We have shown that a measuring scheme can be devised which makes the two-frequency 

method of investigating statistically stationary spread channels possible both in the underspread 

and overspread situations.    In case the channel has correlated taps,  the statistical properties of 

the channel vary with center frequency fQ so that the observation must be repeated for several 

center frequencies.    The method described appears to be a rather flexible one in that the various 

channels in the observational scheme shown in Fig. 1 should be rather easy to implement and to 

alter at will,  particularly if some of the processing is being carried out by digital techniques. 

It appears to be rather difficult to compare the method with other methods of obtaining target- 

scattering function estimates because few such estimates are available and the constraints on 

the measuring methods are often different.    One might think that a direct comparison could be 
4 

made of the results of Gallager's chirp experiment    and the present results.    It turns out, 

however,  that it is not at all obvious how such a comparison is to be carried out because in the 

present report we measure R(Af, T) for a particular Af with variable  T,   whereas the chirp 

method measures R(o;T, T) where  a   is a constant determining the rate of change of the fre- 

quency in the chirp.    We believe,   however,  that the method described might be advantageous 

in cases where there is a peak-power constraint on the transmissions that can be used.    A dis- 

advantage under these circumstances would be the fact that the average transmitted power is 

only equal to half the peak power. 
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